Observational Study
Copyright ©The Author(s) 2023.
World J Hepatol. Jan 27, 2023; 15(1): 107-115
Published online Jan 27, 2023. doi: 10.4254/wjh.v15.i1.107
Table 1 Patient demographics
Variables
Case (n = 109)
Control (n = 97)
OR
95%CI
P value
Age (mean ± SD in yr)62.73 ± 9.14660.20 ± 7.0620.02a
Age median (yr), n (%)49 (50.5)58 (53.2)0.540.31-0.950.03a
Gender, n (%) - female48 (44)46 (47.4)0.870.50-1.510.62
BMI, median (IQR)28 (7)32 (7)0.001a
Family history of hepatitis, n (%)10 (9.2)6 (6.2)1.530.55-4.380.42
Aspirin use, n (%)22 (20.2)35 (36.1)0.440.24-0.830.01a
Smoking, n (%)2.311.31-4.070.004a
No51 (46.8)65 (67)
Yes38 (34.9)15 (15.5)
Former20 (18.3)17 (17.5)
Total pack years, median (IQR)25 (21)25 (11)0.75
Alcohol use, n (%)12 (11)24 (24.7)0.370.17-0.800.01a
DM, n (%)27 (24.8)31 (32)0.870.50-1.510.25a
HIV, n (%)3 (2.8)1 (1)2.710.27-26.560.62a
Adenomatous polyps present58 (53.2)33 (34)2.201.25-3.870.006a
Bowel preparation (%)0.14
Good90 (82.6)88 (90.7)
Fair11(10.1)7 (7.2)
Poor8 (7.3)2 (2.1)
Table 2 Machine learning model training
ML model
Test accuracy (%)
Precision (%)
Recall (%)
F1 score (%)
Support vector classifier52515151
Random forest53535353
Bernoulli naïve Bayes56555554
Gradient boosting50494948
Logistic regression50484847
Deep neural networks53535351
Table 3 Machine learning models and their mean absolute error
ML model
Mean absolute error
Linear regression1.072
LGBM regressor1.106
XGBoost regressor1.273
ElasticNet0.941
Gradient boosting regressor1.139
Support vector regressor0.905
Table 4 Machine learning models and their performance
ML model
Performance
Support vector classifierGood
Random forestGood
Bernoulli naïve BayesOptimal
Gradient boostingInadequate
Logistic regressionInadequate
Deep neural networksGood