Review
Copyright ©The Author(s) 2024.
World J Hepatol. Apr 27, 2024; 16(4): 566-600
Published online Apr 27, 2024. doi: 10.4254/wjh.v16.i4.566
Table 1 Effects and molecular mechanisms underlying SiO2NPs induced hepatonanotoxicity
NPs
Size
Tested model
Dose & route of administration
Effects & Mechanism
Ref.
SiO2NPs15 nm (TEM)HepG2 cell1-200 ug/mL for 72hrs.Bcl-2, GSH, Cell viability (decreased); p53, Bax, caspase-3, ROS production, LPO (increased)[85]
Oxidative stress & Apoptosis
SiO2NPs15 nm (TEM)Kupffer cells from Sprague Dawley rats; Sprague Dawley rats50, 100, 200, 400, and 800 μg/mL for 24 h. 50 mg/kg single (i.v.) ROS, AST, LDH, TNFα, H2O2, NO (increased); Kupffer cells (activation); Infiltration of inflammatory cells [80]
Activated Kupffer cells-mediated inflammation in liver toxicity
SiO2NPs30, 50, 70, 300, 1000 nm (TEM)BALB/c male mice10-40 mg/kg (i.v.)ALT, AST (increased)[75]
Acute liver injury
Amorphous SiO2NPs62.26nm (DLS)HepG225, 50, 75, 100 μg/mL, 24 hROS levels; Autophagy and autophagic cell death via PI3K/Akt/mTOR pathway[84]
Oxidative stress
Amorphous SiO2NPsaSiNP-189 (20nm), aSiNP-116 (50nm), aSiNP-26 (110nm), aSiNP-8 (250nm) (EM)HepG210–200 μg/mL, 24 hCholesterol biosynthesis (increased); May affect steroidogenesis & bile formation[19]
Amorphous SiO2NPs19.8 ± 2.7 nm (TEM)HL-7702 cells; BRL-3A cells31.4–500 μg/mL, 72 hp53, Bax, cleaved caspase-3 (increased); GSH levels, caspase-3, Bcl-2 (decrease); Activation of p53/casp-3/Bax/Bcl-2 pathway; Human cells are more sensitive than rat cell[86]
Oxidative stress & apoptosis
SiO2NPs30 nm (TEM)Mouse hepatocytes500 μg/mL, 24 hALT, AST (increased); ALR (blockage); Enlarged autolysosomes [82]
Inflammation
Amorphous SiO2NPs202.3 (DLS)HepG2; ICR mice50 mg/kg b.w. for 24 h (oral)GSH, NADPH oxidase depletion; ROS (increased); Altered GSH metabolism[77]
Oxidative stress
SiO2NPs10 nm (BET)Albino Wistar rats2 mg/kg daily 20, 35 or 50 injections (i.p.)ALP, AST, ALT, LDH, procalcitonin, iron, phosphorus, potassium (increased); Phase I and II drug metabolizing and transporting enzymes (downregulation); Hydropic degeneration, karyopicnosis, Sinusoidal dialation, Kupffer cell hyperplasia, lowered liver index, infiltration of inflammatory cells[79]
Oxidative stress & Inflammation
SiO2NPs15.4 ± 1.8 nm (TEM)Kunming mice (normal & metabolic syndrome model)10 mg/kg b.w. daily 30 d (oral)Liver fibrosis (collagen deposition); Hepatic ballooning; DNA damage (genotoxicity) ROS production, mitochondrial damage, infiltration of inflammatory cells[87]
Mitochondrial instability & inflammation
Mesoporous SiO2NPs109.2 (DLS)L02 cells; BALB/c mice5–120 μg/mL, 24 and 48 h; 50 mg/kg 3 times a week for 3 wk (i.v.) ALT, AST, ROS (increased); NLRP3 inflammasome activation; Pyroptosis via caspase-1 activation[78]
Oxidative stress and inflammation
SiO2NPs58 nm (TEM)L-02 cells6.25, 12.5, 25, 50, and 100 μg/mL) for 12 h and 24 hROS production; ER stress; Activation of EIF2AK3 and ATF6 pathway; Induction of autosome formation[83]
Oxidative stress
SiO2NPs58.04 ± 7.41 (TEM)L02 cells12.5, 25, 50, 100 μg/mL, 24 hAffect mitochondrial quality control (MQC) process, Mitochondrial fission (increased); Induced mitophagy via activated PINK/Parkin signaling pathway; Decreased mitochondrial biogenesis via PGC1α-NRF1-TFAM signaling pathway; Mitochondrial dysfuntion [88]
Mitochondrial dysfunction & oxidative stress
SiO2NPs58.11 ± 7.30 nm (TEM)Sprague dawley rats1.8, 5.4, 16.2 mg/kg b.w. (i.t.)ALT, AST, TG, LDL-C (increased) HDL-C (decreased); Impact on Purine, amino acids metabolism, glucose-alanine cycle[81]
Metabolic disorder
SiO2NPs15nm (XRD)Wistar rat25 and 100 mg/kg b.w. for 28 consecutive days (i.p.)AST, ALT, LDH, NO, MDA, PCO, H2O2, Bax, p53, Caspase-9/3 (increased)[89]
CAT, SOD, GPx, Bcl2 (decreased)
Oxidative stress & apoptosis
SiO2NPs59.98nm (TEM)Free Fatty Acid treated – L-02 cells; ApoE-/- mice1.5, 3, 6 mg/kg b.w once per week for 12 times (i.t.)LDH, AST, ALT, MDA (increased); GSH/GSSG (decreased); Fatty acid synthesis (increased); β-oxidation(decreased); Disturbed amino acid & lipid metabolism; Lipid accumulation leads to ER stress; Downregulated Nrf2 signaling[90]
Oxidative stress, altered lipid metabolism
Table 2 Effects and molecular mechanisms underlying NiONPs & NiNPs induced hepatonanotoxicity
NPs
Size
Tested model
Dose & route of administration
Effects & mechanism
Ref.
NiO NPs44 nm (TEM)HepG2 cells2-100 μg/mL for 24 hCell viability (reduced); ROS (increased); Micronuclei induction, chromatin condensation and DNA damage; bax and caspase-3 (upregulated); bcl-2 (downregulated)[95]
Oxidative stress, apoptosis
NiO NPs20 nm (TEM)Wistar rat0.015, 0.06 or 0.24 mg/kg b.w. twice a week for 6 wk (i.t.)NO, TNOS, iNOS, ·OH, LPO, HO1 (increased); CAT, GSHPx, T-SOD and TAOC, MT1 (decreased)[93]
Oxidative & nitrative stress
NiO NPs20 nm (SEM)Wistar rat0.015, 0.06, and 0.24 mg/kg b.w. twice a week for 6 wk (i.t.)GRP78, CHOP (increased); Activation of PERK/eIF-2α, IRE-1α/XBP-1S, and caspase-12/-9/-3 pathways[16]
ER stress, apoptosis
NiO NPs20 nm (SEM)Wistar rat0.015, 0.06, and 0.24 mg/kg b.w. twice a week for 6 wk (i.t.)ALT, AST, ALP, GGT, IL-1β and IL-6, TNF-α, NIK, IKK-α, NF-κB (increased); IL-4, IL-10, IκB(α) (decreased); Activation of NF-kB signalling pathway[94]
Inflammation
NiO NPs13.16 ± 2.98 nm (TEM)Wistar rat125, 250 and 500 mg/kg single dose (oral)ALP, LDH, ALT, AST, LPO (upregulation); GSH, SOD (downregulation)[92]
Oxidative stress
NiO NPs21.6 ± 3.6 nm (TEM)HepG25, 10, 25, 50 and 100 μg/mL, 24 hHIF-1α, miR210, p53, Caspase-3, 8 and 9, NO, MMP (increased); Phagosome formation by lysosomal pathway[96]
Hypoxia & oxidative stress, apoptosis
NiO NPs44 nm (TEM)Wistar rat; HepG20.015, 0.06, and 0.24 mg/kg twice a week for 9 wk (i.t.); 25-200 μg/mLTGF-β1, Smad2, Smad3, α-SMA, MMP9, TIMP1, EMT (upregulation); E-cadherin, Smad7 (downregulation); activation of TGF-β1/Smad pathway[97]
Hepatic fibrosis, ECM deposition
NiNPs55.8 ± 14.0 nm (TEM)C57/BL6 mice10, 20 and 40 mg/kg/d for 7 and 28 dALT, AST, Ire1α, Perk and Atf6, TG increased; Lipid metabolism dysfunction; Inflammation[98]
ER stress, apoptosis
Table 3 Effects and molecular mechanisms underlying WO3NPs induced hepatonanotoxicity
NPs
Size
Tested model
Dose & route of administration
Effects & mechanism
Ref.
WO3 NPs60-70 nm, length WO3nanorods shorter (125−200 nm) and longer (0.8−2 μm)BALB/c mice2.5/5/10/20 mg/kg/d of shorter WO3 nanorods; 2.5/5/10/20 mg/kg/d longer WO3 nanorods for 14 d (i.p.)ALT, AST; NF-κB, TNF-α, IFN-γ, IL-4 (increased); GSH, SOD (decreased)[17]
Oxidative stress, inflammation
Table 4 Effects and molecular mechanisms underlying CuONPs induced hepatonanotoxicity
NPs
Size
Tested model
Dose & route of administration
Effects & mechanism
Ref.
CuO-NPs33 nm (XRD)Wister rats300 mg/kg b.w. per day for 7 d (i.g.)ALT, AST (increased)[18]
CuO- NPs40 nm (TEM)Mature rats (Rattus norvegicus var. albinos)0.5, 5, and 50 mg/kg b.w./d for 14 d (oral)CAT, GPx, GR (increased) GST (decreased)[100]
CuO-NPsBNPs 4.14-12.82 nm CNPs 4.06-26.82 nm (XRD)Mature mice500 mg/kg b.w. single dose (oral)ALT, AST, P53, Caspase - 3 (increased); Hepatic necrosis[101]
Nano-CuO20-40 μm (TEM)BRL-3A cells; Wister rat5, 10, 20 μg/mL; 10 μg/g b.w. for 60 d (i.n.)ALT, AST, T-BIL, D-BIL, I-BIL (increased) ALP (decreased); SOD (decreased); MDA, iNOS, GSH-PX (increased); MCP-1, IL-1, IL-1β, TNF-α, IL-6 (increased); JNK, PERK, CHOP, ATF4, eIF2α, IRE1, Calpain, GRP78, ATF6, Bax, Caspase-3, Caspase-12 (upregulated)[102]
Oxidative stress induced ER stresspathway activation
CuO-NPsGNPs & CNPsSprague dawley rat50 & 100 mg/kg b.w. twice a week starting before mating (oral)CAT, GSH, GPx (decreased)[103]
CuO-NPs< 50 nm (TEM)Wistar rat5 mg, 10 mg, 25 mg/kg b.w. per day for 9 d (i.p.)Mild to severe Liver tissue damage including necrosis of hepatocyte, anti-inflammatory cell infiltration[104]
Table 5 Effects and molecular mechanisms underlying ZnONPs induced hepatonanotoxicity
NPs
Size
Tested model
Dose & route of administration
Effects & mechanism
Ref.
ZnO NPsMicro size; Nano size 63 nm (SEM)Sprague Dawley rat5, 50, 300, 100, 2000 mg/kg b.w for 14 d (oral) AST, ALT (increased)[20]
ZnO NPs35 nm (TEM)Wistar albino rats2 mg/kg b.w. for 21; Days (i.p.)Histopathological alterations; Kupffer cell activation[106]
Inflammation
ZnO NPs50 nm (TEM)Wistar albino rats600 mg/kg/b.w and 1 g/kg/b.w for 5 dALT, NO, TNF-α, IL-6, CRP, IgG (increased)[107]
Inflammation
ZnO NPs80 nm (TEM)C57BL/6 mice200 mg/kg/d (low dose) and 400 mg/kg/d (high dose) for 90 d (oral)ALT, AST (increased); grp78, grp94, pdi-3, xbp-1(increased ER stress related proteins); Increased phosphorylation of PERK & eIF2α; caspase-3, 9, 12 (apoptosis); phosphorylation of JNK, and CHOP/GADD153; upregulation of Chop, Bax[105]
ERstress mediated activation of apoptotic pathway
ZnO NPs30 nm (TEM)HepG2 cell14–20 μg/mL for 12 hAST, ALT, Bax (increased) Bcl2 (decreased) LDH leakage; JNK, P38 activation[108]
Apoptosis
ZnO NPsLess than 15 nm (TEM)Sprague dawley albino rats100, 200, 300 mg/kg b.w. per day for 14 d (oral) ALT, AST, ALP (increased); Bax, caspase-3 (increased); Bcl2 (decreased); Modulation of JNK/p38MAPK & STAT-3 signalling pathways[109]
Apoptosis
ZnO NPs20-50 nm (TEM)HepG2 cells; sprague dawley rat20 μg/mL for 24 h; 25 mg/kg b.w. for 7 d (i.p.)Cell inactivation; Intracellular calcium overload; Mitochondrial damage[110]
Oxidative stress
Table 6 Effects and molecular mechanisms underlying TiO2NPs induced hepatonanotoxicity
NPs
Size
Tested model
Dose & route of administration
Effects & mechanism
Ref.
TiO2NPs (Anatase) 7 nm (XRD)80 CD-1 (ICR) mice5, 10, 50 mg/kg b.w. every other day for 60 d (i.g.)SOD, CAT, GSH-Px, MT, HSP70, GST (downregulation); CYP1A (upregulation)[117]
Oxidative stress, apoptosis
TiO2NPs (Anatase)5 nm (XRD)CD-1 (ICR) mice5, 10, 50, 100, 150 mg/kg b.w. daily for 14 d (abdominal injection)Accumulated in liver DNA; Inserted in DNA base pairs; Binds to DNA nucleotides; Alter DNA secondary structure; Liver DNA cleavage at higher dose[119]
Genotoxicity
TiO2NPs< 25 nm anatase; < 100 nm rutile (SEM)HepG2 cell1, 10, 100 and 250 mg/mL incubated for 4, 24, 48 hp21, mdm2, p53, gadd45α (increased expression); DNA strand break; DNA damage; ROS production[120]
Genotoxicity
TiO2NPs (Anatase)5 nm (XRD)80 CD-1 (ICR) mice5, 10, 50 mg/kg b.w. for 60 d (i.g.)TLR2, TLR4, IKK1, IKK2, NF-kB, NF-kBP52, NF-kBP65, TNF-α, NIK (upregulation); IkB, IL-2 (downregulation); ALT, AST, ALP, LDH, PCh, LAP (upregulation)[116]
Inflammation, apoptosis
TiO2NPs (Anatase & rutile)Anatase –561.63 ± 26.26 nm; Rutile – 206.22 ± 2.18 nm (TEM)HepG2 cell5-320 μg/mL for 24 hERK1/2, p38 (increased phosphorylation); TNFα (upregulated); A20 (downregulated); Activation of MAPK & NF-kB pathway[115]
Inflammation
TiO2NPs; Rutile anatase; P25 (anatase: rutile = 75:25)Rutile – 50 nm; Anatase – 50 nm; P25 – 21 nm (TEM)Primary hepatocytes of Sprague Dawley rats50 μg/mL, 72 hROS (upregulated); Urea, albumin, MnSOD, MMP, Mfn 1, Opa 1 (downregulated)[122]
Perturbation of mitochondrial dynamics, oxidative stress
TiO2NPs; Rutile12-18 nm (TEM)BRL 3A cells; sprague dawley rats0.1-100 μg/mL for 6 h; 0.5-50 mg/kg BW intraperitoneal injection 24 hRapid G0/G1 to S transition, G2/M arrest; ALT, AST, ALP, LDH (upregulated)[123]
Hepatocytes with oxidative stress show more cytotoxicity
TiO2NPs; Anatase10 (TEM)B6C3F1 mice50 mg/kg b.w. daily for 3 d (i.p.)DNA strand break nucleotide oxidization; MT1H, MT1E (upregulation); Differential gene expression(increased)[121]
Oxidative stress, Genotoxicity, metabolic imbalance
TiO2NPs; Anatase 19 (XRD)Wistar rat100 mg/kg daily for 60 d (oral)ALT, AST, ALP, LPO (increased); GSH, SOD, GPx, CAT (decreased); vacuolization, Sinusoidal dilation, inflammatory cells infiltration[124]
Oxidative stress
TiO2NPs; Anatase10 nm (TEM)Albino rats100 mg/kg daily ALT, AST, ALP, Bax, LPO (increased); GPx, SOD, GSH, Bcl-2, (decreased); hepatic apoptosis; Sinusoidal dilation, infiltration inflammatory cells, steatosis, hepatocellular necrosis[125]
60 d (oral)Oxidative stress
TiO2NPs; anatase: Rutile (80: 20)20 nm (TEM)Wistar rat300 mg/kg daily for 2 wk (oral)ALT, AST, ALP, LDH, TNFα, NF-Kβ, TOS, LPO (upregulated); SOD, CAT, GPx, TAC (downregulated)[118]
Inflammation, Oxidative stress
TiO2NPs; Anatase29 ± 9 nm (SEM)Sprague dawley rats2, 10, 50 mg/kg b.w. daily for 90 d (oral)LPO, GPx, SOD, GSSG, IL-1α, IL-4 and TNFα (increased); GSH (decreased); Mitochondrial swelling increased gut microbiota altered glycerophospholipid, Phosphatidylcholines metabolism; Hepatotoxicity indirectly through gut liver axis[126,127]
Oxidative stress, inflammation
Table 7 Effects and molecular mechanisms underlying MgONPs induced hepatonanotoxicity
NPs
Size
Tested model
Dose & route of administration
Effects & mechanism
Ref.
MgO-3D Human Liver organoids male Sprauge Dawley rat100 μg/mL incubated for 48 h. 40 mg/kg daily for 4 wk (oral)ATP synthesis (decreased); ROS & Super oxide production (increased); ALT, AST (increased)[21]
Oxidative stress
Table 8 Effects and molecular mechanisms underlying Al2O3NPs induced hepatonanotoxicity
NPs
Size
Tested model
Dose & route of administration
Effects & mechanism
Ref.
Al2O3< 50 nmDeveloping chicken embryo, HepG2 cell culture model 10, 20, 40 μg/egg via injection from 8th to 12th day of incubation on an alternate day basis, 05, 10, 20 μg/mL for 12 hROS & Super oxide production (increased); ALP, ALT, AST activity (increased); HO-1, NQO-1 level (increased); Cell viability (decreased); SOD, CAT, GPx, TBARS, TNF-α, Caspase-3 activity (decreased)[128]
Oxidative stress and cytotoxicity
Table 9 Effects and molecular mechanisms underlying Cr2O3NPs induced hepatonanotoxicity
NPs
Size
Tested model
Dose & route of administration
Effects & mechanism
Ref.
Cr2O3-NPs22.50 + 1.76 nm (TEM)Wistar rats50 mg/100 g bwt (LD), 200 mg/100 g bwt (HD); single dose for 1, 7, 14 d (oral)ALT, AST, ALP, γGT, total bilirubin (increased)[23]
Table 10 Effects and molecular mechanisms underlying iron oxide NPs induced hepatonanotoxicity
NPs
Size
Tested model
Dose & route of administration
Effects & mechanism
Ref.
Na-oleate coated Fe3O48 ± 3 nm (TEM)Wistar rat0.0364, 0.364, & 3.64 mg/kg b.w. for 1 d, 1, 2, 4 wks (i.v.)Temporary change in mitochondrial respiration; GPx, GST (increased); Lipidosis, mild necrosis; Enlarged sinusoid space[133]
Oxidative stress
Polyethylene glycol – 8000 coated Fe3O48.82 ± 0.70 nm (TEM)Wistar rat10 mg/kg b.w. single dose, once in a week, twice in a week for 30 d (i.v.)ALT, AST, ALP (slightly increased); AST, LPO, SOD, GPx, Neutrophil count (increased); No significant tissue damage[135]
Fe3O420 nm (TEM)Wistar rat40 mg/kg b.w. for 14 d (i.t.)Congestion of sinusoid; Hepatocytic ballooning; Mononuclear cell infiltration; Tissue damage[132]
Inflammation
Fe3O441.3 ± 5.9 nm for USPIO, 112.6 ± 38.4 nm for SPIO (DLS)L-02 cells2.5, 5, 10, and 20 μg/mL) for 12 hCell survivility (decreased); Elevated expression of Genes related to acute phase inflammation, ER stress. HSP70, IL-6, PERK, ATF4, ER Ca++ (increased); USPIO show higher toxicity than SPIO[136]
ER stress, inflammation
Fe3O410 nm (TEM)Hepatocytes of Lewis rat in sandwich culture model100, 200, 400 μg/mL, single dose & cumulative dose; 24 h to 7 dCell survivility (decreased); ROS (increased); Albumin & urea synthsis (decreased)[134]
Oxidative stress
Fe3O429.6 ± 12.2 nm (TEM)Albino wistar rat30, 300, 1000 mg/kg b.w. for 28 d (nano & bulk) (oral)GSH, CAT (decreased); SOD, GR, GST, LPO (increased); GPx (unchanged); Congested central vein in higher dose[130]
Oxidative stress
Fe2O330 nm (TEM)Wistar rat100, 200 mg/kg single dose (oral)ALT (increased) iron deposition in hepatocyte & Kupffer cells[131]
Inflammation
Fe2O330 nm (TEM)L-02 cells; BALB/C mice2.5, 7.5, and 12.5 lg/mL) for 1, 3, 6 h; 20 mg/kg body weight for 24 h. (i.v.)Cox2 (overexpression); COX-2 interaction with IP3R-GRP75-VDAC1 complex; Ca++ transfer increased; Bax, Cleaved Casp-3 (increased); Bcl2 (decreased)[137]
Apoptosis
Table 11 Effects and molecular mechanisms underlying GONPs induced hepatonanotoxicity
NPs
Size
Tested model
Dose & route of administration
Effects & mechanism
Ref.
GO100-500 nm (TEM)Sprague dawley rats2.5, 5, and 10 mg/kg/d for 7 d (i.v.)Liver inflammation; Cholesterol, HDL, LDL (decreased)[144]
GO40 nm (TEM)Sprague Dawley rats10, 20 and 40 mg/Kg b.w. once for 5 d, (oral)ROS, AST, ALT, LHP (increased)[146]
GO0.8-2 nm (TEM)Wistar rats0.4/2/10 mg/kg b.w.AST, ALP, ALT, MDA (increased); CAT (decreased)[147]
Table 12 Effects and molecular mechanisms underlying carbon nanotube induced hepatonanotoxicity
NPs
Size
Tested model
Dose & route of administration
Effects & mechanism
Ref.
MWCNTsO-MWCNT; T-MWCNT; Length 356 ± 185 nmKunming mice10 and 60 mg/kg b.w. (Iv) sacrificed at 15 & 60 d GSH, SOD (decreased at 15 days); AST, T-Bil (increased); Spotty necrosis, Infiltration of inflammatory cells in portal region, mitochondrial swelling and lysis; Cyp2B19 (upregulated); Cyp2C50, Gsta2 (downregulated)[149]
Oxidative stress, Inflammation
PEGylated; MWCNTP- MWCNT; NP- MWCNT; Length of less than 1 μm; Diameter of 10-20 nmKunming mice10 and 60 mg/kg b.w. (Iv) sacrificed at 15 & 60 dBlackish discoloration of the liver (MWCNTs accumulation); AST, Bag4, Gab1 genes (increased); Infiltration inflammatory cells, cellular necrosis, focal necrosis; Mitochondrial swelling/lysis; NP- MWCNT shows more toxicity than P- MWCNT[155]
Inflammation
Carboxylated functionalized SWCNTlengths of 15–20 μm; Diameter of 15–30 nmSwiss webster mice0.25, 0.5 & 0.75 mg/kg b.w. per day for 5 d (Ip)ROS, LHP, ALT, AST, ALP, (increased); Histological alterations[153]
Oxidative stress
Carboxylated functionalized; MWCNTslengths of 15–20 μm; Diameter of 15–30 nmSwiss webster mice0.25, 0.5 & 0.75 mg/kg b.w. per day for 5 d (Ip)ROS, LHP, ALT, AST, ALP, (increased); Histological alterations[154]
Oxidative stress
MWCNTsLength 5-50 μm; Diameter 20-30 nm (SEM)Swiss albino mice10 and 60 mg/kg b.w. (oral) sacrificed at 7, 14, 21, 28 dSOD, CAT activity (decreased); Macrophage injury, cellular swelling, unspecific inflammation, spot necrosis, blood coagulation. The sinusoid and hepaticvenule diameter increased by the high dose[156]
Oxidative stress
SWCNTsLength several μm; Diameter 0.8-1.2 nm (TEM)Wistar rat7.5 (low), 15 (medium), and 22.5 (high) mg/kg b. w. Intratracheal instillation once for 15 dALB, ALP, TP, TC (decreased at high conc.); Focal necrosis, inflammatory cell infiltration, Cellular swelling at centrilobular part, membrane fluidity destruction, impaired amino acid & lipid metabolism[150]
Metabolic disruption, Hepatotoxicity
Oxidised MWCNTsLength 1-2 μm; Diameter 10-30 nm (TEM)Kunming mice (Cd-MT accumulated mice)500 μg/mouse for 4 hALT, AST, TBil, BUN (increased); Released Cd++ from Cd-MT; Adsorb a part of free Cd++[157]
Coexpossure ameliorated hepatotoxicity
Carboxylated MWCNTsLength 12 μm; Diameter 11.5 nm (TEM)Wistar rat0.25, 0.50, 0.75 and 1.0 mg/kg b.w. for 5 consecutive days (Ip)ALT, AST, ALP, GGT (increased); LPO, H2O2, CAT, GPx, activity (increased); SOD, GST (decreased); IL-6, IL-1β, COX-1, iNOS, TNF-α (increased); micronucleated polychromatic erythrocytes (MNPCE)[151]
Oxidative stress, Inflammation
MWCNTsPolycrystalline; Length 600-700 nm; Size 650 nmAlbino rat1 g/kg b. w. (oral) 4 wkLPO, H2O2, TT, CATactivity (increased); SOD, GSH, GPx, GST (decreased); IL-6, IL-1β, COX-1, TNF-α (increased); hydropic degeneration focal hepatic & perivascular hepatic necrosis associated with inflammatory cells, infiltration, sinusoidal leukocytosis, vacuolar degeneration, congestion of central vein[4]
Oxidative stress, Inflammation
Carboxylated MWCNTsdiameter: 5–15 nm, length: 0.5-2 μm (TEM)C57BL/6J mice (NAFLD)MWCNT; LD-10 mg/kg b.w. HD-30 mg/kg b.w. PbAc LD-150 mg/kg b.w. HD-300 mg/kg b.w. MWCNT+ PbAc, LD-10 mg/kg +150 mg/kg HD-30 mg/kg +300 mg/kg (Intragastrically) daily for 80 dDeath at high dose on 5th day. ALT, AST, ALP (decreased); Nonalcoholic steatohepatitis lobular inflammation, hepatic fibrosis, steatosis, apoptotic induction in primary hepatocytes of NAFLD mice; SOD, GST, GSH (decreased); H2O2, GPx, MDA, LPO (increased); Lipid peroxidation; IL-6, IL-1β and TNF-α (inflammatory cytokines) inhibiting AMPK/PPARγ pathway[152]
Oxidative stress, Inflammation
Table 13 Effects and molecular mechanisms underlying CuS/CdS-NPs induced hepatonanotoxicit
NPs
Size
Tested model
Dose & route of administration
Effects & mechanism
Ref.
CdS NPs5-9 nm (TEM)Wistar rat10 mg/kg alternate days for 45 dHepatosomatic index (decreased); ALT, AST, ALP, LPO, H2O2, NO (increased); GSH (depletion); Cytoplasmic degeneration/coagulation, sinusoidal inflammation, parenchymal degeneratin, mitochondria, peroxisome, microsomes increased in number[159]
Oxidative stress
CuS/CdS8.7 nmhepatoma cells BEL7402 and L-02 normal liver cells; Balb/c mice4 mg/kg, i,v injectionSOD, GSH (down regulation); ROS, GSSG, MDA (up regulation)[158]
Oxidative stress
Cu2-xS17.8 nm (LNPs); 2.8 nm (SNPs)Sprague Dawley rats5 mg/kg through tail vein single doseALT, AST, TBA, LDH (increased) ALB (decreased)[161]
Table 14 Effects and molecular mechanisms underlying cobalt NPs induced hepatonanotoxicity
NPs
Size
Tested model
Dose & route of administration
Effects & mechanism
Ref.
Nano-Co10-40 nmNormal human liver L02 cells2.5, 5, 7.5, 10, 20, and 40 μg/mL) for 12 h or 24 hModulation of ROS/NLRP3 pathway[162]
Table 15 Effects and molecular mechanisms underlying nanoclay, NCD, polystyrene, chytosan induced hepatonanotoxicity
NPs
Size
Tested model
Dose & route of administration
Effects & mechanism
Ref.
Nano-Clay57.8 ± 12.3 nm & 648.3 ± 232.2 nmBALB/C mice1, 5, 10, 20 mg/kg b.w. (Iv) 24 h; Co-administered with Ccl4, paraquat, cisplatinALT, AST (increased)[163]
NCD (modified nanocellulose with oxalate esters)100 nm (SEM)Wistar rat50 & 100 mg/kg b.w. (oral) for 7 dALT, AST (increased); CAT, GPx activity (decreased); MPO activity (increased); iNOS, Bax (increased); dialated sinusoidal space, vacuolated hepatocytes, cellular infiltration[29]
Oxidative stress
PolystyrenePS NPs 158.8 ± 1.3 nm; aPS NPs 117.0 ± 1.8 nm (SEM)ICR mice50 mg/kg/d (oral) for 7 dGlucose, HDL-C, TG, TC (increased in blood); LDL-C (decreased in blood); Activation of PI3K/AKT/GLUT4 & SREBP-1/PPARγ/ATGL signaling pathways; TG decomposition; Lipid accumulation (increased); Nuclear pyknosis, blurred intercellular space, central hepatic vein congestion, hepatic ballooning; Compared to PS NPs, aPS NPs showed higher toxicity[28]
Disruption of glycolipid metabolism
Chitosan (CsNPs)18 ± 1 nm (DLS)BHAL cell≥ 0.5% w/v for 4 hReadily internalized; Disrupt membrane integrity; ALT leakage; CYP3A4 enzyme activity (increased); necrotic or autophagic cell death[27]
Table 16 Effects and molecular mechanisms underlying hydroxyapatite nanoparticles induced hepatonanotoxicity
NPs
Size
Tested model
Dose & route of administration
Effects & mechanism
Ref.
Hydroxyapatite nanoparticles50 nm (XRD)HepG2 cells; L-02 cells100 μg/mL for 24, 48 hCaspase-3, 9 (activated); Bax, Bid (upregulated); Bcl-2 (downregulated); Cytosolic appearance of cytochrome c[164]
Apoptosis
Hydroxyapatite nanoparticles80 nm (TEM)BRL cells; Sprague–Dawley rat25, 50, 100, 200, 400 and 800 μg/mL for 1 h; 50 mg/kg (Iv) single dose, sacrificed at 48 hDecreased cell viability; Increased LDH leakage; Induced apoptosis & necrosis; MAPK signaling pathway activation; WBC count, ALT, AST, TNF-α, H2O2, MDA (increased); Infiltration of inflammatory cells near portal area[165]
Oxidative stress, inflammation, apoptosis, necrosis
Table 17 Effects and molecular mechanisms underlying quantum dots induced hepatonanotoxicity
NPs
Size
Tested model
Dose & route of administration
Effects & mechanism
Ref.
Cd/Se/Te QD70512.3 ± 5.2 nm (TEM)ICR mice100 μL of 40 and 160 pmol (IV) sacrificed at 12 and 16 wkALT, AST (increased); GPx, HO-1, 8-oxo-dG (increased); Cu/Zn/Se (increased); SOD activity (decreased); GSH/GSSG; Unbalanced antioxidation systems; Trace metals, trace metal transporters; TNFα, IL-6 (increased)[167]
Oxidative stress and inflammation
CdSe QD4 nm (TEM)Kunming mice Hepa 1–6 cells200 nMCdCl2, 20 nM & 200 nM QDs (acute) for 48 h (IP); 20 nMCdCl2, 5 nM & 10 nM QDs for 6 wk (chronic) (IP); 20 nM CdCl2, 5 nM, 10 nM and 20 nM QDs for 24 & 48 hROS, MDA (increased); GSH-Px (decreased); Enlarged central vein, disordered hepatic cords; Reduced cell size, condensation; Round and condensed macrophage[166]
Oxidative stress
Mn-doped ZnS QDs3.8 ± 0.1 nm (TEM)Kunming mice1 & 5 mg/kg (QDs); 5 mg/kg (QDs PEG) (IV) for 7 da sacrificed on 8th & 28th dayQDs accumulated in mitichondia, lysosome, lipid droplets; No hepatic damage[169]
CdTe QDs2.2 nm (TEM)AML 12; ICR mice27.66, 41.49, 53.94, 70.12, 91.16 & 118.50 μg/mL for 24 & 48 h. 4.125, 8.25 and 16.5 mg/kg body weight (IV) once a week for 4 wkLPO, MDA, SOD, CAT, P53, Bcl-2, Nrf2, HO-1 (increased); Bax (decreased); ATP concentration (decreased); Nrf2 signaling pathway activation[170]
Oxidative stress, apoptosis
CdTe QDs7.3 ± 1.2 nm (TEM)HepG2 cell10 μg/mL containing 1 μg/mL of cadmium for 24 hMMP disruption, mitochondrial swelling, increased intracellular ca2+ levels, impaired cellular respiration & decreased ATP synthesis; PGC-1α (increased)[171]
Mitochondrial toxicity & dysfunction
CdTe QDs15.25 ± 0.34 nm (TEM)BALB/c mice0.4, 2, 5, 6, 7, and 10 mg/kg b.w (Iv) for 24 h; 5 mg/kg bw (Iv) 2 h, 24 h, 3 d, and 1 wk Enlarged mitochondria with increment in number; Affects ETC complex & ATP synthesis energy metabolism impairment[172]
Mitochondrial dysfunction
CdSe/Zn-QD7.1 nm (TEM)L02 cells; C57BL/6 mice; NLRP3 knockout mice5, 10, 20, 40, 80 nM, 24 and 48 h; 10 nmol/kg (IV) results at 2 wkDose-dependent decrease in cell viability pyroptosis; Caspase-1 activity(increased); NLRP3 inflammasome activation; mt ROS production (increased); Cytoplasmic Ca2+ (increased) levels ALT, AST, MPO, TNFα, IL-1β (increased); γ-GT (decreased)[168]
Oxidative stress and inflammation
Cd free indium -based QDs4 nm (TEM)Lister Hooded rats12.5 & 50 mg/kg b.w. (Iv) for 24 h. 1 wk, 4 wkALT, AST, ALP (slightly increased); No hepatic damage[25]
CdTe/CdS QDs12 nm (TEM)HL-7702; HepG2 cells1- 32 nM for 48 hLysosomal internalization; Abnormal activation of lysosomal enzymes; ROS generation (increased); Autophagy[3]
Apoptosis independent nanotoxicity
CdTe QDs15.25 ± 0.34 nm (TEM)BALB/c mice0.4, 2, 5, 6, 7, and 10 mg/kg b.w (Iv) for 24 h. 5 mg/kg b.w. (Iv)2 h, 24 h, 3 d (d), and 1 wk (w) AST, ALT, T-bil (increased); Albumin (decreased); liver accumulation[173]
CdTe QDs15.25 ± 0.34 nm (TEM)BALB/c mice0.4, 2, 5, 6, 7, and 10 mg/kg b.w (Iv) for 24 h. 5 mg/kg b.w. (Iv) 2 h, 24 h, 3 d (d), and 1 wk (w) tGSH, ATP (depletion) GST, CAT (decreased) SOD activity (increased); Hmox I, Ncf-1, Ncf-2 (upregulated expression); PGC-1α (increased)[9]
Oxidative stress, apoptosis
CdTe QDs2.2-3.0 nm (TEM)ICR mice; KUP5 cells2.5 & 10 μM/kg· b.w. (Iv) single dose once per wekk for 14 d; 5, 50 & 500 NMIL-1β, TNF-α, IL-6 (increased); Assembly of NLRP3 inflammasome; ROS productin (increased); Activation of NF-KB pathway; Kupffer cell activation[174]
Oxidative stress, Inflammation