1
|
Mei S, Deng Z, Meng FY, Guo QQ, Tao HY, Zhang L, Xi C, Zhou Q, Tian XF. Sini Powder Alleviates Stress Response and Suppresses Hepatocellular Carcinoma Development by Restoring Gut Microbiota. Chin J Integr Med 2025:10.1007/s11655-025-4127-z. [PMID: 40338446 DOI: 10.1007/s11655-025-4127-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 05/09/2025]
Abstract
OBJECTIVES To explore the underlying pharmacological mechanisms and its potential effects of Chinese medicine herbal formula Sini Powder (SNP) on hepatocellular carcinoma (HCC). METHODS The active components of SNP and their in vivo distribution were identified using ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Construction of component-target-disease networks, protein-protein interaction network, Gene Ontology function and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, and molecular docking were employed to analyze the active components and anti-HCC mechanisms of SNP. Cell viability assay and wound healing assay were utilized to confirm the effect of SNP-containing serum (2.5%, 5.0%, 10%, 20%, and 40%), isoprenaline or propranolol (both 10, 100, and 1,000 µ mol/L) on proliferation and migration of HepG 2 or Huh7 cells. Meanwhile, the effect of isoprenaline or propranolol on the β 2 adrenergic receptor (ADRB2) mRNA expression on HepG2 cells were measured by real-time quantitative reverse transcription (RT-qPCR). Mice with subcutaneous tumors were either subjected to chronic restraint stress (CRS) followed by SNP administration (364 mg/mL) or directly treated with SNP (364 mg/mL). These two parallel experiments were performed to validate the effects of SNP on stress responses. Stress-related proteins and hormones were quantified using RT-qPCR, enzyme-linked immunosorbent assay, and immunohistochemistry. Metagenomic sequencing was performed to confirm the influence of SNP on the gut microbiota in the tumor-bearing CRS mice. RESULTS The distribution of the 12 active components of SNP was confirmed in various tissues and feces. Network pharmacology analysis confirmed the anti-HCC effects of the 5 active components. The potential anti-HCC mechanisms of SNP may involve the epidermal growth factor receptor (EGFR), proto-oncogene tyrosine-protein kinase Src (SRC) and signal transducer and activator of transcription 3 (STAT3) pathways. SNP-containing serum inhibited the proliferation of HepG2 and Huh7 cells at concentrations of 2.5% and 5.0%, respectively, after 24 h of treatment. Furthermore, SNP suppressed tumor progression in tumor-bearing mice exposed to CRS. SNP treatment also downregulated the expressions of stress-related proteins and pro-inflammatory cytokines, primarily by modulating the gut microbiota. Specifically, the abundance of Alistipes and Prevotella, which belong to the phylum Bacteroidetes, increased in the SNP-treated group, whereas Lachnospira, in the phylum Firmicutes, decreased. CONCLUSION SNP can combat HCC by alleviating stress responses through the regulation of gut microbiota.
Collapse
Affiliation(s)
- Si Mei
- Faculty of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Zhe Deng
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Fan-Ying Meng
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Qian-Qian Guo
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - He-Yun Tao
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Lin Zhang
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Chang Xi
- School of Humanities and Management, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Qing Zhou
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Xue-Fei Tian
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China.
- Faculty of International Education, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
2
|
El-Saadony MT, Saad AM, Mohammed DM, Korma SA, Alshahrani MY, Ahmed AE, Ibrahim EH, Salem HM, Alkafaas SS, Saif AM, Elkafas SS, Fahmy MA, Abd El-Mageed TA, Abady MM, Assal HY, El-Tarabily MK, Mathew BT, AbuQamar SF, El-Tarabily KA, Ibrahim SA. Medicinal plants: bioactive compounds, biological activities, combating multidrug-resistant microorganisms, and human health benefits - a comprehensive review. Front Immunol 2025; 16:1491777. [PMID: 40375989 PMCID: PMC12079674 DOI: 10.3389/fimmu.2025.1491777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 03/13/2025] [Indexed: 05/18/2025] Open
Abstract
In recent years, medicinal plants have gained significant attention in modern medicine due to their accessibility, affordability, widespread acceptance, and safety, making herbal remedies highly valued globally. Consequently, ensuring medicinal plants' quality, efficacy, and safety has become a critical concern for developed and developing nations. The emergence of multidrug-resistant microorganisms poses a serious global health threat, particularly in low-income regions, despite significant advancements in antimicrobial drugs and medical research over the past century. The rapid spread of these multidrug-resistant infections is primarily attributed to improper prescriptions, overuse, and unregulated access to antibiotics. Addressing these challenges, the standardization of plant-derived pharmaceuticals could pave the way for a transformative era in healthcare. Preserving and leveraging the historical knowledge of medicinal plants is essential before such valuable information is lost. Recently, there has been growing interest among natural and pharmaceutical scientists in exploring medicinal plants as potential sources of antimicrobial agents. This current review aims to identify the most common pathogens threatening human health, analyze the factors contributing to the rise of drug-resistant microorganisms, and evaluate the widespread use of medicinal plants across various countries as alternative antibiotics, highlighting their unique mechanisms of antimicrobial resistance.
Collapse
Affiliation(s)
- Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ahmed M. Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | - Sameh A. Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Essam H. Ibrahim
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
- Blood Products Quality Control and Research Department, National Organization for Research and Control of Biologicals, Cairo, Egypt
| | - Heba M. Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Diseases of Birds, Rabbits, Fish & their Care & Wildlife, School of Veterinary Medicine, Badr University in Cairo (BUC), Cairo, Egypt
| | - Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Abdullah M. Saif
- Division of Biochemistry, Department of Chemistry, Tanta University, Faculty of Science, Tanta, Egypt
| | - Sara Samy Elkafas
- Faculty of Control System and Robotics, Information Technologies, Mechanics and Optics University, Saint-Petersburg, Russia
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Menofia, Egypt
| | - Mohamed A. Fahmy
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Taia A. Abd El-Mageed
- Soils and Water Science Department, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Mariam M. Abady
- Nutrition and Food Sciences Department, National Research Centre, Giza, Egypt
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon, Republic of Korea
| | - Hanya Y. Assal
- Faculty of Biotechnology, October University for Modern Sciences and Arts, 6 October City, Egypt
| | | | - Betty T. Mathew
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Synan F. AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Salam A. Ibrahim
- Food Microbiology and Biotechnology Laboratory, Food and Nutritional Science Program, North Carolina A&T State University, Greensboro, NC, United States
| |
Collapse
|
3
|
Zhao Y, Li Y, Li D, Yuan H, Shen C. Eco-Friendly Synthesized Carbon Dots from Chinese Herbal Medicine: A Review. Int J Nanomedicine 2025; 20:3045-3065. [PMID: 40098722 PMCID: PMC11912022 DOI: 10.2147/ijn.s497892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 02/08/2025] [Indexed: 03/19/2025] Open
Abstract
Chinese herbal medicines and their extracts will produce nano-components of charcoal drugs after high-temperature carbonization, and the process is similar to that of carbon dots (CDs). Chinese herbal medicine-derived CDs (CHM-CDs) are a new carbon-based nanomaterial with a particle size of less than 10 nm discovered in charcoal drugs in recent years. CHM-CDs possess a range of beneficial traits, such as minimal toxicity, strong water solubility, superior biocompatibility, and remarkable photoluminescence capabilities. Additionally, they exhibit multifaceted pharmacological activity in the absence of drug loading. Over the past half-decade, numerous publications have presented evidence suggesting that CHM-CDs exhibit a wide array of pharmacological effects. These primarily encompass hemostatic capabilities, neuroprotection, anti-infective, antitumor, immunomodulatory effects and hypoglycemic activity. Notably, they have been associated with circulatory system, digestive system, nervous system, immune system, endocrine system, urinary system and skeletal system. This article systematically reviews the modern pharmacological effects and potential mechanisms of CHM-CDs, offering insights into current challenges and proposing directions for future advancements. As such, it serves as a vital reference for the clinical application of CHM-CDs.
Collapse
Affiliation(s)
- Yusheng Zhao
- Senior Department of Burns and Plastic Surgery, the Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100048, People’s Republic of China
| | - Yucong Li
- Senior Department of Burns and Plastic Surgery, the Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100048, People’s Republic of China
| | - Dawei Li
- Senior Department of Burns and Plastic Surgery, the Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100048, People’s Republic of China
| | - Huageng Yuan
- Senior Department of Burns and Plastic Surgery, the Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100048, People’s Republic of China
| | - Chuanan Shen
- Senior Department of Burns and Plastic Surgery, the Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100048, People’s Republic of China
| |
Collapse
|
4
|
Hu WJ, Yu AQ, Bi HZ, Zhang ZJ, Wang ZB, Wang M, Kuang HX. Carbon dots derived from Zingiber officinale Rosc (ginger) with hemostatic effects. Front Mol Biosci 2025; 12:1530469. [PMID: 40103924 PMCID: PMC11913708 DOI: 10.3389/fmolb.2025.1530469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/10/2025] [Indexed: 03/20/2025] Open
Abstract
Introduction Ginger, as a traditional Chinese medicine (TCM), can be used in clinical practice to treat various diseases. The product of ginger processed at high temperatures is called carbonized ginger (CG), which has a hemostatic effect that ginger originally did not have. The purpose of this study is to investigate the hemostatic effect of CG and the substances that exert hemostatic effects. Methods CG was prepared and successfully obtained CG carbon dots (CG-CDs) from its aqueous solution. After fully characterizing its structural information, the hemostatic effect was evaluated using mouse tail bleeding and liver injury bleeding models, and the clotting time was evaluated using capillary coagulation experiments. In addition, the hemostatic mechanism of CG-CDs was explored. Results The average particle size of CG-CDs was observed to be 4.07 nm and the lattice spacing was 0.216 nm. It was mainly composed of graphite structured carbon, with the main constituent elements being C, N, and O, containing functional groups such as C=N, C=O, and C-OH. The FL spectrum showed that the maximum excitation wavelength of CG-CDs was 360 nm, and the maximum emission wavelength was 470 nm. The QY of CG-CDs was calculated to be 0.45%. CG-CDs shortened bleeding time, reduced bleeding volume, and also shortened the time for blood clotting. With the increase of CG-CDs, the values of FIB gradually increased, and the PT values gradually decreased. In addition, CG-CDs increased PLT count, increased PLT activating factor TXB2, decreased 6-keto-PGF1α , increased PAI-1, and decreased t-PA. Conclusion CG-CDs obtained from CG has hemostatic activity, mainly by activating exogenous coagulation and co-coagulation pathways, increasing PLT count, increasing PLT activating factor TXB2, reducing 6-keto-PGF1α , increasing PAI-1, and reducing t-PA, thereby affecting the fibrinolytic system and other pathways to exert hemostatic effects.
Collapse
Affiliation(s)
- Wen-Jing Hu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ai-Qi Yu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hai-Zheng Bi
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhao-Jiong Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhi-Bin Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
5
|
Tang X, Gong Z, Lang Y, Chen H, Huang S, Lv Y. Research Progress Towards and Prospects of Carbon Dots Derived from Tea and Chinese Medicinal Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:171. [PMID: 39940152 PMCID: PMC11820907 DOI: 10.3390/nano15030171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 02/14/2025]
Abstract
This review focuses on the research progress related to carbon dots (CDs) derived from Chinese herbal medicines and tea, covering preparation methods, physicochemical properties, and application fields. It elaborates on preparation approaches like hydrothermal, solvothermal, microwave-assisted, and ultrasonic-assisted methods, and their influence on CDs' structure and properties. It also explores CDs' structural and optical properties. The application fields include antibacterial, sensing, bioimaging, photocatalysis, hemostasis, and energy. Carbon dots show antibacterial activity by destroying bacterial cell membranes, they can detect various substances in sensing, are important for bioimaging, degrade organic pollutants in photocatalysis, have hemostatic and anti-inflammatory effects, and can be used as battery anode materials. Despite progress, challenges remain in improving yield, quantum yield, property control, and understanding their mechanism of action. This review provides a reference for related research and looks ahead to future directions.
Collapse
Affiliation(s)
- Xiaoxue Tang
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Zhao Gong
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Yan Lang
- Department of Rehabilitation, Wuyi University, Wuyishan 354301, China
| | - Hongyue Chen
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Siqi Huang
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Yuguang Lv
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| |
Collapse
|
6
|
Ma W, Ren H, Meng X, Liu S, Du K, Fang S, Chang Y. A review of the ethnopharmacology, phytochemistry, pharmacology, pharmacokinetics and quality control of Paeonia lactiflora Pall. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118616. [PMID: 39053710 DOI: 10.1016/j.jep.2024.118616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paeonia lactiflora Pall. (called Shaoyao in China) is a common herb cultivated all over the world. In some Asian and European countries, such as China, Japan, South Korea and Britain, P. lactiflora has a long history of ethnomedical uses, which is widely used to relieve pain, treat gynecological diseases, anti-infection and so on. It is attributed to the extensive pharmacological activities of total glucosides of P. lactiflora. Up to now, it is still commonly used in clinical medicine. THE AIM OF THE REVIEW The paper aims to make a comprehensive review on the botanical characterization and distribution, ethnopharmacology, phytochemistry, biosynthesis pathway, pharmacology, pharmacokinetics and quality control of P. lactiflora, so as to provide new insights and scientific evidence for the subsequent research. MATERIALS AND METHODS The information of P. lactiflora was obtained from books related to traditional Chinese medicine and electronic databases, including Scifinder, PubMed, Web of Science, CNKI and Google Scholar. RESULTS P. lactiflora is a kind of herb with a long history and it is used for medicine, food and ornamental, and shows high utilization value. There are 200 compounds have been identified from it, including terpenoids, flavonoids, polyphenols, organic acids and others, among those paeoniflorin, a monoterpenoid glycoside, has multiple activities and is currently the focus of pharmacological research. A great deal of pharmacological experiments supported the anti-inflammatory, anti-oxidant, hepatoprotective, neuroprotective, antibacterial, antitumor, dermatosis treating and other effects of P. lactiflora. In addition, evaluating the quality of P. lactiflora is essential to safe use of drug in humans. CONCLUSIONS The chemical components of P. lactiflora are diverse and have a wide range of activities. Modern pharmacological studies have provided reliable evidence for the traditional efficacy, such as suppressing liver yang, regulating menstruation and relieving pain. However, there are still some problems to be solved, such as part of the pharmacological mechanism has not been clarified and the biosynthetic pathway of cage-like monoterpenoids remains poorly defined. In addition, further studies on compounds other than paeoniflorin are clearly warranted. It is hoped that P. lactiflora will serve the clinic better in the future.
Collapse
Affiliation(s)
- Wenjing Ma
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Haishuo Ren
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xue Meng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Suyi Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kunze Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shiming Fang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
7
|
Chen Q, Liu S, Wang Y, Tong M, Sun H, Dong M, Lu Y, Niu W, Wang L. Yam Carbon Dots Promote Bone Defect Repair by Modulating Histone Demethylase 4B. Int J Nanomedicine 2024; 19:10415-10434. [PMID: 39430312 PMCID: PMC11491100 DOI: 10.2147/ijn.s477587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/05/2024] [Indexed: 10/22/2024] Open
Abstract
Introduction Chronic apical periodontitis is a typical inflammatory disease of the oral cavity, the pathology is characterized by an inflammatory reaction with bone defects in the periapical area. Chinese medicine is our traditional medicine, Carbon Dots (CDs) are a new type of nanomaterials. The purpose of this study was to prepare Yam Carbon Dots (YAM-CDs) to investigate the mechanism of action of YAM-CDs on bone differentiation in vivo and in vitro. Methods We characterized YAM-CDs using transmission electron microscopy (TEM), Fourier Transform Infrared Spectrometer (FTIR), X-Ray Diffraction (XRD) and photoluminescence (PL). CCK-8 assay, Real-time qPCR, and Western Blot were conducted using bone marrow mesenchymal stem cells (BMSCs) to verify that YAM-CDs promote osteoblast differentiation. In addition, we investigated the role of YAM-CDs in promoting bone formation in an inflammatory setting in an in vivo mouse model of cranial defects. Results The results of TEM and PL showed that the YAM-CDs mostly consisted of the components C1s, O1s, and N1s. Additionally the average sizes of YAM-CDs were 2-6 nm. The quantum yield was 4.44%, with good fluorescence stability and biosafety. Real-time qPCR and Western blot analysis showed that YAM-CDs promoted osteoblast differentiation under an inflammatory environment by regulating expression of histone demethylase 4B (KDM4B). In vivo, results showed that YAM-CDs effectively repaired cranial bone defects in a mouse model and reduced the expression of inflammatory factors under the action of lipopolysaccharides (LPS). Conclusion YAM-CDs promoted the proliferation and differentiation of osteoblasts by regulating the expression of KDM4B to repair cranial bone defects in mice under an LPS-induced inflammatory milieu, which will provide a new idea for the treatment of clinical periapical inflammation and other bone defect diseases.
Collapse
Affiliation(s)
- QianYang Chen
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
| | - Shuo Liu
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
| | - Yuhan Wang
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
| | - MeiChen Tong
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
| | - HaiBo Sun
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
| | - Ming Dong
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
| | - Yun Lu
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
| | - WeiDong Niu
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
| | - LiNa Wang
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
| |
Collapse
|
8
|
Paveethra S, Manisekaran H, Sasidharan S. Medicinal Plants Derived Green Carbon Dots: Synthesis, Characterization and Their Potential Applications in Cancer Therapy. Asian Pac J Cancer Prev 2024; 25:3393-3411. [PMID: 39471005 PMCID: PMC11711356 DOI: 10.31557/apjcp.2024.25.10.3393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/19/2024] [Indexed: 11/01/2024] Open
Abstract
OBJECTIVE This review aims to explore the synthesis, characterization, and potential applications of carbon dots (CDs) derived from medicinal plants for cancer prevention, highlighting their role as a promising alternative in nanotechnological approaches. METHODS A comprehensive literature search was conducted to gather information on the synthesis methods, complex matrices, characterization techniques, and potential applications of CDs derived from medicinal plants in cancer therapy. RESULT Carbon dots (CDs) have emerged as a subject of significant interest due to their favorable chemical and biological properties. Various precursors, including graphite, carbon black, and organic molecules, are utilized in the synthesis of CDs through chemical or physical methods. Notably, CDs derived from medicinal plants offer environmentally friendly alternatives, leveraging complex matrices such as aqueous, alcoholic, and hydroalcoholic extracts. This review emphasizes the green synthesis approaches, characterization techniques, and diverse applications of CDs, including drug transport, bioimaging, biosensing, and anti-cancer therapies. Furthermore, it highlights the advantages and disadvantages of different synthesis methods, aiding researchers in selecting appropriate techniques for continuous production. CONCLUSION Carbon dots (CDs) represent a transformative advancement in nanotheranostics, offering a versatile platform for precise cancer diagnosis and therapy. With inherent anticancer properties, CDs hold promise in photodynamic therapy (PDT) and photothermal therapy (PTT), enabling precise tumor targeting while minimizing systemic toxicity. To address the limitations of standalone PDT and PTT, researchers are exploring multimodal treatment approaches integrating CDs. By leveraging the unique properties of CDs derived from medicinal plants, a new era of precision cancer therapy may be realized, emphasizing enhanced therapeutic outcomes and reduced adverse effects.
Collapse
Affiliation(s)
| | | | - Sreenivasan Sasidharan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| |
Collapse
|
9
|
Zhang Z, Hu W, Yu A, Kuang H, Wang M. Hemostatic bioactivity and mechanism of novel Rubia cordifolia L.-derived carbon dots. NANOSCALE ADVANCES 2024:d4na00619d. [PMID: 39415773 PMCID: PMC11474582 DOI: 10.1039/d4na00619d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024]
Abstract
Background: Rubia cordifolia L. (RCL) Carbonisata is a typical calcined natural medicinal plant, which has been used for thousands of years for hemostasis. At present, some studies have shown that some components of processed RCL Carbonisata can enhance hemostasis, but the specific hemostatic material basis is still unclear. Novel carbon dots (CDs) were obtained from Rubia cordifolia L. and named RCL-CDs to explore the hemostatic effect and mechanism of RCL-CDs obtained from Rubia cordifolia L. Methods: RCL-CDs were characterized by transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FT-IR), ultraviolet visible spectroscopy (UV-Vis), fluorescence spectroscopy (FL), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The hemostatic effect of RCL-CDs was evaluated in a mouse tail amputation model and liver scratch model, and the hemostatic mechanism was explored using a capillary coagulation model and coagulation parameters. Results: The particle size distribution of RCL-CDs ranged from 1.74 nm to 9.78 nm, the maximum population was 3-4 nm, and the average particle size was 3.82 nm. The RCL-CDs were approximately spherical with a lattice spacing of 0.206 nm. The quantum yield (QY) of RCL-CDs is 1.09%, and there is a distinct diffraction peak at 2θ = 24.76°. The elemental composition of RCL-CDs was mainly C (65.28%), O (30.10%), and a small amount of N (4.62%). Pharmacological experiments showed that bleeding time and bleeding volume were reduced in mice treated with RCL-CDs. It is worth noting that the low-, medium- and high-dose RCL-CD groups can significantly reduce the blood loss, while the high-dose RCL-CD group can significantly reduce the bleeding time of the mouse tail amputation model and liver scratch model. Additionally, the fibrinogen level (FIB) and platelet counts (PLT) increased and prothrombin time (PT) decreased in rats after treatment with RCL-CDs. Conclusions: RCL-CDs have a significant hemostatic effect, and the mechanism may be exogenous coagulation and activation of fibrinogen. This explains the material basis of the hemostatic effect of RCLC and opens new avenues for more in-depth investigation. In addition, new insights into the potential biomedical applications of CDs in the field of nanohemostasis are provided and a solid foundation for the discovery of novel hemostatic agents is established.
Collapse
Affiliation(s)
- Zhaojiong Zhang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine Harbin 150000 China
| | - Wenjing Hu
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine Harbin 150000 China
| | - Aiqi Yu
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine Harbin 150000 China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine Harbin 150000 China
| | - Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine Harbin 150000 China
| |
Collapse
|
10
|
Yang G, Liu Y, Hu Y, Yuan Y, Qin Y, Li Q, Ma S. Bio-soft matter derived from traditional Chinese medicine: Characterizations of hierarchical structure, assembly mechanism, and beyond. J Pharm Anal 2024; 14:100943. [PMID: 39005842 PMCID: PMC11246065 DOI: 10.1016/j.jpha.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/03/2024] [Accepted: 01/31/2024] [Indexed: 07/16/2024] Open
Abstract
Structural and functional explorations on bio-soft matter such as micelles, vesicles, nanoparticles, aggregates or polymers derived from traditional Chinese medicine (TCM) has emerged as a new topic in the field of TCM. The discovery of such cross-scaled bio-soft matter may provide a unique perspective for unraveling the new effective material basis of TCM as well as developing innovative medicine and biomaterials. Despite the rapid rise of TCM-derived bio-soft matter, their hierarchical structure and assembly mechanism must be unambiguously probed for a further in-depth understanding of their pharmacological activity. In this review, the current emerged TCM-derived bio-soft matter assembled from either small molecules or macromolecules is introduced, and particularly the unambiguous elucidation of their hierarchical structure and assembly mechanism with combined electron microscopic and spectroscopic techniques is depicted. The pros and cons of each technique are also discussed. The future challenges and perspective of TCM-derived bio-soft matter are outlined, particularly the requirement for their precise in situ structural determination is highlighted.
Collapse
Affiliation(s)
- Guiya Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yue Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yuying Hu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yue Yuan
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yunan Qin
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Quan Li
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shuangcheng Ma
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China
| |
Collapse
|
11
|
Yang Y, Yuan L, Wang K, Lu D, Meng F, Xu D, Li W, Nan Y. The Role and Mechanism of Paeoniae Radix Alba in Tumor Therapy. Molecules 2024; 29:1424. [PMID: 38611704 PMCID: PMC11012976 DOI: 10.3390/molecules29071424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Tumors have a huge impact on human life and are now the main cause of disease-related deaths. The main means of treatment are surgery and radiotherapy, but they are more damaging to the organism and have a poor postoperative prognosis. Therefore, we urgently need safe and effective drugs to treat tumors. In recent years, Chinese herbal medicines have been widely used in tumor therapy as complementary and alternative therapies. Medicinal and edible herbs are popular and have become a hot topic of research, which not only have excellent pharmacological effects and activities, but also have almost no side effects. Therefore, as a typical medicine and food homology, some components of Paeoniae Radix Alba (PRA, called Baishao in China) have been shown to have good efficacy and safety against cancer. Numerous studies have also shown that Paeoniae Radix Alba and its active ingredients treat cancer through various pathways and are also one of the important components of many antitumor herbal compound formulas. In this paper, we reviewed the literature on the intervention of Paeoniae Radix Alba in tumors and its mechanism of action in recent years and found that there is a large amount of literature on its effect on total glucosides of paeony (TGP) and paeoniflorin (PF), as well as an in-depth discussion of the mechanism of action of Paeoniae Radix Alba and its main constituents, with a view to promote the clinical development and application of Paeoniae Radix Alba in the field of antitumor management.
Collapse
Affiliation(s)
- Yating Yang
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Kaili Wang
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, China
| | - Doudou Lu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Fandi Meng
- Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Duojie Xu
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, China
| | - Weiqiang Li
- Department of Chinese Medical Gastrointestinal, The Affiliated TCM Hospital, Ningxia Medical University, Wuzhong 751100, China
| | - Yi Nan
- Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
12
|
Zhao Y, Dai E, Dong L, Yuan J, Zhao Y, Wu T, Kong R, Li M, Wang S, Zhou L, Yang Y, Kong H, Zhao Y, Qu H. Available and novel plant-based carbon dots derived from Vaccaria Semen carbonisata alleviates liver fibrosis. Front Mol Biosci 2023; 10:1282929. [PMID: 38116381 PMCID: PMC10729316 DOI: 10.3389/fmolb.2023.1282929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/27/2023] [Indexed: 12/21/2023] Open
Abstract
Background: Liver fibrosis represents an intermediate stage in the progression of liver disease, and as of now, there exists no established clinical therapy for effective antifibrotic treatment. Purpose: Our aim is to explore the impact of Carbon dots derived from Vaccaria Semen Carbonisata (VSC-CDs) on carbon tetrachloride-induced liver fibrosis in mice. Methods: VSC-CDs were synthesized employing a modified pyrolysis process. Comprehensive characterization was performed utilizing various techniques, including transmission electron microscopy (TEM), multiple spectroscopies, X-ray photoelectron spectroscopy (XPS), and high-performance liquid chromatography (HPLC). A hepatic fibrosis model induced by carbon tetrachloride was utilized to evaluate the anti-hepatic fibrosis effects of VSC-CDs. Results: VSC-CDs, exhibiting a quantum yield (QY) of approximately 2.08%, were nearly spherical with diameters ranging from 1.0 to 5.5 nm. The VSC-CDs prepared in this study featured a negative charge and abundant chemical functional groups. Furthermore, these particles demonstrated outstanding dispersibility in the aqueous phase and high biocompatibility. Moreover, VSC-CDs not only enhanced liver function and alleviated liver damage in pathomorphology but also mitigated the extent of liver fibrosis. Additionally, this study marks the inaugural demonstration of the pronounced activity of VSC-CDs in inhibiting inflammatory reactions, reducing oxidative damage, and modulating the TGF-β/Smad signaling pathway. Conclusion: VSC-CDs exerted significant potential for application in nanodrugs aimed at treating liver fibrosis.
Collapse
Affiliation(s)
- Yafang Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ertong Dai
- Qingdao Eighth People’s Hospital, Qingdao, Shandong, China
| | - Liyang Dong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jinye Yuan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yusheng Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tong Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ruolan Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Menghan Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shuxian Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Long Zhou
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yingxin Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Huihua Qu
- Center of Scientific Experiment, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
13
|
Zeng M, Wang Y, Liu M, Wei Y, Wen J, Zhang Y, Chen T, He N, Fan P, Dai X. Potential Efficacy of Herbal Medicine-Derived Carbon Dots in the Treatment of Diseases: From Mechanism to Clinic. Int J Nanomedicine 2023; 18:6503-6525. [PMID: 37965279 PMCID: PMC10642355 DOI: 10.2147/ijn.s431061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023] Open
Abstract
Carbon dots (CDs), a crucial component of nanomaterials, are zero-dimensional nanomaterials with carbon as the backbone structure and smaller than 10 nm. Due to their beneficial characteristics, they are widely used in biomedical fields such as biosensors, drug delivery, bio-imaging, and interactions with DNA. Interestingly, a novel type of carbon dot, generated by using herbal medicines as synthetic raw materials, has emerged as the most recent incomer in the family of CDs with the extensive growth in the number of materials selected for carbon dots synthesis. Herbal medicine-derived carbon dots (HM-CDs) have been employed in the biomedical industry, and are rapidly emerging as "modern nanomaterials" due to their unique structures and exceptional capabilities. Emerging trends suggest that their specific properties can be used in bleeding disorders, gastrointestinal disorders, inflammation-related diseases, and other common intractable diseases including cancer, menopausal syndrome, central nervous system disorders, and pain of various forms and causes. In addition, HM-CDs have been found to have organ-protective and antioxidant properties, as evidenced by extensive studies. This research provides a more comprehensive understanding of the biomedical applications of HM-CDs for the aforementioned disorders and investigates the intrinsic pharmacological activities and mechanisms of these HM-CDs to further advance their clinical applications.
Collapse
Affiliation(s)
- Mingtang Zeng
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Yao Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Maozhu Liu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Yuxun Wei
- Department of Pharmacy, Zhongjiang County People’s Hospital, Deyang, 618000, People’s Republic of China
| | - Jie Wen
- Department of Pharmacy, Shehong Municipal Hospital of Traditional Chinese Medicine, Shehong, 629600, People’s Republic of China
| | - Yuchen Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Tao Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Nianyu He
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Ping Fan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Xinhua Dai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| |
Collapse
|
14
|
Zhang J, Zou L, Li Q, Wu H, Sun Z, Xu X, Shi L, Sun Z, Ma G. Carbon Dots Derived from Traditional Chinese Medicines with Bioactivities: A Rising Star in Clinical Treatment. ACS APPLIED BIO MATERIALS 2023; 6:3984-4001. [PMID: 37707491 DOI: 10.1021/acsabm.3c00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
In the field of carbon nanomaterials, carbon dots (CDs) have become a preferable choice in biomedical applications. Based on the concept of green chemistry, CDs derived from traditional Chinese medicines (TCMs) have attracted extensive attention, including TCM charcoal drugs, TCM extracts, and TCM small molecules. The design and preparation of CDs from TCMs (TCMs-CDs) can improve the inherent characteristics of TCMs, such as solubility, particle size distribution, and so on. Compared with other precursor materials, TCMs-CDs have outstanding intrinsic bioactivities and potential pharmacological effects. However, the research of TCMs-CDs in biomedicine is not comprehensive, and their mechanisms have not been understood deeply either. In this review, we will provide concise insights into the recent development of TCMs-CDs, with a major focus on their preparation, formation, precursors, and bioactivities. Then we will discuss the perfect transformation from TCMs to TCMs-CDs. Finally, we discuss the opportunities and challenges for the application of TCMs-CDs in clinical treatment.
Collapse
Affiliation(s)
- Jiawen Zhang
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Linjun Zou
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Qinglong Li
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Haifeng Wu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Zhonghao Sun
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Xudong Xu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Leiling Shi
- Xinjiang Institute of Chinese and Ethnic Medicine, Urumqi 830002, China
| | - Zhaocui Sun
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Guoxu Ma
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| |
Collapse
|
15
|
Zhang YL, Wang YL, Yan K, Deng QQ, Li FZ, Liang XJ, Hua Q. Nanostructures in Chinese herbal medicines (CHMs) for potential therapy. NANOSCALE HORIZONS 2023; 8:976-990. [PMID: 37278697 DOI: 10.1039/d3nh00120b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
With its long clinical history, traditional Chinese medicine (TCM) has gained acceptance for its specific efficacy and safety in the treatment of multiple diseases. Nano-sized materials study of Chinese herbal medicines (CHMs) leads to an increased understanding of assessing TCM therapies, which may be a promising way to illustrate the material basis of CHMs through their processing and extraction. In this review, we provide an overview of the nanostructures of natural and engineered CHMs, including extracted CHMs, polymer nanoparticles, liposomes, micelles, and nanofibers. Subsequently, the applications of these CHM-derived nanostructures to particular diseases are summarized and discussed. Additionally, we discuss the advantages of these nanostructures for studying the therapeutic efficacy of CHMs. Finally, the key challenges and opportunities for the development of these nanostructures are outlined.
Collapse
Affiliation(s)
- Ya-Li Zhang
- Beijing University of Chinese Medicine, Beijing, China.
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, China.
| | - Ya-Lei Wang
- Beijing University of Chinese Medicine, Beijing, China.
| | - Ke Yan
- Beijing University of Chinese Medicine, Beijing, China.
| | - Qi-Qi Deng
- Beijing University of Chinese Medicine, Beijing, China.
| | - Fang-Zhou Li
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, China.
| | - Xing-Jie Liang
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, China.
| | - Qian Hua
- Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
16
|
Sun Y, Cai J, Ding S, Bao S. Network Pharmacology Was Used to Predict the Active Components and Prospective Targets of Paeoniae Radix Alba for Treatment in Endometriosis. Reprod Sci 2023; 30:1103-1117. [PMID: 36258089 DOI: 10.1007/s43032-022-01102-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/05/2022] [Indexed: 11/30/2022]
Abstract
Endometriosis is one of the most common benign gynecologic diseases. Paeoniae Radix Alba (PRA) has been utilized to treat endometriosis. We wished to identify potential targets for PRA in the treatment of endometriosis, as well as to provide a groundwork for future studies into its pharmacological mechanism of action. Network pharmacology was employed to conduct investigations on PRA. Target proteins were chosen from the components of PRA for endometriosis treatment. A protein-protein interaction (PPI) was established using overlapping genes. Analyses of enrichment of function and signaling pathways were undertaken using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes databases to select "hub genes." Finally, the feasibility of analysis based on network pharmacology was determined using real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting. We demonstrated that PRA has 25 bioactive components and 167 putative targets that are therapeutically important. The anti-inflammatory and immune-boosting actions of tumor necrosis factor, albumin, signal transducer and activator of transcription (STAT)3, mitogen-activated protein kinase, Jun, interleukin (IL)-1B, prostaglandin-endoperoxide synthase 2, matrix metalloproteinase-9, vascular endothelial growth factor A, and IL-6 were identified as prospective targets. Seven major compounds in PRA and related to the STAT3 pathway could bind spontaneously to it. RT-qPCR and western blotting showed that expression of STAT3 and phospho-STAT3 was reduced significantly after PRA intervention. Hence, analyses of the active components of traditional Chinese medicine formulations through network pharmacology may open up new ideas for the treatment of diseases.
Collapse
Affiliation(s)
- Yuting Sun
- Department of Gynecology and Obstetrics of Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| | - Junhong Cai
- Medical Laboratory Center, Hainan General Hospital, Hainan Medical University, Haikou, 570102, China
| | - Shun Ding
- Department of Otolaryngology Head and Neck Surgery, the First Affiliated Hospital, Hainan Medical University, Haikou, 570102, China
| | - Shan Bao
- Department of Gynecology and Obstetrics of Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China.
| |
Collapse
|
17
|
Chen R, Ma H, Li X, Wang M, Yang Y, Wu T, Zhang Y, Kong H, Qu H, Zhao Y. A Novel Drug with Potential to Treat Hyperbilirubinemia and Prevent Liver Damage Induced by Hyperbilirubinemia: Carbon Dots Derived from Platycodon grandiflorum. Molecules 2023; 28:molecules28062720. [PMID: 36985691 PMCID: PMC10056707 DOI: 10.3390/molecules28062720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Platycodon grandiflorum (PG) is a traditional Chinese medicine with a long history, but its active compounds have not been reported. In this study, novel carbon dots (CDs), PG-based CDs (PGC-CDs), were discovered and prepared from PG via calcinations and characterized by transmission electron microscopy; high-resolution transmission electron microscopy; X-ray diffraction, fluorescence, ultraviolet-visible, and Fourier-transform infrared spectrometers; X-ray photoelectron spectroscopy; and high-performance liquid chromatography. In addition, the safety and antioxidant activity of PGC-CDs was evaluated by RAW264.7 cells and LO2 cells. The therapeutic effects of PGC-CDs on hyperbilirubinemia and liver protection were evaluated in a bilirubin-induced hyperbilirubinemia mice model. The experiment confirmed that the diameter range of PGC-CDs was from 1.2 to 3.6 nm. PGC-CDs had no toxicity to RAW264.7 cells and LO2 cells at a concentration of 3.91 to 1000 µg/mL and could reduce the oxidative damage of cells caused by H2O2. PGC-CDs could inhibit the increase levels of bilirubin and inflammation factors and increase the levels of antioxidants and survival rate, demonstrating that PGC-CDs possessed anti-inflammatory and anti-oxidation activity. PGC-CDs may reduce the content of bilirubin, so as to reduce a series of pathological lesions caused by bilirubin, which has potential in treating hyperbilirubinemia and preventing liver damage induced by hyperbilirubinemia.
Collapse
Affiliation(s)
- Rui Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Huagen Ma
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaopeng Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Meijun Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yunbo Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Tong Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yue Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Huihua Qu
- Center of Scientific Experiment, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Correspondence: ; Tel.: +86-010-6428-6705; Fax: +86-010-6428-6821
| |
Collapse
|
18
|
Green synthesis of multifunctional carbon dots from Crataegi Fructus for pH sensing, cell imaging and hemostatic effects. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
Yu W, Liang Z, Li Q, Liu Y, Liu X, Jiang L, Liu C, Zhang Y, Kang C, Yan J. The pharmacological validation of the Xiao-Jian-Zhong formula against ulcerative colitis by network pharmacology integrated with metabolomics. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115647. [PMID: 35987415 DOI: 10.1016/j.jep.2022.115647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/08/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inflammatory bowel disease (IBD) is pathologically characterized by an immune response accommodative insufficiency and dysbiosis accompanied by persistent epithelial barrier dysfunction, and is divided into ulcerative colitis (UC) and Crohn's disease (CD). Its progression increases the susceptibility to colitis-associated cancer (CAC), as well as other complications. The Xiao-Jian-Zhong (XJZ) formula has a historical application in the clinic to combat gastrointestinal disorders. AIM OF THE STUDY The investigation aimed to explore the molecular and cellular mechanisms of XJZ. MATERIALS AND METHODS Dextran sodium sulfate (DSS) was diluted in drinking water and given to mice for a week to establish murine models of experimental colitis, and the XJZ solution was administered for two weeks. Network pharmacology analysis and weighted gene co-expression network analysis (WGCNA) were utilized to predict the therapeutic role of XJZ against UC and CAC. 16S rRNA sequencing and untargeted metabolomics were conducted utilizing murine feces to examine the changes in the microbiome profile. Biochemical experiments were conducted to confirm the predicted functions. RESULTS XJZ treatment markedly attenuated DSS-induced experimental colitis progression, and the targets were enriched in inflammation, infection, and tumorigenesis, predicted by network pharmacology analysis. Based on The Cancer Genome Atlas (TCGA) database, the XJZ-targets were related to the survival probability in patients with colorectal cancer, underlying a potential therapeutic value in cancer intervention. Moreover, the XJZ therapy successfully rescued the decreased richness and diversity of microbiota, suppressed the potentially pathogenic phenotype of the gut microorganisms, and reversed the declined linoleic acid metabolism and increased cytochrome P450 activity in murine colitis models. Our in-vitro experiments confirmed that the XJZ treatment suppressed Caspase1-dependent pyroptosis and increased peroxisome proliferators-activated receptor-γ(PPAR-γ) expression in the colon, facilitated the alternative activation of macrophages (Mφs), inhibited tumor necrosis factor-α (TNFα)-induced reactive oxygen species (ROS) level in intestinal organoids (IOs), thereby favoring the mucosal healing. CONCLUSION The XJZ formula is efficacious for colitis by a prompt resolution of inflammation and dysbiosis, and by re-establishing a microbiome profile that favors re-epithelization, and prevents carcinogenesis.
Collapse
Affiliation(s)
- Wei Yu
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Zhenghao Liang
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Qi Li
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Yanzhi Liu
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Xincheng Liu
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Lu Jiang
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Chen Liu
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Yijia Zhang
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Cai Kang
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Jing Yan
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| |
Collapse
|
20
|
Li Z, Xu X, Wang Y, Kong L, Han C. Carrier-free nanoplatforms from natural plants for enhanced bioactivity. J Adv Res 2022:S2090-1232(22)00215-6. [PMID: 36208834 PMCID: PMC10403678 DOI: 10.1016/j.jare.2022.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/15/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Natural plants as well as traditional Chinese medicine have made outstanding contributions to the health and reproduction of human beings and remain the basis and major resource for drug innovation. Carrier-free nanoplatforms completely self-assembled by pure molecules or therapeutic components have attracted increasing attention due to their advantages of improved pharmacodynamics/pharmacokinetics, reduced toxicity, and high drug loading. In recent years, carrier-free nanoplatforms produced by self-assembly from natural plants have contributed to progress in a variety of therapeutic modalities. Notably, these nanoplatforms based on the interactions of components from different natural plants improve efficiency and depress toxicity. AIM OF REVIEW In this review, different types of self-assembled nanoplatforms are first summarized, mainly including nanoassemblies of pure small molecules isolated from different plants, extracellular vesicles separated from fresh plants, charcoal nanocomponents obtained from charred plants, and nanoaggregates from plants formulae decoctions. Key Scientific Concepts of Review: We mainly focus on composition, self-assembly mechanisms, biological activity and modes of action. Finally, a future perspective of existing challenges with respect to the clinical application of plant-based carrier-free nanoplatforms is discussed, which may be instructive to further develop effective carrier-free nanoplatforms from natural plants in the future.
Collapse
Affiliation(s)
- Zhongrui Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China; Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, 101 longmian Avenue, Nanjing 211166, PR China
| | - Xiao Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Yun Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China.
| | - Chao Han
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China.
| |
Collapse
|
21
|
Zhao J, Zhang Y, Zhao Y, Wu T, Chen Y, Zhang Y, Kong H, Zhao Y, Qu H. Protective Effects of Zingiberis Carbonisata-Based Carbon Dots on Diabetic Liver Injury in Mice. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To explain the active components of ZRC-CDs from the perspective of nanomaterials and investigate the potential mechanism for the treatment of diabetic liver injury, the structure, electron transfer properties, and elemental composition of ZRC-CDs were characterized. The protective
effects of ZRC-CDs on the diabetic liver injury were demonstrated using the Alloxan-induced diabetic model. The ZRC-CDs are spherical, with a diameter ranging from 1.0–4.5 nm and a yield of 0.56%. The results showed that ZRC-CDs decreased the levels of blood glucose in diabetic mice
and had a mitigating effect on elevated ALT and AST. More studies found that ZRC-CDs were able to decrease the levels of inflammatory cytokines and suppress the protein expression in related signaling pathways.
Collapse
Affiliation(s)
- Jie Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Yifan Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Yusheng Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Tong Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Yumin Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Yue Zhang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Huihua Qu
- Centre of Scientific Experiment, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| |
Collapse
|
22
|
Effects of Chinese Herbal Formula on Immune Function and Nutritional Status of Breast Cancer Patients. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5900024. [PMID: 35872927 PMCID: PMC9303106 DOI: 10.1155/2022/5900024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 01/01/2023]
Abstract
Background. Chinese herbal formulas have certain effects on patients with breast cancer (BC). This article discussed the effect of Buqi Yangxue decoction on the immune function and nutritional status of BC patients and provided an evidence for traditional Chinese medicine (TCM) to improve the quality of life and curative effect of BC patients. Methods. 66 cases of BC patients were divided into control group (n =33) and Chinese herbal formula group (n =33). The control group was received with TE chemotherapy, and the Chinese herbal formula group was received with Buqi Yangxue decoction combined with TE chemotherapy. Nutritional status, immune function, TCM symptom quantitative score, and adverse reactions were compared between the two groups. Results. There was no difference in all indexes between the two groups before intervention. After 4 weeks, the nutritional indexes ALB, PA, TRF, and TP in Chinese herbal formula group were higher than those in control group, except HGb. CD3+, CD4+, and CD4+/CD8+ in both groups were sharply higher than before treatment, while CD8+ was dramatically lower, and the changes in Chinese herbal formula group were more obvious than those in control group. In Chinese herbal formula group, the levels of IgG, IgA, and IgM were sharply increased compared with control group. The TCM syndrome scores in both groups were decreased significantly after treatment, especially in Chinese herbal formula group. In addition, nausea and vomiting, inappetence, liver function impairment, leukopenia, and thrombocytopenia occurred in both groups. There was no clear difference in the incidence of adverse reactions between Chinese herbal formula group and control group. Conclusion. Buqi Yangxue decoction can effectively improve the nutritional status and immune function of BC patients, which has important clinical significance for the later comprehensive treatment.
Collapse
|
23
|
Li D, Xu KY, Zhao WP, Liu MF, Feng R, Li DQ, Bai J, Du WL. Chinese Medicinal Herb-Derived Carbon Dots for Common Diseases: Efficacies and Potential Mechanisms. Front Pharmacol 2022; 13:815479. [PMID: 35281894 PMCID: PMC8906921 DOI: 10.3389/fphar.2022.815479] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/07/2022] [Indexed: 12/17/2022] Open
Abstract
The management of hemorrhagic diseases and other commonly refractory diseases (including gout, inflammatory diseases, cancer, pain of various forms and causes) are very challenging in clinical practice. Charcoal medicine is a frequently used complementary and alternative drug therapy for hemorrhagic diseases. However, studies (other than those assessing effects on hemostasis) on charcoal-processed medicines are limited. Carbon dots (CDs) are quasi-spherical nanoparticles that are biocompatible and have high stability, low toxicity, unique optical properties. Currently, there are various studies carried out to evaluate their efficacy and safety. The exploration of using traditional Chinese medicine (TCM) -based CDs for the treatment of common diseases has received great attention. This review summarizes the literatures on medicinal herbs-derived CDs for the treatment of the difficult-to-treat diseases, and explored the possible mechanisms involved in the process of treatment.
Collapse
Affiliation(s)
- Dan Li
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Kun-yan Xu
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wei-peng Zhao
- Department of Traditional Chinese Medicine, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ming-feng Liu
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Rui Feng
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - De-qiang Li
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Bai
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wen-li Du
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
24
|
Bailly C. The traditional and modern uses of Selaginella tamariscina (P.Beauv.) Spring, in medicine and cosmetic: Applications and bioactive ingredients. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114444. [PMID: 34302944 DOI: 10.1016/j.jep.2021.114444] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/08/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Extracts of the plant Selaginella tamariscina (P.Beauv.) Spring (spike moss) are used for a long time in Asia, for the treatment of multiple diseases and conditions. Aqueous and alcoholic leave extracts are used by local communities. In China, the plant (Juan bai) is listed on the Pharmacopoeia. In South Korea, the use of this plant (Kwon Baek) is mentioned in the book Dongui-Bogam (Heo Jun 1613), at the origin of the Hyungsang medicine. S. tamariscina is traditionally used in Vietnam (mong lung rong), Thailand (dok hin), Philippines (pakong-tulog) and other Asian countries. AIM OF THE STUDY To provide an analysis of the multiple traditional and current uses of S. tamariscina extracts (STE) in the field of medicine and cosmetic. The review is also intended at identifying the main natural products at the origin of the many pharmacological properties reported with these extracts (anti-inflammatory, antioxidant, antidiabetic, antibacterial, antiallergic, anticancer effects). METHODS Extensive database retrieval, such as SciFinder and PubMed, was performed by using keywords like " Selaginella tamariscina", "spike moss", "Selaginellaceae ". Relevant textbooks, patents, reviews, and digital documents were consulted to collate all available scientific literature and to provide a complete science-based survey of the topic. RESULTS Different solvents and methods are used to prepare STE. The process can largely modify the natural product content and properties of the extracts. STE display a range of pharmacological effects, useful to treat metabolic disorders, several inflammatory diseases and various cancers. A specific carbonized extract (S. tamariscina carbonisatus) has shown hemostatic effects, whereas standard STE can promote blood circulation. Many patented STE-containing cosmetic preparations are reviewed here. Several biflavonoids (chiefly amentoflavone) and phenolic compounds (selaginellin derivatives) are primarily responsible for the observed pharmacological properties. Potent inhibitors of protein tyrosine phosphatase 1 B (PTP1B), phosphodiesterase-4 (PDE4), and repressor of pro-inflammatory cytokines expression have been identified from STE. CONCLUSION The traditional use of STE supports the research performed with this plant. There are robust experimental data, based on in vitro and in vivo models, documenting the use of STE to treat type 2 diabetes, several inflammatory diseases, and some cancers (in combination with standard chemotherapy). Selaginella tamariscina (P.Beauv.) is a prime reservoir for amentoflavone, and many other bioactive natural products. The interest of the plant in medicine and cosmetic is amply justified.
Collapse
|
25
|
Li Y, Sun T, Hong Y, Qiao T, Wang Y, Li W, Tang S, Yang X, Li J, Li X, Zhou Z, Xiao Y. Mixture of Five Fermented Herbs ( Zhihuasi Tk) Alters the Intestinal Microbiota and Promotes the Growth Performance in Piglets. Front Microbiol 2021; 12:725196. [PMID: 34764942 PMCID: PMC8576326 DOI: 10.3389/fmicb.2021.725196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/16/2021] [Indexed: 12/17/2022] Open
Abstract
To explore the feasibility of using fermented Chinese herbal mixture Zhihuasi Tk (Z. Tk) supplementation to increase the swine production, the protective effect of dietary supplementation with Z. Tk on the intestinal oxidative stress model and the regulation of both growth performance and intestinal microbiota of weaned piglets were investigated in vitro. Our results showed that the addition of Z. Tk increased the cell viability, prevented the decrease of glutathione peroxidase, and significantly increased the total antioxidant capacity and reduced the damage caused by H2O2 to the tight junction proteins of the porcine small intestinal epithelial cell line (IPEC-J2). Furthermore, weaned piglets supplemented with either 2 kg/ton zinc oxide (ZnO) or 4 kg/ton of Z. Tk in the diet increased body weight as well as average daily feed intake and daily gain, while the feed conversion rate and diarrhea rate decreased within 0–35 days. Results of the taxonomic structure of the intestinal microbiota showed that, in 21 days after weaning, the Firmicutes/Bacteroidetes ratio in experimental group was increased, while the abundance of beneficial bacteria such, as Lactobacillus, was increased by Z. Tk, showing inhibitory effect on pathogenic bacteria such as members of Proteobacteria. In summary, dietary supplementation with Z. Tk maintained the intestinal microbiota in a favorable state for the host to effectively reduce the abnormal changes in the intestinal microbial structure and improved growth performance of weaned piglets. Therefore, Z. Tk may potentially function as a substitute for ZnO in feed additives for weaned piglets in modern husbandry.
Collapse
Affiliation(s)
- Yong Li
- COFCO Feed Co., Ltd., Beijing, China
| | - Tiehu Sun
- COFCO Nutrition and Health Research Institute, Beijing, China
| | - Yuxuan Hong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Tong Qiao
- Hubei Huada Real Science & Technology Co., Ltd., Wuhan, China
| | - Yongsheng Wang
- COFCO Nutrition and Health Research Institute, Beijing, China
| | - Wei Li
- COFCO Feed Co., Ltd., Beijing, China
| | - Shi Tang
- COFCO Feed Co., Ltd., Beijing, China
| | - Xin Yang
- COFCO Nutrition and Health Research Institute, Beijing, China
| | - Jie Li
- COFCO Nutrition and Health Research Institute, Beijing, China
| | - Xiaowen Li
- Hubei Huada Real Science & Technology Co., Ltd., Wuhan, China
| | - Zutao Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Yuncai Xiao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
26
|
Luo WK, Zhang LL, Yang ZY, Guo XH, Wu Y, Zhang W, Luo JK, Tang T, Wang Y. Herbal medicine derived carbon dots: synthesis and applications in therapeutics, bioimaging and sensing. J Nanobiotechnology 2021; 19:320. [PMID: 34645456 PMCID: PMC8513293 DOI: 10.1186/s12951-021-01072-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/30/2021] [Indexed: 02/02/2023] Open
Abstract
Since the number of raw material selections for the synthesis of carbon dots (CDs) has grown extensively, herbal medicine as a precursor receives an increasing amount of attention. Compared with other biomass precursors, CDs derived from herbal medicine (HM-CDs) have become the most recent incomer in the family of CDs. In recent ten years, a great many studies have revealed that HM-CDs tend to be good at theranostics without drug loading. However, the relevant development and research results are not systematically reviewed. Herein, the origin and history of HM-CDs are outlined, especially their functional performances in medical diagnosis and treatment. Besides, we sort out the herbal medicine precursors, and analyze the primary synthetic methods and the key characteristics. In terms of the applications of HM-CDs, medical therapeutics, ion and molecular detection, bioimaging, as well as pH sensing are summarized. Finally, we discuss the crucial challenges and future prospects. ![]()
Collapse
Affiliation(s)
- Wei-Kang Luo
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Liang-Lin Zhang
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Zhao-Yu Yang
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Xiao-Hang Guo
- Hunan University of Chinese Medicine, Changsha, China
| | - Yao Wu
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Wei Zhang
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jie-Kun Luo
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Tao Tang
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China.
| |
Collapse
|
27
|
Woo SM, Davis WD, Aggarwal S, Clinton JW, Kiparizoska S, Lewis JH. Herbal and dietary supplement induced liver injury: Highlights from the recent literature. World J Hepatol 2021; 13:1019-1041. [PMID: 34630872 PMCID: PMC8473494 DOI: 10.4254/wjh.v13.i9.1019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/08/2021] [Accepted: 08/09/2021] [Indexed: 02/06/2023] Open
Abstract
Herbal-induced liver injury (HILI) is an important and increasingly concerning cause of liver toxicity, and this study presents recent updates to the literature. An extensive literature review was conducted encompassing September 2019 through March 2021. Studies with clinically significant findings were analyzed and included in this review. We emphasized those studies that provided a causality assessment methodology, such as Roussel Uclaf Causality Assessment Method scores. Our review includes reports of individual herbals, including Garcinia cambogia, green tea extract, kratom as well as classes such as performance enhancing supplements, Traditional Chinese medicine, Ayurvedic medicine and herbal contamination. Newly described herbals include ashwagandha, boldo, skyfruit, and 'Thermo gun'. Several studies discussing data from national registries, including the United States Drug-Induced Liver Injury (DILI) Network, Spanish DILI Registry, and Latin American DILI Network were incorporated. There has also been a continued interest in hepatoprotection, with promising use of herbals to counter hepatotoxicity from anti-tubercular medications. We also elucidated the current legal conversation surrounding use of herbals by presenting updates from the Federal Drug Administration. The highlights of the literature over the past year indicate interest in HILI that will continue as the supplement industry in the United States grows.
Collapse
Affiliation(s)
- Stephanie M Woo
- Department of Internal Medicine, MedStar Georgetown University Hospital, Washington, DC 20007, United States.
| | - William D Davis
- Department of Internal Medicine, MedStar Georgetown University Hospital, Washington, DC 20007, United States
| | - Soorya Aggarwal
- Department of Gastroenterology, MedStar Georgetown University Hospital, Washington, DC 20007, United States
| | - Joseph W Clinton
- Department of Internal Medicine, MedStar Georgetown University Hospital, Washington, DC 20007, United States
| | - Sara Kiparizoska
- Department of Internal Medicine, MedStar Georgetown University Hospital, Washington, DC 20007, United States
| | - James H Lewis
- Department of Gastroenterology, MedStar Georgetown University Hospital, Washington, DC 20007, United States
| |
Collapse
|