1
|
Luo M, Zhao J, Merilä J, Barrett RDH, Guo B, Hu J. The interplay between epigenomic and transcriptomic variation during ecotype divergence in stickleback. BMC Biol 2025; 23:70. [PMID: 40038570 PMCID: PMC11881503 DOI: 10.1186/s12915-025-02176-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 02/21/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Populations colonizing contrasting environments are likely to undergo adaptive divergence and evolve ecotypes with locally adapted phenotypes. While diverse molecular mechanisms underlying ecotype divergence have been identified, less is known about their interplay and degree of divergence. RESULTS Here we integrated epigenomic and transcriptomic data to explore the interactions among gene expression, alternative splicing, DNA methylation, and microRNA expression to gauge the extent to which patterns of divergence at the four molecular levels are aligned in a case of postglacial divergence between marine and freshwater ecotypes of nine-spined sticklebacks (Pungitius pungitius). Despite significant genome-wide associations between epigenomic and transcriptomic variation, we found largely non-parallel patterns of ecotype divergence across epigenomic and transcriptomic levels, with predominantly nonoverlapping (ranging from 43.40 to 87.98%) sets of differentially expressed, spliced and methylated genes, and candidate genes targeted by differentially expressed miRNA between the ecotypes. Furthermore, we found significant variation in the extent of ecotype divergence across different molecular mechanisms, with differential methylation and differential splicing showing the highest and lowest extent of divergence between ecotypes, respectively. Finally, we found a significant enrichment of genes associated with ecotype divergence in differential methylation. CONCLUSIONS Our results suggest a nuanced relationship between epigenomic and transcriptomic processes, with alignment at the genome-wide level masking relatively independent effects of different molecular mechanisms on ecotype divergence at the gene level.
Collapse
Affiliation(s)
- Man Luo
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Junjie Zhao
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Juha Merilä
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Area of Ecology and Biodiversity, The School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | | | - Baocheng Guo
- Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management & Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Juntao Hu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Hartwell HJ, Shang B, Douillet C, Bousquet AG, Liu T, Zou F, Ideraabdullah F, Stýblo M, Fry RC. Heritable dysregulation of DNA methylation may underlie the diabetogenic effects of paternal preconception exposure to inorganic arsenic in C57BL/6J mice. Toxicol Appl Pharmacol 2025; 496:117242. [PMID: 39894169 PMCID: PMC11846692 DOI: 10.1016/j.taap.2025.117242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/14/2025] [Accepted: 01/22/2025] [Indexed: 02/04/2025]
Abstract
Chronic exposure to inorganic arsenic (iAs) has been linked with the development of diabetes mellitus (DM). We recently showed that parental exposure to iAs (200 ppb) prior to mating was associated with diabetic phenotypes in offspring and altered gene expression in parents and offspring. The goal of the present study was to determine if DNA methylation underlies the differential gene expression in the livers of offspring. DNA methylation was assessed in paternal (G0) sperm and livers of their offspring (G1) using a genome wide DNA methylation array. We found that iAs exposure significantly altered CpG methylation (p < 0.05) in 54.3 %, 49.4 %, and 63.7 % of the differentially expressed genes in G0 sperm, G1 female livers, and G1 male livers, respectively. Importantly, a subset of differentially methylated CpG sites were shared across generations. Sensitivity analyses (FDR < 0.1) of imprinted and DM-associated genes revealed differential methylation of 74 imprinted genes and 100 DM-associated genes in the livers of G1 males. These male-specific results are intriguing given the prior findings of diabetic phenotypes found exclusively in male offspring from parents exposed to iAs. In summary, these data demonstrate that heritable changes in DNA methylation through the paternal germline may underlie the diabetogenic effects of preconception iAs exposure.
Collapse
Affiliation(s)
- Hadley J Hartwell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bingzhen Shang
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Christelle Douillet
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Audrey G Bousquet
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tianyi Liu
- Department of Biostatistics, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Fei Zou
- Department of Biostatistics, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Folami Ideraabdullah
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
3
|
Powell AM, Watson L, Luzietti L, Prekovic S, Young LS, Varešlija D. The epigenetic landscape of brain metastasis. Oncogene 2025:10.1038/s41388-025-03315-1. [PMID: 40016470 DOI: 10.1038/s41388-025-03315-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/16/2025] [Accepted: 02/17/2025] [Indexed: 03/01/2025]
Abstract
Brain metastasis represents a significant challenge in oncology, driven by complex molecular and epigenetic mechanisms that distinguish it from primary tumors. While recent research has focused on identifying genomic mutation drivers with potential clinical utility, these strategies have not pinpointed specific genetic mutations responsible for site-specific metastasis to the brain. It is now clear that successful brain colonization by metastatic cancer cells requires intricate interactions with the brain tumor ecosystem and the acquisition of specialized molecular traits that facilitate their adaptation to this highly selective environment. This is best exemplified by widespread transcriptional adaptation during brain metastasis, resulting in aberrant gene programs that promote extravasation, seeding, and colonization of the brain. Increasing evidence suggests that epigenetic mechanisms play a significant role in shaping these pro-brain metastasis traits. This review explores dysregulated chromatin patterns driven by chromatin remodeling, histone modifications, DNA/RNA methylation, and other epigenetic regulators that underpin brain metastatic seeding, initiation, and outgrowth. We provide novel insights into how these epigenetic modifications arise within both the brain metastatic tumor and the surrounding brain metastatic tumor ecosystem. Finally, we discuss how the inherent plasticity and reversibility of the epigenomic landscape in brain metastases may offer new therapeutic opportunities.
Collapse
Affiliation(s)
- Aoibhín M Powell
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Louise Watson
- Department of Surgery, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Lara Luzietti
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Stefan Prekovic
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Leonie S Young
- Department of Surgery, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
- Beaumont RCSI Cancer Centre, Beaumont Hospital, Dublin, Ireland.
| | - Damir Varešlija
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
- Beaumont RCSI Cancer Centre, Beaumont Hospital, Dublin, Ireland.
| |
Collapse
|
4
|
Karampitsakos T, Mavrogianni D, Machairiotis N, Potiris A, Panagopoulos P, Stavros S, Antsaklis P, Drakakis P. The Impact of Amniotic Fluid Interleukin-6, Interleukin-8, and Metalloproteinase-9 on Preterm Labor: A Narrative Review. Biomedicines 2025; 13:118. [PMID: 39857702 PMCID: PMC11761255 DOI: 10.3390/biomedicines13010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/02/2025] [Accepted: 01/05/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Preterm labor is a leading cause of neonatal morbidity and mortality worldwide. Previous research has indicated that an inflammatory response or microbial invasion of the amniotic cavity is a pathological condition linked to preterm birth; hence, inflammatory markers such as metalloproteinase-9 (MMP-9), interleukin-6 (IL-6), and interleukin-8 (IL-8) have been utilized to predict preterm delivery. The identification of reliable biomarkers for early prediction is critical for improving maternal, fetal, and neonatal outcomes. METHODS To address this issue, a literature review has been conducted on PubMed/Medline and Scopus databases for articles investigating the possible correlation between IL6, IL8, and MMP9 and preterm labor. RESULTS Using a comprehensive search of the PubMed and Scopus databases, 12 studies were analyzed to identify the correlation between these biomarkers and preterm labor. Seven studies point the impact of increased IL-6 levels or polymorphisms of the gene and higher incidence of preterm labor. Two of the included studies identified the increased risk for preterm birth in elevated levels of IL-8 in amniotic fluid. Six studies highlight the increased incidence of preterm birth in women with polymorphisms of the MMP-9 gene. CONCLUSIONS Elevated IL-6 levels and specific gene polymorphisms are strongly associated with preterm delivery risk, with IL-8 concentrations correlating with systemic inflammation and histologic chorioamnionitis. MMP-9 gene variations and protein levels showed significant predictive value for membrane rupture and labor onset. The findings emphasize integrating these biomarkers into diagnostic tools for routine prenatal care, enhancing early detection, risk stratification, and timely interventions to improve maternal and neonatal outcomes.
Collapse
Affiliation(s)
- Theodoros Karampitsakos
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (N.M.); (A.P.); (P.P.); (S.S.); (P.D.)
| | - Despoina Mavrogianni
- First Department of Obstetrics and Gynecology, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (D.M.); (P.A.)
| | - Nikolaos Machairiotis
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (N.M.); (A.P.); (P.P.); (S.S.); (P.D.)
| | - Anastasios Potiris
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (N.M.); (A.P.); (P.P.); (S.S.); (P.D.)
| | - Periklis Panagopoulos
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (N.M.); (A.P.); (P.P.); (S.S.); (P.D.)
| | - Sofoklis Stavros
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (N.M.); (A.P.); (P.P.); (S.S.); (P.D.)
| | - Panos Antsaklis
- First Department of Obstetrics and Gynecology, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (D.M.); (P.A.)
| | - Peter Drakakis
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (N.M.); (A.P.); (P.P.); (S.S.); (P.D.)
| |
Collapse
|
5
|
Pepin AS, Jazwiec PA, Dumeaux V, Sloboda DM, Kimmins S. Determining the effects of paternal obesity on sperm chromatin at histone H3 lysine 4 tri-methylation in relation to the placental transcriptome and cellular composition. eLife 2024; 13:e83288. [PMID: 39612469 PMCID: PMC11717366 DOI: 10.7554/elife.83288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/28/2024] [Indexed: 12/01/2024] Open
Abstract
Paternal obesity has been implicated in adult-onset metabolic disease in offspring. However, the molecular mechanisms driving these paternal effects and the developmental processes involved remain poorly understood. One underexplored possibility is the role of paternally induced effects on placenta development and function. To address this, we investigated paternal high-fat diet-induced obesity in relation to sperm histone H3 lysine 4 tri-methylation signatures, the placenta transcriptome, and cellular composition. C57BL6/J male mice were fed either a control or high-fat diet for 10 weeks beginning at 6 weeks of age. Males were timed-mated with control-fed C57BL6/J females to generate pregnancies, followed by collection of sperm, and placentas at embryonic day (E)14.5. Chromatin immunoprecipitation targeting histone H3 lysine 4 tri-methylation (H3K4me3) followed by sequencing (ChIP-seq) was performed on sperm to define obesity-associated changes in enrichment. Paternal obesity corresponded with altered sperm H3K4me3 at promoters of genes involved in metabolism and development. Notably, altered sperm H3K4me3 was also localized at placental enhancers. Bulk RNA-sequencing on placentas revealed paternal obesity-associated sex-specific changes in expression of genes involved in hypoxic processes such as angiogenesis, nutrient transport, and imprinted genes, with a subset of de-regulated genes showing changes in H3K4me3 in sperm at corresponding promoters. Paternal obesity was also linked to impaired placenta development; specifically, a deconvolution analysis revealed altered trophoblast cell lineage specification. These findings implicate paternal obesity effects on placenta development and function as one potential developmental route to offspring metabolic disease.
Collapse
Affiliation(s)
- Anne-Sophie Pepin
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill UniversityMontrealCanada
| | - Patrycja A Jazwiec
- Department of Biochemistry and Biomedical Sciences, McMaster UniversityHamiltonCanada
| | - Vanessa Dumeaux
- Departments of Anatomy & Cell Biology and Oncology, Western UniversityLondonCanada
| | - Deborah M Sloboda
- Department of Biochemistry and Biomedical Sciences, McMaster UniversityHamiltonCanada
- Farncombe Family Digestive Health Research Institute, McMaster University HamiltonHamiltonCanada
- Departments of Obstetrics and Gynecology, and Pediatrics, McMaster UniversityHamiltonCanada
| | - Sarah Kimmins
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill UniversityMontrealCanada
- Department of Pathology and Molecular Biology, University of Montreal, University of Montreal Hospital Research CenterMontrealCanada
| |
Collapse
|
6
|
Costa CE, Watowich MM, Goldman EA, Sterner KN, Negron-Del Valle JE, Phillips D, Platt ML, Montague MJ, Brent LJN, Higham JP, Snyder-Mackler N, Lea AJ. Genetic Architecture of Immune Cell DNA Methylation in the Rhesus Macaque. Mol Ecol 2024:e17576. [PMID: 39582237 DOI: 10.1111/mec.17576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/23/2024] [Accepted: 10/18/2024] [Indexed: 11/26/2024]
Abstract
Genetic variation that impacts gene regulation, rather than protein function, can have strong effects on trait variation both within and between species. Epigenetic mechanisms, such as DNA methylation, are often an important intermediate link between genotype and phenotype, yet genetic effects on DNA methylation remain understudied in natural populations. To address this gap, we used reduced representation bisulfite sequencing to measure DNA methylation levels at 555,856 CpGs in peripheral whole blood of 573 samples collected from free-ranging rhesus macaques (Macaca mulatta) living on the island of Cayo Santiago, Puerto Rico. We used allele-specific methods to map cis-methylation quantitative trait loci (meQTL) and tested for effects of 243,389 single nucleotide polymorphisms (SNPs) on local DNA methylation levels. Of 776,092 tested SNP-CpG pairs, we identified 516,213 meQTL, with 69.12% of CpGs having at least one meQTL (FDR < 5%). On average, meQTL explained 21.2% of nearby methylation variance, significantly more than age or sex. meQTL were enriched in genomic compartments where methylation is likely to impact gene expression, for example, promoters, enhancers and binding sites for methylation-sensitive transcription factors. In support, using mRNA-seq data from 172 samples, we confirmed 332 meQTL as whole blood cis-expression QTL (eQTL) in the population, and found meQTL-eQTL genes were enriched for immune response functions, like antigen presentation and inflammation. Overall, our study takes an important step towards understanding the genetic architecture of DNA methylation in natural populations, and more generally points to the biological mechanisms driving phenotypic variation in our close relatives.
Collapse
Affiliation(s)
- Christina E Costa
- Department of Anthropology, New York University, New York, New York, USA
- New York Consortium in Evolutionary Primatology, New York, New York, USA
| | - Marina M Watowich
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Kirstin N Sterner
- Department of Anthropology, University of Oregon, Eugene, Oregon, USA
| | - Josue E Negron-Del Valle
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA
| | - Daniel Phillips
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA
| | - Michael L Platt
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael J Montague
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - James P Higham
- Department of Anthropology, New York University, New York, New York, USA
- New York Consortium in Evolutionary Primatology, New York, New York, USA
| | - Noah Snyder-Mackler
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
- Neurodegenerative Disease Research Center, Arizona State University, Tempe, Arizona, USA
| | - Amanda J Lea
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
7
|
Watowich MM, Costa CE, Chiou KL, Goldman EA, Petersen RM, Patterson S, Martínez MI, Sterner KN, Horvath JE, Montague MJ, Platt ML, Brent LJN, Higham JP, Lea AJ, Snyder-Mackler N. Immune gene regulation is associated with age and environmental adversity in a nonhuman primate. Mol Ecol 2024; 33:e17445. [PMID: 39032090 PMCID: PMC11521774 DOI: 10.1111/mec.17445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/27/2024] [Accepted: 06/14/2024] [Indexed: 07/22/2024]
Abstract
Phenotypic aging is ubiquitous across mammalian species, suggesting shared underlying mechanisms of aging. Aging is linked to molecular changes to DNA methylation and gene expression, and environmental factors, such as severe external challenges or adversities, can moderate these age-related changes. Yet, it remains unclear whether environmental adversities affect gene regulation via the same molecular pathways as chronological, or 'primary', aging. Investigating molecular aging in naturalistic animal populations can fill this gap by providing insight into shared molecular mechanisms of aging and the effects of a greater diversity of environmental adversities - particularly those that can be challenging to study in humans or laboratory organisms. Here, we characterised molecular aging - specifically, CpG methylation - in a sample of free-ranging rhesus macaques living off the coast of Puerto Rico (n samples = 571, n individuals = 499), which endured a major hurricane during our study. Age was associated with methylation at 78,661 sites (31% of all sites tested). Age-associated hypermethylation occurred more frequently in areas of active gene regulation, while hypomethylation was enriched in regions that show less activity in immune cells, suggesting these regions may become de-repressed in older individuals. Age-associated hypomethylation also co-occurred with increased chromatin accessibility while hypermethylation showed the opposite trend, hinting at a coordinated, multi-level loss of epigenetic stability during aging. We detected 32,048 CpG sites significantly associated with exposure to a hurricane, and these sites overlapped age-associated sites, most strongly in regulatory regions and most weakly in quiescent regions. Together, our results suggest that environmental adversity may contribute to aging-related molecular phenotypes in regions of active gene transcription, but that primary aging has specific signatures in non-regulatory regions.
Collapse
Affiliation(s)
- Marina M. Watowich
- Department of Biology, University of Washington, Seattle, Washington, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Christina E. Costa
- Department of Anthropology, New York University, New York, New York, USA
- New York Consortium in Evolutionary Primatology, New York, New York, USA
| | - Kenneth L. Chiou
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Elisabeth A. Goldman
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Rachel M. Petersen
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Sam Patterson
- Department of Anthropology, New York University, New York, New York, USA
| | | | - Melween I. Martínez
- Caribbean Primate Research Center, Unit of Comparative Medicine, University of Puerto Rico, San Juan, Puerto Rico, USA
| | | | - Julie E. Horvath
- Research and Collections Section, North Carolina Museum of Natural Sciences, Raleigh, North Carolina, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
- Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michael J. Montague
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael L. Platt
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Marketing Department, Wharton School of Business, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lauren J. N. Brent
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | - James P. Higham
- Department of Anthropology, New York University, New York, New York, USA
- New York Consortium in Evolutionary Primatology, New York, New York, USA
| | - Amanda J. Lea
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Child and Brain Development, Canadian Institute for Advanced Research, Toronto, Canada
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
- Neurodegenerative Disease Research Center, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
8
|
Jones BM, Webb AE, Geib SM, Sim S, Schweizer RM, Branstetter MG, Evans JD, Kocher SD. Repeated Shifts in Sociality Are Associated With Fine-tuning of Highly Conserved and Lineage-Specific Enhancers in a Socially Flexible Bee. Mol Biol Evol 2024; 41:msae229. [PMID: 39487572 PMCID: PMC11568387 DOI: 10.1093/molbev/msae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024] Open
Abstract
Comparative genomic studies of social insects suggest that changes in gene regulation are associated with evolutionary transitions in social behavior, but the activity of predicted regulatory regions has not been tested empirically. We used self-transcribing active regulatory region sequencing, a high-throughput enhancer discovery tool, to identify and measure the activity of enhancers in the socially variable sweat bee, Lasioglossum albipes. We identified over 36,000 enhancers in the L. albipes genome from 3 social and 3 solitary populations. Many enhancers were identified in only a subset of L. albipes populations, revealing rapid divergence in regulatory regions within this species. Population-specific enhancers were often proximal to the same genes across populations, suggesting compensatory gains and losses of regulatory regions may preserve gene activity. We also identified 1,182 enhancers with significant differences in activity between social and solitary populations, some of which are conserved regulatory regions across species of bees. These results indicate that social trait variation in L. albipes is associated with the fine-tuning of ancient enhancers as well as lineage-specific regulatory changes. Combining enhancer activity with population genetic data revealed variants associated with differences in enhancer activity and identified a subset of differential enhancers with signatures of selection associated with social behavior. Together, these results provide the first empirical map of enhancers in a socially flexible bee and highlight links between cis-regulatory variation and the evolution of social behavior.
Collapse
Affiliation(s)
- Beryl M Jones
- Department of Ecology and Evolutionary Biology, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Entomology, University of Kentucky, Lexington, KY 40508, USA
| | - Andrew E Webb
- Department of Ecology and Evolutionary Biology, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Scott M Geib
- U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Tropical Pest Genetics and Molecular Biology Research Unit, Hilo, HI 96720, USA
| | - Sheina Sim
- U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Tropical Pest Genetics and Molecular Biology Research Unit, Hilo, HI 96720, USA
| | - Rena M Schweizer
- U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Pollinating Insects Research Unit, Utah State University, Logan, UT 84322, USA
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Michael G Branstetter
- U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Pollinating Insects Research Unit, Utah State University, Logan, UT 84322, USA
| | - Jay D Evans
- U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Bee Research Laboratory BARC-E, Beltsville, MD 20705, USA
| | - Sarah D Kocher
- Department of Ecology and Evolutionary Biology, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
9
|
Lahue C, Wong E, Dalal A, Wen WTL, Ren S, Foo R, Wang Y, Rau CD. Mapping DNA Methylation to Cardiac Pathologies Induced by Beta-Adrenergic Stimulation in a Large Panel of Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.619688. [PMID: 39484431 PMCID: PMC11527189 DOI: 10.1101/2024.10.25.619688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Background Heart failure (HF) is a leading cause of morbidity and mortality worldwide, with over 18 million deaths annually. Despite extensive research, genetic and environmental factors contributing to HF remain complex and poorly understood. Recent studies suggest that epigenetic modifications, such as DNA methylation, may play a crucial role in regulating HF-associated phenotypes. In this study, we leverage the Hybrid Mouse Diversity Panel (HMDP), a cohort of over 100 inbred mouse strains, to investigate the role of DNA methylation in HF progression. Objective We aim to identify epigenetic modifications associated with HF by integrating DNA methylation data with gene expression and phenotypic traits. Using isoproterenol (ISO)-induced cardiac hypertrophy and failure in HMDP mice, we explore the relationship between methylation patterns and HF susceptibility. Methods We performed reduced representational bisulfite sequencing (RRBS) to capture DNA methylation at single-nucleotide resolution in the left ventricles of 90 HMDP mouse strains under both control and ISO-treated conditions. We identified differentially methylated regions (DMRs) and performed an epigenome-wide association study (EWAS) using the MACAU algorithm. We identified likely candidate genes within each locus through integration of our results with previously reported sequence variation, gene expression, and HF-related phenotypes. In vitro approaches were employed to validate key findings, including gene knockdown experiments in neonatal rat ventricular myocytes (NRVMs). We also examined the effects of preventing DNA methyltransferase activity on HF progression. Results Our EWAS identified 56 CpG loci significantly associated with HF phenotypes, including 18 loci where baseline DNA methylation predicted post-ISO HF progression. Key candidate genes, such as Prkag2, Anks1, and Mospd3, were identified based on their epigenetic regulation and association with HF traits. In vitro follow-up on a number of genes confirmed that knockdown of Anks1 and Mospd3 in NRVMs resulted in significant alterations in cell size and blunting of ISO-induced hypertrophy, demonstrating their functional relevance in HF pathology.Furthermore, treatment with the DNA methyltransferase inhibitor RG108 in ISO-treated BTBRT mice significantly reduced cardiac hypertrophy and preserved ejection fraction compared to mice only treated with ISO, highlighting the therapeutic potential of targeting DNA methylation in HF. Differential expression analysis revealed that RG108 treatment restored the expression of several methylation-sensitive genes, further supporting the role of epigenetic regulation in HF. Conclusion Our study demonstrates a clear interplay between DNA methylation, gene expression, and HF-associated phenotypes. We identified several novel epigenetic loci and candidate genes that contribute to HF progression, offering new insights into the molecular mechanisms of HF. These findings underscore the importance of epigenetic regulation in cardiac disease and suggest potential therapeutic strategies for modifying HF outcomes through targeting DNA methylation.
Collapse
Affiliation(s)
- Caitlin Lahue
- Department of Genetics and Computational Medicine Program, University of North Carolina at Chapel Hill
| | - Eleanor Wong
- Genome Institute of Singapore
- Cardiovascular Research Institute, Duke-NUS Medical School, National University of Singapore
| | - Aryan Dalal
- Department of Genetics and Computational Medicine Program, University of North Carolina at Chapel Hill
| | - Wilson Tan Lek Wen
- Genome Institute of Singapore
- Cardiovascular Research Institute, Duke-NUS Medical School, National University of Singapore
| | - Shuxun Ren
- Cardiovascular Research Institute, Duke-NUS Medical School, National University of Singapore
| | - Roger Foo
- Genome Institute of Singapore
- Cardiovascular Research Institute, Duke-NUS Medical School, National University of Singapore
| | - Yibin Wang
- Cardiovascular Research Institute, Duke-NUS Medical School, National University of Singapore
| | - Christoph D Rau
- Department of Genetics and Computational Medicine Program, University of North Carolina at Chapel Hill
| |
Collapse
|
10
|
Flynn A, Waszak SM, Weischenfeldt J. Somatic CpG hypermutation is associated with mismatch repair deficiency in cancer. Mol Syst Biol 2024; 20:1006-1024. [PMID: 39026103 PMCID: PMC11369196 DOI: 10.1038/s44320-024-00054-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 06/17/2024] [Accepted: 06/28/2024] [Indexed: 07/20/2024] Open
Abstract
Somatic hypermutation in cancer has gained momentum with the increased use of tumour mutation burden as a biomarker for immune checkpoint inhibitors. Spontaneous deamination of 5-methylcytosine to thymine at CpG dinucleotides is one of the most ubiquitous endogenous mutational processes in normal and cancer cells. Here, we performed a systematic investigation of somatic CpG hypermutation at a pan-cancer level. We studied 30,191 cancer patients and 103 cancer types and developed an algorithm to identify somatic CpG hypermutation. Across cancer types, we observed the highest prevalence in paediatric leukaemia (3.5%), paediatric high-grade glioma (1.7%), and colorectal cancer (1%). We discovered germline variants and somatic mutations in the mismatch repair complex MutSα (MSH2-MSH6) as genetic drivers of somatic CpG hypermutation in cancer, which frequently converged on CpG sites and TP53 driver mutations. We further observe an association between somatic CpG hypermutation and response to immune checkpoint inhibitors. Overall, our study identified novel cancer types that display somatic CpG hypermutation, strong association with MutSα-deficiency, and potential utility in cancer immunotherapy.
Collapse
Affiliation(s)
- Aidan Flynn
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- The Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Pathology and Centre for Cancer Research, University of Melbourne, Parkville, VIC, Australia
| | - Sebastian M Waszak
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway.
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| | - Joachim Weischenfeldt
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
- The Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
- The DCCC Brain Tumor Center, Danish Comprehensive Cancer Center, Copenhagen, Denmark.
- Department of Urology, Charité University Hospital, Berlin, Germany.
| |
Collapse
|
11
|
Petersen RM, Vockley CM, Lea AJ. Uncovering methylation-dependent genetic effects on regulatory element function in diverse genomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609412. [PMID: 39229133 PMCID: PMC11370585 DOI: 10.1101/2024.08.23.609412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
A major goal in evolutionary biology and biomedicine is to understand the complex interactions between genetic variants, the epigenome, and gene expression. However, the causal relationships between these factors remain poorly understood. mSTARR-seq, a methylation-sensitive massively parallel reporter assay, is capable of identifying methylation-dependent regulatory activity at many thousands of genomic regions simultaneously, and allows for the testing of causal relationships between DNA methylation and gene expression on a region-by-region basis. Here, we developed a multiplexed mSTARR-seq protocol to assay naturally occurring human genetic variation from 25 individuals sampled from 10 localities in Europe and Africa. We identified 6,957 regulatory elements in either the unmethylated or methylated state, and this set was enriched for enhancer and promoter annotations, as expected. The expression of 58% of these regulatory elements was modulated by methylation, which was generally associated with decreased RNA expression. Within our set of regulatory elements, we used allele-specific expression analyses to identify 8,020 sites with genetic effects on gene regulation; further, we found that 42.3% of these genetic effects varied between methylated and unmethylated states. Sites exhibiting methylation-dependent genetic effects were enriched for GWAS and EWAS annotations, implicating them in human disease. Compared to datasets that assay DNA from a single European individual, our multiplexed assay uncovers dramatically more genetic effects and methylation-dependent genetic effects, highlighting the importance of including diverse individuals in assays which aim to understand gene regulatory processes.
Collapse
|
12
|
Chen F, Zhang Y, Shen L, Creighton CJ. The DNA methylome of pediatric brain tumors appears shaped by structural variation and predicts survival. Nat Commun 2024; 15:6775. [PMID: 39117669 PMCID: PMC11310301 DOI: 10.1038/s41467-024-51276-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Structural variation heavily influences the molecular landscape of cancer, in part by impacting DNA methylation-mediated transcriptional regulation. Here, using multi-omic datasets involving >2400 pediatric brain and central nervous system tumors of diverse histologies from the Children's Brain Tumor Network, we report hundreds of genes and associated CpG islands (CGIs) for which the nearby presence of somatic structural variant (SV) breakpoints is recurrently associated with altered expression or DNA methylation, respectively, including tumor suppressor genes ATRX and CDKN2A. Altered DNA methylation near enhancers associates with nearby somatic SV breakpoints, including MYC and MYCN. A subset of genes with SV-CGI methylation associations also have expression associations with patient survival, including BCOR, TERT, RCOR2, and PDLIM4. DNA methylation changes in recurrent or progressive tumors compared to the initial tumor within the same patient can predict survival in pediatric and adult cancers. Our comprehensive and pan-histology genomic analyses reveal mechanisms of noncoding alterations impacting cancer genes.
Collapse
Affiliation(s)
- Fengju Chen
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Yiqun Zhang
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Lanlan Shen
- USDA Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Chad J Creighton
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
13
|
Xu L, Liu Y. Identification, Design, and Application of Noncoding Cis-Regulatory Elements. Biomolecules 2024; 14:945. [PMID: 39199333 PMCID: PMC11352686 DOI: 10.3390/biom14080945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
Cis-regulatory elements (CREs) play a pivotal role in orchestrating interactions with trans-regulatory factors such as transcription factors, RNA-binding proteins, and noncoding RNAs. These interactions are fundamental to the molecular architecture underpinning complex and diverse biological functions in living organisms, facilitating a myriad of sophisticated and dynamic processes. The rapid advancement in the identification and characterization of these regulatory elements has been marked by initiatives such as the Encyclopedia of DNA Elements (ENCODE) project, which represents a significant milestone in the field. Concurrently, the development of CRE detection technologies, exemplified by massively parallel reporter assays, has progressed at an impressive pace, providing powerful tools for CRE discovery. The exponential growth of multimodal functional genomic data has necessitated the application of advanced analytical methods. Deep learning algorithms, particularly large language models, have emerged as invaluable tools for deconstructing the intricate nucleotide sequences governing CRE function. These advancements facilitate precise predictions of CRE activity and enable the de novo design of CREs. A deeper understanding of CRE operational dynamics is crucial for harnessing their versatile regulatory properties. Such insights are instrumental in refining gene therapy techniques, enhancing the efficacy of selective breeding programs, pushing the boundaries of genetic innovation, and opening new possibilities in microbial synthetic biology.
Collapse
Affiliation(s)
- Lingna Xu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China;
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yuwen Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China;
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Foshan 528226, China
| |
Collapse
|
14
|
Taff CC, McNew SM, Campagna L, Vitousek MN. Corticosterone exposure is associated with long-term changes in DNA methylation, physiology and breeding decisions in a wild bird. Mol Ecol 2024; 33:e17456. [PMID: 38953311 DOI: 10.1111/mec.17456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 06/07/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
When facing challenges, vertebrates activate a hormonal stress response that can dramatically alter behaviour and physiology. Although this response can be costly, conceptual models suggest that it can also recalibrate the stress response system, priming more effective responses to future challenges. Little is known about whether this process occurs in wild animals, particularly in adulthood, and if so, how information about prior experience with stressors is encoded. One potential mechanism is hormonally mediated changes in DNA methylation. We simulated the spikes in corticosterone that accompany a stress response using non-invasive dosing in tree swallows (Tachycineta bicolor) and monitored the phenotypic effects 1 year later. In a subset of individuals, we characterized DNA methylation using reduced representation bisulfite sequencing shortly after treatment and a year later. The year after treatment, experimental females had stronger negative feedback and initiated breeding earlier-traits that are associated with stress resilience and reproductive performance in our population-and higher baseline corticosterone. We also found that natural variation in corticosterone predicted patterns of DNA methylation. Finally, corticosterone treatment influenced methylation on short (1-2 weeks) and long (1 year) time scales; however, these changes did not have clear links to functional regulation of the stress response. Taken together, our results are consistent with corticosterone-induced priming of future stress resilience and support DNA methylation as a potential mechanism, but more work is needed to demonstrate functional consequences. Uncovering the mechanisms linking experience with the response to future challenges has implications for understanding the drivers of stress resilience.
Collapse
Affiliation(s)
- Conor C Taff
- Department of Ecology & Evolutionary Biology and Cornell Lab of Ornithology, Cornell University, Ithaca, New York, USA
- Department of Biology, Colby College, Waterville, Maine, USA
| | - Sabrina M McNew
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| | - Leonardo Campagna
- Department of Ecology & Evolutionary Biology and Cornell Lab of Ornithology, Cornell University, Ithaca, New York, USA
| | - Maren N Vitousek
- Department of Ecology & Evolutionary Biology and Cornell Lab of Ornithology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
15
|
Domingo-Relloso A, Feng Y, Rodriguez-Hernandez Z, Haack K, Cole SA, Navas-Acien A, Tellez-Plaza M, Bermudez JD. Omics feature selection with the extended SIS R package: identification of a body mass index epigenetic multimarker in the Strong Heart Study. Am J Epidemiol 2024; 193:1010-1018. [PMID: 38375692 PMCID: PMC11228868 DOI: 10.1093/aje/kwae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 11/22/2023] [Accepted: 02/14/2024] [Indexed: 02/21/2024] Open
Abstract
The statistical analysis of omics data poses a great computational challenge given their ultra-high-dimensional nature and frequent between-features correlation. In this work, we extended the iterative sure independence screening (ISIS) algorithm by pairing ISIS with elastic-net (Enet) and 2 versions of adaptive elastic-net (adaptive elastic-net (AEnet) and multistep adaptive elastic-net (MSAEnet)) to efficiently improve feature selection and effect estimation in omics research. We subsequently used genome-wide human blood DNA methylation data from American Indian participants in the Strong Heart Study (n = 2235 participants; measured in 1989-1991) to compare the performance (predictive accuracy, coefficient estimation, and computational efficiency) of ISIS-paired regularization methods with that of a bayesian shrinkage and traditional linear regression to identify an epigenomic multimarker of body mass index (BMI). ISIS-AEnet outperformed the other methods in prediction. In biological pathway enrichment analysis of genes annotated to BMI-related differentially methylated positions, ISIS-AEnet captured most of the enriched pathways in common for at least 2 of all the evaluated methods. ISIS-AEnet can favor biological discovery because it identifies the most robust biological pathways while achieving an optimal balance between bias and efficient feature selection. In the extended SIS R package, we also implemented ISIS paired with Cox and logistic regression for time-to-event and binary endpoints, respectively, and a bootstrap approach for the estimation of regression coefficients.
Collapse
Affiliation(s)
- Arce Domingo-Relloso
- Corresponding author: Arce Domingo-Relloso, National Center for Epidemiology, Carlos III Health Institute, C. de Melchor Fernández Almagro Street, 5, Madrid 28029, Spain
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Smith HM, Moodie JE, Monterrubio-Gómez K, Gadd DA, Hillary RF, Chybowska AD, McCartney DL, Campbell A, Redmond P, Page D, Taylor A, Corley J, Harris SE, Valdés Hernández M, Muñoz Maniega S, Bastin ME, Wardlaw JM, Deary IJ, Boardman JP, Mullin DS, Russ TC, Cox SR, Marioni RE. Epigenetic scores of blood-based proteins as biomarkers of general cognitive function and brain health. Clin Epigenetics 2024; 16:46. [PMID: 38528588 PMCID: PMC10962132 DOI: 10.1186/s13148-024-01661-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/16/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Epigenetic Scores (EpiScores) for blood protein levels have been associated with disease outcomes and measures of brain health, highlighting their potential usefulness as clinical biomarkers. They are typically derived via penalised regression, whereby a linear weighted sum of DNA methylation (DNAm) levels at CpG sites are predictive of protein levels. Here, we examine 84 previously published protein EpiScores as possible biomarkers of cross-sectional and longitudinal measures of general cognitive function and brain health, and incident dementia across three independent cohorts. RESULTS Using 84 protein EpiScores as candidate biomarkers, associations with general cognitive function (both cross-sectionally and longitudinally) were tested in three independent cohorts: Generation Scotland (GS), and the Lothian Birth Cohorts of 1921 and 1936 (LBC1921 and LBC1936, respectively). A meta-analysis of general cognitive functioning results in all three cohorts identified 18 EpiScore associations (absolute meta-analytic standardised estimates ranged from 0.03 to 0.14, median of 0.04, PFDR < 0.05). Several associations were also observed between EpiScores and global brain volumetric measures in the LBC1936. An EpiScore for the S100A9 protein (a known Alzheimer disease biomarker) was associated with general cognitive functioning (meta-analytic standardised beta: - 0.06, P = 1.3 × 10-9), and with time-to-dementia in GS (Hazard ratio 1.24, 95% confidence interval 1.08-1.44, P = 0.003), but not in LBC1936 (Hazard ratio 1.11, P = 0.32). CONCLUSIONS EpiScores might make a contribution to the risk profile of poor general cognitive function and global brain health, and risk of dementia, however these scores require replication in further studies.
Collapse
Affiliation(s)
- Hannah M Smith
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Joanna E Moodie
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Karla Monterrubio-Gómez
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Danni A Gadd
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Robert F Hillary
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Aleksandra D Chybowska
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Daniel L McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Paul Redmond
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Danielle Page
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Adele Taylor
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Janie Corley
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Sarah E Harris
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Maria Valdés Hernández
- Centre for Clinical Brain Sciences, and Edinburgh Centre in the UK Dementia Research Institute, Chancellor's Building, University of Edinburgh, Little France, Edinburgh, UK
| | - Susana Muñoz Maniega
- Centre for Clinical Brain Sciences, and Edinburgh Centre in the UK Dementia Research Institute, Chancellor's Building, University of Edinburgh, Little France, Edinburgh, UK
| | - Mark E Bastin
- Centre for Clinical Brain Sciences, and Edinburgh Centre in the UK Dementia Research Institute, Chancellor's Building, University of Edinburgh, Little France, Edinburgh, UK
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, and Edinburgh Centre in the UK Dementia Research Institute, Chancellor's Building, University of Edinburgh, Little France, Edinburgh, UK
| | - Ian J Deary
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - James P Boardman
- Centre for Clinical Brain Sciences, and Edinburgh Centre in the UK Dementia Research Institute, Chancellor's Building, University of Edinburgh, Little France, Edinburgh, UK
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Donncha S Mullin
- Centre for Clinical Brain Sciences, Division of Psychiatry, University of Edinburgh, Edinburgh, UK
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, UK
| | - Tom C Russ
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, and Edinburgh Centre in the UK Dementia Research Institute, Chancellor's Building, University of Edinburgh, Little France, Edinburgh, UK
| | - Simon R Cox
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
17
|
Anderson JA, Lin D, Lea AJ, Johnston RA, Voyles T, Akinyi MY, Archie EA, Alberts SC, Tung J. DNA methylation signatures of early-life adversity are exposure-dependent in wild baboons. Proc Natl Acad Sci U S A 2024; 121:e2309469121. [PMID: 38442181 PMCID: PMC10945818 DOI: 10.1073/pnas.2309469121] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/13/2023] [Indexed: 03/07/2024] Open
Abstract
The early-life environment can profoundly shape the trajectory of an animal's life, even years or decades later. One mechanism proposed to contribute to these early-life effects is DNA methylation. However, the frequency and functional importance of DNA methylation in shaping early-life effects on adult outcomes is poorly understood, especially in natural populations. Here, we integrate prospectively collected data on fitness-associated variation in the early environment with DNA methylation estimates at 477,270 CpG sites in 256 wild baboons. We find highly heterogeneous relationships between the early-life environment and DNA methylation in adulthood: aspects of the environment linked to resource limitation (e.g., low-quality habitat, early-life drought) are associated with many more CpG sites than other types of environmental stressors (e.g., low maternal social status). Sites associated with early resource limitation are enriched in gene bodies and putative enhancers, suggesting they are functionally relevant. Indeed, by deploying a baboon-specific, massively parallel reporter assay, we show that a subset of windows containing these sites are capable of regulatory activity, and that, for 88% of early drought-associated sites in these regulatory windows, enhancer activity is DNA methylation-dependent. Together, our results support the idea that DNA methylation patterns contain a persistent signature of the early-life environment. However, they also indicate that not all environmental exposures leave an equivalent mark and suggest that socioenvironmental variation at the time of sampling is more likely to be functionally important. Thus, multiple mechanisms must converge to explain early-life effects on fitness-related traits.
Collapse
Affiliation(s)
- Jordan A. Anderson
- Department of Evolutionary Anthropology, Duke University, Durham, NC27708
| | - Dana Lin
- Department of Evolutionary Anthropology, Duke University, Durham, NC27708
| | - Amanda J. Lea
- Canadian Institute for Advanced Research, Child & Brain Development Program, Toronto, ONM5G 1M1, Canada
- Department of Biological Sciences, Vanderbilt University, Nashville, TN37235
| | | | - Tawni Voyles
- Department of Evolutionary Anthropology, Duke University, Durham, NC27708
| | - Mercy Y. Akinyi
- Institute of Primate Research, National Museums of Kenya, Nairobi00502, Kenya
| | - Elizabeth A. Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN46556
| | - Susan C. Alberts
- Department of Evolutionary Anthropology, Duke University, Durham, NC27708
- Department of Biology, Duke University, Durham, NC27708
- Duke Population Research Institute, Duke University, Durham, NC27708
| | - Jenny Tung
- Department of Evolutionary Anthropology, Duke University, Durham, NC27708
- Canadian Institute for Advanced Research, Child & Brain Development Program, Toronto, ONM5G 1M1, Canada
- Department of Biology, Duke University, Durham, NC27708
- Duke Population Research Institute, Duke University, Durham, NC27708
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig04103, Germany
| |
Collapse
|
18
|
Johnston RA, Aracena KA, Barreiro LB, Lea AJ, Tung J. DNA methylation-environment interactions in the human genome. eLife 2024; 12:RP89371. [PMID: 38407202 PMCID: PMC10942648 DOI: 10.7554/elife.89371] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Previously, we showed that a massively parallel reporter assay, mSTARR-seq, could be used to simultaneously test for both enhancer-like activity and DNA methylation-dependent enhancer activity for millions of loci in a single experiment (Lea et al., 2018). Here, we apply mSTARR-seq to query nearly the entire human genome, including almost all CpG sites profiled either on the commonly used Illumina Infinium MethylationEPIC array or via reduced representation bisulfite sequencing. We show that fragments containing these sites are enriched for regulatory capacity, and that methylation-dependent regulatory activity is in turn sensitive to the cellular environment. In particular, regulatory responses to interferon alpha (IFNA) stimulation are strongly attenuated by methyl marks, indicating widespread DNA methylation-environment interactions. In agreement, methylation-dependent responses to IFNA identified via mSTARR-seq predict methylation-dependent transcriptional responses to challenge with influenza virus in human macrophages. Our observations support the idea that pre-existing DNA methylation patterns can influence the response to subsequent environmental exposures-one of the tenets of biological embedding. However, we also find that, on average, sites previously associated with early life adversity are not more likely to functionally influence gene regulation than expected by chance.
Collapse
Affiliation(s)
- Rachel A Johnston
- Department of Evolutionary Anthropology, Duke UniversityDurhamUnited States
- Zoo New EnglandBostonUnited States
- Broad Institute of MIT and HarvardCambridgeUnited States
| | | | - Luis B Barreiro
- Department of Human Genetics, University of ChicagoChicagoUnited States
- Section of Genetic Medicine, Department of Medicine, University of ChicagoChicagoUnited States
- Committee on Immunology, University of ChicagoChicagoUnited States
| | - Amanda J Lea
- Department of Biological Sciences, Vanderbilt UniversityNashvilleUnited States
- Canadian Institute for Advanced ResearchTorontoCanada
| | - Jenny Tung
- Department of Evolutionary Anthropology, Duke UniversityDurhamUnited States
- Canadian Institute for Advanced ResearchTorontoCanada
- Duke Population Research Institute, Duke UniversityDurhamUnited States
- Department of Biology, Duke UniversityDurhamUnited States
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
| |
Collapse
|
19
|
Nayak R, Franěk R, Laurent A, Pšenička M. Genome-wide comparative methylation analysis reveals the fate of germ stem cells after surrogate production in teleost. BMC Biol 2024; 22:39. [PMID: 38360607 PMCID: PMC10870548 DOI: 10.1186/s12915-024-01842-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 02/09/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Surrogate production by germline stem cell transplantation is a powerful method to produce donor-derived gametes via a host, a practice known as surrogacy. The gametes produced by surrogates are often analysed on the basis of their morphology and species-specific genotyping, which enables conclusion to be drawn about the donor's characteristics. However, in-depth information, such as data on epigenetic changes, is rarely acquired. Germ cells develop in close contact with supporting somatic cells during gametogenesis in vertebrates, and we hypothesize that the recipient's gonadal environment may cause epigenetic changes in produced gametes and progeny. Here, we extensively characterize the DNA methylome of donor-derived sperm and their intergenerational effects in both inter- and intraspecific surrogates. RESULTS We found more than 3000 differentially methylated regions in both the sperm and progeny derived from inter- and intraspecific surrogates. Hypermethylation in the promoter regions of the protocadherin gamma gene in the intraspecific surrogates was found to be associated with germline transmission. On the contrary, gene expression level and the embryonic development of the offspring remained unaffected. We also discovered MAPK/p53 pathway disruption in interspecific surrogates due to promoter hypermethylation and identified that the inefficient removal of meiotic-arrested endogenous germ cells in hybrid gonads led to the production of infertile spermatozoa. CONCLUSIONS Donor-derived sperm and progeny from inter- and intraspecific surrogates were more globally hypermethylated than those of the donors. The observed changes in DNA methylation marks in the surrogates had no significant phenotypic effects in the offspring.
Collapse
Affiliation(s)
- Rigolin Nayak
- The University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25, Vodnany, Czech Republic.
| | - Roman Franěk
- The University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25, Vodnany, Czech Republic
- Department of Genetics, The Silberman Institute, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Audrey Laurent
- Fish Physiology and Genomics Laboratory, INRAE, Campus de Beaulieu, 35000, Rennes, France
| | - Martin Pšenička
- The University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| |
Collapse
|
20
|
Bogan SN, Yi SV. Potential Role of DNA Methylation as a Driver of Plastic Responses to the Environment Across Cells, Organisms, and Populations. Genome Biol Evol 2024; 16:evae022. [PMID: 38324384 PMCID: PMC10899001 DOI: 10.1093/gbe/evae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/09/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024] Open
Abstract
There is great interest in exploring epigenetic modifications as drivers of adaptive organismal responses to environmental change. Extending this hypothesis to populations, epigenetically driven plasticity could influence phenotypic changes across environments. The canonical model posits that epigenetic modifications alter gene regulation and subsequently impact phenotypes. We first discuss origins of epigenetic variation in nature, which may arise from genetic variation, spontaneous epimutations, epigenetic drift, or variation in epigenetic capacitors. We then review and synthesize literature addressing three facets of the aforementioned model: (i) causal effects of epigenetic modifications on phenotypic plasticity at the organismal level, (ii) divergence of epigenetic patterns in natural populations distributed across environmental gradients, and (iii) the relationship between environmentally induced epigenetic changes and gene expression at the molecular level. We focus on DNA methylation, the most extensively studied epigenetic modification. We find support for environmentally associated epigenetic structure in populations and selection on stable epigenetic variants, and that inhibition of epigenetic enzymes frequently bears causal effects on plasticity. However, there are pervasive confounding issues in the literature. Effects of chromatin-modifying enzymes on phenotype may be independent of epigenetic marks, alternatively resulting from functions and protein interactions extrinsic of epigenetics. Associations between environmentally induced changes in DNA methylation and expression are strong in plants and mammals but notably absent in invertebrates and nonmammalian vertebrates. Given these challenges, we describe emerging approaches to better investigate how epigenetic modifications affect gene regulation, phenotypic plasticity, and divergence among populations.
Collapse
Affiliation(s)
- Samuel N Bogan
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Soojin V Yi
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| |
Collapse
|
21
|
Johnston RA, Aracena KA, Barreiro LB, Lea AJ, Tung J. DNA methylation-environment interactions in the human genome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.541437. [PMID: 37293015 PMCID: PMC10245841 DOI: 10.1101/2023.05.19.541437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Previously we showed that a massively parallel reporter assay, mSTARR-seq, could be used to simultaneously test for both enhancer-like activity and DNA methylation-dependent enhancer activity for millions of loci in a single experiment (Lea et al., 2018). Here we apply mSTARR-seq to query nearly the entire human genome, including almost all CpG sites profiled either on the commonly used Illumina Infinium MethylationEPIC array or via reduced representation bisulfite sequencing. We show that fragments containing these sites are enriched for regulatory capacity, and that methylation-dependent regulatory activity is in turn sensitive to the cellular environment. In particular, regulatory responses to interferon alpha (IFNA) stimulation are strongly attenuated by methyl marks, indicating widespread DNA methylation-environment interactions. In agreement, methylation-dependent responses to IFNA identified via mSTARR-seq predict methylation-dependent transcriptional responses to challenge with influenza virus in human macrophages. Our observations support the idea that pre-existing DNA methylation patterns can influence the response to subsequent environmental exposures-one of the tenets of biological embedding. However, we also find that, on average, sites previously associated with early life adversity are not more likely to functionally influence gene regulation than expected by chance.
Collapse
Affiliation(s)
- Rachel A Johnston
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
- Zoo New England, Boston, MA 02121, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Luis B Barreiro
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Amanda J Lea
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37240, USA
- Canadian Institute for Advanced Research, Toronto, Canada M5G 1Z8
| | - Jenny Tung
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
- Canadian Institute for Advanced Research, Toronto, Canada M5G 1Z8
- Duke Population Research Institute, Duke University, Durham, NC 27708, USA
- Department of Biology, Duke University, Durham, NC 27708, USA
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Saxony, Germany
| |
Collapse
|
22
|
Grau J, Schmidt F, Schulz MH. Widespread effects of DNA methylation and intra-motif dependencies revealed by novel transcription factor binding models. Nucleic Acids Res 2023; 51:e95. [PMID: 37650641 PMCID: PMC10570048 DOI: 10.1093/nar/gkad693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/20/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023] Open
Abstract
Several studies suggested that transcription factor (TF) binding to DNA may be impaired or enhanced by DNA methylation. We present MeDeMo, a toolbox for TF motif analysis that combines information about DNA methylation with models capturing intra-motif dependencies. In a large-scale study using ChIP-seq data for 335 TFs, we identify novel TFs that show a binding behaviour associated with DNA methylation. Overall, we find that the presence of CpG methylation decreases the likelihood of binding for the majority of methylation-associated TFs. For a considerable subset of TFs, we show that intra-motif dependencies are pivotal for accurately modelling the impact of DNA methylation on TF binding. We illustrate that the novel methylation-aware TF binding models allow to predict differential ChIP-seq peaks and improve the genome-wide analysis of TF binding. Our work indicates that simplistic models that neglect the effect of DNA methylation on DNA binding may lead to systematic underperformance for methylation-associated TFs.
Collapse
Affiliation(s)
- Jan Grau
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle 06120, Germany
| | - Florian Schmidt
- Goethe-University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
- Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken 66123, Germany
- Systems Biology and Data Analytics, Genome Institute of Singapore, Singapore 13862, Singapore
- ImmunoScape Pte Ltd, Singapore 228208, Singapore
| | - Marcel H Schulz
- Goethe-University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
- Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken 66123, Germany
- German Center for Cardiovascular Research, Partner site Rhein-Main, 60590 Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
23
|
Tost J. Do not be scared of the genome's 5th base-Explaining phenotypic variability and evolutionary dynamics through DNA methylation analysis. Mol Ecol Resour 2023; 23:1473-1476. [PMID: 37466235 DOI: 10.1111/1755-0998.13824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/02/2023] [Indexed: 07/20/2023]
Abstract
Epigenetic processes have taken center stage for the investigation of many biological processes, and epigenetic modifications have shown to influence phenotype, morphology and behavioural traits such as stress resistance by affecting gene regulation and expression without altering the underlying genomic sequence. The multiple molecular layers of epigenetics synergistically construct the cell type-specific gene regulatory networks, characterized by a high degree of plasticity and redundancy to create cell-type-specific morphology and function. DNA methylation occurring on the 5' carbon of cytosines in different genomic sequence contexts is the most studied epigenetic modification. DNA methylation has been shown to provide a molecular record of the exposure to a large variety of environmental factors, which might be persistent through the entire lifetime of an organism and even be passed onto the offspring. Animals might display altered phenotypes mediated by epigenetic modifications depending on the developmental stage or the environmental conditions as well as during evolution. Therefore, the analysis of DNA methylation patterns might allow deciphering previous exposures, explaining ecologically relevant phenotypic diversity and predicting evolutionary trajectories enabling accelerated adaption to changing environmental conditions. Despite the explanatory potential of DNA methylation integrating genetic and environmental factors to shape phenotypic variation and contribute significantly to evolutionary dynamics, studies of DNA methylation are still scarce in the field of ecology. This might be at least partly due to the complexity of DNA methylation analysis and the interpretation of the acquired data. In the current issue of Molecular Ecology Resources, Laine and colleagues (Molecular Ecology Resources, 2022) provide a detailed summary of guidelines and valuable recommendations for researchers in the field of ecology to avoid common pitfalls and perform interpretable genome-wide DNA methylation analyses.
Collapse
Affiliation(s)
- Jorg Tost
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Université Paris-Saclay, Evry, France
| |
Collapse
|
24
|
López-Gil L, Pascual-Ahuir A, Proft M. Genomic Instability and Epigenetic Changes during Aging. Int J Mol Sci 2023; 24:14279. [PMID: 37762580 PMCID: PMC10531692 DOI: 10.3390/ijms241814279] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Aging is considered the deterioration of physiological functions along with an increased mortality rate. This scientific review focuses on the central importance of genomic instability during the aging process, encompassing a range of cellular and molecular changes that occur with advancing age. In particular, this revision addresses the genetic and epigenetic alterations that contribute to genomic instability, such as telomere shortening, DNA damage accumulation, and decreased DNA repair capacity. Furthermore, the review explores the epigenetic changes that occur with aging, including modifications to histones, DNA methylation patterns, and the role of non-coding RNAs. Finally, the review discusses the organization of chromatin and its contribution to genomic instability, including heterochromatin loss, chromatin remodeling, and changes in nucleosome and histone abundance. In conclusion, this review highlights the fundamental role that genomic instability plays in the aging process and underscores the need for continued research into these complex biological mechanisms.
Collapse
Affiliation(s)
- Lucía López-Gil
- Department of Biotechnology, Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain;
- Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia IBV-CSIC, Consejo Superior de Investigaciones Científicas CSIC, Jaime Roig 11, 46010 Valencia, Spain
| | - Amparo Pascual-Ahuir
- Department of Biotechnology, Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain;
| | - Markus Proft
- Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia IBV-CSIC, Consejo Superior de Investigaciones Científicas CSIC, Jaime Roig 11, 46010 Valencia, Spain
| |
Collapse
|
25
|
Taguchi YH, Komaki S, Sutoh Y, Ohmomo H, Otsuka-Yamasaki Y, Shimizu A. Integrated analysis of human DNA methylation, gene expression, and genomic variation in iMETHYL database using kernel tensor decomposition-based unsupervised feature extraction. PLoS One 2023; 18:e0289029. [PMID: 37556429 PMCID: PMC10411815 DOI: 10.1371/journal.pone.0289029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/07/2023] [Indexed: 08/11/2023] Open
Abstract
Integrating gene expression, DNA methylation, and genomic variants simultaneously without location coincidence (i.e., irrespective of distance from each other) or pairwise coincidence (i.e., direct identification of triplets of gene expression, DNA methylation, and genomic variants, and not integration of pairwise coincidences) is difficult. In this study, we integrated gene expression, DNA methylation, and genome variants from the iMETHYL database using the recently proposed kernel tensor decomposition-based unsupervised feature extraction method with limited computational resources (i.e., short CPU time and small memory requirements). Our methods do not require prior knowledge of the subjects because they are fully unsupervised in that unsupervised tensor decomposition is used. The selected genes and genomic variants were significantly targeted by transcription factors that were biologically enriched in KEGG pathway terms as well as in the intra-related regulatory network. The proposed method is promising for integrated analyses of gene expression, methylation, and genomic variants with limited computational resources.
Collapse
Affiliation(s)
- Y-h. Taguchi
- Department of Physics, Chuo University, Tokyo, Japan
| | - Shohei Komaki
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Iwate, Japan
| | - Yoichi Sutoh
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Iwate, Japan
| | - Hideki Ohmomo
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Iwate, Japan
| | - Yayoi Otsuka-Yamasaki
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Iwate, Japan
| | - Atsushi Shimizu
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Iwate, Japan
| |
Collapse
|
26
|
Kim JE, Jo MJ, Cho E, Ahn SY, Kwon YJ, Gim JA, Ko GJ. The Effect of DNA Methylation in the Development and Progression of Chronic Kidney Disease in the General Population: An Epigenome-Wide Association Study Using the Korean Genome and Epidemiology Study Database. Genes (Basel) 2023; 14:1489. [PMID: 37510393 PMCID: PMC10379047 DOI: 10.3390/genes14071489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Although knowledge of the genetic factors influencing kidney disease is increasing, epigenetic profiles, which are associated with chronic kidney disease (CKD), have not been fully elucidated. We sought to identify the DNA methylation status of CpG sites associated with reduced kidney function and examine whether the identified CpG sites are associated with CKD development. METHOD We analyzed DNA methylation patterns of 440 participants in the Korean Genome and Epidemiology Study (KoGES) with estimated glomerular filtration rates (eGFRs) ≥ 60 mL/min/1.73 m2 at baseline. CKD development was defined as a decrease in the eGFR of <60 at any time during an 8-year follow-up period ("CKD prediction" analysis). In addition, among the 440 participants, 49 participants who underwent a second methylation profiling were assessed for an association between a decline in kidney function and changes in the degree of methylation of CpG sites during the 8 years ("kidney function slope" analysis). RESULTS In the CKD prediction analysis, methylation profiles of a total of 403,129 CpG sites were evaluated at baseline in 440 participants, and increased and decreased methylation of 268 and 189 CpG sites, respectively, were significantly correlated with the development of CKD in multivariable logistic regression. During kidney function slope analysis using follow-up methylation profiles of 49 participants, the percent methylation changes in 913 CpG sites showed a linear relationship with the percent change in eGFR during 8 years. During functional enrichment analyses for significant CpG sites found in the CKD prediction and kidney function slope analyses, we found that those CpG sites represented MAPK, PI3K/Akt, and Rap1 pathways. In addition, three CpG sites from three genes, NPHS2, CHCHD4, and AHR, were found to be significant in the CKD prediction analysis and related to a decline in kidney function. CONCLUSION It is suggested that DNA methylation on specific genes is associated with the development of CKD and the deterioration of kidney function.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Internal Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Min-Jee Jo
- Department of Internal Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Eunjung Cho
- Department of Internal Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Shin-Young Ahn
- Department of Internal Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Young-Joo Kwon
- Department of Internal Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Jeong-An Gim
- Medical Science Research Center, Korea University College of Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Gang-Jee Ko
- Department of Internal Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| |
Collapse
|
27
|
Bogan SN, Strader ME, Hofmann GE. Associations between DNA methylation and gene regulation depend on chromatin accessibility during transgenerational plasticity. BMC Biol 2023; 21:149. [PMID: 37365578 DOI: 10.1186/s12915-023-01645-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Epigenetic processes are proposed to be a mechanism regulating gene expression during phenotypic plasticity. However, environmentally induced changes in DNA methylation exhibit little-to-no association with differential gene expression in metazoans at a transcriptome-wide level. It remains unexplored whether associations between environmentally induced differential methylation and expression are contingent upon other epigenomic processes such as chromatin accessibility. We quantified methylation and gene expression in larvae of the purple sea urchin Strongylocentrotus purpuratus exposed to different ecologically relevant conditions during gametogenesis (maternal conditioning) and modeled changes in gene expression and splicing resulting from maternal conditioning as functions of differential methylation, incorporating covariates for genomic features and chromatin accessibility. We detected significant interactions between differential methylation, chromatin accessibility, and genic feature type associated with differential expression and splicing. RESULTS Differential gene body methylation had significantly stronger effects on expression among genes with poorly accessible transcriptional start sites while baseline transcript abundance influenced the direction of this effect. Transcriptional responses to maternal conditioning were 4-13 × more likely when accounting for interactions between methylation and chromatin accessibility, demonstrating that the relationship between differential methylation and gene regulation is partially explained by chromatin state. CONCLUSIONS DNA methylation likely possesses multiple associations with gene regulation during transgenerational plasticity in S. purpuratus and potentially other metazoans, but its effects are dependent on chromatin accessibility and underlying genic features.
Collapse
Affiliation(s)
- Samuel N Bogan
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, USA.
| | - Marie E Strader
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, USA
- Department of Biology, Texas A&M University, College Station, USA
| | - Gretchen E Hofmann
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, USA
| |
Collapse
|
28
|
Santarosa M, Baldazzi D, Armellin M, Maestro R. In Silico Identification of a BRCA1:miR-29:DNMT3 Axis Involved in the Control of Hormone Receptors in BRCA1-Associated Breast Cancers. Int J Mol Sci 2023; 24:9916. [PMID: 37373065 DOI: 10.3390/ijms24129916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Germline inactivating mutations in the BRCA1 gene lead to an increased lifetime risk of ovarian and breast cancer (BC). Most BRCA1-associated BC are triple-negative tumors (TNBC), aggressive forms of BC characterized by a lack of expression of estrogen and progesterone hormone receptors (HR) and HER2. How BRCA1 inactivation may favor the development of such a specific BC phenotype remains to be elucidated. To address this question, we focused on the role of miRNAs and their networks in mediating BRCA1 functions. miRNA, mRNA, and methylation data were retrieved from the BRCA cohort of the TCGA project. The cohort was divided into a discovery set (Hi-TCGA) and a validation set (GA-TCGA) based on the platform used for miRNA analyses. The METABRIC, GSE81002, and GSE59248 studies were used as additional validation data sets. BCs were differentiated into BRCA1-like and non-BRCA1-like based on an established signature of BRCA1 pathway inactivation. Differential expression of miRNAs, gene enrichment analysis, functional annotation, and methylation correlation analyses were performed. The miRNAs downregulated in BRCA1-associated BC were identified by comparing the miRNome of BRCA1-like with non-BRCA1-like tumors from the Hi-TCGA discovery cohort. miRNAs:gene-target anticorrelation analyses were then performed. The target genes of miRNAs downregulated in the Hi-TCGA series were enriched in the BRCA1-like tumors from the GA-TCGA and METABRIC validation data sets. Functional annotation of these genes revealed an over-representation of several biological processes ascribable to BRCA1 activity. The enrichment of genes related to DNA methylation was particularly intriguing, as this is an aspect of BRCA1 functions that has been poorly explored. We then focused on the miR-29:DNA methyltransferase network and showed that the miR-29 family, which was downregulated in BRCA1-like tumors, was associated with poor prognosis in these BCs and inversely correlated with the expression of the DNA methyltransferases DNMT3A and DNMT3B. This, in turn, correlated with the methylation extent of the promoter of HR genes. These results suggest that BRCA1 may control the expression of HR via a miR-29:DNMT3:HR axis and that disruption of this network may contribute to the receptor negative phenotype of tumors with dysfunctional BRCA1.
Collapse
Affiliation(s)
- Manuela Santarosa
- Unit of Oncogenetics and Functional Oncogenomics, CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
| | - Davide Baldazzi
- Unit of Oncogenetics and Functional Oncogenomics, CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
| | - Michela Armellin
- Unit of Oncogenetics and Functional Oncogenomics, CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
| | - Roberta Maestro
- Unit of Oncogenetics and Functional Oncogenomics, CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
| |
Collapse
|
29
|
Anderson JA, Lin D, Lea AJ, Johnston RA, Voyles T, Akinyi MY, Archie EA, Alberts SC, Tung J. DNA methylation signatures of early life adversity are exposure-dependent in wild baboons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.05.542485. [PMID: 37333311 PMCID: PMC10274726 DOI: 10.1101/2023.06.05.542485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The early life environment can profoundly shape the trajectory of an animal's life, even years or decades later. One mechanism proposed to contribute to these early life effects is DNA methylation. However, the frequency and functional importance of DNA methylation in shaping early life effects on adult outcomes is poorly understood, especially in natural populations. Here, we integrate prospectively collected data on fitness-associated variation in the early environment with DNA methylation estimates at 477,270 CpG sites in 256 wild baboons. We find highly heterogeneous relationships between the early life environment and DNA methylation in adulthood: aspects of the environment linked to resource limitation (e.g., low-quality habitat, early life drought) are associated with many more CpG sites than other types of environmental stressors (e.g., low maternal social status). Sites associated with early resource limitation are enriched in gene bodies and putative enhancers, suggesting they are functionally relevant. Indeed, by deploying a baboon-specific, massively parallel reporter assay, we show that a subset of windows containing these sites are capable of regulatory activity, and that, for 88% of early drought-associated sites in these regulatory windows, enhancer activity is DNA methylation-dependent. Together, our results support the idea that DNA methylation patterns contain a persistent signature of the early life environment. However, they also indicate that not all environmental exposures leave an equivalent mark and suggest that socioenvironmental variation at the time of sampling is more likely to be functionally important. Thus, multiple mechanisms must converge to explain early life effects on fitness-related traits.
Collapse
Affiliation(s)
- Jordan A Anderson
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina 27708, USA
| | - Dana Lin
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina 27708, USA
| | - Amanda J Lea
- Canadian Institute for Advanced Research, Toronto, Canada M5G 1M1, Canada
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, 37235, USA
| | - Rachel A Johnston
- Zoo New England, Stoneham, Massachusetts, 02180
- Broad Institute, Cambridge, Massachusetts, 02142
| | - Tawni Voyles
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina 27708, USA
| | - Mercy Y Akinyi
- Institute of Primate Research, National Museums of Kenya, Nairobi 00502, Kenya
| | - Elizabeth A Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Susan C Alberts
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina 27708, USA
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
- Duke Population Research Institute, Duke University, Durham, NC 27708, USA
| | - Jenny Tung
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina 27708, USA
- Canadian Institute for Advanced Research, Toronto, Canada M5G 1M1, Canada
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
- Duke Population Research Institute, Duke University, Durham, NC 27708, USA
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| |
Collapse
|
30
|
Liu S, Akula N, Reardon P, Russ J, Torres E, Clasen L, Blumenthal J, Lalonde F, McMahon F, Szele F, Disteche C, Cader M, Raznahan A. Aneuploidy effects on human gene expression across three cell types. Proc Natl Acad Sci U S A 2023; 120:e2218478120. [PMID: 37192167 PMCID: PMC10214149 DOI: 10.1073/pnas.2218478120] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/15/2023] [Indexed: 05/18/2023] Open
Abstract
Aneuploidy syndromes impact multiple organ systems but understanding of tissue-specific aneuploidy effects remains limited-especially for the comparison between peripheral tissues and relatively inaccessible tissues like brain. Here, we address this gap in knowledge by studying the transcriptomic effects of chromosome X, Y, and 21 aneuploidies in lymphoblastoid cell lines, fibroblasts and iPSC-derived neuronal cells (LCLs, FCL, and iNs, respectively). We root our analyses in sex chromosome aneuploidies, which offer a uniquely wide karyotype range for dosage effect analysis. We first harness a large LCL RNA-seq dataset from 197 individuals with one of 6 sex chromosome dosages (SCDs: XX, XXX, XY, XXY, XYY, and XXYY) to i) validate theoretical models of SCD sensitivity and ii) define an expanded set of 41 genes that show obligate dosage sensitivity to SCD and are all in cis (i.e., reside on the X or Y chromosome). We then use multiple complementary analyses to show that cis effects of SCD in LCLs are preserved in both FCLs (n = 32) and iNs (n = 24), whereas trans effects (i.e., those on autosomal gene expression) are mostly not preserved. Analysis of additional datasets confirms that the greater cross-cell type reproducibility of cis vs. trans effects is also seen in trisomy 21 cell lines. These findings i) expand our understanding of X, Y, and 21 chromosome dosage effects on human gene expression and ii) suggest that LCLs may provide a good model system for understanding cis effects of aneuploidy in harder-to-access cell types.
Collapse
Affiliation(s)
- Siyuan Liu
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD20892
| | - Nirmala Akula
- Section on the Genetic Basis of Mood and Anxiety Disorders Section, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD20892
| | - Paul K. Reardon
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD20892
| | - Jill Russ
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD20892
- Section on the Genetic Basis of Mood and Anxiety Disorders Section, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD20892
| | - Erin Torres
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD20892
| | - Liv S. Clasen
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD20892
| | - Jonathan Blumenthal
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD20892
| | - Francois Lalonde
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD20892
| | - Francis J. McMahon
- Section on the Genetic Basis of Mood and Anxiety Disorders Section, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD20892
| | - Francis Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, OxfordOX1 3PT, United Kingdom
| | - Christine M. Disteche
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA98195
- Department of Medicine, University of Washington, Seattle, WA98195
| | - M. Zameel Cader
- Nuffield Department of Clinical Neurosciences, Translational Molecular Neuroscience Group, Weatherall Institute of Molecular Medicine, University of Oxford, OxfordOX3 9DS, United Kingdom
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD20892
| |
Collapse
|
31
|
Chundru VK, Marioni RE, Prendergast JGD, Lin T, Beveridge AJ, Martin NG, Montgomery GW, Hume DA, Deary IJ, Visscher PM, Wray NR, McRae AF. Rare genetic variants underlie outlying levels of DNA methylation and gene-expression. Hum Mol Genet 2023; 32:1912-1921. [PMID: 36790133 PMCID: PMC10196672 DOI: 10.1093/hmg/ddad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/25/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Testing the effect of rare variants on phenotypic variation is difficult due to the need for extremely large cohorts to identify associated variants given expected effect sizes. An alternative approach is to investigate the effect of rare genetic variants on DNA methylation (DNAm) as effect sizes are expected to be larger for molecular traits compared with complex traits. Here, we investigate DNAm in healthy ageing populations-the Lothian Birth Cohorts of 1921 and 1936-and identify both transient and stable outlying DNAm levels across the genome. We find an enrichment of rare genetic single nucleotide polymorphisms (SNPs) within 1 kb of DNAm sites in individuals with stable outlying DNAm, implying genetic control of this extreme variation. Using a family-based cohort, the Brisbane Systems Genetics Study, we observed increased sharing of DNAm outliers among more closely related individuals, consistent with these outliers being driven by rare genetic variation. We demonstrated that outlying DNAm levels have a functional consequence on gene expression levels, with extreme levels of DNAm being associated with gene expression levels toward the tails of the population distribution. This study demonstrates the role of rare SNPs in the phenotypic variation of DNAm and the effect of extreme levels of DNAm on gene expression.
Collapse
Affiliation(s)
- V Kartik Chundru
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Wellcome Sanger Institute, Hinxton CB10 1RQ, UK
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK
| | | | - Tian Lin
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Allan J Beveridge
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, The University of Glasgow, Glasgow G61 1QH, UK
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Grant W Montgomery
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David A Hume
- Mater Research Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Ian J Deary
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Peter M Visscher
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Naomi R Wray
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Allan F McRae
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
32
|
Das M, Hossain A, Banerjee D, Praul CA, Girirajan S. Challenges and considerations for reproducibility of STARR-seq assays. Genome Res 2023; 33:479-495. [PMID: 37130797 PMCID: PMC10234304 DOI: 10.1101/gr.277204.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 03/15/2023] [Indexed: 05/04/2023]
Abstract
High-throughput methods such as RNA-seq, ChIP-seq, and ATAC-seq have well-established guidelines, commercial kits, and analysis pipelines that enable consistency and wider adoption for understanding genome function and regulation. STARR-seq, a popular assay for directly quantifying the activities of thousands of enhancer sequences simultaneously, has seen limited standardization across studies. The assay is long, with more than 250 steps, and frequent customization of the protocol and variations in bioinformatics methods raise concerns for reproducibility of STARR-seq studies. Here, we assess each step of the protocol and analysis pipelines from published sources and in-house assays, and identify critical steps and quality control (QC) checkpoints necessary for reproducibility of the assay. We also provide guidelines for experimental design, protocol scaling, customization, and analysis pipelines for better adoption of the assay. These resources will allow better optimization of STARR-seq for specific research needs, enable comparisons and integration across studies, and improve the reproducibility of results.
Collapse
Affiliation(s)
- Maitreya Das
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA;
- Molecular and Cellular Integrative Biosciences Graduate Program, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Ayaan Hossain
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Bioinformatics and Genomics Graduate Program, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Deepro Banerjee
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Bioinformatics and Genomics Graduate Program, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Craig Alan Praul
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Santhosh Girirajan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA;
- Molecular and Cellular Integrative Biosciences Graduate Program, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Bioinformatics and Genomics Graduate Program, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
33
|
Cheon H, Hur JK, Hwang W, Yang HJ, Son JH. Epigenetic modification of gene expression in cancer cells by terahertz demethylation. Sci Rep 2023; 13:4930. [PMID: 36967404 PMCID: PMC10040409 DOI: 10.1038/s41598-023-31828-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Terahertz (THz) radiation can affect the degree of DNA methylation, the spectral characteristics of which exist in the terahertz region. DNA methylation is an epigenetic modification in which a methyl (CH3) group is attached to cytosine, a nucleobase in human DNA. Appropriately controlled DNA methylation leads to proper regulation of gene expression. However, abnormal gene expression that departs from controlled genetic transcription through aberrant DNA methylation may occur in cancer or other diseases. In this study, we demonstrate the modification of gene expression in cells by THz demethylation using resonant THz radiation. Using an enzyme-linked immunosorbent assay, we observed changes in the degree of global DNA methylation in the SK-MEL-3 melanoma cell line under irradiation with 1.6-THz radiation with limited spectral bandwidth. Resonant THz radiation demethylated living melanoma cells by 19%, with no significant occurrence of apurinic/apyrimidinic sites, and the demethylation ratio was linearly proportional to the power of THz radiation. THz demethylation downregulates FOS, JUN, and CXCL8 genes, which are involved in cancer and apoptosis pathways. Our results show that THz demethylation has the potential to be a gene expression modifier with promising applications in cancer treatment.
Collapse
Affiliation(s)
- Hwayeong Cheon
- Biomedical Engineering Research Center, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Junho K Hur
- Department of Genetics, College of Medicine, Graduate School of Biomedical Sciences and Engineering, Hanyang University, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Woochang Hwang
- Department of Pre-Medicine, College of Medicine, Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Hee-Jin Yang
- Department of Neurosurgery, Seoul National University Boramae Medical Center, 20 Boramae-ro 5-gil, Dognjak-gu, Seoul, 07061, Republic of Korea.
| | - Joo-Hiuk Son
- Department of Physics, University of Seoul, 163, Seoulsiripdae-ro, Dongdaemun-gu, Seoul, 02504, Republic of Korea.
| |
Collapse
|
34
|
Gallego Romero I, Lea AJ. Leveraging massively parallel reporter assays for evolutionary questions. Genome Biol 2023; 24:26. [PMID: 36788564 PMCID: PMC9926830 DOI: 10.1186/s13059-023-02856-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 01/17/2023] [Indexed: 02/16/2023] Open
Abstract
A long-standing goal of evolutionary biology is to decode how gene regulation contributes to organismal diversity. Doing so is challenging because it is hard to predict function from non-coding sequence and to perform molecular research with non-model taxa. Massively parallel reporter assays (MPRAs) enable the testing of thousands to millions of sequences for regulatory activity simultaneously. Here, we discuss the execution, advantages, and limitations of MPRAs, with a focus on evolutionary questions. We propose solutions for extending MPRAs to rare taxa and those with limited genomic resources, and we underscore MPRA's broad potential for driving genome-scale, functional studies across organisms.
Collapse
Affiliation(s)
- Irene Gallego Romero
- Melbourne Integrative Genomics, University of Melbourne, Royal Parade, Parkville, Victoria, 3010, Australia. .,School of BioSciences, The University of Melbourne, Royal Parade, Parkville, 3010, Australia. .,The Centre for Stem Cell Systems, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, 30 Royal Parade, Parkville, Victoria, 3010, Australia. .,Center for Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Estonia.
| | - Amanda J. Lea
- grid.152326.10000 0001 2264 7217Department of Biological Sciences, Vanderbilt University, Nashville, TN 37240 USA ,grid.152326.10000 0001 2264 7217Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN 37240 USA ,grid.152326.10000 0001 2264 7217Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37240 USA ,Child and Brain Development Program, Canadian Institute for Advanced Study, Toronto, Canada
| |
Collapse
|
35
|
DNA methylation-induced ablation of miR-133a accelerates cancer aggressiveness in glioma through upregulating peroxisome proliferator-activated receptor γ. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023; 28:19-28. [PMID: 36067936 DOI: 10.1016/j.slasd.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 01/31/2023]
Abstract
Emerging evidences suggest that miRNAs can be used as theranostic biomarkers for multiple cancers, including glioma. Thus, identification of novel miRNAs for glioma treatment and prognosis becomes necessary and urgent. Here, by analyzing miRNA expression profiles in the glioma and para-cancer tissues by miRNA microarray and verified by RT-PCR, we found that miR-133a was significantly downregulated in the cancerous tissues, and patients with low-expressed miR-133a levels predicted an unfavorable prognosis. The following functional experiments confirmed that overexpression of miR-133a restrained cell proliferation and colony formation abilities, and induced cell cycle arrest to restrain cancer progression in glioma cells. Then, the underlying mechanisms were uncovered, and the peroxisome proliferator-activated receptor γ (PPARγ, PPARG) was verified as the downstream target of miR-133a. Mechanistically, miR-133a negatively regulated PPARG expressions by binding to its 3' untranslated regions (3'UTR). The following rescuing experiments evidenced that miR-133a overexpression-induced anti-cancer effects in glioma cells were abrogated by upregulating PPARγ. Interestingly, we noticed that the promoter region of miR-133a was hypermethylated, and removal of DNA methylation by 5-Azacytidine (AZA) significantly increased the expression levels of miR-133a in glioma cells. Taken together, we concluded that DNA-methylation-induced miR-133a silence contributed to cancer progression in glioma through upregulating PPARγ, and firstly identified the DNA-methylation-regulated miR-133a/PPARG axis as the novel indicators for glioma treatment and prognosis.
Collapse
|
36
|
DNA methylation and gene expression analysis in adipose tissue to identify new loci associated with T2D development in obesity. Nutr Diabetes 2022; 12:50. [PMID: 36535927 PMCID: PMC9763387 DOI: 10.1038/s41387-022-00228-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Obesity is accompanied by excess adipose fat storage, which may lead to adipose dysfunction, insulin resistance, and type 2 diabetes (T2D). Currently, the tendency to develop T2D in obesity cannot be explained by genetic variation alone-epigenetic mechanisms, such as DNA methylation, might be involved. Here, we aimed to identify changes in DNA methylation and gene expression in visceral adipose tissue (VAT) that might underlie T2D susceptibility in patients with obesity. METHODS We investigated DNA methylation and gene expression in VAT biopsies from 19 women with obesity, without (OND = 9) or with T2D (OD = 10). Differences in genome-scale methylation (differentially methylated CpGs [DMCs], false discovery rate < 0.05; and differentially methylated regions [DMRs], p value < 0.05) and gene expression (DEGs, p value <0.05) between groups were assessed. We searched for overlap between altered methylation and expression and the impact of altered DNA methylation on gene expression, using bootstrap Pearson correlation. The relationship of altered DNA methylation to T2D-related traits was also tested. RESULTS We identified 11 120 DMCs and 96 DMRs distributed across all chromosomes, with the greatest density of epigenomic alterations at the MHC locus. These alterations were found in newly and previously T2D-related genes. Several of these findings were supported by validation and extended multi-ethnic analyses. Of 252 DEGs in the OD group, 68 genes contained DMCs (n = 88), of which 24 demonstrated a significant relationship between gene expression and methylation (p values <0.05). Of these, 16, including ATP11A, LPL and EHD2 also showed a significant correlation with fasting glucose and HbA1c levels. CONCLUSIONS Our results revealed novel candidate genes related to T2D pathogenesis in obesity. These genes show perturbations in DNA methylation and expression profiles in patients with obesity and diabetes. Methylation profiles were able to discriminate OND from OD individuals; DNA methylation is thus a potential biomarker.
Collapse
|
37
|
Robinson KG, Marsh AG, Lee SK, Hicks J, Romero B, Batish M, Crowgey EL, Shrader MW, Akins RE. DNA Methylation Analysis Reveals Distinct Patterns in Satellite Cell-Derived Myogenic Progenitor Cells of Subjects with Spastic Cerebral Palsy. J Pers Med 2022; 12:jpm12121978. [PMID: 36556199 PMCID: PMC9780849 DOI: 10.3390/jpm12121978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Spastic type cerebral palsy (CP) is a complex neuromuscular disorder that involves altered skeletal muscle microanatomy and growth, but little is known about the mechanisms contributing to muscle pathophysiology and dysfunction. Traditional genomic approaches have provided limited insight regarding disease onset and severity, but recent epigenomic studies indicate that DNA methylation patterns can be altered in CP. Here, we examined whether a diagnosis of spastic CP is associated with intrinsic DNA methylation differences in myoblasts and myotubes derived from muscle resident stem cell populations (satellite cells; SCs). Twelve subjects were enrolled (6 CP; 6 control) with informed consent/assent. Skeletal muscle biopsies were obtained during orthopedic surgeries, and SCs were isolated and cultured to establish patient-specific myoblast cell lines capable of proliferation and differentiation in culture. DNA methylation analyses indicated significant differences at 525 individual CpG sites in proliferating SC-derived myoblasts (MB) and 1774 CpG sites in differentiating SC-derived myotubes (MT). Of these, 79 CpG sites were common in both culture types. The distribution of differentially methylated 1 Mbp chromosomal segments indicated distinct regional hypo- and hyper-methylation patterns, and significant enrichment of differentially methylated sites on chromosomes 12, 13, 14, 15, 18, and 20. Average methylation load across 2000 bp regions flanking transcriptional start sites was significantly different in 3 genes in MBs, and 10 genes in MTs. SC derived MBs isolated from study participants with spastic CP exhibited fundamental differences in DNA methylation compared to controls at multiple levels of organization that may reveal new targets for studies of mechanisms contributing to muscle dysregulation in spastic CP.
Collapse
Affiliation(s)
- Karyn G. Robinson
- Nemours Children’s Research, Nemours Children’s Health System, Wilmington, DE 19803, USA
| | - Adam G. Marsh
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716, USA
| | - Stephanie K. Lee
- Nemours Children’s Research, Nemours Children’s Health System, Wilmington, DE 19803, USA
| | - Jonathan Hicks
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716, USA
| | - Brigette Romero
- Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA
| | - Mona Batish
- Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA
| | - Erin L. Crowgey
- Nemours Children’s Research, Nemours Children’s Health System, Wilmington, DE 19803, USA
| | - M. Wade Shrader
- Department of Orthopedics, Nemours Children’s Hospital Delaware, Wilmington, DE 19803, USA
| | - Robert E. Akins
- Nemours Children’s Research, Nemours Children’s Health System, Wilmington, DE 19803, USA
- Correspondence: ; Tel.: +1-302-651-6779
| |
Collapse
|
38
|
Yue X, Zheng Y, Li L, Yang Z, Chen Z, Wang Y, Wang Z, Zhang D, Bian E, Zhao B. Integrative analysis of a novel 5 methylated snoRNA genes prognostic signature in patients with glioma. Epigenomics 2022; 14:1089-1104. [PMID: 36222052 DOI: 10.2217/epi-2022-0272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To explore the prognostic value of methylated snoRNA genes in glioma and construct a prognostic risk signature. Materials & methods: We retrieved clinical information and 450K methylation data from The Cancer Genome Atlas and obtained five methylated snoRNA genes. Then we established a risk signature and verified the effect of SNORA71B on glioma cells with functional assays. Results: A risk signature containing five methylated snoRNA genes was constructed and demonstrated to be an independent predictor of glioma prognosis. Silencing SNORA71B restrained the proliferation, migration and invasion of glioma cells and reduced the expression of mesenchymal and cell cycle marker proteins. Conclusion: This study constructed a methylated snoRNA gene risk signature, which may provide a reference for glioma patients' prognosis assessment.
Collapse
Affiliation(s)
- Xiaoyu Yue
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China
| | - Yinfei Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China
| | - Lianxin Li
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China
| | - Zhihao Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China
| | - Zhigang Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China
| | - Yu Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China
| | - Zhiwei Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China
| | - Deran Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China
| | - Erbao Bian
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China
| | - Bing Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China
| |
Collapse
|
39
|
Jain N, Lord JM, Vogel V. Mechanoimmunology: Are inflammatory epigenetic states of macrophages tuned by biophysical factors? APL Bioeng 2022; 6:031502. [PMID: 36051106 PMCID: PMC9427154 DOI: 10.1063/5.0087699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Many inflammatory diseases that are responsible for a majority of deaths are still uncurable, in part as the underpinning pathomechanisms and how to combat them is still poorly understood. Tissue-resident macrophages play pivotal roles in the maintenance of tissue homeostasis, but if they gradually convert to proinflammatory phenotypes, or if blood-born proinflammatory macrophages persist long-term after activation, they contribute to chronic inflammation and fibrosis. While biochemical factors and how they regulate the inflammatory transcriptional response of macrophages have been at the forefront of research to identify targets for therapeutic interventions, evidence is increasing that physical factors also tune the macrophage phenotype. Recently, several mechanisms have emerged as to how physical factors impact the mechanobiology of macrophages, from the nuclear translocation of transcription factors to epigenetic modifications, perhaps even DNA methylation. Insight into the mechanobiology of macrophages and associated epigenetic modifications will deliver novel therapeutic options going forward, particularly in the context of increased inflammation with advancing age and age-related diseases. We review here how biophysical factors can co-regulate pro-inflammatory gene expression and epigenetic modifications and identify knowledge gaps that require urgent attention if this therapeutic potential is to be realized.
Collapse
Affiliation(s)
- Nikhil Jain
- Authors to whom correspondence should be addressed: and
| | | | - Viola Vogel
- Department of Health Sciences and Technology, Institute of Translational Medicine, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
40
|
Gadd DA, Hillary RF, McCartney DL, Shi L, Stolicyn A, Robertson NA, Walker RM, McGeachan RI, Campbell A, Xueyi S, Barbu MC, Green C, Morris SW, Harris MA, Backhouse EV, Wardlaw JM, Steele JD, Oyarzún DA, Muniz-Terrera G, Ritchie C, Nevado-Holgado A, Chandra T, Hayward C, Evans KL, Porteous DJ, Cox SR, Whalley HC, McIntosh AM, Marioni RE. Integrated methylome and phenome study of the circulating proteome reveals markers pertinent to brain health. Nat Commun 2022; 13:4670. [PMID: 35945220 PMCID: PMC9363452 DOI: 10.1038/s41467-022-32319-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 07/25/2022] [Indexed: 12/04/2022] Open
Abstract
Characterising associations between the methylome, proteome and phenome may provide insight into biological pathways governing brain health. Here, we report an integrated DNA methylation and phenotypic study of the circulating proteome in relation to brain health. Methylome-wide association studies of 4058 plasma proteins are performed (N = 774), identifying 2928 CpG-protein associations after adjustment for multiple testing. These are independent of known genetic protein quantitative trait loci (pQTLs) and common lifestyle effects. Phenome-wide association studies of each protein are then performed in relation to 15 neurological traits (N = 1,065), identifying 405 associations between the levels of 191 proteins and cognitive scores, brain imaging measures or APOE e4 status. We uncover 35 previously unreported DNA methylation signatures for 17 protein markers of brain health. The epigenetic and proteomic markers we identify are pertinent to understanding and stratifying brain health.
Collapse
Affiliation(s)
- Danni A Gadd
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Robert F Hillary
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Daniel L McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Liu Shi
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
| | - Aleks Stolicyn
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, EH10 5HF, UK
| | - Neil A Robertson
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Rosie M Walker
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, Edinburgh BioQuarter, Edinburgh, EH16 4SB, UK
| | - Robert I McGeachan
- Centre for Discovery Brain Sciences, University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
- The Hospital for Small Animals, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Shen Xueyi
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, EH10 5HF, UK
| | - Miruna C Barbu
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, EH10 5HF, UK
| | - Claire Green
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, EH10 5HF, UK
| | - Stewart W Morris
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Mathew A Harris
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, EH10 5HF, UK
| | - Ellen V Backhouse
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, Edinburgh BioQuarter, Edinburgh, EH16 4SB, UK
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, Edinburgh BioQuarter, Edinburgh, EH16 4SB, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - J Douglas Steele
- Division of Imaging Science and Technology, Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Diego A Oyarzún
- School of Informatics, University of Edinburgh, Edinburgh, EH8 9AB, UK
- School of Biological Sciences, University of Edinburgh, Edinburgh, EH3 3JF, UK
- The Alan Turing Institute, 96 Euston Road, London, NW1 2DB, UK
| | - Graciela Muniz-Terrera
- Centre for Clinical Brain Sciences, Edinburgh Dementia Prevention, University of Edinburgh, Edinburgh, EH4 2XU, UK
- Department of Social Medicine, Ohio University, Athens, OH, 45701, USA
| | - Craig Ritchie
- Centre for Clinical Brain Sciences, Edinburgh Dementia Prevention, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | | | - Tamir Chandra
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Caroline Hayward
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Kathryn L Evans
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Simon R Cox
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Heather C Whalley
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, EH10 5HF, UK
| | - Andrew M McIntosh
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, EH10 5HF, UK
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK.
| |
Collapse
|
41
|
Yang SC, Wang WY, Zhou JJ, Wu L, Zhang MJ, Yang QC, Deng WW, Sun ZJ. Inhibition of DNMT1 potentiates antitumor immunity in oral squamous cell carcinoma. Int Immunopharmacol 2022; 111:109113. [PMID: 35944462 DOI: 10.1016/j.intimp.2022.109113] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/13/2022] [Accepted: 07/27/2022] [Indexed: 11/05/2022]
Abstract
Epigenetic alterations, including DNA methylation, play crucial roles in the tumor. Epigenetic drugs like DNA methyltransferase-1 (DNMT1) inhibitors have been exhibited positive effects in cancer treatment. However, the role of DNMT1 in oral squamous cell carcinoma (OSCC) is less clearly described. What is more, the effects on the immune microenvironment of DNMT1 have not become appreciated. In this research, we determine the expression levels of DNMT1 and the association of prognosis by analyzing human OSCC tissue microarrays. Two different types of immunocompetent mouse OSCC models were established to explore the effects of DNMT1 inhibitor on the tumor microenvironment(TME). We identified DNMT1 was highly expressed both in human and mouse OSCC tissues. The expression levels of DNMT1 was also correlated with the immunosuppressive molecules and tumor-promoter such as VISTA, PD-L1, B7-H4, and PAK2, indicating a worse prognosis. Of particular concern is that DNMT1 inhibition improved TME and delayed tumor growth by decreasing myeloid-derived suppressor cells (MDSCs) and increasing tumor-infiltrating T cells. Our data suggests that DNMT1 play a key role in OSCC and has a possible immunotherapeutic marker treatment.
Collapse
Affiliation(s)
- Shao-Chen Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 430079 Wuhan, China
| | - Wu-Yin Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 430079 Wuhan, China
| | - Jun-Jie Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 430079 Wuhan, China
| | - Lei Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 430079 Wuhan, China
| | - Meng-Jie Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 430079 Wuhan, China
| | - Qi-Chao Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 430079 Wuhan, China
| | - Wei-Wei Deng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 430079 Wuhan, China; Department of Oral Maxillofacial-Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, 430079 Wuhan, China.
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 430079 Wuhan, China; Department of Oral Maxillofacial-Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, 430079 Wuhan, China.
| |
Collapse
|
42
|
Joshi K, Liu S, Breslin S J P, Zhang J. Mechanisms that regulate the activities of TET proteins. Cell Mol Life Sci 2022; 79:363. [PMID: 35705880 DOI: 10.1007/s00018-022-04396-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 02/08/2023]
Abstract
The ten-eleven translocation (TET) family of dioxygenases consists of three members, TET1, TET2, and TET3. All three TET enzymes have Fe+2 and α-ketoglutarate (α-KG)-dependent dioxygenase activities, catalyzing the 1st step of DNA demethylation by converting 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), and further oxidize 5hmC to 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Gene knockout studies demonstrated that all three TET proteins are involved in the regulation of fetal organ generation during embryonic development and normal tissue generation postnatally. TET proteins play such roles by regulating the expression of key differentiation and fate-determining genes via (1) enzymatic activity-dependent DNA methylation of the promoters and enhancers of target genes; and (2) enzymatic activity-independent regulation of histone modification. Interacting partner proteins and post-translational regulatory mechanisms regulate the activities of TET proteins. Mutations and dysregulation of TET proteins are involved in the pathogenesis of human diseases, specifically cancers. Here, we summarize the research on the interaction partners and post-translational modifications of TET proteins. We also discuss the molecular mechanisms by which these partner proteins and modifications regulate TET functioning and target gene expression. Such information will help in the design of medications useful for targeted therapy of TET-mutant-related diseases.
Collapse
Affiliation(s)
- Kanak Joshi
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Shanhui Liu
- School of Life Sciences, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Peter Breslin S J
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.,Departments of Molecular/Cellular Physiology and Biology, Loyola University Medical Center and Loyola University Chicago, Chicago, IL, 60660, USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA. .,Departments of Pathology and Radiation Oncology, Loyola University Medical Center, Maywood, IL, 60153, USA.
| |
Collapse
|
43
|
Schaffner SL, Wassouf Z, Lazaro DF, Xylaki M, Gladish N, Lin DTS, MacIsaac J, Ramadori K, Hentrich T, Schulze-Hentrich JM, Outeiro TF, Kobor MS. Alpha-synuclein overexpression induces epigenomic dysregulation of glutamate signaling and locomotor pathways. Hum Mol Genet 2022; 31:3694-3714. [PMID: 35567546 PMCID: PMC9616577 DOI: 10.1093/hmg/ddac104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 04/15/2022] [Accepted: 05/03/2022] [Indexed: 11/26/2022] Open
Abstract
Parkinson’s disease (PD) is a neurological disorder with complex interindividual etiology that is becoming increasingly prevalent worldwide. Elevated alpha-synuclein levels can increase risk of PD and may influence epigenetic regulation of PD pathways. Here, we report genome-wide DNA methylation and hydroxymethylation alterations associated with overexpression of two PD-linked alpha-synuclein variants (wild-type and A30P) in LUHMES cells differentiated to dopaminergic neurons. Alpha-synuclein altered DNA methylation at thousands of CpGs and DNA hydroxymethylation at hundreds of CpGs in both genotypes, primarily in locomotor behavior and glutamate signaling pathway genes. In some cases, epigenetic changes were associated with transcription. SMITE network analysis incorporating H3K4me1 ChIP-seq to score DNA methylation and hydroxymethylation changes across promoters, enhancers, and gene bodies confirmed epigenetic and transcriptional deregulation of glutamate signaling modules in both genotypes. Our results identify distinct and shared impacts of alpha-synuclein variants on the epigenome, and associate alpha-synuclein with the epigenetic etiology of PD.
Collapse
Affiliation(s)
- Samantha L Schaffner
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Zinah Wassouf
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073 Göttingen, Germany.,German Centre for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
| | - Diana F Lazaro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Mary Xylaki
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Nicole Gladish
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - David T S Lin
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Julia MacIsaac
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Katia Ramadori
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Thomas Hentrich
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Julia M Schulze-Hentrich
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073 Göttingen, Germany.,German Centre for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany.,Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany.,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Michael S Kobor
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| |
Collapse
|
44
|
DNMT3A-dependent DNA methylation is required for spermatogonial stem cells to commit to spermatogenesis. Nat Genet 2022; 54:469-480. [DOI: 10.1038/s41588-022-01040-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 03/01/2022] [Indexed: 01/12/2023]
|
45
|
Ankill J, Aure MR, Bjørklund S, Langberg S, Kristensen VN, Vitelli V, Tekpli X, Fleischer T. Epigenetic alterations at distal enhancers are linked to proliferation in human breast cancer. NAR Cancer 2022; 4:zcac008. [PMID: 35350772 PMCID: PMC8947789 DOI: 10.1093/narcan/zcac008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/23/2022] [Accepted: 03/14/2022] [Indexed: 11/26/2022] Open
Abstract
Aberrant DNA methylation is an early event in breast carcinogenesis and plays a critical role in regulating gene expression. Here, we perform genome-wide expression-methylation Quantitative Trait Loci (emQTL) analysis through the integration of DNA methylation and gene expression to identify disease-driving pathways under epigenetic control. By grouping the emQTLs using biclustering we identify associations representing important biological processes associated with breast cancer pathogenesis including regulation of proliferation and tumor-infiltrating fibroblasts. We report genome-wide loss of enhancer methylation at binding sites of proliferation-driving transcription factors including CEBP-β, FOSL1, and FOSL2 with concomitant high expression of proliferation-related genes in aggressive breast tumors as we confirm with scRNA-seq. The identified emQTL-CpGs and genes were found connected through chromatin loops, indicating that proliferation in breast tumors is under epigenetic regulation by DNA methylation. Interestingly, the associations between enhancer methylation and proliferation-related gene expression were also observed within known subtypes of breast cancer, suggesting a common role of epigenetic regulation of proliferation. Taken together, we show that proliferation in breast cancer is linked to loss of methylation at specific enhancers and transcription factor binding and gene activation through chromatin looping.
Collapse
Affiliation(s)
- Jørgen Ankill
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Miriam Ragle Aure
- Department of Medical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sunniva Bjørklund
- Department of Medical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | | | - Vessela N Kristensen
- Department of Medical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Valeria Vitelli
- Oslo Centre for Biostatistics and Epidemiology, Department of Biostatistics, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Xavier Tekpli
- Department of Medical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Thomas Fleischer
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
46
|
Yildirir G, Sperschneider J, Malar C M, Chen ECH, Iwasaki W, Cornell C, Corradi N. Long reads and Hi-C sequencing illuminate the two-compartment genome of the model arbuscular mycorrhizal symbiont Rhizophagus irregularis. THE NEW PHYTOLOGIST 2022; 233:1097-1107. [PMID: 34747029 DOI: 10.1111/nph.17842] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Chromosome folding links genome structure with gene function by generating distinct nuclear compartments and topologically associating domains. In mammals, these undergo preferential interactions and regulate gene expression. However, their role in fungal genome biology is unclear. Here, we combine Nanopore (ONT) sequencing with chromatin conformation capture sequencing (Hi-C) to reveal chromosome and epigenetic diversity in a group of obligate plant symbionts: the arbuscular mycorrhizal fungi (AMF). We find that five phylogenetically distinct strains of the model AMF Rhizophagus irregularis carry 33 chromosomes with substantial within-species variability in size, as well as in gene and repeat content. Strain-specific Hi-C contact maps reveal a 'checkerboard' pattern that underline two dominant euchromatin (A) and heterochromatin (B) compartments. Each compartment differs in the level of gene transcription, regulation of candidate effectors and methylation frequencies. The A-compartment is more gene-dense and contains most core genes, while the B-compartment is more repeat-rich and has higher rates of chromosomal rearrangement. While the B-compartment is transcriptionally repressed, it has significantly more secreted proteins and in planta upregulated candidate effectors, suggesting a possible host-induced change in chromosome conformation. Overall, this study provides a fine-scale view into the genome biology and evolution of model plant symbionts, and opens avenues to study the epigenetic mechanisms that modify chromosome folding during host-microbe interactions.
Collapse
Affiliation(s)
- Gökalp Yildirir
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Jana Sperschneider
- Biological Data Science Institute, The Australian National University, Canberra, ACT, 260, Australia
| | - Mathu Malar C
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Eric C H Chen
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, 1113-0033, Japan
| | - Wataru Iwasaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, 1113-0033, Japan
| | - Calvin Cornell
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Nicolas Corradi
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| |
Collapse
|
47
|
Gadd DA, Hillary RF, McCartney DL, Zaghlool SB, Stevenson AJ, Cheng Y, Fawns-Ritchie C, Nangle C, Campbell A, Flaig R, Harris SE, Walker RM, Shi L, Tucker-Drob EM, Gieger C, Peters A, Waldenberger M, Graumann J, McRae AF, Deary IJ, Porteous DJ, Hayward C, Visscher PM, Cox SR, Evans KL, McIntosh AM, Suhre K, Marioni RE. Epigenetic scores for the circulating proteome as tools for disease prediction. eLife 2022; 11:e71802. [PMID: 35023833 PMCID: PMC8880990 DOI: 10.7554/elife.71802] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
Protein biomarkers have been identified across many age-related morbidities. However, characterising epigenetic influences could further inform disease predictions. Here, we leverage epigenome-wide data to study links between the DNA methylation (DNAm) signatures of the circulating proteome and incident diseases. Using data from four cohorts, we trained and tested epigenetic scores (EpiScores) for 953 plasma proteins, identifying 109 scores that explained between 1% and 58% of the variance in protein levels after adjusting for known protein quantitative trait loci (pQTL) genetic effects. By projecting these EpiScores into an independent sample (Generation Scotland; n = 9537) and relating them to incident morbidities over a follow-up of 14 years, we uncovered 137 EpiScore-disease associations. These associations were largely independent of immune cell proportions, common lifestyle and health factors, and biological aging. Notably, we found that our diabetes-associated EpiScores highlighted previous top biomarker associations from proteome-wide assessments of diabetes. These EpiScores for protein levels can therefore be a valuable resource for disease prediction and risk stratification.
Collapse
Affiliation(s)
- Danni A Gadd
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Robert F Hillary
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Daniel L McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Shaza B Zaghlool
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education CityDohaQatar
- Computer Engineering Department, Virginia TechBlacksburgUnited States
| | - Anna J Stevenson
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Yipeng Cheng
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Chloe Fawns-Ritchie
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
- Department of Psychology, University of EdinburghEdinburghUnited Kingdom
| | - Cliff Nangle
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Robin Flaig
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Sarah E Harris
- Department of Psychology, University of EdinburghEdinburghUnited Kingdom
- Lothian Birth Cohorts, University of EdinburghEdinburghUnited Kingdom
| | - Rosie M Walker
- Centre for Clinical Brain Sciences, Chancellor’s Building, University of EdinburghEdinburghUnited Kingdom
| | - Liu Shi
- Department of Psychiatry, University of OxfordOxfordUnited Kingdom
| | - Elliot M Tucker-Drob
- Department of Psychology, The University of Texas at AustinAustinUnited States
- Population Research Center, The University of Texas at AustinAustinUnited States
| | - Christian Gieger
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherbergGermany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherbergGermany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart AllianceMunichGermany
- German Center for Diabetes Research (DZD)NeuherbergGermany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherbergGermany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart AllianceMunichGermany
- German Center for Diabetes Research (DZD)NeuherbergGermany
| | - Melanie Waldenberger
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherbergGermany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherbergGermany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart AllianceMunichGermany
| | - Johannes Graumann
- Scientific Service Group Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, W.G. Kerckhoff InstituteBad NauheimGermany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Max Planck Institute of Heart and Lung ResearchBad NauheimGermany
| | - Allan F McRae
- Institute for Molecular Bioscience, University of QueenslandBrisbaneAustralia
| | - Ian J Deary
- Department of Psychology, University of EdinburghEdinburghUnited Kingdom
- Lothian Birth Cohorts, University of EdinburghEdinburghUnited Kingdom
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Caroline Hayward
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Peter M Visscher
- Institute for Molecular Bioscience, University of QueenslandBrisbaneAustralia
| | - Simon R Cox
- Department of Psychology, University of EdinburghEdinburghUnited Kingdom
- Lothian Birth Cohorts, University of EdinburghEdinburghUnited Kingdom
| | - Kathryn L Evans
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Andrew M McIntosh
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh HospitalEdinburghUnited Kingdom
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education CityDohaQatar
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
48
|
Wang C, Sun Y, Yin X, Feng R, Feng R, Xu M, Liang K, Zhao R, Gu G, Jiang X, Su P, Zhang X, Liu J. Alterations of DNA methylation were associated with the rapid growth of cortisol-producing adrenocortical adenoma during pregnancy. Clin Epigenetics 2021; 13:213. [PMID: 34863285 PMCID: PMC8642905 DOI: 10.1186/s13148-021-01205-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/26/2021] [Indexed: 02/04/2023] Open
Abstract
Background Cortisol-producing adrenocortical adenoma (CPA) during pregnancy rarely occurs in clinic. Growing evidence suggests that DNA methylation plays a key role in adrenocortical adenomas. The present study aims to examine the genome-wide DNA methylation profiles and identify the differences in DNA methylation signatures of non-pregnant and pregnant patients with CPA. Results Four pregnant and twelve non-pregnant patients with CPA were enrolled. The pregnant patients with CPA had higher serum cortisol, Estradiol, Progesterone, and human chorionic gonadotropin concentration, while having lower serum FSH (follicle-stimulating hormone) and luteinizing hormone concentrations (P < 0.01). Compared with the non-pregnant patients, the duration is shorter, and the growth rate of the tumor is faster in pregnant patients with CPA (P < 0.05). Morphology and cell proliferation assay showed that the percentage of Ki-67 positive cells in CPA were higher in pregnant group than non-pregnant group (8.0% vs 5.5%, P < 0.05). The DNA methylation analysis showed that Genome-wide DNA methylation signature difference between pregnant and non-pregnant with CPA, that the pregnant group had more hypermethylated DMPs (67.94% vs 22.16%) and less hypomethylated DMPs (32.93% vs 77.84%). The proportion of hypermethylated DMPs was relatively high on chromosomes 1 (9.68% vs 8.67%) and X (4.99% vs 3.35%) but lower on chromosome 2(7.98% vs 12.92%). In pregnant patients with CPA, 576 hypomethylated DMPs and 1109 hypermethylated DMPs were identified in the DNA promoter region. Bioinformatics analysis indicated that the Wnt/β-Catenin pathway, Ras/MAPK Pathway and PI3K-AKT Pathway were associated with the development of CPA during pregnancy. Conclusions Genome-wide DNA methylation profiling of CPA in non-pregnant and pregnant patients was identified in the present study. Alterations of DNA methylation were associated with the pathogenesis and exacerbation of CPA during pregnancy. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01205-3.
Collapse
Affiliation(s)
- Chuan Wang
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China.,Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China.,Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, 250012, Shandong Province, People's Republic of China
| | - Yujing Sun
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China.,Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China.,Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, 250012, Shandong Province, People's Republic of China
| | - Xiaofei Yin
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China.,Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China.,Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, 250012, Shandong Province, People's Republic of China
| | - Ruoqi Feng
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China.,Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China.,Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, 250012, Shandong Province, People's Republic of China
| | - Ruiying Feng
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China.,Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China.,Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, 250012, Shandong Province, People's Republic of China
| | - Mingyue Xu
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China.,Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China.,Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, 250012, Shandong Province, People's Republic of China
| | - Kai Liang
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China.,Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China.,Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, 250012, Shandong Province, People's Republic of China
| | - Ruxing Zhao
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China.,Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China.,Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, 250012, Shandong Province, People's Republic of China
| | - Gangli Gu
- Department of Urology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Xuewen Jiang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Peng Su
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Xiaofang Zhang
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Jinbo Liu
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China. .,Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China. .,Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, 250012, Shandong Province, People's Republic of China.
| |
Collapse
|
49
|
Sanceau J, Gougelet A. Epigenetic mechanisms of liver tumor resistance to immunotherapy. World J Hepatol 2021; 13:979-1002. [PMID: 34630870 PMCID: PMC8473495 DOI: 10.4254/wjh.v13.i9.979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/04/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver tumor, which stands fourth in rank of cancer-related deaths worldwide. The incidence of HCC is constantly increasing in correlation with the epidemic in diabetes and obesity, arguing for an urgent need for new treatments for this lethal cancer refractory to conventional treatments. HCC is the paradigm of inflammation-associated cancer, since more than 80% of HCC emerge consecutively to cirrhosis associated with a vast remodeling of liver microenvironment. In the recent decade, immunomodulatory drugs have been developed and have given impressive results in melanoma and later in several other cancers. In the present review, we will discuss the recent advancements concerning the use of immunotherapies in HCC, in particular those targeting immune checkpoints, used alone or in combination with other anti-cancers agents. We will address why these drugs demonstrate unsatisfactory results in a high proportion of liver cancers and the mechanisms of resistance developed by HCC to evade immune response with a focus on the epigenetic-related mechanisms.
Collapse
Affiliation(s)
- Julie Sanceau
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Paris 75006, France
| | - Angélique Gougelet
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Paris 75006, France.
| |
Collapse
|
50
|
Kubiak-Szymendera M, Pryszcz LP, Białas W, Celińska E. Epigenetic Response of Yarrowia lipolytica to Stress: Tracking Methylation Level and Search for Methylation Patterns via Whole-Genome Sequencing. Microorganisms 2021; 9:microorganisms9091798. [PMID: 34576693 PMCID: PMC8471669 DOI: 10.3390/microorganisms9091798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 08/20/2021] [Indexed: 01/02/2023] Open
Abstract
DNA methylation is a common, but not universal, epigenetic modification that plays an important role in multiple cellular processes. While definitely settled for numerous plant, mammalian, and bacterial species, the genome methylation in different fungal species, including widely studied and industrially-relevant yeast species, Yarrowia lipolytica, is still a matter of debate. In this paper, we report a differential DNA methylation level in the genome of Y. lipolytica subjected to sequential subculturing and to heat stress conditions. To this end, we adopted repeated batch bioreactor cultivations of Y. lipolytica subjected to thermal stress in specific time intervals. To analyze the variation in DNA methylation between stressed and control cultures, we (a) quantified the global DNA methylation status using an immuno-assay, and (b) studied DNA methylation patterns through whole-genome sequencing. Primarily, we demonstrated that 5 mC modification can be detected using a commercial immuno-assay, and that the modifications are present in Y. lipolytica’s genome at ~0.5% 5 mC frequency. On the other hand, we did not observe any changes in the epigenetic response of Y. lipolytica to heat shock (HS) treatment. Interestingly, we identified a general phenomenon of decreased 5 mC level in Y. lipolytica’s genome in the stationary phase of growth, when compared to a late-exponential epigenome. While this study provides an insight into the subculturing stress response and adaptation to the stress at epigenetic level by Y. lipolytica, it also leaves an open question of inability to detect any genomic DNA methylation level (either in CpG context or context-less) through whole-genome sequencing. The results of ONT sequencing, suggesting that 5 mC modification is either rare or non-existent in Y. lipolytica genome, are contradicted with the results of the immunoassay.
Collapse
Affiliation(s)
- Monika Kubiak-Szymendera
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 460-637 Poznań, Poland; (M.K.-S.); (W.B.)
| | - Leszek P. Pryszcz
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain;
| | - Wojciech Białas
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 460-637 Poznań, Poland; (M.K.-S.); (W.B.)
| | - Ewelina Celińska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 460-637 Poznań, Poland; (M.K.-S.); (W.B.)
- Correspondence:
| |
Collapse
|