1
|
Jiang L, Yi R, Chen H, Wu S. Quercetin alleviates metabolic-associated fatty liver disease by tuning hepatic lipid metabolism, oxidative stress and inflammation. Anim Biotechnol 2025; 36:2442351. [PMID: 39718035 DOI: 10.1080/10495398.2024.2442351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024]
Abstract
The natural flavonoid quercetin, which exhibits a range of biological activities, has been implicated in liver disease resistance in recent research. In vivo study attesting to quercetin's protective effect against metabolic-associated fatty liver disease (MAFLD) is inadequate, however. Here, our investigation explored the potential benefits of quercetin in preventing MAFLD in C57BL/6 mice fed a high-fat diet (HFD). The results revealed that quercetin ameliorated the aberrant enhancement of body and liver weight. The hepatic histological anomalie induced by MAFLD were also mitigated by quercetin. HFD-induced imbalance in serum LDL, HDL, AST, ALT, TG, and LDH was mitigated by quercetin. Mechanically, we found that quercetin improved lipid metabolism by reducing lipogenesis proteins including ACC, FASN, and SREBP-1c and enhancing β-oxidation proteins including PPARα and CPT1A. In vitro study demonstrated that quercetin regulated hepatic lipid metabolism by targeting SREBP-1c and PPARα. Additionally, quercetin enhanced the antioxidant capacity in HFD-treated mice by downregulating Nrf2 and HO-1 expressions and upregulating SOD and GPX1 expressions. The hyper-activation of inflammation was also restored by quercetin via eliminating the phosphorylation of IκBα and NF-κB p65. Collectively, our observations highlight that quercetin exerts hepatoprotective properties in MAFLD mice by regulating hepatic lipid metabolism, oxidative stress and inflammatory response.
Collapse
Affiliation(s)
- Ling Jiang
- Department of Endocrinology and Metabolism, People's Hospital of Yichun City, Yichun, Jiangxi, People's Republic of China
| | - Rong Yi
- Department of Endocrinology and Metabolism, People's Hospital of Yichun City, Yichun, Jiangxi, People's Republic of China
| | - Huan Chen
- Department of Endocrinology and Metabolism, People's Hospital of Yichun City, Yichun, Jiangxi, People's Republic of China
| | - Shuwu Wu
- Department of Endocrinology and Metabolism, People's Hospital of Yichun City, Yichun, Jiangxi, People's Republic of China
| |
Collapse
|
2
|
Wang X, Li G, Liu J, Gong W, Li R, Liu J. GSK621 ameliorates lipid accumulation via AMPK pathways and reduces oxidative stress in hepatocytes in vitro and in obese mice in vivo. Life Sci 2025; 374:123687. [PMID: 40334907 DOI: 10.1016/j.lfs.2025.123687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/14/2025] [Accepted: 05/01/2025] [Indexed: 05/09/2025]
Abstract
INTRODUCTION Metabolic-dysfunction-associated fatty liver disease (MAFLD) represents a broad spectrum of liver lipid metabolism disorders associated with metabolic homeostasis, inflammation, oxidative stress, and fibrogenesis. The incidence of MAFLD has increased in recent years, but there is a lack of effective treatment strategies. GSK621 shows potential as a novel adenosine-monophosphate-activated protein kinase (AMPK) agonist; however, its function in lipid metabolism has not yet been confirmed. OBJECTIVES This study aimed to determine the effects of GSK621 on liver lipid accumulation in vitro and vivo and explore the underlying mechanism of these effects. METHODS The function of GSK621 in lipid deposition was investigated in vitro with HepG2 cells and normal mouse liver cells (AML12), and in vivo using C57BL/6 J mice fed with a high-fat diet (60 % fat) for 8 weeks to establish a model of MAFLD, followed by GSK621 treatment for a further 8 weeks. RESULTS GSK621 treatment significantly improved hepatocyte steatosis via the AMPK-carnitine palmitoyl transferase 1 (CPT1A) pathway and decreased levels of reactive oxygen species (ROS) in cells, accompanied by elevated expression of antioxidative stress proteins. MAFLD mice showed significant improvements in liver steatosis after GSK621 treatment, as well as increased expression of liver proteins related to the AMPK pathway and antioxidative stress. CONCLUSION GSK621 can improve hepatocytes steatosis in vitro and vivo via the AMPK-CPT1A pathway by increasing lipid metabolism and augmenting expression of antioxidant-stress-related proteins to reduce ROS deposition.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, ShanDong province, People's Republic of China
| | - GuangBing Li
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, ShanDong province, People's Republic of China
| | - Jun Liu
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, ShanDong province, People's Republic of China
| | - Wei Gong
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, ShanDong province, People's Republic of China
| | - Ruixiao Li
- Shandong Provincial Center for Disease Control and Prevention, Jinan, ShanDong province, People's Republic of China
| | - Jun Liu
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, ShanDong province, People's Republic of China; Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, ShanDong province, People's Republic of China.
| |
Collapse
|
3
|
Lolescu BM, Furdui-Lința AV, Ilie CA, Sturza A, Zară F, Muntean DM, Blidișel A, Crețu OM. Adipose tissue as target of environmental toxicants: focus on mitochondrial dysfunction and oxidative inflammation in metabolic dysfunction-associated steatotic liver disease. Mol Cell Biochem 2025; 480:2863-2879. [PMID: 39704874 PMCID: PMC12048461 DOI: 10.1007/s11010-024-05165-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/10/2024] [Indexed: 12/21/2024]
Abstract
Obesity, diabetes, and their cardiovascular and hepatic comorbidities are alarming public health issues of the twenty-first century, which share mitochondrial dysfunction, oxidative stress, and chronic inflammation as common pathophysiological mechanisms. An increasing body of evidence links the combined exposure to multiple environmental toxicants with the occurrence and severity of metabolic diseases. Endocrine disruptors (EDs) are ubiquitous chemicals or mixtures with persistent deleterious effects on the living organisms beyond the endocrine system impairment; in particular, those known as metabolism-disrupting chemicals (MDCs), increase the risk of the metabolic pathologies in adult organism or its progeny. Being largely lipophilic, MDCs mainly target the adipose tissue and elicit mitochondrial dysfunction by interfering with mitochondrial bioenergetics, biogenesis, dynamics and/or other functions. Plastics, when broken down into micro- and nano-plastics (MNPs), have been detected in several human tissues, including the liver. The harmful interplay between inflammatory and redox processes, which mutually interact in a positive feed-back loop, hence the term oxidative inflammation ("OxInflammation"), occurs both at systemic and organ level. In both liver and adipose tissue, oxinflammation contributes to the progression of the metabolic dysfunction-associated steatotic liver disease (MASLD). Moreover, it has been reported that individuals with MASLD may be more susceptible to the harmful effects of toxicants (mainly, those related to mitochondria) and that chronic exposure to EDs/MDCs or MNPs may play a role in the development of the disease. While liver has been systematically investigated as major target organ for ambient chemicals, surprisingly, less information is available in the literature with respect to the adipose tissue. In this narrative review, we delve into the current literature on the most studied environmental toxicants (bisphenols, polychlorinated biphenyls, phthalates, tolylfluanid and tributyltin, per-fluoroalkyl and polyfluoroalkyl substances, heavy metals and MNPs), summarize their deleterious effects on adipose tissue, and address the role of dysregulated mitochondria and oxinflammation, particularly in the setting of MASLD.
Collapse
Affiliation(s)
- Bogdan M Lolescu
- Doctoral School Medicine, Center for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
- Center for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
| | - Adina V Furdui-Lința
- Doctoral School Medicine, Center for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
- Center for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
- Department III Functional Sciences-Chair of Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
| | - Cosmin A Ilie
- Center for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
- Department III Functional Sciences-Chair of Public Health & Sanitary Management, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
| | - Adrian Sturza
- Center for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
- Department III Functional Sciences-Chair of Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
| | - Flavia Zară
- Department II Microscopic Morphology-Chair of Histology, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
- Department of Pathology, Timisoara Municipal Emergency Clinical Hospital, Timișoara, Romania
| | - Danina M Muntean
- Center for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
- Department III Functional Sciences-Chair of Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
| | - Alexandru Blidișel
- Department of Surgery I-Clinic of Surgical Semiotics & Thoracic Surgery, Center for Hepato-Biliary and Pancreatic Surgery, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Eftimie Murgu Sq., No.2, 300041, Timișoara, Romania.
| | - Octavian M Crețu
- Department of Surgery I-Clinic of Surgical Semiotics & Thoracic Surgery, Center for Hepato-Biliary and Pancreatic Surgery, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Eftimie Murgu Sq., No.2, 300041, Timișoara, Romania
| |
Collapse
|
4
|
He S, Lv Y, Gao Z, Peng L. The Nb 4C 3 MXenzyme Attenuates MASH by Scavenging ROS in a Mouse Model. Int J Nanomedicine 2025; 20:5645-5659. [PMID: 40321802 PMCID: PMC12050042 DOI: 10.2147/ijn.s500891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/21/2025] [Indexed: 05/08/2025] Open
Abstract
Objective The incidence of metabolic dysfunction-associated steatohepatitis (MASH) is increasing because people's dietary habits are dominated by high caloric intake and sedentary lifestyles, leading to the accumulation of lipid, reactive oxygen species (ROS) and inflammation. However, treating MASH remains a challenge. Methods Two-dimensional (2D) niobium carbide (Nb4C3) MXene nanoenzymes (MXenzymes) possess both antioxidant and anti-inflammatory properties and have attracted considerable attention in the tumor and engineering fields. The Nb4C3 MXenzyme was developed for MASH therapy and exhibited biosafety and antilipid peroxidation activity. Results Nb4C3 reduced excessive ROS and proinflammatory cytokine levels through its antilipid peroxidation activities, resulting in the inhibition of hepatocyte lipid accumulation and inflammation in a methionine-choline-deficient diet (MCD)-induced murine MASH model. Mechanistically, Nb4C3 not only inhibited lipid accumulation and disrupted lipid metabolism in hepatocytes but also attenuated fatty acid-induced cell death by reducing intracellular ROS levels, which significantly promoted the polarization of M1 macrophages to M2 macrophages by alleviating oxidative stress and suppressing inflammatory factor expression. Conclusion The Nb4C3 MXenzyme can be used as a multifunctional bioactive material to alleviate hepatic steatosis and inflammation in MASH mice through its robust antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Shuying He
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou city, Guangdong Province, People’s Republic of China
| | - Yuerong Lv
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou city, Guangdong Province, People’s Republic of China
| | - Zixian Gao
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou city, Guangdong Province, People’s Republic of China
| | - Liang Peng
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou city, Guangdong Province, People’s Republic of China
- Department of Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou city, Guangdong Province, People’s Republic of China
| |
Collapse
|
5
|
Xu F, Qiu J, Liu N, Wei H, Gao Y, Fei Y, Xi J, Yu Z, Fan X, Chen L, Xia Y, Dou X. Therapeutic Potential of Raspberry Extract in High-Fat Diet-Induced Liver Injury via Apoptosis and AMPK/PPARα Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9408-9423. [PMID: 40168586 DOI: 10.1021/acs.jafc.4c09593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
This study aimed to explore the efficacy and mechanisms of raspberry (Rubus idaeus L. fruit) aqueous extract (RE) in alleviating high-fat diet (HFD)-induced metabolic-associated fatty liver disease (MAFLD). The MAFLD mouse model was established to examine the effects of RE through liver transcriptome and metabolomics analysis. In this study, RE supplementation significantly alleviated HFD-induced liver injury, hepatosteatosis, inflammation, and insulin resistance. Liver transcriptome analysis demonstrated that RE supplementation favorably regulated signaling pathways involved in fatty acid metabolism and inflammation, including the AMPK signaling pathway, PPAR signaling pathway, apoptosis, etc. Furthermore, the injection of compound C, an antagonist of AMPK, notably reversed the hepatoprotective effects of RE, evidenced by increased lipid profile levels, accelerated fatty acid-related gene disorder, and increased positive tunnel staining area. Furthermore, liver metabolomics analysis demonstrated that RE treatment led to substantial enrichment of the liver tissue metabolite umbelliferone (UMB), which has the potential to ameliorate lipid accumulation and hepatocyte injury through the AMPK signaling pathway. In summary, RE intervention mitigated HFD-induced liver dysfunction in mice, with UMB likely being the primary component responsible for its therapeutic efficacy in the liver. In addition, this study provided new insights, suggesting that RE could be used as a promising therapeutic approach for modulating MAFLD via apoptosis and the AMPK/PPARα signaling pathway.
Collapse
Affiliation(s)
- Fangying Xu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, China
| | - Jiannan Qiu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, China
| | - Nian Liu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, China
| | - Huaxin Wei
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, China
| | - Yanyan Gao
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, China
| | - Yang Fei
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, China
| | - Jiale Xi
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, China
| | - Zhiling Yu
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 852, China
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lin Chen
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, China
| | - Yongliang Xia
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, China
| | - Xiaobing Dou
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, China
| |
Collapse
|
6
|
Song Z, Bu S, Sang S, Li J, Zhang X, Song X, Ran Y. The Active Components of Traditional Chinese Medicines Regulate the Multi-Target Signaling Pathways of Metabolic Dysfunction-Associated Fatty Liver Disease. Drug Des Devel Ther 2025; 19:2693-2715. [PMID: 40231197 PMCID: PMC11995499 DOI: 10.2147/dddt.s514498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/31/2025] [Indexed: 04/16/2025] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD), which is characterized by hepatocyte lipid accumulation driven by systemic metabolic dysregulation, represents a critical therapeutic challenge in the context of the global metabolic syndrome epidemic. The clinically recommended drugs for MAFLD mainly include antioxidants, hepatoprotective anti-inflammatory drugs, and weight-loss drugs. However, the mechanisms underlying the progression of MAFLD is characterized by nonlinearity, highlighting the urgent need for safer multi-target alternative therapies. Although existing single-target pharmacological interventions often show limited efficacy and adverse effects, the multi-component and multi-target nature of the active ingredients in traditional Chinese medicine (TCM) formulations represent new opportunities for systemic metabolic regulation. In this study, by searching PubMed and Web of Science, we identified 108 experimental studies. By evaluating multiple mechanisms, such as improving lipid metabolism and insulin resistance, alleviating oxidative stress damage, inhibiting liver inflammation, suppressing liver fibrosis, reducing endoplasmic reticulum stress, regulating hepatocyte autophagy, inhibiting hepatocyte apoptosis, improving mitochondrial dysfunction, and regulating the intestinal flora, we constructed a cross-scale regulatory network for the treatment of MAFLD by the active components of TCM. Subsequently, the dynamic target groups were screened, and a new paradigm of "mechanism-oriented and spatiotemporal-optimized" design for TCM compound prescriptions was proposed, providing a theoretical framework for the development of precise therapies that can improve liver lipid metabolism, block inflammation and fibrosis, and restore intestinal homeostasis.
Collapse
Affiliation(s)
- Zhicong Song
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, People’s Republic of China
| | - Shuai Bu
- Department of Cardiology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, People’s Republic of China
| | - Suzhen Sang
- Affiliated Hospital of Shandong Academy of Traditional Chinese Medicine, Jinan City, Shandong Province, People’s Republic of China
| | - Jie Li
- Scientific Research Office, Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, People’s Republic of China
| | - Xihai Zhang
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, People’s Republic of China
| | - Xu Song
- Department of Cardiology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, People’s Republic of China
| | - Yuqin Ran
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, People’s Republic of China
| |
Collapse
|
7
|
Xiao P, Ye Z, Li X, Feng Q, Su Y. Ginseng and its functional components in non-alcoholic fatty liver disease: therapeutic effects and multi-target pharmacological mechanisms. Front Pharmacol 2025; 16:1540255. [PMID: 40271056 PMCID: PMC12014752 DOI: 10.3389/fphar.2025.1540255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/28/2025] [Indexed: 04/25/2025] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is a common type of chronic liver disease and its incidence is increasing. Its disease progression is closely related to non-alcoholic steatohepatitis and liver fibrosis. Effective treatment is currently lacking. The traditional Chinese medicine ginseng (Panax ginseng) shows unique advantages in NAFLD intervention, but its complex compositional system and molecular mechanism network still need to be systematically analyzed. Objective This paper systematically integrates evidence from nearly 20 years of research to elucidate the multi-target pharmacological mechanism of ginseng for the treatment of NAFLD. Methods Relevant information was sourced from Pubmed, Web of science, Embase and CNKI databases. Using BioRender and visio to draw biomedical illustrations. Results The active ingredients of ginseng contain 2 classes of saponins (tetracyclic triterpene saponins, pentacyclic triterpene saponins and other modified types) and non-saponins. Different cultivation methods, processing techniques and extraction sites have expanded the variety of ginseng constituents and demonstrated different pharmacological activities. Studies have shown that ginseng and its functional components have the ability to regulate lipid metabolism disorders, inflammation, oxidative stress, endoplasmic reticulum stress, insulin resistance, disruption of intestinal flora structure, cell death and senescence. Demonstrates the potential of ginseng for the treatment of NAFLD. Conclusion This study reveals for the first time the integrative mechanism of ginseng in the treatment of NAFLD through the tertiary mode of action of "multi-component multi-target multi-pathway". The multilevel modulatory ability of ginseng provides a new direction for the development of comprehensive therapeutic strategies for NAFLD.
Collapse
Affiliation(s)
| | | | | | - Quansheng Feng
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Su
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
8
|
Wang QQ, Zhang N, Xu X, Lv SA, Huang ZD, Long XD, Wu J. The role of Triglyceride Glucose-Waist Circumference (TyG_WC) in predicting metabolic dysfunction-associated steatotic liver disease among individuals with hyperuricemia. BMC Gastroenterol 2025; 25:220. [PMID: 40186129 PMCID: PMC11970000 DOI: 10.1186/s12876-025-03786-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/14/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND/AIMS The incidence of metabolic dysfunction-associated steatotic liver disease (MASLD) among individuals with hyperuricemia is significantly high. The aim of this study was to identify effective biomarkers for the detection of MASLD among patients with hyperuricemia. METHOD We conducted an analysis involving 3424 participants with hyperuricemia from the National Health and Nutrition Examination Survey (1999-2020). To identify potential significant variables, we employed Boruta's algorithm, SHapley Additive exPlanations (SHAP) and random forests. Multivariable logistic regression models were utilized to assess the odds ratio (OR) of developing MASLD. To evaluate the accuracy and clinical value of our prediction model, we employed receiver operating characteristic (ROC) curves and decision curve analysis (DCA) curves. RESULTS Among the study population of 3424 participants (mean [SD] age, 54 [20] years, 1788 [52.22%] males) with hyperuricemia, 1670 participants had MASLD. Using Boruta's algorithm, SHAP and random forests, our analysis suggested that Triglyceride Glucose-Waist Circumference (TyG_WC) was one of the most significant variables in predicting MASLD risk, with an area under the receiver operating characteristic (AUROC) of 0.865. The restricted curve spline (RCS) revealed a positive association between the odds ratio of TyG_WC and MASLD, when compared with lowest quantile of TyG_WC, the risk of MASLD for highest quantile was 137.96 times higher. The predictive strategy incorporating TyG_WC notably enhanced the clinical model, with threshold probabilities spanning from approximately 0% to 100%, resulting in a significant improvement of the net benefit. CONCLUSIONS Our analysis found that TyG_WC was one of the most significant variables in predicting MASLD risk among individuals with hyperuricemia.
Collapse
Affiliation(s)
- Qian-Qian Wang
- Department of Laboratory Medicine, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201803, China
- Department of Pathology, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
- Department of Basic Research, Key Laboratory of Tumor Molecular Pathology of Guangxi Higher Education Institutes, Baise, 533000, China
| | - Ning Zhang
- Department of Laboratory Medicine, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201803, China
- Medical Research and Education Center, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201803, China
| | - Xiang Xu
- Department of Laboratory Medicine, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201803, China
- Department of Pathology, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
- Department of Basic Research, Key Laboratory of Tumor Molecular Pathology of Guangxi Higher Education Institutes, Baise, 533000, China
| | - Si-Ang Lv
- Department of Laboratory Medicine, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201803, China
- Department of Pathology, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
- Department of Basic Research, Key Laboratory of Tumor Molecular Pathology of Guangxi Higher Education Institutes, Baise, 533000, China
| | - Zhuo-Deng Huang
- Department of Laboratory Medicine, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201803, China
- Department of Pathology, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
- Department of Basic Research, Key Laboratory of Tumor Molecular Pathology of Guangxi Higher Education Institutes, Baise, 533000, China
| | - Xi-Dai Long
- Department of Pathology, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China.
- Department of Basic Research, Key Laboratory of Tumor Molecular Pathology of Guangxi Higher Education Institutes, Baise, 533000, China.
| | - Jun Wu
- Department of Laboratory Medicine, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201803, China.
- Department of Pathology, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China.
- Department of Basic Research, Key Laboratory of Tumor Molecular Pathology of Guangxi Higher Education Institutes, Baise, 533000, China.
| |
Collapse
|
9
|
Liu W, Chen W, Chen J, Sun Y, Chang D, Wang C, Xie J, Lin W, Li S, Xu W, Lin Y, Zheng Y, Zhou X, Huang M. Baicalin attenuated metabolic dysfunction-associated fatty liver disease by suppressing oxidative stress and inflammation via the p62-Keap1-Nrf2 signalling pathway in db/db mice. Phytother Res 2025; 39:1663-1678. [PMID: 37697721 PMCID: PMC12013857 DOI: 10.1002/ptr.8010] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/01/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is the main cause of chronic liver disease. Baicalin (Bai), a bioactive molecule found in Scutellaria baicalensis Georgi, possesses antioxidant and antiinflammatory properties. These activities suggest Bai could be a promising therapeutic agent against NAFLD; however, its specific effects and underlying mechanism are still not clear. This study aims to explore the effect of Bai to attenuate MAFLD and associated molecular mechanisms. Bai (50, 100 or 200 mg/kg) was orally administered to db/db mice with MAFLD for 4 weeks or db/m mice as the normal control. Bai markedly attenuated lipid accumulation, cirrhosis and hepatocytes apoptosis in the liver tissues of MAFLD mice, suggesting strong ability to attenuate MAFLD. Bai significantly reduced proinflammatory biomarkers and enhanced antioxidant enzymes, which appeared to be modulated by the upregulated p62-Keap1-Nrf2 signalling cascade; furthermore, cotreatment of Bai and all-trans-retinoic acid (Nrf2 inhibitor) demonstrated markedly weakened liver protective effects by Bai and its induced antioxidant and antiinflammatory responses. The present study supported the use of Bai in attenuating MAFLD as a promising therapeutic agent, and its strong mechanism of action in association with the upregulating the p62-keap1-Nrf2 pathway.
Collapse
Affiliation(s)
- Wen‐Jing Liu
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia MedicaFujian University of Traditional Chinese MedicineFuzhouChina
| | - Wei‐Wen Chen
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia MedicaFujian University of Traditional Chinese MedicineFuzhouChina
| | - Jia‐Ying Chen
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia MedicaFujian University of Traditional Chinese MedicineFuzhouChina
| | - Yi‐Bin Sun
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia MedicaFujian University of Traditional Chinese MedicineFuzhouChina
| | - Dennis Chang
- NICM Health Research InstituteWestern Sydney UniversityWestmeadNew South WalesAustralia
| | - Chen‐Xiang Wang
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia MedicaFujian University of Traditional Chinese MedicineFuzhouChina
| | - Jin‐Dong Xie
- Science and Technology Innovation and Transformation CenterFujian University of Traditional Chinese MedicineFuzhouChina
| | - Wei Lin
- Science and Technology Innovation and Transformation CenterFujian University of Traditional Chinese MedicineFuzhouChina
| | - Shao‐Hua Li
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia MedicaFujian University of Traditional Chinese MedicineFuzhouChina
| | - Wen Xu
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia MedicaFujian University of Traditional Chinese MedicineFuzhouChina
| | - Yan‐Xiang Lin
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia MedicaFujian University of Traditional Chinese MedicineFuzhouChina
| | - Yan‐Fang Zheng
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia MedicaFujian University of Traditional Chinese MedicineFuzhouChina
| | - Xian Zhou
- NICM Health Research InstituteWestern Sydney UniversityWestmeadNew South WalesAustralia
| | - Ming‐Qing Huang
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia MedicaFujian University of Traditional Chinese MedicineFuzhouChina
| |
Collapse
|
10
|
Qi WY, Zheng SH, Li SZ, Wang W, Wang QY, Liu QY, Li XK, Zhang JX, Gan DN, Ye YA, Zao XB. Immune cells in metabolic associated fatty liver disease: Global trends and hotspots (2004-2024). World J Hepatol 2025; 17:103327. [PMID: 40177204 PMCID: PMC11959657 DOI: 10.4254/wjh.v17.i3.103327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/07/2025] [Accepted: 03/05/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND The interplay between immune cells and metabolic associated fatty liver disease (MAFLD) is a critical research frontier, bridging immunology and hepatology. The bibliometric findings can guide future research and funding priorities in the field by highlighting key areas of focus and potential therapeutic targets. AIM To analyze the literature on immune cells and MAFLD, identifying research trends and future hotspots. METHODS A systematic search in the Web of Science Core Collection from January 1, 2004 to May 20, 2024, yielded 1936 articles on immune cells and MAFLD. Excluding non-research documents, the data were analyzed using R packages Cluster profiler, enrichplot, ggplot2, VOSviewer and CiteSpace. Visualizations were created for countries, institutions, authors, journals, fields, co-cited references, keywords, genes, and diseases, with gene a disease data from Citexs. RESULTS The field gained momentum in 2006, with the United States of America and China as leading contributors. Key research themes included oxidative stress, metabolic syndrome, liver fibrosis, and the role of Kupffer cells. Bioinformatics identified interleukin-6, tumor necrosis factor and signal transducer and activator of transcription 3 as central proteins in immune responses and inflammation, suggesting potential therapeutic targets for MAFLD. Clinically, these hub genes play pivotal roles in the pathogenesis of MAFLD. For instance, targeting the tumor necrosis factor signaling pathway could reduce inflammation, while modulating interleukin-6 and signal transducer and activator of transcription 3 expression may improve metabolic function, offering new strategies for MAFLD therapy. CONCLUSION This bibliometric analysis reports on the research hotspots and emerging trends in the field of immune cells and MAFLD, highlighting key proteins and potential therapeutic strategies through bioinformatics.
Collapse
Affiliation(s)
- Wen-Ying Qi
- Department of Spleen and Stomach Diseases, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 100700, China
| | - Shi-Hao Zheng
- Department of Spleen and Stomach Diseases, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 100700, China
| | - Si-Ze Li
- Department of Spleen and Stomach Diseases, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 100700, China
| | - Wei Wang
- Department of Spleen and Stomach Diseases, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 100700, China
| | - Qiu-Yue Wang
- Department of Spleen and Stomach Diseases, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 100700, China
| | - Qi-Yao Liu
- Department of Spleen and Stomach Diseases, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 100700, China
- Institute of Hepatology, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 100700, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 100700, China
| | - Xiao-Ke Li
- Department of Spleen and Stomach Diseases, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 100700, China
- Institute of Hepatology, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 100700, China
| | - Jia-Xin Zhang
- Department of Spleen and Stomach Diseases, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 100700, China
- Institute of Hepatology, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 100700, China
| | - Da-Nan Gan
- Department of Spleen and Stomach Diseases, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 100700, China
- Institute of Hepatology, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yong-An Ye
- Department of Spleen and Stomach Diseases, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 100700, China
- Institute of Hepatology, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 100700, China
| | - Xiao-Bin Zao
- Department of Spleen and Stomach Diseases, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 100700, China
- Institute of Hepatology, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 100700, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 100700, China.
| |
Collapse
|
11
|
Kuruppu H, Karunananda M, Jeewandara C, Gomes L, Dissanayake DMCB, Ranatunga C, Chathurangika PH, Senatilleke N, Warnakulasuriya N, Wickramanayake RH, Wijewickrama A, Idampitiya D, Ogg GS, Malavige GN. Oxidative stress induced liver damage in dengue is exacerbated in those with obesity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.18.25324170. [PMID: 40166538 PMCID: PMC11957102 DOI: 10.1101/2025.03.18.25324170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Background Obesity and diabetes are risk factors for severe dengue. As there are limited data on the association of obesity with liver dysfunction and oxidative stress in patients with acute dengue, we investigated liver dysfunction associated with obesity, oxidative stress and inflammatory markers, in a large cohort of patients with varying severity of acute dengue. Methods 577 adults dengue patients with acute disease, presenting with a duration of illness ≤ 4 days, were enrolled and followed up from admission to discharge, with clinical and laboratory features recorded. Aspartate transaminase (AST), alanine transaminase (ALT), C-reactive protein, ferritin, 4-hydroxynonenal (4-HNE) and malondialdehyde (MDA) levels were measured, along with the height, weight and waist circumference. Results AST, ALT, CRP and ferritin levels were significantly higher in patients with central obesity (waist circumference of ≥80cm in women or ≥90cm in men) compared to leaner individuals. ALT and CRP levels were also significantly higher in patients with a BMI of ≥ 23.9 kg/m2. 4-HNE levels significantly increased with the rise in AST levels and with ALT levels although not significant. In contrast, MDA levels gradually decreased with the rise in AST levels and ALT levels. There were no differences in 4-HNE and MDA levels in relation to clinical disease severity. However, MDA levels were significantly higher in younger individuals, and leaner individuals with a normal BMI. Furthermore, MDA levels inversely correlated with serum ferritin levels, while AST, ALT and CRP levels significantly correlated ferritin levels. Conclusions 4-HNE and MDA which are markers of lipid peroxidation, appear to play different roles in the pathogenesis of dengue, which should be further investigated for identification of therapeutic targets for treatment of dengue.
Collapse
Affiliation(s)
- Heshan Kuruppu
- Allergy, Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Maneshka Karunananda
- Allergy, Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Chandima Jeewandara
- Allergy, Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Laksiri Gomes
- Allergy, Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - D M C B Dissanayake
- Allergy, Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Chathura Ranatunga
- Allergy, Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Padukkage Harshani Chathurangika
- Allergy, Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Nushara Senatilleke
- Allergy, Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Navanjana Warnakulasuriya
- Allergy, Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Rivindu H Wickramanayake
- Allergy, Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | | | | | - Graham S Ogg
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, United Kingdom, University of Oxford, Oxford, United Kingdom
| | - Gathsaurie Neelika Malavige
- Allergy, Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, United Kingdom, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
12
|
He S, Lv Y, Qiu J, Cui S, Gao Z, Peng L. Ta 4C 3 MXene Slows Progression of Fatty Liver Disease through Its Anti-Inflammatory and ROS-Scavenging Effects. ACS APPLIED MATERIALS & INTERFACES 2025; 17:17217-17229. [PMID: 40051029 DOI: 10.1021/acsami.4c20945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
Treating metabolic dysfunction-associated fatty liver disease (MAFLD) and reducing the occurrence of MAFLD-associated liver cancer remain challenging. Two-dimensional (2D) tantalum carbide (Ta4C3) MXene nanozymes (MXenzymes) exhibit antioxidant and anti-inflammatory activities and have thus attracted considerable attention in the fields of oncology and engineering. However, the potential mechanism of action and bioactive properties of Ta4C3 in MAFLD remain uncertain. In our study, Ta4C3 not only inhibited lipid accumulation and disrupted lipid metabolism in hepatocytes but also reduced cell death caused by fatty acids by decreasing intracellular reactive oxygen species (ROS) levels, which significantly promoted the polarization of M1 macrophages to M2 macrophages by alleviating oxidative stress and further suppressing inflammatory factor expression. In mice fed a methionine-choline-deficient (MCD) diet, Ta4C3 reduced lipid accumulation, the infiltration of inflammatory cells, and liver cell apoptosis by modulating the cellular microenvironment through its anti-inflammatory and antioxidant properties. Therefore, Ta4C3 can be used as a multifunctional bioactive material to alleviate hepatic steatosis and inflammation in individuals with MAFLD/metabolic dysfunction-associated steatohepatitis (MASH) because of its robust antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Shuying He
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Yuerong Lv
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Jingnan Qiu
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Shudan Cui
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Zixian Gao
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Liang Peng
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510120, China
- Department of Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| |
Collapse
|
13
|
Wu Y, Zhou J. Dapansutrile Regulates Mitochondrial Oxidative Stress and Reduces Hepatic Lipid Accumulation in Diabetic Mice. Curr Issues Mol Biol 2025; 47:148. [PMID: 40136402 PMCID: PMC11941701 DOI: 10.3390/cimb47030148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
(1) Background: Hepatic lipid accumulation is the initial factor in metabolic-associated fatty liver disease (MAFLD) in type 2 diabetics, leading to accelerated liver damage. The NOD-like receptor protein 3 (NLRP3) inflammasome plays a critical role in this process. Dapansutrile (DAPA) is a novel NLRP3 inflammasome inhibitor; however, its effect on ectopic lipid accumulation in the liver remains unclear. This study aimed to investigate the therapeutic effect of DAPA on hepatic lipid accumulation in a diabetic mouse model and its potential mechanisms. (2) Methods: The effects of DAPA on hepatic ectopic lipid deposition and liver function under metabolic stress were evaluated in vivo using db/db and high-fat diet (HFD) + streptozotocin (STZ) mouse models. Additionally, the role and mechanism of DAPA in cellular lipid deposition, mitochondrial oxidative stress, and inflammation were assessed in HepG2 cells treated with free fatty acids (FFA) and DAPA. (3) Results: Our findings indicated that DAPA treatment improved glucose and lipid metabolism in diabetic mice, particularly addressing liver heterotopic lipid deposition and insulin resistance. DAPA treatment also ameliorated lipid accumulation and mitochondrial-related functions and inflammation in HepG2 cells through the NLRP3-Caspase-1 signaling axis. (4) Conclusions: Targeting NLRP3 with DAPA may represent a novel therapeutic approach for diabetes-related fatty liver diseases.
Collapse
Affiliation(s)
| | - Jiaqiang Zhou
- Department of Endocrinology and Metabolism, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China;
| |
Collapse
|
14
|
Song Y, Ni W, Zheng M, Sheng H, Wang J, Xie S, Yang Y, Chi X, Chen J, He F, Fan X, Mi Y, Zhang J, Wang B, Bai L, Xie W, Zhong B, Yeo YH, Rui F, Zang S, Li J, Shi J. Vitamin E (300 mg) in the treatment of MASH: A multi-center, randomized, double-blind, placebo-controlled study. Cell Rep Med 2025; 6:101939. [PMID: 39970876 PMCID: PMC11866479 DOI: 10.1016/j.xcrm.2025.101939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/15/2024] [Accepted: 01/13/2025] [Indexed: 02/21/2025]
Abstract
The efficacy and safety of a lower dose of vitamin E for metabolic dysfunction-associated steatohepatitis (MASH) treatment are unclear. This multi-center, randomized, double-blind, placebo-controlled study includes 124 non-diabetic participants with biopsy-proven MASH. Participants are randomly assigned to receive oral vitamin E 300 mg or the placebo in a 1:1 ratio. The primary outcome is improvement in hepatic histology. In the modified intention-to-treat population, 29.3% of participants in the vitamin E group achieve the primary outcome compared with 14.1% in the placebo group. Significant improvement in steatosis, lobular inflammation, and fibrosis stages is observed in the vitamin E group. 12 serious adverse events are reported in this trial but are not considered to be related to the treatment. Vitamin E 300 mg daily achieves sound improvements in liver histology in the Chinese population with MASH. This study is registered at ClinicalTrials.gov (NCT02962297).
Collapse
Affiliation(s)
- Yu Song
- Department of Infectious Diseases and Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China; Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou, Zhejiang 310015, P.R. China
| | - Wenjing Ni
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210000, P.R. China; Department of Infectious Disease, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210000, P.R. China
| | - Minghua Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, P.R. China
| | - Huiping Sheng
- Department of Infectious Diseases, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750003, P.R. China
| | - Jing Wang
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646099, P.R. China
| | - Shilong Xie
- Zhejiang Medicine Co. Ltd, Hangzhou, Zhejiang 311899, P.R. China
| | - YongFeng Yang
- Department of Liver Disease, the Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210003, P.R. China
| | - Xiaoling Chi
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Jinjun Chen
- Hepatology Unit, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510925, P.R. China
| | - Fangping He
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Xiaotang Fan
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Yuqiang Mi
- Department of Hepatology, Tianjin Second People's Hospital, Tianjin 301799, P.R. China
| | - Jing Zhang
- Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100000, P.R. China
| | - Bingyuan Wang
- The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lang Bai
- Center for Infectious Diseases, West China Hospital, Sichuan University, Chengdu Sichuan, P.R. China
| | - Wen Xie
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Bihui Zhong
- Department of Gastroenterology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510062, P.R. China
| | - Yee Hui Yeo
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Fajuan Rui
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210000, P.R. China; Department of Infectious Disease, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210000, P.R. China
| | - Shufei Zang
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China.
| | - Jie Li
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210000, P.R. China; Department of Infectious Disease, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210000, P.R. China.
| | - Junping Shi
- Department of Infectious Diseases and Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China; Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou, Zhejiang 310015, P.R. China.
| |
Collapse
|
15
|
Wang T, Liu B, Huang J, Zhao Q, Shen H, Bi T, Liu Z, Dai Y, Sun Q. IFN-γ-mediated inhibition of JAK/STAT signaling via nano-scutellarin treatment is an efficient strategy for ameliorating liver fibrosis. J Transl Med 2025; 23:195. [PMID: 39962553 PMCID: PMC11834254 DOI: 10.1186/s12967-025-06155-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/18/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatohepatitis (MASH) is a large group of metabolic diseases that are hazardous to human health. Endothelial-to-mesenchymal transition (EndMT) mediated myofibroblast activation is an important factor that aggravates the development of liver fibrosis during MASH. However, the limited understanding of the underlying molecular mechanisms that drive EndMT in MASH has hindered the development of molecularly targeted therapies specifically targeting this pathological process. METHODS We employed wild-type and ifn-γ-deficient mice, MASH models were induced repeated CCl4 injections and a high-fat diet to verify the significance of IFN-γ role in vivo and its impact in EndMT. Male mice models of MASH were used to further analyze the effect of Scutellarin@BSA on the improvement of liver fibrosis during MASH in vivo and HUVECs were used to assess IFN-γ effect on EndMT and its interaction with JAK signaling pathway in vitro. RESULTS The results showed that IFN-γ is revealed as a key regulator of EndMT during MASH, as evidenced by the significantly lower levels of EndMT and reduced pathological damage in the livers of ifn-γ knockout mice. Furthermore, our research has led to the development of Scutellarin@BSA therapy, which targets and mitigates IFN-γ-driven EndMT, which showed excellent therapeutic effects on EndMT and liver fibrosis in vivo and in vitro during MASH. Mechanistically, IFN-γ can directly bind to the JAK protein and activate downstream STAT1 transcription factors, exerting transcriptional activity and further driving the expression of EndMT-associated proteins. Notably, Scutellarin@BSA treatment effectively diminishes the hallmarks of liver fibrosis by modulating the canonical JAK/STAT1 signaling pathway. CONCLUSIONS IFN-γ was identified as a key regulator of EndMT, and Scutellarin@BSA, as an emerging treatment, has been found to effectively inhibit EndMT by directly targeting the regulatory influence of the IFN-γ signaling. This result demonstrates significant therapeutic efficacy in alleviating hepatic fibrosis during MASH, highlighting its great potential as an innovative liver fibrosis treatment.
Collapse
Affiliation(s)
- Ting Wang
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Bangguo Liu
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Juan Huang
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Qixin Zhao
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Hongping Shen
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Tao Bi
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
- State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 853, China
| | - Zengjin Liu
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Yong Dai
- Sichuan Police College, Luzhou, 646000, Sichuan, China.
| | - Qin Sun
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
16
|
Wu Y, Zheng G, Zhang F, Li W. Association of high-sensitivity C-reactive protein with hepatic fibrosis in patients with metabolic dysfunction-associated steatotic liver disease. Front Immunol 2025; 16:1544917. [PMID: 39995674 PMCID: PMC11847791 DOI: 10.3389/fimmu.2025.1544917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/23/2025] [Indexed: 02/26/2025] Open
Abstract
Objective This study aimed to investigate the association between high-sensitivity C-reactive protein (hsCRP) levels and hepatic fibrosis in patients with metabolic dysfunction-associated steatotic liver disease (MASLD) and assess its predictive efficacy. Methods The study included 1,477 participants from the United States and 1,531 from China diagnosed with MASLD. Liver stiffness measurement (LSM) and controlled attenuation parameter (CAP) were assessed by vibration-controlled transient elastography (VCTE) to evaluate the presence and degree of hepatic fibrosis and steatosis. The relationship between hsCRP levels and hepatic fibrosis in MASLD patients was examined using multivariable-adjusted and restricted cubic spline (RCS) models. Additionally, subgroup analyses were conducted to investigate the potential heterogeneity among different characteristic subgroups. Results The results demonstrated a significant correlation between elevated hsCRP levels and an increased risk of significant fibrosis, advanced fibrosis, and cirrhosis in the US cohort of MASLD patients (OR 2.22, 1.69, and 2.85, respectively; all P <0.05). The results of the Chinese cohort were consistent with those of the US cohort, and there was a significant and positive correlation between hsCRP levels and the risk of hepatic fibrosis in patients with MASLD (OR 2.53, 3.85, and 3.78, respectively, all P <0.001). The RCS analysis revealed a significant non-linear relationship between hsCRP levels and the degree of hepatic fibrosis, with disparate inflection point values observed across different cohorts (approximately 9 mg/L in the US cohort and 4 mg/L in the Chinese cohort). The impact of hsCRP levels on the risk of hepatic fibrosis varied across different subgroups with distinct characteristics. Conclusion The present study demonstrated a significant correlation between hsCRP levels and the degree of hepatic fibrosis in patients with MASLD, with notable dose-response relationships and subgroup differences.
Collapse
Affiliation(s)
- Yunfei Wu
- Department of Pathology, Changzhou Third People’s Hospital, Changzhou, China
- Changzhou Clinical College, Xuzhou Medical University, Changzhou, China
| | - Guojun Zheng
- Changzhou Clinical College, Xuzhou Medical University, Changzhou, China
- Clinical Laboratory, Changzhou Third People’s Hospital, Changzhou, China
| | - Fan Zhang
- Changzhou Clinical College, Xuzhou Medical University, Changzhou, China
- Department of Endocrinology, Changzhou Third People’s Hospital, Changzhou, China
- Department of Clinical Nutrition, Changzhou Third People’s Hospital, Changzhou, China
| | - Wenjian Li
- Changzhou Clinical College, Xuzhou Medical University, Changzhou, China
- Department of Urology, Changzhou Third People’s Hospital, Changzhou, China
| |
Collapse
|
17
|
Shen D, Cai X, Hu J, Song S, Zhu Q, Ma H, Zhang Y, Ma R, Zhou P, Yang W, Hong J, Zhang D, Li N. Inflammatory Indices and MAFLD Prevalence in Hypertensive Patients: A Large-Scale Cross-Sectional Analysis from China. J Inflamm Res 2025; 18:1623-1638. [PMID: 39925928 PMCID: PMC11806676 DOI: 10.2147/jir.s503648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/24/2025] [Indexed: 02/11/2025] Open
Abstract
Objective Hypertension development and progression are largely influenced by inflammation, which plays a critical role by activating the immune system and causing damage to the vascular endothelium. Metabolic dysfunction-associated fatty liver disease (MAFLD) is also associated with chronic low-grade inflammation, which drives disease progression via metabolic imbalances and adipose tissue dysfunction. This study investigates the relationship between inflammatory indices and MAFLD in hypertensive patients and assesses the predictive accuracy of these indices for MAFLD. Methods We performed a cross-sectional analysis involving 34,303 hypertensive patients from a Chinese hospital-based registry. The diagnosis of MAFLD was established using metabolic dysfunction criteria alongside evidence of hepatic steatosis confirmed through imaging. Complete blood counts were used to calculate inflammatory indices, including the monocyte-to-lymphocyte ratio (MLR), neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), systemic inflammatory response index (SIRI), systemic immune-inflammation index (SII), and aggregate index of systemic inflammation (AISI). To assess the relationship between inflammatory indices and MAFLD, multivariable logistic regression was performed with adjustments for potential confounders. The diagnostic performance of these indices was analyzed using receiver operating characteristic (ROC) curves and area under the curve (AUC) calculations. Results Patients with MAFLD exhibited significantly elevated levels of all inflammatory indices compared to those without. After multivariable adjustment, each standard deviation increase in AISI, SIRI, and SII was associated with a 74%, 62%, and 58% increased odds of MAFLD, respectively. The AUC for AISI was 0.659, indicating moderate diagnostic accuracy. The AUCs for SIRI and SII were 0.626 and 0.619, respectively, while NLR, PLR, and MLR had lower AUCs of 0.593, 0.558, and 0.589, respectively. Conclusion In hypertensive patients, inflammatory indices, especially AISI, show a strong association with MAFLD, indicating their potential utility in risk stratification within clinical settings. Further research is needed to evaluate the effectiveness of these markers in the management of MAFLD.
Collapse
Affiliation(s)
- Di Shen
- Graduate School, Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Xintian Cai
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, People’s Republic of China
| | - Junli Hu
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, People’s Republic of China
| | - Shuaiwei Song
- Graduate School, Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Qing Zhu
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, People’s Republic of China
| | - Huimin Ma
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, People’s Republic of China
| | - Yingying Zhang
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, People’s Republic of China
| | - Rui Ma
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, People’s Republic of China
| | - Pan Zhou
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, People’s Republic of China
| | - Wenbo Yang
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, People’s Republic of China
| | - Jing Hong
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, People’s Republic of China
| | - Delian Zhang
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, People’s Republic of China
| | - Nanfang Li
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, People’s Republic of China
| |
Collapse
|
18
|
Huang Z, Chen J, Liu S, Xiang X, Long Y, Tan P, Fu W. MAP17 is a Novel NASH Progression Biomarker Associated with Macrophage Infiltration, Immunotherapy Response, and Oxidative Stress. J Inflamm Res 2025; 18:601-619. [PMID: 39839187 PMCID: PMC11747966 DOI: 10.2147/jir.s497737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025] Open
Abstract
Background Nonalcoholic steatohepatitis (NASH) has recently garnered increased attention due to immune infiltration. However, the role of membrane-associated protein 17 (MAP17) in NASH remains unclear, which prompted this study to explore its relationship with immune infiltration and its regulatory mechanisms. Methods We employed weighted correlation network analysis (WGCNA) to construct a gene co-expression network aimed at identifying key genes associated with NASH progression. Our further analyses included differential expression evaluation, protein-protein interaction (PPI) network analysis, and Venn diagram analysis to discover novel targets. The CIBERSORT algorithm assessed the correlation between MAP17 and immune cell infiltration within the tumor microenvironment (TME), while the TIDE algorithm predicted responses to immunotherapy. Additionally, we conducted gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis (GSEA) to elucidate the mechanisms by which MAP17 operates. The expression of MAP17 was validated using liver tissues obtained from NASH patients and mice with diet-induced NASH or CCl4-induced liver fibrosis. Results Our findings identified MAP17 as a novel target in the progression of NASH. Correlation analyses demonstrated a positive association between MAP17 and M1 macrophage infiltration, as well as a negative association with M2 infiltration. TIDE results positioned MAP17 as a potential biomarker for predicting responses to immune checkpoint blockade. Mechanistic studies revealed that MAP17 induced oxidative stress, which subsequently activated the p53, PI3K-AKT, and Wnt signaling pathways. Validation analyses confirmed that MAP17 levels significantly increased in liver tissues of mice with diet-induced NASH or CCl4-induced liver fibrosis, as well as in NASH patients. Conclusion MAP17 is a novel biomarker linked to macrophage infiltration and immunotherapy responses in NASH patients. The oxidative stress induced by MAP17 activates the p53, PI3K-AKT, and Wnt pathways, all of which contribute to the progression of NASH.
Collapse
Affiliation(s)
- Zhiwei Huang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Jiatong Chen
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Shenglu Liu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Xin Xiang
- Department of General Surgery, The First People’s Hospital of Neijiang, Neijiang, 641000, People’s Republic of China
| | - Yang Long
- Department of Endocrinology and Metabolism, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Peng Tan
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Wenguang Fu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| |
Collapse
|
19
|
Rui Y, Guo Y, He L, Wang ME, Wu H. SIRT1/PGC-1α-mediated mitophagy participates the improvement roles of BMAL1 in podocytes injury in diabetic nephropathy: evidences from in vitro experiments. Eur J Med Res 2025; 30:29. [PMID: 39810231 PMCID: PMC11734468 DOI: 10.1186/s40001-025-02280-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Dysfunction in podocyte mitophagy has been identified as a contributing factor to the onset and progression of diabetic nephropathy (DN), and BMAL1 plays an important role in the regulation of mitophagy. Thus, this study intended to examine the impact of BMAL1 on podocyte mitophagy in DN and elucidate its underlying mechanisms. MATERIALS AND METHODS High D-glucose (HG)-treated MPC5 cells was used as a podocyte injury model for investigating the potential roles of BMAL1 in DN. Mitophagy was examined by detecting autophagosomes using transmission electron microscopy, and detecting the colocalization of LC3 and Tom20 using immunofluorescence staining. The interaction between BMAL1 and SIRT1 was conducted by immunoprecipitation (Co-IP) assay. RESULTS In HG-induced podocyte injury model, we found that BMAL1 and SIRT1 mRNA level was significantly decreased, and positively correlated with mitophagy dysfunction. BMAL1 overexpression could ameliorate HG-induced podocyte injury, evidenced by improved cell viability, decreased cell apoptosis and inflammatory cytokines expression (TNF-α, IL-1β, and IL-6). BMAL1 overexpression could promote podocyte mitophagy coupled with increased expression of mitophagy markers PINK1 and Parkin. In terms of mechanism, Co-IP suggested that BMAL1 could interact with SIRT1. SIRT1 inhibitor Ex-527 addition obviously inhibit the effect of BMAL1 overexpression on the mitophagy, demonstrating that BMAL1 may act on mitophagy by SIRT1//PGC-1α axis. CONCLUSIONS Our in vitro experiments demonstrate that BMAL1/SIRT1/PGC-1α pathway may protect podocytes against HG-induced DN through promoting mitophagy.
Collapse
Affiliation(s)
- Yanxia Rui
- Department of Nephrology, Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), No.1882, Zhonghuan North Road, Jiaxing, 314000, Zhejiang, China
| | - Yinfeng Guo
- Department of Nephrology, Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), No.1882, Zhonghuan North Road, Jiaxing, 314000, Zhejiang, China
| | - Linying He
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Hangzhou, 310000, Zhejiang, China
| | - Min-Er Wang
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Hangzhou, 310000, Zhejiang, China
| | - Henglan Wu
- Department of Nephrology, Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), No.1882, Zhonghuan North Road, Jiaxing, 314000, Zhejiang, China.
- Kidney Disease Center College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.
| |
Collapse
|
20
|
Zhang F, Liu L, Li W. Correlation of sarcopenia with progression of liver fibrosis in patients with metabolic dysfunction-associated steatotic liver disease: a study from two cohorts in China and the United States. Nutr J 2025; 24:6. [PMID: 39810142 PMCID: PMC11730808 DOI: 10.1186/s12937-025-01081-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025] Open
Abstract
OBJECTIVE The objective of this study was to investigate the association between sarcopenia and liver fibrosis in patients aged 18-59 years with metabolic dysfunction-associated steatotic liver disease (MASLD) and to assess the potential of sarcopenia as a risk factor for the progression of liver fibrosis. METHODS The study included 821 patients with MASLD in the US cohort and 3,405 patients with MASLD in the Chinese cohort. Liver controlled attenuation parameters (CAP) and liver stiffness measurements (LSM) were assessed by vibration-controlled transient elastography (VCTE) to evaluate the extent of hepatic steatosis and fibrosis. Sarcopenia was assessed by measuring appendicular skeletal muscle mass (ASM) and calculating ASMI. To analyze the relationship between sarcopenia, ASMI, and liver fibrosis, logistic regression models, multivariate-adjusted models, and restricted cubic spline (RCS) models were employed, with stratification and interaction analyses. RESULTS The results demonstrated that patients with sarcopenia exhibited a markedly elevated risk of significant liver fibrosis, advanced liver fibrosis, and cirrhosis compared to those without sarcopenia in both cohorts. After adjusting for confounding variables, sarcopenia was identified as an independent risk factor for the progression of liver fibrosis in patients with MASLD. A significant negative correlation was observed between ASMI and the severity of liver fibrosis, with a progressive reduction in the risk of liver fibrosis associated with increasing ASMI. Additionally, a non-linear feature was evident in some liver fibrosis indicators. Subgroup analysis further corroborated the finding that the harmful effect of sarcopenia on liver fibrosis was consistent across all identified subgroups. CONCLUSION Sarcopenia may be associated with the progression of liver fibrosis in patients with MASLD. Monitoring ASMI may assist in identifying individuals at an elevated risk of liver fibrosis in MASLD patients.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Endocrinology, Changzhou Third People's Hospital, Changzhou, 213001, China
- Department of Clinical Nutrition, Changzhou Third People's Hospital, Changzhou, 213001, China
- Changzhou Clinical College, Xuzhou Medical University, Changzhou, 213001, China
| | - Longgen Liu
- Department of Liver Diseases, Changzhou Third People's Hospital, Changzhou, 213001, China
- Changzhou Clinical College, Xuzhou Medical University, Changzhou, 213001, China
| | - Wenjian Li
- Department of Urology, Changzhou Third People's Hospital, Changzhou, 213001, China.
- Changzhou Clinical College, Xuzhou Medical University, Changzhou, 213001, China.
| |
Collapse
|
21
|
Sotoudeheian M. Value of Mac-2 Binding Protein Glycosylation Isomer (M2BPGi) in Assessing Liver Fibrosis in Metabolic Dysfunction-Associated Liver Disease: A Comprehensive Review of its Serum Biomarker Role. Curr Protein Pept Sci 2025; 26:6-21. [PMID: 38982921 DOI: 10.2174/0113892037315931240618085529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 07/11/2024]
Abstract
Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD) is a broad condition characterized by lipid accumulation in the liver tissue, which can progress to fibrosis and cirrhosis if left untreated. Traditionally, liver biopsy is the gold standard for evaluating fibrosis. However, non-invasive biomarkers of liver fibrosis are developed to assess the fibrosis without the risk of biopsy complications. Novel serum biomarkers have emerged as a promising tool for non-invasive assessment of liver fibrosis in MAFLD patients. Several studies have shown that elevated levels of Mac-2 binding protein glycosylation isomer (M2BPGi) are associated with increased liver fibrosis severity in MAFLD patients. This suggests that M2BPGi could serve as a reliable marker for identifying individuals at higher risk of disease progression. Furthermore, the use of M2BPGi offers a non-invasive alternative to liver biopsy, which is invasive and prone to sampling errors. Overall, the usage of M2BPGi in assessing liver fibrosis in MAFLD holds great promise for improving risk stratification and monitoring disease progression in affected individuals. Further research is needed to validate its utility in clinical practice and establish standardized protocols for its implementation.
Collapse
|
22
|
Pu X, Lu C, Yang X, He H, Chen X, Wang R, Li B, Chen S, Zhang Y, Wang W, Li Y. Unveiling the hepatoprotective mechanisms of Desmodium heterocarpon (L.) DC: Novel flavonoid identification and Keap1/Nrf2 pathway activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156323. [PMID: 39706064 DOI: 10.1016/j.phymed.2024.156323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/08/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND The pathophysiology of liver diseases is significantly influenced by oxidative stress, making its alleviation a key strategy for treatment. The Keap1/Nrf2 signaling pathway is the body's most crucial antioxidant defense mechanism. Traditional Chinese medicine, Desmodium heterocarpon (L.) DC, has shown promising hepatoprotective effects, however, the specific active components and underlying mechanisms of its liver-protective properties remain inadequately understood. Further investigation into the bioactive constituents and mechanisms of its hepatoprotective action is therefore essential. OBJECTIVE This study aims to identify the active ingredients in D. heterocarpon and to explore its hepatoprotective properties and underlying mechanisms. METHODS The hepatoprotective activity of the ethyl acetate fraction (JEAE) from D. heterocarpon was first evaluated utilizing a mouse model of acute liver damage (ALI) caused by CCl4. Molecular and histological analyses, including H&E staining, ELISA, and Western blot, were used to assess liver protection. The chemical constituents of JEAE were further identified using UPLC-MS/MS, and the molecular network of the JEAE fraction was analyzed. Compounds were isolated through column chromatography, and their antioxidant and hepatoprotective effects were assessed in an H₂O₂-induced HepG2 cell model using molecular assays. Additionally, binding interactions between active compounds and Keap1 were evaluated using molecular docking, molecular dynamics simulations, and surface plasmon resonance. RESULTS The ethyl acetate fraction of Desmodium heterocarpon (JEAE) showed remarkable antioxidant activity, with the highest flavonoid contents among extract fractions. In CCl₄-induced liver injury models, JEAE improved liver function, reduced ALT and AST levels, and enhanced antioxidant enzyme activities, suggesting hepatoprotective effects via the Keap1/Nrf2 pathway. 47 compounds were identified in JEAE, and fourteen flavonoids, including two novel compounds (1 and 2), were isolated from the JEAE fraction. Compounds 1, 3, 5, 8, and 14 notably protected HepG2 cells from oxidative damage, reduced ROS levels, and maintained mitochondrial function. These compounds also showed strong binding affinities to Keap1 and other antioxidant receptors, with molecular dynamics simulations confirming their stability and binding potential as effective hepatoprotective agents. CONCLUSION This study demonstrates that the ethyl acetate fraction of Desmodium heterocarpon (JEAE) exhibits significant hepatoprotective effects, largely attributed to its flavonoid-rich composition. The protective effects are mediated through antioxidant pathways, particularly the Keap1/Nrf2 signaling pathway. Newly identified isoflavanes and other flavonoids in JEAE show strong potential as bioactive compounds, with stability and binding affinities supporting their role in reducing oxidative stress. These findings suggest D. heterocarpon as a promising source of hepatoprotective agents and provide a foundation for further exploration of its therapeutic applications.
Collapse
Affiliation(s)
- XingNa Pu
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Cheng Lu
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Xing Yang
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - HongPing He
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - XingLong Chen
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - RuiRui Wang
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - BaoJing Li
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Shuai Chen
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Yi Zhang
- Yunnan University of Chinese Medicine, Kunming, 650500, China.
| | - WeiGuang Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650031, China.
| | - YanPing Li
- Yunnan University of Chinese Medicine, Kunming, 650500, China.
| |
Collapse
|
23
|
Hamamah S, Iatcu OC, Covasa M. Dietary Influences on Gut Microbiota and Their Role in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Nutrients 2024; 17:143. [PMID: 39796579 PMCID: PMC11722922 DOI: 10.3390/nu17010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a major contributor to liver-related morbidity, cardiovascular disease, and metabolic complications. Lifestyle interventions, including diet and exercise, are first line in treating MASLD. Dietary approaches such as the low-glycemic-index Mediterranean diet, the ketogenic diet, intermittent fasting, and high fiber diets have demonstrated potential in addressing the metabolic dysfunction underlying this condition. The development and progression of MASLD are closely associated with taxonomic shifts in gut microbial communities, a relationship well-documented in the literature. Given the importance of diet as a primary treatment for MASLD, it is important to understand how gut microbiota and their metabolic byproducts mediate favorable outcomes induced by healthy dietary patterns. Conversely, microbiota changes conferred by unhealthy dietary patterns such as the Western diet may induce dysbiosis and influence steatotic liver disease through promoting hepatic inflammation, up-regulating lipogenesis, dysregulating bile acid metabolism, increasing insulin resistance, and causing oxidative damage in hepatocytes. Although emerging evidence has identified links between diet, microbiota, and development of MASLD, significant gaps remain in understanding specific microbial roles, metabolite pathways, host interactions, and causal relationships. Therefore, this review aims to provide mechanistic insights into the role of microbiota-mediated processes through the analysis of both healthy and unhealthy dietary patterns and their contribution to MASLD pathophysiology. By better elucidating the interplay between dietary nutrients, microbiota-mediated processes, and the onset and progression of steatotic liver disease, this work aims to identify new opportunities for targeted dietary interventions to treat MASLD efficiently.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Internal Medicine, Scripps Mercy Hospital, San Diego, CA 92103, USA;
| | - Oana C. Iatcu
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania;
| | - Mihai Covasa
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania;
| |
Collapse
|
24
|
Comi L, Giglione C, Klinaku FT, Pialorsi F, Tollemeto V, Zurlo M, Seneci A, Magni P. Valorizing Agro‐Food Waste for Nutraceutical Development: Sustainable Approaches for Managing Metabolic Dysfunction‐Associated Steatotic Liver Disease and Related Co‐Morbidities. FOOD FRONTIERS 2024. [DOI: 10.1002/fft2.535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
ABSTRACTThis comprehensive investigation delves into the interconnectedness of different features of cardiometabolic syndrome, such as metabolic dysfunction‐associated steatotic liver disease (MASLD), atherosclerotic cardiovascular disease (ASCVD), and gut dysbiosis, highlighting the crucial role of nutraceuticals in their management and prevention. Given the significant overlap in the pathophysiology of these conditions, the treatment with nutraceuticals, especially those derived from agro‐food waste, offers a promising, sustainable, and innovative approach to healthcare. The 2030 Agenda for Sustainable Development and the One Health concept are key frameworks for selecting the most interesting supply chain for the production of nutraceuticals from agro‐food waste, ensuring environmental sustainability, and innovative agricultural practices. In this review, the therapeutic potential of kiwifruit and apples has been explored, detailing how their bioactive compounds, like polyphenols, fiber, pectin, kaempferol, phloretin, and phlorizin, may contribute to the management of MASLD, ASCVD, and gut dysbiosis. Various extraction methods for active ingredients, including chemical, water, and enzyme extractions, are analyzed for their respective benefits and drawbacks. By integrating scientific research, sustainable agricultural practices, and innovative extraction methods, we can develop effective strategies to combat these pervasive health issues. This holistic approach not only enhances individual health outcomes but also supports broader environmental and societal goals, promoting a healthier future for all.
Collapse
Affiliation(s)
- Laura Comi
- Department of Pharmacological and Biomolecular Sciences Università degli Studi di Milano Milan Italy
| | - Claudia Giglione
- Department of Pharmacological and Biomolecular Sciences Università degli Studi di Milano Milan Italy
| | - Fationa Tolaj Klinaku
- Department of Pharmacological and Biomolecular Sciences Università degli Studi di Milano Milan Italy
| | | | | | | | | | - Paolo Magni
- Department of Pharmacological and Biomolecular Sciences Università degli Studi di Milano Milan Italy
- IRCCS MultiMedica, Sesto San Giovanni Milan Italy
| |
Collapse
|
25
|
Dong JX, Jiang LL, Liu YP, Zheng AX. Association between composite dietary antioxidant index and metabolic dysfunction-associated fatty liver disease: a cross-sectional study from NHANES. BMC Gastroenterol 2024; 24:465. [PMID: 39702023 DOI: 10.1186/s12876-024-03556-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated fatty liver disease (MAFLD) is a typical hepatic steatosis with metabolic dysfunction. The composite dietary antioxidant index (CDAI) measures individual antioxidant capacity, and the relationship with MAFLD has received little attention. Our goal is to explore the association of CDAI with MAFLD. METHODS Participants were selected from the National Health and Nutrition Examination Survey (NHANES) from 2013 to 2020. CDAI was calculated basing on six dietary antioxidants, including zinc, selenium, carotenoids, and vitamins A, C, and E. Univariate regression and multivariable logistic regression analysis were conducted to evaluate the correlation between CDAI and MAFLD. We performed subgroup analysis to study the correlation in various populations. RESULTS A total of 18,163 participants, including 13,969 MAFLD and 4,194 non-MAFLD, were included. CDAI was significantly negatively correlated with MAFLD. After adjusting for all confounders (including age, gender, race, marital status, poverty ratio, education level, drinking status, smoking status, and physical activity), individuals in the highest quartile of CDAI exhibited a 27% lower likelihood of developing MAFLD than those in the lowest quartile (OR = 0.73; 95% CI [0.66, 0.81], p < 0.001). Physical activity subgroup analysis showed that this negative association was significant in the moderate-intensity physical exercise population (Model 3 in Q4, OR = 0.72; 95% CI [0.58-0.89], p < 0.001). Additionally, the changes in vitamins C were independently associated with MAFLD (Model 3, OR = 0.90; 95% CI [0.86-0.93], p < 0.001). CONCLUSIONS We found a negative relationship between higher CDAI scores and MAFLD. This study provided a new reference for exploring dietary interventions that affect MAFLD to reduce its incidence.
Collapse
Affiliation(s)
- Jia-Xin Dong
- Department of Emergency Medicine, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zhangdian District, Zibo, 255036, P.R. China
| | - Li-Li Jiang
- Department of Internal Medicine, The Fourth People's Hospital of Zibo City, No. 139 Haidaidadao Road, Economic Development Zone, Zibo, 255036, P.R. China
| | - Yan-Peng Liu
- Department of Emergency Medicine, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zhangdian District, Zibo, 255036, P.R. China
| | - Ai-Xi Zheng
- Department of Emergency Medicine, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zhangdian District, Zibo, 255036, P.R. China.
| |
Collapse
|
26
|
Ran X, Wang YJ, Li SG, Dai CB. Effects of Bifidobacterium and rosuvastatin on metabolic-associated fatty liver disease via the gut-liver axis. Lipids Health Dis 2024; 23:401. [PMID: 39696288 DOI: 10.1186/s12944-024-02391-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND/AIMS Research has indicated that treatment with rosuvastatin can improve liver pathology in metabolic-associated fatty liver disease (MAFLD) patients and that treatment with Bifidobacterium can improve MAFLD. Therefore, the effects of Bifidobacterium, rosuvastatin, and their combination on related indices in a rat model of diet-induced MAFLD need to be investigated. METHODS Forty rats were divided into five groups: the normal diet group (N), high-fat diet (HFD) model group (M), HFD + probiotic group (P), HFD + statin group (S), and HFD + probiotic + statin group (P-S). To establish the MAFLD model, the rats in Groups M, P, S, and P-S were fed a HFD for 8 weeks. The treatments included saline in Group N and either Bifidobacterium, rosuvastatin, or their combination in Groups P, S, and P-S by intragastrical gavage. After 4 weeks of intervention, the rats were euthanized, and samples were harvested to analyze gastrointestinal motility and liver function, pathological changes, inflammatory cytokine production, and the expression of proteins in key signaling pathways. RESULTS HFD feeding significantly increased the body weight, liver index, and insulin resistance (IR) index of the rats, indicating that the MAFLD model was successfully induced. Bifidobacterium reduced the liver of MAFLD rats, while Bifidobacterium with Rosuvastatin decreased the liver index, IR index, and levels of aspartate aminotransferase and alanine aminotransferase in MAFLD rats. The MAFLD model showed altered expression of proteins in signaling pathways that regulate inflammation, increased production of inflammatory cytokines, an elevated MAFLD activity score (MAS), and pathological changes in the liver. The MAFLD model also showed reduced relative counts of intestinal neurons and enteric glial cells (EGCs), altered secretion of gastrointestinal hormones, and slowed gastrointestinal emptying. Bifidobacterium, rosuvastatin, or their combination inhibited these various changes. HFD feeding changed the rats' gut microbiota, and the tested treatments inhibited these changes. These results suggest that the gastrointestinal motility disorder and abnormal liver function in MAFLD rats may be related to a reduction in Escherichia-Shigella bacteria and an increase in Asticcacaulis bacteria in the gut microbiota and that the improvement in liver function induced by Bifidobacterium plus rosuvastatin may be related to increases in Sphingomonas and Odoribacter bacteria and a decrease in Turicibacter bacteria in the gut microbiota. CONCLUSIONS The combined use of Bifidobacterium and rosuvastatin could better regulate the gut microbiota of MAFLD model rats, promote gastrointestinal emptying, and improve liver pathology and function than single treatment with Bifidobacterium or rosuvastatin. This provides a better strategy for the treatment of MAFLD.
Collapse
Affiliation(s)
- Xue Ran
- Division of Gastroenterology, Affiliated RenHe Hospital of Three Gorges University, Yichang, 443001, China
| | - Ying-Jie Wang
- Division of Blood Transfusion Department, Xiang Yang No. 1 People's Hospital, Xiangyang, 441099, China
| | - Shi-Gang Li
- Division of Basic Medical Sciences, Three Gorges University, Yichang, 443002, China.
| | - Chi-Bing Dai
- Division of Gastroenterology, Affiliated RenHe Hospital of Three Gorges University, Yichang, 443001, China.
| |
Collapse
|
27
|
Mignini I, Galasso L, Piccirilli G, Calvez V, Termite F, Esposto G, Borriello R, Miele L, Ainora ME, Gasbarrini A, Zocco MA. Interplay of Oxidative Stress, Gut Microbiota, and Nicotine in Metabolic-Associated Steatotic Liver Disease (MASLD). Antioxidants (Basel) 2024; 13:1532. [PMID: 39765860 PMCID: PMC11727446 DOI: 10.3390/antiox13121532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/15/2025] Open
Abstract
Oxidative stress has been described as one of the main drivers of intracellular damage and metabolic disorders leading to metabolic syndrome, a major health problem worldwide. In particular, free radicals alter lipid metabolism and promote lipid accumulation in the liver, existing in the hepatic facet of metabolic syndrome, the metabolic dysfunction-associated steatotic liver disease (MASLD). Recent literature has highlighted how nicotine, especially if associated with a high-fat diet, exerts a negative effect on the induction and progression of MASLD by upregulating inflammation and increasing oxidative stress, abdominal fat lipolysis, and hepatic lipogenesis. Moreover, considerable evidence shows the central role of intestinal dysbiosis in the pathogenesis of MASLD and the impact of nicotine-induced oxidative stress on the gut microbiome. This results in an intricate network in which oxidative stress stands at the intersection point between gut microbiome, nicotine, and MASLD. The aim of this review is to delve into the molecular mechanisms linking tobacco smoking and MASLD, focusing on nicotine-induced microbiota modifications and their impact on MASLD development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Maria Assunta Zocco
- CEMAD Digestive Diseases Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (I.M.); (L.G.); (G.P.); (V.C.); (F.T.); (G.E.); (R.B.); (L.M.); (M.E.A.); (A.G.)
| |
Collapse
|
28
|
Zhang Y, Zhou J, Yang L, Xiao H, Liu D, Kang X. Ganoderma lucidum Spore Powder Alleviates Metabolic-Associated Fatty Liver Disease by Improving Lipid Accumulation and Oxidative Stress via Autophagy. Antioxidants (Basel) 2024; 13:1501. [PMID: 39765829 PMCID: PMC11673792 DOI: 10.3390/antiox13121501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/16/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Lipid accumulation and oxidative stress, which could be improved by autophagy, are the "hits" of metabolic-associated fatty liver disease (MAFLD). Ganoderma lucidum spore powder (GLSP) has the effect of improving liver function. However, there are few reports about its effects on and mechanisms impacting MAFLD alleviation. This study investigated the effect of GLSP on hepatic lipid accumulation and oxidative stress and explored the role that autophagy played in this effect. The results showed that GLSP effectively reduced lipid accumulation and activated autophagy in the livers of mice with high-fat-diet-induced disease and palmitic acid-induced hepatocytes. GLSP reduced the lipid accumulation by reducing lipogenesis and promoting lipid oxidation in HepG2 cells. It decreased the production of ROS, increased the activity of SOD and CAT, and improved the mitochondrial membrane potential via the Keap1/Nrf2 pathway. The alleviating effects of GLSP on the lipid accumulation and oxidative stress was reversed by 3-methyladenine (3-MA), an autophagy inhibitor. GLSP activated autophagy via the AMPK pathway in HepG2 cells. In conclusion, GLSP could attenuate MAFLD by the improvement of lipid accumulation and oxidative stress via autophagy. This paper is the first to report the improvement of MAFLD through autophagy promotion. It will shed novel light on the discovery of therapeutic strategies targeting autophagy for MAFLD.
Collapse
Affiliation(s)
- Yuxuan Zhang
- Horticulture College, Hunan Agricultural University, Changsha 410128, China
- State Key Laboratory of Subhealth Intervention Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Engineering Research Center of Medical Nutrition Intervention Technology for Metabolic Diseases, Hunan Agricultural University, Changsha 410128, China
| | - Jiali Zhou
- Horticulture College, Hunan Agricultural University, Changsha 410128, China
- State Key Laboratory of Subhealth Intervention Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Engineering Research Center of Medical Nutrition Intervention Technology for Metabolic Diseases, Hunan Agricultural University, Changsha 410128, China
| | - Lan Yang
- Horticulture College, Hunan Agricultural University, Changsha 410128, China
- State Key Laboratory of Subhealth Intervention Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Engineering Research Center of Medical Nutrition Intervention Technology for Metabolic Diseases, Hunan Agricultural University, Changsha 410128, China
- School of Pharmacy, North Sichuan Medical College, Nanchong 637000, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Dongbo Liu
- Horticulture College, Hunan Agricultural University, Changsha 410128, China
- State Key Laboratory of Subhealth Intervention Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Engineering Research Center of Medical Nutrition Intervention Technology for Metabolic Diseases, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Xincong Kang
- Horticulture College, Hunan Agricultural University, Changsha 410128, China
- State Key Laboratory of Subhealth Intervention Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Engineering Research Center of Medical Nutrition Intervention Technology for Metabolic Diseases, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
29
|
Mouskeftara T, Kalopitas G, Liapikos T, Arvanitakis K, Theocharidou E, Germanidis G, Gika H. A Comprehensive Analysis of Liver Lipidomics Signature in Adults with Metabolic Dysfunction-Associated Steatohepatitis-A Pilot Study. Int J Mol Sci 2024; 25:13067. [PMID: 39684777 DOI: 10.3390/ijms252313067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) is the most common chronic liver disorder in Western countries, encompassing a range of conditions from steatosis to Metabolic Dysfunction-Associated Steatohepatitis (MASH), which can potentially progress to cirrhosis. Lipidomics approaches have revealed significant alterations in the hepatic lipidome associated with both steatosis and steatohepatitis, with these changes correlating with disease manifestation. While the transition from steatosis to MASH remains poorly understood, recent research indicates that both the quantity and quality of deposited lipids play a pivotal role in MASLD progression. In our study, we utilized untargeted and targeted analyses to identify intact lipids and fatty acids in liver biopsies from healthy controls and MASLD patients, categorized based on their histological findings. In total, 447 lipid species were identified, with 215 subjected to further statistical analysis. Univariate and multivariate analyses revealed alterations in triglyceride species and fatty acids, including FA 16:0, FA 16:1, FA 18:3 n6, the sum of MUFA, and the Δ9-desaturase activity ratio. This research provides insights into the connection between dysregulated lipid metabolism in the progression of MASLD, supporting previous findings. Further studies on lipid metabolism could improve risk assessment methods, particularly given the current limited understanding of the transition from steatosis to MASH.
Collapse
Affiliation(s)
- Thomai Mouskeftara
- Laboratory of Forensic Medicine & Toxicology, Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Georgios Kalopitas
- Division of Gastroenterology and Hepatology, 1st Department of Internal Medicine, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Theodoros Liapikos
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantinos Arvanitakis
- Division of Gastroenterology and Hepatology, 1st Department of Internal Medicine, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Eleni Theocharidou
- 2nd Department of Internal Medicine, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| | - Georgios Germanidis
- Division of Gastroenterology and Hepatology, 1st Department of Internal Medicine, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Helen Gika
- Laboratory of Forensic Medicine & Toxicology, Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th km Thessaloniki-Thermi Rd., 57001 Thessaloniki, Greece
| |
Collapse
|
30
|
Liu Q, Bi J, Fan G, Wu M, Qin X, Fang Q, Mei S, Wan Z, Lv Y, Song L, Wang Y. Association between multiple metals exposure and metabolic dysfunction-associated fatty liver disease among Chinese adults. J Trace Elem Med Biol 2024; 86:127566. [PMID: 39577363 DOI: 10.1016/j.jtemb.2024.127566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 11/09/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Previous research has investigated the hepatotoxicity of single metal exposure. However, there is limited evidence about metal mixture and their association with metabolic dysfunction-associated fatty liver disease (MAFLD), particularly in the Chinese population. OBJECTIVE To investigate the individual and combine effects of 20 metals on MAFLD in a large population in China. METHODS This study included 3651 participants from the Medical Physical Examination Center of Tongji Hospital, Wuhan, China. MAFLD was identified based on ultrasonic graphic evidence of hepatic steatosis and the presence of overweight/obese, diabetes mellitus, or metabolic dysregulation. Inductively coupled plasma mass spectrometry (ICP-MS) was used to determine urinary concentrations of 20 metals. Logistic regression was used to assess the relationship between individual metal and MAFLD, with results presented as odds ratios (ORs) and 95 % confidence intervals (CIs). Weighted quantile sum (WQS) regression was performed to evaluate the combine effect of metals. RESULTS The prevalence of MAFLD among the participants was 32.1 % (1173/3651). In singe-metal analysis, high exposure to zinc (OR =1.42; 95 % CI = 1.27, 1.59) and selenium (OR = 1.23; 95 % CI = 1.10, 1.39) were positively associated with MAFLD. No significant association was found for other metals. WQS regression analysis showed that urinary metal mixture was positively associated with MAFLD (OR = 1.32, 95 % CI: 1.15, 1.51), with zinc (50.4 %) being the largest contributor, followed by barium (10.8 %). CONCLUSIONS In conclusion, our finding suggested that exposure to the mixture of metals was positively correlated with MAFLD, with zinc being the major contributor.
Collapse
Affiliation(s)
- Qing Liu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianing Bi
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Gaojie Fan
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mingyang Wu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiya Qin
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Fang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Surong Mei
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhengce Wan
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yongman Lv
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lulu Song
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Youjie Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
31
|
Ilyas S, Manan A, Choi Y, Lee D. Exploring the therapeutic potential of Emblica officinalis natural compounds against hepatocellular carcinoma (HCC): a computational approach. EXCLI JOURNAL 2024; 23:1440-1458. [PMID: 39790561 PMCID: PMC11713998 DOI: 10.17179/excli2024-7970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/18/2024] [Indexed: 01/12/2025]
Abstract
Hepatocellular carcinoma (HCC) is the fifth leading cause of cancer related deaths globally. Despite advancements in treatment, drug resistance and adverse side effects have spurred the search for novel therapeutic strategies. This study aimed to investigate how the Emblica officinalis can inhibit key targets involved in HCC progression. Screening of the reported compounds based on ADMET profile and identification of protein targets was done using the literature survey. Protein targets were divided into four major categories including inflammatory, angiogenic, anti-apoptotic as well as proliferative targets. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to reveal the functional roles of genes. The STRING database was used to analyze the protein-protein interactions (PPI) of target genes. Docking was employed to predict the binding affinity of compounds with target proteins. Subsequently, MD simulation was conducted to assess the stability and dynamics of protein-ligand complexes. A total of 22 active compounds with 25 protein targets have been identified. These targets have a major role in controlling biological processes such as apoptosis, signaling and cellular interactions. KEGG pathway analysis showed that cancer, atherosclerosis, PI3K-Akt, EGFR tyrosine kinase inhibitor resistance and MAPK signaling pathways are mainly involved. Molecular docking by Mcule platform demonstrated that emblicanin A, punigluconin, penta-o-galloylglucose and quercetin showed higher binding energy affinities with BCL2, BCL2L1, c-Met, HSP70, EGFR, FGFR1, PTGS2 and TNFα. MD simulation revealed conformational changes, flexibility, interactions and compactness of protein-ligand complex. The stable protein binding interactions suggest the potential of compounds to inhibit the functions of target proteins. These results suggest that compounds derived from E. officinalis may have the therapeutic potential for treating HCC. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Sidra Ilyas
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si, 13120, Korea
| | - Abdul Manan
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Yeojin Choi
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si, 13120, Korea
| | - Donghun Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si, 13120, Korea
| |
Collapse
|
32
|
Besné-Eseverri I, Martín MÁ, Lobo G, Cano MP, Portillo MP, Trepiana J. Antioxidant and Anti-Inflammatory Effects of Opuntia Extracts on a Model of Diet-Induced Steatosis. Antioxidants (Basel) 2024; 13:1416. [PMID: 39594557 PMCID: PMC11591152 DOI: 10.3390/antiox13111416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Oxidative stress and inflammation are widely recognised as factors that can initiate and facilitate the development of MAFLD. The aim of this study is to analyse the effect of low and high doses of Opuntia stricta var. dillenii peel extract (L-OD and H-OD, respectively) and Opuntia ficus-indica var. colorada pulp extract (L-OFI and H-OFI, respectively), which are rich in betalains and phenolic compounds, on oxidative stress, inflammation, DNA damage and apoptosis in rat livers with diet-induced steatosis. Steatotic diet led to increased final body and liver weight, serum transaminases, hepatic TG content, oxidative status and cell death. H-OFI treatment decreased serum AST levels, while L-OFI reduced hepatic TG accumulation. Oxidative stress was partially prevented with H-OD and H-OFI supplementation, and pro-inflammatory cytokines levels were especially improved with H-OFI treatment. Moreover, H-OFI appears to prevent DNA damage markers. Finally, H-OD and L-OFI supplementation down-regulated the apoptotic pathway. In conclusion, both H-OD and H-OFI supplementation were effective in regulating the progression to metabolic steatohepatitis, triggering different mechanisms of action.
Collapse
Affiliation(s)
- Irene Besné-Eseverri
- Nutrition and Obesity Group, Department of Nutrition and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Centre, 01006 Vitoria-Gasteiz, Spain; (I.B.-E.); (M.P.P.)
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 28029 Madrid, Spain
| | - María Ángeles Martín
- Science and Food Technology and Nutrition Institute (ICTAN-CSIC), 28040 Madrid, Spain;
- CIBER Diabetes and Related Metabolic Diseases (CIBERdem), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Gloria Lobo
- Department of Crop Production in Tropical and Subtropical Areas, Instituto Canario de Investigaciones Agrarias (ICIA), 38297 Tenerife, Spain;
| | - M. Pilar Cano
- Laboratory of Phytochemistry and Plant Food Functionality, Biotechnology and Food Microbiology Department, Institute of Food Science Research (CIAL) (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain;
| | - María P. Portillo
- Nutrition and Obesity Group, Department of Nutrition and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Centre, 01006 Vitoria-Gasteiz, Spain; (I.B.-E.); (M.P.P.)
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 28029 Madrid, Spain
- BIOARABA Institute of Health, 01009 Vitoria-Gasteiz, Spain
| | - Jenifer Trepiana
- Nutrition and Obesity Group, Department of Nutrition and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Centre, 01006 Vitoria-Gasteiz, Spain; (I.B.-E.); (M.P.P.)
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 28029 Madrid, Spain
- BIOARABA Institute of Health, 01009 Vitoria-Gasteiz, Spain
| |
Collapse
|
33
|
Wang C, Zhao M, Yue Y, Hu C, Zhou C, Zhang Z, He Y, Luo Y, Shen T, Dang S, Yang Y, Zhang Y. Protective Effect of Modified Suanmei-Tang on Metabolic-Associated Fatty Liver Disease: An Integrated Strategy of Network Pharmacology, Metabolomics, and Transcriptomics. Drug Des Devel Ther 2024; 18:5161-5182. [PMID: 39559790 PMCID: PMC11572505 DOI: 10.2147/dddt.s478072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/29/2024] [Indexed: 11/20/2024] Open
Abstract
Background Modified Suanmei-Tang (MST) comprises four plants common to both traditional Chinese medicine and culinary applications, and it can potentially alleviate metabolic-associated fatty liver disease (MAFLD) triggered by a high-fat diet (HFD). Purpose This research aims to investigate the impact and underlying mechanisms of MST in ameliorating MAFLD caused by an HFD. Methods UHPLC-Q-Orbitrap-MS/MS was used to determine the constituents of MST and to evaluate its effects on MAFLD mouse models. Transcriptomics, network pharmacology, and bioinformatics analysis (including Kyoto Encyclopedia of Genes and Genomes and Gene Set Enrichment Analysis) were utilized to further clarify the mechanisms by which MST acts on MAFLD. The experimental methods included ELISA, real time quantitative PCR (RT-qPCR), Western blot, immunohistochemistry, molecular docking, and metabolomics. Transcriptomics was integrated with metabolomics to find correlations between differentially expressed genes and metabolites, and crucial genes were validated through RT-qPCR. Results A total of 23 components of MST were identified. The formulation was found to alleviate metabolic disorders, obesity, insulin resistance, inflammation, and oxidative stress in mice with MAFLD. The findings indicate that MST promoted autophagy by suppressing phosphorylation in the PI3K/AKT/mTOR pathway and enhancing lipid management in the livers of MAFLD mice. Conclusion MST could effectively improve lipid metabolism disorders and liver lipid deposition in MAFLD mice, and its mechanism might be related to regulating the PI3K/AKT/mTOR pathway to improve autophagy.
Collapse
Affiliation(s)
- Chao Wang
- Traditional Chinese Medicine Department, Qitai Hospital of the Sixth Division, Xinjiang, 831899, People’s Republic of China
| | - Mei Zhao
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Yuanyuan Yue
- Department of Ultrasound, Chengdu First People’s Hospital, Chengdu, 610095, People’s Republic of China
| | - Chao Hu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Chunqiu Zhou
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Zhongyi Zhang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Yunliang He
- Institute of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610014, People’s Republic of China
| | - Yaqi Luo
- Institute of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610014, People’s Republic of China
| | - Tao Shen
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Sijie Dang
- Institute of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610014, People’s Republic of China
| | - Yang Yang
- Institute of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610014, People’s Republic of China
| | - Yong Zhang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
- Institute of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610014, People’s Republic of China
| |
Collapse
|
34
|
Huang M, Zhang X, Zhou R, Song Y, Zhang J, Wu J. Advances in the study of oral microbiota and metabolism associated fatty liver disease: a systematic review. Front Cell Infect Microbiol 2024; 14:1491696. [PMID: 39600870 PMCID: PMC11588716 DOI: 10.3389/fcimb.2024.1491696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Objective The oral microbiota is the second largest microbiota in the human body and has a significant impact on human health. Recent evidence suggests that dysbiosis of the oral microbiota may be associated with the development of metabolism-associated fatty liver disease (MAFLD). This review aimed to validate the relationship between oral microbial diversity and the development of MAFLD. Methods A systematic evaluation was performed based on PRISMA guidelines. Three independent reviewers searched for relevant literature in several databases, including PubMed/Medline, Web of Science, and Scopus, with a search date ranging from the establishment of the databases to June 2024. Results A total of 1278 publications were initially screened, including five cross-sectional studies, seven case-control studies, one cohort study, and one retrospective study. These studies included a total of 3335 patients with MAFLD, 254 patients with MASH, and 105 patients with liver cirrhosis. All 14 included studies concluded that there was a correlation or potential correlation between oral microbiota and MAFLD. Seven studies found that the composition of the oral microbiota in MAFLD patients differed from that of healthy controls, and specific oral bacteria may be associated with an increased incidence of MAFLD. At the phylum level, several studies found differences in the abundance of the phyla Firmicutes, Proteobacteria, and Clostridia compared to healthy controls. Additionally, a study on oral fungi found significant differences in the phyla Proteobacteria and in the genus Staphylococcus between patients with MAFLD and healthy controls. At the genus level, Porphyromonas was studied most frequently, with all 8 studies identifying infection with Porphyromonas as a significant risk factor for pathological progression in MAFLD. Furthermore, a dysbiosis in the ratio of Porphyromonas gingivalis./Porphyromonas anomalies may be an important marker of MAFLD progression. Conclusion There is an important association between the diversity of oral microbiota composition and MAFLD. This finding suggests the importance of oral health assessment and monitoring for the prevention or intervention of MAFLD.
Collapse
Affiliation(s)
- Mingming Huang
- School of Kinesiology and Health, Capital University of Physical Education and Sports, Beijing, China
| | - Xinbi Zhang
- School of Kinesiology and Health, Capital University of Physical Education and Sports, Beijing, China
| | - Rui Zhou
- School of Kinesiology and Health, Capital University of Physical Education and Sports, Beijing, China
| | - Yingzhe Song
- School of Kinesiology and Health, Capital University of Physical Education and Sports, Beijing, China
| | - Jing Zhang
- Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Jian Wu
- School of Kinesiology and Health, Capital University of Physical Education and Sports, Beijing, China
| |
Collapse
|
35
|
Zhang J, Ouyang H, Gu X, Dong S, Lu B, Huang Z, Li J, Ji L. Caffeic acid ameliorates metabolic dysfunction-associated steatotic liver disease via alleviating oxidative damage and lipid accumulation in hepatocytes through activating Nrf2 via targeting Keap1. Free Radic Biol Med 2024; 224:352-365. [PMID: 39209138 DOI: 10.1016/j.freeradbiomed.2024.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/16/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Metabolic-associated steatotic liver disease (MASLD), known as non-alcoholic fatty liver disease (NAFLD) in the past, encompasses a range of liver pathological conditions marked by the excessive lipid accumulation. Consumption of coffee is closely associated with the reduced risk of MASLD. Caffeic acid (CA), a key active ingredient in coffee, exhibits notable hepatoprotective properties. This study aims to investigate the improvement of CA on MASLD and the engaged mechanism. Mice underwent a 12-week high-fat diet (HFD) regimen to induce MASLD, and liver pathology was assessed using hematoxylin-eosin (H&E) and oil red O (ORO) staining. Hepatic inflammation was evaluated by F4/80 and Ly6G immunohistochemistry (IHC) and myeloperoxidase (MPO) measurement. Pathways and transcription factors relevant to MASLD were analyzed by using microarray data from patients' livers. Oxidative damage was evaluated by detecting reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH) and superoxide dismutase (SOD). Co-immunoprecipitation (CoIP), cellular thermal shift assay (CETSA) and surface plasmon resonance (SPR) were used to validate the binding between CA and its target protein. CA significantly alleviated liver damage, steatosis and inflammatory injury, and reduced the elevated NAFLD activity score (NAS) in HFD-fed mice. Clinical data indicate that fatty acid metabolism and ROS generation are pivotal in MASLD progression. CA increased the expression of fibroblast growth factor 21 (FGF21), FGF receptor 1 (FGFR1) and β-Klotho (KLB), and promoted fatty acid consumption. Additionally, CA mitigated oxidative stress injury and activated nuclear factor erythroid 2-related factor-2 (Nrf2). In primary hepatocytes isolated from Nrf2 knockout mice, CA's promotion on FGF21 release and inhibition on oxidative stress and lipotoxicity was disappeared. CA could directly bind to kelch-like ECH-associated protein 1 (Keap1) that is an Nrf2 inhibitor protein. This study suggests that CA alleviates MASLD by reducing hepatic lipid accumulation, lipotoxicity and oxidative damage through activating Nrf2 via binding to Keap1.
Collapse
Affiliation(s)
- Jinyu Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hao Ouyang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Hepatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xinnan Gu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shiyuan Dong
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bin Lu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhenlin Huang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jian Li
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu Nanjing, 210009, China; Technology Center of Jinling Pharmaceutical Co., Ltd., Jiangsu Nanjing, 210009, China.
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
36
|
Tauil RB, Golono PT, de Lima EP, de Alvares Goulart R, Guiguer EL, Bechara MD, Nicolau CCT, Yanaguizawa Junior JL, Fiorini AMR, Méndez-Sánchez N, Abenavoli L, Direito R, Valente VE, Laurindo LF, Barbalho SM. Metabolic-Associated Fatty Liver Disease: The Influence of Oxidative Stress, Inflammation, Mitochondrial Dysfunctions, and the Role of Polyphenols. Pharmaceuticals (Basel) 2024; 17:1354. [PMID: 39458995 PMCID: PMC11510109 DOI: 10.3390/ph17101354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Metabolic-Associated Fatty Liver Disease (MAFLD) is a clinical-pathological scenario that occurs due to the accumulation of triglycerides in hepatocytes which is considered a significant cause of liver conditions and contributes to an increased risk of death worldwide. Even though the possible causes of MAFLD can involve the interaction of genetics, hormones, and nutrition, lifestyle (diet and sedentary lifestyle) is the most influential factor in developing this condition. Polyphenols comprise many natural chemical compounds that can be helpful in managing metabolic diseases. Therefore, the aim of this review was to investigate the impact of oxidative stress, inflammation, mitochondrial dysfunction, and the role of polyphenols in managing MAFLD. Some polyphenols can reverse part of the liver damage related to inflammation, oxidative stress, or mitochondrial dysfunction, and among them are anthocyanin, baicalin, catechin, curcumin, chlorogenic acid, didymin, epigallocatechin-3-gallate, luteolin, mangiferin, puerarin, punicalagin, resveratrol, and silymarin. These compounds have actions in reducing plasma liver enzymes, body mass index, waist circumference, adipose visceral indices, lipids, glycated hemoglobin, insulin resistance, and the HOMA index. They also reduce nuclear factor-KB (NF-KB), interleukin (IL)-1β, IL-6, tumor necrosis factor-α (TNF-α), blood pressure, liver fat content, steatosis index, and fibrosis. On the other hand, they can improve HDL-c, adiponectin levels, and fibrogenesis markers. These results show that polyphenols are promising in the prevention and treatment of MAFLD.
Collapse
Affiliation(s)
- Raissa Bulaty Tauil
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Paula Takano Golono
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Enzo Pereira de Lima
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Ricardo de Alvares Goulart
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Elen Landgraf Guiguer
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Claudia C. T. Nicolau
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil
| | - José Luiz Yanaguizawa Junior
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Adriana M. R. Fiorini
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil
| | - Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico;
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Ludovico Abenavoli
- Department of Health Sciences, University “Magna Graecia”, Viale Europa, 88100 Catanzaro, Italy;
| | - Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines, Universidade de Lisboa (iMed.ULisboa), Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal;
| | - Vitor Engrácia Valente
- Autonomic Nervous System Center, School of Philosophy and Sciences, São Paulo State University, Marília 17525-902, São Paulo, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, São Paulo, Brazil;
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil
- Research Coordination, UNIMAR Charity Hospital, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| |
Collapse
|
37
|
Wang Q, Zhang Y, Lu R, Zhao Q, Gao Y. The multiple mechanisms and therapeutic significance of rutin in metabolic dysfunction-associated fatty liver disease (MAFLD). Fitoterapia 2024; 178:106178. [PMID: 39153555 DOI: 10.1016/j.fitote.2024.106178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/20/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
The global incidence of metabolic dysfunction-associated fatty liver disease (MAFLD) has been steadily increasing, making it a leading chronic liver disease. MAFLD refers to a metabolic syndrome linked with type 2 diabetes mellitus, obesity. However, its pathophysiology is complex, there are currently no effective and approved medicines for therapy. Rutin, a naturally occurring polyphenolic flavonoid, is widely distributed in fruits, vegetables, and other plants. It exhibits a plethora of bioactive properties, such as antioxidant, anticancer, and anti-inflammatory and neuroprotective activities, making it an extremely promising phytochemical. Rutin has shown great potential in the treatment of a wide variety of metabolic diseases and received considerable attention in recent years. Fortuitously, various research studies have validated rutin's extensive biological functions in treating metabolic disorders. Despite the fact that the exact pathophysiological mechanisms through which rutin has a hepatoprotective effect on MAFLD are still not fully elucidated. This review comprehensively outlines rutin's multifaceted preventive and therapeutic effects in MAFLD, including the modulation of lipid metabolism, reduction of insulin resistance, diminution of inflammation and oxidative stress, combatting of obesity, and influence on intestinal flora. This paper details the known molecular targets and pathways of rutin in MAFLD pathogenesis. It endeavored to provide new ideas for treating MAFLD and accelerating its translation from bench to bedside.
Collapse
Affiliation(s)
- Qianzhuo Wang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yingjuan Zhang
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Zhejiang 310006, China
| | - Ruiling Lu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Qingwen Zhao
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Zhejiang 310006, China.
| | - Yue Gao
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Zhejiang 310006, China.
| |
Collapse
|
38
|
Arruda VM, Azevedo GT, Granato MJMG, Matos ACP, Araújo TG, Guerra JFDC. Oxidative Stress and Annexin A2 Differential Expression in Free Fatty Acids-Induced Non-Alcoholic Fatty Liver Disease in HepG2 Cells. Int J Mol Sci 2024; 25:9591. [PMID: 39273539 PMCID: PMC11395542 DOI: 10.3390/ijms25179591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a rising global burden, affecting one in four adults. Despite the increasing prevalence of NAFLD, the exact cellular and molecular mechanisms remain unclear, and effective therapeutic strategies are still limited. In vitro models of NAFLD are critical to understanding the pathogenesis and searching for effective therapies; thus, we evaluated the effects of free fatty acids (FFAs) on NAFLD hallmarks and their association with the modulation of Annexin A2 (ANXA2) and Keratin 17 (KRT17) in HepG2 cells. Our results show that oleic and palmitic acids can differentially induce intracellular lipid accumulation, cell death, and promote oxidative stress by increasing lipid peroxidation, protein carbonylation, and antioxidant defense depletion. Moreover, a markedly increased expression of inflammatory cytokines demonstrated the activation of inflammation pathways associated with lipotoxicity and oxidative stress. ANXA2 overexpression and KRT17 nuclear translocation were also observed, supporting the role of both molecules in the progression of liver disease. Taken together, these data provide insights into the interplay between ANXA2 and KRT17 in NAFLD, paving the way for understanding molecular mechanisms involved with the disease and developing new therapeutic strategies.
Collapse
Affiliation(s)
- Vinícius Marques Arruda
- Laboratory of Metabolic Biochemistry and Redox Processes, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas 38700-002, Brazil; (V.M.A.); (G.T.A.); (M.J.M.G.G.)
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas 38700-002, Brazil; (A.C.P.M.); (T.G.A.)
| | - Gabriela Tolentino Azevedo
- Laboratory of Metabolic Biochemistry and Redox Processes, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas 38700-002, Brazil; (V.M.A.); (G.T.A.); (M.J.M.G.G.)
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas 38700-002, Brazil; (A.C.P.M.); (T.G.A.)
| | - Maria Júlia Maia Gonçalves Granato
- Laboratory of Metabolic Biochemistry and Redox Processes, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas 38700-002, Brazil; (V.M.A.); (G.T.A.); (M.J.M.G.G.)
| | - André Carlos Pereira Matos
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas 38700-002, Brazil; (A.C.P.M.); (T.G.A.)
| | - Thaise Gonçalves Araújo
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas 38700-002, Brazil; (A.C.P.M.); (T.G.A.)
| | - Joyce Ferreira da Costa Guerra
- Laboratory of Metabolic Biochemistry and Redox Processes, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas 38700-002, Brazil; (V.M.A.); (G.T.A.); (M.J.M.G.G.)
| |
Collapse
|
39
|
Deng Y, Dong Y, Zhang S, Feng Y. Targeting mitochondrial homeostasis in the treatment of non-alcoholic fatty liver disease: a review. Front Pharmacol 2024; 15:1463187. [PMID: 39290869 PMCID: PMC11405192 DOI: 10.3389/fphar.2024.1463187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide, and its prevalence is rapidly increasing. Antioxidants, lipid-lowering medications, and lifestyle interventions are the most commonly used treatment options for NAFLD, but their efficacy in inhibiting steatosis progression is limited and their long-term ineffectiveness and adverse effects have been widely reported. Therefore, it is important to gain a deeper understanding of the pathogenesis of NAFLD and to identify more effective therapeutic approaches. Mitochondrial homeostasis governs cellular redox biology, lipid metabolism, and cell death, all of which are crucial to control hepatic function. Recent findings have indicated that disruption of mitochondrial homeostasis occurs in the early stage of NAFLD and mitochondrial dysfunction reinforces disease progression. In this review, we summarize the physical roles of the mitochondria and describe their response and dysfunction in the context of NAFLD. We also discuss the drug targets associated with the mitochondria that are currently in the clinical trial phase of exploration. From our findings, we hope that the mitochondria may be a promising therapeutic target for the treatment of NAFLD.
Collapse
Affiliation(s)
- Yalan Deng
- Department of Science and Technology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yuan Dong
- Department of Science and Technology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Sitian Zhang
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yingmei Feng
- Department of Science and Technology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
40
|
Chen L, Jin J, Shao K, Xu Z, Lv L, Wu C, Wang Y. Mixture toxic mechanism of phoxim and prochloraz in the hook snout carp Opsariichthysbidens. CHEMOSPHERE 2024; 364:143217. [PMID: 39216554 DOI: 10.1016/j.chemosphere.2024.143217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Pesticides are usually found as mixtures in surface water bodies, even though their regulation in aquatic ecosystems is usually approached individually. In this context, this work aimed to investigate the enzymatic- and transcriptional-level responses after the mixture exposure of phoxim (PHX) and prochloraz (PRC) in the livers of hook snout carp Opsariichthys bidens. These data exhibited that co-exposure to PHX and PRC induced an acute synergistic impact on O. bidens. The activities of catalase (CAT), superoxide dismutase (SOD), carboxylesterase (CarE), and caspase3 varied significantly in most of the individual and combined challenges relative to basal values, indicating the activation of oxidative stress, detoxification dysfunction, as well as cell apoptosis. Besides, the transcriptional levels of five genes (gst, erα, mn-sod, cxcl-c1c, and il-8) exhibited more pronounced changes when subjected to combined pesticide exposure in contrast to the corresponding individual compounds. The findings revealed the manifestation of endocrine dysfunction and immune disruption. These results underscored the potential biochemical and molecular toxicity posed by the combination of PHX and PRC to O. bidens, thereby contributing to a deeper comprehension of the ecological toxicity of pesticide mixtures on aquatic organisms. Importantly, the concurrent presence of PHX and PRC might exacerbate hepatocellular damage in hook snout carps, potentially attributable to their synergistic toxic interactions. This study underscored the toxicological potency inherent in the co-occurrence of PHX and PRC in influencing fish development, thereby offering valuable insights for the risk assessment of pesticide mixtures and the safeguarding of aquatic organisms.
Collapse
Affiliation(s)
- Liping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Jiansheng Jin
- Huzhou Agricultural Technology Extension Service Center, Zhejiang Province, 313000, China
| | - Kan Shao
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, 47405, USA
| | - Zhenlan Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Lu Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Changxin Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
41
|
Shen Q, Yang M, Wang S, Chen X, Chen S, Zhang R, Xiong Z, Leng Y. The pivotal role of dysregulated autophagy in the progression of non-alcoholic fatty liver disease. Front Endocrinol (Lausanne) 2024; 15:1374644. [PMID: 39175576 PMCID: PMC11338765 DOI: 10.3389/fendo.2024.1374644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a clinicopathologic syndrome characterized by excessive fat deposition in hepatocytes and a major cause of end-stage liver disease. Autophagy is a metabolic pathway responsible for degrading cytoplasmic products and damaged organelles, playing a pivotal role in maintaining the homeostasis and functionality of hepatocytes. Recent studies have shown that pharmacological intervention to activate or restore autophagy provides benefits for liver function recovery by promoting the clearance of lipid droplets (LDs) in hepatocytes, decreasing the production of pro-inflammatory factors, and inhibiting activated hepatic stellate cells (HSCs), thus improving liver fibrosis and slowing down the progression of NAFLD. This article summarizes the physiological process of autophagy, elucidates the close relationship between NAFLD and autophagy, and discusses the effects of drugs on autophagy and signaling pathways from the perspectives of hepatocytes, kupffer cells (KCs), and HSCs to provide assistance in the clinical management of NAFLD.
Collapse
Affiliation(s)
- Qiaohui Shen
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Ming Yang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Department of Liver, Spleen and Gastroenterology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Song Wang
- Department of Liver, Spleen and Gastroenterology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Xingyu Chen
- Department of Liver, Spleen and Gastroenterology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Sulan Chen
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Rui Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zhuang Xiong
- Department of Liver, Spleen and Gastroenterology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Yan Leng
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Department of Liver, Spleen and Gastroenterology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
42
|
Liu WX, Liu L. Predictive value of serum alanine aminotransferase for fatty liver associated with metabolic dysfunction. World J Hepatol 2024; 16:990-994. [PMID: 39086530 PMCID: PMC11287612 DOI: 10.4254/wjh.v16.i7.990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/06/2024] [Accepted: 05/27/2024] [Indexed: 07/26/2024] Open
Abstract
In this editorial, we offer commentary on the article published by Chen et al in a recent issue of the World Journal of Gastroenterology (2024; 30: 1346-1357). The study highlights a noteworthy association between persistently elevated, yet high-normal levels of alanine transaminase (ALT) and an escalated cumulative risk of developing metabolic dysfunction-associated fatty liver disease (MAFLD). MAFLD has emerged as a globally prevalent chronic liver condition, whose incidence is steadily rising in parallel with improvements in living standards. Left unchecked, MAFLD can progress from hepatic steatosis to liver fibrosis, cirrhosis, and even hepatocellular carcinoma, underscoring the importance of early screening and diagnosis. ALT is widely recognized as a reliable biomarker for assessing the extent of hepatocellular damage. While ALT levels demonstrate a significant correlation with the severity of fatty liver disease, they lack specificity. The article by Chen et al contributes to our understanding of the development of MAFLD by investigating the long-term implications of high-normal ALT levels. Their findings suggest that sustained elevation within the normal range is linked to an increased likelihood of developing MAFLD, emphasizing the need for closer monitoring and potential intervention in such cases.
Collapse
Affiliation(s)
- Wen-Xiu Liu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Lei Liu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China.
| |
Collapse
|
43
|
Liou CJ, Wu SJ, Yang HC, Fang LW, Cheng SC, Huang WC. Licochalcone D ameliorates lipid metabolism in hepatocytes by modulating lipogenesis and autophagy. Eur J Pharmacol 2024; 975:176644. [PMID: 38754535 DOI: 10.1016/j.ejphar.2024.176644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Metabolic dysfunction-associated fatty liver disease is a metabolic disease caused by abnormal lipid accumulation in the liver. Excessive lipid accumulation results in liver inflammation and fibrosis. Previous studies have demonstrated that the chalcone licochalcone D, which is isolated from Glycyrrhiza inflata Batal, has anti-tumor and anti-inflammatory effects. The present study explored whether licochalcone D can regulate lipid accumulation in fatty liver cells. FL83B hepatocytes were incubated with oleic acid to establish a fatty liver cell model, and then treated with licochalcone D to evaluate the molecular mechanisms underlying the regulation of lipid metabolism. In addition, male C57BL/6 mice were fed a methionine/choline-deficient diet to induce an animal model of metabolic dysfunction-associated steatohepatitis (MASH) and given 5 mg/kg licochalcone D by intraperitoneal injection. In cell experiments, licochalcone D significantly reduced lipid accumulation in fatty liver cells and reduced sterol regulatory element-binding protein 1c expression, blocking fatty acid synthase production. Licochalcone D increased adipose triglyceride lipase and carnitine palmitoyltransferase 1 expression, enhancing lipolysis and fatty acid β-oxidation, respectively. Licochalcone D also significantly increased SIRT-1 and AMPK phosphorylation, reducing acetyl-CoA carboxylase phosphorylation and inhibiting fatty acid synthesis. Licochalcone D also increased the fusion of autophagosomes and lysosomes to promote autophagy, reducing oil droplet accumulation in fatty liver cells. In the animal experiments, licochalcone D effectively reduced the number of lipid vacuoles and degree of fibrosis in liver tissue and inhibited liver inflammation. Thus, licochalcone D can improve MASH by reducing lipid accumulation, inhibiting inflammation, and increasing autophagy.
Collapse
Affiliation(s)
- Chian-Jiun Liou
- Department of Nursing, Division of Basic Medical Sciences, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, No.261, Wenhua 1st Rd., Taoyuan City, 33303, Taiwan; Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taoyuan City, 33303, Taiwan
| | - Shu-Ju Wu
- Department of Nutrition and Health Sciences, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, No.261, Wenhua 1st Rd., Taoyuan City, 33303, Taiwan; Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, 33303, Taiwan
| | - Hui-Chi Yang
- Graduate Institute of Health Industry Technology, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, No.261, Wenhua 1st Rd., Taoyuan City, 33303, Taiwan
| | - Li-Wen Fang
- Department of Nutrition, I-Shou University, No.8, Yida Rd. Yanchao Dist., Kaohsiung City, Taiwan
| | - Shu-Chen Cheng
- Graduate Institute of Health Industry Technology, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, No.261, Wenhua 1st Rd., Taoyuan City, 33303, Taiwan; Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, 33303, Taiwan.
| | - Wen-Chung Huang
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taoyuan City, 33303, Taiwan; Graduate Institute of Health Industry Technology, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, No.261, Wenhua 1st Rd., Taoyuan City, 33303, Taiwan; Department of Pediatrics, New Taipei Municipal TuCheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei, 23656, Taiwan.
| |
Collapse
|
44
|
Cao W, Chen Z, Lin C, Lin X, Chen Y, Zhang J. Honokiol Mitigates Metabolic-Associated Fatty Liver Disease by Regulating Nrf2 and RIPK3 Signaling Pathways. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2024; 35:551-559. [PMID: 39128113 PMCID: PMC11363389 DOI: 10.5152/tjg.2024.23470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/13/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND/AIMS Metabolic-associated fatty liver disease (MAFLD) is a common cause of chronic liver disease worldwide. However, there is currently no recognized effective drugs for treating it. MATERIALS AND METHODS In this study, we investigated the efficacy of Honokiol (HNK) in vitro for mitigating MAFLD. Then, 0.4 mM palmitic acid (PA) and LO2 cells were used to establish the MAFLD model. The protective effect of HNK on MAFLD was confirmed by Oil Red O staining and cell counting kit (CCK-8) assay in LO2 cell line. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were carried out to analyze the regulatory role of HNK on Nrf2 and RIPK3 signaling pathways. The effect of HNK and its downstream signaling pathways on oxidative stress were verified by the detection of reactive oxygen species (ROS), malondialdehyde (MDA), catalase (CAT), and superoxide dismutase (SOD). The concentration of IL-1β, IL-6L, and TNF-α was assessed by enzyme-linked immunosorbent assay (ELISA). RESULTS The middle concentration of HNK (50 μmol/L) was selected as the best option for inhibiting lipidosis and oxidative stress in MAFLD models. Honokiol mitigates MAFLD via activation of nuclear factor E2-related factor 2 (Nrf2) signaling pathways in vitro. Honokiol suppressed MAFLD via activating the Nrf2 signaling pathway to play an antioxidant and anti-inflammatory role. Also, HNK regulates Nrf2 and RIPK3 signaling pathways to mitigate MAFLD. CONCLUSION Our results showed that HNK may suppress the oxidative stress and inflammation in MAFLD via activation of Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Wen Cao
- Department of Gastroenterology, Fuzhou Second General Hospital, Fuzhou, Fujian Province, China
| | - Zengdian Chen
- Department of Gastroenterology, Fuzhou Second General Hospital, Fuzhou, Fujian Province, China
| | - Chenhui Lin
- Department of Gastroenterology, Fuzhou Second General Hospital, Fuzhou, Fujian Province, China
| | - Xiaojin Lin
- Department of Gastroenterology, Fuzhou Second General Hospital, Fuzhou, Fujian Province, China
| | - Yang Chen
- Department of Gastroenterology, Fuzhou Second General Hospital, Fuzhou, Fujian Province, China
| | - Jingjuan Zhang
- Department of Gastroenterology, Fuzhou Second General Hospital, Fuzhou, Fujian Province, China
| |
Collapse
|
45
|
Cen C, Fan Z, Ding X, Tu X, Liu Y. Associations between metabolic dysfunction-associated fatty liver disease, chronic kidney disease, and abdominal obesity: a national retrospective cohort study. Sci Rep 2024; 14:12645. [PMID: 38825630 PMCID: PMC11144701 DOI: 10.1038/s41598-024-63386-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) and chronic kidney disease (CKD) present notable health challenges, however, abdominal obesity has received scant attention despite its potential role in exacerbating these conditions. Thus, we conducted a retrospective cohort study using the National Health and Nutrition Examination Surveys III (NHANES III) of the United States from 1988 to 1994 including 9161 participants, and mortality follow-up survey in 2019. Statistical analyze including univariable and multivariable Logistic and Cox regression models, and Mediation effect analyze were applied in study after adjustment for covariates. Our findings revealed that individuals with both abdominal obesity and MAFLD were more likely to be female, older and exhibit higher prevalence of advanced liver fibrosis (7.421% vs. 2.363%, p < 0.001), type 2 diabetes mellitus (T2DM) (21.484% vs. 8.318%, p < 0.001) and CKD(30.306% vs. 16.068%, p < 0.001) compared to those with MAFLD alone. MAFLD (adjusted OR: 1.392, 95% CI 1.013-1.913, p = 0.041), abdominal obesity (adjusted OR 1.456, 95% CI 1.127-1.880, p = 0.004), abdominal obesity with MAFLD (adjusted OR 1.839, 95% CI 1.377-2.456, p < 0.001), advanced fibrosis(adjusted OR 1.756, 95% CI 1.178-2.619, p = 0.006) and T2DM (adjusted OR 2.365, 95% CI 1.758-3.183, p < 0.001) were independent risk factors of CKD. The abdominal obese MAFLD group had the highest all-cause mortality as well as mortality categorized by disease during the 30-year follow-up period. Indices for measuring abdominal obesity, such as waist circumference (WC), waist-hip ratio (WHR), and lipid accumulation product (LAP), elucidated a greater mediation effect of MAFLD on CKD compared to BMI on CKD (proportion mediation 65.23%,70.68%, 71.98%, respectively vs. 32.63%). In conclusion, the coexistence of abdominal obesity and MAFLD increases the prevalence and mortality of CKD, and abdominal obesity serves as a mediator in the association between MAFLD and CKD.
Collapse
Affiliation(s)
- Chao Cen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zhongwen Fan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xinjiang Ding
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xinyue Tu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yuanxing Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
46
|
Li B, Jiang XF, Dong YJ, Zhang YP, He XLS, Zhou CL, Ding YY, Wang N, Wang YB, Cheng WQ, Jiang NH, Su J, Lv GY, Chen SH. The effects of Atractylodes macrocephala extract BZEP self-microemulsion based on gut-liver axis HDL/LPS signaling pathway to ameliorate metabolic dysfunction-associated fatty liver disease in rats. Biomed Pharmacother 2024; 175:116519. [PMID: 38663104 DOI: 10.1016/j.biopha.2024.116519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 06/03/2024] Open
Abstract
OBJECTIVES To elucidate the therapeutic effects and mechanisms of Atractylodes macrocephala extract crystallize (BZEP) and BZEP self-microemulsion (BZEPWR) on metabolic dysfunction-associated fatty liver disease (MAFLD) induced by "high sugar, high fat, and excessive alcohol consumption" based on the gut-liver axis HDL/LPS signaling pathway. METHODS In this study, BZEP and BZEPWR were obtained via isolation, purification, and microemulsification. Furthermore, an anthropomorphic MAFLD rat model of "high sugar, high fat, and excessive alcohol consumption" was established. The therapeutic effects of BZEPWR and BZEP on the model rats were evaluated in terms of liver function, lipid metabolism (especially HDL-C), serum antioxidant indexes, and liver and intestinal pathophysiology. To determine the lipoproteins in the serum sample, the amplitudes of a plurality of NMR spectra were derived via deconvolution of the composite methyl signal envelope to yield HDL-C subclass concentrations. The changes in intestinal flora were detected via 16 S rRNA gene sequencing. In addition, the gut-liver axis HDL/LPS signaling pathway was validated using immunohistochemistry, immunofluorescence, and western blot. RESULTS The findings established that BZEPWR and BZEP improved animal signs, serum levels of liver enzymes (ALT and AST), lipid metabolism (TC, TG, HDL-C, and LDL-C), and antioxidant indexes (GSH, SOD, and ROS). In addition, pathological damage to the liver, colon, and ileum was ameliorated, and the intestinal barrier function of the model rats was restored. At the genus level, BZEPWR and BZEP exerted positive effects on beneficial bacteria, such as Lactobacillus and norank_f__Muribaculaceae, and inhibitory effects on harmful bacteria, such as unclassified_f__Lachnospiraceae and Blautia. Twenty HDL-C subspecies were detected, and their levels were differentially increased in both BZEPWR and BZEP groups, with BZEPWR exhibiting a stronger elevating effect on specific HDL-C subspecies. Also, the gut-liver axis HDL/LPS signaling pathway was studied, which indicated that BZEPWR and BZEP significantly increased the expressions of ABCA1, LXR, occludin, and claudin-1 proteins in the gut and serum levels of HDL-C. Concomitantly, the levels of LPS in the serum and TLR4, Myd88, and NF-κB proteins in the liver were decreased. CONCLUSION BZEPWR and BZEP exert restorative and reversal effects on the pathophysiological damage to the gut-liver axis in MAFLD rats, and the therapeutic mechanism may be related to the regulation of the intestinal flora and the HDL/LPS signaling pathway.
Collapse
Affiliation(s)
- Bo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Gongshu District, Hangzhou, Zhejiang 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang 313200, China
| | - Xiao-Feng Jiang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Gongshu District, Hangzhou, Zhejiang 310014, China
| | - Ying-Jie Dong
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Gongshu District, Hangzhou, Zhejiang 310014, China; College of Pharmaceutical Science, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, Zhejiang 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang 313200, China
| | - Yi-Piao Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Gongshu District, Hangzhou, Zhejiang 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang 313200, China
| | - Xing-Li-Shang He
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Gongshu District, Hangzhou, Zhejiang 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang 313200, China
| | - Cheng-Liang Zhou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Gongshu District, Hangzhou, Zhejiang 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang 313200, China
| | - Yan-Yan Ding
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Gongshu District, Hangzhou, Zhejiang 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang 313200, China
| | - Ning Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Gongshu District, Hangzhou, Zhejiang 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang 313200, China
| | - Yi-Bin Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Gongshu District, Hangzhou, Zhejiang 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang 313200, China
| | - Wan-Qi Cheng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Gongshu District, Hangzhou, Zhejiang 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang 313200, China
| | - Ning-Hua Jiang
- The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, China.
| | - Jie Su
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, Zhejiang 310014, China.
| | - Gui-Yuan Lv
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, Zhejiang 310014, China.
| | - Su-Hong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Gongshu District, Hangzhou, Zhejiang 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang 313200, China.
| |
Collapse
|
47
|
Trillos-Almanza MC, Chvatal-Medina M, Connelly MA, Moshage H, TransplantLines Investigators, Bakker SJL, de Meijer VE, Blokzijl H, Dullaart RPF. Circulating Trimethylamine-N-Oxide Is Elevated in Liver Transplant Recipients. Int J Mol Sci 2024; 25:6031. [PMID: 38892218 PMCID: PMC11172608 DOI: 10.3390/ijms25116031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Liver transplant recipients (LTRs) have lower long-term survival rates compared with the general population. This underscores the necessity for developing biomarkers to assess post-transplantation mortality. Here we compared plasma trimethylamine-N-oxide (TMAO) levels with those in the general population, investigated its determinants, and interrogated its association with all-cause mortality in stable LTRs. Plasma TMAO was measured in 367 stable LTRs from the TransplantLines cohort (NCT03272841) and in 4837 participants from the population-based PREVEND cohort. TMAO levels were 35% higher in LTRs compared with PREVEND participants (4.3 vs. 3.2 µmol/L, p < 0.001). Specifically, TMAO was elevated in LTRs with metabolic dysfunction-associated steatotic liver disease, alcohol-associated liver disease, and polycystic liver disease as underlying etiology (p < 0.001 for each). Among LTRs, TMAO levels were independently associated with eGFR (std. β = -0.43, p < 0.001) and iron supplementation (std. β = 0.13, p = 0.008), and were associated with mortality (29 deaths during 8.6 years follow-up; log-rank test p = 0.017; hazard ratio of highest vs. lowest tertile 4.14, p = 0.007). In conclusion, plasma TMAO is likely elevated in stable LTRs, with impaired eGFR and iron supplementation as potential contributory factors. Our preliminary findings raise the possibility that plasma TMAO could contribute to increased mortality risk in such patients, but this need to be validated through a series of rigorous and methodical studies.
Collapse
Affiliation(s)
- Maria Camila Trillos-Almanza
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.C.-M.); (H.M.); (H.B.)
| | - Mateo Chvatal-Medina
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.C.-M.); (H.M.); (H.B.)
| | | | - Han Moshage
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.C.-M.); (H.M.); (H.B.)
| | - TransplantLines Investigators
- Groningen Institute for Organ Transplantation, University Medical Center Groningen, University of Groningen, 9700 AD Groningen, The Netherlands;
| | - Stephan J. L. Bakker
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands;
| | - Vincent E. de Meijer
- Department of Surgery, Division of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands;
| | - Hans Blokzijl
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.C.-M.); (H.M.); (H.B.)
| | - Robin P. F. Dullaart
- Department of Internal Medicine, Division of Endocrinology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands;
| |
Collapse
|
48
|
Wu F, Dang B, Hu L, Zhu S, Liu Z, Cao X, Li Z, Wang C, Lin C. Lycium barbarum polysaccharide inhibits blue-light-induced skin oxidative damage with the involvement of mitophagy. Photochem Photobiol 2024; 100:604-621. [PMID: 37814779 DOI: 10.1111/php.13863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/11/2023]
Abstract
Although blue light can damage the skin to a certain extent, the pathogenesis of its damage remains still unclear. The available evidence suggests that oxidative stress may be the main cause of its damage. Lycium barbarum polysaccharide (LBP) has antioxidative effects in a variety of cells. In this paper, we investigated the protective role of LBP and its mechanism of action related to mitophagy in blue-light-damaged skin cells. The findings indicated that in HaCaT cells and mouse skin, LBP pretreatment was effective in reducing blue-light-induced apoptosis and ameliorating the elevated level of cellular autophagy/mitophagy caused by excessive blue light exposure. The markers reactive oxygen species (ROS), superoxide dismutase (SOD), and malondialdehyde (MDA) were used to assess oxidative stress. LBP could effectively inhibit blue-light-induced oxidative stress. It was also found that blue light exposure caused mitochondrial dysfunction in HaCaT cells, including increased intracellular calcium ion levels and decreased mitochondrial membrane potential. LBP pretreatment significantly relieved mitochondrial dysfunction in HaCaT cells. These findings imply that LBP pretreatment protects skin cells from damage induced by blue light irradiation and that mitophagy may be a significant factor in skin photodamage.
Collapse
Affiliation(s)
- Fen Wu
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Bingrong Dang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Liming Hu
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Sen Zhu
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zuohao Liu
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xinhui Cao
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zhen Li
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Chunming Wang
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Changjun Lin
- School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
49
|
Zhang Q, Shen X, Yuan X, Huang J, Zhu Y, Zhu T, Zhang T, Wu H, Wu Q, Fan Y, Ni J, Meng L, He A, Shi C, Li H, Hu Q, Wang J, Chang C, Huang F, Li F, Chen M, Liu A, Ye S, Zheng M, Fang H. Lipopolysaccharide binding protein resists hepatic oxidative stress by regulating lipid droplet homeostasis. Nat Commun 2024; 15:3213. [PMID: 38615060 PMCID: PMC11016120 DOI: 10.1038/s41467-024-47553-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 04/02/2024] [Indexed: 04/15/2024] Open
Abstract
Oxidative stress-induced lipid accumulation is mediated by lipid droplets (LDs) homeostasis, which sequester vulnerable unsaturated triglycerides into LDs to prevent further peroxidation. Here we identify the upregulation of lipopolysaccharide-binding protein (LBP) and its trafficking through LDs as a mechanism for modulating LD homeostasis in response to oxidative stress. Our results suggest that LBP induces lipid accumulation by controlling lipid-redox homeostasis through its lipid-capture activity, sorting unsaturated triglycerides into LDs. N-acetyl-L-cysteine treatment reduces LBP-mediated triglycerides accumulation by phospholipid/triglycerides competition and Peroxiredoxin 4, a redox state sensor of LBP that regulates the shuttle of LBP from LDs. Furthermore, chronic stress upregulates LBP expression, leading to insulin resistance and obesity. Our findings contribute to the understanding of the role of LBP in regulating LD homeostasis and against cellular peroxidative injury. These insights could inform the development of redox-based therapies for alleviating oxidative stress-induced metabolic dysfunction.
Collapse
Affiliation(s)
- Qilun Zhang
- Laboratory of Diabetes, Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Xuting Shen
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui, 230000, China
| | - Xin Yuan
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui, 230000, China
| | - Jing Huang
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui, 230000, China
| | - Yaling Zhu
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui, 230000, China
| | - Tengteng Zhu
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui, 230000, China
| | - Tao Zhang
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui, 230000, China
| | - Haibo Wu
- Department of Pathology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Qian Wu
- Department of pathology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, 230011, China
| | - Yinguang Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Jing Ni
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Leilei Meng
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui, 230000, China
| | - Anyuan He
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230000, China
| | - Chaowei Shi
- Department of Chemistry, Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230022, China
| | - Hao Li
- Department of Chemistry, Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230022, China
| | - Qingsong Hu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, China
| | - Jian Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Cheng Chang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Fan Huang
- Organ Transplantation Center, Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Fang Li
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Meng Chen
- Graduate School of Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Anding Liu
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Shandong Ye
- Laboratory of Diabetes, Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Mao Zheng
- Laboratory of Diabetes, Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Haoshu Fang
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui, 230000, China.
| |
Collapse
|
50
|
González-Arceo M, Aguirre L, Macarulla MT, Gil-Pitarch C, Martínez-Chantar ML, Portillo MP, Gómez-Zorita S. Effect of Gracilaria vermiculophylla Macroalga on Non-Alcoholic Fatty Liver Disease in Obese Rats. Antioxidants (Basel) 2024; 13:369. [PMID: 38539902 PMCID: PMC10968416 DOI: 10.3390/antiox13030369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 01/04/2025] Open
Abstract
Marine algae are valuable sources of bioactive compounds that have the potential to be used in the management of various pathologies. Despite the increasing prevalence of NAFLD, the absence of an approved effective pharmacological treatment with demonstrable effectiveness persists. In this context, the aim of the present study is to assess the effect of Gracilaria vermiculophylla red seaweed dietary supplementation on hepatic lipid accumulation, as well as on oxidative stress, inflammation and fibrosis- related markers on obese fa/fa Zucker rats fed with a standard diet, supplemented or not with 2.5% or 5% dehydrated Gracilaria vermiculophylla. After a six-week supplementation with the macroalga, no significant reduction in hepatic total lipid content or hepatic triglyceride content was observed. However, both doses were able to diminish hepatic NEFA concentration by reducing de novo lipogenesis and increasing mitochondrial biogenesis. Moreover, supplementation with the dose of 2.5% improved some oxidative stress and inflammation-related markers. Supplementation with the dose of 5% did not exert these clear beneficial effects. Thus, this study demonstrates that while Gracilaria vermiculophylla may not mitigate hepatic steatosis, it could exert protective effects on the liver by reducing NEFA content and enhancing oxidative stress and inflammation parameters.
Collapse
Affiliation(s)
- Maitane González-Arceo
- Nutrition and Obesity Group, Department of Pharmacy and Food Science, Faculty of Pharmacy and Lucio Lascaray Research Centre, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (M.G.-A.); (M.T.M.); (M.P.P.); (S.G.-Z.)
| | - Leixuri Aguirre
- Nutrition and Obesity Group, Department of Pharmacy and Food Science, Faculty of Pharmacy and Lucio Lascaray Research Centre, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (M.G.-A.); (M.T.M.); (M.P.P.); (S.G.-Z.)
- CIBERobn Physiopathology of Obesity and Nutrition, National Institute of Health Carlos III, 28222 Madrid, Spain
- BIOARABA Health Research Institute, 01006 Vitoria-Gasteiz, Spain
| | - María Teresa Macarulla
- Nutrition and Obesity Group, Department of Pharmacy and Food Science, Faculty of Pharmacy and Lucio Lascaray Research Centre, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (M.G.-A.); (M.T.M.); (M.P.P.); (S.G.-Z.)
- CIBERobn Physiopathology of Obesity and Nutrition, National Institute of Health Carlos III, 28222 Madrid, Spain
- BIOARABA Health Research Institute, 01006 Vitoria-Gasteiz, Spain
| | - Clàudia Gil-Pitarch
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; (C.G.-P.); (M.L.M.-C.)
| | - María Luz Martínez-Chantar
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; (C.G.-P.); (M.L.M.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), National Institute of Health Carlos III, 28222 Madrid, Spain
| | - María P. Portillo
- Nutrition and Obesity Group, Department of Pharmacy and Food Science, Faculty of Pharmacy and Lucio Lascaray Research Centre, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (M.G.-A.); (M.T.M.); (M.P.P.); (S.G.-Z.)
- CIBERobn Physiopathology of Obesity and Nutrition, National Institute of Health Carlos III, 28222 Madrid, Spain
- BIOARABA Health Research Institute, 01006 Vitoria-Gasteiz, Spain
| | - Saioa Gómez-Zorita
- Nutrition and Obesity Group, Department of Pharmacy and Food Science, Faculty of Pharmacy and Lucio Lascaray Research Centre, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (M.G.-A.); (M.T.M.); (M.P.P.); (S.G.-Z.)
- CIBERobn Physiopathology of Obesity and Nutrition, National Institute of Health Carlos III, 28222 Madrid, Spain
- BIOARABA Health Research Institute, 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|