1
|
El Homsi M, Alkhasawneh A, Arif-Tiwari H, Czeyda-Pommersheim F, Khasawneh H, Kierans AS, Paspulati RM, Singh C. Classification of intrahepatic cholangiocarcinoma. Abdom Radiol (NY) 2025; 50:2522-2532. [PMID: 39643732 DOI: 10.1007/s00261-024-04732-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/20/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
Cholangiocarcinoma is a heterogenous malignancy with various classifications based on location, morphological features, histological features, and actionable genetic mutations. Intrahepatic cholangiocarcinoma (ICC), which arises in and proximal to second order bile ducts, is the second most common primary liver malignancy after hepatocellular carcinoma. In this review, we will discuss ICC risk factors, precursor lesions, various growth, anatomic, morphologic, and histologic classifications, rare variants, and differential diagnoses.
Collapse
Affiliation(s)
| | | | | | | | - Hala Khasawneh
- The University of Texas Southwestern Medical Center, Dallas, USA
| | | | | | | |
Collapse
|
2
|
Park S, Chun KS, Kim DH. Targeting IDH1 mutation-driven Nrf2 signaling to suppress malignant behavior in fibrosarcoma cells. Toxicol Res 2025; 41:267-278. [PMID: 40291110 PMCID: PMC12021749 DOI: 10.1007/s43188-025-00284-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/14/2025] [Accepted: 02/02/2025] [Indexed: 04/30/2025] Open
Abstract
Isocitrate dehydrogenase 1 (IDH1) mutations are prevalent in various cancers and have significant implications for tumor biology. It is known that cancer cells with IDH1 mutations, particularly R132C or R132H, exhibit decreased production of nicotinamide adenine dinucleotide phosphate and thus impaired glutathione synthesis. This study investigated the roles of IDH1 mutations in the regulation of nuclear factor erythroid-2-related factor 2 (Nrf2)-mediated signaling pathways in fibrosarcoma HT1080 cells harboring the IDH1 R132C mutation. Knockdown of IDH1 using siRNA in HT1080 cells inhibited Nrf2 stabilization and reduced the expression of antioxidant genes, thereby providing favorable conditions for cancer progression. In addition, inhibition of IDH1 decreased reactive oxygen species (ROS) production and impaired cell migration, highlighting its role in promoting malignant behavior such as colony-forming ability. Small molecule inhibitors targeting the IDH1 R132 mutation suppressed cell migration and colony formation in HT1080 cells. Moreover, we observed that IDH and Nrf2 contribute to immune evasion by modulating the expression of programmed death-ligand 1 (PD-L1) in HT1080 cells. Altogether, our findings provide valuable insights for the development of therapeutic approaches for IDH1-mutant cancers. We suggest targeting the IDH1-Nrf2 axis as a strategy to regulate the immune response and inhibit cell migration in fibrosarcoma. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-025-00284-1.
Collapse
Affiliation(s)
- Seoyeon Park
- Department of Chemistry, Kyonggi University, Suwon, 16227 Republic of Korea
| | - Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu, 42601 Republic of Korea
| | - Do-Hee Kim
- Department of Chemistry, Kyonggi University, Suwon, 16227 Republic of Korea
| |
Collapse
|
3
|
Soliman N, Maqsood A, Connor AA. Role of genomics in liver transplantation for cholangiocarcinoma. Curr Opin Organ Transplant 2025; 30:158-170. [PMID: 39917813 DOI: 10.1097/mot.0000000000001209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the current knowledge of cholangiocarcinoma molecular biology and to suggest a framework for implementation of next-generation sequencing in all stages of liver transplantation. This is timely as recent guidelines recommend increased use of these technologies with promising results. RECENT FINDINGS The main themes covered here address germline and somatic genetic alterations recently discovered in cholangiocarcinoma, particularly those associated with prognosis and treatment responses, and nascent efforts to translate these into contemporary practice in the peri-liver transplantation period. SUMMARY Early efforts to translate molecular profiling to cholangiocarcinoma care demonstrate a growing number of potentially actionable alterations. Still lacking is a consensus on what biomarkers and technologies to adopt, at what scale and cost, and how to integrate them most effectively into care with the ambition of increasing the number of patients eligible for liver transplantation and improving their long-term outcomes.
Collapse
Affiliation(s)
- Nadine Soliman
- Department of Surgery
- J. C. Walter Jr. Transplant Center, Houston Methodist Hospital
- Houston Methodist Academic Institute
| | - Anaum Maqsood
- Department of Medicine
- Neill Cancer Center, Houston Methodist Hospital, Houston, Texas
| | - Ashton A Connor
- Department of Surgery
- J. C. Walter Jr. Transplant Center, Houston Methodist Hospital
- Houston Methodist Academic Institute
- Neill Cancer Center, Houston Methodist Hospital, Houston, Texas
- Department of Surgery, Weill Cornell Medicine, Cornell University, New York, New York, USA
| |
Collapse
|
4
|
Gong R, Chen ZE, Matsukuma K. Morphologic and immunohistochemical characterization of small and large duct cholangiocarcinomas in a Western cohort: A panel of pCEA, CRP, N-cadherin, and albumin in situ hybridization aids in subclassification. Ann Diagn Pathol 2025; 75:152437. [PMID: 39832462 DOI: 10.1016/j.anndiagpath.2025.152437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
Two morphologic subtypes of intrahepatic cholangiocarcinoma (iCCA), small duct and large duct, are now recognized, and importantly, these subtypes are associated with distinct molecular pathways and therapeutic options. Initial studies demonstrated the feasibility of morphologic subclassification and helped characterize the immunoprofile of the subtypes. However, few studies have been undertaken in Western countries where incidence of the subtypes is likely distinct from that in the East. To address this, 48 tumors from a North American cohort, consisting of 29 iCCAs, 18 extrahepatic CCAs (eCCAs), and 1 tumor of unclear origin (liver vs. gallbladder growing into liver) were classified by morphologic criteria as large duct (19 tumors), small duct (13 tumors), or indeterminate (13 tumors; all iCCAs). Notably, only 3 iCCAs were classified as large duct. Additionally, we evaluated the utility of common biomarkers to aid in subclassification, given that a significant portion of iCCAs were challenging to classify (e.g., indeterminate morphology). Tumors were screened for expression of mucicarmine, epithelial membrane antigen (EMA), monoclonal (mCEA), polyclonal CEA (pCEA), N-cadherin, CD56, and albumin by in situ hybridization (ALB-ISH). Of these, pCEA, CRP, N-cadherin, and ALB-ISH showed statistically significant differences between large and small duct types (P < 0.0028), with high specificity (≥88 %) and at least moderate sensitivity (≥60 %). Eleven of the 13 morphologically indeterminate tumors could be classified based on their expression of these 4 markers. Four additional large duct iCCAs were subsequently obtained from a second North American institution and assessed for pCEA, N-cadherin, and albumin expression. Combining these data with the initial cohort of large duct iCCAs (total of 7 large duct iCCAs) showed similar biomarker associations. In conclusion, in this Western cohort, 55 % of iCCAs (16 of 29) could be subclassified as large or small duct type based on morphology alone. With the aid of the 4-marker panel, 93 % of iCCAs (27 of 29) could be classified. Unlike in East Asian cohorts, the vast majority of iCCAs (88 %) was small duct type, and hepatolithiasis was not observed. CRP, N-cadherin, and ALB-ISH were found to be specific for small duct iCCA, whereas diffuse, strong expression of pCEA showed specificity for large duct tumors. This is the first report to highlight the utility of pCEA to subclassify iCCAs. Additionally, in cases in which the primary site (within the biliary tract) was unclear, CRP, ALB-ISH, N-cadherin, and pCEA were helpful in distinguishing iCCA from eCCA.
Collapse
Affiliation(s)
- Raymond Gong
- University of California Davis School of Medicine, Department of Pathology and Laboratory Medicine, 4400 V Street, Sacramento, CA 95817, USA.
| | - Zongming E Chen
- Mayo Clinic, Department of Lab Medicine and Pathology, Rochester, MN, USA.
| | - Karen Matsukuma
- University of California Davis School of Medicine, Department of Pathology and Laboratory Medicine, 4400 V Street, Sacramento, CA 95817, USA.
| |
Collapse
|
5
|
Morizane C, Ueno M, Ikeda M, Okusaka T, Ishii H, Furuse J. Update for: New developments in systemic therapy for advanced biliary tract cancer. Jpn J Clin Oncol 2025; 55:210-218. [PMID: 39902800 DOI: 10.1093/jjco/hyaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/18/2025] [Indexed: 02/06/2025] Open
Abstract
Biliary tract cancer, carcinoma of the extrahepatic bile ducts, carcinoma of the gallbladder, ampullary carcinoma, and intrahepatic cholangiocarcinoma are often identified at advanced stages. The standard therapy for advanced biliary tract cancer has been a combination of cytotoxic agents. Globally, gemcitabine plus cisplatin has been the standard first-line regimen, whereas gemcitabine plus cisplatin plus S-1 and gemcitabine plus S-1 have also been the standard regimens in Japan. Recently, treatment strategies have been updated. As first-line systemic therapy, the addition of an immune checkpoint inhibitor, such as durvalumab or pembrolizumab, to gemcitabine plus cisplatin has been shown to prolong overall survival compared with gemcitabine plus cisplatin. These combined immunotherapies are widely used in clinical practice as internationally standard first-line regimens. Regarding second-line treatment after a gemcitabine-based regimen, fluorouracil and folinic acid plus oxaliplatin have been the standard regimen. Additionally, FGFR2 fusion gene/rearrangement, mutations of IDH1/2, KRAS, and BRAF, and overexpression of HER2 are promising therapeutic targets for which the effectiveness of each targeted therapy has been reported, at this time, as a second-line or later treatment.
Collapse
Affiliation(s)
- Chigusa Morizane
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Makoto Ueno
- Department of Gastroenterology, Kanagawa Cancer Center, 2-3-2 Nakao, Asahi-ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Masafumi Ikeda
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa-shi, Chiba, 277-8577, Japan
| | - Takuji Okusaka
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Hiroshi Ishii
- Gastrointestinal Medical Oncology, Chiba Cancer Center, 666-2 Nitona-cho, Chuo-ku, Chiba-shi, Chiba 260-8717, Japan
| | - Junji Furuse
- Department of Gastroenterology, Kanagawa Cancer Center, 2-3-2 Nakao, Asahi-ku, Yokohama, Kanagawa, 241-8515, Japan
| |
Collapse
|
6
|
Putatunda V, Jusakul A, Roberts L, Wang XW. Genetic, Epigenetic, and Microenvironmental Drivers of Cholangiocarcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:362-377. [PMID: 39532242 PMCID: PMC11841490 DOI: 10.1016/j.ajpath.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
Cholangiocarcinoma (CCA) is an aggressive and heterogeneous malignancy of the biliary tree that carries a poor prognosis. Multiple features at the genetic, epigenetic, and microenvironmental levels have been identified to better characterize CCA carcinogenesis. Genetic alterations, such as mutations in IDH1/2, BAP1, ARID1A, and FGFR2, play significant roles in CCA pathogenesis, with variations across different subtypes, races/ethnicities, and causes. Epigenetic dysregulation, characterized by DNA methylation and histone modifications, further contributes to the complexity of CCA, influencing gene expression and tumor behavior. Furthermore, CCA cells exchange autocrine and paracrine signals with other cancer cells and the infiltrating cell types that populate the microenvironment, including cancer-associated fibroblasts and tumor-associated macrophages, further contributing to an immunosuppressive niche that supports tumorigenesis. This review explores the multifaceted genetic, epigenetic, and microenvironmental drivers of CCA. Understanding these diverse mechanisms is essential for characterizing the complex pathways of CCA carcinogenesis and developing targeted therapies to improve patient outcomes.
Collapse
Affiliation(s)
- Vijay Putatunda
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland; Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| | - Apinya Jusakul
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand; Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Lewis Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Xin Wei Wang
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland; Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
7
|
Cecchini M, Pilat MJ, Uboha N, Azad NS, Cho M, Davis EJ, Ahnert JR, Tinoco G, Shapiro GI, Khagi S, Powers B, Spencer K, Groisberg R, Drappatz J, Chen L, Das B, Bao X, Li J, Narayan A, Vu D, Patel A, Niger M, Doroshow D, Durecki D, Boerner SA, Bindra R, Ivy P, Shyr D, Shyr Y, LoRusso PM. Olaparib in treatment-refractory isocitrate dehydrogenase 1 (IDH1)- and IDH2-mutant cholangiocarcinoma: Safety and antitumor activity from the phase 2 National Cancer Institute 10129 trial. Cancer 2025; 131:e35755. [PMID: 39917990 PMCID: PMC11949439 DOI: 10.1002/cncr.35755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/09/2024] [Accepted: 01/06/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND Neomorphic isocitrate dehydrogenase (IDH) mutations lead to the accumulation of 2-hydroxyglutarate (2-HG), an oncometabolite implicated in tumor progression via inhibitory effects on alpha-ketoglutarate. Moreover, mutant IDH-dependent accumulation of 2-HG results in homologous recombination deficiency (HRD), which preclinically renders tumors sensitive to poly(adenosine diphosphate ribose) polymerase inhibitors. Here, the results of the cholangiocarcinoma (CCA) arm of the National Cancer Institute (NCI) 10129 olaparib in IDH-mutant solid tumors basket trial are reported. METHODS Olaparib 300 mg twice daily was evaluated in an open-label, phase 2 clinical trial for treatment-refractory IDH-mutant solid tumors. Patients in the IDH-mutant CCA arm enrolled in two cohorts: (1) IDH inhibitor (IDHi) pretreated and (2) IDHi untreated, with a primary end point of overall response rate. RESULTS NCI 10129 enrolled 30 patients with IDH-mutant CCA with no objective responses seen, and recruitment was closed early. Median progression-free survival (PFS) was 2.4 months (95% CI, 1.9 to 6.5 months) and median overall survival was 12.9 months (95% CI, 6.3 months to not reached). Eight patients (27%) had clinical benefit (CB), with a PFS of ≥6 months. Patients with CB had lower baseline 2-HG levels compared to those without CB (1.4 vs. 5.9 µmol/L; p = .01). CONCLUSIONS Olaparib does not have sufficient single-agent activity to warrant further development in IDH-mutant CCA. However, a subgroup of patients demonstrated CB, and exploratory analysis revealed this subgroup to be enriched for lower baseline 2-HG levels. Future clinical trials leveraging the HRD properties of IDH mutations are warranted with enhanced patient selection and novel combination therapies.
Collapse
Affiliation(s)
| | - Mary Jo Pilat
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201
| | | | - Nilofer S. Azad
- Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - May Cho
- University of California Irvine, Irvine, CA 92868
| | | | | | | | | | - Simon Khagi
- Hoag Memorial Hospital Presbyterian, Newport Beach, CA 92663
| | | | | | - Roman Groisberg
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903
| | | | - Li Chen
- Frederick National Laboratory for Cancer Research, Frederick, MD 21701
| | - Biswajit Das
- Frederick National Laboratory for Cancer Research, Frederick, MD 21701
| | - Xun Bao
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201
| | - Jing Li
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201
| | - Azeet Narayan
- Yale University School of Medicine, New Haven CT, 06520
| | - Dennis Vu
- Yale University School of Medicine, New Haven CT, 06520
| | - Abhijit Patel
- Yale University School of Medicine, New Haven CT, 06520
| | - Monica Niger
- Medical Oncology Department, Fondazione IRCCS Instituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Deborah Doroshow
- Tisch Cancer Institute at the Ichan School of Medicine at Mount Sinai, New York, NY 10029
| | - Diane Durecki
- Yale University School of Medicine, New Haven CT, 06520
| | | | - Ranjit Bindra
- Yale University School of Medicine, New Haven CT, 06520
| | - Percy Ivy
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD 20892, USA
| | - Derek Shyr
- Department of Biostatistics, Harvard University, Boston, MA 02115, USA
| | - Yu Shyr
- Department of Biostatistics, Vanderbilt University, Nashville, TN 37203, USA
| | | |
Collapse
|
8
|
Kim Y, Song J, Kim N, Sim T. Recent progress in emerging molecular targeted therapies for intrahepatic cholangiocarcinoma. RSC Med Chem 2025:d4md00881b. [PMID: 39925737 PMCID: PMC11800140 DOI: 10.1039/d4md00881b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/11/2025] [Indexed: 02/11/2025] Open
Abstract
Cholangiocarcinoma (CCA) is a diverse group of epithelial malignant tumors arising from the biliary tract, characterized by high molecular heterogeneity. It is classified into intrahepatic (iCCA) and extrahepatic CCA (eCCA) based on the location of the primary tumor. CCA accounts for approximately 15% of all primary liver cancers, with iCCA comprising 10-20% of all CCAs. iCCA is especially known for its characteristic aggressiveness and refractoriness, leading to poor prognosis. Despite the increasing global incidence and mortality rates, surgery remains the only available standard treatment approach for a subset (25%) of patients with early-stage, resectable iCCA. The paucity of effective systemic medical therapies restricts therapeutic options for patients with advanced or metastatic iCCA. In the past decade, advances in the understanding of the molecular complexity of these tumors have provided fruitful insights for the identification of promising new druggable targets and the development of feasible therapeutic strategies that may improve treatment outcomes for patients with iCCA. In this review, we aim to highlight critical up-to-date studies and medicinal chemistry aspects, focusing on novel targeted approaches utilizing promising candidates for molecular targeted therapy in iCCA. These candidates include aberrations in isocitrate dehydrogenase (IDH) 1/2, fibroblast growth factor receptor (FGFR), B-Raf proto-oncogene (BRAF), neurotrophic tyrosine receptor kinase (NTRK), human epidermal growth factor receptor 2 (HER2), and programmed cell death protein 1 (PD-1)/programmed cell death-ligand 1 (PD-L1). Furthermore, this review provides an overview of potential inhibitors aimed at overcoming acquired drug resistance in these actionable targets for iCCA.
Collapse
Affiliation(s)
- Younghoon Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University 145 Anam-ro, Seongbuk-gu Seoul 02841 Korea
- Department of Biomedical Sciences, Yonsei University College of Medicine 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea +822 2228 0797
- Clinical Candidate Discovery & Development Institute, Yonsei University College of Medicine Seoul Korea
| | - Jaewon Song
- Graduate School of Clinical Drug Discovery & Development, Yonsei University College of Medicine 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea
| | - Namkyoung Kim
- Department of Biomedical Sciences, Yonsei University College of Medicine 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea +822 2228 0797
| | - Taebo Sim
- KU-KIST Graduate School of Converging Science and Technology, Korea University 145 Anam-ro, Seongbuk-gu Seoul 02841 Korea
- Department of Biomedical Sciences, Yonsei University College of Medicine 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea +822 2228 0797
- Clinical Candidate Discovery & Development Institute, Yonsei University College of Medicine Seoul Korea
- Graduate School of Clinical Drug Discovery & Development, Yonsei University College of Medicine 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea
| |
Collapse
|
9
|
Bray A, Sahai V. IDH Mutant Cholangiocarcinoma: Pathogenesis, Management, and Future Therapies. Curr Oncol 2025; 32:44. [PMID: 39851960 PMCID: PMC11763940 DOI: 10.3390/curroncol32010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/09/2025] [Accepted: 01/16/2025] [Indexed: 01/26/2025] Open
Abstract
Mutations in isocitrate dehydrogenase (IDH) genes are among the most frequently encountered molecular alterations in cholangiocarcinoma (CCA). These neomorphic point mutations endow mutant IDH (mIDH) with the ability to generate an R-enantiomer of 2-hydroxyglutarate (R2HG), a metabolite that drives malignant transformation through aberrant epigenetic signaling. As a result, pharmacologic inhibition of mIDH has become an attractive therapeutic strategy in CCAs harboring this mutation. One such inhibitor, ivosidenib, has already undergone clinical validation and received FDA approval in this disease, but there is still much work to be done to improve outcomes in mIDH CCA patients. In this publication we will review the pathogenesis and treatment of mIDH CCA with special emphasis on novel agents and combinations currently under investigation.
Collapse
Affiliation(s)
| | - Vaibhav Sahai
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
| |
Collapse
|
10
|
Zhan T, Betge J, Schulte N, Dreikhausen L, Hirth M, Li M, Weidner P, Leipertz A, Teufel A, Ebert MP. Digestive cancers: mechanisms, therapeutics and management. Signal Transduct Target Ther 2025; 10:24. [PMID: 39809756 PMCID: PMC11733248 DOI: 10.1038/s41392-024-02097-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/20/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025] Open
Abstract
Cancers of the digestive system are major contributors to global cancer-associated morbidity and mortality, accounting for 35% of annual cases of cancer deaths. The etiologies, molecular features, and therapeutic management of these cancer entities are highly heterogeneous and complex. Over the last decade, genomic and functional studies have provided unprecedented insights into the biology of digestive cancers, identifying genetic drivers of tumor progression and key interaction points of tumor cells with the immune system. This knowledge is continuously translated into novel treatment concepts and targets, which are dynamically reshaping the therapeutic landscape of these tumors. In this review, we provide a concise overview of the etiology and molecular pathology of the six most common cancers of the digestive system, including esophageal, gastric, biliary tract, pancreatic, hepatocellular, and colorectal cancers. We comprehensively describe the current stage-dependent pharmacological management of these malignancies, including chemo-, targeted, and immunotherapy. For each cancer entity, we provide an overview of recent therapeutic advancements and research progress. Finally, we describe how novel insights into tumor heterogeneity and immune evasion deepen our understanding of therapy resistance and provide an outlook on innovative therapeutic strategies that will shape the future management of digestive cancers, including CAR-T cell therapy, novel antibody-drug conjugates and targeted therapies.
Collapse
Affiliation(s)
- Tianzuo Zhan
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ Hector Cancer Institute at University Medical Center Mannheim, Mannheim, Germany
- Mannheim Cancer Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Johannes Betge
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ Hector Cancer Institute at University Medical Center Mannheim, Mannheim, Germany
- Mannheim Cancer Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Junior Clinical Cooperation Unit Translational Gastrointestinal Oncology and Preclinical Models, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nadine Schulte
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Cancer Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lena Dreikhausen
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Michael Hirth
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Moying Li
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Philip Weidner
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Antonia Leipertz
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Andreas Teufel
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Matthias P Ebert
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- DKFZ Hector Cancer Institute at University Medical Center Mannheim, Mannheim, Germany.
- Mannheim Cancer Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
11
|
Deshmukh S, Kelly C, Tinoco G. IDH1/2 Mutations in Cancer: Unifying Insights and Unlocking Therapeutic Potential for Chondrosarcoma. Target Oncol 2025; 20:13-25. [PMID: 39546097 DOI: 10.1007/s11523-024-01115-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
Chondrosarcomas, a rare form of bone sarcomas with multiple subtypes, pose a pressing clinical challenge for patients with advanced or metastatic disease. The lack of US Food and Drug Administration (FDA)-approved medications underscores the urgent need for further research and development in this area. Patients and their families face challenges as there are no systemic therapeutic options available with substantial effectiveness. A significant number (50-80%) of chondrosarcomas have a mutation in the isocitrate dehydrogenase (IDH) genes. This review focuses on IDH-mediated pathogenesis and recent pharmacological advances with novel IDH inhibitors, explores their potential therapeutic value, and proposes potential future avenues for clinical trials combining IDH inhibitors with other systemic agents for chondrosarcomas.
Collapse
Affiliation(s)
- Shriya Deshmukh
- Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Ciara Kelly
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gabriel Tinoco
- Division of Medical Oncology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
12
|
Thongyoo P, Chindaprasirt J, Aphivatanasiri C, Intarawichian P, Kunprom W, Kongpetch S, Techasen A, Loilome W, Namwat N, Titapun A, Jusakul A. KRAS Mutations in Cholangiocarcinoma: Prevalence, Prognostic Value, and KRAS G12/G13 Detection in Cell-Free DNA. Cancer Genomics Proteomics 2025; 22:112-126. [PMID: 39730186 PMCID: PMC11696325 DOI: 10.21873/cgp.20492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND/AIM Cholangiocarcinoma (CCA) is an aggressive hepatobiliary malignancy characterized by genomic heterogeneity. KRAS mutations play a significant role in influencing patient prognosis and guiding therapeutic decision-making. This study aimed to determine the prevalence and prognostic significance of KRAS mutations in CCA, asses the detection of KRAS G12/G13 mutations in plasma cell-free DNA (cfDNA), and evaluate the prognostic value of KRAS G12/G13 mutant allele frequency (MAF) in cfDNA in relation to clinicopathological data and patient survival. MATERIALS AND METHODS A retrospective analysis of 937 CCA patients was performed using data from cBioPortal to examine KRAS mutation profiles and their association with survival. Plasma from 101 CCA patients was analyzed for KRAS G12/G13 mutations in the cfDNA using droplet digital PCR, and the results were compared with tissue-based sequencing from 78 matched samples. RESULTS KRAS driver mutations were found in 15.6% of patients, with common variants being G12D (37.0%), G12V (24.0%) and Q61H (8.2%). Patients harboring KRAS mutations exhibited decreased overall and recurrence-free survival. KRAS G12/G13 mutations were detected in 14.9% of cfDNA samples, showing moderate concordance with tissue sequencing, and achieving 80% sensitivity and 93% specificity. Elevated KRAS G12/G13 MAF in cfDNA, combined with high CA19-9 levels, correlated with poorer survival outcomes. CONCLUSION The presence of KRAS mutations was associated with poor survival in CCA, underscoring the importance of KRAS mutations as prognostic markers. The detection of KRAS mutations in cfDNA demonstrated potential as a promising non-invasive alternative for mutation detection and, when combined with CA19-9 levels, may improve prognostic efficacy in CCA.
Collapse
Affiliation(s)
- Pitchasak Thongyoo
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Jarin Chindaprasirt
- Medical Oncology Program, Department of Internal Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | | | - Waritta Kunprom
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sarinya Kongpetch
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Anchalee Techasen
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Watcharin Loilome
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Nisana Namwat
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Attapol Titapun
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Apinya Jusakul
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand;
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
13
|
Tsilimigras DI, Stecko H, Ntanasis-Stathopoulos I, Pawlik TM. Racial and Sex Differences in Genomic Profiling of Intrahepatic Cholangiocarcinoma. Ann Surg Oncol 2024; 31:9071-9078. [PMID: 39251514 PMCID: PMC11549159 DOI: 10.1245/s10434-024-16141-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/22/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Racial and sex disparities in the incidence and outcomes of patients with intrahepatic cholangiocarcinoma (iCCA) exist, yet potential genomic variations of iCCA based on race and sex that might be contributing to disparate outcomes have not been well studied. METHODS Data from the American Association for Cancer Research Project GENIE registry (version 15.0) were analyzed to assess genetic variations in iCCA. Adult patients (age >18 years) with histologically confirmed iCCA who underwent next-generation sequencing were included in the analytic cohort. Racial and sex variations in genomic profiling of iCCA were examined. RESULTS The study enrolled 1068 patients from 19 centers (White, 71.9%; Black, 5.1%; Asian, 8.4%, other, 14.6%). The male-to-female ratio was 1:1. The majority of the patients had primary tumors (73.7%), whereas 23.0% had metastatic disease sequenced. While IDH1 mutations occurred more frequently in White versus Black patients (20.8% vs. 5.6%; p = 0.021), FGFR2 mutations tended to be more common among Black versus White populations (27.8% vs. 16.1%; p = 0.08). Males were more likely to have TP53 mutations than females (24.3% vs. 18.2%, p = 0.016), whereas females more frequently had IDH1 (23.3% vs 16.0 %), FGFR2 (21.0% vs. 11.3%), and BAP1 (23.4% vs. 14.5%) mutations than males (all p < 0.05). Marked variations in the prevalence of other common genomic alterations in iCCA were noted across different races and sexes. CONCLUSION Distinct genomic variations exist in iCCA across race and sex. Differences in mutational profiles of iCCA patients highlight the importance of including a diverse patient population in iCCA clinical trials as well as the importance of recognizing different genetic drivers that may be targetable to treat distinct patient cohorts.
Collapse
Affiliation(s)
- Diamantis I Tsilimigras
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA.
| | - Hunter Stecko
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA
| | | | - Timothy M Pawlik
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA
| |
Collapse
|
14
|
Hao J, Huang Z, Zhang S, Song K, Wang J, Gao C, Fang Z, Zhang N. Deciphering the multifaceted roles and clinical implications of 2-hydroxyglutarate in cancer. Pharmacol Res 2024; 209:107437. [PMID: 39349213 DOI: 10.1016/j.phrs.2024.107437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
Increasing evidence indicates that 2-hydroxyglutarate (2HG) is an oncometabolite that drives tumour formation and progression. Due to mutations in isocitrate dehydrogenase (IDH) and the dysregulation of other enzymes, 2HG accumulates significantly in tumour cells. Due to its structural similarity to α-ketoglutarate (αKG), accumulated 2HG leads to the competitive inhibition of αKG-dependent dioxygenases (αKGDs), such as KDMs, TETs, and EGLNs. This inhibition results in epigenetic alterations in both tumour cells and the tumour microenvironment. This review comprehensively discusses the metabolic pathways of 2HG and the subsequent pathways influenced by elevated 2HG levels. We will delve into the molecular mechanisms by which 2HG exerts its oncogenic effects, particularly focusing on epigenetic modifications. This review will also explore the various methods available for the detection of 2HG, emphasising both current techniques and emerging technologies. Furthermore, 2HG shows promise as a biomarker for clinical diagnosis and treatment. By integrating these perspectives, this review aims to provide a comprehensive overview of the current understanding of 2HG in cancer biology, highlight the importance of ongoing research, and discuss future directions for translating these findings into clinical applications.
Collapse
Affiliation(s)
- Jie Hao
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Ziyi Huang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Siyue Zhang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Kefan Song
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Juncheng Wang
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Zhiqing Fang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Ning Zhang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
15
|
Branchi V, Hosni R, Kiwitz L, Ng S, van der Voort G, Bambi N, Kleinfelder E, Esser LK, Dold L, Langhans B, Gonzalez-Carmona MA, Ting S, Kristiansen G, Kalff JC, Thurley K, Hölzel M, Matthaei H, Toma MI. Expression of the large amino acid transporter SLC7A5/LAT1 on immune cells is enhanced in primary sclerosing cholangitis-associated cholangiocarcinoma and correlates with poor prognosis in cholangiocarcinoma. Hum Pathol 2024; 153:105670. [PMID: 39406289 DOI: 10.1016/j.humpath.2024.105670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024]
Abstract
Biliary tract cancers (BTC) are rare lethal malignancies arising along the biliary tree. Unfortunately, effective therapeutics are lacking and the prognosis remains dismal even for patients eligible for surgical resection. Therefore, novel therapeutic approaches along with early detection strategies and prognostic markers are urgently needed. Primary sclerosing cholangitis (PSC) is a chronic disease of the bile ducts leading to fibrosis and ultimately cirrhosis. Patients with PSC have a 5-20% lifetime risk of developing BTC; yet the molecular mechanisms that underpin the development of PSC- associated biliary tract cancer (PSC-BTC) have not been fully elucidated. SLC7A5/LAT1, a large amino acid transporter, has been shown to modulate cell growth and proliferation as well as other intracellular processes in solid tumors. In this study, we evaluated SLC7A5 expression in PSC-BTC and in sporadic BTC (sBTC) and its role as a prognostic factor. Analysis of the TGCA cohort showed a significantly higher expression of SLC7A5 in tumor tissue compared with adjacent normal tissue (p = 0.0002) in BTC. In our cohort (comprised of 69 BTC patients including 16 PSC-BTC), SLC7A5/LAT1 expression was observed in both tumor and intratumoral immune cells. A significantly higher percentage of SLC7A5/LAT1 positive intratumoral immune cells was observed in PSC-BTC compared with sBTC (p = 0.004). Multiplex immunofluorescence co-detection by indexing (CODEX) analysis identified CD4+ regulatory T lymphocytes and CD68+ macrophages as the largest immune cell populations expressing LAT1. SLC7A5/LAT1 expression as well as a higher intratumoral infiltration of SLC7A5/LAT1-positive immune cells (≥2%) were associated with a shorter overall survival in our cohort (LogRank test, p = 0.04 and p = 0.008; respectively). SLC7A5/LAT1 expressing tumors are higher staged tumors (pT3/4 versus pT1/2, p = 0.048). These results underline the potential use of SLC7A5/LAT1 as a prognostic marker in BTC. Furthermore, the higher frequency of SLC7A5/LAT1 positive immune cells in PSC-BTC compared to sBTC may hint at the potential role of SLC7A5/LAT1 in inflammation-driven carcinogenesis.
Collapse
Affiliation(s)
- Vittorio Branchi
- Department of General, Abdominal, Thoracic and Vascular Surgery, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Racha Hosni
- Institute of Pathology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Lukas Kiwitz
- Institute of Experimental Oncology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Susanna Ng
- Institute of Experimental Oncology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Gemma van der Voort
- Institute of Experimental Oncology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Neila Bambi
- Institute of Pathology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Eileen Kleinfelder
- Institute of Pathology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Laura K Esser
- Institute of Pathology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Leona Dold
- Department of Internal Medicine I, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Bettina Langhans
- Department of Internal Medicine I, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Maria A Gonzalez-Carmona
- Department of Internal Medicine I, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Saskia Ting
- Institute of Pathology, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany.
| | - Glen Kristiansen
- Institute of Pathology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Jörg C Kalff
- Department of General, Abdominal, Thoracic and Vascular Surgery, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Kevin Thurley
- Institute of Experimental Oncology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Michael Hölzel
- Institute of Experimental Oncology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Hanno Matthaei
- Department of General, Abdominal, Thoracic and Vascular Surgery, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Marieta I Toma
- Institute of Pathology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
16
|
Liu YX, Song JL, Li XM, Lin H, Cao YN. Identification of target genes co-regulated by four key histone modifications of five key regions in hepatocellular carcinoma. Methods 2024; 231:165-177. [PMID: 39349287 DOI: 10.1016/j.ymeth.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/27/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a cancer with high morbidity and mortality. Studies have shown that histone modification plays an important regulatory role in the occurrence and development of HCC. However, the specific regulatory effects of histone modifications on gene expression in HCC are still unclear. This study focuses on HepG2 cell lines and hepatocyte cell lines. First, the distribution of histone modification signals in the two cell lines was calculated and analyzed. Then, using the random forest algorithm, we analyzed the effects of different histone modifications and their modified regions on gene expression in the two cell lines, four key histone modifications (H3K36me3, H3K4me3, H3K79me2, and H3K9ac) and five key regions that co-regulate gene expression were obtained. Subsequently, target genes regulated by key histone modifications in key regions were screened. Combined with clinical data, Cox regression analysis and Kaplan-Meier survival analysis were performed on the target genes, and four key target genes (CBX2, CEBPZOS, LDHA, and UMPS) related to prognosis were identified. Finally, through immune infiltration analysis and drug sensitivity analysis of key target genes, the potential role of key target genes in HCC was confirmed. Our results provide a theoretical basis for exploring the occurrence of HCC and propose potential biomarkers associated with histone modifications, which may be potential drug targets for the clinical treatment of HCC.
Collapse
Affiliation(s)
- Yu-Xian Liu
- School of Artificial Intelligence, Anhui University of Science and Technology, Huainan 232001, China.
| | - Jia-Le Song
- School of Artificial Intelligence, Anhui University of Science and Technology, Huainan 232001, China
| | - Xiao-Ming Li
- School of Artificial Intelligence, Anhui University of Science and Technology, Huainan 232001, China
| | - Hao Lin
- Key Laboratory for Neuro-Information of Ministry of Education, Center for Informational Biology, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Yan-Ni Cao
- School of Artificial Intelligence, Anhui University of Science and Technology, Huainan 232001, China.
| |
Collapse
|
17
|
Wang X, Bai Y, Chai N, Li Y, Linghu E, Wang L, Liu Y, Society of Hepato-pancreato-biliary Surgery of Chinese Research Hospital Association, Society of Digestive Endoscopy of the Chinese Medical Association, Chinese Medical Journal Clinical Practice Guideline Collaborative. Chinese national clinical practice guideline on diagnosis and treatment of biliary tract cancers. Chin Med J (Engl) 2024; 137:2272-2293. [PMID: 39238075 PMCID: PMC11441919 DOI: 10.1097/cm9.0000000000003258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Biliary tract carcinoma (BTC) is relatively rare and comprises a spectrum of invasive tumors arising from the biliary tree. The prognosis is extremely poor. The incidence of BTC is relatively high in Asian countries, and a high number of cases are diagnosed annually in China owing to the large population. Therefore, it is necessary to clarify the epidemiology and high-risk factors for BTC in China. The signs associated with BTC are complex, often require collaborative treatment from surgeons, endoscopists, oncologists, and radiation therapists. Thus, it is necessary to develop a comprehensive Chinese guideline for BTC. METHODS This clinical practice guideline (CPG) was developed following the process recommended by the World Health Organization. The Grading of Recommendations Assessment, Development, and Evaluation approach was used to assess the certainty of evidence and make recommendations. The full CPG report was reviewed by external guideline methodologists and clinicians with no direct involvement in the development of this CPG. Two guideline reporting checklists have been adhered to: Appraisal of Guidelines for Research and Evaluation (AGREE) and Reporting Items for practice Guidelines in Healthcare (RIGHT). RESULTS The guideline development group, which comprised 85 multidisciplinary clinical experts across China. After a controversies conference, 17 clinical questions concerning the prevention, diagnosis, and treatment of BTC were proposed. Additionally, detailed descriptions of the surgical principles, perioperative management, chemotherapy, immunotherapy, targeted therapy, radiotherapy, and endoscopic management were proposed. CONCLUSIONS The guideline development group created a comprehensive Chinese guideline for the diagnosis and treatment of BTC, covering various aspects of epidemiology, diagnosis, and treatment. The 17 clinical questions have important reference value for the management of BTC.
Collapse
Affiliation(s)
- Xu’an Wang
- Department of Biliary and Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine; State Key Laboratory of Systems Medicine for Cancers, Shanghai Cancer Institute; Shanghai Key Laboratory for Cancer Systems Regulation and Clinical Translation, Shanghai 200127, China
| | - Yongrui Bai
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ningli Chai
- Department of Gastroenterology and Hepatology, the First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Yexiong Li
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100853, China
| | - Enqiang Linghu
- Department of Gastroenterology and Hepatology, the First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Liwei Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute; Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yingbin Liu
- Department of Biliary and Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine; State Key Laboratory of Systems Medicine for Cancers, Shanghai Cancer Institute; Shanghai Key Laboratory for Cancer Systems Regulation and Clinical Translation, Shanghai 200127, China
| | | |
Collapse
|
18
|
Kehmann L, Jördens M, Loosen SH, Luedde T, Roderburg C, Leyh C. Evolving therapeutic landscape of advanced biliary tract cancer: from chemotherapy to molecular targets. ESMO Open 2024; 9:103706. [PMID: 39366294 PMCID: PMC11489061 DOI: 10.1016/j.esmoop.2024.103706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 10/06/2024] Open
Abstract
Biliary tract cancer, the second most common type of liver cancer, remains a therapeutic challenge due to its late diagnosis and poor prognosis. In recent years, it has become evident that classical chemotherapy might not be the optimal treatment for patients with biliary tract cancer, especially after failure of first-line therapy. Finding new treatment options and strategies to improve the survival of these patients is therefore crucial. With the rise and increasing availability of genetic testing in patients with tumor, novel treatment approaches targeting specific genetic alterations have recently been proposed and have demonstrated their safety and efficacy in numerous clinical trials. In this review, we will first consider chemotherapy options and the new possibility of combining chemotherapy with immune checkpoint inhibitors in first-line treatment. We will then provide an overview of genomic alterations and their potential for targeted therapy especially in second-line therapy. In addition to the most common alterations such as isocitrate dehydrogenase 1 or 2 (IDH1/2) mutations, fibroblast growth factor receptor 2 (FGFR2) fusions, and alterations, we will also discuss less frequently encountered alterations such as BRAF V600E mutation and neurotrophic tyrosine kinase receptor gene (NTRK) fusion. We highlight the importance of molecular profiling in guiding therapeutic decisions and emphasize the need for continued research to optimize and expand targeted treatment strategies for this aggressive malignancy.
Collapse
Affiliation(s)
- L Kehmann
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum, Charité University Medicine Berlin, Berlin, Germany; Servier Deutschland GmbH, München, Germany
| | - M Jördens
- Clinic of Gastroenterology, Hepatology & Infectious Diseases, Medical Faculty and University Hospital of Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - S H Loosen
- Clinic of Gastroenterology, Hepatology & Infectious Diseases, Medical Faculty and University Hospital of Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - T Luedde
- Clinic of Gastroenterology, Hepatology & Infectious Diseases, Medical Faculty and University Hospital of Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - C Roderburg
- Clinic of Gastroenterology, Hepatology & Infectious Diseases, Medical Faculty and University Hospital of Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - C Leyh
- Clinic of Gastroenterology, Hepatology & Infectious Diseases, Medical Faculty and University Hospital of Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany.
| |
Collapse
|
19
|
Ahmed Adam MA, Robinson M, Schwartz AV, Wells G, Hoang A, Albekioni E, Gallo C, Chao G, Weeks J, Quichocho G, George UZ, House CD, Turcan Ş, Sohl CD. Catalytically distinct IDH1 mutants tune phenotype severity in tumor models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590655. [PMID: 38712107 PMCID: PMC11071412 DOI: 10.1101/2024.04.22.590655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Mutations in isocitrate dehydrogenase 1 (IDH1) impart a neomorphic reaction that produces D-2-hydroxyglutarate (D2HG), which can inhibit DNA demethylases to drive tumorigenesis. Mutations affect residue R132 and display distinct catalytic profiles for D2HG production. We show that catalytic efficiency of D2HG production is greater in IDH1 R132Q than R132H mutants, and expression of R132Q in cellular and xenograft models leads to higher D2HG concentrations in cells, tumors, and sera compared to R132H. Though expression of IDH1 R132Q leads to hypermethylation in DNA damage pathways, DNA hypomethylation is more notable when compared to R132H expression. Transcriptome analysis shows increased expression of many pro-tumor pathways upon expression of IDH1 R132Q versus R132H, including transcripts of EGFR and PI3K signaling pathways. Thus, IDH1 mutants appear to modulate D2HG levels via altered catalysis, resulting in distinct epigenetic and transcriptomic consequences where higher D2HG levels appear to be associated with more aggressive tumors.
Collapse
Affiliation(s)
- Mowaffaq Adam Ahmed Adam
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA
- These authors contributed equally: Mowaffaq Adam Ahmed Adam, Mikella Robinson, Ashley Schwartz, Grace Wells
| | - Mikella Robinson
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
- These authors contributed equally: Mowaffaq Adam Ahmed Adam, Mikella Robinson, Ashley Schwartz, Grace Wells
| | - Ashley V. Schwartz
- Computational Science Research Center, San Diego State University, San Diego, CA 92182, USA
- These authors contributed equally: Mowaffaq Adam Ahmed Adam, Mikella Robinson, Ashley Schwartz, Grace Wells
| | - Grace Wells
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA
- These authors contributed equally: Mowaffaq Adam Ahmed Adam, Mikella Robinson, Ashley Schwartz, Grace Wells
| | - An Hoang
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA
| | - Elene Albekioni
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA
| | - Cecilia Gallo
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Grace Chao
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Joi Weeks
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Giovanni Quichocho
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA
| | - Uduak Z. George
- Department of Mathematics and Statistics, San Diego State University, San Diego, CA 92182, USA
- Computational Science Research Center, San Diego State University, San Diego, CA 92182, USA
| | - Carrie D. House
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Şevin Turcan
- Neurology Clinic and National Center for Tumor Diseases, Heidelberg University Hospital and Heidelberg University, 69120 Heidelberg, Germany
| | - Christal D. Sohl
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
20
|
Porreca V, Barbagallo C, Corbella E, Peres M, Stella M, Mignogna G, Maras B, Ragusa M, Mancone C. Unveil Intrahepatic Cholangiocarcinoma Heterogeneity through the Lens of Omics and Multi-Omics Approaches. Cancers (Basel) 2024; 16:2889. [PMID: 39199659 PMCID: PMC11352949 DOI: 10.3390/cancers16162889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is recognized worldwide as the second leading cause of morbidity and mortality among primary liver cancers, showing a continuously increasing incidence rate in recent years. iCCA aggressiveness is revealed through its rapid and silent intrahepatic expansion and spread through the lymphatic system leading to late diagnosis and poor prognoses. Multi-omics studies have aggregated information derived from single-omics data, providing a more comprehensive understanding of the phenomena being studied. These approaches are gradually becoming powerful tools for investigating the intricate pathobiology of iCCA, facilitating the correlation between molecular signature and phenotypic manifestation. Consequently, preliminary stratifications of iCCA patients have been proposed according to their "omics" features opening the possibility of identifying potential biomarkers for early diagnosis and developing new therapies based on personalized medicine (PM). The focus of this review is to provide new and advanced insight into the molecular pathobiology of the iCCA, starting from single- to the latest multi-omics approaches, paving the way for translating new basic research into therapeutic practices.
Collapse
Affiliation(s)
- Veronica Porreca
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (E.C.); (M.P.)
| | - Cristina Barbagallo
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.B.); (M.S.); (M.R.)
| | - Eleonora Corbella
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (E.C.); (M.P.)
| | - Marco Peres
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (E.C.); (M.P.)
| | - Michele Stella
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.B.); (M.S.); (M.R.)
| | - Giuseppina Mignogna
- Department of Biochemistry Science, Sapienza University of Rome, 00185 Rome, Italy; (G.M.); (B.M.)
| | - Bruno Maras
- Department of Biochemistry Science, Sapienza University of Rome, 00185 Rome, Italy; (G.M.); (B.M.)
| | - Marco Ragusa
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.B.); (M.S.); (M.R.)
| | - Carmine Mancone
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (E.C.); (M.P.)
| |
Collapse
|
21
|
Cain SA, Topp M, Rosenthal M, Tobler R, Freytag S, Best SA, Whittle JR, Drummond KJ. A perioperative study of Safusidenib in patients with IDH1-mutated glioma. Future Oncol 2024; 20:2533-2545. [PMID: 39140289 PMCID: PMC11534100 DOI: 10.1080/14796694.2024.2383064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024] Open
Abstract
This is a single arm, open label perioperative trial to assess the feasibility, pharmacokinetics and pharmacodynamics of treatment with safusidenib following biopsy, and prior to surgical resection in patients with IDH1 mutated glioma who have not received radiation therapy or chemotherapy. Fifteen participants will receive treatment in two parts. First, biopsy followed by one cycle (28 days) of safusidenib, an orally available, small molecular inhibitor of mutated IDH1, then maximal safe resection of the tumor (Part A). Second, after recovery from surgery, safusidenib until disease progression or unacceptable toxicity (Part B). This research will enable objective measurement of biological activity of safusidenib in patients with IDH1 mutated glioma. Anti-tumor activity will be assessed by progression free survival and time to next intervention.Clinical Trial Registration: NCT05577416 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Sarah A Cain
- Department of Neurosurgery, Royal Melbourne Hospital, Parkville, 3052, Australia
| | - Monique Topp
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, 3000, Australia
| | - Mark Rosenthal
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, 3000, Australia
| | - Robert Tobler
- Personalised Oncology Division, The Walter & Eliza Hall Institute of Medical Research, Parkville, 3052, Australia
| | - Saskia Freytag
- Personalised Oncology Division, The Walter & Eliza Hall Institute of Medical Research, Parkville, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, 3052, Australia
| | - Sarah A Best
- Personalised Oncology Division, The Walter & Eliza Hall Institute of Medical Research, Parkville, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, 3052, Australia
| | - James R Whittle
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, 3000, Australia
- Personalised Oncology Division, The Walter & Eliza Hall Institute of Medical Research, Parkville, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, 3052, Australia
| | - Katharine J Drummond
- Department of Neurosurgery, Royal Melbourne Hospital, Parkville, 3052, Australia
- Department of Surgery (Royal Melbourne Hospital), Melbourne Medical School, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Parkville, 3052, Australia
| |
Collapse
|
22
|
Carosi F, Broseghini E, Fabbri L, Corradi G, Gili R, Forte V, Roncarati R, Filippini DM, Ferracin M. Targeting Isocitrate Dehydrogenase (IDH) in Solid Tumors: Current Evidence and Future Perspectives. Cancers (Basel) 2024; 16:2752. [PMID: 39123479 PMCID: PMC11311780 DOI: 10.3390/cancers16152752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
The isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) enzymes are involved in key metabolic processes in human cells, regulating differentiation, proliferation, and oxidative damage response. IDH mutations have been associated with tumor development and progression in various solid tumors such as glioma, cholangiocarcinoma, chondrosarcoma, and other tumor types and have become crucial markers in molecular classification and prognostic assessment. The intratumoral and serum levels of D-2-hydroxyglutarate (D-2-HG) could serve as diagnostic biomarkers for identifying IDH mutant (IDHmut) tumors. As a result, an increasing number of clinical trials are evaluating targeted treatments for IDH1/IDH2 mutations. Recent studies have shown that the focus of these new therapeutic strategies is not only the neomorphic activity of the IDHmut enzymes but also the epigenetic shift induced by IDH mutations and the potential role of combination treatments. Here, we provide an overview of the current knowledge about IDH mutations in solid tumors, with a particular focus on available IDH-targeted treatments and emerging results from clinical trials aiming to explore IDHmut tumor-specific features and to identify the clinical benefit of IDH-targeted therapies and their combination strategies. An insight into future perspectives and the emerging roles of circulating biomarkers and radiomic features is also included.
Collapse
Affiliation(s)
- Francesca Carosi
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.C.); (L.F.); (G.C.)
| | | | - Laura Fabbri
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.C.); (L.F.); (G.C.)
| | - Giacomo Corradi
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.C.); (L.F.); (G.C.)
| | - Riccardo Gili
- Medical Oncology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | - Valentina Forte
- Diagnostic Imaging Unit, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Roberta Roncarati
- Istituto di Genetica Molecolare “Luigi Luca Cavalli-Sforza”, Consiglio Nazionale delle Ricerche (CNR), 40136 Bologna, Italy;
| | - Daria Maria Filippini
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.C.); (L.F.); (G.C.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Manuela Ferracin
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
23
|
Nwankwo EC, Guta A, Cao SS, Yang JD, Abdalla A, Taha W, Larson JJ, Yin J, Gores GJ, Cleary SP, Roberts LR. Incidence and Long-Term Outcomes of Biliary Tract Cancers in Olmsted County, Minnesota from 1976 to 2018. Cancers (Basel) 2024; 16:2720. [PMID: 39123448 PMCID: PMC11311608 DOI: 10.3390/cancers16152720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Biliary tract cancers, including cholangiocarcinoma, gallbladder, and ampulla of Vater cancers, rank second among hepatobiliary cancers, known for their poor prognoses. The United States has witnessed a notable increase in intrahepatic cholangiocarcinoma incidence. This study examines the incidence and survival outcomes of biliary tract cancers in Olmsted County, Minnesota from 1976 to 2018. Using data from the Rochester Epidemiology Project (REP), residents aged 20 and above were analyzed across four eras. Incidence rates were calculated and adjusted for age and sex, and temporal trends were assessed using Poisson regression. Intrahepatic cholangiocarcinoma exhibited a significant escalation in incidence rates over time, while gallbladder cancers showed a decline among women. Median survival times for biliary tract cancers notably improved. These findings confirm the rising incidence of intrahepatic cholangiocarcinoma and suggest improving survival rates. Nevertheless, the overall prognosis for biliary tract cancers remains very poor, emphasizing the continual need for enhanced management strategies and further research.
Collapse
Affiliation(s)
- Eugene C. Nwankwo
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Amerti Guta
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN 55905, USA
| | - Scarlett S. Cao
- Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Internal Medicine, Mayo Clinic School of Graduate Medical Education, Rochester, MN 55902, USA
| | - Ju Dong Yang
- Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Abubaker Abdalla
- Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
- Division of Hospital Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Wesam Taha
- Department of Internal Medicine, New York Presbyterian, Flushing, NY 11355, USA
| | - Joseph J. Larson
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN 55905, USA
| | - Jun Yin
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN 55905, USA
| | - Gregory J. Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Sean P. Cleary
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
- Division of General Surgery, Department of Surgery, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Lewis R. Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
24
|
Luk IS, Bridgwater CM, Yu A, Boila LD, Yáñez-Bartolomé M, Lampano AE, Hulahan TS, Boukhali M, Kathiresan M, Macarulla T, Kenerson HL, Yamamoto N, Sokolov D, Engstrom IA, Sullivan LB, Lampe PD, Cooper JA, Yeung RS, Tian TV, Haas W, Saha SK, Kugel S. SRC inhibition enables formation of a growth suppressive MAGI1-PP2A complex in isocitrate dehydrogenase-mutant cholangiocarcinoma. Sci Transl Med 2024; 16:eadj7685. [PMID: 38748774 PMCID: PMC11218711 DOI: 10.1126/scitranslmed.adj7685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 04/25/2024] [Indexed: 07/04/2024]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is an aggressive bile duct malignancy that frequently exhibits isocitrate dehydrogenase (IDH1/IDH2) mutations. Mutant IDH (IDHm) ICC is dependent on SRC kinase for growth and survival and is hypersensitive to inhibition by dasatinib, but the molecular mechanism underlying this sensitivity is unclear. We found that dasatinib reduced p70 S6 kinase (S6K) and ribosomal protein S6 (S6), leading to substantial reductions in cell size and de novo protein synthesis. Using an unbiased phosphoproteomic screen, we identified membrane-associated guanylate kinase, WW, and PDZ domain containing 1 (MAGI1) as an SRC substrate in IDHm ICC. Biochemical and functional assays further showed that SRC inhibits a latent tumor-suppressing function of the MAGI1-protein phosphatase 2A (PP2A) complex to activate S6K/S6 signaling in IDHm ICC. Inhibiting SRC led to activation and increased access of PP2A to dephosphorylate S6K, resulting in cell death. Evidence from patient tissue and cell line models revealed that both intrinsic and extrinsic resistance to dasatinib is due to increased phospho-S6 (pS6). To block pS6, we paired dasatinib with the S6K/AKT inhibitor M2698, which led to a marked reduction in pS6 in IDHm ICC cell lines and patient-derived organoids in vitro and substantial growth inhibition in ICC patient-derived xenografts in vivo. Together, these results elucidated the mechanism of action of dasatinib in IDHm ICC, revealed a signaling complex regulating S6K phosphorylation independent of mTOR, suggested markers for dasatinib sensitivity, and described a combination therapy for IDHm ICC that may be actionable in the clinic.
Collapse
Affiliation(s)
- Iris S. Luk
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | | | - Angela Yu
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Liberalis D. Boila
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Mariana Yáñez-Bartolomé
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Aaron E. Lampano
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Taylor S. Hulahan
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Myriam Boukhali
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Meena Kathiresan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Teresa Macarulla
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
- Gastrointestinal and Endocrine Tumor Unit, Hospital Universitari Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Heidi L. Kenerson
- Department of Surgery, University of Washington, Seattle, WA 98195, USA
| | - Naomi Yamamoto
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - David Sokolov
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Ian A. Engstrom
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Lucas B. Sullivan
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Paul D. Lampe
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Jonathan A. Cooper
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Raymond S. Yeung
- Department of Surgery, University of Washington, Seattle, WA 98195, USA
| | - Tian V. Tian
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Wilhelm Haas
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Supriya K. Saha
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Sita Kugel
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
25
|
Fan B, Abou-Alfa GK, Zhu AX, Pandya SS, Jia H, Yin F, Gliser C, Hua Z, Hossain M, Yang H. Pharmacokinetics/pharmacodynamics of ivosidenib in advanced IDH1-mutant cholangiocarcinoma: findings from the phase III ClarIDHy study. Cancer Chemother Pharmacol 2024; 93:471-479. [PMID: 38278871 PMCID: PMC11043204 DOI: 10.1007/s00280-023-04633-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/18/2023] [Indexed: 01/28/2024]
Abstract
PURPOSE Report pharmacokinetic (PK)/pharmacodynamic (PD) findings from the phase III ClarIDHy study and any association between PK/PD parameters and treatment outcomes in this population. METHODS Patients with mutant isocitrate dehydrogenase 1 (mIDH1) advanced cholangiocarcinoma were randomized at a 2:1 ratio to receive ivosidenib or matched placebo. Crossover from placebo to ivosidenib was permitted at radiographic disease progression. Blood samples for PK/PD analyses, a secondary endpoint, were collected pre-dose and up to 4 h post-dose on day (D) 1 of cycles (C) 1 - 2, pre-dose and 2 h post-dose on D15 of C1 - 2, and pre-dose on D1 from C3 onwards. Plasma ivosidenib and D-2-hydroxyglutarate (2-HG) were measured using liquid chromatography-tandem mass spectrometry. All clinical responses were centrally reviewed previously. RESULTS PK/PD analysis was available for samples from 156 ivosidenib-treated patients. Ivosidenib was absorbed rapidly following single and multiple oral doses (time of maximum observed plasma concentration [Tmax] of 2.63 and 2.07 h, respectively). Ivosidenib exposure was higher at C2D1 than after a single dose, with low accumulation. In ivosidenib-treated patients, mean plasma 2-HG concentration was reduced from 1108 ng/mL at baseline to 97.7 ng/mL at C2D1, close to levels previously observed in healthy individuals. An average 2-HG inhibition of 75.0% was observed at steady state. No plasma 2-HG decreases were seen with placebo. Plasma 2-HG reductions were observed in ivosidenib-treated patients irrespective of best overall response (progressive disease, or partial response and stable disease). CONCLUSION Once-daily ivosidenib 500 mg has a favorable PK/PD profile, attesting the 2-HG reduction mechanism of action and, thus, positive outcomes in treated patients with advanced mIDH1 cholangiocarcinoma. CLINICAL TRIAL REGISTRATION NCT02989857 Registered February 20, 2017.
Collapse
Affiliation(s)
- Bin Fan
- Agios Pharmaceuticals Inc., Cambridge, MA, USA
- Jacobio (US) Pharmaceuticals, Inc., Lexington, MA, USA
| | - Ghassan K Abou-Alfa
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine - Cornell University, New York, NY, USA
- Trinity College Dublin School of Medicine, Dublin, Ireland
| | - Andrew X Zhu
- Massachusetts General Cancer Center, Harvard Medical School, Boston, MA, USA
- I-Mab Biophrma, 555 W Haiyang Road New Bund Ctr Fl 55-56, Shanghai, China
| | - Shuchi S Pandya
- Agios Pharmaceuticals Inc., Cambridge, MA, USA
- Servier Pharmaceuticals LLC, 200 Pier Four Boulevard, Boston, MA, 02210, USA
| | - Hongxia Jia
- Agios Pharmaceuticals Inc., Cambridge, MA, USA
- Takeda Pharmaceutical Company Limited, Cambridge, MA, USA
| | - Feng Yin
- Agios Pharmaceuticals Inc., Cambridge, MA, USA
- Pyxis Oncology, Boston, MA, USA
| | - Camelia Gliser
- Agios Pharmaceuticals Inc., Cambridge, MA, USA
- Servier Pharmaceuticals LLC, 200 Pier Four Boulevard, Boston, MA, 02210, USA
| | - Zhaowei Hua
- Servier Pharmaceuticals LLC, 200 Pier Four Boulevard, Boston, MA, 02210, USA
| | | | - Hua Yang
- Agios Pharmaceuticals Inc., Cambridge, MA, USA
- Disc Medicine, Cambridge, MA, USA
| |
Collapse
|
26
|
Conway AM, Pearce SP, Clipson A, Hill SM, Chemi F, Slane-Tan D, Ferdous S, Hossain ASMM, Kamieniecka K, White DJ, Mitchell C, Kerr A, Krebs MG, Brady G, Dive C, Cook N, Rothwell DG. A cfDNA methylation-based tissue-of-origin classifier for cancers of unknown primary. Nat Commun 2024; 15:3292. [PMID: 38632274 PMCID: PMC11024142 DOI: 10.1038/s41467-024-47195-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Cancers of Unknown Primary (CUP) remains a diagnostic and therapeutic challenge due to biological heterogeneity and poor responses to standard chemotherapy. Predicting tissue-of-origin (TOO) molecularly could help refine this diagnosis, with tissue acquisition barriers mitigated via liquid biopsies. However, TOO liquid biopsies are unexplored in CUP cohorts. Here we describe CUPiD, a machine learning classifier for accurate TOO predictions across 29 tumour classes using circulating cell-free DNA (cfDNA) methylation patterns. We tested CUPiD on 143 cfDNA samples from patients with 13 cancer types alongside 27 non-cancer controls, with overall sensitivity of 84.6% and TOO accuracy of 96.8%. In an additional cohort of 41 patients with CUP CUPiD predictions were made in 32/41 (78.0%) cases, with 88.5% of the predictions clinically consistent with a subsequent or suspected primary tumour diagnosis, when available (23/26 patients). Combining CUPiD with cfDNA mutation data demonstrated potential diagnosis re-classification and/or treatment change in this hard-to-treat cancer group.
Collapse
Affiliation(s)
- Alicia-Marie Conway
- Nucleic Acid Biomarker Team, Cancer Research UK National Biomarker Centre, The University of Manchester, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester and The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Simon P Pearce
- Bioinformatics and Biostatistics Team, Cancer Research UK National Biomarker Centre, The University of Manchester, Manchester, UK
| | - Alexandra Clipson
- Nucleic Acid Biomarker Team, Cancer Research UK National Biomarker Centre, The University of Manchester, Manchester, UK
| | - Steven M Hill
- Bioinformatics and Biostatistics Team, Cancer Research UK National Biomarker Centre, The University of Manchester, Manchester, UK
| | - Francesca Chemi
- Nucleic Acid Biomarker Team, Cancer Research UK National Biomarker Centre, The University of Manchester, Manchester, UK
| | - Dan Slane-Tan
- Nucleic Acid Biomarker Team, Cancer Research UK National Biomarker Centre, The University of Manchester, Manchester, UK
| | - Saba Ferdous
- Bioinformatics and Biostatistics Team, Cancer Research UK National Biomarker Centre, The University of Manchester, Manchester, UK
| | - A S Md Mukarram Hossain
- Bioinformatics and Biostatistics Team, Cancer Research UK National Biomarker Centre, The University of Manchester, Manchester, UK
| | - Katarzyna Kamieniecka
- Bioinformatics and Biostatistics Team, Cancer Research UK National Biomarker Centre, The University of Manchester, Manchester, UK
| | - Daniel J White
- Nucleic Acid Biomarker Team, Cancer Research UK National Biomarker Centre, The University of Manchester, Manchester, UK
| | | | - Alastair Kerr
- Bioinformatics and Biostatistics Team, Cancer Research UK National Biomarker Centre, The University of Manchester, Manchester, UK
| | - Matthew G Krebs
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester and The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Gerard Brady
- Nucleic Acid Biomarker Team, Cancer Research UK National Biomarker Centre, The University of Manchester, Manchester, UK
| | - Caroline Dive
- Nucleic Acid Biomarker Team, Cancer Research UK National Biomarker Centre, The University of Manchester, Manchester, UK.
- Bioinformatics and Biostatistics Team, Cancer Research UK National Biomarker Centre, The University of Manchester, Manchester, UK.
| | - Natalie Cook
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester and The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| | - Dominic G Rothwell
- Nucleic Acid Biomarker Team, Cancer Research UK National Biomarker Centre, The University of Manchester, Manchester, UK.
| |
Collapse
|
27
|
Gupta P, Kambadakone A, Sirohi B. Editorial: Role of imaging in biliary tract cancer: diagnosis, staging, response prediction and image-guided therapeutics. Front Oncol 2024; 14:1387531. [PMID: 38567157 PMCID: PMC10985351 DOI: 10.3389/fonc.2024.1387531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Affiliation(s)
- Pankaj Gupta
- Department of Radiodiagnosis and Imaging, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Avinash Kambadakone
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Bhawna Sirohi
- Department of Medical Oncology, BALCO Medical Centre, Raipur, Chhattisgarh, India
| |
Collapse
|
28
|
Guerini C, Furlan D, Ferrario G, Grillo F, Libera L, Arpa G, Klersy C, Lenti MV, Riboni R, Solcia E, Fassan M, Mastracci L, Ardizzone S, Moens A, De Hertogh G, Ferrante M, Graham RP, Sessa F, Paulli M, Di Sabatino A, Vanoli A. IDH1-mutated Crohn's disease-associated small bowel adenocarcinomas: Distinctive pathological features and association with MGMT methylation and serrated-type dysplasia. Histopathology 2024; 84:515-524. [PMID: 37988281 DOI: 10.1111/his.15095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/04/2023] [Accepted: 10/28/2023] [Indexed: 11/23/2023]
Abstract
AIMS Patients with Crohn's disease (CrD) have an elevated risk for the development of small bowel adenocarcinomas (SBAs). Actionable isocitrate dehydrogenase 1 (IDH1) mutations have been reported to be more frequent in CrD-SBAs than in sporadic SBAs. The present study aimed to investigate the clinicopathological and immunophenotypical features, as well as methylation profiles, of IDH1-mutated CrD-SBAs. METHODS AND RESULTS An international multicentre series of surgically resected CrD-SBAs was tested for IDH1 mutation. Clinicopathological features, immunophenotypical marker expression and O6-methylguanine-DNA methyltransferase (MGMT) and long interspersed nuclear element-1 (LINE-1) methylation were compared between IDH1-mutated and IDH1 wild-type CrD-SBAs. Ten (20%) of the 49 CrD-SBAs examined harboured an IDH1 mutation and all the mutated cancers harboured the R132C variant. Compared to IDH1 wild-type cases, IDH1-mutated CrD-SBAs showed significantly lower rates of cytokeratin 7 expression (P = 0.005) and higher rates of p53 overexpression (P = 0.012) and MGMT methylation (P = 0.012). All three dysplastic growths associated with IDH1-mutated SBAs harboured the same IDH1 variant (R132C) of the corresponding invasive cancer, and all were of non-conventional subtype (two serrated dysplastic lesions and one goblet cell-deficient dysplasia). In particular, non-conventional serrated dysplasia was significantly associated with IDH1-mutated CrD-SBAs (P = 0.029). No significant cancer-specific survival difference between IDH1-mutated CrD-SBA patients and IDH1 wild-type CrD-SBA patients was found (hazard ratio = 0.55, 95% confidence interval = 0.16-1.89; P = 0.313). CONCLUSIONS IDH1-mutated CrD-SBAs, which represent approximately one-fifth of total cases, are characterised by distinctive immunophenotypical features and methylation profiles, with potential therapeutic implications. Moreover, IDH1-mutated non-conventional, serrated dysplasia is likely to represent a precursor lesion to such CrD-SBAs.
Collapse
Affiliation(s)
- Camilla Guerini
- Department of Molecular Medicine, Unit of Anatomic Pathology, University of Pavia, Pavia, Italy
- Unit of Anatomic Pathology, Fondazione IRCCS San Matteo Hospital, Pavia, Italy
| | - Daniela Furlan
- Pathology Unit, Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| | - Giuseppina Ferrario
- Department of Molecular Medicine, Unit of Anatomic Pathology, University of Pavia, Pavia, Italy
- Unit of Anatomic Pathology, Fondazione IRCCS San Matteo Hospital, Pavia, Italy
| | - Federica Grillo
- Pathology Unit, Department of Surgical and Diagnostic Sciences, University of Genoa, Genoa, Italy
- Ospedale Policlinico San Martino University Hospital, Genoa, Italy
| | - Laura Libera
- Pathology Unit, Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| | - Giovanni Arpa
- Department of Molecular Medicine, Unit of Anatomic Pathology, University of Pavia, Pavia, Italy
| | - Catherine Klersy
- Clinical Epidemiology and Biometry, IRCCS San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Marco V Lenti
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy
- First Department of Internal Medicine, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Roberta Riboni
- Unit of Anatomic Pathology, Fondazione IRCCS San Matteo Hospital, Pavia, Italy
| | - Enrico Solcia
- Department of Molecular Medicine, Unit of Anatomic Pathology, University of Pavia, Pavia, Italy
| | - Matteo Fassan
- Surgical Pathology and Cytopathology Unit, Department of Medicine, DIMED, University of Padua, Padua, Italy
- Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy
| | - Luca Mastracci
- Pathology Unit, Department of Surgical and Diagnostic Sciences, University of Genoa, Genoa, Italy
- Ospedale Policlinico San Martino University Hospital, Genoa, Italy
| | - Sandro Ardizzone
- Gastroenterology Unit, Luigi Sacco University Hospital, Milan, Italy
| | - Annick Moens
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Gert De Hertogh
- Department of Pathology, KU Leuven University Hospitals, Leuven, Belgium
| | - Marc Ferrante
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Rondell P Graham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Fausto Sessa
- Pathology Unit, Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| | - Marco Paulli
- Department of Molecular Medicine, Unit of Anatomic Pathology, University of Pavia, Pavia, Italy
- Unit of Anatomic Pathology, Fondazione IRCCS San Matteo Hospital, Pavia, Italy
| | - Antonio Di Sabatino
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy
- First Department of Internal Medicine, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Alessandro Vanoli
- Department of Molecular Medicine, Unit of Anatomic Pathology, University of Pavia, Pavia, Italy
- Unit of Anatomic Pathology, Fondazione IRCCS San Matteo Hospital, Pavia, Italy
| |
Collapse
|
29
|
Cai M, Zhao J, Ding Q, Wei J. Oncometabolite 2-hydroxyglutarate regulates anti-tumor immunity. Heliyon 2024; 10:e24454. [PMID: 38293535 PMCID: PMC10826830 DOI: 10.1016/j.heliyon.2024.e24454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
"Oncometabolite" 2-hydroxyglutarate (2-HG) is an aberrant metabolite found in tumor cells, exerting a pivotal influence on tumor progression. Recent studies have unveiled its impact on the proliferation, activation, and differentiation of anti-tumor T cells. Moreover, 2-HG regulates the function of innate immune components, including macrophages, dendritic cells, natural killer cells, and the complement system. Elevated levels of 2-HG hinder α-KG-dependent dioxygenases (α-KGDDs), contributing to tumorigenesis by disrupting epigenetic regulation, genome integrity, hypoxia-inducible factors (HIF) signaling, and cellular metabolism. The chiral molecular structure of 2-HG produces two enantiomers: D-2-HG and L-2-HG, each with distinct origins and biological functions. Efforts to inhibit D-2-HG and leverage the potential of L-2-HG have demonstrated efficacy in cancer immunotherapy. This review delves into the metabolism, biological functions, and impacts on the tumor immune microenvironment (TIME) of 2-HG, providing a comprehensive exploration of the intricate relationship between 2-HG and antitumor immunity. Additionally, we examine the potential clinical applications of targeted therapy for 2-HG, highlighting recent breakthroughs as well as the existing challenges.
Collapse
Affiliation(s)
- Mengyuan Cai
- Department of Pharmacy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Jianyi Zhao
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Qiang Ding
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Jifu Wei
- Department of Pharmacy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| |
Collapse
|
30
|
Qian L, Wang G, Li B, Su H, Qin L. Regulation of lipid metabolism by APOE4 in intrahepatic cholangiocarcinoma via the enhancement of ABCA1 membrane expression. PeerJ 2024; 12:e16740. [PMID: 38274331 PMCID: PMC10809977 DOI: 10.7717/peerj.16740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a malignancy with a dismal prognosis, thus the discovery of promising diagnostic markers and treatment targets is still required. In this study, 1,852 differentially expressed genes (DEGs) were identified in the GSE45001 dataset for weighted gene co-expression network analysis (WGCNA), and the turquoise module was confirmed as the key module. Next, the subnetworks of the 1,009 genes in the turquoise module analyzed by MCODE, MCC, and BottleNeck algorithms identified nine overlapping genes (CAT, APOA1, APOC2, HSD17B4, EHHADH, APOA2, APOE4, ACOX1, AGXT), significantly associated with lipid metabolism pathways, such as peroxisome and cholesterol metabolism. Among them, APOE4 exhibited a potential tumor-suppressive role in ICC and high diagnostic value for ICC in both GSE45001 and GSE32879 datasets. In vitro experiments demonstrated Apolipoprotein E4 (APOE4) overexpression suppressed ICC cell proliferation, migration, and invasion, knockdown was the opposite trend. And in ICC modulated lipid metabolism, notably decreasing levels of TG, LDL-C, and HDL-C, while concurrently increasing the expressions of TC. Further, APOE4 also downregulated lipid metabolism-related genes, suggesting a key regulatory role in maintaining cellular homeostasis, and regulating the expression of the membrane protein ATP-binding cassette transporter A1 (ABCA1). These findings highlighted the coordinated regulation of lipid metabolism by APOE4 and ABCA1 in ICC progression, providing new insights into ICC mechanisms and potential therapeutic strategies.
Collapse
Affiliation(s)
- Liqiang Qian
- Department of General Surgery, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Gang Wang
- Department of General Surgery, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China
| | - Bin Li
- Department of General Surgery, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China
| | - Haoyuan Su
- Department of General Surgery, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China
| | - Lei Qin
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
31
|
Yang F, Hilakivi-Clarke L, Shaha A, Wang Y, Wang X, Deng Y, Lai J, Kang N. Metabolic reprogramming and its clinical implication for liver cancer. Hepatology 2023; 78:1602-1624. [PMID: 36626639 PMCID: PMC10315435 DOI: 10.1097/hep.0000000000000005] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/28/2022] [Indexed: 01/12/2023]
Abstract
Cancer cells often encounter hypoxic and hypo-nutrient conditions, which force them to make adaptive changes to meet their high demands for energy and various biomaterials for biomass synthesis. As a result, enhanced catabolism (breakdown of macromolecules for energy production) and anabolism (macromolecule synthesis from bio-precursors) are induced in cancer. This phenomenon is called "metabolic reprogramming," a cancer hallmark contributing to cancer development, metastasis, and drug resistance. HCC and cholangiocarcinoma (CCA) are 2 different liver cancers with high intertumoral heterogeneity in terms of etiologies, mutational landscapes, transcriptomes, and histological representations. In agreement, metabolism in HCC or CCA is remarkably heterogeneous, although changes in the glycolytic pathways and an increase in the generation of lactate (the Warburg effect) have been frequently detected in those tumors. For example, HCC tumors with activated β-catenin are addicted to fatty acid catabolism, whereas HCC tumors derived from fatty liver avoid using fatty acids. In this review, we describe common metabolic alterations in HCC and CCA as well as metabolic features unique for their subsets. We discuss metabolism of NAFLD as well, because NAFLD will likely become a leading etiology of liver cancer in the coming years due to the obesity epidemic in the Western world. Furthermore, we outline the clinical implication of liver cancer metabolism and highlight the computation and systems biology approaches, such as genome-wide metabolic models, as a valuable tool allowing us to identify therapeutic targets and develop personalized treatments for liver cancer patients.
Collapse
Affiliation(s)
- Flora Yang
- BA/MD Joint Admission Scholars Program, University of Minnesota, Minneapolis, Minnesota
| | - Leena Hilakivi-Clarke
- Food Science and Nutrition Section, The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Aurpita Shaha
- Tumor Microenvironment and Metastasis Section, the Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Yuanguo Wang
- Tumor Microenvironment and Metastasis Section, the Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Xianghu Wang
- Tumor Microenvironment and Metastasis Section, the Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Yibin Deng
- Department of Urology, Masonic Cancer Center, The University of Minnesota Medical School, Minneapolis, Minnesota
| | - Jinping Lai
- Department of Pathology and Laboratory Medicine, Kaiser Permanente Sacramento Medical Center, Sacramento, California
| | - Ningling Kang
- Tumor Microenvironment and Metastasis Section, the Hormel Institute, University of Minnesota, Austin, Minnesota
| |
Collapse
|
32
|
Zhong B, Liao Q, Wang X, Wang X, Zhang J. The roles of epigenetic regulation in cholangiocarcinogenesis. Biomed Pharmacother 2023; 166:115290. [PMID: 37557012 DOI: 10.1016/j.biopha.2023.115290] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023] Open
Abstract
Cholangiocarcinoma (CCA), a heterogeneous malignancy of bile duct epithelial cells, is characterized by aggressiveness, difficult diagnosis, and poor prognosis due to limited understanding and lack of effective therapeutic strategies. Genetic and epigenetic alterations accumulated in CCA cells can cause the aberrant regulation of oncogenes and tumor suppressors. Epigenetic alterations with histone modification, DNA methylation, and noncoding RNA modulation are associated with the carcinogenesis of CCA. Mutation or silencing of genes by various mechanisms can be a frequent event during CCA development. Alterations in histone acetylation/deacetylation at the posttranslational level, DNA methylation at promoters, and noncoding RNA regulation contribute to the heterogeneity of CCA and drive tumor development. In this review article, we mainly focus on the roles of epigenetic regulation in cholangiocarcinogenesis. Alterations in epigenetic modification can be potential targets for the therapeutic management of CCA, and epigenetic targets may become diagnostic biomarkers of CCA.
Collapse
Affiliation(s)
- Baiyin Zhong
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Qicheng Liao
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Xin Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Xiaonong Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Jianhong Zhang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China; Ganzhou Key Laboratory of Hepatocellular Carcinoma, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
33
|
Sheng X, Qin JM. Mechanism of postoperative recurrence and metastasis of intrahepatic cholangiocellular carcinoma and clinical prevention and treatment strategy. Shijie Huaren Xiaohua Zazhi 2023; 31:753-765. [DOI: 10.11569/wcjd.v31.i18.753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023] Open
Abstract
Intrahepatic cholangiocellular carcinoma is a primary adenocarcinoma originating from intrahepatic bile duct epithelial cells. The tumor has no capsule. At the early stage of the tumor, there are infiltration and metastasis along the lymphatic vessels, blood vessels, perineural space, and loose fibrous connective tissue, which are characterized by lymph node metastasis. Due to the absence of characteristic clinical manifestations and the lack of specific molecular markers for early diagnosis, the surgical resection rate is low and the postoperative tumor recurrence and metastasis rate is high. Low efficacy of chemoradiotherapy, molecular targeted drugs, and immunotherapy results in the poor prognosis. Further research of molecular pathology, gene function, and imaging technology can help elucidate the occurrence, recurrence, and metastasis mechanism of intrahepatic cholangiocellular carcinoma to improve its early diagnosis rate and precise clinical staging. Individualized precision treatment and prevention for the risk factors to reduce the recurrence and metastasis rate postoperatively are key to improving the patient prognosis.
Collapse
Affiliation(s)
- Xia Sheng
- Department of Pathology, Affiliated Minhang Hospital, Fudan University, Shanghai 201100, China
| | - Jian-Min Qin
- Department of General Surgery, The Third Hospital Affiliated to Naval Military Medical University, Shanghai 201805, China
| |
Collapse
|
34
|
Khizar H, Hu Y, Wu Y, Yang J. The role and implication of autophagy in cholangiocarcinoma. Cell Death Discov 2023; 9:332. [PMID: 37666811 PMCID: PMC10477247 DOI: 10.1038/s41420-023-01631-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/13/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a malignant tumor that originates from the biliary epithelial cells. It is characterized by a difficult diagnosis and limited treatment options. Autophagy is a cellular survival mechanism that maintains nutrient and energy homeostasis and eliminates intracellular pathogens. It is involved in various physiological and pathological processes, including the development of cancer. However, the role, mechanism, and potential therapeutic targets of autophagy in CCA have not been thoroughly studied. In this review, we introduce the classification, characteristics, process, and related regulatory genes of autophagy. We summarize the regulation of autophagy on the progression of CCA and collect the latest research progress on some autophagy modulators with clinical potential in CCA. In conclusion, combining autophagy modulators with immunotherapy, chemotherapy, and targeted therapy has great potential in the treatment of CCA. This combination may be a potential therapeutic target for CCA in the future.
Collapse
Affiliation(s)
- Hayat Khizar
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of medicine, 310006, Hangzhou, Zhejiang, China
- Department of Oncology, The Fourth Affiliated Hospital, International Institute of Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yufei Hu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of medicine, 310006, Hangzhou, Zhejiang, China
- Department of Gastroenterology, The Fourth School of Clinical medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yanhua Wu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of medicine, 310006, Hangzhou, Zhejiang, China
- Department of Gastroenterology, The Fourth School of Clinical medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jianfeng Yang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of medicine, 310006, Hangzhou, Zhejiang, China.
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, 310006, Hangzhou, Zhejiang, China.
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, 310006, Hangzhou, Zhejiang, China.
- Hangzhou Institute of Digestive Diseases, 310006, Hangzhou, Zhejiang, China.
| |
Collapse
|
35
|
Doroshow DB, Wei W, Mehrotra M, Sia D, Eder JP, Bindra R, Houldsworth J, LoRusso P, Walther Z. Platinum Sensitivity in IDH1/2 Mutated Intrahepatic Cholangiocarcinoma: Not All "BRCAness" Is Created Equal. Cancer Invest 2023; 41:646-655. [PMID: 37505929 DOI: 10.1080/07357907.2023.2242957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/22/2023] [Accepted: 07/27/2023] [Indexed: 07/30/2023]
Abstract
Preclinical data suggest that IDH1/2 mutations result in defective homologous recombination repair (HRR). We hypothesized that patients with IDH1/2mt intrahepatic cholangiocarcinoma (IHCC) would benefit more from 1 L platinum chemotherapy than patients with wildtype (WT) tumors. We performed a multicenter retrospective study of 81 patients with unresectable IHCC treated with 1 L platinum with a primary endpoint of clinical benefit rate (CBR). Patients with IDH1/2mt tumors had a similar CBR and objective response rate compared to those with IDH WT disease (59 versus 54%; p = 0.803), suggesting that a relationship between platinum sensitivity and HRR gene defects may be specific to tumor context.
Collapse
Affiliation(s)
| | - Wei Wei
- Yale School of Public Health, New Haven, CT, USA
| | | | - Daniella Sia
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph Paul Eder
- Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Center, New Haven, CT, USA
| | | | | | - Patricia LoRusso
- Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Center, New Haven, CT, USA
| | - Zenta Walther
- Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Center, New Haven, CT, USA
| |
Collapse
|
36
|
Jo J, Diaz M, Horbinski C, Mackman N, Bagley S, Broekman M, Rak J, Perry J, Pabinger I, Key NS, Schiff D. Epidemiology, biology, and management of venous thromboembolism in gliomas: An interdisciplinary review. Neuro Oncol 2023; 25:1381-1394. [PMID: 37100086 PMCID: PMC10398809 DOI: 10.1093/neuonc/noad059] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023] Open
Abstract
Patients with diffuse glioma are at high risk of developing venous thromboembolism (VTE) over the course of the disease, with up to 30% incidence in patients with glioblastoma (GBM) and a lower but nonnegligible risk in lower-grade gliomas. Recent and ongoing efforts to identify clinical and laboratory biomarkers of patients at increased risk offer promise, but to date, there is no proven role for prophylaxis outside of the perioperative period. Emerging data suggest a higher risk of VTE in patients with isocitrate dehydrogenase (IDH) wild-type glioma and the potential mechanistic role of IDH mutation in the suppression of production of the procoagulants tissue factor and podoplanin. According to published guidelines, therapeutic anticoagulation with low molecular weight heparin (LMWH) or alternatively, direct oral anticoagulants (DOACs) in patients without increased risk of gastrointestinal or genitourinary bleeding is recommended for VTE treatment. Due to the elevated risk of intracranial hemorrhage (ICH) in GBM, anticoagulation treatment remains challenging and at times fraught. There are conflicting data on the risk of ICH with LMWH in patients with glioma; small retrospective studies suggest DOACs may convey lower ICH risk than LMWH. Investigational anticoagulants that prevent thrombosis without impairing hemostasis, such as factor XI inhibitors, may carry a better therapeutic index and are expected to enter clinical trials for cancer-associated thrombosis.
Collapse
Affiliation(s)
- Jasmin Jo
- Department of Internal Medicine, Division of Hematology and Oncology, East Carolina University, Greenville, NC, USA
| | - Maria Diaz
- Department of Neurology, Division of Neuro-Oncology, Columbia University, New York, NY, USA
| | - Craig Horbinski
- Department of Pathology, Northwestern University, Chicago, IL, USA
| | - Nigel Mackman
- Department of Medicine and UNC Blood Research Center, University of North Carolina, Chapel Hill, NC, USA
| | - Stephen Bagley
- Department of Medicine, University of Pennsylvania, Philadelphia PA, USA
| | - Marika Broekman
- Department of Neurosurgery, University Medical Center, Utrecht, The Netherlands
| | - Janusz Rak
- Department of Pediatrics, McGill University, Montreal, Canada
| | - James Perry
- Department of Neurology, Sunnybrook Health Sciences Center, Toronto, Canada
| | - Ingrid Pabinger
- Department of Medicine, Medical University of Vienna, Vienna, Austria
| | - Nigel S Key
- Department of Medicine and UNC Blood Research Center, University of North Carolina, Chapel Hill, NC, USA
| | - David Schiff
- Department of Neurology, Division of Neuro-Oncology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
37
|
Kumar-Sinha C, Vats P, Tran N, Robinson DR, Gunchick V, Wu YM, Cao X, Ning Y, Wang R, Rabban E, Bell J, Shankar S, Mannan R, Zhang Y, Zalupski MM, Chinnaiyan AM, Sahai V. Genomics driven precision oncology in advanced biliary tract cancer improves survival. Neoplasia 2023; 42:100910. [PMID: 37267699 PMCID: PMC10245336 DOI: 10.1016/j.neo.2023.100910] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Biliary tract cancers (BTCs) including intrahepatic, perihilar, and distal cholangiocarcinoma as well as gallbladder cancer, are rare but aggressive malignancies with few effective standard of care therapies. METHODS We implemented integrative clinical sequencing of advanced BTC tumors from 124 consecutive patients who progressed on standard therapies (N=92 with MI-ONCOSEQ and N=32 with commercial gene panels) enrolled between 2011-2020. RESULTS Genomic profiling of paired tumor and normal DNA and tumor transcriptome (RNA) sequencing identified actionable somatic and germline genomic alterations in 54 patients (43.5%), and potentially actionable alterations in 79 (63.7%) of the cohort. Of these, patients who received matched targeted therapy (22; 40.7%) had a median overall survival of 28.1 months compared to 13.3 months in those who did not receive matched targeted therapy (32; P < 0.01), or 13.9 months in those without actionable mutations (70; P < 0.01). Additionally, we discovered recurrent activating mutations in FGFR2, and a novel association between KRAS and BRAF mutant tumors with high expression of immune modulatory protein NT5E (CD73) that may represent novel therapeutic avenues. CONCLUSIONS Overall, the identification of actionable/ potentially actionable aberrations in a large proportion of cases, and improvement in survival with precision oncology supports molecular analysis and clinical sequencing for all patients with advanced BTC.
Collapse
Affiliation(s)
- Chandan Kumar-Sinha
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pankaj Vats
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nguyen Tran
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dan R Robinson
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Valerie Gunchick
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yi-Mi Wu
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yu Ning
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rui Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Erica Rabban
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Janice Bell
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sunita Shankar
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rahul Mannan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yuping Zhang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mark M Zalupski
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| | - Vaibhav Sahai
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
38
|
Alvaro D, Gores GJ, Walicki J, Hassan C, Sapisochin G, Komuta M, Forner A, Valle JW, Laghi A, Ilyas SI, Park JW, Kelley RK, Reig M, Sangro B. EASL-ILCA Clinical Practice Guidelines on the management of intrahepatic cholangiocarcinoma. J Hepatol 2023; 79:181-208. [PMID: 37084797 DOI: 10.1016/j.jhep.2023.03.010] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 04/23/2023]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) develops inside the liver, between bile ductules and the second-order bile ducts. It is the second most frequent primary liver cancer after hepatocellular carcinoma, and its global incidence is increasing. It is associated with an alarming mortality rate owing to its silent presentation (often leading to late diagnosis), highly aggressive nature and resistance to treatment. Early diagnosis, molecular characterisation, accurate staging and personalised multidisciplinary treatments represent current challenges for researchers and physicians. Unfortunately, these challenges are beset by the high heterogeneity of iCCA at the clinical, genomic, epigenetic and molecular levels, very often precluding successful management. Nonetheless, in the last few years, progress has been made in molecular characterisation, surgical management, and targeted therapy. Recent advances together with the awareness that iCCA represents a distinct entity amongst the CCA family, led the ILCA and EASL governing boards to commission international experts to draft dedicated evidence-based guidelines for physicians involved in the diagnostic, prognostic, and therapeutic management of iCCA.
Collapse
|
39
|
Dragomir MP, Calina TG, Perez E, Schallenberg S, Chen M, Albrecht T, Koch I, Wolkenstein P, Goeppert B, Roessler S, Calin GA, Sers C, Horst D, Roßner F, Capper D. DNA methylation-based classifier differentiates intrahepatic pancreato-biliary tumours. EBioMedicine 2023; 93:104657. [PMID: 37348162 DOI: 10.1016/j.ebiom.2023.104657] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 05/21/2023] [Accepted: 06/02/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND Differentiating intrahepatic cholangiocarcinomas (iCCA) from hepatic metastases of pancreatic ductal adenocarcinoma (PAAD) is challenging. Both tumours have similar morphological and immunohistochemical pattern and share multiple driver mutations. We hypothesised that DNA methylation-based machine-learning algorithms may help perform this task. METHODS We assembled genome-wide DNA methylation data for iCCA (n = 259), PAAD (n = 431), and normal bile duct (n = 70) from publicly available sources. We split this cohort into a reference (n = 399) and a validation set (n = 361). Using the reference cohort, we trained three machine learning models to differentiate between these entities. Furthermore, we validated the classifiers on the technical validation set and used an internal cohort (n = 72) to test our classifier. FINDINGS On the validation cohort, the neural network, support vector machine, and the random forest classifiers reached accuracies of 97.68%, 95.62%, and 96.5%, respectively. Filtering by anomaly detection and thresholds improved the accuracy to 99.07% (37 samples excluded by filtering), 96.22% (17 samples excluded), and 100% (44 samples excluded) for the neural network, support vector machine and random forest, respectively. Because of best balance between accuracy and number of predictable cases we tested the neural network with applied filters on the in-house cohort, obtaining an accuracy of 95.45%. INTERPRETATION We developed a classifier that can differentiate between iCCAs, intrahepatic metastases of a PAAD, and normal bile duct tissue with high accuracy. This tool can be used for improving the diagnosis of pancreato-biliary cancers of the liver. FUNDING This work was supported by Berlin Institute of Health (JCS Program), DKTK Berlin (Young Investigator Grant 2022), German Research Foundation (493697503 and 314905040 - SFB/TRR 209 Liver Cancer B01), and German Cancer Aid (70113922).
Collapse
Affiliation(s)
- Mihnea P Dragomir
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany; Berlin Institute of Health, Berlin, Germany.
| | | | - Eilís Perez
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany; Berlin School of Integrative Oncology (BSIO), Charite - Universitätsmedizin Berlin (CVK), Berlin, Germany
| | - Simon Schallenberg
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Meng Chen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Thomas Albrecht
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Ines Koch
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Peggy Wolkenstein
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Benjamin Goeppert
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; Institute of Pathology and Neuropathology, Hospital RKH Kliniken Ludwigsburg, 71640 Ludwigsburg, Germany
| | - Stephanie Roessler
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christine Sers
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - David Horst
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Florian Roßner
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - David Capper
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
40
|
Solomou G, Finch A, Asghar A, Bardella C. Mutant IDH in Gliomas: Role in Cancer and Treatment Options. Cancers (Basel) 2023; 15:cancers15112883. [PMID: 37296846 DOI: 10.3390/cancers15112883] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Altered metabolism is a common feature of many cancers and, in some cases, is a consequence of mutation in metabolic genes, such as the ones involved in the TCA cycle. Isocitrate dehydrogenase (IDH) is mutated in many gliomas and other cancers. Physiologically, IDH converts isocitrate to α-ketoglutarate (α-KG), but when mutated, IDH reduces α-KG to D2-hydroxyglutarate (D2-HG). D2-HG accumulates at elevated levels in IDH mutant tumours, and in the last decade, a massive effort has been made to develop small inhibitors targeting mutant IDH. In this review, we summarise the current knowledge about the cellular and molecular consequences of IDH mutations and the therapeutic approaches developed to target IDH mutant tumours, focusing on gliomas.
Collapse
Affiliation(s)
- Georgios Solomou
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Alina Finch
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Asim Asghar
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Chiara Bardella
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
41
|
Brandi G, Deiana C, Galvani L, Palloni A, Ricci AD, Rizzo A, Tavolari S. Are FGFR and IDH1-2 alterations a positive prognostic factor in intrahepatic cholangiocarcinoma? An unresolved issue. Front Oncol 2023; 13:1137510. [PMID: 37168376 PMCID: PMC10164916 DOI: 10.3389/fonc.2023.1137510] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/06/2023] [Indexed: 05/13/2023] Open
Abstract
Despite representing some of the most common and investigated molecular changes in intrahepatic cholangiocarcinoma (iCCA), the prognostic role of FGFR and IDH1/2 alterations still remains an open question. In this review we provide a critical analysis of available literature data regarding this topic, underlining the strengths and pitfalls of each study reported. Despite the overall poor quality of current available studies, a general trend toward a better overall survival for FGFR2 rearrangements and, possibly, for FGFR2-3 alterations can be inferred. On the other hand, the positive prognostic role of IDH1/2 mutation seems much more uncertain. In this scenario, better designed clinical trials in these subsets of iCCA patients are needed in order to get definitive conclusions on this issue.
Collapse
Affiliation(s)
- Giovanni Brandi
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medicine and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Chiara Deiana
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medicine and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Linda Galvani
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medicine and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Andrea Palloni
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Angela Dalia Ricci
- Medical Oncology Unit, National Institute of Gastroenterology, “Saverio de Bellis” Research Hospital, Bari, Italy
| | - Alessandro Rizzo
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, Struttura Semplice Dipartimentale di Oncologia Medica per la Presa in Carico Globale del Paziente Oncologico “Don Tonino Bello”, Bari, Italy
| | - Simona Tavolari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medicine and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
42
|
Park JW. Metabolic Rewiring in Adult-Type Diffuse Gliomas. Int J Mol Sci 2023; 24:ijms24087348. [PMID: 37108511 PMCID: PMC10138713 DOI: 10.3390/ijms24087348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Multiple metabolic pathways are utilized to maintain cellular homeostasis. Given the evidence that altered cell metabolism significantly contributes to glioma biology, the current research efforts aim to improve our understanding of metabolic rewiring between glioma's complex genotype and tissue context. In addition, extensive molecular profiling has revealed activated oncogenes and inactivated tumor suppressors that directly or indirectly impact the cellular metabolism that is associated with the pathogenesis of gliomas. The mutation status of isocitrate dehydrogenases (IDHs) is one of the most important prognostic factors in adult-type diffuse gliomas. This review presents an overview of the metabolic alterations in IDH-mutant gliomas and IDH-wildtype glioblastoma (GBM). A particular focus is placed on targeting metabolic vulnerabilities to identify new therapeutic strategies for glioma.
Collapse
Affiliation(s)
- Jong-Whi Park
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam 13120, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
| |
Collapse
|
43
|
Chen W, Xu D, Liu Q, Wu Y, Wang Y, Yang J. Unraveling the heterogeneity of cholangiocarcinoma and identifying biomarkers and therapeutic strategies with single-cell sequencing technology. Biomed Pharmacother 2023; 162:114697. [PMID: 37060660 DOI: 10.1016/j.biopha.2023.114697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a common malignant tumor of the biliary tract that carries a high burden of morbidity and a poor prognosis. Due to the lack of precise diagnostic methods, many patients are often diagnosed at advanced stages of the disease. The current treatment options available are of varying efficacy, underscoring the urgency for the discovery of more effective biomarkers for early diagnosis and improved treatment. Recently, single-cell sequencing (SCS) technology has gained popularity in cancer research. This technology has the ability to analyze tumor tissues at the single-cell level, thus providing insights into the genomics and epigenetics of tumor cells. It also serves as a practical approach to study the mechanisms of cancer progression and to explore therapeutic strategies. In this review, we aim to assess the heterogeneity of CCA using single-cell sequencing technology, with the ultimate goal of identifying possible biomarkers and potential treatment targets.
Collapse
Affiliation(s)
- Wangyang Chen
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang Province 310003, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang Province 310003, China
| | - Dongchao Xu
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang Province 310003, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang Province 310003, China
| | - Qiang Liu
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang Province 310003, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang Province 310003, China
| | - Yirong Wu
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China
| | - Yu Wang
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang Province 310003, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang Province 310003, China.
| | - Jianfeng Yang
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang Province 310003, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang Province 310003, China; Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, Zhejiang Province 310003, China; Zhejiang Provincial Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research, Hangzhou, Zhejiang Province 310003, China.
| |
Collapse
|
44
|
Brown ZJ, Ruff SM, Pawlik TM. Developments in FGFR and IDH inhibitors for cholangiocarcinoma therapy. Expert Rev Anticancer Ther 2023; 23:257-264. [PMID: 36744395 DOI: 10.1080/14737140.2023.2176846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Cholangiocarcinoma (CCA) is an uncommon malignancy originating from epithelial cells of the biliary tract. Regardless of the site of origin within the biliary tree, CCAs are generally aggressive with a poor survival. Surgical resection remains the only chance for cure, yet a majority of patients are not surgical candidates at presentation. Unfortunately, systemic therapies are often ineffective and complicated by side effects. As such, more effective targeted therapies are required in order to improve survival. AREA COVERED Genetic analysis of CCA has allowed for a better understanding of the genomic landscape of CCA. Isocitrate dehydrogenase (IDH) and fibroblast growth factor receptor (FGFR) mutations have emerged as the most promising molecular targets for CCA. Inhibitors of IDH and FGFR have proven to have therapeutic benefit with an acceptable safety profile. However, patients often develop resistance rendering the therapy ineffective. EXPERT OPINION Understanding the molecular pathways of IDH and FGFR may lead to a better understanding of the mechanisms of resistance. Thus, novel therapies may be developed to improve the efficacy of these therapies. Developing novel biomarkers may improve patient selection and further enhance effectiveness of targeted therapies.
Collapse
Affiliation(s)
- Zachary J Brown
- Department of Surgery, Summit Health, Berkeley Heights, NJ, USA
| | - Samantha M Ruff
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Timothy M Pawlik
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
45
|
Kinzler MN, Jeroch J, Klasen C, Himmelsbach V, Koch C, Finkelmeier F, Trojan J, Zeuzem S, Pession U, Reis H, Demes MC, Wild PJ, Walter D. Impact of IDH1 mutation on clinical course of patients with intrahepatic cholangiocarcinoma: a retrospective analysis from a German tertiary center. J Cancer Res Clin Oncol 2023:10.1007/s00432-023-04603-7. [PMID: 36757619 DOI: 10.1007/s00432-023-04603-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/25/2023] [Indexed: 02/10/2023]
Abstract
PURPOSE IDH1 mutation is a known biomarker for targeted therapy of intrahepatic cholangiocarcinoma (iCCA), while its prognostic relevance for current palliative chemotherapy is still unclear. Aim of this study was to analyze clinicopathological characteristics of patients with IDH1 mutations and to outline a potential impact on the outcome after state-of-the-art palliative chemotherapy regimens. METHODS All patients with iCCA receiving large panel molecular profiling and follow-up treatment at Frankfurt University Hospital until 04/2022 were retrospectively analyzed. Clinicopathological characteristics were assessed for IDH1 mutated (mut) and IDH1 wild type (wt) patients, and progression-free survival (PFS) and overall survival (OS) were determined. RESULTS In total, 75 patients with iCCA received molecular profiling. Of the patients with available DNA data, pathogenic mutations in IDH1 were found in 14.5% (n = 10). IDH1 mut status was associated with lower serum CA-19/9 (p = 0.023), lower serum lactate dehydrogenase (p = 0.006), and a higher proportion of primary resectability (p = 0.028) as well as response to chemotherapy after recurrence (p = 0.009). Median PFS was 5.9 months (95% CI 4.4-7.3 months) for IDH1 wt in comparison to 9.8 months (95% CI 7.7-12 months) for patients with IDH1 mut (p = 0.031). IDH1 wt was a significant risk factor for shortened PFS in univariate (p = 0.043), but not in multivariate analysis (p = 0.061). There was no difference in OS between both groups. CONCLUSION Patients with IDH1 mutated iCCA seem to have a favorable tumor biology including a longer PFS for palliative chemotherapy regimens compared to IDH1 wild type.
Collapse
Affiliation(s)
- Maximilian N Kinzler
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University Frankfurt Am Main, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| | - Jan Jeroch
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Goethe University Frankfurt Am Main, Frankfurt Am Main, Germany
| | - Christina Klasen
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University Frankfurt Am Main, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| | - Vera Himmelsbach
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University Frankfurt Am Main, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| | - Christine Koch
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University Frankfurt Am Main, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| | - Fabian Finkelmeier
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University Frankfurt Am Main, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| | - Jörg Trojan
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University Frankfurt Am Main, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| | - Stefan Zeuzem
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University Frankfurt Am Main, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| | - Ursula Pession
- Department of General, Visceral, Transplant and Thoracic Surgery, University Hospital Frankfurt, Goethe University Frankfurt Am Main, Frankfurt Am Main, Germany
| | - Henning Reis
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Goethe University Frankfurt Am Main, Frankfurt Am Main, Germany
| | - Melanie C Demes
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Goethe University Frankfurt Am Main, Frankfurt Am Main, Germany
| | - Peter J Wild
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Goethe University Frankfurt Am Main, Frankfurt Am Main, Germany.,Frankfurt Institute for Advanced Studies (FIAS), Frankfurt Am Main, Germany.,Frankfurt Cancer Institute (FCI), University Hospital Frankfurt, Goethe University Frankfurt Am Main, Frankfurt Am Main, Germany
| | - Dirk Walter
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University Frankfurt Am Main, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany.
| |
Collapse
|
46
|
Primary Liver Cancers: Connecting the Dots of Cellular Studies and Epidemiology with Metabolomics. Int J Mol Sci 2023; 24:ijms24032409. [PMID: 36768732 PMCID: PMC9916415 DOI: 10.3390/ijms24032409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
Liver cancers are rising worldwide. Between molecular and epidemiological studies, a research gap has emerged which might be amenable to the technique of metabolomics. This review investigates the current understanding of liver cancer's trends, etiology and its correlates with existing literature for hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA) and hepatoblastoma (HB). Among additional factors, the literature reports dysfunction in the tricarboxylic acid metabolism, primarily for HB and HCC, and point mutations and signaling for CCA. All cases require further investigation of upstream and downstream events. All liver cancers reported dysfunction in the WNT/β-catenin and P13K/AKT/mTOR pathways as well as changes in FGFR. Metabolites of IHD1, IDH2, miRNA, purine, Q10, lipids, phosphatidylcholine, phosphatidylethanolamine, acylcarnitine, 2-HG and propionyl-CoA emerged as crucial and there was an attempt to elucidate the WNT/β-catenin and P13K/AKT/mTOR pathways metabolomically.
Collapse
|
47
|
Rimini M, Fabregat-Franco C, Persano M, Burgio V, Bergamo F, Niger M, Scartozzi M, Rapposelli IG, Aprile G, Ratti F, Pedica F, Verdaguer H, Rizzato M, Nichetti F, Lai E, Cappetta A, Macarulla T, Fassan M, De Braud F, Pretta A, Simionato F, De Cobelli F, Aldrighetti L, Fornaro L, Cascinu S, Casadei-Gardini A. Clinical Outcomes After Progression on First-Line Therapies in IDH1 Mutated Versus Wild-Type Intrahepatic Cholangiocarcinoma Patients. Target Oncol 2023; 18:139-145. [PMID: 36689074 DOI: 10.1007/s11523-022-00933-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND Isocitrate dehydrogenase-1 (IDH1) mutations occur in a significant proportion of intrahepatic cholangiocarcinomas (iCCAs). No data are available regarding the prognostic impact of IDH1 mutations in advanced iCCA patients after progression on first-line therapies. OBJECTIVE We investigated the role of IDH1 mutation in advanced iCCA after progression on first-line therapies. PATIENTS AND METHODS After progression on first-line therapies for advanced iCCA, consecutive patients were retrospectively collected. The IDH1 status was tested at baseline. This analysis aimed to examine the association between the presence of IDH1 missense mutations and survival outcomes in patients with advanced iCCA treated with a second-line therapy. RESULTS The analysis included 119 patients; 56/119 (47%) were IDH1 mutated (IDH1m) and 63/119 (53%) were IDH1 wild type (IDH1 WT). At univariate analysis for overall survival (OS), the presence of IDH1 mutation was associated with a worse median OS (mOS; 8.2 vs. 14.1 months; hazard ratio [HR] 1.9, 95% confidence interval [CI] 1.2-3.0, p = 0.0047). Patients harboring IDH1 mutations showed a worse objective response rate (ORR) compared with patients without IDH1 mutation, whereas no significant differences in disease control rate (DCR) were found. Multivariate analysis confirmed IDH1 mutations as an independent negative prognostic factor for OS (HR 1.7, 95% CI 1.1-2.7, p = 0.0256). By evaluating only patients receiving FOLFOX as second-line therapy, no statistically significant differences were found in terms of both OS and PFS between IDH1m and IDH1 WT patients. In this subset of patients, those harboring an IDH1 mutation showed a worse ORR and DCR compared with those without. Finally, at univariate analysis for OS from third-line treatment, the presence of an IDH1 mutation was associated with a trend toward a worse mOS (6.0 vs. 11.9 months; HR 1.6, 95% CI 0.8-3.2, p = 0.25). CONCLUSION The present analysis constitutes the first evidence of a negative prognostic impact of IDH1 mutations in a cohort of patients treated after progression on first-line therapies in contrast to IDH1 inhibitors.
Collapse
Affiliation(s)
- Margherita Rimini
- IRCCS San Raffaele Scientific Institute Hospital, Department of Oncology, Vita-Salute San Raffaele University, Milan, Italy.
| | - Carles Fabregat-Franco
- Gastrointestinal Cancer Unit, Vall d'Hebron University Hospital & Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Mara Persano
- Medical Oncology, University and University Hospital, Cagliari, Italy
| | - Valentina Burgio
- IRCCS San Raffaele Scientific Institute Hospital, Department of Oncology, Vita-Salute San Raffaele University, Milan, Italy
| | | | - Monica Niger
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Mario Scartozzi
- Medical Oncology, University and University Hospital, Cagliari, Italy
| | - Ilario Giovanni Rapposelli
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy
| | - Giuseppe Aprile
- Department of Oncology, San Bortolo General Hospital, Azienda ULSS8 Berica, Vicenza, Italy
| | - Francesca Ratti
- Hepatobiliary Surgery Division, Liver Center, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Federica Pedica
- Department of Experimental Oncology, Pathology Unit, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Helena Verdaguer
- Gastrointestinal Cancer Unit, Vall d'Hebron University Hospital & Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Mario Rizzato
- Oncology Unit 1, Veneto Institute of Oncology - IRCCS, Padua, Italy
| | - Federico Nichetti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Eleonora Lai
- Medical Oncology, University and University Hospital, Cagliari, Italy
| | - Alessandro Cappetta
- Department of Oncology, San Bortolo General Hospital, Azienda ULSS8 Berica, Vicenza, Italy
| | - Teresa Macarulla
- Gastrointestinal Cancer Unit, Vall d'Hebron University Hospital & Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Matteo Fassan
- Oncology Unit 1, Veneto Institute of Oncology - IRCCS, Padua, Italy
| | - Filippo De Braud
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Andrea Pretta
- Medical Oncology, University and University Hospital, Cagliari, Italy
| | - Francesca Simionato
- Department of Oncology, San Bortolo General Hospital, Azienda ULSS8 Berica, Vicenza, Italy
| | | | - Luca Aldrighetti
- Hepatobiliary Surgery Division, Liver Center, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | | | - Stefano Cascinu
- School of Medicine, Vita-Salute San Raffaele University, 20132, Milan, Italy
| | | |
Collapse
|
48
|
Loilome W, Namwat N, Jusakul A, Techasen A, Klanrit P, Phetcharaburanin J, Wangwiwatsin A. The Hallmarks of Liver Fluke Related Cholangiocarcinoma: Insight into Drug Target Possibility. Recent Results Cancer Res 2023; 219:53-90. [PMID: 37660331 DOI: 10.1007/978-3-031-35166-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Cholangiocarcinoma (CCA) is a malignant tumor of the biliary tree that is classified into three groups based on its anatomic location: intrahepatic (iCCA), perihilar (pCCA), and distal (dCCA). Perihilar CCA is the most common type and accounts for 50-60% of CCA cases. It is followed by distal CCA and then intrahepatic CCA that account for 20-30% and 10-20% of cases, respectively. This chapter discusses the hallmarks of liver fluke related CCA and explores insights into drug target possibilities.
Collapse
Affiliation(s)
- Watcharin Loilome
- Department of System Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Nisana Namwat
- Department of System Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Apinya Jusakul
- Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Anchalee Techasen
- Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Poramate Klanrit
- Department of System Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Jutarop Phetcharaburanin
- Department of System Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Arporn Wangwiwatsin
- Department of System Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
49
|
Ho J, Fiocco C, Spencer K. Treating Biliary Tract Cancers: New Targets and Therapies. Drugs 2022; 82:1629-1647. [DOI: 10.1007/s40265-022-01808-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2022] [Indexed: 11/29/2022]
|
50
|
Connor AA, Kodali S, Abdelrahim M, Javle MM, Brombosz EW, Ghobrial RM. Intrahepatic cholangiocarcinoma: The role of liver transplantation, adjunctive treatments, and prognostic biomarkers. Front Oncol 2022; 12:996710. [PMID: 36479082 PMCID: PMC9719919 DOI: 10.3389/fonc.2022.996710] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/31/2022] [Indexed: 08/01/2023] Open
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is a primary epithelial cell malignancy of the liver with rising incidence rate globally. Its insidious presentation, heterogeneous and aggressive biology, and recalcitrance to current therapies results in unacceptably high morbidity and mortality. This has spurred research efforts in the last decade to better characterize it molecularly with translation to improved diagnostic tools and treatments. Much of this has been driven by patient advocacy. This has renewed interest in orthotopic liver transplantation (LT) with adjunctive therapies for iCCA, which was historically disparaged due to poor recipient outcomes and donor organ scarcity. However, the optimal use of LT as a treatment for iCCA care remains unclear. Here, we review the epidemiology of iCCA, the history of LT as a treatment modality, alternative approaches to iCCA local control, the evidence for peri-operative systemic therapies, and the potential roles of biomarkers and targeted agents. In doing so, we hope to prioritize areas for continued research and identify areas where multidisciplinary care can improve outcomes.
Collapse
Affiliation(s)
- Ashton A. Connor
- Sherrie and Alan Conover Center for Liver Disease and Transplantation, JC Walter Jr Transplant Center, Houston Methodist Hospital, Houston, TX, United States
- Department of Surgery, Houston Methodist Hospital, Houston, TX, United States
| | - Sudha Kodali
- Sherrie and Alan Conover Center for Liver Disease and Transplantation, JC Walter Jr Transplant Center, Houston Methodist Hospital, Houston, TX, United States
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Maen Abdelrahim
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
- Section of Gastrointestinal Oncology, Department of Medical Oncology, Houston Methodist Cancer Center, Houston, TX, United States
- Cockrell Center Phase 1 Unit, Cockrell Center for Advanced Therapeutics, Houston Methodist Hospital, Houston, TX, United States
| | - Milind M. Javle
- Department of Gastrointestinal Medical Oncology, MD Anderson Cancer Center, Houston, TX, United States
| | | | - R. Mark Ghobrial
- Sherrie and Alan Conover Center for Liver Disease and Transplantation, JC Walter Jr Transplant Center, Houston Methodist Hospital, Houston, TX, United States
- Department of Surgery, Houston Methodist Hospital, Houston, TX, United States
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|