1
|
Pacheco-Hernandez AF, Rodriguez-Ramos I, Vazquez-Santillan K, Valle-Rios R, Velasco-Velázquez M, Aquino-Jarquin G, Martínez-Ruiz GU. The Regulatory Role of CTCF in IL6 Gene Transcription Assessed in Breast Cancer Cell Lines. Pharmaceuticals (Basel) 2025; 18:305. [PMID: 40143084 PMCID: PMC11944638 DOI: 10.3390/ph18030305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Breast cancer (BrCa) patients with tumors expressing high interleukin-6 (IL6) levels have poor clinical outcomes. In BrCa, altered occupancy of CCCTC-binding factor (CTCF) within its DNA binding sites deregulates the expression of its targeted genes. In this study, we investigated whether CTCF contributes to the altered IL6 expression in BrCa. Methods/Results: We performed CTCF gain- and loss-of-function assays in BrCa cell lines and observed an inverse correlation between CTCF and IL6 expression levels. To understand how CTCF negatively regulates IL6 gene expression, we performed luciferase gene reporter assays, site-directed mutagenesis assays, and chromatin immunoprecipitation assays. Our findings revealed that CTCF interacted with the IL6 promoter, a form of regulation disrupted in a CpG methylation-independent fashion in MDA-MB-231 and Tamoxifen-resistant MCF7 cells. Data from TCGA and GEO databases allowed us to explore the clinical implications of our results. An inverse correlation between CTCF and IL6 expression levels was seen in disease-free survival BrCa patients but not in patients who experienced cancer recurrence. Conclusions: Our findings provide evidence that the CTCF-mediated negative regulation of the IL6 gene is lost in highly tumorigenic BrCa cells.
Collapse
Affiliation(s)
- Angel Francisco Pacheco-Hernandez
- Research Division, School of Medicine, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.F.P.-H.); (I.R.-R.); (R.V.-R.)
| | - Itayesitl Rodriguez-Ramos
- Research Division, School of Medicine, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.F.P.-H.); (I.R.-R.); (R.V.-R.)
| | - Karla Vazquez-Santillan
- Precision Medicine Innovation Laboratory, National Institute of Genomic Medicine, Mexico City 14610, Mexico;
| | - Ricardo Valle-Rios
- Research Division, School of Medicine, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.F.P.-H.); (I.R.-R.); (R.V.-R.)
- Immunology and Proteomics Research Laboratory, ‘Federico Gómez’ Children’s Hospital of Mexico, Mexico City 06720, Mexico
| | - Marco Velasco-Velázquez
- Department of Pharmacology, School of Medicine, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Guillermo Aquino-Jarquin
- RNA Biology and Genome Editing Section, Genomics, Genetics, and Bioinformatics Research Laboratory, ‘Federico Gómez’ Children’s Hospital of Mexico, Mexico City 06720, Mexico;
| | - Gustavo Ulises Martínez-Ruiz
- Research Division, School of Medicine, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.F.P.-H.); (I.R.-R.); (R.V.-R.)
- Immunobiology and Oncology Research Laboratory, ‘Federico Gómez’ Children’s Hospital of Mexico, Mexico City 06720, Mexico
| |
Collapse
|
2
|
Emerson D, Merriman E, Yachi PP. Rheumatoid arthritis associated cytokines and therapeutics modulate immune checkpoint receptor expression on T cells. Front Immunol 2025; 16:1534462. [PMID: 39981237 PMCID: PMC11840260 DOI: 10.3389/fimmu.2025.1534462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/21/2025] [Indexed: 02/22/2025] Open
Abstract
Introduction We investigated the impact of rheumatoid arthritis (RA) associated cytokines and standard of care (SOC) RA therapeutics on immune checkpoint receptor (IR) expression on T cells to gain insights to disease pathology and therapeutic avenues. Methods We assessed IR expression by flow cytometry on T cell receptor activated T cells cultured in the presence of exogenously added single cytokines or RA patient synovial fluid. We also assessed RA synovial fluid stimulated samples in the presence of various single cytokine neutralizing antibodies or SOC therapeutics, including glucocorticoids, TNF, IL-6 receptor and JAK inhibitors. In addition to IR expression, we measured the impact on cytokine secretion profiles. Results RA-associated cytokines modulated IR expression, suggesting a role for these cytokines in regulation of disease pathology. By dissecting the influence of various inflammatory drivers within the RA inflammatory milieu, we discovered distinct regulation of IR expression by various cytokines including IL-10, IFNα/β, and TNF. Specifically, increased expression of TIM-3, PD-1, LAG-3 and CD28 in response to RA synovial fluid was driven by key cytokines including IL-6, IL-10, IL-12, IFNs, and TNF. In addition, SOC RA therapeutics such as glucocorticoids and TNF inhibitors modulated IR and cytokine expression in the presence of RA synovial fluid. Conclusions This study points to an important and intricate relationship between cytokines and IRs in shaping immune responses in autoimmune pathology. The modulation of IR expression by RA-associated cytokines and SOC therapeutics provides new insights for the use of targeted treatments in managing RA pathology.
Collapse
Affiliation(s)
| | | | - Pia P. Yachi
- Immunology Discovery Research, Lilly Research Laboratories, Lilly Biotechnology
Center, San Diego, CA, United States
| |
Collapse
|
3
|
Alhalabi O, Gouda MA, Milton DR, Momin HA, Yilmaz B, Stephen B, Ejezie CL, Moyers JT, Gurses SA, How J, Fu S, Rodon J, Hong DS, Piha‐Paul SA, Subbiah V, Elena Dumbrava E, Karp DD, Janku F, Meric‐Bernstam F, Tannir NM, Naing A. A Phase IB Trial of Selinexor in Combination With Immune Checkpoint Blockade in Patients With Advanced Renal Cell Carcinoma. Cancer Med 2025; 14:e70280. [PMID: 39945382 PMCID: PMC11822648 DOI: 10.1002/cam4.70280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/09/2024] [Accepted: 09/20/2024] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Selinexor (SEL) is a nuclear exportin 1 inhibitor that blocks the transport of nuclear proteins, including tumor suppressors, to the cytoplasm. Preclinical data suggest that the combination of SEL with checkpoint blockade may result in improved response to immunotherapy. METHODS NCT02419495 was a multiarm phase IB study of SEL in combination with other standard regimens in patients with advanced malignancies. Arm M utilized twice weekly oral SEL and intravenous nivolumab (NIVO). Arm N utilized weekly oral SEL with NIVO plus ipilimumab (IPI). The primary objective of this study was to evaluate the safety of SEL + NIVO and SEL + NIVO+IPI. Secondary objectives included determining the objective response rate (ORR) and progression-free survival (PFS). RESULTS Twenty-nine patients were enrolled in the study, of which 26 (90%) had clear cell RCC (ccRCC). Most patients (72%, n = 21) had prior systemic therapies. All patients (100%) developed at least one treatment-emergent adverse event, and 93% had a treatment-related adverse event (TRAE). Grade ≥ 3 TRAE occurred in 31% of patients, including 10% with hyponatremia, 7% with neutropenia, and 7% with thromboembolic events. At a median follow-up of 12.4 months, the ORR in 27 patients evaluable for response was 19% (n = 5). An additional 17 patients (63%) had stable disease (SD) as the best response. The median PFS for the overall cohort was 14.5 months (95% CI 5.2-17.4 months; SEL + NIVO+IPI: 12.2 months, SEL + NIVO: 14.5 months). The median overall survival was 27.8 months (95% CI 15.3-32.5; SEL + NIVO+IPI: unreached, SEL + NIVO: 21.3 months). CONCLUSIONS SEL in combination with NIVO or NIVO+IPI had a potentially favorable safety profile and showed modest clinical activity in patients with advanced renal cell carcinoma. TRIAL REGISTRATION This clinical trial was registered on clinicaltrials.gov (NCT02419495).
Collapse
Affiliation(s)
- Omar Alhalabi
- Department of Genitourinary Medical Oncology, Division of Cancer MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Mohamed A. Gouda
- Department of Investigational Cancer Therapeutics, Division of Cancer MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Denái R. Milton
- Department of BiostatisticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Hassan Ahmed Momin
- Department of Investigational Cancer Therapeutics, Division of Cancer MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Bulent Yilmaz
- Department of Investigational Cancer Therapeutics, Division of Cancer MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Bettzy Stephen
- Department of Investigational Cancer Therapeutics, Division of Cancer MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Chinenye Lynette Ejezie
- Department of Investigational Cancer Therapeutics, Division of Cancer MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Justin Tyler Moyers
- The Angeles Clinic and Research Institute, a Cedars‐Sinai AffiliateLos AngelesCaliforniaUSA
| | - Serdar A. Gurses
- Department of Investigational Cancer Therapeutics, Division of Cancer MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Jeffrey How
- Department of Investigational Cancer Therapeutics, Division of Cancer MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Siqing Fu
- Department of Investigational Cancer Therapeutics, Division of Cancer MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Jordi Rodon
- Department of Investigational Cancer Therapeutics, Division of Cancer MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - David S. Hong
- Department of Investigational Cancer Therapeutics, Division of Cancer MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Sarina A. Piha‐Paul
- Department of Investigational Cancer Therapeutics, Division of Cancer MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics, Division of Cancer MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Ecaterina Elena Dumbrava
- Department of Investigational Cancer Therapeutics, Division of Cancer MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Daniel D. Karp
- Department of Investigational Cancer Therapeutics, Division of Cancer MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Filip Janku
- Department of Investigational Cancer Therapeutics, Division of Cancer MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Funda Meric‐Bernstam
- Department of Investigational Cancer Therapeutics, Division of Cancer MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Nizar M. Tannir
- Department of Genitourinary Medical Oncology, Division of Cancer MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Aung Naing
- Department of Investigational Cancer Therapeutics, Division of Cancer MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| |
Collapse
|
4
|
Zhuchkov VA, Kravchenko YE, Frolova EI, Chumakov SP. PD1-Targeted Transgene Delivery to Treg Cells. Viruses 2024; 16:1940. [PMID: 39772246 PMCID: PMC11680301 DOI: 10.3390/v16121940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Achieving the precise targeting of lentiviral vectors (LVs) to specific cell populations is crucial for effective gene therapy, particularly in cancer treatment where the modulation of the tumor microenvironment can enhance anti-tumor immunity. Programmed cell death protein 1 (PD-1) is overexpressed on activated tumor-infiltrating T lymphocytes, including regulatory T cells that suppress immune responses via FOXP3 expression. We developed PD1-targeted LVs by incorporating the anti-PD1 nanobody nb102c3 into receptor-blinded measles virus H and VSV-Gmut glycoproteins. We assessed the retargeting potential of nb102c3 and evaluated transduction efficiency in activated T lymphocytes. FOXP3 expression was suppressed using shRNA delivered by these LVs. Our results demonstrate that PD1-targeted LVs exerted pronounced tropism towards PD1+ cells, enabling the selective transduction of activated T lymphocytes while sparing naive T cells. The suppression of FOXP3 in Tregs reduced their suppressive activity. PD1-targeted glycoprotein H provided greater specificity, whereas the VSV-Gmut, together with the anti-PD1 pseudoreceptor, achieved higher viral titers but was less selective. Our study demonstrates that PD1-targeted LVs may offer a novel strategy to modulate immune responses within the tumor microenvironment with the potential for developing new therapeutic strategies aimed at enhancing anti-tumor immunity.
Collapse
Affiliation(s)
- Vladislav A. Zhuchkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Biomarker Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Yulia E. Kravchenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Elena I. Frolova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Stepan P. Chumakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Biomarker Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
5
|
Rasyid NR, Miskad UA, Cangara MH, Wahid S, Achmad D, Tawali S, Mardiati M. The Potential of PD-1 and PD-L1 as Prognostic and Predictive Biomarkers in Colorectal Adenocarcinoma Based on TILs Grading. Curr Oncol 2024; 31:7476-7493. [PMID: 39727675 DOI: 10.3390/curroncol31120552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/15/2024] [Accepted: 11/23/2024] [Indexed: 12/28/2024] Open
Abstract
AIM Colorectal cancer (CRC) is a prevalent malignancy with a high mortality rate. Tumor-infiltrating lymphocytes (TILs) play a crucial role in the immune response against tumors. Programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1) are key immune checkpoints regulating T cells in the tumor microenvironment. This study aimed to assess the relationships among PD-1 expression on TILs, PD-L1 expression in tumors, and TIL grading in colorectal adenocarcinoma. METHODS A cross-sectional design was employed to analyze 130 colorectal adenocarcinoma samples. The expression of PD-1 and PD-L1 was assessed through immunohistochemistry. A semi-quantitative scoring system was applied. Statistical analysis with the chi-square test was performed to explore correlations, with the data analyzed in SPSS version 27. RESULTS PD-1 expression on TILs significantly correlated with a higher TIL grading (p < 0.001), while PD-L1 expression in tumors showed an inverse correlation with TIL grading (p < 0.001). CONCLUSIONS The expression of PD-1 on TILs and PD-L1 on tumor cells correlated significantly with the grading of TILs in colorectal adenocarcinoma. This finding shows potential as a predictive biomarker for PD-1/PD-L1 blockade therapy. Further studies are needed to strengthen these results.
Collapse
Affiliation(s)
- Nur Rahmah Rasyid
- Department of Anatomical Pathology, Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia
- Anatomical Pathology Laboratory, Hasanuddin University Hospital, Makassar 90245, Indonesia
| | - Upik Anderiani Miskad
- Department of Anatomical Pathology, Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia
- Anatomical Pathology Laboratory, Hasanuddin University Hospital, Makassar 90245, Indonesia
| | - Muhammad Husni Cangara
- Department of Anatomical Pathology, Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia
- Anatomical Pathology Laboratory, Hasanuddin University Hospital, Makassar 90245, Indonesia
| | - Syarifuddin Wahid
- Department of Anatomical Pathology, Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia
- Anatomical Pathology Laboratory, Hasanuddin University Hospital, Makassar 90245, Indonesia
| | - Djumadi Achmad
- Department of Anatomical Pathology, Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia
- Anatomical Pathology Laboratory, Hasanuddin University Hospital, Makassar 90245, Indonesia
| | - Suryani Tawali
- Department of Public Health, Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia
| | - Mardiati Mardiati
- Anatomical Pathology Laboratory, Hasanuddin University Hospital, Makassar 90245, Indonesia
| |
Collapse
|
6
|
Fischer MA, Jia L, Edelblum KL. Type I IFN Induces TCR-dependent and -independent Antimicrobial Responses in γδ Intraepithelial Lymphocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1380-1391. [PMID: 39311642 PMCID: PMC11493514 DOI: 10.4049/jimmunol.2400138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024]
Abstract
Intraepithelial lymphocytes (IELs) expressing the TCRγδ survey the intestinal epithelium to limit the invasion of microbial pathogens. The production of type I IFN is a central component of an antiviral immune response, yet how these proinflammatory cytokines contribute to γδ IEL effector function remains unclear. Based on the unique activation status of IELs and their ability to bridge innate and adaptive immunity, we investigated the extent to which type I IFN signaling modulates γδ IEL function. Using an ex vivo culture model, we find that type I IFN alone is unable to drive IFN-γ production, yet low-level TCR activation synergizes with type I IFN to induce IFN-γ production in murine γδ IELs. Further investigation into the underlying molecular mechanisms of costimulation revealed that TCRγδ-mediated activation of NFAT and JNK is required for type I IFN to promote IFN-γ expression in a STAT4-dependent manner. Whereas type I IFN rapidly upregulates antiviral gene expression independent of a basal TCRγδ signal, neither tonic TCR triggering nor the presence of a TCR agonist was sufficient to elicit type I IFN-induced IFN-γ production in vivo. However, bypassing proximal TCR signaling events synergized with IFNAR/STAT4 activation to induce γδ IEL IFN-γ production. These findings indicate that γδ IELs contribute to host defense in response to type I IFN by mounting a rapid antimicrobial response independent of TCRγδ signaling, and may produce IFN-γ in a TCR-dependent manner under permissive conditions.
Collapse
Affiliation(s)
- Matthew A Fischer
- Center for Immunity and Inflammation, Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Luo Jia
- Center for Immunity and Inflammation, Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Karen L Edelblum
- Center for Immunity and Inflammation, Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
7
|
Park SH, Lee J, Yun HJ, Kim SH, Lee JH. Metformin Suppresses Both PD-L1 Expression in Cancer Cells and Cancer-Induced PD-1 Expression in Immune Cells to Promote Antitumor Immunity. Ann Lab Med 2024; 44:426-436. [PMID: 38529546 PMCID: PMC11169777 DOI: 10.3343/alm.2023.0443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/03/2024] [Accepted: 03/04/2024] [Indexed: 03/27/2024] Open
Abstract
Background Metformin, a drug prescribed for patients with type 2 diabetes, has potential efficacy in enhancing antitumor immunity; however, the detailed underlying mechanisms remain to be elucidated. Therefore, we aimed to identify the inhibitory molecular mechanisms of metformin on programmed death ligand 1 (PD-L1) expression in cancer cells and programmed death 1 (PD-1) expression in immune cells. Methods We employed a luciferase reporter assay, quantitative real-time PCR, immunoblotting analysis, immunoprecipitation and ubiquitylation assays, and a natural killer (NK) cell-mediated tumor cell cytotoxicity assay. A mouse xenograft tumor model was used to evaluate the effect of metformin on tumor growth, followed by flow-cytometric analysis using tumor-derived single-cell suspensions. Results Metformin decreased AKT-mediated β-catenin S552 phosphorylation and subsequent β-catenin transactivation in an adenosine monophosphate-activated protein kinase (AMPK) activation-dependent manner, resulting in reduced CD274 (encoding PD-L1) transcription in cancer cells. Tumor-derived soluble factors enhanced PD-1 protein stability in NK and T cells via dissociation of PD-1 from ubiquitin E3 ligases and reducing PD-1 polyubiquitylation. Metformin inhibited the tumor-derived soluble factor-reduced binding of PD-1 to E3 ligases and PD-1 polyubiquitylation, resulting in PD-1 protein downregulation in an AMPK activation-dependent manner. These inhibitory effects of metformin on both PD-L1 and PD-1 expression ameliorated cancer-reduced cytotoxic activity of immune cells in vitro and decreased tumor immune evasion and growth in vivo. Conclusions Metformin blocks both PD-L1 and PD-1 within the tumor microenvironment. This study provided a mechanistic insight into the efficacy of metformin in improving immunotherapy in human cancer.
Collapse
Affiliation(s)
- Su Hwan Park
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, Korea
| | - Juheon Lee
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, Korea
| | - Hye Jin Yun
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, Korea
| | - Seok-Ho Kim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, Korea
- Department of Medicinal Biotechnology, College of Health Science, Dong-A University, Busan, Korea
| | - Jong-Ho Lee
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, Korea
- Department of Biomedical Sciences, Dong-A University, Busan, Korea
| |
Collapse
|
8
|
Chen H, Wei J, Zhu Z, Hou Y. Multifaceted roles of PD-1 in tumorigenesis: From immune checkpoint to tumor cell-intrinsic function. Mol Carcinog 2024; 63:1436-1448. [PMID: 38751009 DOI: 10.1002/mc.23740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/27/2024] [Accepted: 05/04/2024] [Indexed: 07/10/2024]
Abstract
Programmed cell death 1 (PD-1), a key immune checkpoint receptor, has been extensively studied for its role in regulating immune responses in cancer. However, recent research has unveiled a complex and dual role for PD-1 in tumorigenesis. While PD-1 is traditionally associated with immune cells, this article explores its expression in various cancer cells and its impact on cancer progression. PD-1's functions extend beyond immune regulation, as it has been found to both promote and suppress tumor growth, depending on the cancer type. These findings have significant implications for the future of cancer treatment and our understanding of the immune response in the context of cancer. This article calls for further research into the multifaceted roles of PD-1 to optimize its therapeutic potential and improve patient outcomes in the fight against cancer.
Collapse
Affiliation(s)
- Huiqing Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Jiayu Wei
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Zhen Zhu
- Zhenjiang Stomatological Hospital, Zhenjiang, China
| | - Yongzhong Hou
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
9
|
JIANG Z, CAI H, YUAN C, CAO L, XU W, HAN Y, ZHANG Q, LI J, WANG Q, LIU J. Spore Oil enhances the effect of cyclophosphamide inhibiting programmed death-1 and prolongs the survival of H22 tumor-bearing mice. J TRADIT CHIN MED 2024; 44:652-659. [PMID: 39066525 PMCID: PMC11337259 DOI: 10.19852/j.cnki.jtcm.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2024]
Abstract
OBJECTIVE To investigate the effect of Ganoderma Lucidum Spore Oil (GLSO) on the tumor growth and survival of H22 tumor-bearing mice treated with cyclophosphamide (CTX), and explore the underlying mechanism. METHODS Allograft H22 hepatocellular carcinoma mouse model was applied to investigate the effect of GLSO on the tumor growth and survival of animals, and Kaplan-Meier survival analysis was used to analyze the life span. Plasma biochemical examination was used to determine the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), urea (UREA) and creatinine (CRE). Western blot analysis was performed to detect Programmed Death-1 (PD-1), Programmed Death Ligand 1 (PD-L1), Janus Kinase 2 (JAK2), phosphorylated Signal Transducer and Activator of Transcription 3 (p-STAT3), and Signal Transducer and Activator of Transcription 3 (STAT3) expression. RESULTS GLSO increased the anti-tumor effect of CTX and prolonged the survival of H22 tumor-bearing mice treated with CTX. Meanwhile, GLSO increased the thymus index and showed no obvious toxicity to liver functions of animals. GLSO also decreased the level of UREA in H22 tumor-bearing mice treated with CTX. Furthermore, GLSO could inhibit the expression of PD-1 in spleen, which was independent of JAK2 expression and STAT3 phosphorylation. However, GLSO did not affect the expression of PD-L1, JAK2, and p-STAT3 in tumor tissue. CONCLUSION GLSO could strengthen the anti-tumor effect of CTX and prolong the life span of H22 tumor-bearing mice, while the underlying mechanism might be relevant to the amelioration effect of thymus function and inhibition of PD-1 expression in spleen. Furthermore, these findings implied the promising role of GLSO in combination with CTX to extend the survival of patients in clinical chemotherapy of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Zhaojian JIANG
- 1 Guangzhou HanFang Pharmaceutical Company Limited, National Engineering Research Center of Pharmaceutical Processing Technology of Traditional Chinese Medicine and Drug Innovation, Guangdong Provincial Key Laboratory of Medicinal Lipids, Guangzhou 510240, China
| | - Hongfei CAI
- 1 Guangzhou HanFang Pharmaceutical Company Limited, National Engineering Research Center of Pharmaceutical Processing Technology of Traditional Chinese Medicine and Drug Innovation, Guangdong Provincial Key Laboratory of Medicinal Lipids, Guangzhou 510240, China
| | - Cheng YUAN
- 1 Guangzhou HanFang Pharmaceutical Company Limited, National Engineering Research Center of Pharmaceutical Processing Technology of Traditional Chinese Medicine and Drug Innovation, Guangdong Provincial Key Laboratory of Medicinal Lipids, Guangzhou 510240, China
| | - Lin CAO
- 1 Guangzhou HanFang Pharmaceutical Company Limited, National Engineering Research Center of Pharmaceutical Processing Technology of Traditional Chinese Medicine and Drug Innovation, Guangdong Provincial Key Laboratory of Medicinal Lipids, Guangzhou 510240, China
| | - Wendong XU
- 1 Guangzhou HanFang Pharmaceutical Company Limited, National Engineering Research Center of Pharmaceutical Processing Technology of Traditional Chinese Medicine and Drug Innovation, Guangdong Provincial Key Laboratory of Medicinal Lipids, Guangzhou 510240, China
| | - Yaming HAN
- 1 Guangzhou HanFang Pharmaceutical Company Limited, National Engineering Research Center of Pharmaceutical Processing Technology of Traditional Chinese Medicine and Drug Innovation, Guangdong Provincial Key Laboratory of Medicinal Lipids, Guangzhou 510240, China
| | - Qin ZHANG
- 1 Guangzhou HanFang Pharmaceutical Company Limited, National Engineering Research Center of Pharmaceutical Processing Technology of Traditional Chinese Medicine and Drug Innovation, Guangdong Provincial Key Laboratory of Medicinal Lipids, Guangzhou 510240, China
| | - Jing LI
- 1 Guangzhou HanFang Pharmaceutical Company Limited, National Engineering Research Center of Pharmaceutical Processing Technology of Traditional Chinese Medicine and Drug Innovation, Guangdong Provincial Key Laboratory of Medicinal Lipids, Guangzhou 510240, China
| | - Qin WANG
- 2 Zhongshan Medical College, Sun Yat-sen University, Guangzhou 510080, China
| | - Juyan LIU
- 3 Guangzhou Pharmaceutical Holdings Limited, Guangzhou 510130, China
- 4 National Engineering Research Center of Pharmaceutical Processing Technology of Traditional Chinese Medicine and Drug Innovation, Guangzhou 510240, China
| |
Collapse
|
10
|
He P, Ma L, Xu B, Wang Y, Li X, Chen H, Li Y. Research progress and future directions of immune checkpoint inhibitor combination therapy in advanced gastric cancer. Ther Adv Med Oncol 2024; 16:17588359241266156. [PMID: 39091604 PMCID: PMC11292724 DOI: 10.1177/17588359241266156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/18/2024] [Indexed: 08/04/2024] Open
Abstract
In recent years, with the continuous development of molecular immunology, immune checkpoint inhibitors (ICIs) have also been widely used in the treatment of gastric cancer, but they still face some challenges: The first is that only some people can benefit, the second is the treatment-related adverse events (TRAEs) that occur during treatment, and the third is the emergence of varying degrees of drug resistance with long-term use. How to overcome these challenges, combined therapy based on ICIs has become one of the important strategies. This article summarizes the clinical application of ICIs combined with chemotherapy, targeted therapy, radiotherapy, photodynamic therapy, thermotherapy, immune adjuvant, and dual immunotherapy and discusses the mechanism, and also summarizes the advantages and disadvantages of the current combination modalities and the potential research value. The aim of this study is to provide more and more optimized combination regimen for ICI combined therapy in patients with advanced gastric cancer and to provide reference for clinical and scientific research.
Collapse
Affiliation(s)
- Puyi He
- The Second Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Environmental Oncology, China
| | - Long Ma
- The Second Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Environmental Oncology, China
| | - Bo Xu
- The Second Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Environmental Oncology, China
| | - Yunpeng Wang
- The Second Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Environmental Oncology, China
| | - Xiaomei Li
- The Second Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Environmental Oncology, China
| | - Hao Chen
- The Second Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Environmental Oncology, Lanzhou, China
- No. 82, Cuiyingmen, Chengguan, Lanzhou 730030, China
| | - Yumin Li
- The Second Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Environmental Oncology, Lanzhou, China
- No. 82, Cuiyingmen, Chengguan, Lanzhou 730030, China
| |
Collapse
|
11
|
Sagrero-Fabela N, Chávez-Mireles R, Salazar-Camarena DC, Palafox-Sánchez CA. Exploring the Role of PD-1 in the Autoimmune Response: Insights into Its Implication in Systemic Lupus Erythematosus. Int J Mol Sci 2024; 25:7726. [PMID: 39062968 PMCID: PMC11277507 DOI: 10.3390/ijms25147726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Despite advances in understanding systemic lupus erythematosus (SLE), many challenges remain in unraveling the precise mechanisms behind the disease's development and progression. Recent evidence has questioned the role of programmed cell death protein 1 (PD-1) in suppressing autoreactive CD4+ T cells during autoimmune responses. Research has investigated the potential impacts of PD-1 on various CD4+ T-cell subpopulations, including T follicular helper (Tfh) cells, circulating Tfh (cTfh) cells, and T peripheral helper (Tph) cells, all of which exhibit substantial PD-1 expression and are closely related to several autoimmune disorders, including SLE. This review highlights the complex role of PD-1 in autoimmunity and emphasizes the imperative for further research to elucidate its functions during autoreactive T-cell responses. Additionally, we address the potential of PD-1 and its ligands as possible therapeutic targets in SLE.
Collapse
Affiliation(s)
- Nefertari Sagrero-Fabela
- Doctorado en Ciencias Biomédicas (DCB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (N.S.-F.); (R.C.-M.)
- Grupo de Inmunología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Ramón Chávez-Mireles
- Doctorado en Ciencias Biomédicas (DCB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (N.S.-F.); (R.C.-M.)
| | - Diana Celeste Salazar-Camarena
- Grupo de Inmunología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Claudia Azucena Palafox-Sánchez
- Grupo de Inmunología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| |
Collapse
|
12
|
Liang L, Yang Y, Deng K, Wu Y, Li Y, Bai L, Wang Y, Lu C. Type I Interferon Activates PD-1 Expression through Activation of the STAT1-IRF2 Pathway in Myeloid Cells. Cells 2024; 13:1163. [PMID: 38995014 PMCID: PMC11240780 DOI: 10.3390/cells13131163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/18/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024] Open
Abstract
PD-1 (Programmed cell death protein 1) regulates the metabolic reprogramming of myeloid-derived suppressor cells and myeloid cell differentiation, as well as the type I interferon (IFN-I) signaling pathway in myeloid cells in the tumor microenvironment. PD-1, therefore, is a key inhibitory receptor in myeloid cells. However, the regulation of PD-1 expression in myeloid cells is unknown. We report that the expression level of PDCD1, the gene that encodes the PD-1 protein, is positively correlated with the levels of IFNB1 and IFNAR1 in myeloid cells in human colorectal cancer. Treatment of mouse myeloid cell lines with recombinant IFNβ protein elevated PD-1 expression in myeloid cells in vitro. Knocking out IFNAR1, the gene that encodes the IFN-I-specific receptor, diminished the inductive effect of IFNβ on PD-1 expression in myeloid cells in vitro. Treatment of tumor-bearing mice with a lipid nanoparticle-encapsulated IFNβ-encoding plasmid (IFNBCOL01) increased IFNβ expression, resulting in elevated PD-1 expression in tumor-infiltrating myeloid cells. At the molecular level, we determined that IFNβ activates STAT1 (signal transducer and activator of transcription 1) and IRFs (interferon regulatory factors) in myeloid cells. Analysis of the cd279 promoter identified IRF2-binding consensus sequence elements. ChIP (chromatin immunoprecipitation) analysis determined that the pSTAT1 directly binds to the irf2 promoter and that IRF2 directly binds to the cd279 promoter in myeloid cells in vitro and in vivo. In colon cancer patients, the expression levels of STAT1, IRF2 and PDCD1 are positively correlated in tumor-infiltrating myeloid cells. Our findings determine that IFNβ activates PD-1 expression at least in part by an autocrine mechanism via the stimulation of the pSTAT1-IRF2 axis in myeloid cells.
Collapse
Affiliation(s)
- Liyan Liang
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (L.L.); (Y.Y.); (K.D.); (Y.W.); (Y.L.)
| | - Yingcui Yang
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (L.L.); (Y.Y.); (K.D.); (Y.W.); (Y.L.)
| | - Kaidi Deng
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (L.L.); (Y.Y.); (K.D.); (Y.W.); (Y.L.)
| | - Yanmin Wu
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (L.L.); (Y.Y.); (K.D.); (Y.W.); (Y.L.)
| | - Yan Li
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (L.L.); (Y.Y.); (K.D.); (Y.W.); (Y.L.)
| | - Liya Bai
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; (L.B.); (Y.W.)
| | - Yinsong Wang
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; (L.B.); (Y.W.)
| | - Chunwan Lu
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (L.L.); (Y.Y.); (K.D.); (Y.W.); (Y.L.)
| |
Collapse
|
13
|
Mu X, Liu S, Wang Z, Jiang K, McClintock T, Stromberg AJ, Tezanos AV, Lee ES, Curci JA, Gong MC, Guo Z. Androgen aggravates aortic aneurysms via suppression of PD-1 in mice. J Clin Invest 2024; 134:e169085. [PMID: 38900572 PMCID: PMC11290977 DOI: 10.1172/jci169085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/04/2024] [Indexed: 06/22/2024] Open
Abstract
Androgen has long been recognized for its pivotal role in the sexual dimorphism of cardiovascular diseases, including aortic aneurysms (AAs), a devastating vascular disease with a higher prevalence and fatality rate in men than in women. However, the mechanism by which androgen mediates AAs is largely unknown. Here, we found that male, not female, mice developed AAs when exposed to aldosterone and high salt (Aldo-salt). We revealed that androgen and androgen receptors (ARs) were crucial for this sexually dimorphic response to Aldo-salt. We identified programmed cell death protein 1 (PD-1), an immune checkpoint, as a key link between androgen and AAs. Furthermore, we demonstrated that administration of anti-PD-1 Ab and adoptive PD-1-deficient T cell transfer reinstated Aldo-salt-induced AAs in orchiectomized mice and that genetic deletion of PD-1 exacerbated AAs induced by a high-fat diet and angiotensin II (Ang II) in nonorchiectomized mice. Mechanistically, we discovered that the AR bound to the PD-1 promoter to suppress the expression of PD-1 in the spleen. Thus, our study unveils a mechanism by which androgen aggravates AAs by suppressing PD-1 expression in T cells. Moreover, our study suggests that some patients with cancer might benefit from screenings for AAs during immune checkpoint therapy.
Collapse
Affiliation(s)
- Xufang Mu
- Departments of Pharmacology and Nutritional Sciences
| | | | - Zhuoran Wang
- Departments of Pharmacology and Nutritional Sciences
| | | | | | | | | | - Eugene S. Lee
- Department of Research, Sacramento Veterans Affairs Medical Center, Mather, California, USA
| | - John A. Curci
- Department of Vascular Surgery, Vanderbilt University, Nashville, Tennessee, USA
| | - Ming C. Gong
- Physiology, and
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - Zhenheng Guo
- Departments of Pharmacology and Nutritional Sciences
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky, USA
- Department of Research, Lexington Veterans Affairs Medical Center, Lexington, Kentucky, USA
| |
Collapse
|
14
|
Gao M, Shi J, Xiao X, Yao Y, Chen X, Wang B, Zhang J. PD-1 regulation in immune homeostasis and immunotherapy. Cancer Lett 2024; 588:216726. [PMID: 38401888 DOI: 10.1016/j.canlet.2024.216726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/31/2024] [Accepted: 02/10/2024] [Indexed: 02/26/2024]
Abstract
Harnessing the programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) axis is pivotal in autoimmunity and cancer immunotherapy. PD-1 receptors on immune cells engage with one of its ligands, PD-L1 or PD-L2, expressed on antigen-presenting cells or tumor cells, driving T-cell dysfunction and tumor immune escape. Thus, targeting PD-1/PD-L1 revitalizes cytotoxic T cells for cancer elimination. However, a majority of cancer patients don't respond to PD-1/PD-L1 blockade, and the underlying mechanisms remain partially understood. Recent studies have revealed that PD-1 expression levels or modifications impact the effectiveness of anti-PD-1/PD-L1 treatments. Therefore, understanding the molecular mechanisms governing PD-1 expression and modifications is crucial for innovating therapeutic strategies to enhance the efficacy of PD-1/PD-L1 inhibition. This article presents a comprehensive overview of advancements in PD-1 regulation and highlights their potential in modulating immune homeostasis and cancer immunotherapy, aiming to refine clinical outcomes.
Collapse
Affiliation(s)
- Minling Gao
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jie Shi
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xiangling Xiao
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yingmeng Yao
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xu Chen
- Chongqing University Medical School, Chongqing, 400044, China
| | - Bin Wang
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Jinfang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
15
|
Ou M, Zhang W, Zhang W, Guo J, Huang R, Wang J, Liu J, Xia J, Wu C, Zhu Y, Chen Y. Soluble Programmed Cell Death 1 Protein Is a Promising Biomarker to Predict Severe Liver Inflammation in Chronic Hepatitis B Patients. ACS OMEGA 2024; 9:16716-16724. [PMID: 38617617 PMCID: PMC11007827 DOI: 10.1021/acsomega.4c00780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 04/16/2024]
Abstract
Background and Aims: Liver inflammation is important in guiding the initiation of antiviral treatment and affects the progression of chronic hepatitis B(CHB). The soluble programmed cell death 1 protein (sPD-1) was upregulated in inflammatory and infectious diseases and correlated with disease severity. We aimed to investigate the correlation between serum sPD-1 levels and liver inflammation in CHB patients and their role in indicating liver inflammation. Methods: 241 CHB patients who underwent liver biopsy were enrolled. The correlation between sPD-1 levels and the degree of liver inflammation was analyzed. Univariate and multivariate logistic regression analyses were performed to analyze independent variables of severe liver inflammation. Binary logistic regression analysis was conducted to construct a predictive model for severe liver inflammation, and the receiver operating characteristic curve (ROC) was used to evaluate the diagnostic accuracy of the predictive model. Results: sPD-1 was highest in CHB patients with severe liver inflammation, which was higher than that in CHB patients with mild or moderate liver inflammation (P < 0.001). Besides, sPD-1 was weakly correlated with AST (r = 0.278, P < 0.001). Multivariable analysis showed that sPD-1 was an independent predictor of severe liver inflammation. The predictive model containing sPD-1 had areas under the ROC (AUROCs) of 0.917 and 0.921 in predicting severe liver inflammation in CHB patients and CHB patients with ALT ≤ 1× upper limit of normal (ULN), respectively. Conclusions: Serum sPD-1 level is associated with liver inflammation in CHB patients, and high levels of sPD-1 reflect severe liver inflammation. Serum sPD-1 is an independent predictor of severe liver inflammation and shows improved diagnostic accuracy when combined with other clinical indicators.
Collapse
Affiliation(s)
- Mingrong Ou
- Department
of Laboratory Medicine, Nanjing Drum Tower Hospital
Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, China
| | - Weiming Zhang
- Department
of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Wen Zhang
- Department
of Laboratory Medicine, Joint Institute of Nanjing Drum Tower Hospital
for Life and Health, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu 210008, China
| | | | - Rui Huang
- Department
of Infectious Diseases, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Jian Wang
- Department
of Infectious Diseases, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Jiacheng Liu
- Department
of Infectious Diseases, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Juan Xia
- Department
of Infectious Diseases, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Chao Wu
- Department
of Infectious Diseases, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Yijia Zhu
- Department
of Laboratory Medicine, Nanjing Drum Tower Hospital
Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, China
| | - Yuxin Chen
- Department
of Laboratory Medicine, Nanjing Drum Tower Hospital
Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, China
| |
Collapse
|
16
|
Chen M, Wang S. Preclinical development and clinical studies of targeted JAK/STAT combined Anti-PD-1/PD-L1 therapy. Int Immunopharmacol 2024; 130:111717. [PMID: 38387193 DOI: 10.1016/j.intimp.2024.111717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Programmed cell death protein 1 (PD-1) binds to its ligand to help tumours evade the immune system and promote tumour progression. Although anti-PD-1/PD-L1 therapies show powerful effects in some patients, most patients are unable to benefit from this treatment due to treatment resistance. Therefore, it is important to overcome tumour resistance to PD-1/PD-L1 blockade. There is substantial evidence suggesting that the JAK/STAT signalling pathway plays a significant role in PD-1/PD-L1 expression and anti-PD-1/PD-L1 treatment. Herein, we describe the effects of the JAK/STAT signalling pathway on PD-1/PD-L1. Subsequently, the relationship between molecular mutations in the JAK/STAT signalling pathway and immune resistance was analysed. Finally, the latest advancements in drugs targeting the JAK/STAT pathway combined with PD1/PD-L1 inhibitors are summarised.
Collapse
Affiliation(s)
- Miaomiao Chen
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Siliang Wang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
17
|
Fischer MA, Jia L, Edelblum KL. Type I interferon induces TCR-dependent and -independent antimicrobial responses in γδ intraepithelial lymphocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584444. [PMID: 38559228 PMCID: PMC10979951 DOI: 10.1101/2024.03.11.584444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Intraepithelial lymphocytes (IEL) expressing the γδ T cell receptor (TCR) survey the intestinal epithelium to limit the invasion of microbial pathogens. The production of type I interferon (IFN) is a central component of an antiviral immune response, yet how these pro-inflammatory cytokines contribute to γδ IEL effector function remains unclear. Based on the unique activation status of IELs, and their ability to bridge innate and adaptive immunity, we investigated the extent to which type I IFN signaling modulates γδ IEL function. Using an ex vivo culture model, we find that type I IFN alone is unable to drive IFNγ production, yet low level TCR activation synergizes with type I IFN to induce IFNγ production in murine γδ IELs. Further investigation into the underlying molecular mechanisms of co-stimulation revealed that TCRγδ-mediated activation of NFAT and JNK is required for type I IFN to promote IFNγ expression in a STAT4- dependent manner. Whereas type I IFN rapidly upregulates antiviral gene expression independent of a basal TCRγδ signal, neither tonic TCR triggering nor the presence of a TCR agonist was sufficient to elicit type I IFN-induced IFNγ production in vivo . However, bypassing proximal TCR signaling events synergized with IFNAR/STAT4 activation to induce γδ IEL IFNγ production. These findings indicate that γδ IELs contribute to host defense in response to type I IFN by mounting a rapid antimicrobial response independent of TCRγδ signaling, and under permissive conditions, produce IFNγ in a TCR-dependent manner.
Collapse
|
18
|
Lei Z, Tang R, Wu Y, Mao C, Xue W, Shen J, Yu J, Wang X, Qi X, Wei C, Xu L, Zhu J, Li Y, Zhang X, Ye C, Chen X, Yang X, Zhou S, Su C. TGF-β1 induces PD-1 expression in macrophages through SMAD3/STAT3 cooperative signaling in chronic inflammation. JCI Insight 2024; 9:e165544. [PMID: 38441961 PMCID: PMC11128204 DOI: 10.1172/jci.insight.165544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/27/2024] [Indexed: 03/07/2024] Open
Abstract
Programmed cell death protein 1 (PD-1), a coinhibitory T cell checkpoint, is also expressed on macrophages in pathogen- or tumor-driven chronic inflammation. Increasing evidence underscores the importance of PD-1 on macrophages for dampening immune responses. However, the mechanism governing PD-1 expression in macrophages in chronic inflammation remains largely unknown. TGF-β1 is abundant within chronic inflammatory microenvironments. Here, based on public databases, significantly positive correlations between PDCD1 and TGFB1 gene expression were observed in most human tumors. Of note, among immune infiltrates, macrophages as the predominant infiltrate expressed higher PDCD1 and TGFBR1/TGFBR2 genes. MC38 colon cancer and Schistosoma japonicum infection were used as experimental models for chronic inflammation. PD-1hi macrophages from chronic inflammatory tissues displayed an immunoregulatory pattern and expressed a higher level of TGF-β receptors. Either TGF-β1-neutralizing antibody administration or macrophage-specific Tgfbr1 knockdown largely reduced PD-1 expression on macrophages in animal models. We further demonstrated that TGF-β1 directly induced PD-1 expression on macrophages. Mechanistically, TGF-β1-induced PD-1 expression on macrophages was dependent on SMAD3 and STAT3, which formed a complex at the Pdcd1 promoter. Collectively, our study shows that macrophages adapt to chronic inflammation through TGF-β1-triggered cooperative SMAD3/STAT3 signaling that induces PD-1 expression and modulates macrophage function.
Collapse
Affiliation(s)
- Zhigang Lei
- State Key Laboratory of Reproductive Medicine and Offspring Health, National Vaccine Innovation Platform of Nanjing Medical University, Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Rui Tang
- Department of Tropical Infectious Diseases, Naval Medical University, Shanghai, China
| | - Yu Wu
- State Key Laboratory of Reproductive Medicine and Offspring Health, National Vaccine Innovation Platform of Nanjing Medical University, Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Chenxu Mao
- State Key Laboratory of Reproductive Medicine and Offspring Health, National Vaccine Innovation Platform of Nanjing Medical University, Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Weijie Xue
- State Key Laboratory of Reproductive Medicine and Offspring Health, National Vaccine Innovation Platform of Nanjing Medical University, Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Junyao Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, National Vaccine Innovation Platform of Nanjing Medical University, Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Jiaojiao Yu
- State Key Laboratory of Reproductive Medicine and Offspring Health, National Vaccine Innovation Platform of Nanjing Medical University, Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Xiaohong Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, National Vaccine Innovation Platform of Nanjing Medical University, Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Xin Qi
- State Key Laboratory of Reproductive Medicine and Offspring Health, National Vaccine Innovation Platform of Nanjing Medical University, Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Chuan Wei
- State Key Laboratory of Reproductive Medicine and Offspring Health, National Vaccine Innovation Platform of Nanjing Medical University, Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Lei Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, National Vaccine Innovation Platform of Nanjing Medical University, Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Jifeng Zhu
- State Key Laboratory of Reproductive Medicine and Offspring Health, National Vaccine Innovation Platform of Nanjing Medical University, Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yalin Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, National Vaccine Innovation Platform of Nanjing Medical University, Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Xiujun Zhang
- Department of Liver Diseases, Institute of Hepatology, the Third People’s Hospital of Changzhou, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Chunyan Ye
- Department of Liver Diseases, Institute of Hepatology, the Third People’s Hospital of Changzhou, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Xiaojun Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, National Vaccine Innovation Platform of Nanjing Medical University, Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Xiaojun Yang
- Department of General Surgery, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of General Surgery, the Friendship Hospital of Ili Kazak Autonomous Prefecture, Yining, Xinjiang Uygur Autonomous Region, China
| | - Sha Zhou
- State Key Laboratory of Reproductive Medicine and Offspring Health, National Vaccine Innovation Platform of Nanjing Medical University, Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Chuan Su
- State Key Laboratory of Reproductive Medicine and Offspring Health, National Vaccine Innovation Platform of Nanjing Medical University, Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| |
Collapse
|
19
|
Luo W, Zeng Y, Song Q, Wang Y, Yuan F, Li Q, Liu Y, Li S, Jannatun N, Zhang G, Li Y. Strengthening the Combinational Immunotherapy from Modulating the Tumor Inflammatory Environment via Hypoxia-Responsive Nanogels. Adv Healthc Mater 2024; 13:e2302865. [PMID: 38062634 DOI: 10.1002/adhm.202302865] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/17/2023] [Indexed: 12/19/2023]
Abstract
Despite the success of immuno-oncology in clinical settings, the therapeutic efficacy is lower than the expectation due to the immunosuppressive inflammatory tumor microenvironment (TME) and the lack of functional lymphocytes caused by exhaustion. To enhance the efficacy of immuno-oncotherapy, a synergistic strategy should be used that can effectively improve the inflammatory TME and increase the tumor infiltration of cytotoxic T lymphocytes (CTLs). Herein, a TME hypoxia-responsive nanogel (NG) is developed to enhance the delivery and penetration of diacerein and (-)-epigallocatechin gallate (EGCG) in tumors. After systemic administration, diacerein effectively improves the tumor immunosuppressive condition through a reduction of MDSCs and Tregs in TME, and induces tumor cell apoptosis via the inhibition of IL-6/STAT3 signal pathway, realizing a strong antitumor effect. Additionally, EGCG can effectively inhibit the expression of PD-L1, restoring the tumor-killing function of CTLs. The infiltration of CTLs increases at the tumor site with activation of systemic immunity after the combination of TIM3 blockade therapy, ultimately resulting in a strong antitumor immune response. This study provides valuable insights for future research on eliciting effective antitumor immunity by suppressing adverse tumor inflammation. The feasible strategy proposed in this work may solve the urgent clinical concerns of the dissatisfactory checkpoint-based immuno-oncotherapy.
Collapse
Affiliation(s)
- Wenhe Luo
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Yanqiao Zeng
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Qingle Song
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Yu Wang
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Feng Yuan
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Qi Li
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Yingnan Liu
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Su Li
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Nahar Jannatun
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Guofang Zhang
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Yang Li
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
20
|
Lippert AH, Paluch C, Gaglioni M, Vuong MT, McColl J, Jenkins E, Fellermeyer M, Clarke J, Sharma S, Moreira da Silva S, Akkaya B, Anzilotti C, Morgan SH, Jessup CF, Körbel M, Gileadi U, Leitner J, Knox R, Chirifu M, Huo J, Yu S, Ashman N, Lui Y, Wilkinson I, Attfield KE, Fugger L, Robertson NJ, Lynch CJ, Murray L, Steinberger P, Santos AM, Lee SF, Cornall RJ, Klenerman D, Davis SJ. Antibody agonists trigger immune receptor signaling through local exclusion of receptor-type protein tyrosine phosphatases. Immunity 2024; 57:256-270.e10. [PMID: 38354703 DOI: 10.1016/j.immuni.2024.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/30/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024]
Abstract
Antibodies can block immune receptor engagement or trigger the receptor machinery to initiate signaling. We hypothesized that antibody agonists trigger signaling by sterically excluding large receptor-type protein tyrosine phosphatases (RPTPs) such as CD45 from sites of receptor engagement. An agonist targeting the costimulatory receptor CD28 produced signals that depended on antibody immobilization and were sensitive to the sizes of the receptor, the RPTPs, and the antibody itself. Although both the agonist and a non-agonistic anti-CD28 antibody locally excluded CD45, the agonistic antibody was more effective. An anti-PD-1 antibody that bound membrane proximally excluded CD45, triggered Src homology 2 domain-containing phosphatase 2 recruitment, and suppressed systemic lupus erythematosus and delayed-type hypersensitivity in experimental models. Paradoxically, nivolumab and pembrolizumab, anti-PD-1-blocking antibodies used clinically, also excluded CD45 and were agonistic in certain settings. Reducing these agonistic effects using antibody engineering improved PD-1 blockade. These findings establish a framework for developing new and improved therapies for autoimmunity and cancer.
Collapse
Affiliation(s)
- Anna H Lippert
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Christopher Paluch
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK; Nuffield Department of Medicine, University of Oxford, Oxford, UK; MiroBio Ltd, Winchester House, Oxford Science Park, Oxford, UK
| | - Meike Gaglioni
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Mai T Vuong
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - James McColl
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Edward Jenkins
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Martin Fellermeyer
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Joseph Clarke
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Sumana Sharma
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | | | - Billur Akkaya
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK; Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Consuelo Anzilotti
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK; Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sara H Morgan
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Claire F Jessup
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Markus Körbel
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Uzi Gileadi
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Judith Leitner
- Division of Immune Receptors and T cell Activation, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Rachel Knox
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Mami Chirifu
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Jiandong Huo
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Susan Yu
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Nicole Ashman
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Yuan Lui
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | | | - Kathrine E Attfield
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Lars Fugger
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | | | | | - Lynne Murray
- MiroBio Ltd, Winchester House, Oxford Science Park, Oxford, UK
| | - Peter Steinberger
- Division of Immune Receptors and T cell Activation, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Ana Mafalda Santos
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Steven F Lee
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Richard J Cornall
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Cambridge, UK.
| | - Simon J Davis
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| |
Collapse
|
21
|
Lu JC, Wu LL, Sun YN, Huang XY, Gao C, Guo XJ, Zeng HY, Qu XD, Chen Y, Wu D, Pei YZ, Meng XL, Zheng YM, Liang C, Zhang PF, Cai JB, Ding ZB, Yang GH, Ren N, Huang C, Wang XY, Gao Q, Sun QM, Shi YH, Qiu SJ, Ke AW, Shi GM, Zhou J, Sun YD, Fan J. Macro CD5L + deteriorates CD8 +T cells exhaustion and impairs combination of Gemcitabine-Oxaliplatin-Lenvatinib-anti-PD1 therapy in intrahepatic cholangiocarcinoma. Nat Commun 2024; 15:621. [PMID: 38245530 PMCID: PMC10799889 DOI: 10.1038/s41467-024-44795-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
Intratumoral immune status influences tumor therapeutic response, but it remains largely unclear how the status determines therapies for patients with intrahepatic cholangiocarcinoma. Here, we examine the single-cell transcriptional and TCR profiles of 18 tumor tissues pre- and post- therapy of gemcitabine plus oxaliplatin, in combination with lenvatinib and anti-PD1 antibody for intrahepatic cholangiocarcinoma. We find that high CD8 GZMB+ and CD8 proliferating proportions and a low Macro CD5L+ proportion predict good response to the therapy. In patients with a poor response, the CD8 GZMB+ and CD8 proliferating proportions are increased, but the CD8 GZMK+ proportion is decreased after the therapy. Transition of CD8 proliferating and CD8 GZMB+ to CD8 GZMK+ facilitates good response to the therapy, while Macro CD5L+-CD8 GZMB+ crosstalk impairs the response by increasing CTLA4 in CD8 GZMB+. Anti-CTLA4 antibody reverses resistance of the therapy in intrahepatic cholangiocarcinoma. Our data provide a resource for predicting response of the combination therapy and highlight the importance of CD8+T-cell status conversion and exhaustion induced by Macro CD5L+ in influencing the response, suggesting future avenues for cancer treatment optimization.
Collapse
Affiliation(s)
- Jia-Cheng Lu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Liver cancer Institute, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education of the People's Republic of China, Shanghai, 200032, China
| | - Lei-Lei Wu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yi-Ning Sun
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiao-Yong Huang
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Liver cancer Institute, Fudan University, Shanghai, 200032, China
| | - Chao Gao
- Liver cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xiao-Jun Guo
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Liver cancer Institute, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education of the People's Republic of China, Shanghai, 200032, China
| | - Hai-Ying Zeng
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xu-Dong Qu
- Department of Intervention Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Chen
- Liver cancer Institute, Fudan University, Shanghai, 200032, China
| | - Dong Wu
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yan-Zi Pei
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Liver cancer Institute, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education of the People's Republic of China, Shanghai, 200032, China
| | - Xian-Long Meng
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Liver cancer Institute, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education of the People's Republic of China, Shanghai, 200032, China
| | - Yi-Min Zheng
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Liver cancer Institute, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education of the People's Republic of China, Shanghai, 200032, China
| | - Chen Liang
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Liver cancer Institute, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education of the People's Republic of China, Shanghai, 200032, China
| | - Peng-Fei Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education of the People's Republic of China, Shanghai, 200032, China
| | - Jia-Bin Cai
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Liver cancer Institute, Fudan University, Shanghai, 200032, China
| | - Zhen-Bin Ding
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Liver cancer Institute, Fudan University, Shanghai, 200032, China
| | - Guo-Huan Yang
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Liver cancer Institute, Fudan University, Shanghai, 200032, China
| | - Ning Ren
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Liver cancer Institute, Fudan University, Shanghai, 200032, China
| | - Cheng Huang
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Liver cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xiao-Ying Wang
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Liver cancer Institute, Fudan University, Shanghai, 200032, China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Liver cancer Institute, Fudan University, Shanghai, 200032, China
| | - Qi-Man Sun
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Liver cancer Institute, Fudan University, Shanghai, 200032, China
| | - Ying-Hong Shi
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Liver cancer Institute, Fudan University, Shanghai, 200032, China
| | - Shuang-Jian Qiu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Liver cancer Institute, Fudan University, Shanghai, 200032, China
| | - Ai-Wu Ke
- Liver cancer Institute, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education of the People's Republic of China, Shanghai, 200032, China
| | - Guo-Ming Shi
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Clinical Research Unit, Institute of Clinical Science, Zhongshan Hospital of Fudan University, 200032, Shanghai, China.
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Liver cancer Institute, Fudan University, Shanghai, 200032, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education of the People's Republic of China, Shanghai, 200032, China.
| | - Yi-Di Sun
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Liver cancer Institute, Fudan University, Shanghai, 200032, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education of the People's Republic of China, Shanghai, 200032, China.
| |
Collapse
|
22
|
Wang Y, He S, Calendo G, Bui T, Tian Y, Lee CY, Zhou Y, Zhao X, Abraham C, Mo W, Chen M, Sanders-Braggs R, Madzo J, Issa JP, Hexner EO, Wiest DL, Reshef R, Xue HH, Zhang Y. Tissue-infiltrating alloreactive T cells require Id3 to deflect PD-1-mediated immune suppression during GVHD. Blood 2024; 143:166-177. [PMID: 37871574 PMCID: PMC10797551 DOI: 10.1182/blood.2023021126] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/25/2023] Open
Abstract
ABSTRACT Persisting alloreactive donor T cells in target tissues are a determinant of graft-versus-host disease (GVHD), but the transcriptional regulators that control the persistence and function of tissue-infiltrating T cells remain elusive. We demonstrate here that Id3, a DNA-binding inhibitor, is critical for sustaining T-cell responses in GVHD target tissues in mice, including the liver and intestine. Id3 loss results in aberrantly expressed PD-1 in polyfunctional T helper 1 (Th1) cells, decreased tissue-infiltrating PD-1+ polyfunctional Th1 cell numbers, impaired maintenance of liver TCF-1+ progenitor-like T cells, and inhibition of GVHD. PD-1 blockade restores the capacity of Id3-ablated donor T cells to mediate GVHD. Single-cell RNA-sequencing analysis revealed that Id3 loss leads to significantly decreased CD28- and PI3K/AKT-signaling activity in tissue-infiltrating polyfunctional Th1 cells, an indicator of active PD-1/PD-L1 effects. Id3 is also required for protecting CD8+ T cells from the PD-1 pathway-mediated suppression during GVHD. Genome-wide RNA-sequencing analysis reveals that Id3 represses transcription factors (e.g., Nfatc2, Fos, Jun, Ets1, and Prdm1) that are critical for PD-1 transcription, exuberant effector differentiation, and interferon responses and dysfunction of activated T cells. Id3 achieves these effects by restraining the chromatin accessibility for these transcription factors. Id3 ablation in donor T cells preserved their graft vs tumor effects in mice undergoing allogeneic hematopoietic stem cell transplantation. Furthermore, CRISPR/Cas9 knockout of ID3 in human CD19-directed chimeric antigen receptor T cells retained their antitumor activity in NOD/SCID/IL2Rg-/- mice early after administration. These findings identify that ID3 is an important target to reduce GVHD, and the gene-editing program of ID3 may have broad implications in T-cell-based immunotherapy.
Collapse
Affiliation(s)
- Ying Wang
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ
| | - Shan He
- Fels Institute and Department of Cancer Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | | | - Tien Bui
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ
| | - Yuanyuan Tian
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ
| | - Che Young Lee
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ
| | - Yan Zhou
- Fox Chase Cancer Center, Temple University, Philadelphia, PA
| | - Xin Zhao
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ
| | - Ciril Abraham
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ
- Fels Institute and Department of Cancer Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Wenbin Mo
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ
| | - Mimi Chen
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ
| | | | - Jozef Madzo
- Coriell Institute for Medical Research, Camden, NJ
| | | | - Elizabeth O. Hexner
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - David L. Wiest
- Fox Chase Cancer Center, Temple University, Philadelphia, PA
| | - Ran Reshef
- Blood and Marrow Transplantation and Cell Therapy Program, Columbia University Irving Medical Center, New York, NY
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ
| | - Yi Zhang
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ
- Fels Institute and Department of Cancer Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| |
Collapse
|
23
|
Chu GJ, Bailey CG, Nagarajah R, Sagnella SM, Adelstein S, Rasko JEJ. The 4-1BBζ costimulatory domain in chimeric antigen receptors enhances CD8+ T-cell functionality following T-cell receptor stimulation. Cancer Cell Int 2023; 23:327. [PMID: 38105188 PMCID: PMC10726568 DOI: 10.1186/s12935-023-03171-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T-cells have revolutionized the treatment of CD19- and B-cell maturation antigen-positive haematological malignancies. However, the effect of a CAR construct on the function of T-cells stimulated via their endogenous T-cell receptors (TCRs) has yet to be comprehensively investigated. METHODS Experiments were performed to systematically assess TCR signalling and function in CAR T-cells using anti-mesothelin human CAR T-cells as a model system. CAR T-cells expressing the CD28 or 4-1BB costimulatory endodomains were manufactured and compared to both untransduced T-cells and CAR T-cells with a non-functional endodomain. These cell products were treated with staphylococcal enterotoxin B to stimulate the TCR, and in vitro functional assays were performed by flow cytometry. RESULTS Increased proliferation, CD69 expression and IFNγ production were identified in CD8+ 4-1BBζ CAR T-cells compared to control untransduced CD8+ T-cells. These functional differences were associated with higher levels of phosphorylated ZAP70 after stimulation. In addition, these functional differences were associated with a differing immunophenotype, with a more than two-fold increase in central memory cells in CD8+ 4-1BBζ CAR T-cell products. CONCLUSION Our data indicate that the 4-1BBζ CAR enhances CD8+ TCR-mediated function. This could be beneficial if the TCR targets epitopes on malignant tissues or infectious agents, but detrimental if the TCR targets autoantigens.
Collapse
Affiliation(s)
- Gerard J Chu
- Gene and Stem Cell Therapy Program Centenary Institute, Camperdown, NSW, Australia
- Department of Clinical Immunology and Allergy, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Charles G Bailey
- Gene and Stem Cell Therapy Program Centenary Institute, Camperdown, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Cancer & Gene Regulation Laboratory Centenary Institute, Camperdown, NSW, Australia
| | - Rajini Nagarajah
- Gene and Stem Cell Therapy Program Centenary Institute, Camperdown, NSW, Australia
| | - Sharon M Sagnella
- Cell & Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Stephen Adelstein
- Department of Clinical Immunology and Allergy, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - John E J Rasko
- Gene and Stem Cell Therapy Program Centenary Institute, Camperdown, NSW, Australia.
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
- Cell & Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.
| |
Collapse
|
24
|
Rocha GIY, Gomes JEM, Leite ML, da Cunha NB, Costa FF. Epigenome-Driven Strategies for Personalized Cancer Immunotherapy. Cancer Manag Res 2023; 15:1351-1367. [PMID: 38058537 PMCID: PMC10697012 DOI: 10.2147/cmar.s272031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 11/19/2023] [Indexed: 12/08/2023] Open
Abstract
Fighting cancer remains one of the greatest challenges for science in the 21st century. Advances in immunotherapy against different types of cancer have greatly contributed to the treatment, remission, and cure of patients. In this context, knowledge of epigenetic phenomena, their relationship with tumor cells and how the immune system can be epigenetically modulated represent some of the greatest advances in the development of anticancer therapies. Epigenetics is a rapidly growing field that studies how environmental factors can affect gene expression without altering DNA sequence. Epigenomic changes include DNA methylation, histone modifications, and non-coding RNA regulation, which impact cellular function. Epigenetics has shown promise in developing cancer therapies, such as immunotherapy, which aims to stimulate the immune system to attack cancer cells. For example, PD-1 and PD-L1 are biomarkers that regulate the immune response to cancer cells and recent studies have shown that epigenetic modifications can affect their expression, potentially influencing the efficacy of immunotherapy. New therapies targeting epigenetic modifications, such as histone deacetylases and DNA methyltransferases, are being developed for cancer treatment, and some have shown promise in preclinical studies and clinical trials. With growing understanding of epigenetic regulation, we can expect more personalized and effective cancer immunotherapies in the future. This review highlights key advances in the use of epigenetic and epigenomic tools and modern immuno-oncology strategies to treat several types of tumors.
Collapse
Affiliation(s)
| | | | - Michel Lopes Leite
- Genomic Sciences and Biotechnology Program, Catholic University of Brasilia, Brasília, DF, Brazil
- Department of Cell Biology, Institute of Biological Sciences, Campus Darcy Ribeiro, University of Brasilia (UnB), Brasília, DF, Brazil
| | - Nicolau B da Cunha
- Genomic Sciences and Biotechnology Program, Catholic University of Brasilia, Brasília, DF, Brazil
- Faculty of Agronomy and Veterinary Medicine (FAV), Campus Darcy Ribeiro, University of Brasilia (UnB), Brasília, DF, Brazil
- Graduate Program in Agronomy, Campus Darcy Ribeiro, University of Brasilia (UnB), Brasília, DF, Brazil
| | - Fabricio F Costa
- Genomic Sciences and Biotechnology Program, Catholic University of Brasilia, Brasília, DF, Brazil
- Cancer Biology and Epigenomics Program, Northwestern University’s Feinberg School of Medicine, Chicago, IL, USA
- Genomic Enterprise, San FranciscoCA, USA
| |
Collapse
|
25
|
Jia B, Zhao C, Minagawa K, Shike H, Claxton DF, Ehmann WC, Rybka WB, Mineishi S, Wang M, Schell TD, Prabhu KS, Paulson RF, Zhang Y, Shultz LD, Zheng H. Acute Myeloid Leukemia Causes T Cell Exhaustion and Depletion in a Humanized Graft-versus-Leukemia Model. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1426-1437. [PMID: 37712758 DOI: 10.4049/jimmunol.2300111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (alloSCT) is, in many clinical settings, the only curative treatment for acute myeloid leukemia (AML). The clinical benefit of alloSCT greatly relies on the graft-versus-leukemia (GVL) effect. However, AML relapse remains the top cause of posttransplant death; this highlights the urgent need to enhance GVL. Studies of human GVL have been hindered by the lack of optimal clinically relevant models. In this article, we report, the successful establishment of a novel (to our knowledge) humanized GVL model system by transplanting clinically paired donor PBMCs and patient AML into MHC class I/II knockout NSG mice. We observed significantly reduced leukemia growth in humanized mice compared with mice that received AML alone, demonstrating a functional GVL effect. Using this model system, we studied human GVL responses against human AML cells in vivo and discovered that AML induced T cell depletion, likely because of increased T cell apoptosis. In addition, AML caused T cell exhaustion manifested by upregulation of inhibitory receptors, increased expression of exhaustion-related transcription factors, and decreased T cell function. Importantly, combined blockade of human T cell-inhibitory pathways effectively reduced leukemia burden and reinvigorated CD8 T cell function in this model system. These data, generated in a highly clinically relevant humanized GVL model, not only demonstrate AML-induced inhibition of alloreactive T cells but also identify promising therapeutic strategies targeting T cell depletion and exhaustion for overcoming GVL failure and treating AML relapse after alloSCT.
Collapse
Affiliation(s)
- Bei Jia
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA
| | - Chenchen Zhao
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA
| | - Kentaro Minagawa
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA
| | - Hiroko Shike
- Department of Pathology, Penn State University College of Medicine, Hershey, PA
| | - David F Claxton
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA
| | - W Christopher Ehmann
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA
| | - Witold B Rybka
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA
| | - Shin Mineishi
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA
| | - Ming Wang
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Todd D Schell
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA
- Department of Microbiology and Immunology, Penn State University College of Medicine, Hershey, PA
| | - K Sandeep Prabhu
- Department of Veterinary and Biomedical Sciences, Penn State University, University Park, PA
| | - Robert F Paulson
- Department of Veterinary and Biomedical Sciences, Penn State University, University Park, PA
| | - Yi Zhang
- Center for Discovery and Innovation, Hackensack Meridian Health, Edison, NJ
| | - Leonard D Shultz
- Department of Immunology, The Jackson Laboratory, Bar Harbor, ME
| | - Hong Zheng
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA
- Department of Microbiology and Immunology, Penn State University College of Medicine, Hershey, PA
| |
Collapse
|
26
|
Dong Y, Chen J, Chen Y, Liu S. Targeting the STAT3 oncogenic pathway: Cancer immunotherapy and drug repurposing. Biomed Pharmacother 2023; 167:115513. [PMID: 37741251 DOI: 10.1016/j.biopha.2023.115513] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023] Open
Abstract
Immune effector cells in the microenvironment tend to be depleted or remodeled, unable to perform normal functions, and even promote the malignant characterization of tumors, resulting in the formation of immunosuppressive microenvironments. The strategy of reversing immunosuppressive microenvironment has been widely used to enhance the tumor immunotherapy effect. Signal transducer and activator of transcription 3 (STAT3) was found to be a crucial regulator of immunosuppressive microenvironment formation and activation as well as a factor, stimulating tumor cell proliferation, survival, invasiveness and metastasis. Therefore, regulating the immune microenvironment by targeting the STAT3 oncogenic pathway might be a new cancer therapy strategy. This review discusses the pleiotropic effects of STAT3 on immune cell populations that are critical for tumorigenesis, and introduces the novel strategies targeting STAT3 oncogenic pathway for cancer immunotherapy. Lastly, we summarize the conventional drugs used in new STAT3-targeting anti-tumor applications.
Collapse
Affiliation(s)
- Yushan Dong
- Graduate School of Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin, Heilongjiang, China
| | - Jingyu Chen
- Department of Chinese Medicine Internal Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, No. 1 Xiyuan Playground, Haidian District, Beijing, China
| | - Yuhan Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Songjiang Liu
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, No.26, Heping Road, Xiangfang District, Harbin, Heilongjiang Province, China.
| |
Collapse
|
27
|
Chamoto K, Yaguchi T, Tajima M, Honjo T. Insights from a 30-year journey: function, regulation and therapeutic modulation of PD1. Nat Rev Immunol 2023; 23:682-695. [PMID: 37185300 DOI: 10.1038/s41577-023-00867-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 05/17/2023]
Abstract
PD1 was originally discovered in 1992 as a molecule associated with activation-induced cell death in T cells. Over the past 30 years, it was found that PD1 has a critical role in avoiding overactivation-induced cell death and autoimmunity, whereas its inhibition unleashes anticancer immunity. Here, we outline the journey from the discovery of PD1 to its role as a breakthrough target in cancer immunotherapy. We describe its regulation and function and examine how a mechanistic understanding of PD1 signalling suggests a central function in setting the T cell activation threshold, thereby controlling T cell proliferation, differentiation, exhaustion and metabolic status. This threshold theory, in combination with new insights into T cell metabolism and a better understanding of immune cell modulation by the microbiota, can provide guidance for the development of efficient combination therapies. Moreover, we discuss the mechanisms underlying immune-related adverse events after PD1-targeted therapy and their possible treatment.
Collapse
Affiliation(s)
- Kenji Chamoto
- Division of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomonori Yaguchi
- Division of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masaki Tajima
- Division of Integrated High-Order Regulatory Systems, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tasuku Honjo
- Division of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
28
|
Wang L, Yue Y, Zhang L, Jing M, Ma M, Liu C, Li Y, Xu S, Wang K, Wang X, Fan J, Zhang M. PAQR5 inhibits the growth and metastasis of clear cell renal cell carcinoma by suppressing the JAK/STAT3 signaling pathway. Cell Oncol (Dordr) 2023; 46:1317-1332. [PMID: 37126128 DOI: 10.1007/s13402-023-00813-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2023] [Indexed: 05/02/2023] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) has a high degree of malignancy and poor overall prognosis in advanced and metastatic patients. Therefore, it is of great significance to find new prognostic biomarkers and therapeutic targets for ccRCC. The expression of progestin and adipoQ receptor family member 5 (PAQR5) is significantly downregulated in ccRCC compared with normal tissues, but its specific mechanism and potential biological function in ccRCC remain unclear. METHODS The expression pattern of PAQR5 and the correlation between the PAQR5 expression and clinicopathological parameters and various survival periods in ccRCC patients were analyzed by using multiple public databases and ccRCC tissues chip. Its prognostic value was analyzed by univariate/multivariate Cox regression. In addition, MTT assay, EdU staining assay, flow cytometry, wound healing assay, transwell migration and invasion assay, colony formation assay, immunofluorescence assay, and a xenograft tumor model were conducted to assess the biological function of PAQR5 in ccRCC in vitro and in vivo. RESULTS Our results indicated that the downregulation of PAQR5 was demonstrated in ccRCC tumor tissues and associated with poorer OS, DSS, and PFI. Meanwhile, the univariate/multivariate Cox regression analysis confirmed that PAQR5 might serve as an independent prognostic factor for ccRCC, and its low expression was tightly correlated with tumor progression and distant metastasis. Mechanistically, a series of gain- and loss-of-function assay revealed that PAQR5 could suppress the ccRCC proliferation, invasion, metastasis, and tumorigenicity in vitro and in vivo by inhibiting the JAK/STAT3 signaling pathway. CONCLUSION Our study revealed the tumor suppressor role of PAQR5 in ccRCC. PAQR5 is a valuable prognostic biomarker for ccRCC and may provide new strategies for clinical targeted therapy.
Collapse
Affiliation(s)
- Lu Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Yangyang Yue
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Lu Zhang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Minxuan Jing
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Minghai Ma
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Chao Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Yan Li
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Shan Xu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Ke Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Xinyang Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Jinhai Fan
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, 710061, Shaanxi, China.
- Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of education, Xi'an, China.
| | - Mengzhao Zhang
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
29
|
Sun Q, Hong Z, Zhang C, Wang L, Han Z, Ma D. Immune checkpoint therapy for solid tumours: clinical dilemmas and future trends. Signal Transduct Target Ther 2023; 8:320. [PMID: 37635168 PMCID: PMC10460796 DOI: 10.1038/s41392-023-01522-4] [Citation(s) in RCA: 211] [Impact Index Per Article: 105.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/11/2023] [Accepted: 05/28/2023] [Indexed: 08/29/2023] Open
Abstract
Immune-checkpoint inhibitors (ICBs), in addition to targeting CTLA-4, PD-1, and PD-L1, novel targeting LAG-3 drugs have also been approved in clinical application. With the widespread use of the drug, we must deeply analyze the dilemma of the agents and seek a breakthrough in the treatment prospect. Over the past decades, these agents have demonstrated dramatic efficacy, especially in patients with melanoma and non-small cell lung cancer (NSCLC). Nonetheless, in the field of a broad concept of solid tumours, non-specific indications, inseparable immune response and side effects, unconfirmed progressive disease, and complex regulatory networks of immune resistance are four barriers that limit its widespread application. Fortunately, the successful clinical trials of novel ICB agents and combination therapies, the advent of the era of oncolytic virus gene editing, and the breakthrough of the technical barriers of mRNA vaccines and nano-delivery systems have made remarkable breakthroughs currently. In this review, we enumerate the mechanisms of each immune checkpoint targets, associations between ICB with tumour mutation burden, key immune regulatory or resistance signalling pathways, the specific clinical evidence of the efficacy of classical targets and new targets among different tumour types and put forward dialectical thoughts on drug safety. Finally, we discuss the importance of accurate triage of ICB based on recent advances in predictive biomarkers and diagnostic testing techniques.
Collapse
Affiliation(s)
- Qian Sun
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhenya Hong
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Cong Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Liangliang Wang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhiqiang Han
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Ding Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
30
|
Mashimo M, Fujii T, Ono S, Moriwaki Y, Misawa H, Azami T, Kasahara T, Kawashima K. GTS-21 Enhances Regulatory T Cell Development from T Cell Receptor-Activated Human CD4 + T Cells Exhibiting Varied Levels of CHRNA7 and CHRFAM7A Expression. Int J Mol Sci 2023; 24:12257. [PMID: 37569633 PMCID: PMC10418795 DOI: 10.3390/ijms241512257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/22/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Immune cells such as T cells and macrophages express α7 nicotinic acetylcholine receptors (α7 nAChRs), which contribute to the regulation of immune and inflammatory responses. Earlier findings suggest α7 nAChR activation promotes the development of regulatory T cells (Tregs) in mice. Using human CD4+ T cells, we investigated the mRNA expression of the α7 subunit and the human-specific dupα7 nAChR subunit, which functions as a dominant-negative regulator of ion channel function, under resting conditions and T cell receptor (TCR)-activation. We then explored the effects of the selective α7 nAChR agonist GTS-21 on proliferation of TCR-activated T cells and Treg development. Varied levels of mRNA for both the α7 and dupα7 nAChR subunits were detected in resting human CD4+ T cells. mRNA expression of the α7 nAChR subunit was profoundly suppressed on days 4 and 7 of TCR-activation as compared to day 1, whereas mRNA expression of the dupα7 nAChR subunit remained nearly constant. GTS-21 did not alter CD4+ T cell proliferation but significantly promoted Treg development. These results suggest the potential ex vivo utility of GTS-21 for preparing Tregs for adoptive immunotherapy, even with high expression of the dupα7 subunit.
Collapse
Affiliation(s)
- Masato Mashimo
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts, Kyotanabe 610-0395, Japan; (M.M.); (T.F.)
| | - Takeshi Fujii
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts, Kyotanabe 610-0395, Japan; (M.M.); (T.F.)
| | - Shiro Ono
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi 584-8540, Japan;
| | - Yasuhiro Moriwaki
- Department of Pharmacology, Faculty of Pharmacy, Keio University, Minato-ku, Tokyo 105-8512, Japan; (Y.M.); (H.M.)
| | - Hidemi Misawa
- Department of Pharmacology, Faculty of Pharmacy, Keio University, Minato-ku, Tokyo 105-8512, Japan; (Y.M.); (H.M.)
| | - Tetsushi Azami
- Division of Gastroenterology, Department of Internal Medicine, Showa University Fujigaoka Hospital, Yokohama 227-8502, Japan;
| | - Tadashi Kasahara
- Division of Inflammation Research, Jichi Medical University, Shimotsukeshi 324-0498, Japan;
| | - Koichiro Kawashima
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
31
|
Gerhardt L, Hong MMY, Yousefi Y, Figueredo R, Maleki Vareki S. IL-12 and IL-27 Promote CD39 Expression on CD8+ T Cells and Differentially Regulate the CD39+CD8+ T Cell Phenotype. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1598-1606. [PMID: 37000461 PMCID: PMC10152038 DOI: 10.4049/jimmunol.2200897] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/10/2023] [Indexed: 04/01/2023]
Abstract
Tumor-specific CD8+ T cells are critical components of antitumor immunity; however, factors that modulate their phenotype and function have not been completely elucidated. Cytokines IL-12 and IL-27 have recognized roles in promoting CD8+ T cells' effector function and mediated antitumor responses. Tumor-specific CD8+ tumor-infiltrating lymphocytes (TILs) can be identified based on surface expression of CD39, whereas bystander CD8+ TILs do not express this enzyme. It is currently unclear how and why tumor-specific CD8+ T cells uniquely express CD39. Given the important roles of IL-12 and IL-27 in promoting CD8+ T cell functionality, we investigated whether these cytokines could modulate CD39 expression on these cells. Using in vitro stimulation assays, we identified that murine splenic CD8+ T cells differentially upregulate CD39 in the presence of IL-12 and IL-27. Subsequently, we assessed the exhaustion profile of IL-12- and IL-27-induced CD39+CD8+ T cells. Despite the greatest frequency of exhausted CD39+CD8+ T cells after activation with IL-12, as demonstrated by the coexpression of TIM-3+PD-1+LAG-3+ and reduced degranulation capacity, these cells retained the ability to produce IFN-γ. IL-27-induced CD39+CD8+ T cells expressed PD-1 but did not exhibit a terminally exhausted phenotype. IL-27 was able to attenuate IL-12-mediated inhibitory receptor expression on CD39+CD8+ T cells but did not rescue degranulation ability. Using an immunogenic neuro-2a mouse model, inhibiting IL-12 activity reduced CD39+CD8+ TIL frequency compared with controls without changing the overall CD8+ TIL frequency. These results provide insight into immune regulators of CD39 expression on CD8+ T cells and further highlight the differential impact of CD39-inducing factors on the phenotype and effector functions of CD8+ T cells.
Collapse
Affiliation(s)
- Lara Gerhardt
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Megan M. Y. Hong
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Yeganeh Yousefi
- London Regional Cancer Program, Lawson Health Research Institute, London, Ontario, Canada
| | - Rene Figueredo
- Department of Oncology, Western University, London, Ontario, Canada
| | - Saman Maleki Vareki
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
- London Regional Cancer Program, Lawson Health Research Institute, London, Ontario, Canada
- Department of Oncology, Western University, London, Ontario, Canada
| |
Collapse
|
32
|
Pandit M, Kil YS, Ahn JH, Pokhrel RH, Gu Y, Mishra S, Han Y, Ouh YT, Kang B, Jeong MS, Kim JO, Nam JW, Ko HJ, Chang JH. Methionine consumption by cancer cells drives a progressive upregulation of PD-1 expression in CD4 T cells. Nat Commun 2023; 14:2593. [PMID: 37147330 PMCID: PMC10162977 DOI: 10.1038/s41467-023-38316-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/25/2023] [Indexed: 05/07/2023] Open
Abstract
Programmed cell death protein 1 (PD-1), expressed on tumor-infiltrating T cells, is a T cell exhaustion marker. The mechanisms underlying PD-1 upregulation in CD4 T cells remain unknown. Here we develop nutrient-deprived media and a conditional knockout female mouse model to study the mechanism underlying PD-1 upregulation. Reduced methionine increases PD-1 expression on CD4 T cells. The genetic ablation of SLC43A2 in cancer cells restores methionine metabolism in CD4 T cells, increasing the intracellular levels of S-adenosylmethionine and yielding H3K79me2. Reduced H3K79me2 due to methionine deprivation downregulates AMPK, upregulates PD-1 expression and impairs antitumor immunity in CD4 T cells. Methionine supplementation restores H3K79 methylation and AMPK expression, lowering PD-1 levels. AMPK-deficient CD4 T cells exhibit increased endoplasmic reticulum stress and Xbp1s transcript levels. Our results demonstrate that AMPK is a methionine-dependent regulator of the epigenetic control of PD-1 expression in CD4 T cells, a metabolic checkpoint for CD4 T cell exhaustion.
Collapse
Affiliation(s)
- Mahesh Pandit
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbukdo, 38541, Republic of Korea
| | - Yun-Seo Kil
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbukdo, 38541, Republic of Korea
| | - Jae-Hee Ahn
- Department of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ram Hari Pokhrel
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbukdo, 38541, Republic of Korea
| | - Ye Gu
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbukdo, 38541, Republic of Korea
| | - Sunil Mishra
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbukdo, 38541, Republic of Korea
| | - Youngjoo Han
- Department of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Yung-Taek Ouh
- Department of Obstetrics and Gynecology, School of medicine, Kangwon National University, Chuncheon, 24289, Republic of Korea
| | - Ben Kang
- Department of Pediatrics, School of Medicine, Kyungpook National University, 68-Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Myeong Seon Jeong
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon, 24341, Republic of Korea
- Department of Biochemistry, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jong-Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbukdo, 38541, Republic of Korea
| | - Joo-Won Nam
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbukdo, 38541, Republic of Korea
| | - Hyun-Jeong Ko
- Department of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Jae-Hoon Chang
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbukdo, 38541, Republic of Korea.
| |
Collapse
|
33
|
Waseem A, Rashid S, Rashid K, Khan MA, Khan R, Haque R, Seth P, Raza SS. Insight into the transcription factors regulating Ischemic Stroke and Glioma in Response to Shared Stimuli. Semin Cancer Biol 2023; 92:102-127. [PMID: 37054904 DOI: 10.1016/j.semcancer.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/28/2023] [Accepted: 04/09/2023] [Indexed: 04/15/2023]
Abstract
Cerebral ischemic stroke and glioma are the two leading causes of patient mortality globally. Despite physiological variations, 1 in 10 people who have an ischemic stroke go on to develop brain cancer, most notably gliomas. In addition, glioma treatments have also been shown to increase the risk of ischemic strokes. Stroke occurs more frequently in cancer patients than in the general population, according to traditional literature. Unbelievably, these events share multiple pathways, but the precise mechanism underlying their co-occurrence remains unknown. Transcription factors (TFs), the main components of gene expression programmes, finally determine the fate of cells and homeostasis. Both ischemic stroke and glioma exhibit aberrant expression of a large number of TFs, which are strongly linked to the pathophysiology and progression of both diseases. The precise genomic binding locations of TFs and how TF binding ultimately relates to transcriptional regulation remain elusive despite a strong interest in understanding how TFs regulate gene expression in both stroke and glioma. As a result, the importance of continuing efforts to understand TF-mediated gene regulation is highlighted in this review, along with some of the primary shared events in stroke and glioma.
Collapse
Affiliation(s)
- Arshi Waseem
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow-226003, India
| | - Sumaiya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Khalid Rashid
- Department of Cancer Biology, Vontz Center for Molecular Studies, Cincinnati, OH 45267-0521
| | | | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City,Mohali, Punjab 140306, India
| | - Rizwanul Haque
- Department of Biotechnology, Central University of South Bihar, Gaya -824236, India
| | - Pankaj Seth
- Molecular and Cellular Neuroscience, Neurovirology Section, National Brain Research Centre, Manesar, Haryana-122052, India
| | - Syed Shadab Raza
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow-226003, India; Department of Stem Cell Biology and Regenerative Medicine, Era's Lucknow Medical College Hospital, Era University, Sarfarazganj, Lucknow-226003, India
| |
Collapse
|
34
|
Micevic G, Bosenberg MW, Yan Q. The Crossroads of Cancer Epigenetics and Immune Checkpoint Therapy. Clin Cancer Res 2023; 29:1173-1182. [PMID: 36449280 PMCID: PMC10073242 DOI: 10.1158/1078-0432.ccr-22-0784] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/10/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022]
Abstract
Immune checkpoint inhibitors (ICI) have significantly improved treatment outcomes for several types of cancer over the past decade, but significant challenges that limit wider effectiveness of current immunotherapies remain to be addressed. Certain "cold" tumor types, such as pancreatic cancer, exhibit very low response rates to ICI due to intrinsically low immunogenicity. In addition, many patients who initially respond to ICI lack a sustained response due to T-cell exhaustion. Several recent studies show that epigenetic modifiers, such as SETDB1 and LSD1, can play critical roles in regulating both tumor cell-intrinsic immunity and T-cell exhaustion. Here, we review the evidence showing that multiple epigenetic regulators silence the expression of endogenous antigens, and their loss induces viral mimicry responses bolstering the response of "cold" tumors to ICI in preclinical models. Similarly, a previously unappreciated role for epigenetic enzymes is emerging in the establishment and maintenance of stem-like T-cell populations that are critical mediators of response to ICI. Targeting the crossroads of epigenetics and immune checkpoint therapy has tremendous potential to improve antitumor immune responses and herald the next generation of sustained responses in immuno-oncology.
Collapse
Affiliation(s)
- Goran Micevic
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06520
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520
| | - Marcus W. Bosenberg
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06520
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520
- Yale Center for Immuno-Oncology, Yale School of Medicine, New Haven, CT 06520
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520
- Yale Center for Immuno-Oncology, Yale School of Medicine, New Haven, CT 06520
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520
| |
Collapse
|
35
|
Xu B, He P, Wang Y, Wang H, Zhang J, Zhu J, Pu W, Chen H. PDT for Gastric Cancer - the view from China. Photodiagnosis Photodyn Ther 2023; 42:103366. [PMID: 36841280 DOI: 10.1016/j.pdpdt.2023.103366] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
The incidence rate and mortality of gastric cancer remain elevated. Traditionally, surgical treatment (including endoscopic surgery and traditional surgery), chemotherapy, targeted therapy, and immunotherapy were used for the treatment of gastric cancer. Although the emergence of targeted therapy and immunotherapy can effectively prolong the survival of some patients with gastric cancer and improve the quality of life of patients after chemotherapy or surgery, the overall survival rate of gastric cancer has not been significantly improved. Photodynamic therapy is a local photochemical therapy with the advantages of high safety, few adverse reactions, and repeatability, although it may cause some toxic reactions. There are some differences between East and West in the treatment of gastric cancer with PDT, and most earlier studies concentrated on using PDT alone. However, some studies have indicated that PDT may enhance the efficacy of chemotherapy and other medications. This paper summarizes the study on the use of PDT and its combination therapy in gastric cancer, which is anticipated to offer novel thoughts for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Bo Xu
- The Second Clinical Medical College of Lanzhou University, 730030, China
| | - Puyi He
- The Second Clinical Medical College of Lanzhou University, 730030, China
| | - Yunpeng Wang
- The Second Clinical Medical College of Lanzhou University, 730030, China
| | - Haiyun Wang
- The Second Clinical Medical College of Lanzhou University, 730030, China
| | - Jing Zhang
- The Second Clinical Medical College of Lanzhou University, 730030, China
| | - Jingyu Zhu
- The Second Clinical Medical College of Lanzhou University, 730030, China
| | - Weigao Pu
- The Second Clinical Medical College of Lanzhou University, 730030, China
| | - Hao Chen
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, China; Department of Oncology, The second hospital of Lanzhou University, 730030, China; Gansu Key Laboratory of digestive system tumor, The second hospital of Lanzhou University, 730030, China.
| |
Collapse
|
36
|
Mu X, Liu S, Wang Z, Jiang K, McClintock T, Stromberg AJ, Tezanos AV, Lee ES, Curci JA, Gong MC, Guo Z. Androgen aggravates aortic aneurysms via suppressing PD-1 in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.22.525073. [PMID: 36711644 PMCID: PMC9882344 DOI: 10.1101/2023.01.22.525073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Androgen has long been recognized for its pivotal role in the sexual dimorphism of cardiovascular diseases, including aortic aneurysms, a devastating vascular disease with a higher prevalence and mortality rate in men than women. However, the molecular mechanism by which androgen mediates aortic aneurysms is largely unknown. Here, we report that male but not female mice develop aortic aneurysms in response to aldosterone and high salt (Aldo-salt). We demonstrate that both androgen and androgen receptors (AR) are crucial for the sexually dimorphic response to Aldo-salt. We identify T cells expressing programmed cell death protein 1 (PD-1), an immune checkpoint molecule important in immunity and cancer immunotherapy, as a key link between androgen and aortic aneurysms. We show that intraperitoneal injection of anti-PD-1 antibody reinstates Aldo-salt-induced aortic aneurysms in orchiectomized mice. Mechanistically, we demonstrate that AR binds to the PD-1 promoter to suppress its expression in the spleen. Hence, our study reveals an important but unexplored mechanism by which androgen contributes to aortic aneurysms by suppressing PD-1 expression in T cells. Our study also suggests that cancer patients predisposed to the risk factors of aortic aneurysms may be advised to screen for aortic aneurysms during immune checkpoint therapy.
Collapse
|
37
|
Papavassiliou KA, Marinos G, Papavassiliou AG. Combining STAT3-Targeting Agents with Immune Checkpoint Inhibitors in NSCLC. Cancers (Basel) 2023; 15:386. [PMID: 36672335 PMCID: PMC9857288 DOI: 10.3390/cancers15020386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Despite recent therapeutic advances, non-small cell lung cancer (NSCLC) remains the leading cause of cancer-related death. Signal transducer and activator of transcription 3 (STAT3) is a transcription factor (TF) with multiple tumor-promoting effects in NSCLC, including proliferation, anti-apoptosis, angiogenesis, invasion, metastasis, immunosuppression, and drug resistance. Recent studies suggest that STAT3 activation contributes to resistance to immune checkpoint inhibitors. Thus, STAT3 represents an attractive target whose pharmacological modulation in NSCLC may assist in enhancing the efficacy of or overcoming resistance to immune checkpoint inhibitors. In this review, we discuss the biological mechanisms through which STAT3 inhibition synergizes with or overcomes resistance to immune checkpoint inhibitors and highlight the therapeutic strategy of using drugs that target STAT3 as potential combination partners for immune checkpoint inhibitors in the management of NSCLC patients.
Collapse
Affiliation(s)
- Kostas A. Papavassiliou
- First University Department of Respiratory Medicine, Medical School, “Sotiria” Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Georgios Marinos
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
38
|
Liu L, Li H, Li P, Zhou R, Zhang Q, Liu T, Feng L. Chinese Medicine Enhancing Response Rates to Immunosuppressant PD-L1 Inhibitor and Improving the Quality of Life of Hepatocellular Carcinoma-Bearing Mice. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2023; 22:e134216. [PMID: 38116545 PMCID: PMC10728846 DOI: 10.5812/ijpr-134216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/29/2023] [Accepted: 02/22/2023] [Indexed: 12/21/2023]
Abstract
Background Malignant tumors are a significant disease endangering human health. Chinese Medicine (CM) plays an important role in comprehensive and holistic tumor treatment. Objectives We aimed to investigate whether CM combined with the immunosuppressant PD-1/PD-L1 inhibitor has a good synergistic effect and can significantly improve response rates for the immunosuppressant. Methods We combined CM with immunosuppressant in treating six-week-old hepatocellular carcinoma-bearing mice and compared the outcomes of groups undergoing different interventions: blank group, control group, CM group, PD-L1 inhibitor group, and CM + PD-L1 inhibitor group, with ten mice in each group. The quality of life was evaluated along with the tumor inhibition effects and growth rates. Results CM significantly reduced tumor load and improved the quality of life of cancer-bearing mice. The survival rate was 81.8% in the control group, 100% in the CM group, 90.9% in the PD-L1 inhibitor group, and 100% in the combined group in the first week. The survival rate was 45.5% in the control group, 54.5% in the CM group, 81.8% in the PD-L1 inhibitor group, and 81.8% in the combined group in the second week. 38% mice in the CM+PD-L1 inhibitor group with smaller tumor size than the average of the control group, which was much higher than other treatment groups. CM also reduced the expression of JAK2 mRNA and STAT3 mRNA, although not significantly (P > 0.05), and reduced PD-L1 mRNA in tumor tissue compared to the control group (P < 0.05). Conclusions CM had a synergistic effect on PD-L1 inhibitors and increased response rates to PD-L1 inhibitor treatment.
Collapse
Affiliation(s)
- Lixing Liu
- Department of Chinese Medicine, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Cancer Center, National Clinical Research Center for Cancer, Hebei Cancer Hospital, Chinese Academy of Medical Sciences, Langfang, China
| | - Hao Li
- Department of Chinese Medicine, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Peijin Li
- Department of Chinese Medicine, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Rui Zhou
- Department of Chinese Medicine, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qinglin Zhang
- Department of Chinese Medicine, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tingting Liu
- Department of Chinese Medicine, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Li Feng
- Department of Chinese Medicine, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
39
|
Lv J, Qin L, Zhao R, Wu D, Wu Z, Zheng D, Li S, Luo M, Wu Q, Long Y, Tang Z, Tang YL, Luo X, Yao Y, Yang LH, Li P. Disruption of CISH promotes the antitumor activity of human T cells and decreases PD-1 expression levels. Mol Ther Oncolytics 2022; 28:46-58. [PMID: 36654786 PMCID: PMC9827364 DOI: 10.1016/j.omto.2022.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Tumor cells and the immunosuppressive tumor microenvironment suppress the antitumor activity of T cells through immune checkpoints, including the PD-L1/PD-1 axis. Cytokine-inducible SH2-containing protein (CISH), a member of the suppressor of cytokine signaling (SOCS) family, inhibits JAK-STAT and T cell receptor (TCR) signaling in T and natural killer (NK) cells. However, its role in the regulation of immune checkpoints in T cells remains unclear. In this study, we ablated CISH in T cells with CRISPR-Cas9 and found that the sensitivity of T cells to TCR and cytokine stimulation was increased. In addition, chimeric antigen receptor T cells with CISH deficiency exhibited longer survival and higher cytokine secretion and antitumor activity. Notably, PD-1 expression was decreased in activated CISH-deficient T cells in vitro and in vivo. The level of FBXO38, a ubiquitination-regulating protein that reduces PD-1 expression, was elevated in activated T cells after CISH ablation. Hence, this study reveals a mechanism by which CISH promotes PD-1 expression by suppressing the expression of FBXO38 and proposes a new strategy for augmenting the therapeutic effect of CAR-T cells by inhibiting CISH.
Collapse
Affiliation(s)
- Jiang Lv
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Le Qin
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Ruocong Zhao
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR 999077, China
| | - Di Wu
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Zhiping Wu
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Diwei Zheng
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Siyu Li
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
| | - Mintao Luo
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiting Wu
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Youguo Long
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Zhaoyang Tang
- Guangdong Zhaotai InVivo Biomedicine Co., Ltd., Guangzhou 510700, China
| | - Yan-Lai Tang
- Department of Paediatrics, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Xuequn Luo
- Department of Paediatrics, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Yao Yao
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Li-Hua Yang
- Department of Paediatrics, Zhujiang Hospital, Southern China Medical University, Guangzhou, Guangdong 510280, China,Corresponding author Li-Hua Yang, Department of Paediatrics, Zhujiang Hospital, Southern China Medical University, Guangzhou, Guangdong 510280, China.
| | - Peng Li
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,University of Chinese Academy of Sciences, Beijing 100049, China,Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR 999077, China,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China,Corresponding author Peng Li, China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| |
Collapse
|
40
|
Powell MD, Lu P, Neeld DK, Kania AK, George-Alexander LEM, Bally AP, Scharer CD, Boss JM. IL-6/STAT3 Signaling Axis Enhances and Prolongs Pdcd1 Expression in Murine CD8 T Cells. Immunohorizons 2022; 6:872-882. [PMID: 36547389 PMCID: PMC10103150 DOI: 10.4049/immunohorizons.2100112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
CD8 cytotoxic T cells are a potent line of defense against invading pathogens. To aid in curtailing aberrant immune responses, the activation status of CD8 T cells is highly regulated. One mechanism in which CD8 T cell responses are dampened is via signaling through the immune-inhibitory receptor Programmed Cell Death Protein-1, encoded by Pdcd1. Pdcd1 expression is regulated through engagement of the TCR, as well as by signaling from extracellular cytokines. Understanding such pathways has influenced the development of numerous clinical treatments. In this study, we showed that signals from the cytokine IL-6 enhanced Pdcd1 expression when paired with TCR stimulation in murine CD8 T cells. Mechanistically, signals from IL-6 were propagated through activation of the transcription factor STAT3, resulting in IL-6-dependent binding of STAT3 to Pdcd1 cis-regulatory elements. Intriguingly, IL-6 stimulation overcame B Lymphocyte Maturation Protein 1-mediated epigenetic repression of Pdcd1, which resulted in a transcriptionally permissive landscape marked by heightened histone acetylation. Furthermore, in vivo-activated CD8 T cells derived from lymphocytic choriomeningitis virus infection required STAT3 for optimal Programmed Cell Death Protein-1 surface expression. Importantly, STAT3 was the only member of the STAT family present at Pdcd1 regulatory elements in lymphocytic choriomeningitis virus Ag-specific CD8 T cells. Collectively, these data define mechanisms by which the IL-6/STAT3 signaling axis can enhance and prolong Pdcd1 expression in murine CD8 T cells.
Collapse
Affiliation(s)
- Michael D. Powell
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Peiyuan Lu
- Current Address: Department of Biochemistry and Molecular Biology, School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China
| | - Dennis K. Neeld
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Anna K. Kania
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Current Address: Bloomberg-Kimmel Institute for Cancer Immunotherapy, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | | - Alexander P.R. Bally
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Current Address: Zoetis Inc, 3185 Rampart Rd, Fort Collins, CO 80521, USA
| | - Christopher D. Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jeremy M. Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
41
|
Laba S, Mallett G, Amarnath S. The depths of PD-1 function within the tumor microenvironment beyond CD8 + T cells. Semin Cancer Biol 2022; 86:1045-1055. [PMID: 34048897 DOI: 10.1016/j.semcancer.2021.05.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/30/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023]
Abstract
Programmed cell death-1 (PD-1; CD279) is a cell surface receptor that is expressed in both innate and adaptive immune cells. The role of PD-1 in adaptive immune cells, specifically in CD8+ T cells, has been thoroughly investigated but its significance in other immune cells is yet to be well established. This review will address the role of PD-1 based therapies in enhancing non-CD8+ T cell immune responses within cancer. Specifically, the expression and function of PD-1 in non-CD8+ immune cell compartments such as CD4+ T helper cell subsets, myeloid cells and innate lymphoid cells (ILCs) will be discussed. By understanding the immune cell specific function of PD-1 within tissue resident innate and adaptive immune cells, it will be possible to stratify patients for PD-1 based therapies for both immunogeneic and non-immunogeneic neoplastic disorders. With this knowledge from fundamental and translational studies, PD-1 based therapies can be utilized to enhance T cell independent immune responses in cancers.
Collapse
Affiliation(s)
- Stephanie Laba
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, United Kingdom.
| | - Grace Mallett
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, United Kingdom
| | - Shoba Amarnath
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, United Kingdom.
| |
Collapse
|
42
|
Neuronal CaMKK2 promotes immunosuppression and checkpoint blockade resistance in glioblastoma. Nat Commun 2022; 13:6483. [PMID: 36309495 PMCID: PMC9617949 DOI: 10.1038/s41467-022-34175-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 10/14/2022] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma (GBM) is notorious for its immunosuppressive tumor microenvironment (TME) and is refractory to immune checkpoint blockade (ICB). Here, we identify calmodulin-dependent kinase kinase 2 (CaMKK2) as a driver of ICB resistance. CaMKK2 is highly expressed in pro-tumor cells and is associated with worsened survival in patients with GBM. Host CaMKK2, specifically, reduces survival and promotes ICB resistance. Multimodal profiling of the TME reveals that CaMKK2 is associated with several ICB resistance-associated immune phenotypes. CaMKK2 promotes exhaustion in CD8+ T cells and reduces the expansion of effector CD4+ T cells, additionally limiting their tumor penetrance. CaMKK2 also maintains myeloid cells in a disease-associated microglia-like phenotype. Lastly, neuronal CaMKK2 is required for maintaining the ICB resistance-associated myeloid phenotype, is deleterious to survival, and promotes ICB resistance. Our findings reveal CaMKK2 as a contributor to ICB resistance and identify neurons as a driver of immunotherapeutic resistance in GBM.
Collapse
|
43
|
Fang L, Liu K, Liu C, Wang X, Ma W, Xu W, Wu J, Sun C. Tumor accomplice: T cell exhaustion induced by chronic inflammation. Front Immunol 2022; 13:979116. [PMID: 36119037 PMCID: PMC9479340 DOI: 10.3389/fimmu.2022.979116] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
The development and response to treatment of tumor are modulated by inflammation, and chronic inflammation promotes tumor progression and therapy resistance. This article summarizes the dynamic evolution of inflammation from acute to chronic in the process of tumor development, and its effect on T cells from activation to the promotion of exhaustion. We review the mechanisms by which inflammatory cells and inflammatory cytokines regulate T cell exhaustion and methods for targeting chronic inflammation to improve the efficacy of immunotherapy. It is great significance to refer to the specific state of inflammation and T cells at different stages of tumor development for accurate clinical decision-making of immunotherapy and improving the efficiency of tumor immunotherapy.
Collapse
Affiliation(s)
- Liguang Fang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kunjing Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cun Liu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Xiaomin Wang
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China
| | - Wenzhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macao SAR, China
| | - Wenhua Xu
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China
| | - Jibiao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
- *Correspondence: Changgang Sun,
| |
Collapse
|
44
|
Hashimoto S, Hashimoto A, Muromoto R, Kitai Y, Oritani K, Matsuda T. Central Roles of STAT3-Mediated Signals in Onset and Development of Cancers: Tumorigenesis and Immunosurveillance. Cells 2022; 11:cells11162618. [PMID: 36010693 PMCID: PMC9406645 DOI: 10.3390/cells11162618] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/12/2022] [Accepted: 08/20/2022] [Indexed: 02/07/2023] Open
Abstract
Since the time of Rudolf Virchow in the 19th century, it has been well-known that cancer-associated inflammation contributes to tumor initiation and progression. However, it remains unclear whether a collapse of the balance between the antitumor immune response via the immunological surveillance system and protumor immunity due to cancer-related inflammation is responsible for cancer malignancy. The majority of inflammatory signals affect tumorigenesis by activating signal transducer and activation of transcription 3 (STAT3) and nuclear factor-κB. Persistent STAT3 activation in malignant cancer cells mediates extremely widespread functions, including cell growth, survival, angiogenesis, and invasion and contributes to an increase in inflammation-associated tumorigenesis. In addition, intracellular STAT3 activation in immune cells causes suppressive effects on antitumor immunity and leads to the differentiation and mobilization of immature myeloid-derived cells and tumor-associated macrophages. In many cancer types, STAT3 does not directly rely on its activation by oncogenic mutations but has important oncogenic and malignant transformation-associated functions in both cancer and stromal cells in the tumor microenvironment (TME). We have reported a series of studies aiming towards understanding the molecular mechanisms underlying the proliferation of various types of tumors involving signal-transducing adaptor protein-2 as an adaptor molecule that modulates STAT3 activity, and we recently found that AT-rich interactive domain-containing protein 5a functions as an mRNA stabilizer that orchestrates an immunosuppressive TME in malignant mesenchymal tumors. In this review, we summarize recent advances in our understanding of the functional role of STAT3 in tumor progression and introduce novel molecular mechanisms of cancer development and malignant transformation involving STAT3 activation that we have identified to date. Finally, we discuss potential therapeutic strategies for cancer that target the signaling pathway to augment STAT3 activity.
Collapse
Affiliation(s)
- Shigeru Hashimoto
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
- Correspondence: (S.H.); (T.M.)
| | - Ari Hashimoto
- Department of Molecular Biology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Ryuta Muromoto
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Yuichi Kitai
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Kenji Oritani
- Department of Hematology, International University of Health and Welfare, Narita 286-8686, Japan
| | - Tadashi Matsuda
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
- Correspondence: (S.H.); (T.M.)
| |
Collapse
|
45
|
Zhong M, Gao R, Zhao R, Huang Y, Chen C, Li K, Yu X, Nie D, Chen Z, Liu X, Liu Z, Chen S, Lu Y, Yu Z, Wang L, Li P, Zeng C, Li Y. BET bromodomain inhibition rescues PD-1-mediated T-cell exhaustion in acute myeloid leukemia. Cell Death Dis 2022; 13:671. [PMID: 35918330 PMCID: PMC9346138 DOI: 10.1038/s41419-022-05123-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 01/21/2023]
Abstract
Sustained expression of programmed cell death receptor-1 (PD-1) is correlated with the exhaustion of T cells, and blockade of the PD-1 pathway is an effective immunotherapeutic strategy for treating various cancers. However, response rates are limited, and many patients do not achieve durable responses. Thus, it is important to seek additional strategies that can improve anticancer immunity. Here, we report that the bromodomain and extraterminal domain (BET) inhibitor JQ1 inhibits PD-1 expression in Jurkat T cells, primary T cells, and T-cell exhaustion models. Furthermore, JQ1 dramatically impaired the expression of PD-1 and T-cell immunoglobulin mucin-domain-containing-3 (Tim-3) and promoted the secretion of cytokines in T cells from patients with acute myeloid leukemia (AML). In line with that, BET inhibitor-treated CD19-CAR T and CD123-CAR T cells have enhanced anti-leukemia potency and resistant to exhaustion. Mechanistically, BRD4 binds to the NFAT2 and PDCD1 (encoding PD-1) promoters, and NFAT2 binds to the PDCD1 and HAVCR2 (encoding Tim-3) promoters. JQ1-treated T cells showed downregulated NFAT2, PD-1, and Tim-3 expression. In addition, BET inhibitor suppressed programmed death-ligand 1 (PD-L1) expression and cell growth in AML cell lines and in primary AML cells. We also demonstrated that JQ1 treatment led to inhibition of leukemia progression, reduced T-cell PD-1/Tim-3 expression, and prolonged survival in MLL-AF9 AML mouse model and Nalm6 (B-cell acute lymphoblastic leukemia cell)-bearing mouse leukemia model. Taken together, BET inhibition improved anti-leukemia immunity by regulating PD-1/PD-L1 expression, and also directly suppressed AML cells, which provides novel insights on the multiple effects of BET inhibition for cancer therapy.
Collapse
Affiliation(s)
- Mengjun Zhong
- grid.258164.c0000 0004 1790 3548Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, 510632 Guangzhou, P. R. China
| | - Rili Gao
- grid.258164.c0000 0004 1790 3548Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, 510632 Guangzhou, P. R. China
| | - Ruocong Zhao
- grid.9227.e0000000119573309Center for Cell Regeneration and Biotherapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, P. R. China
| | - Youxue Huang
- grid.258164.c0000 0004 1790 3548Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, 510632 Guangzhou, P. R. China
| | - Cunte Chen
- grid.258164.c0000 0004 1790 3548Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, 510632 Guangzhou, P. R. China
| | - Kehan Li
- grid.258164.c0000 0004 1790 3548Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, 510632 Guangzhou, P. R. China
| | - Xibao Yu
- grid.258164.c0000 0004 1790 3548Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, 510632 Guangzhou, P. R. China
| | - Dingrui Nie
- grid.258164.c0000 0004 1790 3548Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, 510632 Guangzhou, P. R. China
| | - Zheng Chen
- grid.258164.c0000 0004 1790 3548Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, 510632 Guangzhou, P. R. China
| | - Xin Liu
- grid.258164.c0000 0004 1790 3548Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, 510632 Guangzhou, P. R. China
| | - Zhuandi Liu
- grid.258164.c0000 0004 1790 3548Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, 510632 Guangzhou, P. R. China
| | - Shaohua Chen
- grid.258164.c0000 0004 1790 3548Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, 510632 Guangzhou, P. R. China
| | - Yuhong Lu
- grid.258164.c0000 0004 1790 3548Department of Hematology, First Affiliated Hospital, Jinan University, 510632 Guangzhou, P. R. China
| | - Zhi Yu
- grid.258164.c0000 0004 1790 3548Department of Hematology, First Affiliated Hospital, Jinan University, 510632 Guangzhou, P. R. China
| | - Liang Wang
- grid.258164.c0000 0004 1790 3548Department of Oncology, First Affiliated Hospital, Jinan University, 510632 Guangzhou, P. R. China
| | - Peng Li
- grid.9227.e0000000119573309Center for Cell Regeneration and Biotherapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, P. R. China
| | - Chengwu Zeng
- grid.258164.c0000 0004 1790 3548Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, 510632 Guangzhou, P. R. China
| | - Yangqiu Li
- grid.258164.c0000 0004 1790 3548Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, 510632 Guangzhou, P. R. China
| |
Collapse
|
46
|
Zhang T, Zhang SW, Feng J, Zhang B. m 6 Aexpress-BHM: predicting m6A regulation of gene expression in multiple-groups context by a Bayesian hierarchical mixture model. Brief Bioinform 2022; 23:6644383. [PMID: 35848879 DOI: 10.1093/bib/bbac295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/16/2022] [Accepted: 06/29/2022] [Indexed: 11/12/2022] Open
Abstract
As the most abundant RNA modification, N6-methyladenosine (m6A) plays an important role in various RNA activities including gene expression and translation. With the rapid application of MeRIP-seq technology, samples of multiple groups, such as the involved multiple viral/ bacterial infection or distinct cell differentiation stages, are extracted from same experimental unit. However, our current knowledge about how the dynamic m6A regulating gene expression and the role in certain biological processes (e.g. immune response in this complex context) is largely elusive due to lack of effective tools. To address this issue, we proposed a Bayesian hierarchical mixture model (called m6Aexpress-BHM) to predict m6A regulation of gene expression (m6A-reg-exp) in multiple groups of MeRIP-seq experiment with limited samples. Comprehensive evaluations of m6Aexpress-BHM on the simulated data demonstrate its high predicting precision and robustness. Applying m6Aexpress-BHM on three real-world datasets (i.e. Flaviviridae infection, infected time-points of bacteria and differentiation stages of dendritic cells), we predicted more m6A-reg-exp genes with positive regulatory mode that significantly participate in innate immune or adaptive immune pathways, revealing the underlying mechanism of the regulatory function of m6A during immune response. In addition, we also found that m6A may influence the expression of PD-1/PD-L1 via regulating its interacted genes. These results demonstrate the power of m6Aexpress-BHM, helping us understand the m6A regulatory function in immune system.
Collapse
Affiliation(s)
- Teng Zhang
- School of Automation from the Northwestern Polytechnical University, China
| | - Shao-Wu Zhang
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, China
| | - Jian Feng
- department of microbiology and molecular genetics, University of Pittsburgh
| | - Bei Zhang
- Henan University of Science and Technology Affiliated First Hospital
| |
Collapse
|
47
|
Transcriptional regulation of the immune checkpoints PD-1 and CTLA-4. Cell Mol Immunol 2022; 19:861-862. [DOI: 10.1038/s41423-022-00877-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 11/08/2022] Open
|
48
|
Boss JM. The Regulation of Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2450-2455. [PMID: 35595305 DOI: 10.4049/jimmunol.2290007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Abstract
In their AAI President's Addresses reproduced in this issue, Jeremy M. Boss, Ph.D. (AAI '94; AAI president 2019–2020), and Jenny P.-Y. Ting, Ph.D. (AAI '97; AAI president 2020–2021), welcomed attendees to the AAI annual meeting, Virtual IMMUNOLOGY2021™. Due to the SARS-CoV-2 pandemic and the cancellation of IMMUNOLOGY2020™, Dr. Boss and Dr. Ting each presented their respective president's address to open the meeting.
Collapse
Affiliation(s)
- Jeremy M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
49
|
Wei J, Zhang J, Wang D, Cen B, Lang JD, DuBois RN. The COX-2-PGE2 Pathway Promotes Tumor Evasion in Colorectal Adenomas. Cancer Prev Res (Phila) 2022; 15:285-296. [PMID: 35121582 PMCID: PMC9064954 DOI: 10.1158/1940-6207.capr-21-0572] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/18/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022]
Abstract
The mechanisms underlying the regulation of a checkpoint receptor, PD-1, in tumor-infiltrating immune cells during the development of colorectal cancer are not fully understood. Here we demonstrate that COX-2-derived PGE2, an inflammatory mediator and tumor promoter, induces PD-1 expression by enhancing NFκB's binding to the PD-1 promoter via an EP4-PI3K-Akt signaling pathway in both CD8+ T cells and macrophages. Moreover, PGE2 suppresses CD8+ T-cell proliferation and cytotoxicity against tumor cells and impairs macrophage phagocytosis of cancer cells via an EP4-PI3K-Akt-NFκB-PD-1 signaling pathway. In contrast, inhibiting the COX-2-PGE2-EP4 pathway increases intestinal CD8+ T-cell activation and proliferation and enhances intestinal macrophage phagocytosis of carcinoma cells accompanied by reduction of PD-1 expression in intestinal CD8+ T cells and macrophages in ApcMin/+ mice. PD-1 expression correlates well with COX-2 levels in human colorectal cancer specimens. Both elevated PD-1 and COX-2 are associated with poorer overall survival in patients with colorectal cancer. Our results uncover a novel role of PGE2 in tumor immune evasion. They may provide the rationale for developing new therapeutic approaches to subvert this process by targeting immune checkpoint pathways using EP4 antagonists. In addition, our findings reveal a novel mechanism explaining how NSAIDs reduce colorectal cancer risk by suppressing tumor immune evasion. PREVENTION RELEVANCE These findings provide a potential explanation underlying the chemopreventive effect of NSAIDs on reducing colorectal cancer incidence during premalignancy and provide a rationale for developing EP4 antagonists for colorectal cancer prevention and treatment. Simply targeting PGE2 signaling alone may be efficacious in colorectal cancer prevention and treatment, avoiding side effects associated with NSAIDs.
Collapse
Affiliation(s)
- Jie Wei
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425
| | - Jinyu Zhang
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425
| | - Dingzhi Wang
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425
| | - Bo Cen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425
| | - Jessica D. Lang
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, AZ 85004
| | - Raymond N. DuBois
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425
- Department of Research and Division of Gastroenterology, Mayo Clinic, Scottsdale, AZ 85259
| |
Collapse
|
50
|
Zhang Y, Wei Y, Jiang S, Dang Y, Yang Y, Zuo W, Zhu Q, Liu P, Gao Y, Lu S. Traditional Chinese medicine CFF-1 exerts a potent anti-tumor immunity to hinder tumor growth and metastasis in prostate cancer through EGFR/JAK1/STAT3 pathway to inhibit PD-1/PD-L1 checkpoint signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:153939. [PMID: 35172257 DOI: 10.1016/j.phymed.2022.153939] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/25/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Traditional Chinese Medicine (TCM) CFF-1 has been used in clinic for prostate cancer therapy in China. We reported before CFF-1 induced cell apoptosis via suppressing EGFR-related pathways, reminding us its potential role associated with antitumor immunity. PURPOSE The study was aimed to investigate the regulatory mechanism of CFF-1 on PD-L1/PD-1-mediated tumor immune escape. METHODS Prostate-specific antigen (PSA) test and the functional assessment of cancer therapy-prostate (FACT-P) and karnosky performance status (KPS) questionnaires were carried out to evaluate patient' condition before and after therapy. Flow cytometry (FCM) was used for analyzing cell apoptosis, T lymphocyte subsets and cell cycle. Western blotting and Immunohistochemistry (IHC) were performed to measure protein expressions. The synergy of drug combination was assessed by calculating combination index (CI). RESULTS CFF-1 obviously decreased PSA and improved the quality of life in patients with advanced prostate cancer. PD-L1 was highly expressed in prostate cancer cells including LNCaP, 22Rv1, PC-3, DU145 and RM-1. PD-1/PD-L1 was upregulated in tumorigenesis and tumor progression of subcutaneous homograft mouse model with immune response, where CD3+ T cell subsets were declined. CFF-1 inhibited PD-L1 expression in prostate cancer cells in a time/dose-dependent manner and blocked tumor growth by suppressing PD-1/PD-L1 upregulation to promote the recovery of CD3+ T lymphocytes, especially CD4+ T cell subset, accompanied by the downregulation of CD4+ FOXP3+ T cell subset. CFF-1 also prolonged the survival and inhibited lung metastasis in tail vein prostate cancer mouse model while repressing PD-1/PD-L1. CFF-1 in combination with docetaxol (DTX) produced a synergistic effects by sensitizing the inhibitory effect of DTX on JAK1/STAT3 pathway targeting PD-L1 blockade. CONCLUSION CFF-1 inhibited tumor growth and lung metastasis by blocking PD-1/PD-L1 to ameliorate T lymphocyte immune response through EGFR/JAK1/STAT3 pathway, suggesting that CFF-1 might be a promising treatment to resist tumor immunosuppression for prostate cancer patients.
Collapse
Affiliation(s)
- Yu Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Yong Wei
- Department of Urology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shun Jiang
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Yanmei Dang
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Yu Yang
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Wenren Zuo
- Department of Urology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qingyi Zhu
- Department of Urology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ping Liu
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Yanhong Gao
- College of Food Science and Pharmacological Engineering, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Shan Lu
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China.
| |
Collapse
|