1
|
Oh DJ, Nam JH, Park J, Hwang Y, Lim YJ. Gastric examination using a novel three-dimensional magnetically assisted capsule endoscope and a hand-held magnetic controller: A porcine model study. PLoS One 2021; 16:e0256519. [PMID: 34610019 PMCID: PMC8491884 DOI: 10.1371/journal.pone.0256519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 08/10/2021] [Indexed: 12/24/2022] Open
Abstract
Magnetically assisted capsule endoscopy (MACE) is a noninvasive procedure and can overcome passive capsule movement that limits gastric examination. MACE has been studied in many trials as an alternative to upper endoscopy. However, to increase diagnostic accuracy of various gastric lesions, MACE should be able to provide stereoscopic, clear images and to measure the size of a lesion. So, we conducted the animal experiment using a novel three-dimensional (3D) MACE and a new hand-held magnetic controller for gastric examination. The purpose of this study is to assess the performance and safety of 3D MACE and hand-held magnetic controller through the animal experiment. Subsequently, via the dedicated viewer, we evaluate whether 3D reconstruction images and clear images can be obtained and accurate lesion size can be measured. During real-time gastric examination, the maneuverability and visualization of 3D MACE were adequate. A polypoid mass lesion was incidentally observed at the lesser curvature side of the prepyloric antrum. The mass lesion was estimated to be 10.9 x 11.5 mm in the dedicated viewer, nearly the same size and shape as confirmed by upper endoscopy and postmortem examination. Also, 3D and clear images of the lesion were successfully reconstructed. This animal experiment demonstrates the accuracy and safety of 3D MACE. Further clinical studies are warranted to confirm the feasibility of 3D MACE for human gastric examination.
Collapse
Affiliation(s)
- Dong Jun Oh
- Department of Internal Medicine, Dongguk University College of Medicine, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Ji Hyung Nam
- Department of Internal Medicine, Dongguk University College of Medicine, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Junseok Park
- Digestive Disease Center, Institute for Digestive Research, Department of Internal Medicine, Soonchunhyang University College of Medicine, Seoul, Republic of Korea
| | - Youngbae Hwang
- Department of Electronics Engineering, Chungbuk National University, Cheongju, Republic of Korea
| | - Yun Jeong Lim
- Department of Internal Medicine, Dongguk University College of Medicine, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
- * E-mail:
| |
Collapse
|
2
|
Capsule Endoscopy: Pitfalls and Approaches to Overcome. Diagnostics (Basel) 2021; 11:diagnostics11101765. [PMID: 34679463 PMCID: PMC8535011 DOI: 10.3390/diagnostics11101765] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/21/2021] [Indexed: 12/15/2022] Open
Abstract
Capsule endoscopy of the gastrointestinal tract is an innovative technology that serves to replace conventional endoscopy. Wireless capsule endoscopy, which is mainly used for small bowel examination, has recently been used to examine the entire gastrointestinal tract. This method is promising for its usefulness and development potential and enhances convenience by reducing the side effects and discomfort that may occur during conventional endoscopy. However, capsule endoscopy has fundamental limitations, including passive movement via bowel peristalsis and space restriction. This article reviews the current scientific aspects of capsule endoscopy and discusses the pitfalls and approaches to overcome its limitations. This review includes the latest research results on the role and potential of capsule endoscopy as a non-invasive diagnostic and therapeutic device.
Collapse
|
3
|
Phillips F, Beg S. Video capsule endoscopy: pushing the boundaries with software technology. Transl Gastroenterol Hepatol 2021; 6:17. [PMID: 33409411 DOI: 10.21037/tgh.2020.02.01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/11/2019] [Indexed: 12/14/2022] Open
Abstract
Video capsule endoscopy (VCE) has transformed imaging of the small bowel as it is a non-invasive and well tolerated modality with excellent diagnostic capabilities. The way we read VCE has not changed much since its introduction nearly two decades ago. Reading is still very time intensive and prone to reader error. This review outlines the evidence regarding software enhancements which aim to address these challenges. These include the suspected blood indicator (SBI), automated fast viewing modes including QuickView, lesion characterization tools such Fuji Intelligent Color Enhancement, and three-dimensional (3D) representation tools. We also outline the exciting new evidence of artificial intelligence (AI) and deep learning (DL), which promises to revolutionize capsule reading. DL algorithms have been developed for identifying organs of origin, intestinal motility events, active bleeding, coeliac disease, polyp detection, hookworms and angioectasias, all with impressively high sensitivity and accuracy. More recently, an algorithm has been created to detect multiple abnormalities with a sensitivity of 99.9% and reading time of only 5.9 minutes. These algorithms will need to be validated robustly. However, it will not be long before we see this in clinical practice, aiding the clinician in rapid and accurate diagnosis.
Collapse
Affiliation(s)
- Frank Phillips
- Department of Gastroenterology, NIHR Nottingham Digestive Diseases Biomedical Research Centre, Queens Medical Centre Campus, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Sabina Beg
- Department of Gastroenterology, NIHR Nottingham Digestive Diseases Biomedical Research Centre, Queens Medical Centre Campus, Nottingham University Hospitals NHS Trust, Nottingham, UK
| |
Collapse
|
4
|
Nam SJ, Lim YJ, Nam JH, Lee HS, Hwang Y, Park J, Chun HJ. 3D reconstruction of small bowel lesions using stereo camera-based capsule endoscopy. Sci Rep 2020; 10:6025. [PMID: 32265474 PMCID: PMC7138835 DOI: 10.1038/s41598-020-62935-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/18/2020] [Indexed: 12/14/2022] Open
Abstract
Three-dimensional (3D) reconstruction of capsule endoscopic images has been attempted for a long time to obtain more information on small bowel structures. Due to the limited hardware resources of capsule size and battery capacity, software approaches have been studied but have mainly exhibited inherent limitations. Recently, stereo camera-based capsule endoscopy, which can perform hardware-enabled 3D reconstruction, has been developed. We aimed to evaluate the feasibility of newly developed 3D capsule endoscopy in clinical practice. This study was a prospective, single-arm, feasibility study conducted at two university-affiliated hospitals in South Korea. Small bowel evaluation was performed using a newly developed 3D capsule endoscope for patients with obscure gastrointestinal bleeding, suspected or established Crohn's disease, small bowel tumors, and abdominal pain of unknown origin. We assessed the technical limitations, performance, and safety of the new capsule endoscope. Thirty-one patients (20 men and 11 women; mean age: 44.5 years) were enrolled. There was no technical defect preventing adequate visualization of the small bowel. The overall completion rate was 77.4%, the detection rate was 64.5%, and there was no capsule retention. All capsule endoscopic procedures were completed uneventfully. In conclusion, newly developed 3D capsule endoscopy was safe and feasible, showing similar performance as conventional capsule endoscopy. Newly added features of 3D reconstruction and size measurement are expected to be useful in the characterization of subepithelial tumours.
Collapse
Affiliation(s)
- Seung-Joo Nam
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Yun Jeong Lim
- Department of Internal Medicine, Dongguk University College of Medicine, Dongguk University Ilsan Hospital, Goyang, Korea.
| | - Ji Hyung Nam
- Department of Internal Medicine, Dongguk University College of Medicine, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Hyun Seok Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Korea
| | - Youngbae Hwang
- Department of Electronics Engineering, Chungbuk National University, Cheongju, Korea
| | - Junseok Park
- Digestive Disease Center, Institute for Digestive Research, Department of Internal Medicine, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Hoon Jai Chun
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
5
|
Kwack WG, Lim YJ. Current Status and Research into Overcoming Limitations of Capsule Endoscopy. Clin Endosc 2016; 49:8-15. [PMID: 26855917 PMCID: PMC4743729 DOI: 10.5946/ce.2016.49.1.8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/16/2015] [Accepted: 09/16/2015] [Indexed: 12/13/2022] Open
Abstract
Endoscopic investigation has a critical role in the diagnosis and treatment of gastrointestinal (GI) diseases. Since 2001, capsule endoscopy (CE) has been available for small-bowel exploration and is under continuous development. During the past decade, CE has achieved impressive improvements in areas such as miniaturization, resolution, and battery life. As a result, CE is currently a first-line tool for the investigation of the small bowel in obscure gastrointestinal bleeding and is a useful alternative to wired enteroscopy. Nevertheless, CE still has several limitations, such as incomplete examination and limited diagnostic and therapeutic capabilities. To resolve these problems, many groups have suggested several models (e.g., controlled CO2 insufflation system, magnetic navigation system, mobile robotic platform, tagging and biopsy equipment, and targeted drug-delivery system), which are in development. In the near future, new technological advances will improve the capabilities of CE and broaden its spectrum of applications not only for the small bowel but also for the colon, stomach, and esophagus. The purpose of this review is to introduce the current status of CE and to review the ongoing development of solutions to address its limitations.
Collapse
Affiliation(s)
- Won Gun Kwack
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, Korea
| | - Yun Jeong Lim
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, Korea
| |
Collapse
|
6
|
Koprowski R. Overview of technical solutions and assessment of clinical usefulness of capsule endoscopy. Biomed Eng Online 2015; 14:111. [PMID: 26626725 PMCID: PMC4665909 DOI: 10.1186/s12938-015-0108-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 11/23/2015] [Indexed: 12/17/2022] Open
Abstract
The paper presents an overview of endoscopic capsules with particular emphasis on technical aspects. It indicates common problems in capsule endoscopy such as: (1) limited wireless communication (2) the use of capsule endoscopy in the case of partial patency of the gastrointestinal tract, (3) limited imaging area, (4) external capsule control limitations. It also presents the prospects of capsule endoscopy, the most recent technical solutions for biopsy and the mobility of the capsule in the gastrointestinal tract. The paper shows the possibilities of increasing clinical usefulness of capsule endoscopy resulting from technological limitations. Attention has also been paid to the current role of capsule endoscopy in screening tests and the limitations of its effectiveness. The paper includes the author's recommendations concerning the direction of further research and the possibility of enhancing the scope of capsule endoscopy.
Collapse
Affiliation(s)
- Robert Koprowski
- Department of Biomedical Computer Systems, Faculty of Computer Science and Materials Science, Institute of Computer Science, University of Silesia, ul. Będzińska 39, 41-200, Sosnowiec, Poland.
| |
Collapse
|
7
|
Koprowski R. Overview of technical solutions and assessment of clinical usefulness of capsule endoscopy. Biomed Eng Online 2015. [PMID: 26626725 DOI: 10.1186/s1293801501083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The paper presents an overview of endoscopic capsules with particular emphasis on technical aspects. It indicates common problems in capsule endoscopy such as: (1) limited wireless communication (2) the use of capsule endoscopy in the case of partial patency of the gastrointestinal tract, (3) limited imaging area, (4) external capsule control limitations. It also presents the prospects of capsule endoscopy, the most recent technical solutions for biopsy and the mobility of the capsule in the gastrointestinal tract. The paper shows the possibilities of increasing clinical usefulness of capsule endoscopy resulting from technological limitations. Attention has also been paid to the current role of capsule endoscopy in screening tests and the limitations of its effectiveness. The paper includes the author's recommendations concerning the direction of further research and the possibility of enhancing the scope of capsule endoscopy.
Collapse
Affiliation(s)
- Robert Koprowski
- Department of Biomedical Computer Systems, Faculty of Computer Science and Materials Science, Institute of Computer Science, University of Silesia, ul. Będzińska 39, 41-200, Sosnowiec, Poland.
| |
Collapse
|
8
|
Van Gossum A. Image-enhanced capsule endoscopy for characterization of small bowel lesions. Best Pract Res Clin Gastroenterol 2015; 29:525-31. [PMID: 26381299 DOI: 10.1016/j.bpg.2015.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 05/29/2015] [Accepted: 06/08/2015] [Indexed: 01/31/2023]
Abstract
Video capsule endoscopy has revolutionized direct endoscopic imaging of the gut. Small-bowel video capsule endoscopy (SBVCE) is now the first-line procedure for exploring the small bowel in case of obscure digestive bleeding and has also some room in case of Crohn's disease, coeliac disease and polyposis syndrome. In case of obscure digestive bleeding the main lesions are angioectasias, erosions/ulcerations and tumors. As for conventional optical endoscopy search was done for improving the detection and characterization of small-bowel lesions. The Fujinon Intelligent Chromoendoscopy (FICE) has been adapted on the software of the SBVCE (Given Imaging(®)/Medtronics). Although there are some conflicting results on the efficacy of FICE for detecting more lesions than with conventional light, it is now recognized that FICE - particularly the setting 1 - may enhance the delineation or characterization of lesions. The use of three-dimensional representation technique is now feasible but still needs further research.
Collapse
Affiliation(s)
- André Van Gossum
- Department of Gastroenterology and Hepatology, Hôpital Erasme, Free University of Brussels, Brussels, Belgium.
| |
Collapse
|
9
|
Keuchel M, Kurniawan N, Baltes P, Bandorski D, Koulaouzidis A. Quantitative measurements in capsule endoscopy. Comput Biol Med 2015; 65:333-47. [PMID: 26299419 DOI: 10.1016/j.compbiomed.2015.07.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 07/16/2015] [Accepted: 07/17/2015] [Indexed: 12/14/2022]
Abstract
This review summarizes several approaches for quantitative measurement in capsule endoscopy. Video capsule endoscopy (VCE) typically provides wireless imaging of small bowel. Currently, a variety of quantitative measurements are implemented in commercially available hardware/software. The majority is proprietary and hence undisclosed algorithms. Measurement of amount of luminal contamination allows calculating scores from whole VCE studies. Other scores express the severity of small bowel lesions in Crohn׳s disease or the degree of villous atrophy in celiac disease. Image processing with numerous algorithms of textural and color feature extraction is further in the research focuses for automated image analysis. These tools aim to select single images with relevant lesions as blood, ulcers, polyps and tumors or to omit images showing only luminal contamination. Analysis of motility pattern, size measurement and determination of capsule localization are additional topics. Non-visual wireless capsules transmitting data acquired with specific sensors from the gastrointestinal (GI) tract are available for clinical routine. This includes pH measurement in the esophagus for the diagnosis of acid gastro-esophageal reflux. A wireless motility capsule provides GI motility analysis on the basis of pH, pressure, and temperature measurement. Electromagnetically tracking of another motility capsule allows visualization of motility. However, measurement of substances by GI capsules is of great interest but still at an early stage of development.
Collapse
Affiliation(s)
- M Keuchel
- Clinic for Internal Medicine, Bethesda Krankenhaus Bergedorf, Glindersweg 80, 21029 Hamburg, Germany.
| | - N Kurniawan
- Clinic for Internal Medicine, Bethesda Krankenhaus Bergedorf, Glindersweg 80, 21029 Hamburg, Germany
| | - P Baltes
- Clinic for Internal Medicine, Bethesda Krankenhaus Bergedorf, Glindersweg 80, 21029 Hamburg, Germany
| | | | | |
Collapse
|
10
|
Iakovidis DK, Koulaouzidis A. Software for enhanced video capsule endoscopy: challenges for essential progress. Nat Rev Gastroenterol Hepatol 2015; 12:172-86. [PMID: 25688052 DOI: 10.1038/nrgastro.2015.13] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Video capsule endoscopy (VCE) has revolutionized the diagnostic work-up in the field of small bowel diseases. Furthermore, VCE has the potential to become the leading screening technique for the entire gastrointestinal tract. Computational methods that can be implemented in software can enhance the diagnostic yield of VCE both in terms of efficiency and diagnostic accuracy. Since the appearance of the first capsule endoscope in clinical practice in 2001, information technology (IT) research groups have proposed a variety of such methods, including algorithms for detecting haemorrhage and lesions, reducing the reviewing time, localizing the capsule or lesion, assessing intestinal motility, enhancing the video quality and managing the data. Even though research is prolific (as measured by publication activity), the progress made during the past 5 years can only be considered as marginal with respect to clinically significant outcomes. One thing is clear-parallel pathways of medical and IT scientists exist, each publishing in their own area, but where do these research pathways meet? Could the proposed IT plans have any clinical effect and do clinicians really understand the limitations of VCE software? In this Review, we present an in-depth critical analysis that aims to inspire and align the agendas of the two scientific groups.
Collapse
Affiliation(s)
- Dimitris K Iakovidis
- Department of Computer Engineering, Technological Educational Institute of Central Greece, 3rd Km Old National Road Lamia-Athens, Lamia PC 35 100, Greece
| | - Anastasios Koulaouzidis
- The Royal Infirmary of Edinburgh, Endoscopy Unit, 51 Little France Crescent, Old Dalkeith Road, Edinburgh EH16 4SA, UK
| |
Collapse
|
11
|
Koulaouzidis A, Iakovidis DK, Karargyris A, Plevris JN. Optimizing lesion detection in small-bowel capsule endoscopy: from present problems to future solutions. Expert Rev Gastroenterol Hepatol 2015; 9:217-35. [PMID: 25169106 DOI: 10.1586/17474124.2014.952281] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review presents issues pertaining to lesion detection in small-bowel capsule endoscopy (SBCE). The use of prokinetics, chromoendoscopy, diagnostic yield indicators, localization issues and the use of 3D reconstruction are presented. The authors also review the current status (and future expectations) in automatic lesion detection software development. Automatic lesion detection and reporting, and development of an accurate lesion localization system are the main software challenges of our time. The 'smart', selective and judicious use (before as well as during SBCE) of prokinetics in combination with other modalities (such as real time and/or purge) improves the completion rate of SBCE. The tracking of the capsule within the body is important for the localization of abnormal findings and planning of further therapeutic interventions. Currently, localization is based on transit time. Recently proposed software and hardware solutions are proposed herein. Moreover, the feasibility of software-based 3D representation (attempt for 3D reconstruction) is examined.
Collapse
|
12
|
Bouchard S, Ibrahim M, Gossum AV. Video capsule endoscopy: perspectives of a revolutionary technique. World J Gastroenterol 2014; 20:17330-17344. [PMID: 25516644 PMCID: PMC4265591 DOI: 10.3748/wjg.v20.i46.17330] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 07/25/2014] [Accepted: 09/12/2014] [Indexed: 02/06/2023] Open
Abstract
Video capsule endoscopy (VCE) was launched in 2000 and has revolutionized direct endoscopic imaging of the gut. VCE is now a first-line procedure for exploring the small bowel in cases of obscure digestive bleeding and is also indicated in some patients with Crohn's disease, celiac disease, and polyposis syndrome. A video capsule has also been designed for visualizing the esophagus in order to detect Barrett's esophagus or esophageal varices. Different capsules are now available and differ with regard to dimensions, image acquisition rate, battery life, field of view, and possible optical enhancements. More recently, the use of VCE has been extended to exploring the colon. Within the last 5 years, tremendous developments have been made toward increasing the capabilities of the colon capsule. Although colon capsule cannot be proposed as a first-line colorectal cancer screening procedure, colon capsule may be used in patients with incomplete colonoscopy or in patients who are unwilling to undergo colonoscopy. In the near future, new technological developments will improve the diagnostic yield of VCE and broaden its therapeutic capabilities.
Collapse
|
13
|
Utility of 3-dimensional image reconstruction in the diagnosis of small-bowel masses in capsule endoscopy (with video). Gastrointest Endosc 2014; 80:642-651. [PMID: 24998466 DOI: 10.1016/j.gie.2014.04.057] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 04/28/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND In small-bowel capsule endoscopy (SBCE), differentiating masses (ie, lesions of higher probability for neoplasia) requiring more aggressive intervention from bulges (essentially, false-positive findings) is a challenging task; recently, software that enables 3-dimensional (3D) reconstruction has become available. OBJECTIVE To evaluate whether "coupling" 3D reconstructed video clips with the standard 2-dimensional (s2D) counterparts helps in distinguishing masses from bulges. DESIGN Three expert and 3 novice SBCE readers, blind to others and in a random order, reviewed the s2D video clips and subsequently the s2D clips coupled with their 3D reconstruction (2D+3D). SETTING Multicenter study in 3 community hospitals in Italy and a university hospital in Scotland. PATIENTS Thirty-two deidentified 5-minute video clips, containing mucosal bulging (19) or masses (13). INTERVENTION 3D reconstruction of s2D SBCE video clips. MAIN OUTCOME MEASURE Differentiation of masses from bulges with s2D and 2D+3D video clips, estimated by the area under the receiver operating characteristic curve (AUC); interobserver agreement. RESULTS AUC for experts and novices for s2D video clips was .74 and .5, respectively (P = .0053). AUC for experts and novices with 2D+3D was .70 (compared with s2D: P = .245) and .57 (compared s2D: P = .049), respectively. AUC for experts and novices with 2D+3D was similar (P = .1846). The interobserver agreement was good for both experts and novices with the s2D (k = .71 and .54, respectively) and the 2D+3D video clips (k = .58 in both groups). LIMITATIONS Few, short video clips; fixed angle of 3D reconstruction. CONCLUSIONS The adjunction of a 3D reconstruction to the s2D video reading platform does not improve the performance of expert SBCE readers, although it significantly increases the performance of novices in distinguishing masses from bulging.
Collapse
|
14
|
Hale MF, Sidhu R, McAlindon ME. Capsule endoscopy: Current practice and future directions. World J Gastroenterol 2014; 20:7752-7759. [PMID: 24976712 PMCID: PMC4069303 DOI: 10.3748/wjg.v20.i24.7752] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 11/28/2013] [Accepted: 03/10/2014] [Indexed: 02/06/2023] Open
Abstract
Capsule endoscopy (CE) has transformed investigation of the small bowel providing a non-invasive, well tolerated means of accurately visualising the distal duodenum, jejunum and ileum. Since the introduction of small bowel CE thirteen years ago a high volume of literature on indications, diagnostic yields and safety profile has been presented. Inclusion in national and international guidelines has placed small bowel capsule endoscopy at the forefront of investigation into suspected diseases of the small bowel. Most commonly, small bowel CE is used in patients with suspected bleeding or to identify evidence of active Crohn’s disease (CD) (in patients with or without a prior history of CD). Typically, CE is undertaken after upper and lower gastrointestinal flexible endoscopy has failed to identify a diagnosis. Small bowel radiology or a patency capsule test should be considered prior to CE in those at high risk of strictures (such as patients known to have CD or presenting with obstructive symptoms) to reduce the risk of capsule retention. CE also has a role in patients with coeliac disease, suspected small bowel tumours and other small bowel disorders. Since the advent of small bowel CE, dedicated oesophageal and colon capsule endoscopes have expanded the fields of application to include the investigation of upper and lower gastrointestinal disorders. Oesophageal CE may be used to diagnose oesophagitis, Barrett’s oesophagus and varices but reliability in identifying gastroduodenal pathology is unknown and it does not have biopsy capability. Colon CE provides an alternative to conventional colonoscopy for symptomatic patients, while a possible role in colorectal cancer screening is a fascinating prospect. Current research is already addressing the possibility of controlling capsule movement and developing capsules which allow tissue sampling and the administration of therapy.
Collapse
|
15
|
Abstract
2013 saw several advances in small bowel endoscopy: new 3D visualization software, increased battery life, side-viewing cameras and higher frame rate. Studies on prokinetics for patient preparation, safety in the elderly, rebleeding after negative capsule endoscopy and defining optimum training requirements for fellows were encouraging. Procedure time and small bowel length evaluated by double-balloon and spiral endoscopy were shown to be comparable.
Collapse
Affiliation(s)
- Uday C Ghoshal
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow 226014, India
| |
Collapse
|
16
|
Rahman I, Patel P, Rondonotti E, Koulaouzidis A, Pennazio M, Kalla R, Sidhu R, Mooney P, Sanders D, Despott EJ, Fraser C, Kurniawan N, Baltes P, Keuchel M, Davison C, Beejay N, Parker C, Panter S. Small Bowel Capsule Endoscopy. HANDBOOK OF CAPSULE ENDOSCOPY 2014:47-118. [DOI: 10.1007/978-94-017-9229-5_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
17
|
Karargyris A, Rondonotti E, Mandelli G, Koulaouzidis A. Evaluation of 4 three-dimensional representation algorithms in capsule endoscopy images. World J Gastroenterol 2013; 19:8028-8033. [PMID: 24307796 PMCID: PMC3848150 DOI: 10.3748/wjg.v19.i44.8028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 10/22/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the three-dimensional (3-D) representation performance of 4 publicly available Shape-from-Shading (SfS) algorithms in small-bowel capsule endoscopy (SBCE).
METHODS: SfS techniques recover the shape of objects using the gradual variation of shading. There are 4 publicly available SfS algorithms. To the best of our knowledge, no comparative study with images obtained during clinical SBCE has been performed to date. Three experienced reviewers were asked to evaluate 54 two-dimensional (2-D) images (categories: protrusion/inflammation/vascular) transformed to 3-D by the aforementioned SfS 3-D algorithms. The best algorithm was selected and inter-rater agreement was calculated.
RESULTS: Four publicly available SfS algorithms were compared. Tsai’s SfS algorithm outperformed the rest (selected as best performing in 45/54 SBCE images), followed by Ciuti’s algorithm (best performing in 7/54 images) and Torreão’s (in 1/54 images). In 26/54 images; Tsai’s algorithm was unanimously selected as the best performing 3-D representation SfS software. Tsai’s 3-D algorithm superiority was independent of lesion category (protrusion/inflammatory/vascular; P = 0.678) and/or CE system used to obtain the 2-D images (MiroCam®/PillCam®; P = 0.558). Lastly, the inter-observer agreement was good (kappa = 0.55).
CONCLUSION: 3-D representation software offers a plausible alternative for 3-D representation of conventional capsule endoscopy images (until optics technology matures enough to allow hardware enabled-“real” 3-D reconstruction of the gastrointestinal tract).
Collapse
|
18
|
Koulaouzidis A, Karargyris A. Use of enhancement algorithm to suppress reflections in 3-D reconstructed capsule endoscopy images. World J Gastrointest Endosc 2013; 5:465-467. [PMID: 24044049 PMCID: PMC3773862 DOI: 10.4253/wjge.v5.i9.465] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 08/01/2013] [Indexed: 02/05/2023] Open
Abstract
In capsule endoscopy (CE), there is research to develop hardware that enables ‘‘real’’ three-dimensional (3-D) video. However, it should not be forgotten that ‘‘true’’ 3-D requires dual video images. Inclusion of two cameras within the shell of a capsule endoscope though might be unwieldy at present. Therefore, in an attempt to approximate a 3-D reconstruction of the digestive tract surface, a software that recovers information-using gradual variation of shading-from monocular two-dimensional CE images has been proposed. Light reflections on the surface of the digestive tract are still a significant problem. Therefore, a phantom model and simulator has been constructed in an attempt to check the validity of a highlight suppression algorithm. Our results confirm that 3-D representation software performs better with simultaneous application of a highlight reduction algorithm. Furthermore, 3-D representation follows a good approximation of the real distance to the lumen surface.
Collapse
|
19
|
Koulaouzidis A, Dabos KJ. Looking forwards: not necessarily the best in capsule endoscopy? Ann Gastroenterol 2013; 26:365-367. [PMID: 24714324 PMCID: PMC3959474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 02/17/2013] [Indexed: 11/12/2022] Open
Affiliation(s)
- Anastasios Koulaouzidis
- Centre of Liver & Digestive Disorders, The Royal Infirmary of Edinburgh (Anastasios Koulaouzidis, Konstantinos J. Dabos), Scotland, UK
| | - Konstantinos J Dabos
- Centre of Liver & Digestive Disorders, The Royal Infirmary of Edinburgh (Anastasios Koulaouzidis, Konstantinos J. Dabos), Scotland, UK ; Medical School, The University of Edinburgh (Konstantinos J. Dabos), Scotland, UK
| |
Collapse
|