Systematic Reviews
Copyright ©The Author(s) 2025.
World J Hepatol. Apr 27, 2025; 17(4): 103330
Published online Apr 27, 2025. doi: 10.4254/wjh.v17.i4.103330
Table 1 Characteristics of studies included for analysis, n (%)
Ref.
Year
Country
IF
Indication(s) for resection
Sample size (training set)
Study design/sites
Outcome(s)
Event
Predictors in final model (number and list)
EPV
Competitor(s)
Model development only
Fang et al[21]2021China5.738HCC (BCLC criteria)378RC/SPHLF-ISGLS163 (43.1)6: Cirrhosis; PT; tumor size; ICG-R 15%; blood loss; APRI27.2CP score, ALBI score, MELD score
Meng et al[22]2023China2.808HCC (major liver resection)971RC/SPHLF-ISGLS183 (18.8)7: Age; BMI; preoperative ascites; intraoperative blood loss; TBIL; spleen volume-to-platelet ratio; prealbumin26.1ALBI score, MELD score
Peng et al[23]2019China3.752HCC164RC/SPHLF-ISGLS23 (14.6)3: PSR; HIO; major hepatectomy (resection of 3 Couinaud’s segments or more)7.7NR
Shi et al[24]2021China3.189HCC (open hepatectomy)767RC/M"50-50" criteria102 (13.3)6 (postoperative): Cirrhosis; PH; ALBI score; APRI score; major hepatectomy; intraoperative blood transfusion17ALBIAPRICP score, MELD scores
Choi et al[25]2020Korea3.752HCC1174RC/SINR ≥ 1.5 or TBIL ≥ 2.9 mg/dL on or after POD 5100 (8.5)7: Sex; age; major resection; PLT; Alb; PT; ICG R15%14.3Previous scoring systems, no specified
Xu et al[26]2021China3.421HCC258RC/SPHLF-ISGLS (grade A-B)92 (35.66)4: Bilirubin; PCT; Alb; PH23PALBI score, ALBI score, MELD score
Mai et al[27]2020China4.348HCC (hemihepatectomy)265RC/SPHLF-ISGLS (grade B-C)66 (24.9)5: PLT count; PT; TBIL; AST; standardized FLR (sFLR)13.2CP grade, MELD score, ALBI score, FIB-4 APRI
Yugawa et al[28]2022Japan3.253HCC451RC/MPHLF-ISGLS (grade B-C)30 (6.7)4: APRI; MELD score; operating time (minute); intraoperative blood loss (mL)7.5Each of these final individual predictors
Zhu et al[29]2020China5.374HCC (major liver resection with HBV)101RC/SEncephalopathy with hyperbilirubinemia, TBIL > 4.1 mg/dL without an obstruction or bile leak, INR > 2.5, and ascites (drainage > 500 mL/day)15 (14.9)2: ICG-R15%Radiomics scores = -4.712031 - 1.529694 × 10-4 × minimum intensity + 5.788767 × uniformity + 7.658610 × energy - 3.207572 × 10-9 × cluster prominence (GLCM) - 1.566187 × 10-6 × minimum intensity (GLCM)7.5Clinical prediction model radiomics signature
Lee et al[30]2020Korea2.885PHCC (major liver resection with bile duct resection)348RC/SPHLF-ISGLS (grade B-C)40 (11.4)5: Sex; Alb; preoperative cholangitis; FLRV/body weight; portal vein resection8NR
Cho et al[31]2022Korea4.321HCC160RC/SPHLF-ISGLS (grade B-C)24 (15)5: MRE-LS; low serum albumin; major hepatic resection; higher ALBI score; higher serum AFP4.8Single biomarker(s) MRE-LSALBI score, ICG R15%, FIB-4 APRI
Li et al[32]2021China3.297HCC, ICC, hepatic hemangioma, intrahepatic cholelithiasis, metastatic hepatoma, other diseases1080RC/SPHLF-ISGLS622 (57.6) 9: Age; gender; PLT; Cr; GGT; fibrinogen; thrombin time; HBe antigen; number of resected liver segments69.1NR
Zhang et al[33]2022China4.964HCC1081RC/SPHLF-ISGLS113 (10.5)7: BMI; ICG-R15%; EHBF; INR; tumor size; operation method; HIO time16.1NR
Wang et al[34]2022China4.964HCC416RC/M"50-50" criteria96 (23.08)5: PH; extent of resection; ALT; TBIL; PLT19.2FIB-4 score, APRI score, ALBI score, MELD score
Prodeau et al[35]2019France30.083HCC343RC/MPHLF-ISGLS (grade B-C)132 (38.5) 4 (postoperative): Non converted laparoscopic liver resection; RTLV; PLT count; blood loss33NR
Xiang et al[36]2021China3.253HCC (huge)131RC/SPHLF-ISGLS41 (31.3)3: Rad score; MELD score; extent of resection13.7CP score, MELD score, ALBI score
Zhong et al[37]2021China4.501HCC383RC/SPHLF-ISGLS (grade B-C)59 (15.4)6: Cirrhosis; major hepatectomy; ascites; intraoperative blood loss (mL); PALBI score; FIB-4 score9.8CP score, MELD score, ALBI score, APRI score, PALBI score, FIB-4 score
Chin et al[38]2020Singapore3.282HCCCRLM472RC/S"50-50" criteria22 (4.7)3: ALBI index; ln (POD1 bilirubin/pre-op bilirubin); PT7.3NR
Morino et al[39]2023Japan3.282No limited to liver tumor597RC/SPHLF-ISGLS (grade B-C)42 (7.03)3: Rem-ALPlat index; number of PMs; blood loss14Rem-ALPlat alone
Wang et al[40]2022China5.783HCC612RC/MPHLF-ISGLS137 (22.4)5: PLT count; age; Cr; INR; AFP27.4ALBI FIB-4 APRI MELD CTP
Dhir et al[41]2021United States3.253HCC (partial lobectomy, right lobectomy, left lobectomy, and trisegmentectomy)7376RC/MPHLF-ISGLS (grade B-C)226 (3.1)20: Age; BMI; sex; diabetes status; ascites; bleeding disorder; dyspnea; steroid; biliary stent; ASA score; neoadjuvant therapy; HBV or HCV; concurrent partial resections; biliary reconstruction; procedure type; preoperative sodium; preoperative Cr; preoperative Alb; preoperative bilirubin; preoperative INR11.3NR
Model development and external validation
Lei et al[42]2022China5.738HCC (major hepatectomy)688RC/MPHLF-ISGLS (grade B-C)93 (13.5)5: Age; sex; TBIL; PT; CSPH18.6MELDALBI score
Xu et al[43]2022China3.253HCC (huge)343RC/MPHLF-ISGLS (grade B-C)52 (15.2)5: MALBI grade; CP class; intraoperative blood loss; cirrhosis; INR10.4ALBI scores, CP score
Peng et al[44]2022China7.034HCC121RC/MPHLF-ISGLS48 (39.67)3: CT-derived ECV; serum Alb; serum TBIL16ALBI score
Ye et al[45]2020China4.638HCC (positive for HBV)900RC/MPHLF-ISGLS (grade B-C)121 (13.5)6: TBIL; PLT count; prealbumin; AST; PT; sFLR (%)20.2CP grade MELDALBIPALBIAPRI
Hobeika et al[46]2022France11.782HCC305RC/MPHLF-ISGLS (grade B-C)19 (6.2)4: MELD score; FIB-4 score (HCV 0/1); liver surface nodularity score; future liver remnant ratio volume (%)4.8Based on pathological data and HVPG measurement (two invasive models): IB and IB + MELD score, model
Li et al[47]2022China3.388HCC199RC, PC/MPHLF-ISGLS46 (23.12)6: Tumor number; PM; blood loss preoperative PLT; ascites; anticoagulants7.7Dasari et al[48] and Citterio et al[49]
Chen et al[50]2021China5.738HCC (hemihepatectomy)111RC/MPHLF-ISGLS56 (50.45)3: Radiomics score (from 24 radiomics features); PLT count; tumor size18.7Clinical model Radiomics model
Shen et al[51]2019China1.817HCC325RC/MPHLF-ISGLS27 (8.3)4: Serum TBIL; serum Cr; intraoperative hemorrhage; CSPH6.8MELD score, ALBI score
Ding et al[52]2023China5.738HCC271RC/MPHLF-ISGLS (grade B-C)156 (37.1) state: Total sample4: ASA score; SMI; Child-Pugh score; MELD scoreCannot be calculatedNR
Xu et al[53]2021China5.065No limited to liver diseases344RC/MPHLF-ISGLS91 (26.5)5: TBIL; INR; PLT count; extent of resection; blood loss18.2MELD score, ALBI score, PALBI score
Wang et al[54]2021China13.787HCC1036RC/MPHLF-ISGLS (grade B-C)105 (10.1)6: TBIL; Alb; GGT; PT; CSPH; planned extent of resection17.5Child-Pugh score, MELD score, ALBI score, EASL recommended algorithm
External validation of pre-existing model
Guo et al[55]2021China4.478HCC (major hepatectomy)745RC/M"50-50" criteria103 (13.8)1: Each of the following scores (ALBI; MELD; APRI; FIB4; PALBI; King’s score)103ALBI, MELD, APRI, FIB4, PALBI, King’s score
Noji et al[56]2022Japan8.265PHCC (major hepatectomy with extrahepatic bile duct resection)254RC/SPHLF-ISGLS (grade B-C)71 (27.95)4: FLRV; jaundice at presentation; immediate preoperative bilirubin > 50 mmol/L (> 2.9 mg/dL); preoperative cholangitis17.8NR
Table 2 Description of model development, performance, and evaluation within included studies
Ref.
Model development
Model performance
Model evaluation
Clinical effectiveness
Purpose
Blind edpredictor assessment
Predictor selection for modelling
Predictor selection during modelling
Missing data
Statistical modelling method
Model calibration performed
Model discrimination assessment
AUC (95%CI) (training model)
Internalvalidity assessment
AUC (95%CI)
Externalvalidity assessment
AUC (95%CI)
Model development only
Fang et al[21]BinaryNRUnivariate associationNRNRMLRYes, calibration plotsYes, AUC and CI0.845 (0.806-0.884)Yes, split sample0.854 (0.782-0.926)NRNRNo study
Meng et al[22]BinaryNRUnivariate associationStepwiseYesMLRYes, calibration plotsYes, AUC only0.697Yes, bootstraps 0.668NRNRNo study
Peng et al[23]BinaryNRUnivariate associationNRNRMLRNRYes, AUC and CI0.867 (0.790-0.943)NRNRNRNRNo study
Shi et al[24]BinaryNRUnivariate associationForwardYesMLRNRYes, AUC and CI0.844 (0.801-0.887)NRNRNRNRDeveloped online calculators
Choi et al[25]BinaryNRA bootstrap resampling approachBackwardYesMLRYes, calibration curve and HL testYes, AUC and CI0.737 (0.687-0.787)Yes, split sample0.672 (0.577-0.767)NRNRNo study
Xu et al[26]BinaryNRNRNRYesImproved based on original modelNRYes, AUC and CI0.772 (0.716-0.822)NRNRNRNRNo study
Mai et al[27]BinaryNRUnivariate associationNRYesANNYes, calibration plots and HL testYes, AUC and CI0.88 (0.836-0.925)Yes, split sample0.876 (0.801-0.950)NRNRNo study
Yugawa et al[28]BinaryNRUnivariate associationNRYesMLRNRYes, AUC only0.88NRNRNRNRNo study
Zhu et al[29]BinaryNRUnivariate association and LASSO regressionForwardNRMLRYes, calibration curve and HL testYes, AUC and CI0.894 (0.823-0.964)NRNRNRNRNo study
Lee et al[30]BinaryNRUnivariate associationBackwardYesMLRYes, HL testYes, AUC and CIs0.853 (0.802-0.904)Yes, CV and bootstraps0.852 (0.795-0.910)NRNRNo study
Cho et al[31]BinaryNRUnivariate association with the Kaplan-Meier plotsBackwardYesCox regressionNRYes, AUC with DeLong test0.877 (0.805-0.948)Yes, CV0.8NRNRNo study
Li et al[32]BinaryNRUnivariate associationBackwardYesMLRYes, calibration plots and HL testYes, AUC and CI0.726 (0.696-0.760)Yes, bootstraps 0.717 (0.663-0.770)NRNRNo study
Zhang et al[33]BinaryNRUnivariate associationForest algorithmYesMLRYes, calibration plotsYes, AUC and CI0.773 (0.729-0.818)NRNRNRNRNo study
Wang et al[34]BinaryNRUnivariate associationNRYesMLRYes, calibration curveYes, AUC and CI0.857 (0.789-0.925)Yes, split sample0.753 (0.696-0.809)NRNRNo study
Prodeau et al[35]BinaryNRBivariate ordinal logistic regression modelBackwardYesMLRYes, Lipsitz and Pulkstenis-Robinson testsYes, AUC only0.77Yes, bootstraps 0.85NRNRNo study
Xiang et al[36]BinaryNRUnivariate association and LASSO regressionNRYesMLRYes, calibration plots and HL testYes, AUC and CI0.842 (0.761-0.922)Yes, split sample0.863 (0.750-0.975)NRNRNo study
Zhong et al[37]BinaryNRUnivariate associationNRYesMLRYes, calibration plotsYes, AUC and CI0.832 (0.777-0.886)Yes, split sample0.803 (0.723-0.883)NRNRNo study
Chin et al[38]BinaryNRUnivariate associationLASSO methodYesPenalized logistic regressionYes, HL testYes, AUC only0.823NRNRNRNRNo study
Morino et al[39]BinaryNRUnivariate associationStepwiseNRMLRNRNR0.877NRNRNRNRNo study
Wang et al[40]BinaryNRSHAP analysisNRYesMLNRYes, AUC only0.944 (0.924-0.964)Yes, split sample0.870 (0.791-0.950)No external validity, just a split sample like Internal validity NRNo study
Dhir et al[41]BinaryNRUnivariate associationNRYesMLRYes, calibration plots and HL testYes, AUC only0.78Yes, split sample0.78NRNRNo study
Model development and external validation
Lei et al[42]BinaryNRThe squares of the Spearman correlation coefficientsLASSO methodYesMLRYes, calibration curveYes, AUC with DeLong test0.73 (0.69-0.76)Yes, CV (10-fold)0.73 (0.69-0.76)Different patient population (other two hospitals)0.72 (0.65-0.78)No study
Xu et al[43]BinaryNRUnivariate associationNRYesMLRYes, calibration curveYes, AUC only0.863 (0.812-0.914)Yes, split sample0.823 (0.737-0.909)Different patient population0.74 (0.624-0.856)No study
Peng et al[44]BinaryNRUnivariate associationNRYesMLRYes, calibration curve and HL testYes, AUC with Delong test0.828 (0.756-0.901)NRNRDifferent patient population0.821 (0.727-0.914)No study
Ye et al[45]BinaryNRUnivariate associationForest algorithmYesMLRYes, calibration plotsYes, AUC and CI0.868 (0.811-0.926)Yes, split sample0.868 (0.811-0.926)Different patient population0.82 (0.756-0.861)Yes
Hobeika et al[46]BinaryNRBinomial logistic regressionsForward/backwardYesMLRYes, calibration plots and HL testYes, AUC with DeLong test0.77 (0.667, 0.872)NRNRDifferent patient population0.888 (0.809-0.968)No study
Li et al[47]BinaryNRUnivariate associationForwardYesMLRYes, calibration curveYes, AUC only0.911 (0.865-0.958)NRNRDifferent time period0.714 (0.697-0.902)No study
Chen et al[50]BinaryNRUnivariate association; Pearson’s correlation coefficientsNRYesMLRNRYes, AUC only0.956 (0.955-0.962)NRNRDifferent patient population0.844 (0.833-0.886)No study
Shen et al[51]BinaryNRUnivariate associationNRNRMLRYes, calibration curveYes, AUC and CI0.818 (0.735-0.901)NRNRDifferent patient population0.906 (0.833-0.979)No study
Ding et al[52]BinaryNRUnivariate associationNRYesMLRYes, calibration curve and HL testYes, AUC only0.91Yes, split sample0.82Different patient population0.89No study
Xu et al[53]BinaryNRLASSO regression with 10-fold cross-validationLASSO methodNRMLRYes, calibration curveYes, AUC with Delong test0.838 (0.790-0.885)Yes, split sample0.788 (0.693-0.884)Different patient population0.750 (0.632-0.868)No study
Wang et al[54]Binary Mortality + OSNRUnivariate association BackwardNRMLRYes, calibration plotsYes, AUC only0.883 (0.852-0.915)Yes, split sample0.851Different patient population0.856No study
External validation of pre-existing model
Guo et al[55]BinaryNRNRNRYesNRYes, loess-smoothed plotsYes, AUC with DeLong testNRNRNRNR0.64 (0.58-0.69); 0.58 (0.52-0.64); 0.59 (0.53-0.64); 0.57 (0.51-0.63); 0.57 (0.51-0.63); 0.61 (0.55-0.67)No study
Noji et al[56]BinaryNRNRNRYesNRNRYes, AUC onlyNRNRNRNR0.62No study
Table 3 Quality assessment of included studies using the prediction model risk of bias assessment tool
Ref.
Year (publication)
Risk of bias
Applicability
Overall assessment
Participants
Predictors
Outcome
Analysis
Participants
Predictors
Outcome
Risk of bias
Applicability
Peng et al[23]2019LHLHLLLHL
Prodeau et al[35]2019LLLHLLLHL
Shen et al[51]2019LLLHLLLHL
Choi et al[25]2020LLLHLLLHL
Mai et al[27]2020LLLHLLLHL
Zhu et al[29]2020LLLHLLLHL
Lee et al[30]2020LLLHLLLHL
Chin et al[38]2020LLLHLLLHL
Ye et al[45]2020LLLHLLLHL
Fang et al[21]2021LLLHLLLHL
Shi et al[24]2021LLLHLLLHL
Xu et al[26]2021LLLHLLLHL
Cho et al[31]2021LLLHLLLHL
Li et al[32]2021LLLHLLLHL
Xiang et al[36]2021LLLHLLLHL
Zhong et al[37]2021LLLHLLLHL
Dhir et al[41]2021LLLHLLLHL
Chen et al[50]2021LLLHLLLHL
Xu et al[53]2021LLLHLLLHL
Wang et al[54]2021LLLHLLLHL
Guo et al[53]2021LLLHLLLHL
Yugawa et al[28]2022LLLHLLLHL
Zhang et al[33]2022LLLHLLLHL
Wang et al[34]2022LLLHLLLHL
Noji et al[56]2022LLLHLLLHL
Wang et al[40]2022LLLHLLLHL
Lei et al[42]2022LLLHLLLHL
Xu et al[43]2022LLLHLLLHL
Peng et al[44]2022LLLHLLLHL
Hobeika et al[46]2022LLLHLLLHL
Li et al[47]2022LLLHLLLHL
Meng et al[22]2023LLLHLLLHL
Morino et al[39]2023LLLHLLLHL
Ding et al[52]2023LLLHLLLHL