1
|
Posa A. Spike protein-related proteinopathies: a focus on the neurological side of spikeopathies. Ann Anat 2025:152662. [PMID: 40254264 DOI: 10.1016/j.aanat.2025.152662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 04/22/2025]
Abstract
BACKGROUND The spike protein (SP) is an outward-projecting transmembrane glycoprotein on viral surfaces. SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2), responsible for COVID-19 (Coronavirus Disease 2019), uses SP to infect cells that express angiotensin converting enzyme 2 (ACE2) on their membrane. Remarkably, SP has the ability to cross the blood-brain barrier (BBB) into the brain and cause cerebral damage through various pathomechanisms. To combat the COVID-19 pandemic, novel gene-based products have been used worldwide to induce human body cells to produce SP to stimulate the immune system. This artificial SP also has a harmful effect on the human nervous system. STUDY DESIGN Narrative review. OBJECTIVE This narrative review presents the crucial role of SP in neurological complaints after SARS-CoV-2 infection, but also of SP derived from novel gene-based anti-SARS-CoV-2 products (ASP). METHODS Literature searches using broad terms such as "SARS-CoV-2", "spike protein", "COVID-19", "COVID-19 pandemic", "vaccines", "COVID-19 vaccines", "post-vaccination syndrome", "post-COVID-19 vaccination syndrome" and "proteinopathy" were performed using PubMed. Google Scholar was used to search for topic-specific full-text keywords. CONCLUSIONS The toxic properties of SP presented in this review provide a good explanation for many of the neurological symptoms following SARS-CoV-2 infection and after injection of SP-producing ASP. Both SP entities (from infection and injection) interfere, among others, with ACE2 and act on different cells, tissues and organs. Both SPs are able to cross the BBB and can trigger acute and chronic neurological complaints. Such SP-associated pathologies (spikeopathies) are further neurological proteinopathies with thrombogenic, neurotoxic, neuroinflammatory and neurodegenerative potential for the human nervous system, particularly the central nervous system. The potential neurotoxicity of SP from ASP needs to be critically examined, as ASPs have been administered to millions of people worldwide.
Collapse
Affiliation(s)
- Andreas Posa
- University Clinics and Outpatient Clinics for Radiology, Neuroradiology and Neurology, Martin Luther University Halle-Wittenberg, Ernst-Grube-Straße 40, 06120 Halle (Saale), Germany.
| |
Collapse
|
2
|
Khatun O, Kaur S, Tripathi S. Anti-interferon armamentarium of human coronaviruses. Cell Mol Life Sci 2025; 82:116. [PMID: 40074984 PMCID: PMC11904029 DOI: 10.1007/s00018-025-05605-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/15/2024] [Accepted: 01/23/2025] [Indexed: 03/14/2025]
Abstract
Cellular innate immune pathways are formidable barriers against viral invasion, creating an environment unfavorable for virus replication. Interferons (IFNs) play a crucial role in driving and regulating these cell-intrinsic innate antiviral mechanisms through the action of interferon-stimulated genes (ISGs). The host IFN response obstructs viral replication at every stage, prompting viruses to evolve various strategies to counteract or evade this response. Understanding the interplay between viral proteins and cell-intrinsic IFN-mediated immune mechanisms is essential for developing antiviral and anti-inflammatory strategies. Human coronaviruses (HCoVs), including SARS-CoV-2, MERS-CoV, SARS-CoV, and seasonal coronaviruses, encode a range of proteins that, through shared and distinct mechanisms, inhibit IFN-mediated innate immune responses. Compounding the issue, a dysregulated early IFN response can lead to a hyper-inflammatory immune reaction later in the infection, resulting in severe disease. This review provides a brief overview of HCoV replication and a detailed account of its interaction with host cellular innate immune pathways regulated by IFN.
Collapse
Affiliation(s)
- Oyahida Khatun
- Emerging Viral Pathogens Laboratory, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
- Microbiology & Cell Biology Department, Biological Sciences Division, Indian Institute of Science, Bengaluru, India
| | - Sumandeep Kaur
- Emerging Viral Pathogens Laboratory, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
- Microbiology & Cell Biology Department, Biological Sciences Division, Indian Institute of Science, Bengaluru, India
| | - Shashank Tripathi
- Emerging Viral Pathogens Laboratory, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India.
- Microbiology & Cell Biology Department, Biological Sciences Division, Indian Institute of Science, Bengaluru, India.
| |
Collapse
|
3
|
Yu R, Zhang L, Bai Y, Zhou P, Yang J, Wang D, Wei L, Zhang Z, Yan C, Wang Y, Guo H, Pan L, Yuan L, Liu X. Development of a nanobody-based competitive enzyme-linked immunosorbent assay for the sensitive detection of antibodies against porcine deltacoronavirus. J Clin Microbiol 2025; 63:e0161524. [PMID: 39950715 PMCID: PMC11898664 DOI: 10.1128/jcm.01615-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/20/2025] [Indexed: 03/14/2025] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging porcine enteric coronavirus causing significant economic losses to the pig farming industry globally. In this study, we expressed the S protein of a highly virulent PDCoV strain in the CHO eukaryotic expression system. After immunizing alpaca with the PDCoV S protein and employing the phage display library technique, a high-affinity and specific nanobody Nb3 against PDCoV S protein was successfully established by three rounds of biopanning and a phage enzyme-linked immunosorbent assay (ELISA). Furthermore, a competitive ELISA (cELISA) was developed based on Nb3 to rapidly and efficiently detect PDCoV antibody levels. The cELISA displayed no cross-reaction with positive sera of porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), porcine rotavirus (PoRV), pseudorabies virus (PRV), classical swine fever virus (CSFV), porcine reproductive and respiratory syndrome virus (PRRSV), or porcine circovirus 2 (PCV2), thereby showing good specificity. The cELISA successfully detected positive sera diluted 1:127 (percentage inhibition ≥ 50.02%), indicating high sensitivity. Both the intra- and inter-batch coefficients of variation were less than 10%, indicating good repeatability. The cELISA had a total coincidence rate of 98.33% with the indirect immunofluorescence assay and a significant positive correlation with the virus neutralization test (r = 0.861, P < 0.001), suggesting that the cELISA can be used to measure the neutralizing antibody titers in serum samples. In conclusion, our nanobody-based cELISA showed good performance indicators and can be used to monitor and evaluate antibody levels following clinical infection of PDCoV or vaccine immunization. IMPORTANCE This study screened out a high-affinity and specific nanobody Nb3 against porcine deltacoronavirus (PDCoV) S protein and established a nanobody-based competitive ELISA (cELISA) for PDCoV antibody detection. This cELISA is a simple, rapid, and specific method that can effectively measure the neutralizing antibody titers in serum samples.
Collapse
Affiliation(s)
- Ruiming Yu
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Liping Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Yingjie Bai
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Peng Zhou
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Jun Yang
- Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Dongsheng Wang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Liyang Wei
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Zhongwang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Chenghua Yan
- College of Traditional Chinese Medicine/College of Life Sciences, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yonglu Wang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Li Pan
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Ligang Yuan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xinsheng Liu
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| |
Collapse
|
4
|
Liu H, Liu T, Wang X, Zhu X, He J, Wang H, Fan A, Zhang D. Design and development of a novel multi-epitope DNA vaccine candidate against infectious bronchitis virus: an immunoinformatic approach. Arch Microbiol 2025; 207:84. [PMID: 40067376 DOI: 10.1007/s00203-025-04283-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/10/2025] [Accepted: 02/21/2025] [Indexed: 03/27/2025]
Abstract
Avian infectious bronchitis (IB) is one of the major respiratory diseases in poultry. At present, attenuated vaccines are the main commercial vaccines, but they have many defects. We aimed to construct a novel multi-epitope DNA vaccine based on avian infectious bronchitis virus (IBV) S1 and N proteins for the prevention of IBV infection. We screened the dominant B and T cell epitopes of target proteins utilizing epitope prediction tools. A new high-immunogenicity epitope peptide segment named QSN was designed and screened by linking peptide. The physicochemical properties of QSN were analyzed by bioinformatics. The recombinant plasmid pEGFP-QSN was obtained by inserting the synthesized QSN gene into the eukaryotic expression vector pEGFP-N1. On the 7th day of age, chicks were immunized by intramuscular injection of the plasmid, and serum specific antibody IgG, cytokines IFN-γ and IL-2, and T lymphocyte subsets were detected after booster immunization. Bioinformatics analysis showed that QSN had high hydrophilicity without transmembrane region and stable structure after binding to receptor. The recombinant eukaryotic vector was successfully constructed. Two weeks after booster immunization, compared with NS group and pEGFP-N1 group, serum IgG level, concentrations of cytokines IFN-γ and IL-2, and proportion of CD4+ T lymphocytes in pEGFP-QSN group were significantly increased (P < 0.01 or P < 0.05). Collectively, the multi-epitope DNA could stimulate humoral and cellular immune responses in chickens and is expected to be a potential vaccine candidate against IBV infection.
Collapse
MESH Headings
- Vaccines, DNA/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Infectious bronchitis virus/immunology
- Infectious bronchitis virus/genetics
- Animals
- Chickens
- Coronavirus Infections/prevention & control
- Coronavirus Infections/immunology
- Coronavirus Infections/veterinary
- Coronavirus Infections/virology
- Viral Vaccines/immunology
- Viral Vaccines/genetics
- Viral Vaccines/administration & dosage
- Poultry Diseases/prevention & control
- Poultry Diseases/immunology
- Poultry Diseases/virology
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/genetics
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Computational Biology
- Interferon-gamma/immunology
- Epitopes, B-Lymphocyte/immunology
- Epitopes, B-Lymphocyte/genetics
- Interleukin-2/immunology
- Immunoglobulin G/blood
- Immunoglobulin G/immunology
Collapse
Affiliation(s)
- Haoyu Liu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, No. 22, Jinjing Road, Xiqing District, Tianjin, 300392, People's Republic of China
| | - Tingting Liu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, No. 22, Jinjing Road, Xiqing District, Tianjin, 300392, People's Republic of China
| | - Xinyuan Wang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, No. 22, Jinjing Road, Xiqing District, Tianjin, 300392, People's Republic of China
| | - Xiaochen Zhu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, No. 22, Jinjing Road, Xiqing District, Tianjin, 300392, People's Republic of China
| | - Jinling He
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, No. 22, Jinjing Road, Xiqing District, Tianjin, 300392, People's Republic of China
| | - Hui Wang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, No. 22, Jinjing Road, Xiqing District, Tianjin, 300392, People's Republic of China
| | - Aili Fan
- Hengnuoyou (Tianjin) Biotechnology Co., Ltd, Tianjin, 301600, China
| | - Dongchao Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, No. 22, Jinjing Road, Xiqing District, Tianjin, 300392, People's Republic of China.
| |
Collapse
|
5
|
Kim HR, Kim SH, Le HD, Kim JK, Her M. The complete genome sequence of quail coronavirus identified in disease surveillance on quail farms in South Korea. Poult Sci 2025; 104:105007. [PMID: 40088533 PMCID: PMC11957520 DOI: 10.1016/j.psj.2025.105007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/22/2025] [Accepted: 03/07/2025] [Indexed: 03/17/2025] Open
Abstract
Avian carcasses collected from 103 flocks on 14 quail farms in Korea between 2022 and 2023 were diagnosed with viral diseases (22 flocks), bacterial disease (58 flocks), parasitic diseases (28 flocks) and non-infectious diseases (60 flocks). The only viral disease identified was viral enteritis in quails that showed pathological lesions in duodenum and appeared to be caused by quail coronavirus (QcoV) through viral metagenomics and RT-PCR assay. Two complete genomes of QCoV from samples diagnosed as viral enteritis were obtained using amplicon-based whole genome sequencing. The two QcoVs were gammacoronavirus, but were distinct from other avian coronaviruses. The spike genes of QCoV have 86.2 ∼ 87.1 % identity with that of American turkey coronavirus, but other gene sequences of QcoV was found to be similar to those of Korean infectious bronchitis virus. Genetic analysis based on the complete genomic sequences found QCoVs had a genetic structure similar to avian coronaviruses, yet it seems to be a unique pathogen specific to quail. This is the first report about the complete genome and genetic analysis of QCoV and the result of disease surveillance in quail in South Korea.
Collapse
Affiliation(s)
- Hye-Ryoung Kim
- Avian Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea.
| | - So-Hyeon Kim
- Avian Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Hoang Duc Le
- Avian Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Jae-Kyeom Kim
- Avian Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Moon Her
- Avian Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea
| |
Collapse
|
6
|
Chen J, Wang J, Zhao H, Tan X, Yan S, Zhang H, Wang T, Tang X. Molecular breeding of pigs in the genome editing era. Genet Sel Evol 2025; 57:12. [PMID: 40065264 PMCID: PMC11892312 DOI: 10.1186/s12711-025-00961-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND To address the increasing demand for high-quality pork protein, it is essential to implement strategies that enhance diets and produce pigs with excellent production traits. Selective breeding and crossbreeding are the primary methods used for genetic improvement in modern agriculture. However, these methods face challenges due to long breeding cycles and the necessity for beneficial genetic variation associated with high-quality traits within the population. This limitation restricts the transfer of desirable alleles across different genera and species. This article systematically reviews past and current research advancements in porcine molecular breeding. It discusses the screening of clustered regularly interspaced short palindromic repeats (CRISPR) to identify resistance loci in swine and the challenges and future applications of genetically modified pigs. MAIN BODY The emergence of transgenic and gene editing technologies has prompted researchers to apply these methods to pig breeding. These advancements allow for alterations in the pig genome through various techniques, ranging from random integration into the genome to site-specific insertion and from target gene knockout (KO) to precise base and prime editing. As a result, numerous desirable traits, such as disease resistance, high meat yield, improved feed efficiency, reduced fat deposition, and lower environmental waste, can be achieved easily and effectively by genetic modification. These traits can serve as valuable resources to enhance swine breeding programmes. CONCLUSION In the era of genome editing, molecular breeding of pigs is critical to the future of agriculture. Long-term and multidomain analyses of genetically modified pigs by researchers, related policy development by regulatory agencies, and public awareness and acceptance of their safety are the keys to realizing the transition of genetically modified products from the laboratory to the market.
Collapse
Affiliation(s)
- Jiahuan Chen
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Jiaqi Wang
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Haoran Zhao
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Xiao Tan
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Shihan Yan
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Huanyu Zhang
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Tiefeng Wang
- College of Life Science, Baicheng Normal University, Baicheng, 137000, China.
| | - Xiaochun Tang
- College of Animal Sciences, Jilin University, Changchun, 130062, China.
| |
Collapse
|
7
|
Abou Mansour M, El Rassi C, Sleem B, Borghol R, Arabi M. Thromboembolic Events in the Era of COVID-19: A Detailed Narrative Review. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2025; 2025:3804576. [PMID: 40226433 PMCID: PMC11986918 DOI: 10.1155/cjid/3804576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 02/14/2025] [Indexed: 04/15/2025]
Abstract
COVID-19, caused by the SARS-CoV-2 virus, is not only characterized by respiratory symptoms but is also associated with a wide range of systemic complications, including significant hematologic abnormalities. This is a comprehensive review of the current literature, using PubMed and Google Scholar, on the pathophysiology and incidence of thromboembolic events in COVID-19 patients and thromboprophylaxis. COVID-19 infection induces a prothrombotic state in patients through the dysregulation of the renin-angiotensin-aldosterone system (RAAS), endothelial dysfunction, elevated von Willebrand factor (vWF), and a dysregulated immune response involving the complement system and neutrophil extracellular traps (NETs). As a result, thromboembolic complications have emerged in COVID-19 cases, occurring more frequently in severe cases and hospitalized patients. These thrombotic events affect both venous and arterial circulation, with increased incidences of deep venous thrombosis (DVT), pulmonary embolism (PE), systemic arterial thrombosis, and myocardial infarction (MI). While DVT and PE are more common, the literature highlights the potential lethal consequences of arterial thromboembolism (ATE). This review also briefly examines the ongoing discussions regarding the use of anticoagulants for the prevention of thrombotic events in COVID-19 patients. While theoretically promising, current studies have yielded varied outcomes: Some suggest potential benefits, whereas others report an increased risk of bleeding events among hospitalized patients. Therefore, further large-scale studies are needed to assess the efficacy and safety of anticoagulants for thromboprophylaxis in COVID-19 patients.
Collapse
Affiliation(s)
- Maria Abou Mansour
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Christophe El Rassi
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Bshara Sleem
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Raphah Borghol
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
- Pediatric Department, Division of Pediatric Hematology-Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mariam Arabi
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
- Pediatric Department, Division of Pediatric Cardiology, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
8
|
Kim JY, Le HD, Thai TN, Kim JK, Song HS, Her M, Kim HR. Revealing a novel GI-19 lineage infectious bronchitis virus sub-genotype with multiple recombinations in South Korea using whole-genome sequencing. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2025; 128:105717. [PMID: 39826890 DOI: 10.1016/j.meegid.2025.105717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/22/2025]
Abstract
Infectious bronchitis (IB), caused by the infectious bronchitis virus (IBV), is a highly contagious chicken disease, causing economic losses worldwide. New IBV strains and variants continue to emerge despite using inactivated and live-attenuated vaccines to prevent or control IB. In this study, the S1 genes of 46 IBV strains, isolated from commercial chicken flocks between 2003 and 2024 in Korea were sequenced and genetically characterized. The IBV isolates belonged to Korean group II (K-II), which was included in the GI-19 lineage. The K-II was divided into five sub-genogroups (a-e) based on phylogenetic tree analysis results and nucleotide identification of the S1 gene. Of these, K-IId was the most common genotype in Korea; however, eight novel isolates belonging to the K-IIe sub-genotype were discovered. The nucleotide and amino acid identities of the other four K-II sub-genotypes and the eight isolates were 84.42-95.89 % and 84.02-95.86 %, respectively. The complete genomes of the eight K-IIe isolates were obtained using next-generation sequencing. Various recombination patterns were observed despite the high homology of the S1 gene among the eight IBV strains. Among the eight K-IIe isolates, six were recombinants, exhibiting recombinations between K-IIe and K-IIc, K-IIe and K-IIa, and with the live vaccine strain. Most recombination breakpoints were detected in the nsp2 region of the ORF1a, S2, and M genes. The present study proposed new classification criteria for the K-II belonged to the GI-19 lineage prevalent in South Korea and revealed the recombination patterns of recently identified novel isolates, providing important information on novel viral sub-genotype strains and IBV evolution.
Collapse
Affiliation(s)
- Ji-Ye Kim
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Gyeongsangbuk-do, Republic of Korea
| | - Hoang Duc Le
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Gyeongsangbuk-do, Republic of Korea; Institute of Biotechnology, Vietnam Academy of Science and Technology, Cau Giay 11300, Hanoi, Vietnam
| | - Tuyet Ngan Thai
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Gyeongsangbuk-do, Republic of Korea
| | - Jae-Kyeom Kim
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Gyeongsangbuk-do, Republic of Korea
| | - Hye-Soon Song
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Gyeongsangbuk-do, Republic of Korea
| | - Moon Her
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Gyeongsangbuk-do, Republic of Korea
| | - Hye-Ryoung Kim
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Gyeongsangbuk-do, Republic of Korea.
| |
Collapse
|
9
|
Patel M, Shamim U, Umang U, Pandey R, Narayan J. SARS-CoV-2 Alchemy: Understanding the dynamics of age, vaccination, and geography in the evolution of SARS-CoV-2 in India. PLoS Negl Trop Dis 2025; 19:e0012918. [PMID: 40063870 PMCID: PMC11922521 DOI: 10.1371/journal.pntd.0012918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/19/2025] [Accepted: 02/14/2025] [Indexed: 03/21/2025] Open
Abstract
BACKGROUND COVID-19 pandemic had unprecedented global impact on health and society, highlighting the need for a detailed understanding of SARS-CoV-2 evolution in response to host and environmental factors. This study investigates the evolution of SARS-CoV-2 via mutation dynamics, focusing on distinct age cohorts, geographical location, and vaccination status within the Indian population, one of the nations most affected by COVID-19. METHODOLOGY Comprehensive dataset, across diverse time points during the Alpha, Delta, and Omicron variant waves, captured essential phases of the pandemic's footprint in India. By leveraging genomic data from Global Initiative on Sharing Avian Influenza Data (GISAID), we examined the substitution mutation landscape of SARS-CoV-2 in three demographic segments: children (1-17 years), working-age adults (18-64 years), and elderly individuals (65+ years). A balanced dataset of 69,975 samples was used for the study, comprising 23,325 samples from each group. This design ensured high statistical power, as confirmed by power analysis. We employed bioinformatics and statistical analyses, to explore genetic diversity patterns and substitution frequencies across the age groups. PRINCIPAL FINDINGS The working-age group exhibited a notably high frequency of unique substitutions, suggesting that immune pressures within highly interactive populations may accelerate viral adaptation. Geographic analysis emphasizes notable regional variation in substitution rates, potentially driven by population density and local transmission dynamics, while regions with more homogeneous strain circulation show relatively lower substitution rates. The analysis also revealed a significant surge in unique substitutions across all age groups during the vaccination period, with substitution rates remaining elevated even after widespread vaccination, compared to pre-vaccination levels. This trend supports the virus's adaptive response to heightened immune pressures from vaccination, as observed through the increased prevalence of substitutions in important regions of SARS-CoV-2 genome like ORF1ab and Spike, potentially contributing to immune escape and transmissibility. CONCLUSION Our findings affirm the importance of continuous surveillance on viral evolution, particularly in countries with high transmission rates. This research provides insights for anticipating future viral outbreaks and refining pandemic preparedness strategies, thus enhancing our capacity for proactive global health responses.
Collapse
Affiliation(s)
- Mansi Patel
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
| | - Uzma Shamim
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
| | - Umang Umang
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
| | - Rajesh Pandey
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Jitendra Narayan
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
10
|
Finger A, Ashash U, Goldenberg D, Raviv Z. Lessons learnt on infectious bronchitis virus lineage GI-23. Avian Pathol 2025; 54:27-39. [PMID: 39190026 DOI: 10.1080/03079457.2024.2398030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
Infectious bronchitis virus (IBV) is the first coronavirus discovered in the world in the early 1930s and despite decades of extensive immunoprophylaxis efforts, it remains a major health concern to poultry producers worldwide. Rapid evolution due to large poultry population sizes coupled with high mutation and recombination events and the reliance of the antiviral immune response on specific antibodies against the epitopes of the S1 glycoprotein, render the control of IBV extremely challenging. The numerous and rapidly evolving genetic and antigenic IBV types are currently classified based on the whole S1 gene sequence, into 36 lineages clustered in eight genotypes. Most lineages (29) are grouped in genotype I (GI). "Variant 2" (Israel/Variant 2/1998) is the prototype strain of lineage GI-23 and, since this lineage emerged during the mid-1990s in the Middle East, it has evolved into numerous genetically related strains and disseminated to five continents. The hallmarks of IBV Variant 2-like strain infections are high virulence and remarkable nephrotropism and nephropathogenicity; however, the molecular mechanisms of these traits remain to be elucidated. Limited protection from previously utilized vaccine strains and accumulated losses to poultry producers have urged the development and implementation of homologous Variant 2-like vaccine strains. The latest avian coronavirus biology with specific emphasis on the cumulative knowledge about IBV "Variant 2" and emergence of related strains, characteristics and control are reviewed.
Collapse
Affiliation(s)
- Avner Finger
- Phibro Animal Health Corporation, Airport City, Israel
| | - Udi Ashash
- Phibro Animal Health Corporation, Airport City, Israel
| | | | - Ziv Raviv
- Poultry PathoScience Solutions, Inc., Plantation, FL, USA
| |
Collapse
|
11
|
Eldien HMS, Almaeen AH, El Fath AA, Taha AE, Ahmed R, Elfadil H, Hetta HF. Unlocking the Potential of RNA Sequencing in COVID-19: Toward Accurate Diagnosis and Personalized Medicine. Diagnostics (Basel) 2025; 15:229. [PMID: 39857114 PMCID: PMC11763845 DOI: 10.3390/diagnostics15020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/08/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
COVID-19 has caused widespread morbidity and mortality, with its effects extending to multiple organ systems. Despite known risk factors for severe disease, including advanced age and underlying comorbidities, patient outcomes can vary significantly. This variability complicates efforts to predict disease progression and tailor treatment strategies. While diagnostic and therapeutic approaches are still under debate, RNA sequencing (RNAseq) has emerged as a promising tool to provide deeper insights into the pathophysiology of COVID-19 and guide personalized treatment. A comprehensive literature review was conducted using PubMed, Scopus, Web of Science, and Google Scholar. We employed Medical Subject Headings (MeSH) terms and relevant keywords to identify studies that explored the role of RNAseq in COVID-19 diagnostics, prognostics, and therapeutics. RNAseq has proven instrumental in identifying molecular biomarkers associated with disease severity in patients with COVID-19. It allows for the differentiation between asymptomatic and symptomatic individuals and sheds light on the immune response mechanisms that contribute to disease progression. In critically ill patients, RNAseq has been crucial for identifying key genes that may predict patient outcomes, guiding therapeutic decisions, and assessing the long-term effects of the virus. Additionally, RNAseq has helped in understanding the persistence of viral RNA after recovery, offering new insights into the management of post-acute sequelae, including long COVID. RNA sequencing significantly improves COVID-19 management, particularly for critically ill patients, by enhancing diagnostic accuracy, personalizing treatment, and predicting therapeutic responses. It refines patient stratification, improving outcomes, and holds promise for targeted interventions in both acute and long COVID.
Collapse
Affiliation(s)
- Heba M. Saad Eldien
- Department of Anatomy, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia
| | - Abdulrahman H. Almaeen
- Department of Pathology, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Ahmed Abo El Fath
- Tropical Medicine and Gastroenterology Department, Assiut University Hospital, Assiut 71515, Egypt;
| | - Ahmed E. Taha
- Microbiology and Immunology Unit, Department of Pathology, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia;
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Rehab Ahmed
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.A.); (H.E.)
| | - Hassabelrasoul Elfadil
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.A.); (H.E.)
| | - Helal F. Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.A.); (H.E.)
| |
Collapse
|
12
|
Dewangan N, Jana ID, Yadav S, Sardar A, Mallick AI, Mondal A, Tarafdar PK. Design of Flavonoid-Based Lipid Domains as Fusion Inhibitors to Efficiently Block Coronavirus and Other Enveloped Virus Infection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2410727. [PMID: 39828665 DOI: 10.1002/smll.202410727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/27/2024] [Indexed: 01/22/2025]
Abstract
Developing a broad-spectrum antiviral is imperative in light of the recent emergence of recurring viral infections. The critical role of host-virus attachment and membrane fusion during enveloped virus entry is a suitable target for developing broad-spectrum antivirals. A new class of flavonoid-based fusion inhibitors are designed to alter the membrane's physical properties. These flavonoid-based molecules (MFDA; myristoyl flavonoid di-aspartic acid) are self-assembled in the membrane, creating distinct nanodomains and effectively inhibiting membrane fusion by modulating the membrane's interfacial properties. The broad-spectrum antiviral efficacy of these compounds are established in effectively blocking the entry of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Type A Influenza, Human coronavirus OC43 (HCoV-OC43), and Vesicular stomatitis virus (VSV). A slightly more effectivity of MFDA in coronavirus infection than other enveloped viruses may be attributed to its secondary interaction with the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. A membrane nanodomain formation strategy is highlighted with natural-product-based fusion inhibitors, effectively thwarting the infection of several enveloped viruses, entailing their broad-spectrum antiviral functionality.
Collapse
Affiliation(s)
- Nikesh Dewangan
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Indrani Das Jana
- Department of Bioscience & Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Sandeep Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Avijit Sardar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Amirul I Mallick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Arindam Mondal
- Department of Bioscience & Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Pradip K Tarafdar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| |
Collapse
|
13
|
Liang QZ, Ji CM, Wang B, Chen W, Cong F, Huang Y, Huang YW. Deltacoronavirus HKU11, HKU13, PDCoV (HKU15) and HKU17 spike pseudoviruses enter avian DF-1 cells via clathrin-mediated endocytosis in a Rab5-, Rab7- and pH-dependent manner. Vet Res 2025; 56:15. [PMID: 39825424 PMCID: PMC11740469 DOI: 10.1186/s13567-024-01442-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/14/2024] [Indexed: 01/20/2025] Open
Abstract
Porcine deltacoronavirus (PDCoV), also known as HKU15, is a swine enteropathogenic virus that is believed to have originated in birds. PDCoV belongs to the genus Deltacoronavirus (DCoV), the members of which have mostly been identified in diverse avian species. We recently reported that chicken or porcine aminopeptidase N (APN), the major cellular receptor for PDCoV, can mediate cellular entry via three pseudotyped retroviruses displaying spike proteins from three avian DCoVs (HKU11, HKU13, and HKU17). In the present work, to better understand how avian-origin CoVs may be transmitted to pigs, we investigated the unknown DCoV entry pathway in avian cells. We show that clathrin-mediated endocytosis is involved in the entry of these DCoV pseudoviruses into chicken-origin DF-1 cells. Pseudovirus entry was suppressed by means of pharmacological inhibitors, dominant-negative mutants, and siRNAs targeting various cellular proteins and signalling molecules, suggesting that PDCoV and avian DCoV pseudovirus entry into DF-1 cells depends on clathrin, dynamin-2, cathepsins and a low-pH environment but is independent of caveolae and macropinocytosis. Furthermore, we found that DCoV pseudovirus entry was linked to Rab5- and Rab7-dependent pathways. This is the first report demonstrating that these DCoVs utilize clathrin-mediated endocytosis pathways to enter avian-origin cells, providing new insights into interspecies transmission of DCoVs.
Collapse
Affiliation(s)
- Qi-Zhang Liang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Chun-Miao Ji
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Bin Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
| | - Wei Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Feng Cong
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China.
| | - Yu Huang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China.
| | - Yao-Wei Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China.
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
14
|
Yegnaswamy S, C SK, Aldaais E. Conformational dynamics of the membrane protein of MERS-CoV in comparison with SARS-CoV-2 in ERGIC complex. J Biomol Struct Dyn 2025:1-15. [PMID: 39755960 DOI: 10.1080/07391102.2024.2437529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/21/2024] [Indexed: 01/07/2025]
Abstract
The present study explores the conformational dynamics of the membrane protein of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) within the Endoplasmic Reticulum-Golgi Intermediate Compartment (ERGIC) complex using an all-atomistic molecular dynamics simulation approach. Significant structural changes were observed in the N-terminal, C-terminal, transmembrane, and beta-sheet sandwich domains of the MERS-CoV membrane protein. This study also highlights the structural similarities between the MERS-CoV and the SARS-CoV-2 membrane proteins, particularly in how both exhibit a distinct kink in the transmembrane helix caused by aromatic residue-lipid interactions. A structural expansion below the transmembrane and above the beta-sheet sandwich domain within the dimer was observed in all the M-proteins. This site on the beta-sheet sandwich domains near the C-terminal end could serve as a potential drug-binding site. Notably, a stable helical structure was identified in the C-terminal domain of the MERS-CoV membrane protein, whereas a proper secondary structural conformation was not observed in the SARS-CoV-2 membrane protein. Further, the SARS-CoV-2 membrane protein exhibited stronger binding to the lipid bilayer than the MERS-CoV, indicating its greater structural stability within the ERGIC complex. The structural similarity between the membrane protein of MERS-CoV and SARS-CoV-2 suggests the feasibility of employing a common inhibitor against these beta-coronaviruses. Furthermore, this analysis enhances our understanding of the membrane protein's interactions with proteins and lipids, paving the way for therapeutic developments against these viruses.
Collapse
Affiliation(s)
- Subha Yegnaswamy
- School of Biotechnology and Bioinformatics, D.Y. Patil Deemed to be University, Navi Mumbai, Maharashtra, India
| | - Selvaa Kumar C
- School of Biotechnology and Bioinformatics, D.Y. Patil Deemed to be University, Navi Mumbai, Maharashtra, India
| | - Ebtisam Aldaais
- College of Applied Medical Sciences, lmam Abdulrahman Bin Faisal University (lAU), Dammam, Saudi Arabia
| |
Collapse
|
15
|
Cersosimo A, Di Pasquale M, Arabia G, Metra M, Vizzardi E. COVID myocarditis: a review of the literature. Monaldi Arch Chest Dis 2024; 94. [PMID: 37930657 DOI: 10.4081/monaldi.2023.2784] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023] Open
Abstract
Myocarditis is a potentially fatal complication of coronavirus disease 2019 (COVID-19), which is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. COVID-19 myocarditis appears to have distinct inflammatory characteristics that distinguish it from other viral etiologies. COVID-19 myocarditis can present with symptoms ranging from dyspnea and chest pain to acute heart failure and death. It is critical to detect any cases of myocarditis, especially fulminant myocarditis, which can be characterized by signs of heart failure and arrhythmias. Serial troponins, echocardiography, and electrocardiograms should be performed as part of the initial workup for suspected myocarditis. The second step in detecting myocarditis is cardiac magnetic resonance imaging and endomyocardial biopsy. Treatment for COVID-19 myocarditis is still debatable; however, combining intravenous immunoglobulins and corticosteroids may be effective, especially in cases of fulminant myocarditis. Overall, more research is needed to determine the incidence of COVID-19 myocarditis, and the use of intravenous immunoglobulins and corticosteroids in combination requires large randomized controlled trials to determine efficacy. The purpose of this review is to summarize current evidence on the subject.
Collapse
Affiliation(s)
- Angelica Cersosimo
- Cardiology Unit, Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia
| | - Mattia Di Pasquale
- Cardiology Unit, Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia
| | - Gianmarco Arabia
- Cardiology Unit, Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia
| | - Marco Metra
- Cardiology Unit, Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia
| | - Enrico Vizzardi
- Cardiology Unit, Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia
| |
Collapse
|
16
|
Šerý O, Dziedzinska R. Risk impact of SARS-CoV-2 coronavirus and spike protein on cardiac tissue: a comprehensive review. Physiol Res 2024; 73:S655-S669. [PMID: 39808169 PMCID: PMC11827061 DOI: 10.33549/physiolres.935476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/19/2024] [Indexed: 01/18/2025] Open
Abstract
The global COVID-19 pandemic, caused by SARS-CoV-2, has led to significant morbidity and mortality, with a profound impact on cardiovascular health. This review investigates the mechanisms of SARS-CoV-2's interaction with cardiac tissue, particularly emphasizing the role of the Spike protein and ACE2 receptor in facilitating viral entry and subsequent cardiac complications. We dissect the structural features of the virus, its interactions with host cell receptors, and the resulting pathophysiological changes in the heart. Highlighting SARS-CoV-2's broad organ tropism, especially its effects on cardiomyocytes via ACE2 and TMPRSS2, the review addresses how these interactions exacerbate cardiovascular issues in patients with pre-existing conditions such as diabetes and hypertension. Additionally, we assess both direct and indirect mechanisms of virus-induced cardiac damage, including myocarditis, arrhythmias, and long-term complications such as 'long COVID'. This review underscores the complexity of SARS-CoV-2's impact on the heart, emphasizing the need for ongoing research to fully understand its long-term effects on cardiovascular health. Key words: COVID-19, Heart, ACE2, Spike protein, Cardiomyocytes, Myocarditis, Long COVID.
Collapse
Affiliation(s)
- O Šerý
- Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.
| | | |
Collapse
|
17
|
Bala N, Rafay RH, Glover SC, Alli AA. Activity of Various Cathepsin Proteases and Enrichment of Klotho Protein in the Urine and Urinary Extracellular Vesicles After SARS-CoV-2 Infection. Viruses 2024; 17:25. [PMID: 39861814 PMCID: PMC11768607 DOI: 10.3390/v17010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/20/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025] Open
Abstract
Background: The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for causing the Coronavirus disease 2019 (COVID-19) outbreak. While mutations cause the emergence of new variants, the ancestral SARS-CoV-2 strain is unique among other strains. Methods: Various clinical parameters, the activity of cathepsin proteases, and the concentration of various proteins were measured in urine samples from COVID-19-negative participants and COVID-19-positive participants. Urinary extracellular vesicles (uEVs) were isolated from urine samples from the two groups and used for proteomic analysis and subsequent pathway analyses. Results: Activity levels of cathepsin S and L were greater in the urine of COVID-19-positive participants. The concentration of C-reactive protein, transmembrane serine protease 2, and klotho protein were significantly greater in the urine of COVID-19-positive participants. There was a greater amount of uEVs in the COVID-19 group and klotho protein was found to be enriched in uEVs from the COVID-19 group. Pathway analyses of the proteomics data showed most of the identified proteins were involved in signal transduction, stress response, protein metabolism, and transport. The identified proteins were predominantly associated with cellular membranes and with function of the cytoskeleton, enzyme regulation, and signal transduction. Conclusions: Taken together, our data identify novel urinary biomarkers that could be used to further investigate the long-term effects of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Niharika Bala
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, FL 32608, USA; (N.B.); (R.H.R.)
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32608, USA
| | - Ramish H. Rafay
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, FL 32608, USA; (N.B.); (R.H.R.)
| | - Sarah C. Glover
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Abdel A. Alli
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, FL 32608, USA; (N.B.); (R.H.R.)
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32608, USA
| |
Collapse
|
18
|
Birtles D, Lee J. Exploring the influence of anionic lipids in the host cell membrane on viral fusion. Biochem Soc Trans 2024; 52:2593-2602. [PMID: 39700018 DOI: 10.1042/bst20240833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024]
Abstract
Membrane fusion is an essential component of the viral lifecycle that allows the delivery of the genetic information of the virus into the host cell. Specialized viral glycoproteins exist on the surface of mature virions where they facilitate fusion through significant conformational changes, ultimately bringing opposing membranes into proximity until they eventually coalesce. This process can be positively influenced by a number of specific cellular factors such as pH, enzymatic cleavage, divalent ions, and the composition of the host cell membrane. In this review, we have summarized how anionic lipids have come to be involved in viral fusion and how the endosomal resident anionic lipid BMP has become increasingly implicated as an important cofactor for those viruses that fuse via the endocytic pathway.
Collapse
Affiliation(s)
- Daniel Birtles
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, U.S.A
| | - Jinwoo Lee
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, U.S.A
| |
Collapse
|
19
|
Minigulov N, Boranbayev K, Bekbossynova A, Gadilgereyeva B, Filchakova O. Structural proteins of human coronaviruses: what makes them different? Front Cell Infect Microbiol 2024; 14:1458383. [PMID: 39711780 PMCID: PMC11659265 DOI: 10.3389/fcimb.2024.1458383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/17/2024] [Indexed: 12/24/2024] Open
Abstract
Following COVID-19 outbreak with its unprecedented effect on the entire world, the interest to the coronaviruses increased. The causative agent of the COVID-19, severe acute respiratory syndrome coronavirus - 2 (SARS-CoV-2) is one of seven coronaviruses that is pathogenic to humans. Others include SARS-CoV, MERS-CoV, HCoV-HKU1, HCoV-OC43, HCoV-NL63 and HCoV-229E. The viruses differ in their pathogenicity. SARS-CoV, MERS-CoV, and SARS-CoV-2 are capable to spread rapidly and cause epidemic, while HCoV-HKU1, HCoV-OC43, HCoV-NL63 and HCoV-229E cause mild respiratory disease. The difference in the viral behavior is due to structural and functional differences. All seven human coronaviruses possess four structural proteins: spike, envelope, membrane, and nucleocapsid. Spike protein with its receptor binding domain is crucial for the entry to the host cell, where different receptors on the host cell are recruited by different viruses. Envelope protein plays important role in viral assembly, and following cellular entry, contributes to immune response. Membrane protein is an abundant viral protein, contributing to the assembly and pathogenicity of the virus. Nucleocapsid protein encompasses the viral RNA into ribonucleocapsid, playing important role in viral replication. The present review provides detailed summary of structural and functional characteristics of structural proteins from seven human coronaviruses, and could serve as a practical reference when pathogenic human coronaviruses are compared, and novel treatments are proposed.
Collapse
Affiliation(s)
| | | | | | | | - Olena Filchakova
- Biology Department, School of Sciences and Humanities, Nazarbayev
University, Astana, Kazakhstan
| |
Collapse
|
20
|
Siwak KC, LeBlanc EV, Scott HM, Kim Y, Pellizzari-Delano I, Ball AM, Temperton NJ, Capicciotti CJ, Colpitts CC. Cellular sialoglycans are differentially required for endosomal and cell-surface entry of SARS-CoV-2 in lung cell lines. PLoS Pathog 2024; 20:e1012365. [PMID: 39625989 PMCID: PMC11642992 DOI: 10.1371/journal.ppat.1012365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 12/13/2024] [Accepted: 11/17/2024] [Indexed: 12/14/2024] Open
Abstract
Cell entry of severe acute respiratory coronavirus-2 (SARS-CoV-2) and other CoVs can occur via two distinct routes. Following receptor binding by the spike glycoprotein, membrane fusion can be triggered by spike cleavage either at the cell surface in a transmembrane serine protease 2 (TMPRSS2)-dependent manner or within endosomes in a cathepsin-dependent manner. Cellular sialoglycans have been proposed to aid in CoV attachment and entry, although their functional contributions to each entry pathway are unknown. In this study, we used genetic and enzymatic approaches to deplete sialic acid from cell surfaces and compared the requirement for sialoglycans during endosomal and cell-surface CoV entry using lentiviral particles pseudotyped with the spike proteins of different sarbecoviruses. We show that entry of SARS-CoV-1, WIV1-CoV and WIV16-CoV, like the SARS-CoV-2 omicron variant, depends on endosomal cathepsins and requires cellular sialoglycans for entry. Ancestral SARS-CoV-2 and the delta variant can use either pathway for entry, but only require sialic acid for endosomal entry in cells lacking TMPRSS2. Binding of SARS-CoV-2 spike protein to cells did not require sialic acid, nor was sialic acid required for SARS-CoV-2 entry in TMRPSS2-expressing cells. These findings suggest that cellular sialoglycans are not strictly required for SARS-CoV-2 attachment, receptor binding or fusion, but rather promote endocytic entry of SARS-CoV-2 and related sarbecoviruses. In contrast, the requirement for sialic acid during entry of MERS-CoV pseudoparticles and authentic HCoV-OC43 was not affected by TMPRSS2 expression, consistent with a described role for sialic acid in merbecovirus and embecovirus cell attachment. Overall, these findings clarify the role of sialoglycans in SARS-CoV-2 entry and suggest that cellular sialoglycans mediate endosomal, but not cell-surface, SARS-CoV-2 entry.
Collapse
Affiliation(s)
- Kimberley C. Siwak
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Canada
| | - Emmanuelle V. LeBlanc
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Canada
| | - Heidi M. Scott
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Canada
| | - Youjin Kim
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Canada
| | | | - Alice M. Ball
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Canada
| | - Nigel J. Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent and Greenwich at Medway, Chatham, United Kingdom
| | - Chantelle J. Capicciotti
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Canada
- Department of Chemistry, Queen’s University, Kingston, Canada
- Department of Surgery, Queen’s University, Kingston, Canada
| | - Che C. Colpitts
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Canada
| |
Collapse
|
21
|
Shum MHH, Lee Y, Tam L, Xia H, Chung OLW, Guo Z, Lam TTY. Binding affinity between coronavirus spike protein and human ACE2 receptor. Comput Struct Biotechnol J 2024; 23:759-770. [PMID: 38304547 PMCID: PMC10831124 DOI: 10.1016/j.csbj.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 02/03/2024] Open
Abstract
Coronaviruses (CoVs) pose a major risk to global public health due to their ability to infect diverse animal species and potential for emergence in humans. The CoV spike protein mediates viral entry into the cell and plays a crucial role in determining the binding affinity to host cell receptors. With particular emphasis on α- and β-coronaviruses that infect humans and domestic animals, current research on CoV receptor use suggests that the exploitation of the angiotensin-converting enzyme 2 (ACE2) receptor poses a significant threat for viral emergence with pandemic potential. This review summarizes the approaches used to study binding interactions between CoV spike proteins and the human ACE2 (hACE2) receptor. Solid-phase enzyme immunoassays and cell binding assays allow qualitative assessment of binding but lack quantitative evaluation of affinity. Surface plasmon resonance, Bio-layer interferometry, and Microscale Thermophoresis on the other hand, provide accurate affinity measurement through equilibrium dissociation constants (KD). In silico modeling predicts affinity through binding structure modeling, protein-protein docking simulations, and binding energy calculations but reveals inconsistent results due to the lack of a standardized approach. Machine learning and deep learning models utilize simulated and experimental protein-protein interaction data to elucidate the critical residues associated with CoV binding affinity to hACE2. Further optimization and standardization of existing approaches for studying binding affinity could aid pandemic preparedness. Specifically, prioritizing surveillance of CoVs that can bind to human receptors stands to mitigate the risk of zoonotic spillover.
Collapse
Affiliation(s)
- Marcus Ho-Hin Shum
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- School of Public Health, The University of Hong Kong, Hong Kong, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science Park, Hong Kong, China
| | - Yang Lee
- School of Public Health, The University of Hong Kong, Hong Kong, China
- Centre for Immunology and Infection (C2i), Hong Kong Science Park, Hong Kong, China
| | - Leighton Tam
- School of Public Health, The University of Hong Kong, Hong Kong, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science Park, Hong Kong, China
| | - Hui Xia
- Department of Chemistry, South University of Science and Technology of China, China
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Oscar Lung-Wa Chung
- Department of Chemistry, South University of Science and Technology of China, China
| | - Zhihong Guo
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Tommy Tsan-Yuk Lam
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- School of Public Health, The University of Hong Kong, Hong Kong, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science Park, Hong Kong, China
- Centre for Immunology and Infection (C2i), Hong Kong Science Park, Hong Kong, China
| |
Collapse
|
22
|
Ma N, Zhang M, Zhou J, Jiang C, Ghonaim AH, Sun Y, Zhou P, Guo G, Evers A, Zhu H, He Q, Lebbink RJ, Bosch BJ, Li W. Genome-wide CRISPR/Cas9 library screen identifies C16orf62 as a host dependency factor for porcine deltacoronavirus infection. Emerg Microbes Infect 2024; 13:2400559. [PMID: 39222358 PMCID: PMC11404382 DOI: 10.1080/22221751.2024.2400559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging pathogen that can cause severe diarrhoea and high mortality in suckling piglets. Moreover, evidence of PDCoV infection in humans has raised concerns regarding potential public health risks. To identify potential therapeutic targets for PDCoV, we performed a genome-wide CRISPR/Cas9 library screening to find key host factors important to PDCoV infection. Several host genes in this screen were enriched, including ANPEP, which encodes the PDCoV receptor aminopeptidase N (APN). Furthermore, we discovered C16orf62, also known as the VPS35 endosomal protein sorting factor like (VPS35L), as an important host factor required for PDCoV infection. C16orf62 is an important component of the multiprotein retriever complex involved in protein recycling in the endosomal compartment and its gene knockout led to a remarkable decrease in the binding and internalization of PDCoV into host cells. While we did not find evidence for direct interaction between C16orf62 and the viral s (spike) protein, C16orf62 gene knockout was shown to downregulate APN expression at the cell surface. This study marks the first instance of a genome-wide CRISPR/Cas9-based screen tailored for PDCoV, revealing C16orf62 as a host factor required for PDCoV replication. These insights may provide promising avenues for the development of antiviral drugs against PDCoV infection.
Collapse
Affiliation(s)
- Ningning Ma
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Mengjia Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Jiaru Zhou
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Changsheng Jiang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Anhui Provincial Key Laboratory of Animal Nutritional Regulation and Health, College of Animal Science, Anhui Science and Technology University, Fengyang, People’s Republic of China
| | - Ahmed H. Ghonaim
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Desert Research Center, Cairo, Egypt
| | - Yumei Sun
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Pei Zhou
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Guanghao Guo
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Anouk Evers
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hongmei Zhu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Qigai He
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Robert Jan Lebbink
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Berend Jan Bosch
- Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Wentao Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
23
|
Wang M, Valadez-Ingersoll M, Gilmore TD. Control of nuclear localization of the nucleocapsid protein of SARS-CoV-2. Virology 2024; 600:110232. [PMID: 39265446 DOI: 10.1016/j.virol.2024.110232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024]
Abstract
The nucleocapsid (N) protein of coronaviruses is a structural protein that binds viral RNA for assembly into the mature virion, a process that occurs in the cytoplasm. Several coronavirus N proteins also localize to the nucleus. Herein, we identify that two sequences (NLSs) are required for nuclear localization of the SARS-CoV-2 N protein. Deletion or mutation of these two sequences creates an N protein that does not localize to the nucleus in HEK293T cells. Overexpression of both wild-type and NLS-mutated N proteins dysregulate a largely overlapping set of mRNAs in HEK293T cells, suggesting that these N proteins do not have direct nuclear effects on transcription. Consistent with that hypothesis, both N proteins induce nuclear localization of NF-κB p65 and dysregulate a set of previously identified NF-κB-dependent genes. The effects of N on nuclear properties are proposed to alter host cell functions that contribute to viral pathogenesis or replication.
Collapse
Affiliation(s)
- Mengrui Wang
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | | | - Thomas D Gilmore
- Department of Biology, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
24
|
Zhang L, Miao W, Zhou M, Lin M, Fu C, Wu Z, Lei X, Xu J, Cao S, Zhu S. Neutralizing VHH Antibodies Targeting the Spike Protein of PEDV. Vet Sci 2024; 11:533. [PMID: 39591307 PMCID: PMC11598873 DOI: 10.3390/vetsci11110533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a highly contagious coronavirus that infect pigs' intestinal epithelial cells, causing high morbidity and mortality. Due to the rapid mutation of PEDV, vaccine efficacy is uncertain, prompting exploration of alternative treatments. Nanobodies, also known as variable heavy chain domains of heavy chain-only antibodies (VHHs), offer significant potential in biomedical applications due to their small size and high specificity. In this study, yeast two-hybrid technology was employed to screen for eight specific VHH sequences targeting the PEDV S protein from a synthetically constructed nanobody yeast library. The VHH genes were then cloned into expression plasmids for recombinant protein production, and the resulting VHHs (termed PEDV S-VHHs) were purified. Indirect immunofluorescence assay (IFA) and Western blotting analysis confirmed that these VHHs specifically bind to both PEDV and its S protein. Neutralization assays demonstrated that seven PEDV S-VHHs exhibited potent neutralizing activity against PEDV. Additionally, a combination of these seven antibodies showed enhanced antiviral effects. Preliminary predictions were also made regarding the binding sites between these VHHs and PEDV. The PEDV S-VHHs described in this study hold potential as candidates for the prevention and treatment of PEDV infection.
Collapse
Affiliation(s)
- Li Zhang
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (L.Z.); (M.Z.); (Z.W.); (X.L.)
- College of Veterinary Pharmacy, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (W.M.); (M.L.); (C.F.)
| | - Wei Miao
- College of Veterinary Pharmacy, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (W.M.); (M.L.); (C.F.)
| | - Mo Zhou
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (L.Z.); (M.Z.); (Z.W.); (X.L.)
- College of Veterinary Pharmacy, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (W.M.); (M.L.); (C.F.)
| | - Miao Lin
- College of Veterinary Pharmacy, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (W.M.); (M.L.); (C.F.)
| | - Changyao Fu
- College of Veterinary Pharmacy, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (W.M.); (M.L.); (C.F.)
| | - Zhi Wu
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (L.Z.); (M.Z.); (Z.W.); (X.L.)
- College of Veterinary Pharmacy, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (W.M.); (M.L.); (C.F.)
| | - Xinnuo Lei
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (L.Z.); (M.Z.); (Z.W.); (X.L.)
- College of Veterinary Pharmacy, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (W.M.); (M.L.); (C.F.)
| | - Jialong Xu
- Medical School, Nanjing University, Nanjing 210093, China;
| | - Shinuo Cao
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (L.Z.); (M.Z.); (Z.W.); (X.L.)
- College of Veterinary Pharmacy, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (W.M.); (M.L.); (C.F.)
| | - Shanyuan Zhu
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (L.Z.); (M.Z.); (Z.W.); (X.L.)
- College of Veterinary Pharmacy, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (W.M.); (M.L.); (C.F.)
| |
Collapse
|
25
|
Su M, Yan Y, Huang Y, Ren J, Niu S, Zhao Y, Yan F, Tian WX, Wang Y. Isolation and characterization of a subtype G2c variant of porcine epidemic diarrhea virus that adapts well to cell culture. Arch Virol 2024; 169:217. [PMID: 39379633 DOI: 10.1007/s00705-024-06140-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 08/09/2024] [Indexed: 10/10/2024]
Abstract
Porcine epidemic diarrhea virus (PEDV) causes the third most important disease in the pig industry, after African swine fever and porcine reproductive and respiratory syndrome, and leads to illness or death of the entire litter, causing significant economic losses. In this study, three PEDV strains (HN-1, HN-2, and SC2023) were isolated from swine farms with suspected PEDV infections in Sichuan and Henan provinces. Phylogenetic analysis based on complete S gene sequences showed that all three strains belonged to the G2c subgroup. HN-1 adapted readily to cell culture, grew to a viral titer as high as 2 × 108 TCID50/mL in Vero cells, and caused the formation of large syncytia. We analyzed the amino acid sequence of the HN-1 isolate and found that its S1 subunit contained a three-amino-acid insertion (355KRL358). A seven-amino-acid-deletion (1377FEKVHVQ1383) in the S2 subunit resulted in the partial deletion of the endocytosis signal YxxΦ and the complete deletion of the endoplasmic reticulum retrieval signal (ERRS) KVHVQ in the cytoplasmic tail of the S protein. Consequently, HN-1 is predicted to be less pathogenic than its parent strain, an attribute that facilitates rapid cell-to-cell spread by enhancing syncytium formation. In addition, strain HN-1 was found to have the mutation 884-885SG→RR, which may favor adaptation to cell culture by providing new trypsin cleavage sites. These results suggest that HN-1 is a G2c subtype variant that adapts well to cell culture and can be used to study the adaptive mechanisms of PEDV and develop attenuated vaccines.
Collapse
Affiliation(s)
- Min Su
- Shanxi Agricultural University, Jinzhong, China
| | - Yi Yan
- Shanxi Agricultural University, Jinzhong, China
| | | | - Jianle Ren
- Shanxi Agricultural University, Jinzhong, China
| | - Sheng Niu
- Shanxi Agricultural University, Jinzhong, China
| | - Yujun Zhao
- Shanxi Agricultural University, Jinzhong, China
| | - Fang Yan
- Shanxi Agricultural University, Jinzhong, China
| | - Wen-Xia Tian
- Shanxi Agricultural University, Jinzhong, China.
| | - Ying Wang
- Shanxi Agricultural University, Jinzhong, China.
| |
Collapse
|
26
|
Haywood LMB, Sheahan BJ. A Review of Epithelial Ion Transporters and Their Roles in Equine Infectious Colitis. Vet Sci 2024; 11:480. [PMID: 39453072 PMCID: PMC11512231 DOI: 10.3390/vetsci11100480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 10/26/2024] Open
Abstract
Equine colitis is a devastating disease with a high mortality rate. Infectious pathogens associated with colitis in the adult horse include Clostridioides difficile, Clostridium perfringens, Salmonella spp., Neorickettsia risticii/findlaynesis, and equine coronavirus. Antimicrobial-associated colitis can be associated with the presence of infectious pathogens. Colitis can also be due to non-infectious causes, including non-steroidal anti-inflammatory drug administration, sand ingestion, and infiltrative bowel disease. Current treatments focus on symptomatic treatment (restoring fluid and electrolyte balance, preventing laminitis and sepsis). Intestinal epithelial ion channels are key regulators of electrolyte (especially sodium and chloride) and water movement into the lumen. Dysfunctional ion channels play a key role in the development of diarrhea. Infectious pathogens, including Salmonella spp. and C. difficile, have been shown to regulate ion channels in a variety of ways. In other species, there has been an increased interest in ion channel manipulation as an anti-diarrheal treatment. While targeting ion channels also represents a promising way to manage diarrhea associated with equine colitis, ion channels have not been well studied in the equine colon. This review provides an overview of what is known about colonic ion channels and their known or putative role in specific types of equine colitis due to various pathogens.
Collapse
Affiliation(s)
| | - Breanna J. Sheahan
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA;
| |
Collapse
|
27
|
Amtaghri S, Slaoui M, Eddouks M. Phytomedical compounds as promising therapeutic agents for COVID-19 targeting angiotensin-converting enzyme 2: a review. J Pharm Pharmacol 2024; 76:1239-1268. [PMID: 39018169 DOI: 10.1093/jpp/rgae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/07/2024] [Indexed: 07/19/2024]
Abstract
AIMS The aim of the present review was to highlight natural product investigations in silico and in vitro to find plants and chemicals that inhibit or stimulate angiotensin-converting enzyme 2 (ACE-2). BACKGROUND The global reduction of incidents and fatalities attributable to infections with SARS-CoV-2 is one of the most public health problems. In the absence of specific therapy for coronavirus disease 2019 (COVID-19), phytocompounds generated from plant extracts may be a promising strategy worth further investigation, motivating researchers to evaluate the safety and anti-SARS-CoV-2 effectiveness of these ingredients. OBJECTIVE To review phytochemicals in silico for anti-SARS-CoV-2 activity and to assess their safety and effectiveness in vitro and in vivo. METHODS The present review was conducted using various scientific databases and studies on anti-SARS-CoV-2 phytochemicals were analyzed and summarized. The results obtained from the in silico screening were subjected to extraction, isolation, and purification. The in vitro studies on anti-SarcoV-2 were also included in this review. In addition, the results of this research were interpreted, analyzed, and documented on the basis of the bibliographic information obtained. RESULTS This review discusses recent research on using natural remedies to cure or prevent COVID-19 infection. The literature analysis shows that the various herbal preparations (extracts) and purified compounds can block the replication or entrance of the virus directly to carry out their anti-SARS-CoV-2 effects. It is interesting to note that certain items can prevent SARS-CoV-2 from infecting human cells by blocking the ACE-2 receptor or the serine protease TMPRRS2. Moreover, natural substances have been demonstrated to block proteins involved in the SARS-CoV-2 life cycle, such as papain- or chymotrypsin-like proteases. CONCLUSION The natural products may have the potential for use singly or in combination as alternative drugs to treat/prevent COVID-19 infection, including blocking or stimulating ACE-2. In addition, their structures may provide indications for the development of anti-SARS-CoV-2 drugs.
Collapse
Affiliation(s)
- Smail Amtaghri
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, BP 509, Boutalamine, Errachidia 52000, Morocco
- Energy, Materials and Sustainable Development (EMDD) Team-Higher School of Technology-SALE, Center for Water, Natural Resources Environment and Sustainable Development (CERNE2D), Mohammed V University in Rabat, Rabat, Morocco
| | - Miloudia Slaoui
- Energy, Materials and Sustainable Development (EMDD) Team-Higher School of Technology-SALE, Center for Water, Natural Resources Environment and Sustainable Development (CERNE2D), Mohammed V University in Rabat, Rabat, Morocco
| | - Mohamed Eddouks
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, BP 509, Boutalamine, Errachidia 52000, Morocco
| |
Collapse
|
28
|
Zhang L, Yang X, Shi H, Zhang J, Feng T, Liu D, Zhang X, Chen J, Shi D, Feng L. Identification of two novel B-cell epitopes located on the spike protein of swine acute diarrhea syndrome coronavirus. Int J Biol Macromol 2024; 278:135049. [PMID: 39182883 DOI: 10.1016/j.ijbiomac.2024.135049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Swine acute diarrhea syndrome coronavirus (SADS-CoV) is an emerging alpha-coronavirus that causes diarrhea in piglets and results in serious economic losses. During SADS-CoV infection, the spike protein (S) serves as a crucial structural component of the virion, interacting with receptors and eliciting the production of neutralizing antibodies. Due to the potential risk of zoonotic transmission of SADS-CoV, the identification and screening of epitopes on the S glycoproteins will be crucial for development of sensitive and specific diagnostic tools. In this study, we immunized BALB/c mice with recombinant SADS-CoV S trimer protein and generated two S1-specific monoclonal antibodies (mAbs): 8D6 and 6E9, which recognized different linear B-cell epitopes. The minimal fragment recognized by mAb 8D6 was mapped to 311NPDQRD316, the minimal fragment recognized by mAb 6E9 was mapped to 492ARFVDRL498. Homology analysis of the regions corresponding to 13 typical strains of different SADS-CoV subtypes showed high conservation of these two epitopes. These findings contribute to a deeper understanding of the structure of the SADS-CoV S protein, which is valuable for vaccine design and holds potential for developing diagnostic methods to detect SADS-CoV.
Collapse
Affiliation(s)
- Liaoyuan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xiaoman Yang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hongyan Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jiyu Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Tingshuai Feng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Dakai Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xin Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jianfei Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Da Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Li Feng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| |
Collapse
|
29
|
Shi K, He M, Shi Y, Long F, Shi Y, Yin Y, Pan Y, Li Z, Feng S. Genetic and Phylogenetic Analysis of Feline Coronavirus in Guangxi Province of China from 2021 to 2024. Vet Sci 2024; 11:455. [PMID: 39453047 PMCID: PMC11512343 DOI: 10.3390/vetsci11100455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
Feline coronavirus (FCoV), as one of the important pathogens of feline viral gastroenteritis, has been attracting great attention. A total of 1869 rectal and nasal swabs, feces, and ascites samples were collected from eight regions in Guangxi province during 2021-2024. The multiplex RT-qPCR established in our laboratory was used to test these samples for FCoV, and 17.66% (330/1869) of the samples were positive for FCoV. The S, M, and N genes of 63 FCoV-positive samples were amplified and sequenced, and the genetic and evolutionary characteristics were analyzed. Similarity analysis showed that the nucleotide and amino acid homologies of S, M, and N genes were 81.2-99.6% and 70.2-99.5%, 89.9-100% and 91.6-100%, and 90.1-100% and 91.5-100%, respectively. Phylogenetic analysis revealed that all 63 FCoV strains, based on S gene sequences, belonged to type I FCoV (FCoV-I), and were clustered with Chinese strains and the Netherlands UU strains. Recombinant signals were detected in the S gene of strains GXLZ03-2022, GXLZ08-2022, and CCoV GD/2020/X9. The results suggest that FCoV is still prevalent in the Guangxi province of southern China, and the prevalent FCoV strains show high genetic diversity and novel epidemic characteristics.
Collapse
Affiliation(s)
- Kaichuang Shi
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise 533000, China;
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (M.H.); (Y.S.); (Y.S.); (Z.L.)
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (F.L.); (Y.Y.)
| | - Mengyi He
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (M.H.); (Y.S.); (Y.S.); (Z.L.)
| | - Yuwen Shi
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (M.H.); (Y.S.); (Y.S.); (Z.L.)
| | - Feng Long
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (F.L.); (Y.Y.)
| | - Yandi Shi
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (M.H.); (Y.S.); (Y.S.); (Z.L.)
| | - Yanwen Yin
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (F.L.); (Y.Y.)
| | - Yi Pan
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise 533000, China;
| | - Zongqiang Li
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (M.H.); (Y.S.); (Y.S.); (Z.L.)
| | - Shuping Feng
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (F.L.); (Y.Y.)
| |
Collapse
|
30
|
Wang D, Yin C, Bai Y, Zhou M, Wang N, Tong C, Yang Y, Liu B. Chitosan-Modified AgNPs Efficiently Inhibit Swine Coronavirus-Induced Host Cell Infections via Targeting the Spike Protein. Biomolecules 2024; 14:1152. [PMID: 39334918 PMCID: PMC11430280 DOI: 10.3390/biom14091152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/28/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has filled a gap in our knowledge regarding the prevention of CoVs. Swine coronavirus (CoV) is a significant pathogen that causes huge economic losses to the global swine industry. Until now, anti-CoV prevention and control have been challenging due to the rapidly generated variants. Silver nanoparticles (AgNPs) with excellent antimicrobial activity have attracted great interest for biosafety prevention and control applications. In this study, we synthesized chitosan-modified AgNPs (Chi-AgNPs) with good biocompatibility to investigate their antiviral effects on swine CoVs. In vitro assays showed that Chi-AgNPs could significantly impaired viral entry. The direct interaction between Chi-AgNPs and CoVs can destroy the viral surface spike (S) protein secondary structure associated with viral membrane fusion, which is caused by the cleavage of disulfide bonds in the S protein. Moreover, the mechanism showed that Chi-AgNPs reduced the virus-induced apoptosis of Vero cells via the ROS/p53 signaling activation pathway. Our data suggest that Chi-AgNPs can serve as a preventive strategy for CoVs infection and provide a molecular basis for the viricidal effect of Chi-AgNPs on CoVs.
Collapse
Affiliation(s)
- Dongliang Wang
- College of Biology, Hunan University, Changsha 410082, China
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Caiyun Yin
- College of Biology, Hunan University, Changsha 410082, China
| | - Yihan Bai
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Mingxia Zhou
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Naidong Wang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Chunyi Tong
- College of Biology, Hunan University, Changsha 410082, China
| | - Yi Yang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Bin Liu
- College of Biology, Hunan University, Changsha 410082, China
| |
Collapse
|
31
|
Cui W, Duan Y, Gao Y, Wang W, Yang H. Structural review of SARS-CoV-2 antiviral targets. Structure 2024; 32:1301-1321. [PMID: 39241763 DOI: 10.1016/j.str.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 09/09/2024]
Abstract
The coronavirus disease 2019 (COVID-19), the disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), represents the most disastrous infectious disease pandemic of the past century. As a member of the Betacoronavirus genus, the SARS-CoV-2 genome encodes a total of 29 proteins. The spike protein, RNA-dependent RNA polymerase, and proteases play crucial roles in the virus replication process and are promising targets for drug development. In recent years, structural studies of these viral proteins and of their complexes with antibodies and inhibitors have provided valuable insights into their functions and laid a solid foundation for drug development. In this review, we summarize the structural features of these proteins and discuss recent progress in research regarding therapeutic development, highlighting mechanistically representative molecules and those that have already been approved or are under clinical investigation.
Collapse
Affiliation(s)
- Wen Cui
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yinkai Duan
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yan Gao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Clinical Research and Trial Center, Shanghai 201203, China
| | - Wei Wang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Clinical Research and Trial Center, Shanghai 201203, China.
| |
Collapse
|
32
|
Bai Y, Zhou M, Wang N, Yang Y, Wang D. Designing a Candidate Multi-Epitope Vaccine against Transmissible Gastroenteritis Virus Based on Immunoinformatic and Molecular Dynamics. Int J Mol Sci 2024; 25:8828. [PMID: 39201514 PMCID: PMC11354480 DOI: 10.3390/ijms25168828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
Transmissible gastroenteritis virus (TGEV) is an etiological agent of enteric disease that results in high mortality rates in piglets. The economic impact of the virus is considerable, causing significant losses to the pig industry. The development of an efficacious subunit vaccine to provide promising protection against TGEV is of the utmost importance. The viral antigen, spike glycoprotein (S), is widely regarded as one of the most effective antigenic components for vaccine research. In this study, we employed immunoinformatics and molecular dynamics approaches to develop an 'ideal' multi-epitope vaccine. Firstly, the dominant, non-toxic, highly antigenic T (Th, CTL) and B cell epitopes predicted from the TGEV S protein were artificially engineered in tandem to design candidate subunit vaccines. Molecular docking and dynamic simulation results demonstrate that it exhibits robust interactions with toll-like receptor 4 (TLR4). Of particular significance was the finding that the vaccine was capable of triggering an immune response in mammals, as evidenced by the immune simulation results. The humoral aspect is typified by elevated levels of IgG and IgM, whereas the cellular immune aspect is capable of eliciting the robust production of interleukins and cytokines (IFN-γ and IL-2). Furthermore, the adoption of E. coli expression systems for the preparation of vaccines will also result in cost savings. This study offers logical guidelines for the development of a secure and efficacious subunit vaccine against TGEV, in addition to providing a novel theoretical foundation and strategy to prevent associated CoV infections.
Collapse
Affiliation(s)
- Yihan Bai
- College of Biology, Hunan University, Changsha 410082, China;
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (M.Z.); (N.W.); (Y.Y.)
| | - Mingxia Zhou
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (M.Z.); (N.W.); (Y.Y.)
| | - Naidong Wang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (M.Z.); (N.W.); (Y.Y.)
| | - Yi Yang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (M.Z.); (N.W.); (Y.Y.)
| | - Dongliang Wang
- College of Biology, Hunan University, Changsha 410082, China;
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (M.Z.); (N.W.); (Y.Y.)
| |
Collapse
|
33
|
Raczkiewicz I, Rivière C, Bouquet P, Desmarets L, Tarricone A, Camuzet C, François N, Lefèvre G, Silva Angulo F, Robil C, Trottein F, Sahpaz S, Dubuisson J, Belouzard S, Goffard A, Séron K. Hyperforin, the major metabolite of St. John's wort, exhibits pan-coronavirus antiviral activity. Front Microbiol 2024; 15:1443183. [PMID: 39176276 PMCID: PMC11339956 DOI: 10.3389/fmicb.2024.1443183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
Introduction The COVID-19 pandemic caused by the SARS-CoV-2 virus has underscored the urgent necessity for the development of antiviral compounds that can effectively target coronaviruses. In this study, we present the first evidence of the antiviral efficacy of hyperforin, a major metabolite of St. John's wort, for which safety and bioavailability in humans have already been established. Methods Antiviral assays were conducted in cell culture with four human coronaviruses: three of high virulence, SARS-CoV-2, SARS-CoV, and MERS-CoV, and one causing mild symptoms, HCoV-229E. The antiviral activity was also evaluated in human primary airway epithelial cells. To ascertain the viral step inhibited by hyperforin, time-of-addition assays were conducted. Subsequently, a combination assay of hyperforin with remdesivir was performed. Results The results demonstrated that hyperforin exhibited notable antiviral activity against the four tested human coronaviruses, with IC50 values spanning from 0.24 to 2.55 µM. Kinetic studies indicated that the observed activity occur at a post-entry step, potentially during replication. The antiviral efficacy of hyperforin was additionally corroborated in human primary airway epithelial cells. The results demonstrated a reduction in both intracellular and extracellular SARS-CoV-2 viral RNA, confirming that hyperforin targeted the replication step. Finally, an additive antiviral effect on SARS-CoV-2 was observed when hyperforin was combined with remdesivir. Discussion In conclusion, hyperforin has been identified as a novel pan-coronavirus inhibitor with activity in human primary airway epithelial cells, a preclinical model for coronaviruses. These findings collectively suggest that hyperforin has potential as a candidate antiviral agent against current and future human coronaviruses.
Collapse
Affiliation(s)
- Imelda Raczkiewicz
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Céline Rivière
- BioEcoAgro, Joint Research Unit 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV – Institut Charles Viollette, Lille, France
| | - Peggy Bouquet
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Lowiese Desmarets
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Audrey Tarricone
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Charline Camuzet
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Nathan François
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Gabriel Lefèvre
- BioEcoAgro, Joint Research Unit 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV – Institut Charles Viollette, Lille, France
| | - Fabiola Silva Angulo
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Cyril Robil
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - François Trottein
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Sevser Sahpaz
- BioEcoAgro, Joint Research Unit 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV – Institut Charles Viollette, Lille, France
| | - Jean Dubuisson
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Sandrine Belouzard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Anne Goffard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Karin Séron
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| |
Collapse
|
34
|
Tan Z, Yang C, Lin PH, Ramadan S, Yang W, Rashidi Z, Lang S, Shafieichaharberoud F, Gao J, Pan X, Soloff N, Wu X, Bolin S, Pyeon D, Huang X. Inducing Long Lasting B Cell and T Cell Immunity Against Multiple Variants of SARS-CoV-2 Through Mutant Bacteriophage Qβ-Receptor Binding Domain Conjugate. Adv Healthc Mater 2024; 13:e2302755. [PMID: 38733291 PMCID: PMC11305917 DOI: 10.1002/adhm.202302755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/04/2024] [Indexed: 05/13/2024]
Abstract
More than 3 years into the global pandemic, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains a significant threat to public health. Immunities acquired from infection or current vaccines fail to provide long term protection against subsequent infections, mainly due to their fast-waning nature and the emergence of variants of concerns (VOCs) such as Omicron. To overcome these limitations, SARS-CoV-2 Spike protein receptor binding domain (RBD)-based epitopes are investigated as conjugates with a powerful carrier, the mutant bacteriophage Qβ (mQβ). The epitope design is critical to eliciting potent antibody responses with the full length RBD being superior to peptide and glycopeptide antigens. The full length RBD conjugated with mQβ activates both humoral and cellular immune systems in vivo, inducing broad spectrum, persistent, and comprehensive immune responses effective against multiple VOCs including Delta and Omicron variants, rendering it a promising vaccine candidate.
Collapse
Affiliation(s)
- Zibin Tan
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Canchai Yang
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Po-Han Lin
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Sherif Ramadan
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
- Department of Chemistry, Benha University, Benha, 13518, Egypt
| | - Weizhun Yang
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Zahra Rashidi
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Shuyao Lang
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Fatemeh Shafieichaharberoud
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Jia Gao
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Xingling Pan
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Nachy Soloff
- Hatzalah of Michigan, 13650 Oak Park Blvd., Oak Park, MI, 48237, USA
| | - Xuanjun Wu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong, 250100, China
| | - Steven Bolin
- Veterinary Diagnostic Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Dohun Pyeon
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
35
|
Bilotti K, Keep S, Sikkema AP, Pryor JM, Kirk J, Foldes K, Doyle N, Wu G, Freimanis G, Dowgier G, Adeyemi O, Tabatabaei SK, Lohman GJS, Bickerton E. One-pot Golden Gate Assembly of an avian infectious bronchitis virus reverse genetics system. PLoS One 2024; 19:e0307655. [PMID: 39052682 PMCID: PMC11271894 DOI: 10.1371/journal.pone.0307655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
Avian infectious bronchitis is an acute respiratory disease of poultry of particular concern for global food security. Investigation of infectious bronchitis virus (IBV), the causative agent of avian infectious bronchitis, via reverse genetics enables deeper understanding of virus biology and a rapid response to emerging variants. Classic methods of reverse genetics for IBV can be time consuming, rely on recombination for the introduction of mutations, and, depending on the system, can be subject to genome instability and unreliable success rates. In this study, we have applied data-optimized Golden Gate Assembly design to create a rapidly executable, flexible, and faithful reverse genetics system for IBV. The IBV genome was divided into 12 fragments at high-fidelity fusion site breakpoints. All fragments were synthetically produced and propagated in E. coli plasmids, amenable to standard molecular biology techniques for DNA manipulation. The assembly can be carried out in a single reaction, with the products used directly in subsequent viral rescue steps. We demonstrate the use of this system for generation of point mutants and gene replacements. This Golden Gate Assembly-based reverse genetics system will enable rapid response to emerging variants of IBV, particularly important to vaccine development for controlling spread within poultry populations.
Collapse
Affiliation(s)
- Katharina Bilotti
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Sarah Keep
- The Pirbright Institute, Woking, United Kingdom
| | - Andrew P. Sikkema
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - John M. Pryor
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - James Kirk
- The Pirbright Institute, Woking, United Kingdom
| | | | | | - Ge Wu
- The Pirbright Institute, Woking, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
36
|
Sibille G, Mannino G, Frasson I, Pavan M, Luganini A, Salata C, Maffei ME, Gribaudo G. The Novel A-Type Proanthocyanidin-Rich Phytocomplex SP4™ Acts as a Broad-Spectrum Antiviral Agent against Human Respiratory Viruses. Int J Mol Sci 2024; 25:7370. [PMID: 39000477 PMCID: PMC11242173 DOI: 10.3390/ijms25137370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
The appearance of new respiratory virus infections in humans with epidemic or pandemic potential has underscored the urgent need for effective broad-spectrum antivirals (BSAs). Bioactive compounds derived from plants may provide a natural source of new BSA candidates. Here, we investigated the novel phytocomplex formulation SP4™ as a candidate direct-acting BSA against major current human respiratory viruses, including coronaviruses and influenza viruses. SP4™ inhibited the in vitro replication of SARS-CoV-2, hCoV-OC43, hCoV-229E, Influenza A and B viruses, and respiratory syncytial virus in the low-microgram range. Using hCoV-OC43 as a representative respiratory virus, most of the antiviral activity of SP4™ was observed to stem primarily from its dimeric A-type proanthocyanidin (PAC-A) component. Further investigations of the mechanistic mode of action showed SP4™ and its PAC-A-rich fraction to prevent hCoV-OC43 from attaching to target cells and exert virucidal activity. This occurred through their interaction with the spike protein of hCoV-OC43 and SARS-CoV-2, thereby interfering with spike functions and leading to the loss of virion infectivity. Overall, these findings support the further development of SP4™ as a candidate BSA of a natural origin for the prevention of human respiratory virus infections.
Collapse
Affiliation(s)
- Giulia Sibille
- Microbiology and Virology Unit, Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Turin, Italy; (G.S.); (M.P.); (A.L.)
| | - Giuseppe Mannino
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Torino, Via Quarello 15/a, 10135 Torino, Italy; (G.M.); (M.E.M.)
| | - Ilaria Frasson
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (I.F.); (C.S.)
| | - Marta Pavan
- Microbiology and Virology Unit, Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Turin, Italy; (G.S.); (M.P.); (A.L.)
| | - Anna Luganini
- Microbiology and Virology Unit, Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Turin, Italy; (G.S.); (M.P.); (A.L.)
| | - Cristiano Salata
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (I.F.); (C.S.)
| | - Massimo E. Maffei
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Torino, Via Quarello 15/a, 10135 Torino, Italy; (G.M.); (M.E.M.)
| | - Giorgio Gribaudo
- Microbiology and Virology Unit, Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Turin, Italy; (G.S.); (M.P.); (A.L.)
| |
Collapse
|
37
|
Jiang Y, Cheng X, Gao M, Yu Y, Dou X, Shen H, Tang M, Zhou S, Peng D. Two mutations on S2 subunit were critical for Vero cell tropism expansion of infectious bronchitis virus HV80. Vet Microbiol 2024; 294:110134. [PMID: 38820725 DOI: 10.1016/j.vetmic.2024.110134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Infectious bronchitis virus (IBV) restricts cell tropism. Except for the Beaudette strain, other IBVs cannot infect mammalian cell lines. The limited cell tropism of other IBVs has hindered IBV vaccine development and research on the mechanisms of IBV infection. A novel Vero cell-adapted strain, HV80, has been previously reported. In this study, we constructed recombinants expressing the chimeric S glycoprotein, S1 or S2 subunit of strain H120 and demonstrated that mutations on S2 subunit are associated with the strain HV80 Vero cell adaptation. R687P or P687R substitution recombinants were constructed with the genome backbone of strains HV80 or H120. We found that the RRRR690/S motif at the S2' cleavage site is crucial to the Vero cell adaptation of strain HV80. Another six amino acid substitutions in the S2 subunit of the recombinants showed that the Q855H mutation induced syncytium formation. A transient transfection assay demonstrated the S glycoprotein with the PRRR690/S motif at the S2' cleavage site induced low-level cell-cell fusion, while H855Q substitution hindered cell-cell fusion and blocked cleavage event with S20 product. This study provides a basis for the construction of IBV recombinants capable of replicating in Vero cells, thus contributing to the advancement in the development of genetically engineered cell-based IBV vaccines.
Collapse
Affiliation(s)
- Yi Jiang
- College of Veterinary Medicine, Yangzhou University, 225009, China; Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - Xu Cheng
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - Mingyan Gao
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - Yan Yu
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - Xinhong Dou
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Haiyu Shen
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Mengjun Tang
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - Sheng Zhou
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China.
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
38
|
Zhao Z, Li X, Chai Y, Liu Z, Wang Q, Gao GF. Molecular basis for receptor recognition and broad host tropism for merbecovirus MjHKU4r-CoV-1. EMBO Rep 2024; 25:3116-3136. [PMID: 38877169 PMCID: PMC11239678 DOI: 10.1038/s44319-024-00169-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/16/2024] Open
Abstract
A novel pangolin-origin MERS-like coronavirus (CoV), MjHKU4r-CoV-1, was recently identified. It is closely related to bat HKU4-CoV, and is infectious in human organs and transgenic mice. MjHKU4r-CoV-1 uses the dipeptidyl peptidase 4 (DPP4 or CD26) receptor for virus entry and has a broad host tropism. However, the molecular mechanism of its receptor binding and determinants of host range are not yet clear. Herein, we determine the structure of the MjHKU4r-CoV-1 spike (S) protein receptor-binding domain (RBD) complexed with human CD26 (hCD26) to reveal the basis for its receptor binding. Measuring binding capacity toward multiple animal receptors for MjHKU4r-CoV-1, mutagenesis analyses, and homology modeling highlight that residue sites 291, 292, 294, 295, 336, and 344 of CD26 are the crucial host range determinants for MjHKU4r-CoV-1. These results broaden our understanding of this potentially high-risk virus and will help us prepare for possible outbreaks in the future.
Collapse
Affiliation(s)
- Zhennan Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xin Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yan Chai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhifeng Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Qihui Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - George F Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, China.
| |
Collapse
|
39
|
Wang Y, Zhou L, Wu X, Yang S, Wang X, Shen Q, Liu Y, Zhang W, Ji L. Molecular Mechanisms and Potential Antiviral Strategies of Liquid-Liquid Phase Separation during Coronavirus Infection. Biomolecules 2024; 14:748. [PMID: 39062463 PMCID: PMC11274562 DOI: 10.3390/biom14070748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/05/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
Highly pathogenic coronaviruses have caused significant outbreaks in humans and animals, posing a serious threat to public health. The rapid global spread of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has resulted in millions of infections and deaths. However, the mechanisms through which coronaviruses evade a host's antiviral immune system are not well understood. Liquid-liquid phase separation (LLPS) is a recently discovered mechanism that can selectively isolate cellular components to regulate biological processes, including host antiviral innate immune signal transduction pathways. This review focuses on the mechanism of coronavirus-induced LLPS and strategies for utilizing LLPS to evade the host antiviral innate immune response, along with potential antiviral therapeutic drugs and methods. It aims to provide a more comprehensive understanding and novel insights for researchers studying LLPS induced by pandemic viruses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wen Zhang
- School of Medicine, Jiangsu University, Zhenjiang 212013, China; (Y.W.); (L.Z.); (X.W.); (S.Y.); (X.W.); (Q.S.); (Y.L.)
| | - Likai Ji
- School of Medicine, Jiangsu University, Zhenjiang 212013, China; (Y.W.); (L.Z.); (X.W.); (S.Y.); (X.W.); (Q.S.); (Y.L.)
| |
Collapse
|
40
|
Khan S, Partuk EO, Chiaravalli J, Kozer N, Shurrush KA, Elbaz-Alon Y, Scher N, Giraud E, Tran-Rajau J, Agou F, Barr HM, Avinoam O. High-throughput screening identifies broad-spectrum Coronavirus entry inhibitors. iScience 2024; 27:110019. [PMID: 38883823 PMCID: PMC11176637 DOI: 10.1016/j.isci.2024.110019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/04/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024] Open
Abstract
The COVID-19 pandemic highlighted the need for antivirals against emerging coronaviruses (CoV). Inhibiting spike (S) glycoprotein-mediated viral entry is a promising strategy. To identify small molecule inhibitors that block entry downstream of receptor binding, we established a high-throughput screening (HTS) platform based on pseudoviruses. We employed a three-step process to screen nearly 200,000 small molecules. First, we identified hits that inhibit pseudoviruses bearing the SARS-CoV-2 S glycoprotein. Counter-screening against pseudoviruses with the vesicular stomatitis virus glycoprotein (VSV-G), yielded sixty-five SARS-CoV-2 S-specific inhibitors. These were further tested against pseudoviruses bearing the MERS-CoV S glycoprotein, which uses a different receptor. Out of these, five compounds, which included the known broad-spectrum inhibitor Nafamostat, were subjected to further validation and tested against pseudoviruses bearing the S glycoprotein of the Alpha, Delta, and Omicron variants as well as bona fide SARS-CoV-2. This rigorous approach revealed an unreported inhibitor and its derivative as potential broad-spectrum antivirals.
Collapse
Affiliation(s)
- Suman Khan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Efrat Ozer Partuk
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jeanne Chiaravalli
- Institut Pasteur, Université Paris Cité, CNRS UMR 3523, Chemogenomic and Biological Screening Core Facility, C2RT, Paris, France
| | - Noga Kozer
- The Wohl Drug Discovery Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Khriesto A Shurrush
- The Wohl Drug Discovery Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yael Elbaz-Alon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nadav Scher
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Emilie Giraud
- Institut Pasteur, Université Paris Cité, CNRS UMR 3523, Chemogenomic and Biological Screening Core Facility, C2RT, Paris, France
| | - Jaouen Tran-Rajau
- Institut Pasteur, Université Paris Cité, CNRS UMR 3523, Chemogenomic and Biological Screening Core Facility, C2RT, Paris, France
| | - Fabrice Agou
- Institut Pasteur, Université Paris Cité, CNRS UMR 3523, Chemogenomic and Biological Screening Core Facility, C2RT, Paris, France
| | - Haim Michael Barr
- The Wohl Drug Discovery Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ori Avinoam
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
41
|
Li K, Feng KC, Simon M, Fu Y, Galanakis D, Mueller S, Rafailovich MH. Molecular Basis for Surface-Initiated Non-Thrombin-Generated Clot Formation Following Viral Infection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30703-30714. [PMID: 38848451 DOI: 10.1021/acsami.4c02918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
In this paper, we propose a model that connects two standard inflammatory responses to viral infection, namely, elevation of fibrinogen and the lipid drop shower, to the initiation of non-thrombin-generated clot formation. In order to understand the molecular basis for the formation of non-thrombin-generated clots following viral infection, human epithelial and Madin-Darby Canine Kidney (MDCK, epithelial) cells were infected with H1N1, OC43, and adenovirus, and conditioned media was collected, which was later used to treat human umbilical vein endothelial cells and human lung microvascular endothelial cells. After direct infection or after exposure to conditioned media from infected cells, tissue surfaces of both epithelial and endothelial cells, exposed to 8 mg/mL fibrinogen, were observed to initiate fibrillogenesis in the absence of thrombin. No fibers were observed after direct viral exposure of the endothelium or when the epithelium cells were exposed to SARS-CoV-2 isolated spike proteins. Heating the conditioned media to 60 °C had no effect on fibrillogenesis, indicating that the effect was not enzymatic but rather associated with relatively thermally stable inflammatory factors released soon after viral infection. Spontaneous fibrillogenesis had previously been reported and interpreted as being due to the release of the alpha C domains due to strong interactions of the interior of the fibrinogen molecule in contact with hydrophobic material surfaces rather than cleavage of the fibrinopeptides. Contact angle goniometry and immunohistochemistry were used to demonstrate that the lipids produced within the epithelium and released in the conditioned media, probably after the death of infected epithelial cells, formed a hydrophobic residue responsible for fibrillogenesis. Hence, the standard inflammatory response constitutes the ideal conditions for surface-initiated clot formation.
Collapse
Affiliation(s)
- Kao Li
- School of Biomedicine and Nursing, Shandong Institute of Petroleum and Chemical Technology, Dongying 257061, Shandong, China
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Kuan-Che Feng
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Marcia Simon
- Department of Oral Biology and Pathology, Stony Brook University Medical Center, Stony Brook, New York 11794, United States
| | - Yuyang Fu
- Dongying Stem Cell Bank Medical Technology Co., Ltd., Dongying 257000, Shandong, China
| | - Dennis Galanakis
- Department of Pathology, Stony Brook University School of Medicine, Stony Brook, New York 11720, United States
| | | | - Miriam H Rafailovich
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
42
|
Kikuta S, Nagayama S, Hasegawa-Ishii S. Structures and functions of the normal and injured human olfactory epithelium. Front Neural Circuits 2024; 18:1406218. [PMID: 38903957 PMCID: PMC11188711 DOI: 10.3389/fncir.2024.1406218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
The olfactory epithelium (OE) is directly exposed to environmental agents entering the nasal cavity, leaving OSNs prone to injury and degeneration. The causes of olfactory dysfunction are diverse and include head trauma, neurodegenerative diseases, and aging, but the main causes are chronic rhinosinusitis (CRS) and viral infections. In CRS and viral infections, reduced airflow due to local inflammation, inflammatory cytokine production, release of degranulated proteins from eosinophils, and cell injury lead to decreased olfactory function. It is well known that injury-induced loss of mature OSNs in the adult OE causes massive regeneration of new OSNs within a few months through the proliferation and differentiation of progenitor basal cells that are subsequently incorporated into olfactory neural circuits. Although normal olfactory function returns after injury in most cases, prolonged olfactory impairment and lack of improvement in olfactory function in some cases poses a major clinical problem. Persistent inflammation or severe injury in the OE results in morphological changes in the OE and respiratory epithelium and decreases the number of mature OSNs, resulting in irreversible loss of olfactory function. In this review, we discuss the histological structure and distribution of the human OE, and the pathogenesis of olfactory dysfunction associated with CRS and viral infection.
Collapse
Affiliation(s)
- Shu Kikuta
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Nihon University, Tokyo, Japan
| | - Shin Nagayama
- Department of Neurobiology and Anatomy, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, United States
| | | |
Collapse
|
43
|
Tsukamoto A, Jae Man L, Oyama K, Masuda A, Mon H, Ueda T, Kusakabe T. Effective expression and characterization of the receptor binding domains in SARS-CoV-2 Spike proteins from original strain and variants of concern using Bombyx mori nucleopolyhedrovirus in silkworm. Protein Expr Purif 2024; 218:106450. [PMID: 38395208 DOI: 10.1016/j.pep.2024.106450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
A new coronavirus, known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is responsible for the global pandemic of COVID-19 in 2020. Through structural analysis, it was found that several amino acid residues in the human angiotensin-converting enzyme-2 (hACE2) receptor directly interact with those in the receptor binding domain (RBD) of the spike glycoprotein (S-protein). Various cell lines, including HEK293, HeLa cells, and the baculovirus expression vector system (BEVS) with the insect cell line Sf9, have been utilized to produce the RBD. In this study, we investigated the use of Bombyx mori nucleopolyhedrovirus (BmNPV) and BEVS. For efficient production of a highly pure recombinant RBD protein, we designed it with two tags (His tag and STREP tag) at the C-terminus and a solubilizing tag (SUMO) at the N-terminus. After expressing the protein using BmNPV and silkworm and purifying it with a HisTrap excel column, the eluted protein was digested with SUMO protease and further purified using a Strep-Tactin Superflow column. As a result, we obtained the RBD as a monomer with a yield of 2.6 mg/10 mL serum (equivalent to 30 silkworms). The RBD showed an affinity for the hACE2 receptor. Additionally, the RBDs from the Alpha, Beta, Gamma, Delta, and Omicron variants were expressed and purified using the same protocol. It was found that the RBD from the Alpha, Beta, Gamma, and Delta variants could be obtained with yields of 1.4-2.6 mg/10 mL serum and had an affinity to the hACE2 receptor.
Collapse
Affiliation(s)
- Akira Tsukamoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Lee Jae Man
- Laboratory of Creative Science for Insect Industries, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kosuke Oyama
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Akitsu Masuda
- Laboratory of Creative Science for Insect Industries, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hiroaki Mon
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tadashi Ueda
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Takahiro Kusakabe
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
44
|
Luo H, Liang Z, Lin J, Wang Y, Liu Y, Mei K, Zhao M, Huang S. Research progress of porcine epidemic diarrhea virus S protein. Front Microbiol 2024; 15:1396894. [PMID: 38873162 PMCID: PMC11169810 DOI: 10.3389/fmicb.2024.1396894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a single-stranded RNA virus with a capsid membrane that causes acute infectious gastrointestinal disease characterized by vomiting, diarrhea, and dehydration in swine. Piglets are more susceptible to PEDV than adults, with an infection rate reaching 90% and a fatality rate as high as 100%. Moreover, PEDV has a rapid transmission rate and broad transmission range. Consequently, PEDV has caused considerable economic losses and negatively impacted the sustainability of the pig industry. The surface spike (S) glycoprotein is the largest structural protein in PEDV virions and is closely associated with host cell fusion and virus invasion. As such, the S protein is an important target for vaccine development. In this article, we review the genetic variation, immunity, apoptosis-induction function, virulence, vaccine potential, and other aspects of the PEDV S protein. This review provides a theoretical foundation for preventing and controlling PEDV infection and serves as a valuable resource for further research and development of PEDV vaccines.
Collapse
Affiliation(s)
- Haojian Luo
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Zhaoping Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Junjie Lin
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yiqiao Wang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yingying Liu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Kun Mei
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Mengmeng Zhao
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Shujian Huang
- School of Life Science and Engineering, Foshan University, Foshan, China
- Guangdong Hua Sheng Biotechnology Co., Ltd, Guangzhou, China
| |
Collapse
|
45
|
Wang HM, Qiao YY, Liu YG, Cai BY, Yang YL, Lu H, Tang YD. The N-glycosylation at positions 652 and 661 of viral spike protein negatively modulates porcine deltacoronavirus entry. Front Vet Sci 2024; 11:1430113. [PMID: 38872801 PMCID: PMC11169894 DOI: 10.3389/fvets.2024.1430113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024] Open
Abstract
N-glycosylation is a highly conserved glycan modification that plays crucial roles in various physiological processes, including protein folding, trafficking, and signal transduction. Porcine deltacoronavirus (PDCoV) poses a newly emerging threat to the global porcine industry. The spike protein of PDCoV exhibits a high level of N-glycosylation; however, its role in viral infection remains poorly understood. In this study, we applied a lentivirus-based entry reporter system to investigate the role of N-glycosylation on the viral spike protein during PDCoV entry stage. Our findings demonstrate that N-glycosylation at positions 652 and 661 of the viral spike protein significantly reduces the infectivity of PDCoV pseudotyped virus. Overall, our results unveil a novel function of N-glycosylation in PDCoV infection, highlighting its potential for facilitating the development of antiviral strategies.
Collapse
Affiliation(s)
- Hai-Ming Wang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, China
| | - Yang-Yang Qiao
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, China
| | - Yong-Gang Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Bing-Yan Cai
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, China
| | - Yue-Lin Yang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hui Lu
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, China
| | - Yan-Dong Tang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Research Center for Veterinary Biomedicine, Harbin, China
| |
Collapse
|
46
|
Jermsutjarit P, Mebumroong S, Watcharavongtip P, Lin H, Tantituvanont A, Kaeoket K, Piñeyro P, Nilubol D. Evolution and virulence of porcine epidemic diarrhea virus following in vitro and in vivo propagation. Sci Rep 2024; 14:12279. [PMID: 38811677 PMCID: PMC11137156 DOI: 10.1038/s41598-024-62875-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024] Open
Abstract
Practice of inoculating porcine epidemic diarrhea virus (PEDV) in piglets generating feedback material might influence the genetic evolution and attenuation of PEDV. The study was conducted to evaluate evolutionary rate and attenuation following serial in vitro and in vivo propagation. In the study, PED-JPFP0-PJ, Passage 0 (P0), was isolated from infected pigs and serially passaged in Vero cells for 5 consecutive times, P1-P5. P0, P2 and P5 were then subjected to orally inoculate 3-day-old piglets. At 24 h post inoculation, intestines of each passage (F1), were collected, and subsequently sub-passaged in piglets for 2 additional passages (F2-F3). Virus titration, PEDV genomic copies number, VH:CD ratios, and immunohistochemistry were evaluated. S and ORF3 genes were characterized. The results of the study demonstrated that virus titer and virulence were negatively correlated with increased passages, both in vitro and in vivo. Increased substitution rate was observed in higher passages. The evolutionary rate of S gene was higher than that of ORF3. Seven aa changes at positions 223, 291, 317, 607, 694, 1114 and 1199, with reduced N-linked glycan were observed in P5F3. In conclusion, serial passage of PEDV, both in vitro and in vivo, influence the genetic development and the attenuation of PEDV.
Collapse
Affiliation(s)
- Patumporn Jermsutjarit
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Henry Dunant Road, Pathumwan, Bangkok, 10330, Thailand
| | - Sunit Mebumroong
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Henry Dunant Road, Pathumwan, Bangkok, 10330, Thailand
| | - Parin Watcharavongtip
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Henry Dunant Road, Pathumwan, Bangkok, 10330, Thailand
| | - Hongyao Lin
- MSD Animal Health Innovation Pte Ltd, Singapore, Singapore
| | - Angkana Tantituvanont
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Kampon Kaeoket
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhonpathom, Thailand
| | - Pablo Piñeyro
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Dachrit Nilubol
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Henry Dunant Road, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
47
|
Kircheis R. In Silico Analyses Indicate a Lower Potency for Dimerization of TLR4/MD-2 as the Reason for the Lower Pathogenicity of Omicron Compared to Wild-Type Virus and Earlier SARS-CoV-2 Variants. Int J Mol Sci 2024; 25:5451. [PMID: 38791489 PMCID: PMC11121871 DOI: 10.3390/ijms25105451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The SARS-CoV-2 Omicron variants have replaced all earlier variants, due to increased infectivity and effective evasion from infection- and vaccination-induced neutralizing antibodies. Compared to earlier variants of concern (VoCs), the Omicron variants show high TMPRSS2-independent replication in the upper airway organs, but lower replication in the lungs and lower mortality rates. The shift in cellular tropism and towards lower pathogenicity of Omicron was hypothesized to correlate with a lower toll-like receptor (TLR) activation, although the underlying molecular mechanisms remained undefined. In silico analyses presented here indicate that the Omicron spike protein has a lower potency to induce dimerization of TLR4/MD-2 compared to wild type virus despite a comparable binding activity to TLR4. A model illustrating the molecular consequences of the different potencies of the Omicron spike protein vs. wild-type spike protein for TLR4 activation is presented. Further analyses indicate a clear tendency for decreasing TLR4 dimerization potential during SARS-CoV-2 evolution via Alpha to Gamma to Delta to Omicron variants.
Collapse
|
48
|
Rashid SA, Rajendiran S, Nazakat R, Mohammad Sham N, Khairul Hasni NA, Anasir MI, Kamel KA, Muhamad Robat R. A scoping review of global SARS-CoV-2 wastewater-based epidemiology in light of COVID-19 pandemic. Heliyon 2024; 10:e30600. [PMID: 38765075 PMCID: PMC11098849 DOI: 10.1016/j.heliyon.2024.e30600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/21/2024] Open
Abstract
Recently, wastewater-based epidemiology (WBE) research has experienced a strong impetus during the Coronavirus disease 2019 (COVID-19) pandemic. However, a few technical issues related to surveillance strategies, such as standardized procedures ranging from sampling to testing protocols, need to be resolved in preparation for future infectious disease outbreaks. This review highlights the study characteristics, potential use of WBE and overview of methods, as well as methods utilized to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) including its variant in wastewater. A literature search was performed electronically in PubMed and Scopus according to PRISMA guidelines for relevant peer-reviewed articles published between January 2020 and March 2022. The search identified 588 articles, out of which 221 fulfilled the necessary criteria and are discussed in this review. Most global WBE studies were conducted in North America (n = 75, 34 %), followed by Europe (n = 68, 30.8 %), and Asia (n = 43, 19.5 %). The review also showed that most of the application of WBE observed were to correlate SARS-CoV-2 ribonucleic acid (RNA) trends in sewage with epidemiological data (n = 90, 40.7 %). The techniques that were often used globally for sample collection, concentration, preferred matrix recovery control and various sample types were also discussed. Overall, this review provided a framework for researchers specializing in WBE to apply strategic approaches to their research questions in achieving better functional insights. In addition, areas that needed more in-depth analysis, data collection, and ideas for new initiatives were identified.
Collapse
Affiliation(s)
- Siti Aishah Rashid
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health (NIH), Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Sakshaleni Rajendiran
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health (NIH), Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Raheel Nazakat
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health (NIH), Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Noraishah Mohammad Sham
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health (NIH), Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Nurul Amalina Khairul Hasni
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health (NIH), Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Mohd Ishtiaq Anasir
- Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health (NIH), Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Khayri Azizi Kamel
- Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health (NIH), Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Rosnawati Muhamad Robat
- Occupational & Environmental Health Unit, Public Health Division, Selangor State Health Department, Ministry of Health Malaysia, Malaysia
| |
Collapse
|
49
|
Zhu Z, Han Y, Gong M, Sun B, Zhang R, Ding Q. Establishment of replication-competent vesicular stomatitis virus recapitulating SADS-CoV entry. J Virol 2024; 98:e0195723. [PMID: 38557247 PMCID: PMC11092325 DOI: 10.1128/jvi.01957-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/09/2024] [Indexed: 04/04/2024] Open
Abstract
Zoonotic coronaviruses pose a continuous threat to human health, with newly identified bat-borne viruses like swine acute diarrhea syndrome coronavirus (SADS-CoV) causing high mortality in piglets. In vitro studies indicate that SADS-CoV can infect cell lines from diverse species, including humans, highlighting its potential risk to human health. However, the lack of tools to study viral entry, along with the absence of vaccines or antiviral therapies, perpetuates this threat. To address this, we engineered an infectious molecular clone of Vesicular Stomatitis Virus (VSV), replacing its native glycoprotein (G) with SADS-CoV spike (S) and inserting a Venus reporter at the 3' leader region to generate a replication-competent rVSV-Venus-SADS S virus. Serial passages of rVSV-Venus-SADS S led to the identification of an 11-amino-acid truncation in the cytoplasmic tail of the S protein, which allowed more efficient viral propagation due to increased cell membrane anchoring of the S protein. The S protein was integrated into rVSV-Venus-SADS SΔ11 particles, susceptible to neutralization by sera from SADS-CoV S1 protein-immunized rabbits. Additionally, we found that TMPRSS2 promotes SADS-CoV spike-mediated cell entry. Furthermore, we assessed the serum-neutralizing ability of mice vaccinated with rVSV-Venus-SADS SΔ11 using a prime-boost immunization strategy, revealing effective neutralizing antibodies against SADS-CoV infection. In conclusion, we have developed a safe and practical tool for studying SADS-CoV entry and exploring the potential of a recombinant VSV-vectored SADS-CoV vaccine.IMPORTANCEZoonotic coronaviruses, like swine acute diarrhea syndrome coronavirus (SADS-CoV), pose a continual threat to human and animal health. To combat this, we engineered a safe and efficient tool by modifying the Vesicular Stomatitis Virus (VSV), creating a replication-competent rVSV-Venus-SADS S virus. Through serial passages, we optimized the virus for enhanced membrane anchoring, a key factor in viral propagation. This modified virus, rVSV-Venus-SADS SΔ11, proved susceptible to neutralization, opening avenues for potential vaccines. Additionally, our study revealed the role of TMPRSS2 in SADS-CoV entry. Mice vaccinated with rVSV-Venus-SADS SΔ11 developed potent neutralizing antibodies against SADS-CoV. In conclusion, our work presents a secure and practical tool for studying SADS-CoV entry and explores the promise of a recombinant VSV-vectored SADS-CoV vaccine.
Collapse
Affiliation(s)
- Zihui Zhu
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Yutong Han
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mingli Gong
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Bo Sun
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Rong Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiang Ding
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
50
|
Žáčková S, Pávová M, Trylčová J, Chalupová J, Priss A, Lukšan O, Weber J. Upregulation of mRNA Expression of ADGRD1/GPR133 and ADGRG7/GPR128 in SARS-CoV-2-Infected Lung Adenocarcinoma Calu-3 Cells. Cells 2024; 13:791. [PMID: 38786015 PMCID: PMC11119037 DOI: 10.3390/cells13100791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Adhesion G protein-coupled receptors (aGPCRs) play an important role in neurodevelopment, immune defence and cancer; however, their role throughout viral infections is mostly unexplored. We have been searching for specific aGPCRs involved in SARS-CoV-2 infection of mammalian cells. In the present study, we infected human epithelial cell lines derived from lung adenocarcinoma (Calu-3) and colorectal carcinoma (Caco-2) with SARS-CoV-2 in order to analyse changes in the level of mRNA encoding individual aGPCRs at 6 and 12 h post infection. Based on significantly altered mRNA levels, we identified four aGPCR candidates-ADGRB3/BAI3, ADGRD1/GPR133, ADGRG7/GPR128 and ADGRV1/GPR98. Of these receptors, ADGRD1/GPR133 and ADGRG7/GPR128 showed the largest increase in mRNA levels in SARS-CoV-2-infected Calu-3 cells, whereas no increase was observed with heat-inactivated SARS-CoV-2 and virus-cleared conditioned media. Next, using specific siRNA, we downregulated the aGPCR candidates and analysed SARS-CoV-2 entry, replication and infectivity in both cell lines. We observed a significant decrease in the amount of SARS-CoV-2 newly released into the culture media by cells with downregulated ADGRD1/GPR133 and ADGRG7/GPR128. In addition, using a plaque assay, we observed a reduction in SARS-CoV-2 infectivity in Calu-3 cells. In summary, our data suggest that selected aGPCRs might play a role during SARS-CoV-2 infection of mammalian cells.
Collapse
Affiliation(s)
- Sandra Žáčková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic; (S.Ž.); (M.P.); (J.T.); (J.C.); (A.P.); (O.L.)
- Department of Genetics and Microbiology, Charles University, Faculty of Sciences, 128 44 Prague, Czech Republic
| | - Marcela Pávová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic; (S.Ž.); (M.P.); (J.T.); (J.C.); (A.P.); (O.L.)
| | - Jana Trylčová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic; (S.Ž.); (M.P.); (J.T.); (J.C.); (A.P.); (O.L.)
| | - Jitka Chalupová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic; (S.Ž.); (M.P.); (J.T.); (J.C.); (A.P.); (O.L.)
| | - Anastasiia Priss
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic; (S.Ž.); (M.P.); (J.T.); (J.C.); (A.P.); (O.L.)
| | - Ondřej Lukšan
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic; (S.Ž.); (M.P.); (J.T.); (J.C.); (A.P.); (O.L.)
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic; (S.Ž.); (M.P.); (J.T.); (J.C.); (A.P.); (O.L.)
| |
Collapse
|