1
|
Martineau CA, Rivard N, Bisaillon M. From viruses to cancer: exploring the role of the hepatitis C virus NS3 protein in carcinogenesis. Infect Agent Cancer 2024; 19:40. [PMID: 39192306 DOI: 10.1186/s13027-024-00606-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
Hepatitis C virus (HCV) chronically infects approximately 170 million people worldwide and is a known etiological agent of hepatocellular carcinoma (HCC). The molecular mechanisms of HCV-mediated carcinogenesis are not fully understood. This review article focuses on the oncogenic potential of NS3, a viral protein with transformative effects on cells, although the precise mechanisms remain elusive. Unlike the more extensively studied Core and NS5A proteins, NS3's roles in cancer development are less defined but critical. Research indicates that NS3 is implicated in several carcinogenic processes such as proliferative signaling, cell death resistance, genomic instability and mutations, invasion and metastasis, tumor-related inflammation, immune evasion, and replicative immortality. Understanding the direct impact of viral proteins such as NS3 on cellular transformation is crucial for elucidating HCV's role in HCC development. Overall, this review sheds light on the molecular mechanisms used by NS3 to contribute to hepatocarcinogenesis, and highlights its significance in the context of HCV-associated HCC, underscoring the need for further investigation into its specific molecular and cellular actions.
Collapse
Affiliation(s)
- Carole-Anne Martineau
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada
| | - Nathalie Rivard
- Département d'Immunologie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada
| | - Martin Bisaillon
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada.
| |
Collapse
|
2
|
Banerjee A, Farci P. Fibrosis and Hepatocarcinogenesis: Role of Gene-Environment Interactions in Liver Disease Progression. Int J Mol Sci 2024; 25:8641. [PMID: 39201329 PMCID: PMC11354981 DOI: 10.3390/ijms25168641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
The liver is a complex organ that performs vital functions in the body. Despite its extraordinary regenerative capacity compared to other organs, exposure to chemical, infectious, metabolic and immunologic insults and toxins renders the liver vulnerable to inflammation, degeneration and fibrosis. Abnormal wound healing response mediated by aberrant signaling pathways causes chronic activation of hepatic stellate cells (HSCs) and excessive accumulation of extracellular matrix (ECM), leading to hepatic fibrosis and cirrhosis. Fibrosis plays a key role in liver carcinogenesis. Once thought to be irreversible, recent clinical studies show that hepatic fibrosis can be reversed, even in the advanced stage. Experimental evidence shows that removal of the insult or injury can inactivate HSCs and reduce the inflammatory response, eventually leading to activation of fibrolysis and degradation of ECM. Thus, it is critical to understand the role of gene-environment interactions in the context of liver fibrosis progression and regression in order to identify specific therapeutic targets for optimized treatment to induce fibrosis regression, prevent HCC development and, ultimately, improve the clinical outcome.
Collapse
Affiliation(s)
- Anindita Banerjee
- Department of Transfusion Transmitted Diseases, ICMR-National Institute of Immunohaematology, Mumbai 400012, Maharashtra, India;
| | - Patrizia Farci
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Maxwell JR, Noor S, Pavlik N, Rodriguez DE, Enriquez Marquez L, DiDomenico J, Blossom SJ, Bakhireva LN. Moderate Prenatal Alcohol Exposure Increases Toll-like Receptor Activity in Umbilical Cord Blood at Birth: A Pilot Study. Int J Mol Sci 2024; 25:7019. [PMID: 39000127 PMCID: PMC11241342 DOI: 10.3390/ijms25137019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
The prevalence of prenatal alcohol exposure (PAE) is increasing, with evidence suggesting that PAE is linked to an increased risk of infections. PAE is hypothesized to affect the innate immune system, which identifies pathogens through pattern recognition receptors, of which toll-like receptors (TLRs) are key components. We hypothesized that light-to-moderate PAE would impair immune responses, as measured by a heightened response in cytokine levels following TLR stimulation. Umbilical cord samples (10 controls and 8 PAE) from a subset of the Ethanol, Neurodevelopment, Infant and Child Health Study-2 cohort were included. Peripheral blood mononuclear cells (PMBCs) were stimulated with one agonist (TLR2, TLR3, TLR4, or TLR9). TLR2 agonist stimulation significantly increased pro-inflammatory interleukin-1-beta in the PAE group after 24 h. Pro- and anti-inflammatory cytokines were increased following stimulation with the TLR2 agonists. Stimulation with TLR3 or TLR9 agonists displayed minimal impact overall, but there were significant increases in the percent change of the control compared to PAE after 24 h. The results of this pilot investigation support further work into the impact on TLR2 and TLR4 response following PAE to delineate if alterations in levels of pro- and anti-inflammatory cytokines have clinical significance that could be used in patient management and/or attention to follow-up.
Collapse
Affiliation(s)
- Jessie R. Maxwell
- Department of Pediatrics, University of New Mexico, Albuquerque, NM 87131, USA
- Department of Neurosciences, University of New Mexico, Albuquerque, NM 87131, USA
| | - Shahani Noor
- Department of Neurosciences, University of New Mexico, Albuquerque, NM 87131, USA
| | - Nathaniel Pavlik
- Department of Pediatrics, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | | - Jared DiDomenico
- College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Sarah J. Blossom
- College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Ludmila N. Bakhireva
- Substance Use Research and Education (SURE) Center, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
4
|
Diaz O, Legrand AF, El-Orch W, Jacolin F, Lotteau V, Ramière C, Vidalain PO, Perrin-Cocon L. [Role of cellular metabolism in the control of chronic viral hepatitis]. Med Sci (Paris) 2023; 39:754-762. [PMID: 37943136 DOI: 10.1051/medsci/2023125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023] Open
Abstract
Hepatitis viruses modify the cellular metabolism of hepatocytes by interacting with specific enzymes such as glucokinase. The metabolic changes induced by viruses can have a direct impact on the innate antiviral response. The complex interactions between viral components, innate immunity, and hepatocyte metabolism explain why chronic hepatitis infections lead to liver inflammation, progressing to cirrhosis, fibrosis, and hepatocellular carcinoma. Metabolic regulators could be used in innovative therapies to deprive viruses of key metabolites and induce an antiviral defense.
Collapse
Affiliation(s)
- Olivier Diaz
- CIRI, Centre international de recherche en infectiologie, équipe VIRIMI, Univ Lyon, Inserm U1111, université Claude Bernard Lyon 1, CNRS, UMR5308, École normale supérieure (ENS) de Lyon, F-69007, Lyon, France
| | - Anne-Flore Legrand
- CIRI, Centre international de recherche en infectiologie, équipe VIRIMI, Univ Lyon, Inserm U1111, université Claude Bernard Lyon 1, CNRS, UMR5308, École normale supérieure (ENS) de Lyon, F-69007, Lyon, France
| | - Walid El-Orch
- CIRI, Centre international de recherche en infectiologie, équipe VIRIMI, Univ Lyon, Inserm U1111, université Claude Bernard Lyon 1, CNRS, UMR5308, École normale supérieure (ENS) de Lyon, F-69007, Lyon, France
| | - Florentine Jacolin
- CIRI, Centre international de recherche en infectiologie, équipe VIRIMI, Univ Lyon, Inserm U1111, université Claude Bernard Lyon 1, CNRS, UMR5308, École normale supérieure (ENS) de Lyon, F-69007, Lyon, France
| | - Vincent Lotteau
- CIRI, Centre international de recherche en infectiologie, équipe VIRIMI, Univ Lyon, Inserm U1111, université Claude Bernard Lyon 1, CNRS, UMR5308, École normale supérieure (ENS) de Lyon, F-69007, Lyon, France
| | - Christophe Ramière
- CIRI, Centre international de recherche en infectiologie, équipe VIRIMI, Univ Lyon, Inserm U1111, université Claude Bernard Lyon 1, CNRS, UMR5308, École normale supérieure (ENS) de Lyon, F-69007, Lyon, France - Service de virologie, hospices civils de Lyon, hôpital de la Croix-Rousse, Lyon, France
| | - Pierre-Olivier Vidalain
- CIRI, Centre international de recherche en infectiologie, équipe VIRIMI, Univ Lyon, Inserm U1111, université Claude Bernard Lyon 1, CNRS, UMR5308, École normale supérieure (ENS) de Lyon, F-69007, Lyon, France
| | - Laure Perrin-Cocon
- CIRI, Centre international de recherche en infectiologie, équipe VIRIMI, Univ Lyon, Inserm U1111, université Claude Bernard Lyon 1, CNRS, UMR5308, École normale supérieure (ENS) de Lyon, F-69007, Lyon, France
| |
Collapse
|
5
|
Moin AT, Ullah MA, Patil RB, Faruqui NA, Araf Y, Das S, Uddin KMK, Hossain MS, Miah MF, Moni MA, Chowdhury DUS, Islam S. A computational approach to design a polyvalent vaccine against human respiratory syncytial virus. Sci Rep 2023; 13:9702. [PMID: 37322049 PMCID: PMC10272159 DOI: 10.1038/s41598-023-35309-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
Human Respiratory Syncytial Virus (RSV) is one of the leading causes of lower respiratory tract infections (LRTI), responsible for infecting people from all age groups-a majority of which comprises infants and children. Primarily, severe RSV infections are accountable for multitudes of deaths worldwide, predominantly of children, every year. Despite several efforts to develop a vaccine against RSV as a potential countermeasure, there has been no approved or licensed vaccine available yet, to control the RSV infection effectively. Therefore, through the utilization of immunoinformatics tools, a computational approach was taken in this study, to design a multi-epitope polyvalent vaccine against two major antigenic subtypes of RSV, RSV-A and RSV-B. Potential predictions of the T-cell and B-cell epitopes were followed by extensive tests of antigenicity, allergenicity, toxicity, conservancy, homology to human proteome, transmembrane topology, and cytokine-inducing ability. The peptide vaccine was modeled, refined, and validated. Molecular docking analysis with specific Toll-like receptors (TLRs) revealed excellent interactions with suitable global binding energies. Additionally, molecular dynamics (MD) simulation ensured the stability of the docking interactions between the vaccine and TLRs. Mechanistic approaches to imitate and predict the potential immune response generated by the administration of vaccines were determined through immune simulations. Subsequent mass production of the vaccine peptide was evaluated; however, there remains a necessity for further in vitro and in vivo experiments to validate its efficacy against RSV infections.
Collapse
Affiliation(s)
- Abu Tayab Moin
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh.
| | - Md Asad Ullah
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Rajesh B Patil
- Department of Pharmaceutical Chemistry, Sinhgad Technical Education Society's, Sinhgad College of Pharmacy, Pune, Maharashtra, India
| | - Nairita Ahsan Faruqui
- Biotechnology Program, Department of Mathematics and Natural Sciences, School of Data and Sciences, BRAC University, Dhaka, Bangladesh
| | - Yusha Araf
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Sowmen Das
- Department of Computer Science and Engineering, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Khaza Md Kapil Uddin
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Md Shakhawat Hossain
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Md Faruque Miah
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Mohammad Ali Moni
- Bone Biology Division, The Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- WHO Collaborating Centre on eHealth, UNSW Digital Health, School of Public Health and Community Medicine, Faculty of Medicine, UNSW Sydney, Sydney, Australia
- Artificial Intelligence and Data Science, Faculty of Health and Behavioural Sciences, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia
| | - Dil Umme Salma Chowdhury
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh.
| | - Saiful Islam
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Chattogram Laboratories, Chattogram, Bangladesh.
| |
Collapse
|
6
|
Sun PP, Li D, Su M, Ren Q, Guo WP, Wang JL, Du LY, Xie GC. Cell membrane-bound toll-like receptor-1/2/4/6 monomers and -2 heterodimer inhibit enterovirus 71 replication by activating the antiviral innate response. Front Immunol 2023; 14:1187035. [PMID: 37207203 PMCID: PMC10189127 DOI: 10.3389/fimmu.2023.1187035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/24/2023] [Indexed: 05/21/2023] Open
Abstract
Host immune activation is critical for enterovirus 71 (EV71) clearance and immunopathogenesis. However, the mechanism of innate immune activation, especially of cell membrane-bound toll-like receptors (TLRs), against EV71 remains unknown. We previously demonstrated that TLR2 and its heterodimer inhibit EV71 replication. In this study, we systematically investigated the effects of TLR1/2/4/6 monomers and TLR2 heterodimer (TLR2/TLR1, TLR2/TLR6, and TLR2/TLR4) on EV71 replication and innate immune activation. We found that the overexpression of human- or mouse-derived TLR1/2/4/6 monomers and TLR2 heterodimer significantly inhibited EV71 replication and induced the production of interleukin (IL)-8 via activation of the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) and mitogen-activated protein kinase (MAPK) pathways. Furthermore,human-mouse chimeric TLR2 heterodimer inhibited EV71 replication and activated innate immunity. Dominant-negative TIR-less (DN)-TLR1/2/4/6 did not exert any inhibitory effects, whereas DN-TLR2 heterodimer inhibited EV71 replication. Prokaryotic expression of purified recombinant EV71 capsid proteins (VP1, VP2, VP3, and VP4) or overexpression of EV71 capsid proteins induced the production of IL-6 and IL-8 via activation of the PI3K/AKT and MAPK pathways. Notably, two types of EV71 capsid proteins served as pathogen-associated molecular patterns for TLR monomers (TLR2 and TLR4) and TLR2 heterodimer (TLR2/TLR1, TLR2/TLR6, and TLR2/TLR4) and activated innate immunity. Collectively, our results revealed that membrane TLRs inhibited EV71 replication via activation of the antiviral innate response, providing insights into the EV71 innate immune activation mechanism.
Collapse
Affiliation(s)
- Ping-Ping Sun
- Department of Pathogenic Biology, College of Basic Medicine, Chengde Medical University, Chengde, Hebei, China
| | - Dan Li
- Department of Pathogenic Biology, College of Basic Medicine, Chengde Medical University, Chengde, Hebei, China
| | - Meng Su
- Department of Pathogenic Biology, College of Basic Medicine, Chengde Medical University, Chengde, Hebei, China
| | - Qing Ren
- Department of Pathogenic Biology, College of Basic Medicine, Chengde Medical University, Chengde, Hebei, China
| | - Wen-Ping Guo
- Department of Pathogenic Biology, College of Basic Medicine, Chengde Medical University, Chengde, Hebei, China
| | - Jiang-Li Wang
- Department of Microbiology Laboratory, Chengde Center for Disease Control and Prevention, Chengde, Hebei, China
| | - Luan-Ying Du
- Department of Pathogenic Biology, College of Basic Medicine, Chengde Medical University, Chengde, Hebei, China
| | - Guang-Cheng Xie
- Department of Pathogenic Biology, College of Basic Medicine, Chengde Medical University, Chengde, Hebei, China
- Institute of Basic Medicine, College of Basic Medicine, Chengde Medical University, Chengde, Hebei, China
| |
Collapse
|
7
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Pathogenesis of Hepatocellular Carcinoma: The Interplay of Apoptosis and Autophagy. Biomedicines 2023; 11:1166. [PMID: 37189787 PMCID: PMC10135776 DOI: 10.3390/biomedicines11041166] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
The pathogenesis of hepatocellular carcinoma (HCC) is a multifactorial process that has not yet been fully investigated. Autophagy and apoptosis are two important cellular pathways that are critical for cell survival or death. The balance between apoptosis and autophagy regulates liver cell turnover and maintains intracellular homeostasis. However, the balance is often dysregulated in many cancers, including HCC. Autophagy and apoptosis pathways may be either independent or parallel or one may influence the other. Autophagy may either inhibit or promote apoptosis, thus regulating the fate of the liver cancer cells. In this review, a concise overview of the pathogenesis of HCC is presented, with emphasis on new developments, including the role of endoplasmic reticulum stress, the implication of microRNAs and the role of gut microbiota. The characteristics of HCC associated with a specific liver disease are also described and a brief description of autophagy and apoptosis is provided. The role of autophagy and apoptosis in the initiation, progress and metastatic potential is reviewed and the experimental evidence indicating an interplay between the two is extensively analyzed. The role of ferroptosis, a recently described specific pathway of regulated cell death, is presented. Finally, the potential therapeutic implications of autophagy and apoptosis in drug resistance are examined.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Department of Gastroenterology, PAGNI University Hospital, University of Crete School of Medicine, 71500 Heraklion, Crete, Greece
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
| | - Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Central Macedonia, Greece
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Central Macedonia, Greece
| |
Collapse
|
8
|
Hatton AA, Guerra FE. Scratching the Surface Takes a Toll: Immune Recognition of Viral Proteins by Surface Toll-like Receptors. Viruses 2022; 15:52. [PMID: 36680092 PMCID: PMC9863796 DOI: 10.3390/v15010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Early innate viral recognition by the host is critical for the rapid response and subsequent clearance of an infection. Innate immune cells patrol sites of infection to detect and respond to invading microorganisms including viruses. Surface Toll-like receptors (TLRs) are a group of pattern recognition receptors (PRRs) that can be activated by viruses even before the host cell becomes infected. However, the early activation of surface TLRs by viruses can lead to viral clearance by the host or promote pathogenesis. Thus, a plethora of research has attempted to identify specific viral ligands that bind to surface TLRs and mediate progression of viral infection. Herein, we will discuss the past two decades of research that have identified specific viral proteins recognized by cell surface-associated TLRs, how these viral proteins and host surface TLR interactions affect the host inflammatory response and outcome of infection, and address why controversy remains regarding host surface TLR recognition of viral proteins.
Collapse
Affiliation(s)
- Alexis A. Hatton
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT 59718, USA
| | - Fermin E. Guerra
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
9
|
Liu X, Wang L, Liang CH, Lu YP, Yang T, Zhang X. An enhanced methodology for predicting protein-protein interactions between human and hepatitis C virus via ensemble learning algorithms. J Biomol Struct Dyn 2022; 40:10592-10602. [PMID: 34251992 DOI: 10.1080/07391102.2021.1946429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Hepatitis C virus (HCV) is responsible for a variety of human life-threatening diseases, which include liver cirrhosis, chronic hepatitis, fibrosis and hepatocellular carcinoma (HCC) . Computational study of protein-protein interactions between human and HCV could boost the findings of antiviral drugs in HCV therapy and might optimize the treatment procedures for HCV infections. In this analysis, we constructed a prediction model for protein-protein interactions between HCV and human by incorporating the features generated by pseudo amino acid compositions, which were then carried out at two levels: categories and features. In brief, extra-tree was initially used for feature selection while SVM was then used to build the classification model. After that, the most suitable models for each category and each feature were selected by comparing with the three ensemble learning algorithms, that is, Random Forest, Adaboost, and Xgboost. According to our results, profile-based features were more suitable for building predictive models among the four categories. AUC value of the model constructed by Xgboost algorithm on independent data set could reach 92.66%. Moreover, Distance-based Residue, Physicochemical Distance Transformation and Profile-based Physicochemical Distance Transformation performed much better among the 17 features. AUC value of the Adaboost classifier constructed by Profile-based Physicochemical Distance Transformation on the independent dataset achieved 93.74%. Taken together, we proposed a better model with improved prediction capacity for protein-protein interactions between human and HCV in this study, which could provide practical reference for further experimental investigation into HCV-related diseases in future.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Xin Liu
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Liang Wang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Cheng-Hao Liang
- School of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ya-Ping Lu
- College of Computer Science and Technology, China University of Mining and Technology, Xuzhou, Jiangsu, China
| | - Ting Yang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiao Zhang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
10
|
Diaz O, Vidalain PO, Ramière C, Lotteau V, Perrin-Cocon L. What role for cellular metabolism in the control of hepatitis viruses? Front Immunol 2022; 13:1033314. [PMID: 36466918 PMCID: PMC9713817 DOI: 10.3389/fimmu.2022.1033314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/02/2022] [Indexed: 11/26/2023] Open
Abstract
Hepatitis B, C and D viruses (HBV, HCV, HDV, respectively) specifically infect human hepatocytes and often establish chronic viral infections of the liver, thus escaping antiviral immunity for years. Like other viruses, hepatitis viruses rely on the cellular machinery to meet their energy and metabolite requirements for replication. Although this was initially considered passive parasitism, studies have shown that hepatitis viruses actively rewire cellular metabolism through molecular interactions with specific enzymes such as glucokinase, the first rate-limiting enzyme of glycolysis. As part of research efforts in the field of immunometabolism, it has also been shown that metabolic changes induced by viruses could have a direct impact on the innate antiviral response. Conversely, detection of viral components by innate immunity receptors not only triggers the activation of the antiviral defense but also induces in-depth metabolic reprogramming that is essential to support immunological functions. Altogether, these complex triangular interactions between viral components, innate immunity and hepatocyte metabolism may explain why chronic hepatitis infections progressively lead to liver inflammation and progression to cirrhosis, fibrosis and hepatocellular carcinoma (HCC). In this manuscript, we first present a global overview of known connections between the innate antiviral response and cellular metabolism. We then report known molecular mechanisms by which hepatitis viruses interfere with cellular metabolism in hepatocytes and discuss potential consequences on the innate immune response. Finally, we present evidence that drugs targeting hepatocyte metabolism could be used as an innovative strategy not only to deprive viruses of key metabolites, but also to restore the innate antiviral response that is necessary to clear infection.
Collapse
Affiliation(s)
- Olivier Diaz
- CIRI, Centre International de Recherche en Infectiologie, Team VIRal Infection, Metabolism and Immunity, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Pierre-Olivier Vidalain
- CIRI, Centre International de Recherche en Infectiologie, Team VIRal Infection, Metabolism and Immunity, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Christophe Ramière
- CIRI, Centre International de Recherche en Infectiologie, Team VIRal Infection, Metabolism and Immunity, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Laboratoire de Virologie, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Vincent Lotteau
- CIRI, Centre International de Recherche en Infectiologie, Team VIRal Infection, Metabolism and Immunity, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Laure Perrin-Cocon
- CIRI, Centre International de Recherche en Infectiologie, Team VIRal Infection, Metabolism and Immunity, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| |
Collapse
|
11
|
Sarry M, Vitour D, Zientara S, Bakkali Kassimi L, Blaise-Boisseau S. Foot-and-Mouth Disease Virus: Molecular Interplays with IFN Response and the Importance of the Model. Viruses 2022; 14:v14102129. [PMID: 36298684 PMCID: PMC9610432 DOI: 10.3390/v14102129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022] Open
Abstract
Foot-and-mouth disease (FMD) is a highly contagious viral disease of cloven-hoofed animals with a significant socioeconomic impact. One of the issues related to this disease is the ability of its etiological agent, foot-and-mouth disease virus (FMDV), to persist in the organism of its hosts via underlying mechanisms that remain to be elucidated. The establishment of a virus–host equilibrium via protein–protein interactions could contribute to explaining these phenomena. FMDV has indeed developed numerous strategies to evade the immune response, especially the type I interferon response. Viral proteins target this innate antiviral response at different levels, ranging from blocking the detection of viral RNAs to inhibiting the expression of ISGs. The large diversity of impacts of these interactions must be considered in the light of the in vitro models that have been used to demonstrate them, some being sometimes far from biological systems. In this review, we have therefore listed the interactions between FMDV and the interferon response as exhaustively as possible, focusing on both their biological effect and the study models used.
Collapse
Affiliation(s)
- Morgan Sarry
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d’Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, 94700 Maisons-Alfort, France
- AgroParisTech, 75005 Paris, France
- Correspondence: (M.S.); (S.B.-B.)
| | - Damien Vitour
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d’Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, 94700 Maisons-Alfort, France
| | - Stephan Zientara
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d’Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, 94700 Maisons-Alfort, France
| | - Labib Bakkali Kassimi
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d’Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, 94700 Maisons-Alfort, France
| | - Sandra Blaise-Boisseau
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d’Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, 94700 Maisons-Alfort, France
- Correspondence: (M.S.); (S.B.-B.)
| |
Collapse
|
12
|
Nuclear Factor Kappa B Promotes Ferritin Heavy Chain Expression in Bombyx mori in Response to B. mori Nucleopolyhedrovirus Infection. Int J Mol Sci 2022; 23:ijms231810380. [PMID: 36142290 PMCID: PMC9499628 DOI: 10.3390/ijms231810380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Ferritin heavy chain (FerHCH) is a major component of ferritin and plays an important role in maintaining iron homeostasis and redox equilibrium. Our previous studies have demonstrated that the Bombyx mori ferritin heavy chain homolog (BmFerHCH) could respond to B. mori nucleopolyhedrovirus (BmNPV) infection. However, the mechanism by which BmNPV regulates the expression of BmFerHCH remains unclear. In this study, BmFerHCH increased after BmNPV infection and BmNPV infection enhanced nuclear factor kappa B (NF-κB) activity in BmN cells. An NF-κB inhibitor (PDTC) reduced the expression of the virus-induced BmFerHCH in BmN cells, and overexpression of BmRelish (NF-κB) increased the expression of virus-induced BmFerHCH in BmN cells. Furthermore, BmNPV infection enhanced BmFerHCH promoter activity. The potential NF-κB cis-regulatory elements (CREs) in the BmFerHCH promoter were screened by using the JASPAR CORE database, and two effective NF-κB CREs were identified using a dual luciferase reporting system and electrophoretic mobility shift assay (EMSA). BmRelish (NF-κB) bound to NF-κB CREs and promoted the transcription of BmFerHCH. Taken together, BmNPV promotes activation of BmRelish (NF-κB), and activated BmRelish (NF-κB) binds to NF-κB CREs of BmFerHCH promoter to enhance BmFerHCH expression. Our study provides a foundation for future research on the function of BmFerHCH in BmNPV infection.
Collapse
|
13
|
Latanova A, Starodubova E, Karpov V. Flaviviridae Nonstructural Proteins: The Role in Molecular Mechanisms of Triggering Inflammation. Viruses 2022; 14:v14081808. [PMID: 36016430 PMCID: PMC9414172 DOI: 10.3390/v14081808] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 12/24/2022] Open
Abstract
Members of the Flaviviridae family are posing a significant threat to human health worldwide. Many flaviviruses are capable of inducing severe inflammation in humans. Flaviviridae nonstructural proteins, apart from their canonical roles in viral replication, have noncanonical functions strongly affecting antiviral innate immunity. Among these functions, antagonism of type I IFN is the most investigated; meanwhile, more data are accumulated on their role in the other pathways of innate response. This review systematizes the last known data on the role of Flaviviridae nonstructural proteins in molecular mechanisms of triggering inflammation, with an emphasis on their interactions with TLRs and RLRs, interference with NF-κB and cGAS-STING signaling, and activation of inflammasomes.
Collapse
|
14
|
Redwan EM, Aljadawi AA, Uversky VN. Hepatitis C Virus Infection and Intrinsic Disorder in the Signaling Pathways Induced by Toll-Like Receptors. BIOLOGY 2022; 11:1091. [PMID: 36101469 PMCID: PMC9312352 DOI: 10.3390/biology11071091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/07/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022]
Abstract
In this study, we examined the interplay between protein intrinsic disorder, hepatitis C virus (HCV) infection, and signaling pathways induced by Toll-like receptors (TLRs). To this end, 10 HCV proteins, 10 human TLRs, and 41 proteins from the TLR-induced downstream pathways were considered from the prevalence of intrinsic disorder. Mapping of the intrinsic disorder to the HCV-TLR interactome and to the TLR-based pathways of human innate immune response to the HCV infection demonstrates that substantial levels of intrinsic disorder are characteristic for proteins involved in the regulation and execution of these innate immunity pathways and in HCV-TLR interaction. Disordered regions, being commonly enriched in sites of various posttranslational modifications, may play important functional roles by promoting protein-protein interactions and support the binding of the analyzed proteins to other partners such as nucleic acids. It seems that this system represents an important illustration of the role of intrinsic disorder in virus-host warfare.
Collapse
Affiliation(s)
- Elrashdy M. Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (E.M.R.); (A.A.A.)
- Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria 21934, Egypt
| | - Abdullah A. Aljadawi
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (E.M.R.); (A.A.A.)
| | - Vladimir N. Uversky
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (E.M.R.); (A.A.A.)
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
15
|
Toll-like Receptor Response to Hepatitis C Virus Infection: A Recent Overview. Int J Mol Sci 2022; 23:ijms23105475. [PMID: 35628287 PMCID: PMC9141274 DOI: 10.3390/ijms23105475] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 02/05/2023] Open
Abstract
Hepatitis C virus (HCV) infection remains a major global health burden, causing chronic hepatitis, cirrhosis, and hepatocellular carcinoma. Toll-like receptors (TLRs) are evolutionarily conserved pattern recognition receptors that detect pathogen-associated molecular patterns and activate downstream signaling to induce proinflammatory cytokine and chemokine production. An increasing number of studies have suggested the importance of TLR responses in the outcome of HCV infection. However, the exact role of innate immune responses, including TLR response, in controlling chronic HCV infection remains to be established. A proper understanding of the TLR response in HCV infection is essential for devising new therapeutic approaches against HCV infection. In this review, we discuss the progress made in our understanding of the host innate immune response to HCV infection, with a particular focus on the TLR response. In addition, we discuss the mechanisms adopted by HCV to avoid immune surveillance mediated by TLRs.
Collapse
|
16
|
Valdés-López JF, Fernandez GJ, Urcuqui-Inchima S. Synergistic Effects of Toll-Like Receptor 1/2 and Toll-Like Receptor 3 Signaling Triggering Interleukin 27 Gene Expression in Chikungunya Virus-Infected Macrophages. Front Cell Dev Biol 2022; 10:812110. [PMID: 35223841 PMCID: PMC8863767 DOI: 10.3389/fcell.2022.812110] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/17/2022] [Indexed: 12/19/2022] Open
Abstract
Chikungunya virus (CHIKV) is the etiological agent of chikungunya fever (CHIKF), a self-limiting disease characterized by myalgia and severe acute or chronic arthralgia. CHIKF is associated with immunopathology and high levels of pro-inflammatory factors. CHIKV is known to have a wide range of tropism in human cell types, including keratinocytes, fibroblasts, endothelial cells, monocytes, and macrophages. Previously, we reported that CHIKV-infected monocytes-derived macrophages (MDMs) express high levels of interleukin 27 (IL27), a heterodimeric cytokine consisting of IL27p28 and EBI3 subunits, that triggers JAK-STAT signaling and promotes pro-inflammatory and antiviral response, in interferon (IFN)-independent manner. Based on the transcriptomic analysis, we now report that induction of IL27-dependent pro-inflammatory and antiviral response in CHIKV-infected MDMs relies on two signaling pathways: an early signal dependent on recognition of CHIKV-PAMPs by TLR1/2-MyD88 to activate NF-κB-complex that induces the expression of EBI3 mRNA; and second signaling dependent on the recognition of intermediates of CHIKV replication (such as dsRNA) by TLR3-TRIF, to activate IRF1 and the induction of IL27p28 mRNA expression. Both signaling pathways were required to produce a functional IL27 protein involved in the induction of ISGs, including antiviral proteins, cytokines, CC- and CXC- chemokines in an IFN-independent manner in MDMs. Furthermore, we reported that activation of TLR4 by LPS, both in human MDMs and murine BMDM, results in the induction of both subunits of IL27 that trigger strong IL27-dependent pro-inflammatory and antiviral response independent of IFNs signaling. Our findings are a significant contribution to the understanding of molecular and cellular mechanisms of CHIKV infection.
Collapse
|
17
|
Russo FP, Zanetto A, Pinto E, Battistella S, Penzo B, Burra P, Farinati F. Hepatocellular Carcinoma in Chronic Viral Hepatitis: Where Do We Stand? Int J Mol Sci 2022; 23:500. [PMID: 35008926 PMCID: PMC8745141 DOI: 10.3390/ijms23010500] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the major causes of cancer-related death. Although the burden of alcohol- and NASH-related HCC is growing, chronic viral hepatitis (HBV and HCV) remains a major cause of HCC development worldwide. The pathophysiology of viral-related HCC includes liver inflammation, oxidative stress, and deregulation of cell signaling pathways. HBV is particularly oncogenic because, contrary to HCV, integrates in the cell DNA and persists despite virological suppression by nucleotide analogues. Surveillance by six-month ultrasound is recommended in patients with cirrhosis and in "high-risk" patients with chronic HBV infection. Antiviral therapy reduces the risks of development and recurrence of HCC; however, patients with advanced chronic liver disease remain at risk of HCC despite virological suppression/cure and should therefore continue surveillance. Multiple scores have been developed in patients with chronic hepatitis B to predict the risk of HCC development and may be used to stratify individual patient's risk. In patients with HCV-related liver disease who achieve sustained virological response by direct acting antivirals, there is a strong need for markers/scores to predict long-term risk of HCC. In this review, we discuss the most recent advances regarding viral-related HCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fabio Farinati
- Gastroenterology/Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy; (F.P.R.); (A.Z.); (E.P.); (S.B.); (B.P.); (P.B.)
| |
Collapse
|
18
|
Papachristoforou E, Ramachandran P. Macrophages as key regulators of liver health and disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 368:143-212. [PMID: 35636927 DOI: 10.1016/bs.ircmb.2022.04.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Macrophages are a heterogeneous population of innate immune cells and key cellular components of the liver. Hepatic macrophages consist of embryologically-derived resident Kupffer cells (KC), recruited monocyte-derived macrophages (MDM) and capsular macrophages. Both the diversity and plasticity of hepatic macrophage subsets explain their different functions in the maintenance of hepatic homeostasis and in injury processes in acute and chronic liver diseases. In this review, we assess the evidence for macrophage involvement in regulating both liver health and injury responses in liver diseases including acute liver injury (ALI), chronic liver disease (CLD) (including liver fibrosis) and hepatocellular carcinoma (HCC). In healthy livers, KC display critical functions such as phagocytosis, danger signal recognition, cytokine release, antigen processing and the ability to orchestrate immune responses and maintain immunological tolerance. However, in most liver diseases there is a striking hepatic MDM expansion, which orchestrate both disease progression and regression. Single-cell approaches have transformed our understanding of liver macrophage heterogeneity, dynamics, and functions in both human samples and preclinical models. We will further discuss the new insights provided by these approaches and how they are enabling high-fidelity work to specifically identify pathogenic macrophage subpopulations. Given the important role of macrophages in regulating injury responses in a broad range of settings, there is now a huge interest in developing new therapeutic strategies aimed at targeting macrophages. Therefore, we also review the current approaches being used to modulate macrophage function in liver diseases and discuss the therapeutic potential of targeting macrophage subpopulations as a novel treatment strategy for patients with liver disorders.
Collapse
Affiliation(s)
- Eleni Papachristoforou
- University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, United Kingdom
| | - Prakash Ramachandran
- University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, United Kingdom.
| |
Collapse
|
19
|
Khan S, Shafiei MS, Longoria C, Schoggins JW, Savani RC, Zaki H. SARS-CoV-2 spike protein induces inflammation via TLR2-dependent activation of the NF-κB pathway. eLife 2021; 10:68563. [PMID: 34866574 PMCID: PMC8709575 DOI: 10.7554/elife.68563] [Citation(s) in RCA: 253] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 12/01/2021] [Indexed: 12/15/2022] Open
Abstract
The pathogenesis of COVID-19 is associated with a hyperinflammatory response; however, the precise mechanism of SARS-CoV-2-induced inflammation is poorly understood. Here, we investigated direct inflammatory functions of major structural proteins of SARS-CoV-2. We observed that spike (S) protein potently induced inflammatory cytokines and chemokines, including IL-6, IL-1β, TNFα, CXCL1, CXCL2, and CCL2, but not IFNs in human and mouse macrophages. No such inflammatory response was observed in response to membrane (M), envelope (E), and nucleocapsid (N) proteins. When stimulated with extracellular S protein, human and mouse lung epithelial cells also produced inflammatory cytokines and chemokines. Interestingly, epithelial cells expressing S protein intracellularly were non-inflammatory, but elicited an inflammatory response in macrophages when co-cultured. Biochemical studies revealed that S protein triggers inflammation via activation of the NF-κB pathway in a MyD88-dependent manner. Further, such an activation of the NF-κB pathway was abrogated in Tlr2-deficient macrophages. Consistently, administration of S protein-induced IL-6, TNF-α, and IL-1β in wild-type, but not Tlr2-deficient mice. Notably, upon recognition of S protein, TLR2 dimerizes with TLR1 or TLR6 to activate the NF-κB pathway. Taken together, these data reveal a mechanism for the cytokine storm during SARS-CoV-2 infection and suggest that TLR2 could be a potential therapeutic target for COVID-19.
Collapse
Affiliation(s)
- Shahanshah Khan
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Mahnoush S Shafiei
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Christopher Longoria
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, United States
| | - John W Schoggins
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Rashmin C Savani
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Hasan Zaki
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
20
|
Gao Y, Nepal N, Jin SZ. Toll-like receptors and hepatitis C virus infection. Hepatobiliary Pancreat Dis Int 2021; 20:521-529. [PMID: 34419367 DOI: 10.1016/j.hbpd.2021.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 07/26/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hepatitis C virus (HCV) infection is a worldwide issue. However, the current treatment for hepatitis C has many shortcomings. Toll-like receptors (TLRs) are pattern recognition receptors involved in HCV infection, and an increasing number of studies are focusing on the role of TLRs in the progression of hepatitis C. DATA SOURCES We performed a PubMed search up to January 2021 with the following keywords: hepatitis C, toll-like receptors, interferons, inflammation, and immune evasion. We also used terms such as single-nucleotide polymorphisms (SNPs), susceptibility, fibrosis, cirrhosis, direct-acting antiviral agents, agonists, and antagonists to supplement the query results. We reviewed relevant publications analyzing the correlation between hepatitis C and TLRs and the role of TLRs in HCV infection. RESULTS TLRs 1-4 and 6-9 are involved in the process of HCV infection. When the host is exposed to the HCV, TLRs, as important participants in HCV immune evasion, trigger innate immunity to remove the virus and also promote inflammation and liver fibrosis. TLR gene SNPs affect hepatitis C susceptibility, treatment, and prognosis. The contribution of each TLR to HCV is different. Drugs targeting various TLRs are developed and validated, and TLRs can synergize with classic hepatitis C drugs, including interferon and direct-acting antiviral agents, constituting a new direction for the treatment of hepatitis C. CONCLUSIONS TLRs are important receptors in HCV infection. Different TLRs induce different mechanisms of virus clearance and inflammatory response. Although TLR-related antiviral therapy strategies exist, more studies are needed to explore the clinical application of TLR-related drugs.
Collapse
Affiliation(s)
- Yang Gao
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Narayan Nepal
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Shi-Zhu Jin
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| |
Collapse
|
21
|
Getachew A, Hussain M, Huang X, Li Y. Toll-like receptor 2 signaling in liver pathophysiology. Life Sci 2021; 284:119941. [PMID: 34508761 DOI: 10.1016/j.lfs.2021.119941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 12/24/2022]
Abstract
Chronic liver diseases (CLD) are among the major cause of mortality and morbidity worldwide. Despite current achievements in the area of hepatitis virus, chronic alcohol abuse and high-fat diet are still fueling an epidemic of severe liver disease, for which, an effective therapy has yet not been discovered. In particular, the therapeutic regimens that could prevent the progression of fibrosis and, in turn, aid cirrhotic liver to develop a robust regenerative capability are intensively needed. To this context, a better understanding of the signaling pathways regulating hepatic disease development may be of critical value. In general, the liver responds to various insults with an orchestrated healing process involving variety of signaling pathways. One such pathway is the TLR2 signaling pathway, which essentially regulates adult liver pathogenesis and thus has emerged as an attractive target to treat liver disease. TLR2 is expressed by different liver cells, including Kupffer cells (KCs), hepatocytes, and hepatic stellate cells (HSCs). From a pathologic perspective, the crosstalk between antigens and TLR2 may preferentially trigger a distinctive set of signaling mechanisms in these liver cells and, thereby, induce the production of inflammatory and fibrogenic cytokines that can initiate and prolong liver inflammation, ultimately leading to fibrosis. In this review, we summarize the currently available evidence regarding the role of TLR2 signaling in hepatic disease progression. We first elaborate its pathological involvement in liver-disease states, such as inflammation, fibrosis, and cirrhosis. We then discuss how therapeutic targeting of this pathway may help to alleviate its disease-related functioning.
Collapse
Affiliation(s)
- Anteneh Getachew
- Institute of Public Health, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Muzammal Hussain
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xinping Huang
- Institute of Public Health, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yinxiong Li
- Institute of Public Health, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China.
| |
Collapse
|
22
|
Wang HY, Chen XC, Yan ZH, Tu F, He T, Gopinath SCB, Rui XH, Cao FT. Human neutrophil peptide 1 promotes immune sterilization in vivo by reducing the virulence of multidrug-resistant Klebsiella pneumoniae and increasing the ability of macrophages. Biotechnol Appl Biochem 2021; 69:2091-2101. [PMID: 34664729 DOI: 10.1002/bab.2270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/04/2021] [Indexed: 12/24/2022]
Abstract
By studying the expression in patients and cell modeling in vitro, antimicrobial peptides for Klebsiella were screened. Killing curve and membrane permeability experiments are used to study the antibacterial effect of antimicrobial peptides in vitro. Cytotoxicity-related indicators including lipopolysaccharide (LPS), capsule polysaccharide (CPS), and outer membrane protein expression were measured. Intranasal inoculation of pneumoconiosis was used to construct a mouse infection model, and the survival rate and cytokine expression level were tested. Human neutrophil peptide 1 (HNP-1) showed a significant antibacterial effect, which improved the permeability of the outer membrane of K. pneumoniae. Moreover, HNP-1 decreased LPS, CPS content, and outer membrane proteins. K. pneumoniae infection decreased antimicrobial peptide, oxidative stress, and autophagy-related genes, while HNP-1 increased these genes. After coculture with macrophages, the endocytosis of macrophages is enhanced and the bacterial load is greater in the K. pneumoniae + peptide group. Besides, higher levels of pp38 and pp65 in the K. pneumoniae + peptide group. HNP-1 rescued the cytotoxicity induced by K. pneumoniae. The survival rate is significantly improved after K. pneumoniae is treated by HNP-1. All cytokines in the peptide group were significantly higher. HNP-1 promotes immune sterilization by reducing the virulence of multidrug-resistant K. pneumoniae and increasing the ability of macrophages.
Collapse
Affiliation(s)
- Hui-Yun Wang
- Department of Laboratory Medicine, Jiangyin Traditional Hospital, Wuxi 214005, China
| | - Xiao-Chun Chen
- Department of Laboratory Medicine, Taizhou Second People's Hospital, Jiangyan District, Taizhou City, China
| | - Zhi-Han Yan
- Hepatology Department, Wuxi Fifth People's Hospital, Wuxi, China
| | - Fan Tu
- Department of Laboratory Medicine, Wuxi Fifth People's Hospital, Wuxi, China
| | - Tian He
- Department of Laboratory Medicine, Wuxi Fifth People's Hospital, Wuxi, China
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Perlis, Malaysia.,Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Perlis, Malaysia
| | - Xiao-Hong Rui
- Department of Laboratory Medicine, Wuxi Fifth People's Hospital, Wuxi, China
| | - Fu-Tao Cao
- Emergency Department, Wuxi Second People's Hospital, Wuxi, China
| |
Collapse
|
23
|
Xie X, Lv H, Liu C, Su X, Yu Z, Song S, Bian H, Tian M, Qin C, Qi J, Zhu Q. HBeAg mediates inflammatory functions of macrophages by TLR2 contributing to hepatic fibrosis. BMC Med 2021; 19:247. [PMID: 34649530 PMCID: PMC8518250 DOI: 10.1186/s12916-021-02085-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND We and others have confirmed activation of macrophages plays a critical role in liver injury and fibrogenesis during HBV infection. And we have also proved HBeAg can obviously induce the production of macrophage inflammatory cytokines compared with HBsAg and HBcAg. However, the receptor and functional domain of HBeAg in macrophage activation and its effects and mechanisms on hepatic fibrosis remain elusive. METHODS The potentially direct binding receptors of HBeAg were screened and verified by Co-IP assay. Meanwhile, the function domain and accessible peptides of HBeAg for macrophage activation were analyzed by prediction of surface accessible peptide, construction, and synthesis of truncated fragments. Furthermore, effects and mechanisms of the activation of hepatic stellate cells induced by HBeAg-treated macrophages were investigated by Transwell, CCK-8, Gel contraction assay, Phospho Explorer antibody microarray, and Luminex assay. Finally, the effect of HBeAg in hepatic inflammation and fibrosis was evaluated in both human and murine tissues by immunohistochemistry, immunofluorescence, ELISA, and detection of liver enzymes. RESULTS Herein, we verified TLR-2 was the direct binding receptor of HBeAg. Meanwhile, C-terminal peptide (122-143 aa.) of core domain in HBeAg was critical for macrophage activation. But arginine-rich domain of HBcAg hided this function, although HBcAg and HBeAg shared the same core domain. Furthermore, HBeAg promoted the proliferation, motility, and contraction of hepatic stellate cells (HSCs) in a macrophage-dependent manner, but not alone. PI3K-AKT-mTOR and p38 MAPK signaling pathway were responsible for motility phenotype of HSCs, while the Smad-dependent TGF-β signaling pathway for proliferation and contraction of them. Additionally, multiple chemokines and cytokines, such as CCL2, CCL5, CXCL10, and TNF-α, might be key mediators of HSC activation. Consistently, HBeAg induced transient inflammation response and promoted early fibrogenesis via TLR-2 in mice. Finally, clinical investigations suggested that the level of HBeAg is associated with inflammation and fibrosis degrees in patients infected with HBV. CONCLUSIONS HBeAg activated macrophages via the TLR-2/NF-κB signal pathway and further exacerbated hepatic fibrosis by facilitating motility, proliferation, and contraction of HSCs with the help of macrophages.
Collapse
Affiliation(s)
- Xiaoyu Xie
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China.,Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, Shandong, 250021, People's Republic of China
| | - Huanran Lv
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| | - Chenxi Liu
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Xiaonan Su
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Zhen Yu
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Shouyang Song
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Hongjun Bian
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China.,Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Miaomiao Tian
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, Shandong, 250021, People's Republic of China
| | - Chengyong Qin
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China.,Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, Shandong, 250021, People's Republic of China
| | - Jianni Qi
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China. .,Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China. .,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, Shandong, 250021, People's Republic of China.
| | - Qiang Zhu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China. .,Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China. .,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, Shandong, 250021, People's Republic of China. .,The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, People's Republic of China.
| |
Collapse
|
24
|
Zhou R, Liu L, Wang Y. Viral proteins recognized by different TLRs. J Med Virol 2021; 93:6116-6123. [PMID: 34375002 DOI: 10.1002/jmv.27265] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/08/2021] [Accepted: 08/08/2021] [Indexed: 12/24/2022]
Abstract
Virus invasion activates the host's innate immune response, inducing the production of numerous cytokines and interferons to eliminate pathogens. Except for viral DNA/RNA, viral proteins are also targets of pattern recognition receptors. Membrane-bound receptors such as Toll-like receptor (TLR)1, TLR2, TLR4, TLR6, and TLR10 relate to the recognition of viral proteins. Distinct TLRs perform both protective and detrimental roles for a specific virus. Here, we review viral proteins serving as pathogen-associated molecular patterns and their corresponding TLRs. These viruses are all enveloped, including respiratory syncytial virus, hepatitis C virus, measles virus, herpesvirus human immunodeficiency virus, and coronavirus, and can encode proteins to activate innate immunity in a TLR-dependent way. The TLR-viral protein relationship plays an important role in innate immunity activation. A detailed understanding of their pathways contributes to a novel direction for vaccine development.
Collapse
Affiliation(s)
- Rui Zhou
- Department of Microbiology, Institute of Basic Medical Sciences, Zunyi Medical University, Zunyi, China
| | - Li Liu
- Department of Microbiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yu Wang
- Department of Microbiology, Institute of Basic Medical Sciences, Zunyi Medical University, Zunyi, China
| |
Collapse
|
25
|
Roohani S, Tacke F. Liver Injury and the Macrophage Issue: Molecular and Mechanistic Facts and Their Clinical Relevance. Int J Mol Sci 2021; 22:ijms22147249. [PMID: 34298870 PMCID: PMC8306699 DOI: 10.3390/ijms22147249] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022] Open
Abstract
The liver is an essential immunological organ due to its gatekeeper position to bypassing antigens from the intestinal blood flow and microbial products from the intestinal commensals. The tissue-resident liver macrophages, termed Kupffer cells, represent key phagocytes that closely interact with local parenchymal, interstitial and other immunological cells in the liver to maintain homeostasis and tolerance against harmless antigens. Upon liver injury, the pool of hepatic macrophages expands dramatically by infiltrating bone marrow-/monocyte-derived macrophages. The interplay of the injured microenvironment and altered macrophage pool skews the subsequent course of liver injuries. It may range from complete recovery to chronic inflammation, fibrosis, cirrhosis and eventually hepatocellular cancer. This review summarizes current knowledge on the classification and role of hepatic macrophages in the healthy and injured liver.
Collapse
|
26
|
Liou JW, Mani H, Yen JH, Hsu HJ, Chang CC. Hepatitis C virus core protein: Not just a nucleocapsid building block, but an immunity and inflammation modulator. Tzu Chi Med J 2021; 34:139-147. [PMID: 35465281 PMCID: PMC9020238 DOI: 10.4103/tcmj.tcmj_97_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 03/12/2021] [Accepted: 06/02/2021] [Indexed: 11/13/2022] Open
Abstract
Coevolution occurs between viruses and their hosts. The hosts need to evolve means to eliminate pathogenic virus infections, and the viruses, for their own survival and multiplication, have to develop mechanisms to escape clearance by hosts. Hepatitis C virus (HCV) of Flaviviridae is a pathogen which infects human liver and causes hepatitis, a condition of liver inflammation. Unlike most of the other flaviviruses, HCV has an excellent ability to evade host immunity to establish chronic infection. The persistent liver infection leads to chronic hepatitis, liver cirrhosis, hepatocellular carcinoma (HCC), as well as extrahepatic HCV-related diseases. HCV genomic RNA only expresses 10 proteins, many of which bear functions, in addition to those involved in HCV life cycle, for assisting the virus to develop its persistency. HCV core protein is a structural protein which encapsulates HCV genomic RNA and assembles into nucleocapsids. The core protein is also found to exert functions to affect host inflammation and immune responses by altering a variety of host pathways. This paper reviews the studies regarding the HCV core protein-induced alterations of host immunity and inflammatory responses, as well as the involvements of the HCV core protein in pro- and anti-inflammatory cytokine stimulations, host cellular transcription, lipid metabolism, cell apoptosis, cell proliferations, immune cell differentiations, oxidative stress, and hepatocyte steatosis, which leads to liver fibrosis, cirrhosis, and HCC. Implications of roles played by the HCV core protein in therapeutic resistance are also discussed.
Collapse
|
27
|
Kanakan A, Mishra N, Srinivasa Vasudevan J, Sahni S, Khan A, Sharma S, Pandey R. Threading the Pieces Together: Integrative Perspective on SARS-CoV-2. Pathogens 2020; 9:E912. [PMID: 33158051 PMCID: PMC7694192 DOI: 10.3390/pathogens9110912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has challenged the research community globally to innovate, interact, and integrate findings across hierarchies. Research on SARS-CoV-2 has produced an abundance of data spanning multiple parallels, including clinical data, SARS-CoV-2 genome architecture, host response captured through transcriptome and genetic variants, microbial co-infections (metagenome), and comorbidities. Disease phenotypes in the case of COVID-19 present an intriguing complexity that includes a broad range of symptomatic to asymptomatic individuals, further compounded by a vast heterogeneity within the spectrum of clinical symptoms displayed by the symptomatic individuals. The clinical outcome is further modulated by the presence of comorbid conditions at the point of infection. The COVID-19 pandemic has produced an expansive wealth of literature touching many aspects of SARS-CoV-2 ranging from causal to outcome, predisposition to protective (possible), co-infection to comorbidity, and differential mortality globally. As challenges provide opportunities, the current pandemic's challenge has underscored the need and opportunity to work for an integrative approach that may be able to thread together the multiple variables. Through this review, we have made an effort towards bringing together information spanning across different domains to facilitate researchers globally in pursuit of their response to SARS-CoV-2.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rajesh Pandey
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi 110007, India; (A.K.); (N.M.); (J.S.V.); (S.S.); (A.K.); (S.S.)
| |
Collapse
|
28
|
Chu Y, Lv X, Zhang L, Fu X, Song S, Su A, Chen D, Xu L, Wang Y, Wu Z, Yun Z. Wogonin inhibits in vitro herpes simplex virus type 1 and 2 infection by modulating cellular NF-κB and MAPK pathways. BMC Microbiol 2020; 20:227. [PMID: 32723300 PMCID: PMC7388529 DOI: 10.1186/s12866-020-01916-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Wogonin, a natural flavonoid-like chemical compound, exhibits anti-inflammatory, antitumor, antiviral, neuroprotective, and anxiolytic effects by modulating a variety of cellular signaling pathways including PI3K-Akt, p53, nuclear factor κB (NF-κB), mitogen-activated protein kinase (MAPK) pathways. In this study, its antiviral effect against herpes simplex virus (HSV) type 1 and 2 (HSV-1 and HSV-2) replication was investigated. RESULTS Wogonin suppressed HSV-2-induced cytopathic effect (CPE) and reduced viral mRNA transcription, viral protein synthesis, and infectious virion particle titers in a dose-dependent manner. A time-of-drug-addition assay demonstrated that wogonin acted as a postentry viral inhibitor. Wogonin also significantly reduced HSV-induced NF-κB and MAPK pathway activation, which has previously been demonstrated to be important for viral replication. CONCLUSIONS Our results suggest that the anti-herpes effect of wogonin may be mediated by modulation of cellular NF-κB and JNK/p38 MAPK pathways and imply that wogonin may be useful as an anti-HSV agent.
Collapse
Affiliation(s)
- Ying Chu
- Clinical Laboratory, Wujin Hospital Affiliated with Jiangsu University, Wujin Clinical College of Xuzhou Medical University, Changzhou, 213017, China.
| | - Xiaowen Lv
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Longfeng Zhang
- Clinical Laboratory, Affiliated Hospital of Jiangsu University, Zhenjiang, 212013, China
| | - Xingli Fu
- Health Science Center, Jiangsu University, Zhenjiang, 212001, China
| | - Siwei Song
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Airong Su
- Central Laboratory, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, China
| | - Deyan Chen
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, 210093, China
| | - Lianhong Xu
- Clinical Laboratory, Wujin Hospital Affiliated with Jiangsu University, Wujin Clinical College of Xuzhou Medical University, Changzhou, 213017, China
| | - Yongfang Wang
- Clinical Laboratory, Wujin Hospital Affiliated with Jiangsu University, Wujin Clinical College of Xuzhou Medical University, Changzhou, 213017, China
| | - Zhiwei Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, 210093, China
| | - Zhihua Yun
- Clinical Laboratory, Wujin Hospital Affiliated with Jiangsu University, Wujin Clinical College of Xuzhou Medical University, Changzhou, 213017, China.
| |
Collapse
|
29
|
Liu M, Chen HY, Luo L, Wang Y, Zhang D, Song N, Wang FB, Li Q, Zhang XL, Pan Q. Neutralization of IL-10 produced by B cells promotes protective immunity during persistent HCV infection in humanized mice. Eur J Immunol 2020; 50:1350-1361. [PMID: 32339264 DOI: 10.1002/eji.201948488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/01/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023]
Abstract
Chronic HCV infection can lead to cirrhosis and is associated with increased mortality. Interleukin (IL)-10-producing B cells (B10 cells) are regulatory cells that suppress cellular immune responses. Here, we aimed to determine whether HCV induces B10 cells and assess the roles of the B10 cells during HCV infection. HCV-induced B10 cells were enriched in CD19hi and CD1dhi CD5+ cell populations. HCV predominantly triggered the TLR2-MyD88-NF-κB and AP-1 signaling pathways to drive IL-10 production by B cells. In a humanized murine model of persistent HCV infection, to neutralize IL-10 produced by B10 cells, mice were treated with pcCD19scFv-IL-10R, which contains the genes coding the anti-CD19 single-chain variable fragment (CD19scFv) and the extracellular domain of IL-10 receptor alpha chain (sIL-10Ra). This treatment resulted in significant reduction of B10 cells in spleen and liver, increase of cytotoxic CD8+ T-cell responses against HCV, and low viral loads in infected humanized mice. Our results indicate that targeting B10 cells via neutralization of IL-10 may offer a novel strategy to enhance anti-HCV immunotherapy.
Collapse
Affiliation(s)
- Min Liu
- Department of Immunology, Hubei Province Key Laboratory of Allergy and Immunology, State Key Laboratory of Virology and Medical Research Institute, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Han-Yu Chen
- Department of Immunology, Hubei Province Key Laboratory of Allergy and Immunology, State Key Laboratory of Virology and Medical Research Institute, Wuhan University School of Basic Medical Sciences, Wuhan, China.,Department of Laboratory Medicine, Jingzhou Central Hospital, Jingzhou, Hubei Province, China
| | - Liang Luo
- Department of Immunology, Hubei Province Key Laboratory of Allergy and Immunology, State Key Laboratory of Virology and Medical Research Institute, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Yaping Wang
- Department of Immunology, Hubei Province Key Laboratory of Allergy and Immunology, State Key Laboratory of Virology and Medical Research Institute, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Dongli Zhang
- Department of Immunology, Hubei Province Key Laboratory of Allergy and Immunology, State Key Laboratory of Virology and Medical Research Institute, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Neng Song
- Department of Laboratory Medicine, Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan, China
| | - Fu-Bing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiao Li
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Xiao-Lian Zhang
- Department of Immunology, Hubei Province Key Laboratory of Allergy and Immunology, State Key Laboratory of Virology and Medical Research Institute, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Qin Pan
- Department of Immunology, Hubei Province Key Laboratory of Allergy and Immunology, State Key Laboratory of Virology and Medical Research Institute, Wuhan University School of Basic Medical Sciences, Wuhan, China
| |
Collapse
|
30
|
Capsid proteins of foot-and-mouth disease virus interact with TLR2 and CD14 to induce cytokine production. Immunol Lett 2020; 223:10-16. [PMID: 32333963 DOI: 10.1016/j.imlet.2020.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/27/2020] [Accepted: 04/18/2020] [Indexed: 12/24/2022]
Abstract
The mechanism of recognition of the foot-and-mouth disease virus (FMDV) by host innate immune cells is not well-understood. In this study, we first found that binary ethylenimine inactivated-FMDV (BEI-FMDV) with structurally intact capsid activated TLR2, but not other TLRs, and this specific activation was blocked by anti-TLR2 Abs or knockout of TLR2. BEI-FMDV activated NF-κB to induce cytokines, notably interferon-β and IL-6, in a TLR2 and MyD88-dependent manner. Coexpression of TLR6 and CD14 showed additive effects on BEI-FMDV/TLR2-mediated activation of NF-κB. Further studies demonstrated that recombinant capsid proteins rVP1 and rVP3 of FMDV but not rVP0 bound directly with CD14 and TLR2. The rVP1- and rVP3-mediated activation of TLR2 and NF-κB were enhanced by the coexpression of TLR1 or TLR6. Immunoprecipitation of either rVP1 or rVP3 with mouse macrophage cell extracts revealed that rVP1 or rVP3 associated with TLR2, CD14 and TLR6 suggesting that rVP1 and rVP3 interact with CD14, TLR2/TLR1, and TLR2/TLR6 heterodimer. Additional study confirmed that rVP1 and rVP3 interacted with the swine TLR2 signaling pathway to induce IL-6 in swine macrophages. Our results identify VP1 and VP3 of FMDV as novel TLR agonists whose recognition by CD14, TLR2/TLR1, and TLR2/TLR6 of host innate immune cells is critical for the induction of cytokine production.
Collapse
|
31
|
Dash S, Aydin Y, Widmer KE, Nayak L. Hepatocellular Carcinoma Mechanisms Associated with Chronic HCV Infection and the Impact of Direct-Acting Antiviral Treatment. J Hepatocell Carcinoma 2020; 7:45-76. [PMID: 32346535 PMCID: PMC7167284 DOI: 10.2147/jhc.s221187] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 03/06/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) infection is the major risk factor for liver cirrhosis and hepatocellular carcinoma (HCC). The mechanisms of HCC initiation, growth, and metastasis appear to be highly complex due to the decade-long interactions between the virus, immune system, and overlapping bystander effects of host metabolic liver disease. The lack of a readily accessible animal model system for HCV is a significant obstacle to understand the mechanisms of viral carcinogenesis. Traditionally, the primary prevention strategy of HCC has been to eliminate infection by antiviral therapy. The success of virus elimination by antiviral treatment is determined by the SVR when the HCV is no longer detectable in serum. Interferon-alpha (IFN-α) and its analogs, pegylated IFN-α (PEG-IFN-α) alone with ribavirin (RBV), have been the primary antiviral treatment of HCV for many years with a low cure rate. The cloning and sequencing of HCV have allowed the development of cell culture models, which accelerated antiviral drug discovery. It resulted in the selection of highly effective direct-acting antiviral (DAA)-based combination therapy that now offers incredible success in curing HCV infection in more than 95% of all patients, including those with cirrhosis. However, several emerging recent publications claim that patients who have liver cirrhosis at the time of DAAs treatment face the risk of HCC occurrence and recurrence after viral cure. This remains a substantial challenge while addressing the long-term benefit of antiviral medicine. The host-related mechanisms that drive the risk of HCC in the absence of the virus are unknown. This review describes the multifaceted mechanisms that create a tumorigenic environment during chronic HCV infection. In addition to the potential oncogenic programming that drives HCC after viral clearance by DAAs, the current status of a biomarker development for early prediction of cirrhosis regression and HCC detection post viral treatment is discussed. Since DAAs treatment does not provide full protection against reinfection or viral transmission to other individuals, the recent studies for a vaccine development are also reviewed.
Collapse
Affiliation(s)
- Srikanta Dash
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA70112, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA70119, USA
- Department of Medicine, Division of Gastroenterology, Tulane University Health Sciences Center, New Orleans, LA70112, USA
| | - Yucel Aydin
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA70112, USA
| | - Kyle E Widmer
- Southeast Louisiana Veterans Health Care System, New Orleans, LA70119, USA
| | - Leela Nayak
- Southeast Louisiana Veterans Health Care System, New Orleans, LA70119, USA
| |
Collapse
|
32
|
Farag NS, Breitinger U, Breitinger HG, El Azizi MA. Viroporins and inflammasomes: A key to understand virus-induced inflammation. Int J Biochem Cell Biol 2020; 122:105738. [PMID: 32156572 PMCID: PMC7102644 DOI: 10.1016/j.biocel.2020.105738] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 02/07/2023]
Abstract
The article provides a summary on cellular receptors involved in virus immunity. It summarizes key findings on viroporins, a novel class of viral proteins and their role in the virus life cycle and host cell interactions. It presents an overview of the current understanding of inflammasomes complex activation, with special focus on NLRP3. It discusses the correlation between viroporins and inflammasomes activation and aggravated inflammatory cytokines production. Viroporins are virus encoded proteins that alter membrane permeability and can trigger subsequent cellular signals. Oligomerization of viroporin subunits results in formation of a hydrophilic pore which facilitates ion transport across host cell membranes. These viral channel proteins may be involved in different stages of the virus infection cycle. Inflammasomes are large multimolecular complexes best recognized for their ability to control activation of caspase-1, which in turn regulates the maturation of interleukin-1 β (IL-1β) and interleukin 18 (IL-18). IL-1β was originally identified as a pro-inflammatory cytokine able to induce both local and systemic inflammation and a febrile reaction in response to infection or injury. Excessive production of IL-1β is associated with autoimmune and inflammatory diseases. Microbial derivatives, bacterial pore-forming toxins, extracellular ATP and other pathogen-associated molecular patterns trigger activation of NLRP3 inflammasomes. Recent studies have reported that viroporin activity is capable of inducing inflammasome activity and production of IL-1β, where NLRP3 is shown to be regulated by fluxes of K+, H+ and Ca2+ in addition to reactive oxygen species, autophagy and endoplasmic reticulum stress. The aim of this review is to present an overview of the key findings on viroporin activity with special emphasis on their role in virus immunity and as possible activators of inflammasomes.
Collapse
Affiliation(s)
- N S Farag
- Department of Microbiology and Immunology, German University inCairo, New Cairo, Egypt.
| | - U Breitinger
- Department of Biochemistry, German University in Cairo, New Cairo, Egypt
| | - H G Breitinger
- Department of Biochemistry, German University in Cairo, New Cairo, Egypt
| | - M A El Azizi
- Department of Microbiology and Immunology, German University inCairo, New Cairo, Egypt
| |
Collapse
|
33
|
Ferrari C, Barili V, Varchetta S, Mondelli MU. Immune Mechanisms of Viral Clearance and Disease Pathogenesis During Viral Hepatitis. THE LIVER 2020:821-850. [DOI: 10.1002/9781119436812.ch63] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
34
|
Abouelasrar Salama S, Gouwy M, De Zutter A, Pörtner N, Vanbrabant L, Berghmans N, De Buck M, Struyf S, Van Damme J. Induction of Chemokines by Hepatitis C Virus Proteins: Synergy of the Core Protein with Interleukin-1β and Interferon-γ in Liver Bystander Cells. J Interferon Cytokine Res 2020; 40:195-206. [PMID: 32031878 DOI: 10.1089/jir.2019.0115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chronic hepatitis C virus (HCV) infection accounts for a large proportion of hepatic fibrosis and carcinoma cases observed worldwide. Mechanisms involved in HCV-induced hepatic injury have yet to be fully elucidated. Of particular interest is the capacity of HCV to regulate inflammatory responses. Here, we reveal modulation of cytokine activity by the HCV proteins non-structural protein 3 (NS3), glycoprotein E2, and core protein for their ability to induce chemokine expression in various liver bystander cells. Chemokines sustain chronic liver inflammation and relay multiple fibrogenic effects. CCL2, CCL3, CCL20, CXCL8, and CXCL10 were differentially expressed after treatment of monocytes, fibroblasts, or liver sinusoidal microvascular endothelial cells (LSECs) with HCV proteins. In comparison to NS3 and glycoprotein E2, core protein was a stronger inducer of chemokines in liver bystander cells. Interferon-γ (IFN-γ) and interleukin-1β (IL-1β) synergized with core protein to induce CCL2, CCL20, CXCL8, or CXCL10 in fibroblasts or LSECs. These findings reveal new mechanisms of hepatic injury caused by HCV.
Collapse
Affiliation(s)
- Sara Abouelasrar Salama
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Alexandra De Zutter
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Noëmie Pörtner
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Lotte Vanbrabant
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Nele Berghmans
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Mieke De Buck
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| |
Collapse
|
35
|
Dou L, Shi X, He X, Gao Y. Macrophage Phenotype and Function in Liver Disorder. Front Immunol 2020; 10:3112. [PMID: 32047496 PMCID: PMC6997484 DOI: 10.3389/fimmu.2019.03112] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022] Open
Abstract
Hepatic macrophages are a remarkably heterogeneous population consisting of self-renewing tissue-resident phagocytes, termed Kupffer cells (KCs), and recruited macrophages derived from peritoneal cavity as well as the bone marrow. KCs are located in the liver sinusoid where they scavenge the microbe from the portal vein to maintain liver homeostasis. Liver injury may trigger hepatic recruitment of peritoneal macrophages and monocyte-derived macrophages. Studies describing macrophage accumulation have shown that hepatic macrophages are involved in the initiation and progression of various liver diseases. They act as tolerogenic antigen-presenting cells to inhibit T-cell activation by producing distinct sets of cytokines, chemokines, and mediators to maintain or resolve inflammation. Furthermore, by releasing regenerative growth factors, matrix metalloproteinase arginase, they promote tissue repair. Recent experiments found that KCs and recruited macrophages may play different roles in the development of liver disease. Given that hepatic macrophages are considerably plastic populations, their phenotypes and functions are likely switching along disease progression. In this review, we summarize current knowledge about the role of tissue-resident macrophages and recruited macrophages in pathogenesis of alcoholic liver disease (ALD), non-alcoholic steatohepatitis (NASH), viral hepatitis, and hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
- Lang Dou
- Organ Transplantation Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaomin Shi
- Organ Transplantation Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoshun He
- Organ Transplantation Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yifang Gao
- Organ Transplantation Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
36
|
van der Heide D, Weiskirchen R, Bansal R. Therapeutic Targeting of Hepatic Macrophages for the Treatment of Liver Diseases. Front Immunol 2019; 10:2852. [PMID: 31849997 PMCID: PMC6901832 DOI: 10.3389/fimmu.2019.02852] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/20/2019] [Indexed: 12/13/2022] Open
Abstract
Hepatic macrophages play a central role in maintaining homeostasis in the liver, as well as in the initiation and progression of liver diseases. Hepatic macrophages are mainly derived from resident hepatic macrophages called Kupffer cells or circulating bone marrow-derived monocytes. Kupffer cells are self-renewing and typically non-migrating macrophages in the liver and are stationed in the liver sinusoids in contrast to macrophages originating from circulating monocytes. Kupffer cells regulate liver homeostasis by mediating immunity against non-pathogenic blood-borne molecules, while participating in coordinated immune responses leading to pathogen clearance, leukocyte recruitment and antigen presentation to lymphocytes present in the vasculature. Monocyte-derived macrophages infiltrate into the liver tissue when metabolic or toxic damage instigates and are likely dispensable for replenishing the macrophage population in homeostasis. In recent years, different populations of hepatic macrophages have been identified with distinct phenotypes with discrete functions, far beyond the central dogma of M1 and M2 macrophages. Hepatic macrophages play a central role in the pathogenesis of acute and chronic liver failure, liver fibrosis, non-alcoholic fatty liver disease, alcoholic liver disease, viral hepatitis, and hepatocellular carcinoma, as well as in disease resolution. The understanding of the role of hepatic macrophages in liver diseases provides opportunities for the development of targeted therapeutics for respective malignancies. This review will summarize the current knowledge of the hepatic macrophages, their origin, functions, their critical role in maintaining homeostasis and in the progression or resolution of liver diseases. Furthermore, we will provide a comprehensive overview of the therapeutic targeting strategies against hepatic macrophages developed for the treatment of liver diseases.
Collapse
Affiliation(s)
- Daphne van der Heide
- Department of Biomaterials Science and Technology, Faculty of Science and Technology, Technical Medical Center, University of Twente, Enschede, Netherlands
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Ruchi Bansal
- Department of Biomaterials Science and Technology, Faculty of Science and Technology, Technical Medical Center, University of Twente, Enschede, Netherlands
| |
Collapse
|
37
|
Abouelasrar Salama S, Lavie M, De Buck M, Van Damme J, Struyf S. Cytokines and serum amyloid A in the pathogenesis of hepatitis C virus infection. Cytokine Growth Factor Rev 2019; 50:29-42. [PMID: 31718982 DOI: 10.1016/j.cytogfr.2019.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023]
Abstract
Expression of the acute phase protein serum amyloid A (SAA) is dependent on the release of the pro-inflammatory cytokines IL-1, IL-6 and TNF-α during infection and inflammation. Hepatitis C virus (HCV) upregulates SAA-inducing cytokines. In line with this, a segment of chronically infected individuals display increased circulating levels of SAA. SAA has even been proposed to be a potential biomarker to evaluate treatment efficiency and the course of disease. SAA possesses antiviral activity against HCV via direct interaction with the viral particle, but might also divert infectivity through its function as an apolipoprotein. On the other hand, SAA shares inflammatory and angiogenic activity with chemotactic cytokines by activating the G protein-coupled receptor, formyl peptide receptor 2. These latter properties might promote chronic inflammation and hepatic injury. Indeed, up to 80 % of infected individuals develop chronic disease because they cannot completely clear the infection, due to diversion of the immune response. In this review, we summarize the interconnection between SAA and cytokines in the context of HCV infection and highlight the dual role SAA could play in this disease. Nevertheless, more research is needed to establish whether the balance between those opposing activities can be tilted in favor of the host defense.
Collapse
Affiliation(s)
- Sara Abouelasrar Salama
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, 3000, Belgium
| | - Muriel Lavie
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019, UMR 8204, Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Mieke De Buck
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, 3000, Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, 3000, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, 3000, Belgium.
| |
Collapse
|
38
|
Balakrishna Pillai A, Cherupanakkal C, Immanuel J, Saravanan E, Eswar Kumar V, A A, Kadhiravan T, Rajendiran S. Expression Pattern of Selected Toll-like Receptors (TLR's) in the PBMC's of Severe and Non-severe Dengue Cases. Immunol Invest 2019; 49:443-452. [PMID: 31475595 DOI: 10.1080/08820139.2019.1653908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Objective: The role of TLR's in the pathogenesis of dengue is not explored well. Differential expression of TLR2 and TLR4 was reported in dengue cases. In the present study in order to understand the expression pattern of various TLR's, including TLR2, TLR3, TLR4 and TLR9, mRNA levels were determined in various dengue study groups compared to control groups, at the time of admission and around defervescence using quantitative real-time PCR (RT-PCR).Methods: A total of 88 dengue cases with 32 severe and 56 non-severe cases were involved in the study. Gene expression pattern of the study groups was compared with 31 other febrile illness (OFI) cases and 63 healthy controls. Transcript levels of the target genes were estimated from the peripheral blood mononuclear cells (PBMC) samples collected from cases and controls using quantitative real-time PCR.Results: We have noted a significant alteration in the levels of all TLR's in dengue and OFI cases compared to healthy controls at the time of admission. Interestingly we have noted a significant alteration in the levels of TLR9 in severe and non-severe cases during defervescence. The same was not detected in the OFI group.Conclusion: The present study found a change in TLR's during dengue infection. This suggests us to explore the TLR's as therapeutic candidate for anti-dengue virus strategies. However, in order to ascertain the involvement of TLR's in the disease pathology and its role as biomarkers for prognosis, a complete dynamics of TLR's expression needs to be studied.
Collapse
Affiliation(s)
- Agieshkumar Balakrishna Pillai
- Central Inter-Disciplinary Research Facility (CIDRF), Sri Balaji Vidyapeeth (SBV) Deemed To Be University, Puducherry, India
| | - Cleetus Cherupanakkal
- Department of Biochemistry, Believers Church Medical College Hospital, Thiruvalla, Kerala, India
| | - Jeffrey Immanuel
- Central Inter-Disciplinary Research Facility (CIDRF), Sri Balaji Vidyapeeth (SBV) Deemed To Be University, Puducherry, India
| | - Elanthiraiyan Saravanan
- Central Inter-Disciplinary Research Facility (CIDRF), Sri Balaji Vidyapeeth (SBV) Deemed To Be University, Puducherry, India
| | - Vignewswari Eswar Kumar
- Central Inter-Disciplinary Research Facility (CIDRF), Sri Balaji Vidyapeeth (SBV) Deemed To Be University, Puducherry, India
| | - Akshayavardhini A
- Central Inter-Disciplinary Research Facility (CIDRF), Sri Balaji Vidyapeeth (SBV) Deemed To Be University, Puducherry, India
| | - Tamilarasu Kadhiravan
- Department of Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Soundravally Rajendiran
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| |
Collapse
|
39
|
Weston CJ, Zimmermann HW, Adams DH. The Role of Myeloid-Derived Cells in the Progression of Liver Disease. Front Immunol 2019; 10:893. [PMID: 31068952 PMCID: PMC6491757 DOI: 10.3389/fimmu.2019.00893] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 04/08/2019] [Indexed: 12/12/2022] Open
Abstract
Control of homeostasis and rapid response to tissue damage in the liver is orchestrated by crosstalk between resident and infiltrating inflammatory cells. A crucial role for myeloid cells during hepatic injury and repair has emerged where resident Kupffer cells, circulating monocytes, macrophages, dendritic cells and neutrophils control local tissue inflammation and regenerative function to maintain tissue architecture. Studies in humans and rodents have revealed a heterogeneous population of myeloid cells that respond to the local environment by either promoting regeneration or driving the inflammatory processes that can lead to hepatitis, fibrogenesis, and the development of cirrhosis and malignancy. Such plasticity of myeloid cell responses presents unique challenges for therapeutic intervention strategies and a greater understanding of the underlying mechanisms is needed. Here we review the role of myeloid cells in the establishment and progression of liver disease and highlight key pathways that have become the focus for current and future therapeutic strategies.
Collapse
Affiliation(s)
- Chris John Weston
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, Medical School, University of Birmingham, Birmingham, United Kingdom.,NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, United Kingdom
| | | | - David H Adams
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, Medical School, University of Birmingham, Birmingham, United Kingdom.,NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
40
|
De Re V, Tornesello ML, De Zorzi M, Caggiari L, Pezzuto F, Leone P, Racanelli V, Lauletta G, Gragnani L, Buonadonna A, Vaccher E, Zignego AL, Steffan A, Buonaguro FM. Clinical Significance of Polymorphisms in Immune Response Genes in Hepatitis C-Related Hepatocellular Carcinoma. Front Microbiol 2019; 10:475. [PMID: 30930876 PMCID: PMC6429030 DOI: 10.3389/fmicb.2019.00475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 02/25/2019] [Indexed: 12/12/2022] Open
Abstract
Background and Aims: Polymorphisms in the immune response genes can contribute to clearance of hepatitis C virus (HCV) infection but also mediate liver inflammation and cancer pathogenesis. This study aimed to investigate the association of polymorphisms in PD-1 (PDCD1), IFNL3 (IL28B), and TLR2 immune related genes in chronic HCV patients with different hepatic and lymphoproliferative HCV-related diseases. Methods: Selected PDCD1, IFNL3, and TLR2 genes were tested by molecular approaches in 450 HCV-positive patients with increasing severity of underlying liver diseases [including chronic infection (CHC), cirrhosis and hepatocellular carcinoma (HCC)], in 238 HCV-positive patients with lymphoproliferative diseases [such as cryoglobulinemia and non-Hodgkin lymphoma (NHL)] and in 94 blood donors (BD). Results: While the rs12979860 IFNL3 T allele was found a good marker associated with HCV-outcome together with the rs111200466 TLR2 del variant, the rs10204525 PD-1.6 A allele was found to have an insignificant role in patients with HCV-related hepatic disorders. Though in Asian patients the combination of IFNL3 and PD-1.6 markers better define the HCV-related outcomes, in our series of Caucasian patients the PD-1.6 A-allele variant was observed very rarely. Conclusion: Differences in the incidence of HCV-related HCC and clinical response between Asians and Europeans may be partially due to the distribution of PD-1.6 genotype that we found divergent between these two populations. On the other hand, we confirmed in this study that the polymorphic variants within IFNL3 and TLR2 immune response genes are significantly associated with HCV-related disease progression in our cohort of Italian patients.
Collapse
Affiliation(s)
- Valli De Re
- Centro di Riferimento Oncologico, Cancer Institute, Aviano, Italy
| | | | | | - Laura Caggiari
- Centro di Riferimento Oncologico, Cancer Institute, Aviano, Italy
| | - Francesca Pezzuto
- Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Patrizia Leone
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Gianfranco Lauletta
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Laura Gragnani
- Department of Experimental and Clinical Medicine and Department of Oncology, Interdepartmental Hepatology Center MASVE, Azienda Ospedaliero-Universitaria Careggi (AOUC), Florence, Italy
| | | | - Emanuela Vaccher
- Centro di Riferimento Oncologico, Cancer Institute, Aviano, Italy
| | - Anna Linda Zignego
- Department of Experimental and Clinical Medicine and Department of Oncology, Interdepartmental Hepatology Center MASVE, Azienda Ospedaliero-Universitaria Careggi (AOUC), Florence, Italy
| | - Agostino Steffan
- Centro di Riferimento Oncologico, Cancer Institute, Aviano, Italy
| | | |
Collapse
|
41
|
Cao Z, Yang Q, Zheng M, Lv H, Kang K, Zhang Y. Classical swine fever virus non-structural proteins modulate Toll-like receptor signaling pathways in porcine monocyte-derived macrophages. Vet Microbiol 2019; 230:101-109. [PMID: 30827374 DOI: 10.1016/j.vetmic.2019.01.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/16/2019] [Accepted: 01/27/2019] [Indexed: 12/13/2022]
Abstract
Toll-like receptors (TLRs) are crucial activators of the innate immune response that play various roles in viral infection. Studies have confirmed that classical swine fever virus (CSFV) infection has significant effects on the expression of immune effectors participating in TLR signaling pathways; however, the involvement of CSFV-encoded proteins in TLR signaling pathways remains unclear. In this study, lentiviral individually expressing CSFV non-structural proteins (NSPs) were constructed to identify the "key proteins" that affect TLR gene expression and to analyze the impacts of these proteins on factors downstream of the TLR signaling pathways. The results indicated that Npro, NS2, NS3, NS3/4A, NS4B and NS5A all failed to induce the activation of NF-κB p65. Furthermore, NS4B was found to inhibit poly (I:C) stimulation-mediated activation of the TLR3 signaling pathway in porcine monocyte-derived macrophages (pMDMs), thereby suppressing the TRIF mRNA transcription, the IRF3 protein translation and the NF-κB p65 phosphorylation, and ultimately affecting the secretion of IL-6 and IFN-β; CSFV NS5A protein could significantly increase the activation of MyD88 and IRF7 as well as the consequent synthesis of IFN-α in pMDMs. The results suggest that CSFV NSPs affect TLR-mediated innate immune responses in pMDMs.
Collapse
Affiliation(s)
- Zhi Cao
- College of Veterinary Medicine, Northwest A&F University, Shaanxi, 712100, China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Qian Yang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Minping Zheng
- College of Veterinary Medicine, Northwest A&F University, Shaanxi, 712100, China
| | - Huifang Lv
- College of Veterinary Medicine, Northwest A&F University, Shaanxi, 712100, China
| | - Kai Kang
- College of Veterinary Medicine, Northwest A&F University, Shaanxi, 712100, China
| | - Yanming Zhang
- College of Veterinary Medicine, Northwest A&F University, Shaanxi, 712100, China.
| |
Collapse
|
42
|
Yang Y, Tu ZK, Liu XK, Zhang P. Mononuclear phagocyte system in hepatitis C virus infection. World J Gastroenterol 2018; 24:4962-4973. [PMID: 30510371 PMCID: PMC6262249 DOI: 10.3748/wjg.v24.i44.4962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/30/2018] [Accepted: 11/08/2018] [Indexed: 02/06/2023] Open
Abstract
The mononuclear phagocyte system (MPS), which consists of monocytes, dendritic cells (DCs), and macrophages, plays a vital role in the innate immune defense against pathogens. Hepatitis C virus (HCV) is efficient in evading the host immunity, thereby facilitating its development into chronic infection. Chronic HCV infection is the leading cause of end-stage liver diseases, liver cirrhosis, and hepatocellular carcinoma. Acquired immune response was regarded as the key factor to eradicate HCV. However, innate immunity can regulate the acquired immune response. Innate immunity-derived cytokines shape the adaptive immunity by regulating T-cell differentiation, which determines the outcome of acute HCV infection. Inhibition of HCV-specific T-cell responses is one of the most important strategies for immune system evasion. It is meaningful to illustrate the role of innate immune response in HCV infection. With the MPS being the important factor in innate immunity, therefore, understanding the role of the MPS in HCV infection will shed light on the pathophysiology of chronic HCV infection. In this review, we outline the impact of HCV infection on the MPS and cytokine production. We discuss how HCV is detected by the MPS and describe the function and impairment of MPS components in HCV infection.
Collapse
Affiliation(s)
- Yu Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Zheng-Kun Tu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| | - Xing-Kai Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Ping Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
43
|
HCMV miRNA Targets Reveal Important Cellular Pathways for Viral Replication, Latency, and Reactivation. Noncoding RNA 2018; 4:ncrna4040029. [PMID: 30360396 PMCID: PMC6315856 DOI: 10.3390/ncrna4040029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/12/2018] [Accepted: 10/17/2018] [Indexed: 02/06/2023] Open
Abstract
It is now well appreciated that microRNAs (miRNAs) play a critical role in the lifecycles of many herpes viruses. The human cytomegalovirus (HCMV) replication cycle varies significantly depending on the cell type infected, with lytic replication occurring in fully-differentiated cells such as fibroblasts, endothelial cells, or macrophages, and latent infection occurring in less-differentiated CD14+ monocytes and CD34+ hematopoietic progenitor cells where viral gene expression is severely diminished and progeny virus is not produced. Given their non-immunogenic nature and their capacity to target numerous cellular and viral transcripts, miRNAs represent a particularly advantageous means for HCMV to manipulate viral gene expression and cellular signaling pathways during lytic and latent infection. This review will focus on our current knowledge of HCMV miRNA viral and cellular targets, and discuss their importance in lytic and latent infection, highlight the challenges of studying HCMV miRNAs, and describe how viral miRNAs can help us to better understand the cellular processes involved in HCMV latency.
Collapse
|
44
|
Ganesan M, Poluektova LY, Enweluzo C, Kharbanda KK, Osna NA. Hepatitis C Virus-Infected Apoptotic Hepatocytes Program Macrophages and Hepatic Stellate Cells for Liver Inflammation and Fibrosis Development: Role of Ethanol as a Second Hit. Biomolecules 2018; 8:biom8040113. [PMID: 30322122 PMCID: PMC6316463 DOI: 10.3390/biom8040113] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 02/08/2023] Open
Abstract
Hepatocyte apoptosis is a crucially important mechanism for liver disease pathogenesis, and the engulfment of apoptotic bodies (AB) by non-parenchymal cells serves as a leading mechanism of inflammation and fibrosis progression. Previously, we have shown that hepatitis C virus (HCV) and alcohol metabolites induce massive apoptosis in hepatocytes and the spread of HCV-infection to the neighboring uninfected cells. Here, we hypothesize that the capturing of AB by non-parenchymal cells, macrophages and hepatic stellate cells (HSC) changes their phenotype to promote inflammation and fibrosis. In this regard, we generated AB from Huh7.5CYP2E1 (RLW) cells also treated with an acetaldehyde-generating system (AGS) and incubated them with human monocyte-derived macrophages (MDMs) and HSC (LX2 cells). Activation of inflammasomes and pro-fibrotic markers has been tested by RT-PCR and linked to HCV expression and AGS-induced lipid peroxidation in RLW cells. After exposure to AB we observed activation of inflammasomes in MDMs, with a higher effect of AB HCV+, further enhanced by incubation of MDMs with ethanol. In HSC, activation of inflammasomes was modest; however, HCV and AGS exposure induced pro-fibrotic changes. We conclude that HCV as well as lipid peroxidation-adducted proteins packaged in AB may serve as a vehicle for delivery of parenchymal cell cargo to non-parenchymal cells to activate inflammasomes and pro-fibrotic genes and promote liver inflammation and fibrosis.
Collapse
Affiliation(s)
- Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA.
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Larisa Y Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Chijioke Enweluzo
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA.
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Natalia A Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA.
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
45
|
Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues. Mol Aspects Med 2018; 65:37-55. [PMID: 30213667 DOI: 10.1016/j.mam.2018.09.002] [Citation(s) in RCA: 731] [Impact Index Per Article: 104.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 02/06/2023]
Abstract
The progression of chronic liver diseases (CLD), irrespective of etiology, involves chronic parenchymal injury, persistent activation of inflammatory response as well as sustained activation of liver fibrogenesis and wound healing response. Liver fibrogenesis, is a dynamic, highly integrated molecular, cellular and tissue process responsible for driving the excess accumulation of extracellular matrix (ECM) components (i.e., liver fibrosis) sustained by an eterogeneous population of hepatic myofibroblasts (MFs). The process of liver fibrogenesis recognizes a number of common and etiology-independent mechanisms and events but it is also significantly influenced by the specific etiology, as also reflected by peculiar morphological patterns of liver fibrosis development. In this review we will analyze the most relevant established and/or emerging pathophysiological issues underlying CLD progression with a focus on the role of critical hepatic cell populations, mechanisms and signaling pathways involved, as they represent potential therapeutic targets, to finally analyze selected and relevant clinical issues.
Collapse
|
46
|
3, 5, 3'-Triiodothyroacetic acid (TRIAC) is an anti-inflammatory drug that targets toll-like receptor 2. Arch Pharm Res 2018; 41:995-1008. [PMID: 30099678 DOI: 10.1007/s12272-018-1057-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 07/20/2018] [Indexed: 12/18/2022]
Abstract
Drug repositioning is a strategy that explores new pharmaceutical applications of previously launched or failed drugs, and is advantageous since it saves capital and time. In this study, we examined the inhibition of TLR2 signaling by drug candidates. HEK-Blue™-hTLR2 cells were pretreated with drugs and stimulated using the TLR2 ligand, Pam3CSK4. Among the drugs that inhibited TLR2 signaling, we selected TRIAC, which is yet to be patented. Pretreatment with TRIAC decreased the TLR2 level and the phosphorylation of Akt and MAPKs in HEK-Blue™-hTLR2 cells. Since TLR2 is overexpressed in patients with acute hepatitis, we confirmed that TRIAC alleviates necrosis in a mouse model of Con A-induced acute hepatitis. The serum AST and ALT levels are indicators of liver damage, and are increased in Con A-induced hepatitis. Additionally, TLR2 and inflammatory cytokine levels are increased following administration of Con A and lead to liver damage. TRIAC decreased the serum levels of AST and ALT, and reduced liver tissue necrosis in mice with Con A-induced acute fulminant liver damage, by reducing the levels of inflammatory cytokines. In conclusion, TRIAC alleviates inflammation in mouse models of Con A-induced hepatitis by inhibiting the phosphorylation of Akt and MAPKs, the sub-mechanisms underlying TLR2 signaling.
Collapse
|
47
|
Lund Laursen T, Brøckner Siggard C, Kazankov K, Damgaard Sandahl T, Møller HJ, Ong A, Douglas MW, George J, Tarp B, Hagelskjaer Kristensen L, Lund Laursen A, Hiramatsu A, Nakahara T, Chayama K, Grønbaek H. Rapid and persistent decline in soluble CD163 with successful direct-acting antiviral therapy and associations with chronic hepatitis C histology. Scand J Gastroenterol 2018; 53:986-993. [PMID: 29987961 DOI: 10.1080/00365521.2018.1481996] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND AIM Soluble CD 163 (sCD163) is released from activated liver macrophages in chronic viral hepatitis C (HCV) and serum levels reflect liver disease severity. The impact of direct-acting antiviral (DAA)-therapy on sCD163-levels and the ability of sCD163 to predict the presence of liver fibrosis remain unclear. In a combined observational and prospective study, we aimed to investigate changes in sCD163 with DAA-treatment, to investigate associations between sCD163 and histopathological activity and fibrosis and to validate the sCD163-based fibrosis score in HCV-patients. METHODS We examined three groups of patients: an Australian (n = 28) treated with pegylated-interferon and a first-generation DAA, a Danish (n = 38) treated with sofosbuvir-based DAA-regimens and a Japanese (n = 562) assessed for activity and fibrosis (Metavir scoring system) in liver biopsies. Serum sCD163-levels were quantified by ELISA. RESULTS Thirteen (46%) of the Australian patients achieved sustained virological response (SVR) and only these patients had significant decreases in sCD163-levels (2.7 (95%CI:1.9-3.6) vs. 4.1(2.9-5.7) mg L - 1, p = .008). In the Danish group, 37 (97%) patients achieved SVR at 12-weeks post-treatment with 32% reduction in sCD163-levels (5.0 (4.3-5.8) vs. 7.4 (6.3-8.7), p < .001). The decline was rapid and persisted 12 months after treatment cessation (p < .007). sCD163 levels increased in parallel with inflammatory activity and fibrosis (p < .001). The sCD163-based fibrosis score outperformed established fibrosis scores for significant fibrosis (areas under the receiver operating characteristics curves (AUROCs): 0.79 (0.75-0.83) vs. aspartate aminotransferase to platelet ratio index (APRI) 0.73 (0.69-0.77), Fibrosis-4 (FIB-4) 0.74 (0.70-0.78), p < .001). CONCLUSION sCD163-levels decline rapidly with successful DAA therapy and are associated with histological inflammatory activity and fibrosis, confirming a key role for macrophages in HCV inflammation and fibrosis and supporting sCD163 as a biomarker of treatment response.
Collapse
Affiliation(s)
- Tea Lund Laursen
- a Department of Hepatology & Gastroenterology , Aarhus University Hospital , Aarhus , Denmark
| | | | - Konstantin Kazankov
- a Department of Hepatology & Gastroenterology , Aarhus University Hospital , Aarhus , Denmark
| | - Thomas Damgaard Sandahl
- a Department of Hepatology & Gastroenterology , Aarhus University Hospital , Aarhus , Denmark
| | - Holger Jon Møller
- b Department of Clinical Biochemistry , Aarhus University Hospital , Aarhus , Denmark
| | - Adrian Ong
- c Storr Liver Centre , Westmead Institute for Medical Research, Westmead Hospital and University of Sydney , Sydney , Australia
| | - Mark W Douglas
- c Storr Liver Centre , Westmead Institute for Medical Research, Westmead Hospital and University of Sydney , Sydney , Australia
| | - Jacob George
- c Storr Liver Centre , Westmead Institute for Medical Research, Westmead Hospital and University of Sydney , Sydney , Australia
| | - Britta Tarp
- d Diagnostic Centre , Silkeborg Regional Hospital , Silkeborg , Denmark
| | | | - Alex Lund Laursen
- f Department of Infectious Diseases , Aarhus University Hospital , Aarhus , Denmark
| | - Akira Hiramatsu
- g Department of Gastroenterology and Metabolism , Institute of Biomedical and Health Sciences, Hiroshima University , Hiroshima , Japan
| | - Takashi Nakahara
- g Department of Gastroenterology and Metabolism , Institute of Biomedical and Health Sciences, Hiroshima University , Hiroshima , Japan
| | - Kazuaki Chayama
- g Department of Gastroenterology and Metabolism , Institute of Biomedical and Health Sciences, Hiroshima University , Hiroshima , Japan.,h Laboratory for Digestive Diseases , RIKEN Center for Integrative Medical Sciences , Hiroshima , Japan
| | - Henning Grønbaek
- a Department of Hepatology & Gastroenterology , Aarhus University Hospital , Aarhus , Denmark
| |
Collapse
|
48
|
Mazouz S, Boisvert M, Shoukry NH, Lamarre D. Reversing immune dysfunction and liver damage after direct-acting antiviral treatment for hepatitis C. CANADIAN LIVER JOURNAL 2018; 1:78-105. [DOI: 10.3138/canlivj.1.2.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 12/12/2022]
Abstract
The introduction of small molecules targeting viral functions has caused a paradigm shift in hepatitis C virus (HCV) treatment. Administration of these direct-acting antivirals (DAAs) achieves a complete cure in almost all treated patients with short-duration therapy and minimal side effects. Although this is a major improvement over the previous pegylated interferon plus ribavirin (PEG-IFNα/RBV) standard-of-care treatment for HCV, remaining questions address several aspects of the long-term benefits of DAA therapy. Interferon (IFN)-based treatment with successful outcome was associated with substantial reduction in liver disease–related mortality. However, emerging data suggest a complex picture and several confounding factors that influence the effect of both IFN-based and DAA therapies on immune restoration and limiting liver disease progression. We review current knowledge of restoration of innate and HCV-specific immune responses in DAA-mediated viral elimination in chronic HCV infection, and we identify future research directions to achieve long-term benefits in all cured patients and reduce HCV-related liver disease morbidity and mortality.
Collapse
Affiliation(s)
- Sabrina Mazouz
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
- Département de médecine, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
| | - Maude Boisvert
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
- Département de médecine, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
| | - Naglaa H Shoukry
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
- Département de médecine, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
| | - Daniel Lamarre
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
- Département de médecine, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
49
|
Iqbal MS, Ashfaq UA, Khaliq S, Masoud MS, Qasim M, Haque A, Ghani MU, Jahan S. Toll-like receptor 4 polymorphism as pretreatment predictor of response to HCV genotype 3a interferon-based treatment. Future Virol 2017. [DOI: 10.2217/fvl-2017-0076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Polymorphisms in Toll-like receptor 4 (TLR4) gene may exaggerate the chances and pathogenesis of HCV. Aim: This study intends to examine the relationship of genetic polymorphisms of TLR4 with HCV disease in Pakistani patients. Methodology: For this purpose, 500 blood samples were collected to confirm the genetic profile of all the subjects. Results: Single nucleotide polymorphism (SNP) in the TLR4 gene, rs4986790 (A>G), was genotyped in 400 HCV infected and 100 healthy individuals. The TLR4 gene was associated with a significantly increased risk of HCV-related diseases in comparing genotype assessments in patients and controls (pooled OR [95%CI]: 1.671 [0.946–2.949] for dominant; 0.503 [0.221–1.145] for recessive; 2.33 [1.518–3.576] for allele frequency). Subgroup analyses showed an increased risk of HCV infection and effect on interferon therapy associated with AA+AG/GG genotypes of rs4986790 (2.033 [1.094–3.778]). Conclusion: TLR4 SNP rs4986790 was found to be related to HCV-infected patients in the Pakistani population.
Collapse
Affiliation(s)
- Muhammad Sarfaraz Iqbal
- Department of Bioinformatics & Biotechnology, Government College University, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics & Biotechnology, Government College University, Faisalabad, Pakistan
| | - Saba Khaliq
- Department of Physiology, University of Health Sciences, Lahore, Pakistan
| | - Muhammad Shareef Masoud
- Department of Bioinformatics & Biotechnology, Government College University, Faisalabad, Pakistan
| | - Muhammad Qasim
- Department of Bioinformatics & Biotechnology, Government College University, Faisalabad, Pakistan
| | - Asma Haque
- Department of Bioinformatics & Biotechnology, Government College University, Faisalabad, Pakistan
| | - Muhammad Usman Ghani
- Department of Bioinformatics & Biotechnology, Government College University, Faisalabad, Pakistan
| | - Shah Jahan
- Department of Physiology, University of Health Sciences, Lahore, Pakistan
| |
Collapse
|
50
|
Andreoni M, Babudieri S, Bruno S, Colombo M, Zignego AL, Di Marco V, Di Perri G, Perno CF, Puoti M, Taliani G, Villa E, Craxì A. Current and future challenges in HCV: insights from an Italian experts panel. Infection 2017; 46:147-163. [PMID: 29098647 DOI: 10.1007/s15010-017-1093-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/25/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND The recent availability of direct acting antiviral drugs (DAAs) has drastically changed hepatitis C virus (HCV) treatment scenarios, due to the exceedingly high rates of sustained virological response (SVR) and excellent tolerability allowing for treatment at all disease stages. METHODS A panel of Italian experts was convened twice, in November 2016 and January 2017, to provide further support on some open issues and provide guidance for personalized HCV care, also in light of forthcoming regimens. RESULTS AND CONCLUSIONS Treatment recommendations issued by international and national liver societies to guide clinicians in the management of HCV infection are constantly updated due to accumulating new data. Such recommendations may not be applicable to all healthcare settings for a variety of reasons. Moreover, some gaps still remain and the spectrum of patients to be treated is also evolving.
Collapse
Affiliation(s)
- Massimo Andreoni
- Infectious Diseases, Polyclinic of Rome Tor Vergata, Rome, Italy
| | - Sergio Babudieri
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Savino Bruno
- Humanitas University and Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Massimo Colombo
- Humanitas Clinical and Research Center, Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Anna L Zignego
- Department of Experimental and Clinical Medicine, Interdepartmental Centre MASVE, University of Florence, Florence, Italy
| | - Vito Di Marco
- Sezione di Gastroenterologia e Epatologia, DiBiMIS, University of Palermo, Palermo, Italy
| | - Giovanni Di Perri
- Unit of Infectious Diseases, Department of Medical Sciences, Amedeo di Savoia Hospital, University of Turin, Turin, Italy
| | - Carlo F Perno
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Massimo Puoti
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Gloria Taliani
- Infectious and Tropical Diseases Unit, Umberto I Hospital-"Sapienza" University, Rome, Italy
| | - Erica Villa
- Department of Internal Medicine, Gastroenterology Unit, Azienda Ospedaliero-Universitaria Policlinico di Modena, Modena, Italy
| | - Antonio Craxì
- Gastroenterology and Liver Unit, DiBiMIS, University of Palermo, Palermo, Italy.
| |
Collapse
|