Published online Sep 16, 2013. doi: 10.4253/wjge.v5.i9.465
Revised: June 19, 2013
Accepted: July 30, 2013
Published online: September 16, 2013
Processing time: 124 Days and 17.4 Hours
In capsule endoscopy (CE), there is research to develop hardware that enables ‘‘real’’ three-dimensional (3-D) video. However, it should not be forgotten that ‘‘true’’ 3-D requires dual video images. Inclusion of two cameras within the shell of a capsule endoscope though might be unwieldy at present. Therefore, in an attempt to approximate a 3-D reconstruction of the digestive tract surface, a software that recovers information-using gradual variation of shading-from monocular two-dimensional CE images has been proposed. Light reflections on the surface of the digestive tract are still a significant problem. Therefore, a phantom model and simulator has been constructed in an attempt to check the validity of a highlight suppression algorithm. Our results confirm that 3-D representation software performs better with simultaneous application of a highlight reduction algorithm. Furthermore, 3-D representation follows a good approximation of the real distance to the lumen surface.
Core tip: In an attempt to approximate a three-dimensional (3-D) reconstruction of the digestive tract surface, a software that recovers information-using gradual variation of shading - from monocular two-dimensional capsule endoscopy images has been proposed. Light reflections on the surface of the digestive tract are still a significant problem. Therefore, a phantom model and simulator has been constructed in an attempt to check the validity of a highlight suppression algorithm. Our results confirm that 3-D representation software performs better with simultaneous application of a highlight reduction algorithm. Furthermore, 3-D representation follows a good approximation of the real distance to the lumen surface.