Copyright
©The Author(s) 2025.
World J Hepatol. Apr 27, 2025; 17(4): 103330
Published online Apr 27, 2025. doi: 10.4254/wjh.v17.i4.103330
Published online Apr 27, 2025. doi: 10.4254/wjh.v17.i4.103330
Table 1 Characteristics of studies included for analysis, n (%)
Ref. | Year | Country | IF | Indication(s) for resection | Sample size (training set) | Study design/sites | Outcome(s) | Event | Predictors in final model (number and list) | EPV | Competitor(s) |
Model development only | |||||||||||
Fang et al[21] | 2021 | China | 5.738 | HCC (BCLC criteria) | 378 | RC/S | PHLF-ISGLS | 163 (43.1) | 6: Cirrhosis; PT; tumor size; ICG-R 15%; blood loss; APRI | 27.2 | CP score, ALBI score, MELD score |
Meng et al[22] | 2023 | China | 2.808 | HCC (major liver resection) | 971 | RC/S | PHLF-ISGLS | 183 (18.8) | 7: Age; BMI; preoperative ascites; intraoperative blood loss; TBIL; spleen volume-to-platelet ratio; prealbumin | 26.1 | ALBI score, MELD score |
Peng et al[23] | 2019 | China | 3.752 | HCC | 164 | RC/S | PHLF-ISGLS | 23 (14.6) | 3: PSR; HIO; major hepatectomy (resection of 3 Couinaud’s segments or more) | 7.7 | NR |
Shi et al[24] | 2021 | China | 3.189 | HCC (open hepatectomy) | 767 | RC/M | "50-50" criteria | 102 (13.3) | 6 (postoperative): Cirrhosis; PH; ALBI score; APRI score; major hepatectomy; intraoperative blood transfusion | 17 | ALBIAPRICP score, MELD scores |
Choi et al[25] | 2020 | Korea | 3.752 | HCC | 1174 | RC/S | INR ≥ 1.5 or TBIL ≥ 2.9 mg/dL on or after POD 5 | 100 (8.5) | 7: Sex; age; major resection; PLT; Alb; PT; ICG R15% | 14.3 | Previous scoring systems, no specified |
Xu et al[26] | 2021 | China | 3.421 | HCC | 258 | RC/S | PHLF-ISGLS (grade A-B) | 92 (35.66) | 4: Bilirubin; PCT; Alb; PH | 23 | PALBI score, ALBI score, MELD score |
Mai et al[27] | 2020 | China | 4.348 | HCC (hemihepatectomy) | 265 | RC/S | PHLF-ISGLS (grade B-C) | 66 (24.9) | 5: PLT count; PT; TBIL; AST; standardized FLR (sFLR) | 13.2 | CP grade, MELD score, ALBI score, FIB-4 APRI |
Yugawa et al[28] | 2022 | Japan | 3.253 | HCC | 451 | RC/M | PHLF-ISGLS (grade B-C) | 30 (6.7) | 4: APRI; MELD score; operating time (minute); intraoperative blood loss (mL) | 7.5 | Each of these final individual predictors |
Zhu et al[29] | 2020 | China | 5.374 | HCC (major liver resection with HBV) | 101 | RC/S | Encephalopathy with hyperbilirubinemia, TBIL > 4.1 mg/dL without an obstruction or bile leak, INR > 2.5, and ascites (drainage > 500 mL/day) | 15 (14.9) | 2: ICG-R15%Radiomics scores = -4.712031 - 1.529694 × 10-4 × minimum intensity + 5.788767 × uniformity + 7.658610 × energy - 3.207572 × 10-9 × cluster prominence (GLCM) - 1.566187 × 10-6 × minimum intensity (GLCM) | 7.5 | Clinical prediction model radiomics signature |
Lee et al[30] | 2020 | Korea | 2.885 | PHCC (major liver resection with bile duct resection) | 348 | RC/S | PHLF-ISGLS (grade B-C) | 40 (11.4) | 5: Sex; Alb; preoperative cholangitis; FLRV/body weight; portal vein resection | 8 | NR |
Cho et al[31] | 2022 | Korea | 4.321 | HCC | 160 | RC/S | PHLF-ISGLS (grade B-C) | 24 (15) | 5: MRE-LS; low serum albumin; major hepatic resection; higher ALBI score; higher serum AFP | 4.8 | Single biomarker(s) MRE-LSALBI score, ICG R15%, FIB-4 APRI |
Li et al[32] | 2021 | China | 3.297 | HCC, ICC, hepatic hemangioma, intrahepatic cholelithiasis, metastatic hepatoma, other diseases | 1080 | RC/S | PHLF-ISGLS | 622 (57.6) | 9: Age; gender; PLT; Cr; GGT; fibrinogen; thrombin time; HBe antigen; number of resected liver segments | 69.1 | NR |
Zhang et al[33] | 2022 | China | 4.964 | HCC | 1081 | RC/S | PHLF-ISGLS | 113 (10.5) | 7: BMI; ICG-R15%; EHBF; INR; tumor size; operation method; HIO time | 16.1 | NR |
Wang et al[34] | 2022 | China | 4.964 | HCC | 416 | RC/M | "50-50" criteria | 96 (23.08) | 5: PH; extent of resection; ALT; TBIL; PLT | 19.2 | FIB-4 score, APRI score, ALBI score, MELD score |
Prodeau et al[35] | 2019 | France | 30.083 | HCC | 343 | RC/M | PHLF-ISGLS (grade B-C) | 132 (38.5) | 4 (postoperative): Non converted laparoscopic liver resection; RTLV; PLT count; blood loss | 33 | NR |
Xiang et al[36] | 2021 | China | 3.253 | HCC (huge) | 131 | RC/S | PHLF-ISGLS | 41 (31.3) | 3: Rad score; MELD score; extent of resection | 13.7 | CP score, MELD score, ALBI score |
Zhong et al[37] | 2021 | China | 4.501 | HCC | 383 | RC/S | PHLF-ISGLS (grade B-C) | 59 (15.4) | 6: Cirrhosis; major hepatectomy; ascites; intraoperative blood loss (mL); PALBI score; FIB-4 score | 9.8 | CP score, MELD score, ALBI score, APRI score, PALBI score, FIB-4 score |
Chin et al[38] | 2020 | Singapore | 3.282 | HCCCRLM | 472 | RC/S | "50-50" criteria | 22 (4.7) | 3: ALBI index; ln (POD1 bilirubin/pre-op bilirubin); PT | 7.3 | NR |
Morino et al[39] | 2023 | Japan | 3.282 | No limited to liver tumor | 597 | RC/S | PHLF-ISGLS (grade B-C) | 42 (7.03) | 3: Rem-ALPlat index; number of PMs; blood loss | 14 | Rem-ALPlat alone |
Wang et al[40] | 2022 | China | 5.783 | HCC | 612 | RC/M | PHLF-ISGLS | 137 (22.4) | 5: PLT count; age; Cr; INR; AFP | 27.4 | ALBI FIB-4 APRI MELD CTP |
Dhir et al[41] | 2021 | United States | 3.253 | HCC (partial lobectomy, right lobectomy, left lobectomy, and trisegmentectomy) | 7376 | RC/M | PHLF-ISGLS (grade B-C) | 226 (3.1) | 20: Age; BMI; sex; diabetes status; ascites; bleeding disorder; dyspnea; steroid; biliary stent; ASA score; neoadjuvant therapy; HBV or HCV; concurrent partial resections; biliary reconstruction; procedure type; preoperative sodium; preoperative Cr; preoperative Alb; preoperative bilirubin; preoperative INR | 11.3 | NR |
Model development and external validation | |||||||||||
Lei et al[42] | 2022 | China | 5.738 | HCC (major hepatectomy) | 688 | RC/M | PHLF-ISGLS (grade B-C) | 93 (13.5) | 5: Age; sex; TBIL; PT; CSPH | 18.6 | MELDALBI score |
Xu et al[43] | 2022 | China | 3.253 | HCC (huge) | 343 | RC/M | PHLF-ISGLS (grade B-C) | 52 (15.2) | 5: MALBI grade; CP class; intraoperative blood loss; cirrhosis; INR | 10.4 | ALBI scores, CP score |
Peng et al[44] | 2022 | China | 7.034 | HCC | 121 | RC/M | PHLF-ISGLS | 48 (39.67) | 3: CT-derived ECV; serum Alb; serum TBIL | 16 | ALBI score |
Ye et al[45] | 2020 | China | 4.638 | HCC (positive for HBV) | 900 | RC/M | PHLF-ISGLS (grade B-C) | 121 (13.5) | 6: TBIL; PLT count; prealbumin; AST; PT; sFLR (%) | 20.2 | CP grade MELDALBIPALBIAPRI |
Hobeika et al[46] | 2022 | France | 11.782 | HCC | 305 | RC/M | PHLF-ISGLS (grade B-C) | 19 (6.2) | 4: MELD score; FIB-4 score (HCV 0/1); liver surface nodularity score; future liver remnant ratio volume (%) | 4.8 | Based on pathological data and HVPG measurement (two invasive models): IB and IB + MELD score, model |
Li et al[47] | 2022 | China | 3.388 | HCC | 199 | RC, PC/M | PHLF-ISGLS | 46 (23.12) | 6: Tumor number; PM; blood loss preoperative PLT; ascites; anticoagulants | 7.7 | Dasari et al[48] and Citterio et al[49] |
Chen et al[50] | 2021 | China | 5.738 | HCC (hemihepatectomy) | 111 | RC/M | PHLF-ISGLS | 56 (50.45) | 3: Radiomics score (from 24 radiomics features); PLT count; tumor size | 18.7 | Clinical model Radiomics model |
Shen et al[51] | 2019 | China | 1.817 | HCC | 325 | RC/M | PHLF-ISGLS | 27 (8.3) | 4: Serum TBIL; serum Cr; intraoperative hemorrhage; CSPH | 6.8 | MELD score, ALBI score |
Ding et al[52] | 2023 | China | 5.738 | HCC | 271 | RC/M | PHLF-ISGLS (grade B-C) | 156 (37.1) state: Total sample | 4: ASA score; SMI; Child-Pugh score; MELD score | Cannot be calculated | NR |
Xu et al[53] | 2021 | China | 5.065 | No limited to liver diseases | 344 | RC/M | PHLF-ISGLS | 91 (26.5) | 5: TBIL; INR; PLT count; extent of resection; blood loss | 18.2 | MELD score, ALBI score, PALBI score |
Wang et al[54] | 2021 | China | 13.787 | HCC | 1036 | RC/M | PHLF-ISGLS (grade B-C) | 105 (10.1) | 6: TBIL; Alb; GGT; PT; CSPH; planned extent of resection | 17.5 | Child-Pugh score, MELD score, ALBI score, EASL recommended algorithm |
External validation of pre-existing model | |||||||||||
Guo et al[55] | 2021 | China | 4.478 | HCC (major hepatectomy) | 745 | RC/M | "50-50" criteria | 103 (13.8) | 1: Each of the following scores (ALBI; MELD; APRI; FIB4; PALBI; King’s score) | 103 | ALBI, MELD, APRI, FIB4, PALBI, King’s score |
Noji et al[56] | 2022 | Japan | 8.265 | PHCC (major hepatectomy with extrahepatic bile duct resection) | 254 | RC/S | PHLF-ISGLS (grade B-C) | 71 (27.95) | 4: FLRV; jaundice at presentation; immediate preoperative bilirubin > 50 mmol/L (> 2.9 mg/dL); preoperative cholangitis | 17.8 | NR |
Table 2 Description of model development, performance, and evaluation within included studies
Ref. | Model development | Model performance | Model evaluation | Clinical effectiveness | ||||||||||
Purpose | Blind edpredictor assessment | Predictor selection for modelling | Predictor selection during modelling | Missing data | Statistical modelling method | Model calibration performed | Model discrimination assessment | AUC (95%CI) (training model) | Internalvalidity assessment | AUC (95%CI) | Externalvalidity assessment | AUC (95%CI) | ||
Model development only | ||||||||||||||
Fang et al[21] | Binary | NR | Univariate association | NR | NR | MLR | Yes, calibration plots | Yes, AUC and CI | 0.845 (0.806-0.884) | Yes, split sample | 0.854 (0.782-0.926) | NR | NR | No study |
Meng et al[22] | Binary | NR | Univariate association | Stepwise | Yes | MLR | Yes, calibration plots | Yes, AUC only | 0.697 | Yes, bootstraps | 0.668 | NR | NR | No study |
Peng et al[23] | Binary | NR | Univariate association | NR | NR | MLR | NR | Yes, AUC and CI | 0.867 (0.790-0.943) | NR | NR | NR | NR | No study |
Shi et al[24] | Binary | NR | Univariate association | Forward | Yes | MLR | NR | Yes, AUC and CI | 0.844 (0.801-0.887) | NR | NR | NR | NR | Developed online calculators |
Choi et al[25] | Binary | NR | A bootstrap resampling approach | Backward | Yes | MLR | Yes, calibration curve and HL test | Yes, AUC and CI | 0.737 (0.687-0.787) | Yes, split sample | 0.672 (0.577-0.767) | NR | NR | No study |
Xu et al[26] | Binary | NR | NR | NR | Yes | Improved based on original model | NR | Yes, AUC and CI | 0.772 (0.716-0.822) | NR | NR | NR | NR | No study |
Mai et al[27] | Binary | NR | Univariate association | NR | Yes | ANN | Yes, calibration plots and HL test | Yes, AUC and CI | 0.88 (0.836-0.925) | Yes, split sample | 0.876 (0.801-0.950) | NR | NR | No study |
Yugawa et al[28] | Binary | NR | Univariate association | NR | Yes | MLR | NR | Yes, AUC only | 0.88 | NR | NR | NR | NR | No study |
Zhu et al[29] | Binary | NR | Univariate association and LASSO regression | Forward | NR | MLR | Yes, calibration curve and HL test | Yes, AUC and CI | 0.894 (0.823-0.964) | NR | NR | NR | NR | No study |
Lee et al[30] | Binary | NR | Univariate association | Backward | Yes | MLR | Yes, HL test | Yes, AUC and CIs | 0.853 (0.802-0.904) | Yes, CV and bootstraps | 0.852 (0.795-0.910) | NR | NR | No study |
Cho et al[31] | Binary | NR | Univariate association with the Kaplan-Meier plots | Backward | Yes | Cox regression | NR | Yes, AUC with DeLong test | 0.877 (0.805-0.948) | Yes, CV | 0.8 | NR | NR | No study |
Li et al[32] | Binary | NR | Univariate association | Backward | Yes | MLR | Yes, calibration plots and HL test | Yes, AUC and CI | 0.726 (0.696-0.760) | Yes, bootstraps | 0.717 (0.663-0.770) | NR | NR | No study |
Zhang et al[33] | Binary | NR | Univariate association | Forest algorithm | Yes | MLR | Yes, calibration plots | Yes, AUC and CI | 0.773 (0.729-0.818) | NR | NR | NR | NR | No study |
Wang et al[34] | Binary | NR | Univariate association | NR | Yes | MLR | Yes, calibration curve | Yes, AUC and CI | 0.857 (0.789-0.925) | Yes, split sample | 0.753 (0.696-0.809) | NR | NR | No study |
Prodeau et al[35] | Binary | NR | Bivariate ordinal logistic regression model | Backward | Yes | MLR | Yes, Lipsitz and Pulkstenis-Robinson tests | Yes, AUC only | 0.77 | Yes, bootstraps | 0.85 | NR | NR | No study |
Xiang et al[36] | Binary | NR | Univariate association and LASSO regression | NR | Yes | MLR | Yes, calibration plots and HL test | Yes, AUC and CI | 0.842 (0.761-0.922) | Yes, split sample | 0.863 (0.750-0.975) | NR | NR | No study |
Zhong et al[37] | Binary | NR | Univariate association | NR | Yes | MLR | Yes, calibration plots | Yes, AUC and CI | 0.832 (0.777-0.886) | Yes, split sample | 0.803 (0.723-0.883) | NR | NR | No study |
Chin et al[38] | Binary | NR | Univariate association | LASSO method | Yes | Penalized logistic regression | Yes, HL test | Yes, AUC only | 0.823 | NR | NR | NR | NR | No study |
Morino et al[39] | Binary | NR | Univariate association | Stepwise | NR | MLR | NR | NR | 0.877 | NR | NR | NR | NR | No study |
Wang et al[40] | Binary | NR | SHAP analysis | NR | Yes | ML | NR | Yes, AUC only | 0.944 (0.924-0.964) | Yes, split sample | 0.870 (0.791-0.950) | No external validity, just a split sample like Internal validity | NR | No study |
Dhir et al[41] | Binary | NR | Univariate association | NR | Yes | MLR | Yes, calibration plots and HL test | Yes, AUC only | 0.78 | Yes, split sample | 0.78 | NR | NR | No study |
Model development and external validation | ||||||||||||||
Lei et al[42] | Binary | NR | The squares of the Spearman correlation coefficients | LASSO method | Yes | MLR | Yes, calibration curve | Yes, AUC with DeLong test | 0.73 (0.69-0.76) | Yes, CV (10-fold) | 0.73 (0.69-0.76) | Different patient population (other two hospitals) | 0.72 (0.65-0.78) | No study |
Xu et al[43] | Binary | NR | Univariate association | NR | Yes | MLR | Yes, calibration curve | Yes, AUC only | 0.863 (0.812-0.914) | Yes, split sample | 0.823 (0.737-0.909) | Different patient population | 0.74 (0.624-0.856) | No study |
Peng et al[44] | Binary | NR | Univariate association | NR | Yes | MLR | Yes, calibration curve and HL test | Yes, AUC with Delong test | 0.828 (0.756-0.901) | NR | NR | Different patient population | 0.821 (0.727-0.914) | No study |
Ye et al[45] | Binary | NR | Univariate association | Forest algorithm | Yes | MLR | Yes, calibration plots | Yes, AUC and CI | 0.868 (0.811-0.926) | Yes, split sample | 0.868 (0.811-0.926) | Different patient population | 0.82 (0.756-0.861) | Yes |
Hobeika et al[46] | Binary | NR | Binomial logistic regressions | Forward/backward | Yes | MLR | Yes, calibration plots and HL test | Yes, AUC with DeLong test | 0.77 (0.667, 0.872) | NR | NR | Different patient population | 0.888 (0.809-0.968) | No study |
Li et al[47] | Binary | NR | Univariate association | Forward | Yes | MLR | Yes, calibration curve | Yes, AUC only | 0.911 (0.865-0.958) | NR | NR | Different time period | 0.714 (0.697-0.902) | No study |
Chen et al[50] | Binary | NR | Univariate association; Pearson’s correlation coefficients | NR | Yes | MLR | NR | Yes, AUC only | 0.956 (0.955-0.962) | NR | NR | Different patient population | 0.844 (0.833-0.886) | No study |
Shen et al[51] | Binary | NR | Univariate association | NR | NR | MLR | Yes, calibration curve | Yes, AUC and CI | 0.818 (0.735-0.901) | NR | NR | Different patient population | 0.906 (0.833-0.979) | No study |
Ding et al[52] | Binary | NR | Univariate association | NR | Yes | MLR | Yes, calibration curve and HL test | Yes, AUC only | 0.91 | Yes, split sample | 0.82 | Different patient population | 0.89 | No study |
Xu et al[53] | Binary | NR | LASSO regression with 10-fold cross-validation | LASSO method | NR | MLR | Yes, calibration curve | Yes, AUC with Delong test | 0.838 (0.790-0.885) | Yes, split sample | 0.788 (0.693-0.884) | Different patient population | 0.750 (0.632-0.868) | No study |
Wang et al[54] | Binary Mortality + OS | NR | Univariate association | Backward | NR | MLR | Yes, calibration plots | Yes, AUC only | 0.883 (0.852-0.915) | Yes, split sample | 0.851 | Different patient population | 0.856 | No study |
External validation of pre-existing model | ||||||||||||||
Guo et al[55] | Binary | NR | NR | NR | Yes | NR | Yes, loess-smoothed plots | Yes, AUC with DeLong test | NR | NR | NR | NR | 0.64 (0.58-0.69); 0.58 (0.52-0.64); 0.59 (0.53-0.64); 0.57 (0.51-0.63); 0.57 (0.51-0.63); 0.61 (0.55-0.67) | No study |
Noji et al[56] | Binary | NR | NR | NR | Yes | NR | NR | Yes, AUC only | NR | NR | NR | NR | 0.62 | No study |
Table 3 Quality assessment of included studies using the prediction model risk of bias assessment tool
Ref. | Year (publication) | Risk of bias | Applicability | Overall assessment | ||||||
Participants | Predictors | Outcome | Analysis | Participants | Predictors | Outcome | Risk of bias | Applicability | ||
Peng et al[23] | 2019 | L | H | L | H | L | L | L | H | L |
Prodeau et al[35] | 2019 | L | L | L | H | L | L | L | H | L |
Shen et al[51] | 2019 | L | L | L | H | L | L | L | H | L |
Choi et al[25] | 2020 | L | L | L | H | L | L | L | H | L |
Mai et al[27] | 2020 | L | L | L | H | L | L | L | H | L |
Zhu et al[29] | 2020 | L | L | L | H | L | L | L | H | L |
Lee et al[30] | 2020 | L | L | L | H | L | L | L | H | L |
Chin et al[38] | 2020 | L | L | L | H | L | L | L | H | L |
Ye et al[45] | 2020 | L | L | L | H | L | L | L | H | L |
Fang et al[21] | 2021 | L | L | L | H | L | L | L | H | L |
Shi et al[24] | 2021 | L | L | L | H | L | L | L | H | L |
Xu et al[26] | 2021 | L | L | L | H | L | L | L | H | L |
Cho et al[31] | 2021 | L | L | L | H | L | L | L | H | L |
Li et al[32] | 2021 | L | L | L | H | L | L | L | H | L |
Xiang et al[36] | 2021 | L | L | L | H | L | L | L | H | L |
Zhong et al[37] | 2021 | L | L | L | H | L | L | L | H | L |
Dhir et al[41] | 2021 | L | L | L | H | L | L | L | H | L |
Chen et al[50] | 2021 | L | L | L | H | L | L | L | H | L |
Xu et al[53] | 2021 | L | L | L | H | L | L | L | H | L |
Wang et al[54] | 2021 | L | L | L | H | L | L | L | H | L |
Guo et al[53] | 2021 | L | L | L | H | L | L | L | H | L |
Yugawa et al[28] | 2022 | L | L | L | H | L | L | L | H | L |
Zhang et al[33] | 2022 | L | L | L | H | L | L | L | H | L |
Wang et al[34] | 2022 | L | L | L | H | L | L | L | H | L |
Noji et al[56] | 2022 | L | L | L | H | L | L | L | H | L |
Wang et al[40] | 2022 | L | L | L | H | L | L | L | H | L |
Lei et al[42] | 2022 | L | L | L | H | L | L | L | H | L |
Xu et al[43] | 2022 | L | L | L | H | L | L | L | H | L |
Peng et al[44] | 2022 | L | L | L | H | L | L | L | H | L |
Hobeika et al[46] | 2022 | L | L | L | H | L | L | L | H | L |
Li et al[47] | 2022 | L | L | L | H | L | L | L | H | L |
Meng et al[22] | 2023 | L | L | L | H | L | L | L | H | L |
Morino et al[39] | 2023 | L | L | L | H | L | L | L | H | L |
Ding et al[52] | 2023 | L | L | L | H | L | L | L | H | L |
- Citation: Wang X, Zhu MX, Wang JF, Liu P, Zhang LY, Zhou Y, Lin XX, Du YD, He KL. Multivariable prognostic models for post-hepatectomy liver failure: An updated systematic review. World J Hepatol 2025; 17(4): 103330
- URL: https://www.wjgnet.com/1948-5182/full/v17/i4/103330.htm
- DOI: https://dx.doi.org/10.4254/wjh.v17.i4.103330