1
|
Jain A, Mishra AK, Hurkat P, Shilpi S, Mody N, Jain SK. Navigating liver cancer: Precision targeting for enhanced treatment outcomes. Drug Deliv Transl Res 2025; 15:1935-1961. [PMID: 39847205 DOI: 10.1007/s13346-024-01780-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2024] [Indexed: 01/24/2025]
Abstract
Cancer treatments such as surgery and chemotherapy have several limitations, including ineffectiveness against large or persistent tumors, high relapse rates, drug toxicity, and non-specificity of therapy. Researchers are exploring advanced strategies for treating this life-threatening disease to address these challenges. One promising approach is targeted drug delivery using prodrugs or surface modification with receptor-specific moieties for active or passive targeting. While various drug delivery systems have shown potential for reaching hepatic cells, nano-carriers offer significant size, distribution, and targetability advantages. Engineered nanocarriers can be customized to achieve effective and safe targeting of tumors by manipulating physical characteristics such as particle size or attaching receptor-specific ligands. This method is particularly advantageous in treating liver cancer by targeting specific hepatocyte receptors and enzymatic pathways for both passive and active therapeutic strategies. It highlights the epidemiology of liver cancer and provides an in-depth analysis of the various targeting approaches, including prodrugs, liposomes, magneto-liposomes, micelles, glycol-dendrimers, magnetic nanoparticles, chylomicron-based emulsion, and quantum dots surface modification with receptor-specific moieties. The insights from this review can be immensely significant for preclinical and clinical researchers working towards developing effective treatments for liver cancer. By utilizing these novel strategies, we can overcome the limitations of conventional therapies and offer better outcomes for liver cancer patients.
Collapse
Affiliation(s)
- Ankit Jain
- Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, Rajasthan, 333031, India.
| | - Ashwini Kumar Mishra
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
- Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, 284003, India
| | - Pooja Hurkat
- Dr. Hari Singh Gour Central University, Sagar, 470003, MP, India
| | - Satish Shilpi
- School of Pharmaceuticals and Population Health Informatics, FOP, DIT University, Dehradun, Uttarakahnad, India
| | - Nishi Mody
- Dr. Hari Singh Gour Central University, Sagar, 470003, MP, India
| | | |
Collapse
|
2
|
Khan A, Dawar P, De S. Thiourea compounds as multifaceted bioactive agents in medicinal chemistry. Bioorg Chem 2025; 158:108319. [PMID: 40058221 DOI: 10.1016/j.bioorg.2025.108319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
Microbial resistance (MR) and cancer are global healthcare pitfalls that have caused millions of deaths and pose a significant pharmaceutical challenge, with clinical cases increasing. Thioureas are preferred structures in medicinal chemistry, chemosensors, and organic synthesis platforms. In fact, thiourea (TU) moieties serve as a common framework for several medications and bioactive substances, demonstrating a wide range of therapeutic and pharmacological accomplishments. The integration of the thiourea moiety into a diverse range of organic molecules has resulted in very flexible compounds with widespread uses in medicinal chemistry. Moreover, for over a century, TU and its metal complexes have been characterized for their biological activity. Finally, we provide an assessment and future outlook of different organo-thiourea derivatives, from the very beginning to the most recent discoveries in medicinal activity.
Collapse
Affiliation(s)
- Adeeba Khan
- Department of Chemistry, Organic Chemistry Lab, Manipal University Jaipur, Jaipur, Rajasthan 303007, India
| | - Palak Dawar
- Department of Chemistry, Organic Chemistry Lab, Manipal University Jaipur, Jaipur, Rajasthan 303007, India
| | - Suranjan De
- Department of Chemistry, Organic Chemistry Lab, Manipal University Jaipur, Jaipur, Rajasthan 303007, India.
| |
Collapse
|
3
|
Alaei E, Hashemi F, Farahani N, Tahmasebi S, Nabavi N, Daneshi S, Mahmoodieh B, Rahimzadeh P, Taheriazam A, Hashemi M. Peptides in breast cancer therapy: From mechanisms to emerging drug delivery and immunotherapy strategies. Pathol Res Pract 2025; 269:155946. [PMID: 40174279 DOI: 10.1016/j.prp.2025.155946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/12/2025] [Accepted: 03/26/2025] [Indexed: 04/04/2025]
Abstract
Breast cancer therapy can be improved by the application of multifunctional peptides and they have unique features, such as high specificity, minimized toxicity, and the capability to influence diverse processes. The role of peptides in breas cancer therapy is highlighted in the present review, examining their functions as therapeutic agents, diagnostic tools, and drug delivery application. Therapeutic peptides have displayed the ability to regulate key pathways in breast tumor, including HER2, VEGF, and EGFR, providing ideal alternatives to the conventional chemotherapy with reduced adverse effects. Additionally, peptide-based vaccines and immune-modulating peptides have demonstrated the capacity in enhancing anti-cancer immunity. The incorporation of peptides into nanoparticles has improved the delivery of drugs and genes, enhanced anti-cancer efficacy while minimizing side impacts. The progresses in the peptide engineering, including stapled peptides, peptide-drug conjugates, and cell-penetrating peptides, have remarkably increased their therapeutic efficacy and stability, elevating their applications in breast cancer therapy. Peptides can be developed using bioinformatics and high-throughput screening technologies to optimize pharmacokinetics and bioavailability. Despite their promise, peptides demonstrate challenges such as enzymatic degradation, limited stability, and high production costs. These obstacles can be addressed through strategies such as peptide cyclization, the employement of non-natural amino acids, and nanoparticle encapsulation. This review explores these recent advancements and strategies, providing ideal insights into the clinical potential of peptides in breast tumor therapy.
Collapse
Affiliation(s)
- Elmira Alaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Safa Tahmasebi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Behnaz Mahmoodieh
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
4
|
Zhang X, Yin G, Lan M, Zhao H. 2,2,6,6-tetramethylpiperidin-1-oxyl: a new potential targeted ligand based on lipid peroxidation for targeted drug delivery. J Drug Target 2025:1-12. [PMID: 40022629 DOI: 10.1080/1061186x.2025.2474639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/27/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
The side effects of chemotherapy drugs have prompted the development of targeted therapies. Distinctive abundance of lipid peroxidation (LPO) in tumour cells represents a potential target for drug delivery. However, LPO-based targeted ligands remain under-exploited. In this work, the targeting of 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO), was investigated within a mesoporous silica nanoparticle (MSN) loaded with doxorubicin (DOX) and connected with 4-NH2-TEMPO obtaining DOX/MSN-TEMPO. A cellular uptake assay showed a faster uptake of DOX/MSN-TEMPO than blank group on Hela, L929 and 4T1 cells, revealing TEMPO's active targeting ability for tumour cells. After observing this phenomenon, the fabrication of a basic copolymer module carrying cyanine5.5 (Cy5.5) and TEMPO was reported. In vivo experiments were conducted on mouse MCF-7 tumour models, displaying selective aggregation of nano micelles at the tumour site and thereby verifying the broad applicability of TEMPO. Since the large amounts of LPO lead to the presence of numerous free radicals, whereas TEMPO, as a free radical capture agent, further selectively targets tumour cells. These findings verify the targeting ability of TEMPO for most tumour cells and collectively underscore the potential of TEMPO and analogous capture agents as innovative targeted ligands for drug delivery.
Collapse
Affiliation(s)
- Xiaofei Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, P.R. China
- Research Center of Analysis and Test, East China University of Science and Technology, Shanghai, P.R. China
| | - Guohao Yin
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, P.R. China
- Research Center of Analysis and Test, East China University of Science and Technology, Shanghai, P.R. China
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, P.R. China
- Research Center of Analysis and Test, East China University of Science and Technology, Shanghai, P.R. China
| | - Hongli Zhao
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, P.R. China
- Research Center of Analysis and Test, East China University of Science and Technology, Shanghai, P.R. China
| |
Collapse
|
5
|
Vosoughi P, Naghib SM, Kangarshahi BM, Mozafari MR. A review of RNA nanoparticles for drug/gene/protein delivery in advanced therapies: Current state and future prospects. Int J Biol Macromol 2025; 295:139532. [PMID: 39765293 DOI: 10.1016/j.ijbiomac.2025.139532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Nanotechnology involves the utilization of materials with exceptional properties at the nanoscale. Over the past few years, nanotechnologies have demonstrated significant potential in improving human health, particularly in medical treatments. The self-assembly characteristic of RNA is a highly effective method for designing and constructing nanostructures using a combination of biological, chemical, and physical techniques from different fields. There is great potential for the application of RNA nanotechnology in therapeutics. This review explores various nano-based drug delivery systems and their unique features through the impressive progress of the RNA field and their significant therapeutic promises due to their unique performance in the COVID-19 pandemic. However, a significant hurdle in fully harnessing the power of RNA drugs lies in effectively delivering RNA to precise organs and tissues, a critical factor for achieving therapeutic effectiveness, minimizing side effects, and optimizing treatment outcomes. There have been many efforts to pursue targeting, but the clinical translation of RNA drugs has been hindered by the lack of clear guidelines and shared understanding. A comprehensive understanding of various principles is essential to develop vaccines using nucleic acids and nanomedicine successfully. These include mechanisms of immune responses, functions of nucleic acids, nanotechnology, and vaccinations. Regarding this matter, the aim of this review is to revisit the fundamental principles of the immune system's function, vaccination, nanotechnology, and drug delivery in relation to the creation and manufacturing of vaccines utilizing nanotechnology and nucleic acids. RNA drugs have demonstrated significant potential in treating a wide range of diseases in both clinical and preclinical research. One of the reasons is their capacity to regulate gene expression and manage protein production efficiently. Different methods, like modifying chemicals, connecting ligands, and utilizing nanotechnology, have been essential in enabling the effective use of RNA-based treatments in medical environments. The article reviews stimuli-responsive nanotechnologies for RNA delivery and their potential in RNA medicines. It emphasizes the notable benefits of these technologies in improving the effectiveness of RNA and targeting specific cells and organs. This review offers a comprehensive analysis of different RNA drugs and how they work to produce therapeutic benefits. Recent progress in using RNA-based drugs, especially mRNA treatments, has shown that targeted delivery methods work well in medical treatments.
Collapse
Affiliation(s)
- Pegah Vosoughi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran.
| | - Babak Mikaeeli Kangarshahi
- State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
6
|
Yuen D, Feeney OM, Noi L, Shengule S, McLeod VM, Reitano P, Tsegay S, Hufton R, Houston ZH, Fletcher NL, Humphries J, Thurecht KJ, Cullinane C, Owen DJ, Porter CJH, Johnston APR. Nanobody-Mediated Cellular Uptake Maximizes the Potency of Polylysine Dendrimers While Preserving Solid Tumor Penetration. ACS NANO 2025; 19:6044-6057. [PMID: 39910852 DOI: 10.1021/acsnano.4c10851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Dendrimers are branched macromolecular structures that are useful nanocarriers for small-molecule drugs, such as cancer therapeutics. Their small size permits penetration into solid tumors, coupled with functionalization with a low-fouling PEG coating that minimizes transient cellular interactions and enhances plasma circulation time. While PEGylated dendrimers show significant promise as anticancer therapeutics, there is potential to increase tumor cell specificity and drive uptake of drugs into cells by conjugating cell-targeting ligands onto the dendrimers. To achieve this, we used an expanded genetic code and bio-orthogonal click chemistry to functionalize monomethyl auristatin E (MMAE)-loaded PEGylated dendrimers with a single tumor cell-targeting nanobody per dendrimer. The uniform addition of a single nanobody ligand facilitated greater intracellular uptake of the drug payload into HER2-positive target cells, while preserving the desirable circulatory characteristics of dendrimers. While the nanobody-dendrimer conjugates show similar levels of tumor infiltration over 24 h compared to unmodified dendrimers, the targeted dendrimers had significantly greater inhibition of tumor growth and long-term retention in the tumors. Our results highlight that biodistribution studies alone are poor predictors of therapeutic performance. The controlled conjugation strategy presented here preserves the size advantage and tissue penetration of dendrimers while maximizing targeted cellular uptake and potency in difficult-to-access solid tumor tissue.
Collapse
Affiliation(s)
- Daniel Yuen
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Orlagh M Feeney
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Leo Noi
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | | | | | | | - Sammi Tsegay
- Starpharma Ltd., Abbotsford, Victoria 3067, Australia
| | | | - Zachary H Houston
- Centre for Advanced Imaging, ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Nicholas L Fletcher
- Centre for Advanced Imaging, ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, St Lucia, Queensland 4072, Australia
| | - James Humphries
- Centre for Advanced Imaging, ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Kristofer J Thurecht
- Centre for Advanced Imaging, ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, St Lucia, Queensland 4072, Australia
| | | | - David J Owen
- Starpharma Ltd., Abbotsford, Victoria 3067, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Christopher J H Porter
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Angus P R Johnston
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
7
|
Lam YY, Tan A, Kempe K, Boyd BJ. Metabolic glycan labelling with bio-orthogonal targeting and its potential in drug delivery. J Control Release 2025; 378:880-898. [PMID: 39694071 DOI: 10.1016/j.jconrel.2024.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/21/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
New modes of targeted drug delivery are emerging with promise of enhancing therapeutic efficacy while reducing side effects. This review examines the landscape of metabolic glycan labelling-a technique gaining traction for its potential in specific drug targeting. By exploiting the natural glycan synthetic pathway of monosaccharides, unnatural sugar analogues are incorporated into glycoproteins, allowing for the presentation of unique functional groups on cells. This enables specific targeting using 'clickable' probes with complementary click chemistry functional groups. The selection of sugar analogues and chemical tags are crucial components explored in this review, alongside considerations for cell lines, tissues, and cargo selection. The review discusses non-therapeutic and therapeutic applications of metabolic glycan labelling, as well as its potential beyond labelling of cell surfaces. The review also highlights underexplored areas of metabolic glycan labelling by assessing the limited literature addressing labelling efficiency, turnover rates, the impact of sugar supplements in cell culture, and the critical cell to functionalised sugar ratio. Furthermore, this review delves into the future landscape and goals of metabolic glycan labelling, envisioning its potential in targeted drug delivery.
Collapse
Affiliation(s)
- Yuen Yi Lam
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Angel Tan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Kristian Kempe
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia; Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia; Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia; Department of Pharmacy, University of Copenhagen Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
8
|
Park J, Kim D. Advanced Immunomodulatory Biomaterials for Therapeutic Applications. Adv Healthc Mater 2025; 14:e2304496. [PMID: 38716543 PMCID: PMC11834384 DOI: 10.1002/adhm.202304496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/15/2024] [Indexed: 05/22/2024]
Abstract
The multifaceted biological defense system modulating complex immune responses against pathogens and foreign materials plays a critical role in tissue homeostasis and disease progression. Recently developed biomaterials that can specifically regulate immune responses, nanoparticles, graphene, and functional hydrogels have contributed to the advancement of tissue engineering as well as disease treatment. The interaction between innate and adaptive immunity, collectively determining immune responses, can be regulated by mechanobiological recognition and adaptation of immune cells to the extracellular microenvironment. Therefore, applying immunomodulation to tissue regeneration and cancer therapy involves manipulating the properties of biomaterials by tailoring their composition in the context of the immune system. This review provides a comprehensive overview of how the physicochemical attributes of biomaterials determine immune responses, focusing on the physical properties that influence innate and adaptive immunity. This review also underscores the critical aspect of biomaterial-based immune engineering for the development of novel therapeutics and emphasizes the importance of understanding the biomaterials-mediated immunological mechanisms and their role in modulating the immune system.
Collapse
Affiliation(s)
- Ji‐Eun Park
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
| | - Dong‐Hwee Kim
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
- Department of Integrative Energy EngineeringCollege of EngineeringKorea UniversitySeoul02841Republic of Korea
- Biomedical Research CenterKorea Institute of Science and TechnologySeoul02792Republic of Korea
| |
Collapse
|
9
|
Izadiyan Z, Misran M, Kalantari K, Webster TJ, Kia P, Basrowi NA, Rasouli E, Shameli K. Advancements in Liposomal Nanomedicines: Innovative Formulations, Therapeutic Applications, and Future Directions in Precision Medicine. Int J Nanomedicine 2025; 20:1213-1262. [PMID: 39911259 PMCID: PMC11794392 DOI: 10.2147/ijn.s488961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 01/01/2025] [Indexed: 02/07/2025] Open
Abstract
Liposomal nanomedicines have emerged as a pivotal approach for the treatment of various diseases, notably cancer and infectious diseases. This manuscript provides an in-depth review of recent advancements in liposomal formulations, highlighting their composition, targeted delivery strategies, and mechanisms of action. We explore the evolution of liposomal products currently in clinical trials, emphasizing their potential in addressing diverse medical challenges. The integration of immunotherapeutic agents within liposomes marks a paradigm shift, enabling the design of 'immuno-modulatory hubs' capable of orchestrating precise immune responses while facilitating theranostic applications. The recent COVID-19 pandemic has accelerated research in liposomal-based vaccines and antiviral therapies, underscoring the need for improved delivery mechanisms to overcome challenges like rapid clearance and organ toxicity. Furthermore, we discuss the potential of "smart" liposomes, which can respond to specific disease microenvironments, enhancing treatment efficacy and precision. The integration of artificial intelligence and machine learning in optimizing liposomal designs promises to revolutionize personalized medicine, paving the way for innovative strategies in disease detection and therapeutic interventions. This comprehensive review underscores the significance of ongoing research in liposomal technologies, with implications for future clinical applications and enhanced patient outcomes.
Collapse
Affiliation(s)
- Zahra Izadiyan
- Department of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Misni Misran
- Department of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Katayoon Kalantari
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Thomas J Webster
- Biomedical Engineering, Hebei University of Technology, Tianjin, People’s Republic of China
- School of Engineering, Saveetha University, Chennai, India
| | - Pooneh Kia
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | - Elisa Rasouli
- Department of Electrical and Electronics Engineering, Nanyang Technological University, Nanyang, Singapore
| | - Kamyar Shameli
- School of Medicine, Institute of Virology, Technical University of Munich, Munich, Germany
| |
Collapse
|
10
|
Tan KF, Chia LY, Maki MAA, Cheah SC, In LLA, Kumar PV. Gold nanocomposites in colorectal cancer therapy: characterization, selective cytotoxicity, and migration inhibition. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03839-z. [PMID: 39878813 DOI: 10.1007/s00210-025-03839-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/20/2025] [Indexed: 01/31/2025]
Abstract
The third most prevalent type of cancer in the world, colorectal cancer, poses a significant treatment challenge due to the nonspecific distribution, low efficacy, and high systemic toxicity associated with chemotherapy. To overcome these limitations, a targeted drug delivery system with a high cytotoxicity against cancer cells while maintaining a minimal systemic side effects represents a promising therapeutic approach. Therefore, the aim of this study was to develop an efficient gold nanocarrier for the targeted delivery of the anticancer agent everolimus to Caco-2 cells. A novel gold nanocomposite (EV-β-CD-HA-Chi-AuNCs) functionalized with a targeting ligand (hyaluronic acid), a permeation enhancement excipient (chitosan), and an anticancer inclusive compound consisting of beta-cyclodextrin and everolimus was proposed and prepared via Turkevich method. Characterization was performed with a UV spectrometer, FTIR, Zetasizer, and HRTEM. Its drug release profile was also evaluated in media with three different pH values. Cytotoxicity and biocompatibility studies were performed on a colorectal cancer cell line (Caco-2) and a normal fibroblast line (MRC-5), respectively, via xCELLigence real-time cellular analysis (RTCA) technology. The inhibitory effect on migration was also further tested via the xCELLigence RTCA technique and a scratch assay. Characterization studies revealed the successful formation of EV-β-CD-HA-Chi-AuNCs with a size and charge which are suitable for the use as targeted drug delivery carrier. In the cytotoxic study, the EV-β-CD-HA-Chi-AuNCs showed a lower IC50 (16 ± 1 µg/ml) than the pure drug (25 ± 3 µg/ml) toward a colorectal cell line (Caco-2). In the biocompatibility study, the EV-β-CD-HA-Chi-AuNCs have minimal toxicity, while the pure drug has severe toxicity toward healthy fibroblasts (MRC-5) despite its low concentration. In the cell migration study, the EV-β-CD-HA-Chi-AuNCs also showed a greater inhibitory effect than the pure drug. Compared with the pure drug, the EV-β-CD-HA-Chi-AuNCs exhibit an excellent selective cytotoxicity between cancerous colorectal Caco-2 cells and healthy MRC-5 cells, making it a potential carrier to carry the drug to the cancerous site while maintaining its low toxicity to the surrounding environment. In addition, an increase in the cytotoxic activity of the EV-β-CD-HA-Chi-AuNCs toward cancerous colorectal Caco-2 cells was also observed, which can potentially improve the treatment of colorectal cancer.
Collapse
Grants
- REIG-FPS-2023-042 Research Excellence and Innovation Grant under Centre of Excellence in Research, Value Innovation and Entrepreneurship (CERVIE), UCSI University, Malaysia
- REIG-FPS-2023-042 Research Excellence and Innovation Grant under Centre of Excellence in Research, Value Innovation and Entrepreneurship (CERVIE), UCSI University, Malaysia
- REIG-FPS-2023-042 Research Excellence and Innovation Grant under Centre of Excellence in Research, Value Innovation and Entrepreneurship (CERVIE), UCSI University, Malaysia
- FRGS/1/2021/SKK0/UCSI/02/5 Ministry of Higher Education (MOHE), Malaysia
- FRGS/1/2021/SKK0/UCSI/02/5 Ministry of Higher Education (MOHE), Malaysia
- FRGS/1/2021/SKK0/UCSI/02/5 Ministry of Higher Education (MOHE), Malaysia
Collapse
Affiliation(s)
- Kin Fai Tan
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, Taman Connaught, Cheras, Kuala Lumpur, 56000, Malaysia
| | - Le Yi Chia
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, Taman Connaught, Cheras, Kuala Lumpur, 56000, Malaysia
| | - Marwan Abdelmahmoud Abdelkarim Maki
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, Taman Connaught, Cheras, Kuala Lumpur, 56000, Malaysia
| | - Shiau-Chuen Cheah
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, Port Dickson, Negeri Sembilan, 71010, Malaysia
| | - Lionel Lian Aun In
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, 56000, Malaysia
| | - Palanirajan Vijayaraj Kumar
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, Taman Connaught, Cheras, Kuala Lumpur, 56000, Malaysia.
| |
Collapse
|
11
|
Tian S, Chen M. Global research progress of nanomedicine and colorectal cancer: a bibliometrics and visualization analysis. Front Oncol 2024; 14:1460201. [PMID: 39711965 PMCID: PMC11660184 DOI: 10.3389/fonc.2024.1460201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/04/2024] [Indexed: 12/24/2024] Open
Abstract
Background Surgery and chemoradiotherapy are the main clinical treatment methods for colorectal cancer (CRC), but the prognosis is poor. The emergence of nanomedicine brings bright light to the treatment of CRC. However, there has not been a comprehensive and systematic analysis of CRC and nanomedicine by bibliometrics. Methods We searched the Web of Science Core Collection database (WOSCC) for relevant literature published from 2011 to 2024. We used VOSviewer and Citespace to analyze countries, institutions, authors, keywords, highly cited references, and co-cited references. Results 3105 pieces of literatures were included in the research analysis, and PEOPLES R CHINA and the USA took the leading position in the number of papers published and had academic influence. The Chinese Academy of Sciences posted the most papers. The most prolific scholar was Abnous Khalil. The level of economic development is inversely proportional to the number of cases and deaths of colorectal cancer. Nanoparticles (NPs), the nanomedical drug delivery system (NDDS) is a hot topic in the field. Photodynamic therapy (PDT), immunogenic cell death (ICD), tumor microenvironment (TEM), folic acid, and pH are the cutting edge of the field. Conclusion This paper introduces the research hotspot, emphasis, and frontier of CRC and nanomedicine, and points out the direction for this field.
Collapse
Affiliation(s)
| | - Min Chen
- Proctology Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
12
|
Mondal R, Keerthana M, Pandurangan N, Shanmugaraju S. Zn(II)-Curcumin Complexes-Based Anticancer Agents. ChemMedChem 2024; 19:e202400558. [PMID: 39225342 DOI: 10.1002/cmdc.202400558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 09/04/2024]
Abstract
There is a great deal of research interest in the design of alternative metallodrugs to Pt(II)-derivatives for cancer treatment. The low solubility of such drugs in biological mediums leading to poor bioavailability is the major hurdle of several metal-based anticancer agents. These issues have recently been addressed by designing bio-active ligands based on metal-containing anticancer agents. Conjugating with bioactive ligands has significantly improved the bioavailability of the metallodrugs and their cancer cell targeting ability. One such naturally available bioactive ligand is curcumin. Until recently, several curcumin-based anticancer metallodrugs have been developed and successfully demonstrated for their anticancer studies. In this article, we aim to highlight, the synthesis, structure, and anticancer properties of various Zn(II)-curcumin-based coordination complexes. The effect of introducing different functional groups, targeting ligands, and photo-active ligands on the anticancer potential of such complexes has been mentioned in detail. The current status and future perspective on curcumin-based metallodrugs for cancer treatment have also been stated.
Collapse
Affiliation(s)
- Rajdeep Mondal
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678557, India
| | - Muthukumar Keerthana
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678557, India
| | - Nanjan Pandurangan
- Department of Chemistry, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu, 641112, India
| | | |
Collapse
|
13
|
Bani-Jaber A, Taha S, Abu-Dahab R, Abdullah S, El-Sabawi D, Al-Masud AA, Aodah AH, Altamimi AA. Preparation and characterizations of chitosan-octanoate nanoparticles for efficient delivery of curcumin into prostate cancer cells. 3 Biotech 2024; 14:315. [PMID: 39611009 PMCID: PMC11602931 DOI: 10.1007/s13205-024-04157-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/08/2024] [Indexed: 11/30/2024] Open
Abstract
The goal of the research was to develop a hydrophobic octanoate salt of chitosan (CS-OA) and use the salt as a nanoparticle platform for the delivery of curcumin (CUR) into prostate cancer cells. The nanoprecipitation technique was used to prepare the nanoparticles, which were measured for particle size and encapsulation efficacy relative to CUR-CS nanoparticles. The cytotoxicity of CUR-OA-CS nanoparticles was evaluated in prostate cancerous cells (PC3 and DU145) in comparison with the corresponding blank nanoparticles and hydroalcoholic CUR solution. PXRD, SEM, and TEM were also used to examine the CUR-CS-OA nanoparticles. The average diameters of the CUR-CS-OA and CUR-CS nanoparticles were 268.90 ± 3.77 nm and 221.90 ± 2.79 nm, respectively, with encapsulation efficiencies of 61.37 ± 1.70% and 60.20 ± 3.17%. PXRD and SEM suggested CUR amorphization in the CS-OA nanoparticles. The void nanoparticles exhibited concentration-dependent antiproliferative action, which was attributed to the cellular uptake of CS. CUR loading into these nanoparticles increased their cytotoxicity even more. The potential of CS-OA nanoparticles as a special delivery system for additional cytotoxic drugs into different malignant cells can be further explored.
Collapse
Affiliation(s)
- Ahmad Bani-Jaber
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Safaa Taha
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Rana Abu-Dahab
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Samaa Abdullah
- Natural and Health Sciences Research Centre, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, 11671 Riyadh, Saudi Arabia
- Present Address: Samaa Abdullah, College of Pharmacy, Amman Arab University, Amman, 11953 Jordan
| | - Dina El-Sabawi
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Alaa A. Al-Masud
- Tissue Banking Section, Research Department, Natural and Health Sciences Research Centre, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, 11671 Riyadh, Saudi Arabia
| | - Alhassan H. Aodah
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), 11442 Riyadh, Saudi Arabia
| | - Abeer A. Altamimi
- Natural and Health Sciences Research Centre, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, 11671 Riyadh, Saudi Arabia
| |
Collapse
|
14
|
Liu L, Yang M, Chen Z. Surface functionalized nanomaterial systems for targeted therapy of endocrine related tumors: a review of recent advancements. Drug Deliv 2024; 31:2390022. [PMID: 39138394 PMCID: PMC11328606 DOI: 10.1080/10717544.2024.2390022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/03/2024] [Accepted: 07/23/2024] [Indexed: 08/15/2024] Open
Abstract
The application of multidisciplinary techniques in the management of endocrine-related cancers is crucial for harnessing the advantages of multiple disciplines and their coordinated efforts in eliminating tumors. Due to the malignant characteristics of cancer cells, they possess the capacity to develop resistance to traditional treatments such as chemotherapy and radiotherapy. Nevertheless, despite diligent endeavors to enhance the prediction of outcomes, the overall survival rate for individuals afflicted with endocrine-related malignancy remains quite miserable. Hence, it is imperative to investigate innovative therapy strategies. The latest advancements in therapeutic tactics have offered novel approaches for the therapy of various endocrine tumors. This paper examines the advancements in nano-drug delivery techniques and the utilization of nanomaterials for precise cancer cures through targeted therapy. This review provides a thorough analysis of the potential of combined drug delivery strategies in the treatment of thyroid cancer, adrenal gland tumors, and pancreatic cancer. The objective of this study is to gain a deeper understanding of current therapeutic approaches, stimulate the development of new drug DDS, and improve the effectiveness of treatment for patients with these diseases. The intracellular uptake of pharmaceuticals into cancer cells can be significantly improved through the implantation of synthetic or natural substances into nanoparticles, resulting in a substantial reduction in the development of endocrine malignancies.
Collapse
Affiliation(s)
- Limei Liu
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Miao Yang
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ziyang Chen
- Department of Gastroenterology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
15
|
Yu F, Wang T, Wang Y, Liu L, Liu T, Yao W, Xiong H, Xiao J, Liu X, Jiang H, Wang X. Peroxynitrite-Responsive Near-Infrared Fluorescent Imaging Guided Synergistic Chemo-Photodynamic Therapy via Biomimetic Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39560990 DOI: 10.1021/acsami.4c07389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Peroxynitrite (ONOO-) plays a crucial role in maintaining cellular redox homeostasis and regulating diffusive processes, cellular transport, and signal transduction. Extensive studies have revealed that increased ONOO- levels during tumor progression are associated with heightened levels of oxidative stress. However, current methods lack noninvasive visualization, immediate reporting, and highly sensitive fluorescence sensing. In light of this, we have designed a biomimetic fluorescent nanoplatform, named Z-C-T@CM, for peroxynitrite-responsive near-infrared fluorescent imaging guided cancer treatment. The nanoplatform comprises tetrakis(4-carboxyphenyl) porphyrin (TCPP) and curcumin (CCM) encapsulated within a zeolitic imidazolate framework-8 (ZIF-8), which is coated with a mouse breast cancer cell membrane for enhanced biocompatibility and targeting, while evading immune clearance. In vitro experimental results demonstrate that the as-prepared nanoplatform exhibits enhanced near-infrared fluorescence emission upon exposure to ONOO-, indicating a significant potential for noninvasive in vivo imaging of ONOO- during tumor progression. Additionally, Z-C-T@CM readily degrades in the tumor microenvironment, releasing TCPP and CCM, enabling a synergistic chemo-photodynamic therapy with near-infrared illumination. Further investigations indicate that Z-C-T@CM efficiently stimulates a tumor immune response and facilitates therapeutic efficiency. Collectively, this work introduces a novel noninvasive strategy for ONOO- detection, shedding new light on the integration of cancer diagnosis and efficient treatment.
Collapse
Affiliation(s)
- Fangfang Yu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Tingya Wang
- Department of Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, PR China
| | - Yihan Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Liu Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Tengfei Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Wenyan Yao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Hongjie Xiong
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Jiang Xiao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|
16
|
Wang K, Wang X, Song L. Unraveling the complex role of neutrophils in lymphoma: From pathogenesis to therapeutic approaches (Review). Mol Clin Oncol 2024; 21:85. [PMID: 39347476 PMCID: PMC11428085 DOI: 10.3892/mco.2024.2783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024] Open
Abstract
Lymphoma, a malignancy of the lymphatic system, which is critical for maintaining the body's immune defenses, has become a focal point in recent research due to its intricate interplay with neutrophils-white blood cells essential for combating infections and inflammation. Unlike prior perceptions associating neutrophils only with tumor support, contemporary studies underscore their intricate and multifaceted involvement in the immune response to lymphoma. Recognizing the nuanced participation of neutrophils in lymphoma is crucial for developing innovative treatments to improve patient outcomes.
Collapse
Affiliation(s)
- Ke Wang
- Department of Cell Engineering, School of Life Sciences and Biotechnology, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Xiao Wang
- Reproduction Medicine Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, Guangdong 524002, P.R. China
| | - Li Song
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
17
|
Venkatesan J, Murugan D, Lakshminarayanan K, Smith AR, Vasanthakumari Thirumalaiswamy H, Kandhasamy H, Zender B, Zheng G, Rangasamy L. Powering up targeted protein degradation through active and passive tumour-targeting strategies: Current and future scopes. Pharmacol Ther 2024; 263:108725. [PMID: 39322067 DOI: 10.1016/j.pharmthera.2024.108725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/31/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
Targeted protein degradation (TPD) has emerged as a prominent and vital strategy for therapeutic intervention of cancers and other diseases. One such approach involves the exploration of proteolysis targeting chimeras (PROTACs) for the selective elimination of disease-causing proteins through the innate ubiquitin-proteasome pathway. Due to the unprecedented achievements of various PROTAC molecules in clinical trials, researchers have moved towards other physiological protein degradation approaches for the targeted degradation of abnormal proteins, including lysosome-targeting chimeras (LYTACs), autophagy-targeting chimeras (AUTACs), autophagosome-tethering compounds (ATTECs), molecular glue degraders, and other derivatives for their precise mode of action. Despite numerous advantages, these molecules face challenges in solubility, permeability, bioavailability, and potential off-target or on-target off-tissue effects. Thus, an urgent need arises to direct the action of these degrader molecules specifically against cancer cells, leaving the proteins of non-cancerous cells intact. Recent advancements in TPD have led to innovative delivery methods that ensure the degraders are delivered in a cell- or tissue-specific manner to achieve cell/tissue-selective degradation of target proteins. Such receptor-specific active delivery or nano-based passive delivery of the PROTACs could be achieved by conjugating them with targeting ligands (antibodies, aptamers, peptides, or small molecule ligands) or nano-based carriers. These techniques help to achieve precise delivery of PROTAC payloads to the target sites. Notably, the successful entry of a Degrader Antibody Conjugate (DAC), ORM-5029, into a phase 1 clinical trial underscores the therapeutic potential of these conjugates, including LYTAC-antibody conjugates (LACs) and aptamer-based targeted protein degraders. Further, using bispecific antibody-based degraders (AbTACs) and delivering the PROTAC pre-fused with E3 ligases provides a solution for cell type-specific protein degradation. Here, we highlighted the current advancements and challenges associated with developing new tumour-specific protein degrader approaches and summarized their potential as single agents or combination therapeutics for cancer.
Collapse
Affiliation(s)
- Janarthanan Venkatesan
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore 632014, India; Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Dhanashree Murugan
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, India; School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Kalaiarasu Lakshminarayanan
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore 632014, India; Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Alexis R Smith
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; University of Florida Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - Harashkumar Vasanthakumari Thirumalaiswamy
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore 632014, India; Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Hariprasath Kandhasamy
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Boutheina Zender
- Department of Biomedical Engineering, Bahçeşehir University, Istanbul 34353, Turkey
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; University of Florida Health Cancer Center, University of Florida, Gainesville, FL 32610, USA.
| | - Loganathan Rangasamy
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, India.
| |
Collapse
|
18
|
Lopes-Nunes J, Oliveira PA, Cruz C. Enhanced targeted liposomal delivery of imiquimod via aptamer functionalization for head and neck cancer therapy. Colloids Surf B Biointerfaces 2024; 243:114121. [PMID: 39094208 DOI: 10.1016/j.colsurfb.2024.114121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
The incidence of head and neck cancers, particularly those associated with Human Papillomavirus (HPV) infections, has been steadily increasing. Conventional therapies exhibit limitations and drawbacks, prompting the exploration of new strategies over the years, with nanomedicine approaches, especially liposomes gaining relevance. Additionally, the functionalization of liposomes with aptamers enables selective delivery to target cells. For instance, AT11 can serve as a targeting moiety for cancer cells due to its high affinity for nucleolin, a protein overexpressed on the cancer cell's surface. In this study, liposomes functionalized with AT11 are proposed as drug delivery systems for imiquimod (IQ), aiming to maximize its potential as an anticancer agent for HPV-related cancers. To this end, firstly liposomes were produced through the ethanol injection method, functionalized with AT11-TEG-Cholesteryl, and characterized using dynamic light scattering. The obtained liposomes presented suitable properties for cancer therapy (with sizes from 120 to 140 nm and low polydispersity PDI < 0.16) and were further evaluated in terms of potential anticancer effects. AT11 IQ-associated liposomes allowed a selective delivery of IQ towards a tongue cancer cell line (UPCI-SCC-154) relative to the non-malignant cell line (Het1A). Specifically, they induced a selective reduction of the cell viability (∼52 % versus ∼113 %; p < 0.0001), proliferation (∼68 % versus ∼102 %; p<0.0001) and increased cell death (∼7-fold increase; p < 0.0001)). Additionally, they decreased the migration (from ∼24 % to ∼8 %; p < 0.0001) and invasion (to 11 %; p = 0.0047) capacities of the cancer cells. In summary, the produced liposomes represent a promising approach to enhance the anticancer potential of IQ in head and neck cancer, particularly in tongue cancer.
Collapse
Affiliation(s)
- Jéssica Lopes-Nunes
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Paula A Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, Vila Real, Portugal
| | - Carla Cruz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal; Departamento de Química, Universidade da Beira Interior, Rua Marquês de Ávila e Bolama, Covilhã 6201-001, Portugal.
| |
Collapse
|
19
|
Deng Z, Qing Q, Huang B. A bibliometric analysis of the application of the PI3K-AKT-mTOR signaling pathway in cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7255-7272. [PMID: 38709265 DOI: 10.1007/s00210-024-03112-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024]
Abstract
PI3K-AKT-mTOR plays as important role in the growth, metabolism, proliferation, and migration of cancer cells, and in apoptosis, autophagy, inflammation, and angiogenesis in cancer. In this study, the aim was to comprehensively review the current research landscape regarding the PI3K-AKT-mTOR pathway in cancer, using bibliometrics to analyze research hotspots, and provide ideas for future research directions. Literature published on the topic between January 2006 and May 2023 was retrieved from the Web of Science core database, and key information and a visualization map were analyzed using CiteSpace and VOSviewer. A total of 5800 articles from 95 countries/regions were collected, including from China and the USA. The number of publications on the topic increased year on year. The major research institution was the University of Texas MD Anderson Cancer Center. Oncotarget and Clinical Cancer Research were the most prevalent journals in the field. Of 26,621 authors, R Kurzrock published the most articles, and J Engelman was cited most frequently. "A549 cell," "first line treatment," "first in human phase I," and "inhibitor" were the keywords of emerging research hotspots. Inhibitors of the PI3K-AKT-mTOR pathway and their use in clinical therapeutic strategies for cancer were the main topics in the field, and future research should also focus on PI3K-AKT-mTOR pathway inhibitors. This study is the first to comprehensively summarize trends and development s in research into the PI3K-AKT-mTOR pathway in cancer. The information that was obtained clarified recent research frontiers and directions, providing references for scholars of cancer management.
Collapse
Affiliation(s)
- Zhengzheng Deng
- School of Public Health, University of South China, Hengyang, 421001, Hunan Province, China
| | - Qiancheng Qing
- School of Public Health, University of South China, Hengyang, 421001, Hunan Province, China
| | - Bo Huang
- School of Public Health, University of South China, Hengyang, 421001, Hunan Province, China.
| |
Collapse
|
20
|
Jalil AT, Abdulhadi MA, Al-Ameer LR, Taher WM, Abdulameer SJ, Abosaooda M, Fadhil AA. Peptide-Based Therapeutics in Cancer Therapy. Mol Biotechnol 2024; 66:2679-2696. [PMID: 37768503 DOI: 10.1007/s12033-023-00873-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023]
Abstract
A monster called cancer is still one of the most challenging human problems and one of the leading causes of death in the world. Different types of treatment methods are used for cancer therapy; however, there are challenges such as high cost and harmful side effects in using these methods. Recent years have witnessed a surge in the development of therapeutic peptides for a wide range of diseases, notably cancer. Peptides are preferred over antibiotics, radiation therapy, and chemotherapy in the treatment of cancer due to a number of aspects, including flexibility, easy modification, low immunogenicity, and inexpensive cost of production. The use of therapeutic peptides in cancer treatment is a novel and intriguing strategy. These peptides provide excellent prospects for targeted drug delivery because of their high selectivity, specificity, small dimensions, good biocompatibility, and simplicity of modification. Target specificity and minimal toxicity are benefits of therapeutic peptides. Additionally, peptides can be used to design antigens or adjuvants for vaccine development. Here, types of therapeutic peptides for cancer therapy will be discussed, such as peptide-based cancer vaccines and tumor-targeting peptides (TTP) and cell-penetrating peptides (CPP).
Collapse
Affiliation(s)
- Abduladheem Turki Jalil
- Department of Medical Laboratories Techniques, Al-Mustaqbal University College, Hilla, Babylon, 51001, Iraq.
| | - Mohanad Ali Abdulhadi
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | - Lubna R Al-Ameer
- College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
| | | | - Sada Jasim Abdulameer
- Biology Department, College of Education for Pure Science, Wasit University, Kut, Wasit, Iraq
| | | | - Ali A Fadhil
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
21
|
Thakur CK, Karthikeyan C, Ashby CR, Neupane R, Singh V, Babu RJ, Narayana Moorthy NSH, Tiwari AK. Ligand-conjugated multiwalled carbon nanotubes for cancer targeted drug delivery. Front Pharmacol 2024; 15:1417399. [PMID: 39119607 PMCID: PMC11306048 DOI: 10.3389/fphar.2024.1417399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/24/2024] [Indexed: 08/10/2024] Open
Abstract
Multiwalled carbon nanotubes (MWCNTs) are at the forefront of nanotechnology-based advancements in cancer therapy, particularly in the field of targeted drug delivery. The nanotubes are characterized by their concentric graphene layers, which give them outstanding structural strength. They can deliver substantial doses of therapeutic agents, potentially reducing treatment frequency and improving patient compliance. MWCNTs' diminutive size and modifiable surface enable them to have a high drug loading capacity and penetrate biological barriers. As a result of the extensive research on these nanomaterials, they have been studied extensively as synthetic and chemically functionalized molecules, which can be combined with various ligands (such as folic acid, antibodies, peptides, mannose, galactose, polymers) and linkers, and to deliver anticancer drugs, including but not limited to paclitaxel, docetaxel, cisplatin, doxorubicin, tamoxifen, methotrexate, quercetin and others, to cancer cells. This functionalization facilitates selective targeting of cancer cells, as these ligands bind to specific receptors overexpressed in tumor cells. By sparing non-cancerous cells and delivering the therapeutic payload precisely to cancer cells, this therapeutic payload delivery ability reduces chemotherapy systemic toxicity. There is great potential for MWCNTs to be used as targeted delivery systems for drugs. In this review, we discuss techniques for functionalizing and conjugating MWCNTs to drugs using natural and biomacromolecular linkers, which can bind to the cancer cells' receptors/biomolecules. Using MWCNTs to administer cancer drugs is a transformative approach to cancer treatment that combines nanotechnology and pharmacotherapy. It is an exciting and rich field of research to explore and optimize MWCNTs for drug delivery purposes, which could result in significant benefits for cancer patients.
Collapse
Affiliation(s)
- Chanchal Kiran Thakur
- Cancept Therapeutics Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Lalpur, India
- Chhattrapati Shivaji Institute of Pharmacy, Durg, Chhattisgarh, India
| | - Chandrabose Karthikeyan
- Cancept Therapeutics Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Lalpur, India
| | - Charles R. Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy, St. John’s University, Queens, NY, United States
| | - Rabin Neupane
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, United States
| | - Vishal Singh
- Department of Nutrition, State College, Pennsylvania State University, University Park, PA, United States
| | - R. Jayachandra Babu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| | - N. S. Hari Narayana Moorthy
- Cancept Therapeutics Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Lalpur, India
| | - Amit K. Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
22
|
Zebret S, Hadiji M, Romano-deGea J, Bornet A, Ortiz D, Fadaei-Tirani F, Stathopoulos C, Nowak-Sliwinska P, Munier FL, Dyson PJ. New melphalan derivatives for the treatment of retinoblastoma in combination with thermotherapy. RSC Med Chem 2024; 15:2300-2304. [PMID: 39026655 PMCID: PMC11253858 DOI: 10.1039/d4md00211c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/19/2024] [Indexed: 07/20/2024] Open
Abstract
Of the different modalities used to treat retinoblastoma, a chemothermotherapeutic regimen combining carboplatin and thermotherapy (also termed focal therapy), and the application of melphalan as a monotherapy, are particularly successful. Some studies indicate that melphalan shows potential when applied in combination with focal therapy, and yet is not applied in this combination. Here we describe a series of synthetically modified melphalan derivatives that display enhanced cytotoxicity relative to melphalan itself, with some displaying further enhancements in cytotoxicity when applied in combination with heat (used as a model for thermotherapy). The synthetic approach, which involves modifying melphalan with perfluorous chains of varying lengths via an ester linker, could lead to a more effective treatment option for retinoblastoma with reduced side-effects, which is a key limitation of melphalan.
Collapse
Affiliation(s)
- Soumaila Zebret
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Mouna Hadiji
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Jan Romano-deGea
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Aurélien Bornet
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Daniel Ortiz
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Farzaneh Fadaei-Tirani
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Christina Stathopoulos
- Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne 1004 Lausanne Switzerland
| | - Patrycja Nowak-Sliwinska
- School of Pharmaceutical Sciences, University of Geneva 1211 Geneva Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva 1211 Geneva Switzerland
| | - Francis L Munier
- Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne 1004 Lausanne Switzerland
| | - Paul J Dyson
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
23
|
Tang Q, Xing X, Huang H, Yang J, Li M, Xu X, Gao X, Liang C, Tian W, Liao L. Eliminating senescent cells by white adipose tissue-targeted senotherapy alleviates age-related hepatic steatosis through decreasing lipolysis. GeroScience 2024; 46:3149-3167. [PMID: 38217637 PMCID: PMC11009221 DOI: 10.1007/s11357-024-01068-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/28/2023] [Indexed: 01/15/2024] Open
Abstract
Cellular senescence is an important risk factor in the development of hepatic steatosis. Senolytics present therapeutic effects on age-related hepatic steatosis without eliminating senescent hepatocytes directly. Therefore, it highlights the need to find senolytics' therapeutic targets. Dysfunction of adipose tissue underlies the critical pathogenesis of lipotoxicity in the liver. However, the correlation between adipose tissue and hepatic steatosis during aging and its underlying molecular mechanism remains poorly understood. We explored the correlation between white adipose tissue (WAT) and the liver during aging and evaluated the effect of lipolysis of aged WAT on hepatic steatosis and hepatocyte senescence. We screened out the ideal senolytics for WAT and developed a WAT-targeted delivery system for senotherapy. We assessed senescence and lipolysis of WAT and hepatic lipid accumulation after treatment. The results displayed that aging accelerated cellular senescence and facilitated lipolysis of WAT. Free fatty acids (FFAs) generated by WAT during aging enhanced hepatic steatosis and induced hepatocyte senescence. The combined usage of dasatinib and quercetin was screened out as the ideal senolytics to eliminate senescent cells in WAT. To minimize non-specific distribution and enhance the effectiveness of senolytics, liposomes decorated with WAT affinity peptide P3 were constructed for senotherapy in vivo. In vivo study, WAT-targeted treatment eliminated senescent cells in WAT and reduced lipolysis, resulting in the alleviation of hepatic lipid accumulation and hepatocyte senescence when compared to non-targeted treatment, providing a novel tissue-targeted, effective and safe senotherapy for age-related hepatic steatosis.
Collapse
Affiliation(s)
- Qi Tang
- National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, West China School of Public Health & West China Fourth Hospital, Sichuan University, No.14, 3Rd Section Of Ren Min Nan Rd, Chengdu, 610041, Sichuan, China
| | - Xiaotao Xing
- National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, West China School of Public Health & West China Fourth Hospital, Sichuan University, No.14, 3Rd Section Of Ren Min Nan Rd, Chengdu, 610041, Sichuan, China
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Laboratory Center of Stomatology, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Haisen Huang
- National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, West China School of Public Health & West China Fourth Hospital, Sichuan University, No.14, 3Rd Section Of Ren Min Nan Rd, Chengdu, 610041, Sichuan, China
| | - Jian Yang
- National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, West China School of Public Health & West China Fourth Hospital, Sichuan University, No.14, 3Rd Section Of Ren Min Nan Rd, Chengdu, 610041, Sichuan, China
| | - Maojiao Li
- National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, West China School of Public Health & West China Fourth Hospital, Sichuan University, No.14, 3Rd Section Of Ren Min Nan Rd, Chengdu, 610041, Sichuan, China
| | - Xun Xu
- National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, West China School of Public Health & West China Fourth Hospital, Sichuan University, No.14, 3Rd Section Of Ren Min Nan Rd, Chengdu, 610041, Sichuan, China
| | - Xin Gao
- National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, West China School of Public Health & West China Fourth Hospital, Sichuan University, No.14, 3Rd Section Of Ren Min Nan Rd, Chengdu, 610041, Sichuan, China
| | - Cheng Liang
- National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, West China School of Public Health & West China Fourth Hospital, Sichuan University, No.14, 3Rd Section Of Ren Min Nan Rd, Chengdu, 610041, Sichuan, China
| | - Weidong Tian
- National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, West China School of Public Health & West China Fourth Hospital, Sichuan University, No.14, 3Rd Section Of Ren Min Nan Rd, Chengdu, 610041, Sichuan, China.
| | - Li Liao
- National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, West China School of Public Health & West China Fourth Hospital, Sichuan University, No.14, 3Rd Section Of Ren Min Nan Rd, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
24
|
Alkhalidi HM, Alahmadi AA, Rizg WY, Yahya EB, H P S AK, Mushtaq RY, Badr MY, Safhi AY, Hosny KM. Revolutionizing Cancer Treatment: Biopolymer-Based Aerogels as Smart Platforms for Targeted Drug Delivery. Macromol Rapid Commun 2024; 45:e2300687. [PMID: 38430068 DOI: 10.1002/marc.202300687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/15/2024] [Indexed: 03/03/2024]
Abstract
Cancer stands as a leading cause of global mortality, with chemotherapy being a pivotal treatment approach, either alone or in conjunction with other therapies. The primary goal of these therapies is to inhibit the growth of cancer cells specifically, while minimizing harm to healthy dividing cells. Conventional treatments, often causing patient discomfort due to side effects, have led researchers to explore innovative, targeted cancer cell therapies. Thus, biopolymer-based aerogels emerge as innovative platforms, showcasing unique properties that respond intelligently to diverse stimuli. This responsiveness enables precise control over the release of anticancer drugs, enhancing therapeutic outcomes. The significance of these aerogels lies in their ability to offer targeted drug delivery with increased efficacy, biocompatibility, and a high drug payload. In this comprehensive review, the author discuss the role of biopolymer-based aerogels as an emerging functionalized platforms in anticancer drug delivery. The review addresses the unique properties of biopolymer-based aerogels showing their smart behavior in responding to different stimuli including temperature, pH, magnetic and redox potential to control anticancer drug release. Finally, the review discusses the application of different biopolymer-based aerogel in delivering different anticancer drugs and also discusses the potential of these platforms in gene delivery applications.
Collapse
Affiliation(s)
- Hala M Alkhalidi
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Amerh Aiad Alahmadi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Waleed Y Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Innovation in Personalized Medicine, 3D Bioprinting Unit, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Esam Bashir Yahya
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800, Malaysia
- Green Biopolymer, Coatings and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800, Malaysia
| | - Abdul Khalil H P S
- Green Biopolymer, Coatings and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800, Malaysia
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800, Malaysia
| | - Rayan Y Mushtaq
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Moutaz Y Badr
- Department of Pharmaceutical Sciences, College of Pharmacy, Umm Al-Qura University, Makkah, 24381, Saudi Arabia
| | - Awaji Y Safhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Khaled M Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
25
|
Nica I, Volovat C, Boboc D, Popa O, Ochiuz L, Vasincu D, Ghizdovat V, Agop M, Volovat CC, Lupascu Ursulescu C, Lungulescu CV, Volovat SR. A Holographic-Type Model in the Description of Polymer-Drug Delivery Processes. Pharmaceuticals (Basel) 2024; 17:541. [PMID: 38675501 PMCID: PMC11053585 DOI: 10.3390/ph17040541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
A unitary model of drug release dynamics is proposed, assuming that the polymer-drug system can be assimilated into a multifractal mathematical object. Then, we made a description of drug release dynamics that implies, via Scale Relativity Theory, the functionality of continuous and undifferentiable curves (fractal or multifractal curves), possibly leading to holographic-like behaviors. At such a conjuncture, the Schrödinger and Madelung multifractal scenarios become compatible: in the Schrödinger multifractal scenario, various modes of drug release can be "mimicked" (via period doubling, damped oscillations, modulated and "chaotic" regimes), while the Madelung multifractal scenario involves multifractal diffusion laws (Fickian and non-Fickian diffusions). In conclusion, we propose a unitary model for describing release dynamics in polymer-drug systems. In the model proposed, the polymer-drug dynamics can be described by employing the Scale Relativity Theory in the monofractal case or also in the multifractal one.
Collapse
Affiliation(s)
- Irina Nica
- Department of Odontology-Periodontology, Fixed Prosthesis, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Constantin Volovat
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str, 700115 Iasi, Romania;
| | - Diana Boboc
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str, 700115 Iasi, Romania;
| | - Ovidiu Popa
- Department of Emergency Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Lacramioara Ochiuz
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Decebal Vasincu
- Department of Biophysics, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Vlad Ghizdovat
- Department of Biophysics and Medical Physics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Maricel Agop
- Department of Physics, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania;
- Romanian Scientists Academy, 050094 Bucharest, Romania
| | - Cristian Constantin Volovat
- Department of Radiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.C.V.); (C.L.U.)
| | - Corina Lupascu Ursulescu
- Department of Radiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.C.V.); (C.L.U.)
| | | | - Simona Ruxandra Volovat
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str, 700115 Iasi, Romania;
| |
Collapse
|
26
|
Romanovska A, Schmidt M, Brandt V, Tophoven J, Tiller JC. Controlling the function of bioactive worm micelles by enzyme-cleavable non-covalent inter-assembly cross-linking. J Control Release 2024; 368:15-23. [PMID: 38346504 DOI: 10.1016/j.jconrel.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Drugs that form self-assembled supramolecular structures to be most-active is a promising way of creating new highly specific and active pharmaceuticals. Controlling the activity of bioactive supramolecular structures such as drug-loaded micelles is possible by both core/shell and inter-assembly cross-linking. However, if the flexibility of the assembly is mandatory for the activity cross-linking is not feasible. Thus, such structures cannot be manipulated in their activity. The present study demonstrates a novel concept to control the activity of not drug-releasing, non-cross-linked bioactive superstructures. This is achieved by formation of nanostructured nanoparticles derived by non-covalent inter-assembly cross-linking of the superstructures. This is shown on the example of amphiphilic diblock-copolymers conjugated with the antibiotic ciprofloxacin (CIP). These polymer-antibiotic conjugates form worm micelles, which greatly activate the conjugated antibiotic without releasing it. Non-covalent inter-assembly cross-linking of these CIP-worm-micelles with amphiphilic triblock copolymers terminated with lipase-cleavable esters leads to nanostructured nanoparticles that resemble cross-linked worm micelles and show an up to 135-fold lower activity than the free worm micelles. The activity of the worm-micelles can be fully recovered by cleaving the end groups of the polymeric cross-linker with lipase.
Collapse
Affiliation(s)
- Alina Romanovska
- Biomaterials and Polymer Science, Department of Bio- and Chemical Engineering, TU Dortmund, Emil-Figge-Straße 66, 44227 Dortmund, Germany
| | - Martin Schmidt
- Biomaterials and Polymer Science, Department of Bio- and Chemical Engineering, TU Dortmund, Emil-Figge-Straße 66, 44227 Dortmund, Germany
| | - Volker Brandt
- Biomaterials and Polymer Science, Department of Bio- and Chemical Engineering, TU Dortmund, Emil-Figge-Straße 66, 44227 Dortmund, Germany
| | - Jonas Tophoven
- Biomaterials and Polymer Science, Department of Bio- and Chemical Engineering, TU Dortmund, Emil-Figge-Straße 66, 44227 Dortmund, Germany
| | - Joerg C Tiller
- Biomaterials and Polymer Science, Department of Bio- and Chemical Engineering, TU Dortmund, Emil-Figge-Straße 66, 44227 Dortmund, Germany.
| |
Collapse
|
27
|
Jeong EJ, Kim C, Lee YC, Rhim T, Lee SK, Lee KY. Tumor-specific cytolysis by peptide-conjugated echogenic polymer micelles. Biomed Pharmacother 2024; 172:116272. [PMID: 38354570 DOI: 10.1016/j.biopha.2024.116272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/16/2024] Open
Abstract
Interest in multifunctional polymer nanoparticles for targeted delivery of anti-cancer drugs has grown significantly in recent years. In this study, tumor-targeting echogenic polymer micelles were prepared from poly(ethylene glycol) methyl ether-alkyl carbonate (mPEG-AC) derivatives, and their potential in cancer therapy was assessed. Various mPEG derivatives with carbonate linkages were synthesized via an alkyl halide reaction between mPEG and alkyl chloroformate. Micelle formation using polymer amphiphiles in aqueous media and the subsequent carbon dioxide (CO2) gas generation from the micelles was confirmed. Their ability to target neuroblastoma was substantially enhanced by incorporating the rabies virus glycoprotein (RVG) peptide. RVG-modified gas-generating micelles significantly inhibited tumor growth in a tumor-bearing mouse model owing to CO2 gas generation within tumor cells and resultant cytolytic effects, showing minimal side effects. The development of multifunctional polymer micelles may offer a promising therapeutic approach for various diseases, including cancer.
Collapse
Affiliation(s)
- Eun Ju Jeong
- Department of Bioengineering, Hanyang University, Seoul 04763, the Republic of Korea
| | - Choonggu Kim
- Department of Bioengineering, Hanyang University, Seoul 04763, the Republic of Korea
| | - Yun-Chan Lee
- Department of Bioengineering, Hanyang University, Seoul 04763, the Republic of Korea
| | - Taiyoun Rhim
- Department of Bioengineering, Hanyang University, Seoul 04763, the Republic of Korea; Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul 04763, the Republic of Korea.
| | - Sang-Kyung Lee
- Department of Bioengineering, Hanyang University, Seoul 04763, the Republic of Korea; Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul 04763, the Republic of Korea.
| | - Kuen Yong Lee
- Department of Bioengineering, Hanyang University, Seoul 04763, the Republic of Korea; Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul 04763, the Republic of Korea.
| |
Collapse
|
28
|
Liu B, Liu X, Xing H, Ma H, Lv Z, Zheng Y, Xing W. A new, potential and safe neoadjuvant therapy strategy in epidermal growth factor receptor mutation-positive resectable non-small-cell lung cancer-targeted therapy: a retrospective study. Front Oncol 2024; 14:1349172. [PMID: 38414743 PMCID: PMC10897038 DOI: 10.3389/fonc.2024.1349172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/29/2024] [Indexed: 02/29/2024] Open
Abstract
Background Studies of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in resectable non-small-cell lung cancer (NSCLC) have been conducted. The purpose of our study was to evaluate the benefits of osimertinib as neoadjuvant therapy for resectable EGFR-mutated NSCLC. Method This retrospective study evaluated patients with EGFR mutations in exon 19 or 21 who received targeted therapy with osimertinib (80 mg per day) before surgery between January 2019 and October 2023 in Henan Cancer Hospital. Results Twenty patients were evaluated, all of whom underwent surgery. The rate of R0 resection was 100% (20/20). The objective response rate was 80% (16/20), and the disease control rate was 95% (19/20). Postoperative pathological analysis showed a 25% (5/20) major pathological response rate and 15% (3/20) pathological complete response rate. In total, 25% (5/20) developed adverse events (AEs), and the rate of grades 3-4 AEs was 10% (2/20). One patient experienced a grade 3 skin rash, and 1 patient experienced grade 3 diarrhea. Conclusion Osimertinib as neoadjuvant therapy for resectable EGFR-mutated NSCLC is safe and well tolerated. Osimertinib has the potential to improve the radical resection rate and prognosis.
Collapse
Affiliation(s)
- Baoxing Liu
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Xingyu Liu
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Huifang Xing
- Department of Geriatric Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haibo Ma
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Zhenyu Lv
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yan Zheng
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Wenqun Xing
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
29
|
Abdellatif AAH, Alshubrumi AS, Younis MA. Targeted Nanoparticles: the Smart Way for the Treatment of Colorectal Cancer. AAPS PharmSciTech 2024; 25:23. [PMID: 38267656 DOI: 10.1208/s12249-024-02734-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
Colorectal cancer (CRC) is a widespread cancer that starts in the digestive tract. It is the third most common cause of cancer deaths around the world. The World Health Organization (WHO) estimates an expected death toll of over 1 million cases annually. The limited therapeutic options as well as the drawbacks of the existing therapies necessitate the development of non-classic treatment approaches. Nanotechnology has led the evolution of valuable drug delivery systems thanks to their ability to control drug release and precisely target a wide variety of cancers. This has also been extended to the treatment of CRC. Herein, we shed light on the pertinent research that has been performed on the potential applications of nanoparticles in the treatment of CRC. The various types of nanoparticles in addition to their properties, applications, targeting approaches, merits, and demerits are discussed. Furthermore, innovative therapies for CRC, including gene therapies and immunotherapies, are also highlighted. Eventually, the research gaps, the clinical potential of such delivery systems, and a future outlook on their development are inspired.
Collapse
Affiliation(s)
- Ahmed A H Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, 51452, Buraydah, Al Qassim, Saudi Arabia.
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt.
| | | | - Mahmoud A Younis
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.
| |
Collapse
|
30
|
Yan Z, Liu Z, Zhang H, Guan X, Xu H, Zhang J, Zhao Q, Wang S. Current trends in gas-synergized phototherapy for improved antitumor theranostics. Acta Biomater 2024; 174:1-25. [PMID: 38092250 DOI: 10.1016/j.actbio.2023.12.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/14/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Phototherapy, such as photothermal therapy (PTT) and photodynamic therapy (PDT), has been considered an elegant solution to eradicate tumors due to its minimal invasiveness and low systemic toxicity. Nevertheless, it is still challenging for phototherapy to achieve ideal outcomes and clinical translation due to its inherent drawbacks. Owing to the unique biological functions, diverse gases have attracted growing attention in combining with phototherapy to achieve super-additive therapeutic effects. Specifically, gases such as nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) have been proven to kill tumor cells by inducing mitochondrial damage in synergy with phototherapy. Additionally, several gases not only enhance the thermal damage in PTT and the reactive oxygen species (ROS) production in PDT but also improve the tumor accumulation of photoactive agents. The inflammatory responses triggered by hyperthermia in PTT are also suppressed by the combination of gases. Herein, we comprehensively review the latest studies on gas-synergized phototherapy for cancer therapy, including (1) synergistic mechanisms of combining gases with phototherapy; (2) design of nanoplatforms for gas-synergized phototherapy; (3) multimodal therapy based on gas-synergized phototherapy; (4) imaging-guided gas-synergized phototherapy. Finally, the current challenges and future opportunities of gas-synergized phototherapy for tumor treatment are discussed. STATEMENT OF SIGNIFICANCE: 1. The novelty and significance of the work with respect to the existing literature. (1) Strategies to design nanoplatforms for gas-synergized anti-tumor phototherapy have been summarized for the first time. Meanwhile, the integration of various imaging technologies and therapy modalities which endow these nanoplatforms with advanced theranostic capabilities has been summarized. (2) The mechanisms by which gases synergize with phototherapy to eradicate tumors are innovatively and comprehensively summarized. 2. The scientific impact and interest. This review elaborates current trends in gas-synergized anti-tumor phototherapy, with special emphases on synergistic anti-tumor mechanisms and rational design of therapeutic nanoplatforms to achieve this synergistic therapy. It aims to provide valuable guidance for researchers in this field.
Collapse
Affiliation(s)
- Ziwei Yan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Zhu Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Haotian Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Xinyao Guan
- Experimental Teaching Center, Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Hongwei Xu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Jinghai Zhang
- Department of Biomedical Engineering, School of Medical Devices, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| |
Collapse
|
31
|
Ouyang C, Zhang W, Nie J, Yu L, Liu J, Ren L, Chen G. Nanoparticles with Active Targeting Ability and Acid Responsiveness for an Enhanced Antitumor Effect of Docetaxel. Biomacromolecules 2024; 25:213-221. [PMID: 38116982 DOI: 10.1021/acs.biomac.3c00922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Docetaxel (DOC) is commonly used in cancer treatment, especially for breast cancer. However, there are severe side effects in clinical application. In order to deliver docetaxel more effectively, a novel, active targeting acid-responsive polymer called cRGD-PAE-PEG-DSPE was developed. The polymer structure incorporated poly(ethylene glycol) (PEG) as the hydrophilic segment, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE) as the hydrophobic segment, and poly(β-amino ester) (PAE) as the acid-responsive group, which was grafted onto the PEG. Furthermore, c(RGDyC) was grafted onto PAE to confer active targeting capability. Through self-assembly, docetaxel was encapsulated in RAED@DOC. Through in vitro experiments, it was confirmed that RAED@DOC had good serum stability and acid responsiveness, as well as enhanced uptake by MDA-MB-231 cells. Additionally, the antitumor efficiency in vivo and histopathological analysis showed that RAED@DOC exhibited higher antitumor activity and lower systemic toxicity in comparison to free docetaxel. These results suggested that RAED@DOC had considerable potential clinical use.
Collapse
Affiliation(s)
| | - Wei Zhang
- Nanjing Tech University, Nanjing 211816, China
| | - Junfang Nie
- Nanjing Tech University, Nanjing 211816, China
| | - Luting Yu
- Nanjing Tech University, Nanjing 211816, China
| | - Jia Liu
- Nanjing Tech University, Nanjing 211816, China
| | - Lili Ren
- Nanjing Tech University, Nanjing 211816, China
| | | |
Collapse
|
32
|
Wu W, Li Y, Wu X, Liang J, You W, He X, Feng Q, Li T, Jia X. Carnosic acid nanocluster-based framework combined with PD-1 inhibitors impeded tumorigenesis and enhanced immunotherapy in hepatocellular carcinoma. Funct Integr Genomics 2024; 24:5. [PMID: 38182693 DOI: 10.1007/s10142-024-01286-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/15/2023] [Accepted: 01/01/2024] [Indexed: 01/07/2024]
Abstract
Clinically, the immune checkpoint inhibitor anti-PD-1 antibody has shown a certain effect in the treatment of hepatocellular carcinoma (HCC), which is limited to a small number of patients with HCC. This study aims to reveal whether carnosic acid nanocluster-based framework (CA-NBF) has a sensitization effect on anti-PD-1 antibody in the treatment of HCC at the cellular and animal levels. MHCC97H cells were treated with CA-NBF, anti-PD-1 and their combination. The effects of CA-NBF and anti-PD-1 on cell proliferation, cell cycle, apoptosis, invasion, and migration were evaluated by MTT assay, flow cytometry, and scratch test. The effects of CA-NBF and anti-PD-1 on Wnt/β-catenin signaling pathway in MHCC97H cells were detected. A BALB/C nude mouse model of hepatocellular carcinoma was established, and the tumor growth was observed at different time points. The expression of cytotoxic T lymphocyte and helper T lymphocyte markers CD8 and CD4 in tumor tissues was detected by immunohistochemistry. Western blotting was used to detect the Wnt/β-catenin signaling pathway proteins (Wnt-3a, β-catenin, and GSK-3β) level in tumor tissues after CA-NBF and anti-PD-1 treatment. CA-NBF activity was significantly higher than CA, which could prominently reduce the proliferation, migration and invasion of MHCC97H cells and enhance apoptosis by inactivating Wnt/β-catenin signaling pathway. CA-NBF combined with anti-PD-1 antibody further enhanced cell proliferation, migration, invasion and pro-apoptosis but had no significant effect on Wnt/β-catenin signaling pathway. CA-NBF in vivo improved the tumor response to PD1 immune checkpoint blockade in HCC, manifested by reducing tumor size and weight, promoting CD4 and CD8 expression. CA-NBF combined with anti-PD-1 have stronger immunomodulatory and anticancer effects without increasing biological toxicity.
Collapse
Affiliation(s)
- Wenhua Wu
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xi'wu Road,, Xi'an, 710004, Shaanxi, China.
| | - Yaping Li
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xi'wu Road,, Xi'an, 710004, Shaanxi, China
| | - Xiaokang Wu
- Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Junrong Liang
- Department of Gastroenterology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Weiming You
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
- Department of Tumor and Immunology in Precision Medical Institute, Western China Science and Technology Innovation Port, Xi'an, 710004, Shaanxi, China
| | - Xinyuan He
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xi'wu Road,, Xi'an, 710004, Shaanxi, China
| | - Qinhui Feng
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Ting Li
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xi'wu Road,, Xi'an, 710004, Shaanxi, China
| | - Xiaoli Jia
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xi'wu Road,, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
33
|
Pandey A, Singh BK, Gayathiri E, Balasubramani S, Duraisamy SM, Kothari A, Patel DK. Nanoparticles in Biomedical and Clinical Research: A Current Perspective and Future Implications. NANOMATERIALS FOR BIOMEDICAL AND BIOENGINEERING APPLICATIONS 2024:415-457. [DOI: 10.1007/978-981-97-0221-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
34
|
Katolkar UN, Surana SJ. Exploring the Potential Role of Phytopharmaceuticals in Alleviating Toxicities of Chemotherapeutic Agents. Curr Protein Pept Sci 2024; 25:753-779. [PMID: 38919003 DOI: 10.2174/0113892037307940240606075208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Chemotherapy is the mainstay of cancer treatment, bringing patients optimism about recurrence and survival. However, the clinical effectiveness of chemotherapeutic drugs is frequently jeopardized by their intrinsic toxicity, resulting in side effects affecting the quality of life of cancer patients. This analysis explores the ethnopharmacological impact of phytopharmaceuticals, highlighting their traditional use in many cultures. The present study, which takes its cues from indigenous knowledge, aims to close the knowledge gap between traditional medicine and modern medicine in reducing the toxicities of chemotherapy treatments. AIM The present in-depth study aims to highlight the current research and upcoming developments in phytopharmaceuticals for reducing the toxicity of chemotherapeutic drugs. Further, we address the mechanisms through which phytopharmaceuticals may reduce chemotherapy-induced side effects that include nausea, vomiting, myelosuppression, nephropathy, neuropathy, and cardiotoxicity using data from a variety of preclinical and clinical investigations. MATERIALS AND METHODS The literature search was carried out by employing search engines such as PubMed and Google Scholar with keywords such as cancer, chemotherapy, CNS toxicity, hematopoietic toxicity, renal toxicity, GI toxicity, CNS toxicity, and phytopharmaceuticals. RESULTS Bioactive chemicals found in plants, such as fruits, vegetables, herbs, and spices, are being studied for their capacity to improve the safety and acceptability of chemotherapy regimens. The current review also dives into the investigation of phytopharmaceuticals as adjuvant medicines in cancer treatment, which is a viable path for addressing the pressing need to lessen chemotherapy-induced toxicities. CONCLUSION The present review revealed that the potential of phytopharmaceuticals in alleviating chemotherapeutic drug toxicities would pave the way for better cancer treatment and patient outcomes, harmonizing with the larger trend towards personalized and holistic approaches to chemotherapy.
Collapse
Affiliation(s)
- Ujwal N Katolkar
- Department of Pharmacology, R.C. Patel Institute of Pharmaceutical Education and Research, Karwand Naka, Shirpur Dist. Dhule Maharashtra 425405, India
| | - Sanjay J Surana
- Department of Pharmacology, R.C. Patel Institute of Pharmaceutical Education and Research, Karwand Naka, Shirpur Dist. Dhule Maharashtra 425405, India
| |
Collapse
|
35
|
Thomas BJ, Guldenpfennig C, Guan Y, Winkler C, Beecher M, Beedy M, Berendzen AF, Ma L, Daniels MA, Burke DH, Porciani D. Targeting lung cancer with clinically relevant EGFR mutations using anti-EGFR RNA aptamer. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102046. [PMID: 37869258 PMCID: PMC10589377 DOI: 10.1016/j.omtn.2023.102046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/29/2023] [Indexed: 10/24/2023]
Abstract
A significant fraction of non-small cell lung cancer (NSCLC) cases are due to oncogenic mutations in the tyrosine kinase domain of the epidermal growth factor receptor (EGFR). Anti-EGFR antibodies have shown limited clinical benefit for NSCLC, whereas tyrosine kinase inhibitors (TKIs) are effective, but resistance ultimately occurs. The current landscape suggests that alternative ligands that target wild-type and mutant EGFRs are desirable for targeted therapy or drug delivery development. Here we evaluate NSCLC targeting using an anti-EGFR aptamer (MinE07). We demonstrate that interaction sites of MinE07 overlap with clinically relevant antibodies targeting extracellular domain III and that MinE07 retains binding to EGFR harboring the most common oncogenic and resistance mutations. When MinE07 was linked to an anti-c-Met aptamer, the EGFR/c-Met bispecific aptamer (bsApt) showed superior labeling of NSCLC cells in vitro relative to monospecific aptamers. However, dual targeting in vivo did not improve the recognition of NSCLC xenografts compared to MinE07. Interestingly, biodistribution of Cy7-labeled bsApt differed significantly from Alexa Fluor 750-labeled bsApt. Overall, our findings demonstrate that aptamer formulations containing MinE07 can target ectopic lung cancer without additional stabilization or PEGylation and highlights the potential of MinE07 as a targeting reagent for the recognition of NSCLC harboring clinically relevant EGFRs.
Collapse
Affiliation(s)
- Brian J. Thomas
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri School of Medicine, Columbia, MO 65211, USA
| | - Caitlyn Guldenpfennig
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri School of Medicine, Columbia, MO 65211, USA
| | - Yue Guan
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri School of Medicine, Columbia, MO 65211, USA
| | - Calvin Winkler
- Department of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Margaret Beecher
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Michaela Beedy
- Department of Biochemistry, Westminster College, Fulton, MO 65251, USA
| | - Ashley F. Berendzen
- Research Division/Biomolecular Imaging Center, Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
| | - Lixin Ma
- Research Division/Biomolecular Imaging Center, Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
- Department of Radiology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Mark A. Daniels
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri School of Medicine, Columbia, MO 65211, USA
| | - Donald H. Burke
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri School of Medicine, Columbia, MO 65211, USA
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - David Porciani
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri School of Medicine, Columbia, MO 65211, USA
| |
Collapse
|
36
|
Qin M, Xia H, Xu W, Chen B, Wang Y. The spatiotemporal journey of nanomedicines in solid tumors on their therapeutic efficacy. Adv Drug Deliv Rev 2023; 203:115137. [PMID: 37949414 DOI: 10.1016/j.addr.2023.115137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/19/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
The rapid development of nanomedicines is revolutionizing the landscape of cancer treatment, while effectively delivering them into solid tumors remains a formidable challenge. Currently, there is a huge disconnect on therapeutic response between regulatory approved nanomedicines and laboratory reported nanoparticles. The discrepancy is mainly resulted from the failure of using the classic overall pharmacokinetics behaviors of nanomedicines in tumors to predict the antitumor efficacy. Increasing evidence has revealed that the therapeutic efficacy predominantly relies on the intratumoral spatiotemporal distribution of nanomedicines. This review focuses on the spatiotemporal distribution of systemically administered chemotherapeutic nanomedicines in solid tumor. Firstly, the intratumoral biological barriers that regulate the spatiotemporal distribution of nanomedicines are described in detail. Next, the influences on antitumor efficacy caused by the spatial distribution and temporal drug release of nanomedicines are emphatically analyzed. Then, current methodologies for evaluating the spatiotemporal distribution of nanomedicines are summarized. Finally, the advanced strategies to positively modulate the spatiotemporal distribution of nanomedicines for an optimal tumor therapy are comprehensively reviewed.
Collapse
Affiliation(s)
- Mengmeng Qin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Heming Xia
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Wenhao Xu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Binlong Chen
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| | - Yiguang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China; Chemical Biology Center, Peking University, Beijing, China.
| |
Collapse
|
37
|
Saiding Q, Zhang Z, Chen S, Xiao F, Chen Y, Li Y, Zhen X, Khan MM, Chen W, Koo S, Kong N, Tao W. Nano-bio interactions in mRNA nanomedicine: Challenges and opportunities for targeted mRNA delivery. Adv Drug Deliv Rev 2023; 203:115116. [PMID: 37871748 DOI: 10.1016/j.addr.2023.115116] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
Upon entering the biological milieu, nanomedicines swiftly interact with the surrounding tissue fluid, subsequently being enveloped by a dynamic interplay of biomacromolecules, such as carbohydrates, nucleic acids, and cellular metabolites, but with predominant serum proteins within the biological corona. A notable consequence of the protein corona phenomenon is the unintentional loss of targeting ligands initially designed to direct nanomedicines toward particular cells or organs within the in vivo environment. mRNA nanomedicine displays high demand for specific cell and tissue-targeted delivery to effectively transport mRNA molecules into target cells, where they can exert their therapeutic effects with utmost efficacy. In this review, focusing on the delivery systems and tissue-specific applications, we aim to update the nanomedicine population with the prevailing and still enigmatic paradigm of nano-bio interactions, a formidable hurdle in the pursuit of targeted mRNA delivery. We also elucidate the current impediments faced in mRNA therapeutics and, by contemplating prospective avenues-either to modulate the corona or to adopt an 'ally from adversary' approach-aim to chart a course for advancing mRNA nanomedicine.
Collapse
Affiliation(s)
- Qimanguli Saiding
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Zhongyang Zhang
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States; The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Shuying Chen
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Fan Xiao
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang 311121, China; Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Yumeng Chen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Yongjiang Li
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Xueyan Zhen
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Muhammad Muzamil Khan
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Wei Chen
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Seyoung Koo
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States.
| | - Na Kong
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang 311121, China; Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States.
| | - Wei Tao
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
38
|
Harun-Or-Rashid M, Aktar MN, Hossain MS, Sarkar N, Islam MR, Arafat ME, Bhowmik S, Yusa SI. Recent Advances in Micro- and Nano-Drug Delivery Systems Based on Natural and Synthetic Biomaterials. Polymers (Basel) 2023; 15:4563. [PMID: 38231996 PMCID: PMC10708661 DOI: 10.3390/polym15234563] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 01/19/2024] Open
Abstract
Polymeric drug delivery technology, which allows for medicinal ingredients to enter a cell more easily, has advanced considerably in recent decades. Innovative medication delivery strategies use biodegradable and bio-reducible polymers, and progress in the field has been accelerated by future possible research applications. Natural polymers utilized in polymeric drug delivery systems include arginine, chitosan, dextrin, polysaccharides, poly(glycolic acid), poly(lactic acid), and hyaluronic acid. Additionally, poly(2-hydroxyethyl methacrylate), poly(N-isopropyl acrylamide), poly(ethylenimine), dendritic polymers, biodegradable polymers, and bioabsorbable polymers as well as biomimetic and bio-related polymeric systems and drug-free macromolecular therapies have been employed in polymeric drug delivery. Different synthetic and natural biomaterials are in the clinical phase to mitigate different diseases. Drug delivery methods using natural and synthetic polymers are becoming increasingly common in the pharmaceutical industry, with biocompatible and bio-related copolymers and dendrimers having helped cure cancer as drug delivery systems. This review discusses all the above components and how, by combining synthetic and biological approaches, micro- and nano-drug delivery systems can result in revolutionary polymeric drug and gene delivery devices.
Collapse
Affiliation(s)
- Md. Harun-Or-Rashid
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji 671-2280, Hyogo, Japan; (M.H.-O.-R.); (M.N.A.); (S.B.)
| | - Most. Nazmin Aktar
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji 671-2280, Hyogo, Japan; (M.H.-O.-R.); (M.N.A.); (S.B.)
| | - Md. Sabbir Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.S.H.); (N.S.); (M.R.I.); (M.E.A.)
| | - Nadia Sarkar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.S.H.); (N.S.); (M.R.I.); (M.E.A.)
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.S.H.); (N.S.); (M.R.I.); (M.E.A.)
| | - Md. Easin Arafat
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.S.H.); (N.S.); (M.R.I.); (M.E.A.)
| | - Shukanta Bhowmik
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji 671-2280, Hyogo, Japan; (M.H.-O.-R.); (M.N.A.); (S.B.)
| | - Shin-ichi Yusa
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji 671-2280, Hyogo, Japan; (M.H.-O.-R.); (M.N.A.); (S.B.)
| |
Collapse
|
39
|
Zhang J, Liu J, Niu C, Wu Q, Tan J, Jing N, Wen Y. Functionalized Fluorescent Organic Nanoparticles Based AIE Enabling Effectively Targeting Cancer Cell Imaging. Chembiochem 2023; 24:e202300391. [PMID: 37718314 DOI: 10.1002/cbic.202300391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/21/2023] [Accepted: 09/17/2023] [Indexed: 09/19/2023]
Abstract
We report a fluorescent dye TM by incorporating the tetraphenylethylene (TPE) and cholesterol components into perylene bisimides (PBI) derivative. Fluorescence emission spectrum shows that the dye has stable red emission and aggregation-induced emission (AIE) characteristics. The incorporation of cholesterol components triggers TM to show induced chirality through supramolecular self-assembly. The cRGD-functionalized nanoparticles were prepared by encapsulating fluorescent dyes with amphiphilic polymer matrix. The functionalized fluorescent organic nanoparticles exhibit excellent biocompatibility, large Stokes' shift and good photostability, which make them effective fluorescent probes for targeting cancer cells with high fluorescence contrast.
Collapse
Affiliation(s)
- Jing Zhang
- Institute of Applied Chemistry, Shanxi University, 030006, Taiyuan, China
| | - Jiaqi Liu
- College of Chemistry and Chemical Engineering, Shanxi University, 030006, Taiyuan, China
| | - Chengyan Niu
- College of Chemistry and Chemical Engineering, Shanxi University, 030006, Taiyuan, China
| | - Qiulan Wu
- College of Chemistry and Chemical Engineering, Shanxi University, 030006, Taiyuan, China
| | - Jingjing Tan
- Research Center for Fine Chemicals Engineering, Shanxi University, 030006, Taiyuan, China
| | - Ning Jing
- Institute of Molecular Science, Shanxi University, 030006, Taiyuan, China
| | - Ying Wen
- Institute of Molecular Science, Shanxi University, 030006, Taiyuan, China
| |
Collapse
|
40
|
Dutta D, Nair RR, Neog K, Nair SA, Gogoi P. Mitochondria-targeted biotin-conjugated BODIPYs for cancer imaging and therapy. RSC Med Chem 2023; 14:2358-2364. [PMID: 37974957 PMCID: PMC10650437 DOI: 10.1039/d3md00347g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/21/2023] [Indexed: 11/19/2023] Open
Abstract
Two BODIPY-biotin conjugates KDP1 and KDP2 are designed and synthesized for targeted PDT applications. Both have good absorption with a high molar absorption coefficient and decent singlet oxygen generation quantum yields. The photosensitizers KDP1 and KDP2 were found to be localized in the mitochondria with excellent photocytotoxicity of up to 18.7 nM in MDA-MB-231 breast cancer cells. The cell death predominantly proceeded through the apoptosis pathway via ROS production.
Collapse
Affiliation(s)
- Dhiraj Dutta
- Applied Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST) Assam Jorhat-785006 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Rajshree R Nair
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology Trivandrum-695014 Kerala India
- Manipal Academy of Higher Education Manipal-576104 Karnataka India
| | - Kashmiri Neog
- Applied Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST) Assam Jorhat-785006 India
| | - S Asha Nair
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology Trivandrum-695014 Kerala India
| | - Pranjal Gogoi
- Applied Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST) Assam Jorhat-785006 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| |
Collapse
|
41
|
Huang P, Deng H, Wang C, Zhou Y, Chen X. Cellular Trafficking of Nanotechnology-Mediated mRNA Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2307822. [PMID: 37929780 DOI: 10.1002/adma.202307822] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Messenger RNA (mRNA)-based therapy has emerged as a powerful, safe, and rapidly scalable therapeutic approach that involves technologies for both mRNA itself and the delivery vehicle. Although there are some unique challenges for different applications of mRNA therapy, a common challenge for all mRNA therapeutics is the transport of mRNA into the target cell cytoplasm for sufficient protein expression. This review is focused on the behaviors at the cellular level of nanotechnology-mediated mRNA delivery systems, which have not been comprehensively reviewed yet. First, the four main therapeutic applications of mRNA are introduced, including immunotherapy, protein replacement therapy, genome editing, and cellular reprogramming. Second, common types of mRNA cargos and mRNA delivery systems are summarized. Third, strategies to enhance mRNA delivery efficiency during the cellular trafficking process are highlighted, including accumulation to the cell, internalization into the cell, endosomal escape, release of mRNA from the nanocarrier, and translation of mRNA into protein. Finally, the challenges and opportunities for the development of nanotechnology-mediated mRNA delivery systems are presented. This review can provide new insights into the future fabrication of mRNA nanocarriers with desirable cellular trafficking performance.
Collapse
Affiliation(s)
- Pei Huang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongzhang Deng
- School of Life Science and Technology and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Changrong Wang
- School of Life Science and Technology and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| |
Collapse
|
42
|
Li CH, Lim SH, Jeong YI, Ryu HH, Jung S. Synergistic Effects of Radiotherapy With JNK Inhibitor-Incorporated Nanoparticle in an Intracranial Lewis Lung Carcinoma Mouse Models. IEEE Trans Nanobioscience 2023; 22:845-854. [PMID: 37022021 DOI: 10.1109/tnb.2023.3238687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Radiosurgery has been recognized as a reasonable treatment for metastatic brain tumors. Increasing the radiosensitivity and synergistic effects are possible ways to improve the therapeutic efficacy of specific regions of tumors. c-Jun-N-terminal kinase (JNK) signaling regulates H2AX phosphorylation to repair radiation-induced DNA breakage. We previously showed that blocking JNK signaling influenced radiosensitivity in vitro and in an in vivo mouse tumor model. Drugs can be incorporated into nanoparticles to produce a slow-release effect. This study assessed JNK radiosensitivity following the slow release of the JNK inhibitor SP600125 from a poly (DL-lactide-co-glycolide) (LGEsese) block copolymer in a brain tumor model. MATERIALS AND METHODS A LGEsese block copolymer was synthesized to fabricate SP600125-incorporated nanoparticles by nanoprecipitation and dialysis methods. The chemical structure of the LGEsese block copolymer was confirmed by 1H nuclear magnetic resonance (NMR) spectroscopy. The physicochemical and morphological properties were observed by transmission electron microscopy (TEM) imaging and measured with particle size analyzer. The blood-brain barrier (BBB) permeability to the JNK inhibitor was estimated by BBBflammaTM 440-dye-labeled SP600125. The effects of the JNK inhibitor were investigated using SP600125-incorporated nanoparticles and by optical bioluminescence, magnetic resonance imaging (MRI), and a survival assay in a mouse brain tumor model for Lewis lung cancer (LLC)-Fluc cells. DNA damage was estimated by histone γ H2AX expression and apoptosis was assessed by the immunohistochemical examination of cleaved caspase 3. RESULTS The SP600125-incorporated nanoparticles of the LGEsese block copolymer were spherical and released SP600125 continuously for 24h. The use of BBBflammaTM 440-dye-labeled SP600125 demonstrated the ability of SP600125 to cross the BBB. The blockade of JNK signaling with SP600125-incorporated nanoparticles significantly delayed mouse brain tumor growth and prolonged mouse survival after radiotherapy. γ H2AX, which mediates DNA repair protein, was reduced and the apoptotic protein cleaved-caspase 3 was increased by the combination of radiation and SP600125-incorporated nanoparticles.
Collapse
|
43
|
Viegas C, Patrício AB, Prata J, Fonseca L, Macedo AS, Duarte SOD, Fonte P. Advances in Pancreatic Cancer Treatment by Nano-Based Drug Delivery Systems. Pharmaceutics 2023; 15:2363. [PMID: 37765331 PMCID: PMC10536303 DOI: 10.3390/pharmaceutics15092363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Pancreatic cancer represents one of the most lethal cancer types worldwide, with a 5-year survival rate of less than 5%. Due to the inability to diagnose it promptly and the lack of efficacy of existing treatments, research and development of innovative therapies and new diagnostics are crucial to increase the survival rate and decrease mortality. Nanomedicine has been gaining importance as an innovative approach for drug delivery and diagnosis, opening new horizons through the implementation of smart nanocarrier systems, which can deliver drugs to the specific tissue or organ at an optimal concentration, enhancing treatment efficacy and reducing systemic toxicity. Varied materials such as lipids, polymers, and inorganic materials have been used to obtain nanoparticles and develop innovative drug delivery systems for pancreatic cancer treatment. In this review, it is discussed the main scientific advances in pancreatic cancer treatment by nano-based drug delivery systems. The advantages and disadvantages of such delivery systems in pancreatic cancer treatment are also addressed. More importantly, the different types of nanocarriers and therapeutic strategies developed so far are scrutinized.
Collapse
Affiliation(s)
- Cláudia Viegas
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal;
- Center for Marine Sciences (CCMar), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; (A.B.P.); (S.O.D.D.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ana B. Patrício
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; (A.B.P.); (S.O.D.D.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - João Prata
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; (A.B.P.); (S.O.D.D.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Leonor Fonseca
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; (A.B.P.); (S.O.D.D.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ana S. Macedo
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; (A.B.P.); (S.O.D.D.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- LAQV, REQUIMTE, Applied Chemistry Lab—Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Sofia O. D. Duarte
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; (A.B.P.); (S.O.D.D.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Pedro Fonte
- Center for Marine Sciences (CCMar), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; (A.B.P.); (S.O.D.D.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
| |
Collapse
|
44
|
Andrian T, Muela Y, Delgado L, Albertazzi L, Pujals S. A super-resolution and transmission electron microscopy correlative approach to study intracellular trafficking of nanoparticles. NANOSCALE 2023; 15:14615-14627. [PMID: 37614108 DOI: 10.1039/d3nr02838k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Nanoparticles (NPs) are used to encapsulate therapeutic cargos and deliver them specifically to the target site. The intracellular trafficking of NPs dictates the NP-cargo distribution within different cellular compartments, and thus governs their efficacy and safety. Knowledge in this field is crucial to understand their biological fate and improve their rational design. However, there is a lack of methods that allow precise localization and quantification of individual NPs within distinct cellular compartments simultaneously. Here, we address this issue by proposing a correlative light and electron microscopy (CLEM) method combining direct stochastic optical reconstruction microscopy (dSTORM) and transmission electron microscopy (TEM). We aim at combining the advantages of both techniques to precisely address NP localization in the context of the cell ultrastructure. Individual fluorescently-labelled poly(lactide-co-glycolide)-poly(ethylene glycol) (PLGA-PEG) NPs were directly visualized by dSTORM and assigned to cellular compartments by TEM. We first tracked NPs along the endo-lysosomal pathway at different time points, then demonstrated the effect of chloroquine on their intracellular distribution (i.e. endosomal escape). The proposed protocol can be applied to fluorescently labelled NPs and/or cargo, including those not detectable by TEM alone. Our studies are of great relevance to obtain important information on NP trafficking, and crucial for the design of more complex nanomaterials aimed at cytoplasmic/nucleic drug delivery.
Collapse
Affiliation(s)
- Teodora Andrian
- Institute for Bioengineering of Catalonia (IBEC), Carrer Baldiri Reixac 15-21, 08024 Barcelona, Spain.
| | - Yolanda Muela
- Electron Cryomicroscopy Unit, Centres Científics i Tecnològics de la Universitat de Barcelona (CCiTUB), Carrer Baldiri i Reixac 10-12, 08028 Barcelona, Spain
| | - Lidia Delgado
- Electron Cryomicroscopy Unit, Centres Científics i Tecnològics de la Universitat de Barcelona (CCiTUB), Carrer Baldiri i Reixac 10-12, 08028 Barcelona, Spain
| | - Lorenzo Albertazzi
- Institute for Bioengineering of Catalonia (IBEC), Carrer Baldiri Reixac 15-21, 08024 Barcelona, Spain.
- Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Silvia Pujals
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Carrer Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
45
|
Abusalem M, Martiniova L, Soebianto S, DePalatis L, Ravizzini G. Current Status of Radiolabeled Monoclonal Antibodies Targeting PSMA for Imaging and Therapy. Cancers (Basel) 2023; 15:4537. [PMID: 37760506 PMCID: PMC10526399 DOI: 10.3390/cancers15184537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/21/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Prostate cancer (PCa) is one of the most prevalent cancer diagnoses among men in the United States and in several other developed countries. The prostate specific membrane antigen (PSMA) has been recognized as a promising molecular target in PCa, which has led to the development of specific radionuclide-based tracers for imaging and radiopharmaceuticals for PSMA targeted therapy. These compounds range from small molecule ligands to monoclonal antibodies (mAbs). Monoclonal antibodies play a crucial role in targeting cancer cell-specific antigens with a high degree of specificity while minimizing side effects to normal cells. The same mAb can often be labeled in different ways, such as with radionuclides suitable for imaging with Positron Emission Tomography (β+ positrons), Gamma Camera Scintigraphy (γ photons), or radiotherapy (β- electrons, α-emitters, or Auger electrons). Accordingly, the use of radionuclide-based PSMA-targeting compounds in molecular imaging and therapeutic applications has significantly grown in recent years. In this article, we will highlight the latest developments and prospects of radiolabeled mAbs that target PSMA for the detection and treatment of prostate cancer.
Collapse
Affiliation(s)
- Mohammed Abusalem
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lucia Martiniova
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sarita Soebianto
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Louis DePalatis
- BioDevelopment Solutions, LLC, 226 Becker Circle, Johnstown, CO 80534, USA
| | - Gregory Ravizzini
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
46
|
Ashique S, Garg A, Hussain A, Farid A, Kumar P, Taghizadeh‐Hesary F. Nanodelivery systems: An efficient and target-specific approach for drug-resistant cancers. Cancer Med 2023; 12:18797-18825. [PMID: 37668041 PMCID: PMC10557914 DOI: 10.1002/cam4.6502] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Cancer treatment is still a global health challenge. Nowadays, chemotherapy is widely applied for treating cancer and reducing its burden. However, its application might be in accordance with various adverse effects by exposing the healthy tissues and multidrug resistance (MDR), leading to disease relapse or metastasis. In addition, due to tumor heterogeneity and the varied pharmacokinetic features of prescribed drugs, combination therapy has only shown modestly improved results in MDR malignancies. Nanotechnology has been explored as a potential tool for cancer treatment, due to the efficiency of nanoparticles to function as a vehicle for drug delivery. METHODS With this viewpoint, functionalized nanosystems have been investigated as a potential strategy to overcome drug resistance. RESULTS This approach aims to improve the efficacy of anticancer medicines while decreasing their associated side effects through a range of mechanisms, such as bypassing drug efflux, controlling drug release, and disrupting metabolism. This review discusses the MDR mechanisms contributing to therapeutic failure, the most cutting-edge approaches used in nanomedicine to create and assess nanocarriers, and designed nanomedicine to counteract MDR with emphasis on recent developments, their potential, and limitations. CONCLUSIONS Studies have shown that nanoparticle-mediated drug delivery confers distinct benefits over traditional pharmaceuticals, including improved biocompatibility, stability, permeability, retention effect, and targeting capabilities.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of PharmaceuticsPandaveswar School of PharmacyPandaveswarIndia
| | - Ashish Garg
- Guru Ramdas Khalsa Institute of Science and Technology, PharmacyJabalpurIndia
| | - Afzal Hussain
- Department of Pharmaceutics, College of PharmacyKing Saud UniversityRiyadhSaudi Arabia
| | - Arshad Farid
- Gomal Center of Biochemistry and BiotechnologyGomal UniversityDera Ismail KhanPakistan
| | - Prashant Kumar
- Teerthanker Mahaveer College of PharmacyTeerthanker Mahaveer UniversityMoradabadIndia
- Department of Pharmaceutics, Amity Institute of PharmacyAmity University Madhya Pradesh (AUMP)GwaliorIndia
| | - Farzad Taghizadeh‐Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of MedicineIran University of Medical SciencesTehranIran
- Clinical Oncology DepartmentIran University of Medical SciencesTehranIran
| |
Collapse
|
47
|
Di Giorgio E, Ferino A, Huang W, Simonetti S, Xodo L, De Marco R. Dual-targeting peptides@PMO, a mimetic to the pro-apoptotic protein Smac/DIABLO for selective activation of apoptosis in cancer cells. Front Pharmacol 2023; 14:1237478. [PMID: 37711175 PMCID: PMC10497945 DOI: 10.3389/fphar.2023.1237478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/07/2023] [Indexed: 09/16/2023] Open
Abstract
The refractoriness of tumor cells to apoptosis represents the main mechanism of resistance to chemotherapy. Smac/DIABLO mimetics proved to be effective in overcoming cancer-acquired resistance to apoptosis as a consequence of overexpression of the anti-apoptotic proteins XIAP, cIAP1, and cIAP2. In this work, we describe a dual-targeting peptide capable of selectively activating apoptosis in cancer cells. The complex consists of a fluorescent periodic mesoporous organosilica nanoparticle that carries the short sequences of Smac/DIABLO bound to the αvβ3-integrin ligand. The dual-targeting peptide @PMO shows significantly higher toxicity in αvβ3-positive HeLa cells with respect to αvβ3-negative Ht29 cells. @PMO exhibited synergistic effects in combination with oxaliplatin in a panel of αvβ3-positive cancer cells, while its toxicity is overcome by XIAP overexpression or integrin β3 silencing. The successful uptake of the molecule by αvβ3-positive cells makes @PMO promising for the re-sensitization to apoptosis of many cancer types.
Collapse
Affiliation(s)
| | | | - Weizhe Huang
- Department of Agricultural, Food, Environmental and Animal Sciences (Di4A), University of Udine, Udine, Italy
| | - Sigrid Simonetti
- Department of Agricultural, Food, Environmental and Animal Sciences (Di4A), University of Udine, Udine, Italy
| | - Luigi Xodo
- Department of Medicine, University of Udine, Udine, Italy
| | - Rossella De Marco
- Department of Agricultural, Food, Environmental and Animal Sciences (Di4A), University of Udine, Udine, Italy
| |
Collapse
|
48
|
Shin J, Kim B, Lager TW, Mejia F, Guldner I, Conner C, Zhang S, Panopoulos AD, Bilgicer B. A nanotherapeutic approach to selectively eliminate metastatic breast cancer cells by targeting cell surface GRP78. NANOSCALE 2023; 15:13322-13334. [PMID: 37526009 DOI: 10.1039/d3nr00800b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Here, rational engineering of doxorubicin prodrug loaded peptide-targeted liposomal nanoparticles to selectively target metastatic breast cancer cells in vivo is described. Glucose-regulated protein 78 (GRP78), a heat shock protein typically localized in the endoplasmic reticulum in healthy cells, has been identified to home to the cell surface in certain cancers, and thus has emerged as a promising therapeutic target. Recent reports indicated GRP78 to be expressed on the cell surface of an aggressive subpopulation of stem-like breast cancer cells that exhibit metastatic potential. In this study, a targeted nanoparticle formulation with a GRP78-binding peptide (Kd of 7.4 ± 1.0 μM) was optimized to selectively target this subpopulation. In vitro studies with breast cancer cell lines showed the targeted nanoparticle formulation (TNPGRP78pep) achieved enhanced cellular uptake, while maintaining selectivity over the control groups. In vivo, TNPGRP78pep loaded with doxorubicin prodrug was evaluated using a lung metastatic mouse model and demonstrated inhibition of breast cancer cell seeding to lungs down at the level of negative control groups. Combined, this study established that specific-targeting of surface GRP78 expressing a subpopulation of aggressive breast cancer cells was able to inhibit breast cancer metastasis to lungs, and underpinned the significance of GRP78 in breast cancer metastasis.
Collapse
Affiliation(s)
- Jaeho Shin
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 465567, USA.
| | - Baksun Kim
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 465567, USA.
| | - Tyson W Lager
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Franklin Mejia
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 465567, USA.
| | - Ian Guldner
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Clay Conner
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Siyuan Zhang
- Department of Pathology, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Athanasia D Panopoulos
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Basar Bilgicer
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 465567, USA.
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
- Berthiaume Institute for Precision Health, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
49
|
Malekjani N, Karimi R, Assadpour E, Jafari SM. Control of release in active packaging/coating for food products; approaches, mechanisms, profiles, and modeling. Crit Rev Food Sci Nutr 2023; 64:10789-10811. [PMID: 37401796 DOI: 10.1080/10408398.2023.2228413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Antimicrobial or antioxidant active packaging (AP) is an emerging technology in which a bioactive antimicrobial or antioxidant agent is incorporated into the packaging material to protect the contained product during its shelf life from deterioration. The important issue in AP is making a balance between the deterioration rate of the food product and the controlled release of the bioactive agent. So, the AP fabrication should be designed in such a way that fulfills this goal. Modeling the controlled release is an effective way to avoid trial and error and time-consuming experimental runs and predict the release behavior of bioactive agents in different polymeric matrices and food/food simulants. To review the release of bioactive compounds from AP, in the first part of this review we present an introductory explanation regarding the release controlling approaches in AP. Then the release mechanisms are explained which are very important in defining the appropriate modeling approach and also the interpretation of the modeling results. Different release profiles that might be observed in different packaging systems are also introduced. Finally, different modeling approaches including empirical and mechanistic techniques are covered and the recent literature regarding the utilization of such approaches to help design new AP is thoroughly studied.
Collapse
Affiliation(s)
- Narjes Malekjani
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Reza Karimi
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
50
|
Puiu RA, Bîrcă AC, Grumezescu V, Duta L, Oprea OC, Holban AM, Hudiță A, Gălățeanu B, Balaure PC, Grumezescu AM, Andronescu E. Multifunctional Polymeric Biodegradable and Biocompatible Coatings Based on Silver Nanoparticles: A Comparative In Vitro Study on Their Cytotoxicity towards Cancer and Normal Cell Lines of Cytostatic Drugs versus Essential-Oil-Loaded Nanoparticles and on Their Antimicrobial and Antibiofilm Activities. Pharmaceutics 2023; 15:1882. [PMID: 37514068 PMCID: PMC10385235 DOI: 10.3390/pharmaceutics15071882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
We report on a comparative in vitro study of selective cytotoxicity against MCF7 tumor cells and normal VERO cells tested on silver-based nanocoatings synthesized by the matrix-assisted pulsed laser evaporation (MAPLE) technique. Silver nanoparticles (AgNPs) were loaded with five representative cytostatic drugs (i.e., doxorubicin, fludarabine, paclitaxel, gemcitabine, and carboplatin) and with five essential oils (EOs) (i.e., oregano, rosemary, ginger, basil, and thyme). The as-obtained coatings were characterized by X-ray diffraction, thermogravimetry coupled with differential scanning calorimetry, Fourier-transform IR spectroscopy, IR mapping, and scanning electron microscopy. A screening of the impact of the prepared nanocoatings on the MCF7 tumor and normal VERO cell lines was achieved by means of cell viability MTT and cytotoxicity LDH assays. While all nanocoatings loaded with antitumor drugs exhibited powerful cytotoxic activity against both the tumor and the normal cells, those embedded with AgNPs loaded with rosemary and thyme EOs showed remarkable and statistically significant selective cytotoxicity against the tested cancercells. The EO-loaded nanocoatings were tested for antimicrobial and antibiofilm activity against Staphylococcus aureus, Escherichia coli, and Candida albicans. For all studied pathogens, the cell viability, assessed by counting the colony-forming units after 2 and 24 h, was significantly decreased by all EO-based nanocoatings, while the best antibiofilm activity was evidenced by the nanocoatings containing ginger and thyme EOs.
Collapse
Affiliation(s)
- Rebecca Alexandra Puiu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Valentina Grumezescu
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| | - Liviu Duta
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| | - Ovidiu Cristian Oprea
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | - Alina Maria Holban
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei Street, 077206 Bucharest, Romania
| | - Ariana Hudiță
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Bianca Gălățeanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Paul Cătălin Balaure
- Department of Organic Chemistry, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| |
Collapse
|