Retrospective Study
Copyright ©The Author(s) 2021.
World J Hepatol. Oct 27, 2021; 13(10): 1417-1427
Published online Oct 27, 2021. doi: 10.4254/wjh.v13.i10.1417
Table 1 Baseline characteristics of participants in training and testing data

Training data (n = 2265)
Testing data (n = 970)
P value
Demographic
Age (yr)43 (29)43.5 (28)0.328
Gender (male) (%)944 (41.68)428 (44.12)0.197
Race/ethnicity
White (non-Hispanic) (%)959 (42.34)392 (40.41)0.308
Black (non-Hispanic) (%)627 (27.68)271 (27.94)0.882
Mexican American (%)576 (25.43)254 (26.19)0.652
Others (%)103 (4.55)53 (5.46)0.265
Body measurement
Body mass index (kg/m2)26.4 (7.2)26.7 (7.4)0.120
Waist circumference (cm)93 (20.5)93.5 (20.8)0.182
Biochemistry tests
Iron (ug/dL)73 (39)74 (39)0.098
Total iron-binding capacity (ug/dL)355 (72)356 (72)0.450
Transferrin saturation (%)20.5 (11.1)20.8 (11.8)0.329
Ferritin (ng/mL)87 (125)84.5 (124)0.508
Cholesterol (mg/dL)201 (57)204 (59)0.155
Triglyceride (mg/dL)120 (100.25)122.5 (102)0.562
HDL cholesterol (mg/dL)48 (18)48.5 (18)0.585
C-reactive protein (mg/dL)0.21 (0.29)0.21 (0.23)0.686
Uric acid (mg/dL)5 (1.9)5.1 (2)0.427
Liver chemistry
Aspartate aminotransferase (U/L)19 (8)19 (7)0.908
Alanine aminotransferase (U/L)14 (10)14 (10)0.581
Gamma glutamyl transferase (U/L)21 (18)21 (18)0.787
Alkaline phosphatase (U/L)83 (33)81 (32)0.524
Total bilirubin (mg/dL)0.5 (0.2)0.5 (0.2)0.855
Total protein (g/dL)7.4 (0.6)7.4 (0.6)0.559
Albumin (g/dL)4.1 (0.5)4.1 (0.4)0.543
Serum globulin (g/dL)3.3 (0.6)3.3 (0.7)0.941
Diabetes testing profile
Glycated hemoglobin (%)5.4 (0.8)5.4 (0.7)0.075
Fasting plasma glucose (mg/dL)91.6 (12.52)92.05 (12.2)0.726
Fasting C-peptide (pmol/mL)0.65 (0.68)0.66 (0.69)0.746
Fasting insulin (uU/mL)9.36 (9.51)9.73 (10.04)0.378
Diabetes medication165 (7.28%)68 (7.01%)0.782
Table 2 The performance comparison of machine learning models on training data
No.
Description
Accuracy (%)
AUC
PPV/precision (%)
NPV (%)
Sensitivity/recall (%)
Specificity (%)
F1
1Fine tree71.6 0.6442.979.837.883.00.40
2Medium tree74.4 0.7048.979.130.189.40.37
3Coarse tree76.0 0.6855.178.926.492.70.36
4Linear discriminant78.0 0.7561.180.935.592.40.45
5Logistic regression78.1 0.7562.280.633.993.00.44
6Gaussian naïve Bayes75.1 0.7450.881.140.286.80.45
7Kernel naïve Bayes72.7 0.7346.885.160.176.90.53
8Linear SVM77.0 0.7464.478.119.996.30.30
9Quadratic SVM77.4 0.7059.980.131.892.80.42
10Cubic SVM72.8 0.6445.179.635.385.50.40
11Fine Gaussian SVM74.7 0.6774.7100.0
12Medium Gaussian SVM77.5 0.7463.979.025.395.20.36
13Coarse Gaussian SVM75.7 0.7466.276.07.998.60.14
14Fine KNN68.9 0.5838.078.936.979.70.37
15Medium KNN76.5 0.7159.778.121.095.20.31
16Coarse KNN76.6 0.7578.176.510.099.10.18
17Cosine KNN76.6 0.7257.979.227.693.20.37
18Cubic KNN77.0 0.7262.078.522.695.30.33
19Weighted KNN76.5 0.7156.779.428.892.60.38
20Ensemble of boosted trees76.9 0.7457.380.333.691.60.42
21Ensemble of bagged trees77.2 0.7458.980.232.592.30.42
22Ensemble of subspace discriminant78.3 0.7666.779.728.395.20.40
23Ensemble of subspace KNN75.5 0.6954.777.216.495.40.25
24Ensemble of RUS boosted trees70.4 0.7644.286.366.471.70.53
Table 3 The performance of machine learning models and other non-alcoholic fatty liver disease indices on testing data
No.
Description
Accuracy (%)
AUC
PPV/precision (%)
NPV (%)
Sensitivity/recall (%)
Specificity (%)
F1
Machine learning models
1Ensemble of subspace discriminant77.70.7866.778.823.7960.35
2Coarse trees74.90.7250.878.324.5920.33
3Ensemble of RUS boosted trees71.10.7945.588.472.770.60.56
NAFLD indices
4Fatty liver index68.60.7442.486.668.668.60.52
5Hepatic steatosis index65.10.7037.983.360.466.60.47
6Triglyceride and glucose index56.90.6934.888.380.848.80.49
Table 4 The performance comparison of published machine learning models on non-alcoholic fatty liver disease prediction
Ref.
Type of data/country or territory of data
Number of train/ external testing data
Model
Accuracy (%)
AUC      
Sensitivity (%)
Specificity (%)
F1      
Sorino et al[33], 2020Population/Italy2920/50Support vector machine681N/A98.5100N/A
Wu et al[13], 2019Hospital/Taiwan577/NARandom forest86.510.925187.2185.91N/A
Islam et al[36], 2018Hospital/Taiwan994/NALogistic regression7010.763174.1164.91N/A
Ma et al[12], 2018Hospital/China10508/NABayesian network82.921N/A67.5187.810.6551
Perveen et al[14], 2018Primary care network/Canada64%/34% of 40637Decision treesN/A0.7373N/A0.67
Yip et al[15], 2017Hospital/Hong Kong500/442Ridge regression870.879290N/A
Birjandi et al[37], 2016Hospital/Iran359/1241Decision trees750.757377N/A
Our studyPopulation based/United States2265/970Ensemble of RUS boosted trees71.10.7972.770.60.56
Coarse trees74.9%0.7224.5%92%0.33