Copyright
©The Author(s) 2026.
World J Gastrointest Endosc. Feb 16, 2026; 18(2): 113912
Published online Feb 16, 2026. doi: 10.4253/wjge.v18.i2.113912
Published online Feb 16, 2026. doi: 10.4253/wjge.v18.i2.113912
Table 1 Summary of studies on the application of artificial intelligence for dysplasia detection in inflammatory bowel disease
| Ref. | Country | AI model/technique | Study design | Dataset | AI performance | |||
| Mode | Sensitivity (%) | Specificity (%) | Accuracy (%) | |||||
| Guerrero Vinsard et al[12], 2023 | United States | IBD-CADe system with HD-WLE and chromoendoscopy (Scaled-YOLOv4) | Retrospective | 3437 colonoscopies, 1692 endoscopic images (HD-WLE and dye chromoendoscopy) | HD-WLE | 95.1 | 98.8 | 96.8 |
| Chromoendoscopy | 67.4 | 88 | 77.8 | |||||
| Yamamoto et al[13], 2022 | Japan | Deep CNN (EfficientNet-B3) | Retrospective (Pilot Study) | 862 endoscopic images (WLE and chromoendoscopy) | - | 72.5 | 82.9 | 79 |
| Abdelrahim et al[32], 2024 | United Kingdom | Deep CNN (RetinaNet; ResNet-101 backbone) | Prospective | 478 endoscopic images and real-time colonoscopy data | Lesion detection | 93.5 | 80.6 | N/A |
| Lesion characterization | 87.5 | 80.6 | N/A | |||||
| Maeda et al[33], 2021 | Japan | EndoBRAIN-EYE | Case report | Single case (patient with ulcerative colitis) | - | N/A | N/A | N/A |
| Fukunaga et al[34], 2021 | Japan | EndoBRAIN | Case report | Single case (patient with pancolitis) | - | N/A | N/A | N/A |
- Citation: Popovic DD, Dragovic M, Panic N, Marjanovic-Haljilji M, Glisic T, Lukic S, Mijac D, Bogdanovic J, Bogdanović L, Djokovic A, Starcevic A, Filipovic B. Harnessing artificial intelligence in gastrointestinal endoscopy for early detection of dysplastic lesions in inflammatory bowel disease. World J Gastrointest Endosc 2026; 18(2): 113912
- URL: https://www.wjgnet.com/1948-5190/full/v18/i2/113912.htm
- DOI: https://dx.doi.org/10.4253/wjge.v18.i2.113912
