1
|
Xu M, Gong R, Xie J, Xu S, Wang S. Clinical characteristics of lean and non-lean non-alcoholic fatty liver disease: a cross-sectional study. Nutr Metab (Lond) 2025; 22:40. [PMID: 40355898 PMCID: PMC12070601 DOI: 10.1186/s12986-025-00927-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 04/04/2025] [Indexed: 05/15/2025] Open
Abstract
INTRODUCTION Non-alcoholic fatty liver disease (NAFLD) affects more than a quarter of the global population and has become the world's number one chronic liver disease, seriously jeopardizing public life and health. Despite the new terminology of metabolic dysfunction-associated steatotic liver disease (MASLD) has been proposed, the mechanisms underlying the heterogeneity across BMI stratification in non-alcoholic fatty liver disease (NAFLD) remain unclear. The aim of this study was to reveal the differences in metabolic and fibrotic characteristics between lean (BMI < 23 kg/m2) and non-lean NAFLD in an Asian population. METHODS The current study collected NAFLD patients from the physical examination population. Patients were divided into two groups by BMI to compare their clinical parameters, including lean (BMI < 23 kg/m2) and non-lean (BMI ≥ 23 kg/m2) and fibrosis subgroups (with a threshold of LSM = 8 kPa) and analyzed for risk factors by logistic regression models. RESULTS Of the 11,577 NAFLD patients who participated in the study, there were 916 lean and 10,661 non-lean. The non-lean group was younger than the lean group (median age 50 vs. 52 years, P < 0.001) and had a significantly higher prevalence of hypertension (28.0% vs. 18.3%), diabetes mellitus (10.1% vs. 6.1%), and liver fibrosis (9.1% vs. 5.1%) (all P < 0.001). Analysis of metabolic indexes showed that TyG, TyG-BMI, TG/HDL-C and APRI were higher in the non-lean group (all P < 0.001). Gender stratification revealed that ALT was significantly higher in the male non-lean group, while HDL-C was lower in the female non-lean group (1.35 vs. 1.47 mmol/L). Multiple regression suggested that the risk of fibrosis was independently associated with CAP values and fasting glucose, BMI, direct bilirubin, globulin, and age in the non-lean group, whereas the risk was mainly driven by GGT and ALP in the lean group. CONCLUSIONS Non-lean NAFLD patients showed more significant metabolic disturbances and risk of liver fibrosis. Although metabolic indicators (TyG, FIB-4) have limited predictive value for liver fibrosis, they are strongly associated with metabolic risk in MASLD.
Collapse
Affiliation(s)
- Mengyan Xu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Rui Gong
- Health Management Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiao Xie
- Health Management Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sanping Xu
- Health Management Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Shi Wang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
2
|
Singh V, Chattopadhyay P, Fatima F, Singh P, Pandey R, Agrawal A, Roy SS. Generation and characterization of a chronic in vitro model to study the early stage of metabolic dysfunction-associated steatotic liver disease (MASLD). Biochim Biophys Acta Mol Basis Dis 2025; 1871:167886. [PMID: 40324734 DOI: 10.1016/j.bbadis.2025.167886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/24/2025] [Accepted: 05/01/2025] [Indexed: 05/07/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic and progressive liver disease with an increasing global burden that starts with an early stage of simple steatosis (MASL) which frequently progresses to liver cirrhosis and hepatocellular carcinoma (HCC). Despite its widespread occurrence, the MASL or steatotic stage, characterized by excessive fat accumulation in the liver and considered reversible and benign, has not been extensively studied. To study MASL effectively, it is imperative to have a clinically relevant model system that focuses solely on steatosis, in a progressive and time-dependent manner, recapitulating molecular changes associated with human disease. We established a chronic cellular model of MASL using a primary immortalized human hepatocyte cell line treated with a low dose mixture of fatty acids. This model mimics the pattern of chronic disease progression, shows minimal lipotoxicity, exhibits progressive lipid accumulation (from early to moderate steatosis), and demonstrates macrosteatosis, a hallmark of MASL. To determine whether this model recapitulates both morphological and molecular aspects of steatosis, we measured the expression of key genes and pathways found to be dysregulated in a recently available early MASL patient dataset as well as a non-human primate model of MASL. In support of the relevance of our model, we observed increased fatty acid uptake, lipogenesis, mitochondrial activity, metabolic rewiring, and autophagic alterations that significantly overlap with the pathological features of human and non-human primate MASL. In conclusion, we generate a relevant cellular model of steatosis that can serve as a robust platform for screening of existing chemical libraries to identify potent inhibitors of MASL as well as discovering novel therapeutic targets by mechanistically studying altered molecular signatures associating early stages of MASLD.
Collapse
Affiliation(s)
- Vandana Singh
- CSIR-Institute of Genomics & Integrative Biology, New Delhi 110025, India; Academy of Scientific & Innovative Research, Ghaziabad 201002, India
| | - Partha Chattopadhyay
- CSIR-Institute of Genomics & Integrative Biology, New Delhi 110025, India; Academy of Scientific & Innovative Research, Ghaziabad 201002, India
| | - Fabeha Fatima
- CSIR-Institute of Genomics & Integrative Biology, New Delhi 110025, India
| | - Praveen Singh
- CSIR-Institute of Genomics & Integrative Biology, New Delhi 110025, India; Academy of Scientific & Innovative Research, Ghaziabad 201002, India
| | - Rajesh Pandey
- CSIR-Institute of Genomics & Integrative Biology, New Delhi 110025, India; Academy of Scientific & Innovative Research, Ghaziabad 201002, India
| | - Anurag Agrawal
- Trivedi School of Biosciences, Ashoka University, Sonipat 131029, India
| | - Soumya Sinha Roy
- CSIR-Institute of Genomics & Integrative Biology, New Delhi 110025, India; Academy of Scientific & Innovative Research, Ghaziabad 201002, India.
| |
Collapse
|
3
|
Ma L, Jiang H, Qu N. Mendelian randomization analysis of smoking, BMI, and nonalcoholic fatty liver disease in European descent populations. Medicine (Baltimore) 2025; 104:e42308. [PMID: 40324243 PMCID: PMC12055159 DOI: 10.1097/md.0000000000042308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 12/27/2024] [Accepted: 04/14/2025] [Indexed: 05/07/2025] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a chronic liver condition with a steadily increasing prevalence. Evidence indicates that both smoking and obesity are significant risk factors for NAFLD, yet the extent to which smoking influences NAFLD through weight gain remains unclear. This study aimed to dissect the intricate relationship between smoking, body mass index (BMI), and NAFLD using Mendelian randomization (MR) analysis. We leveraged data from 30 genome-wide association studies involving over 1.2 million individuals, from which 123 single nucleotide polymorphisms were selected as instrumental variables for smoking. BMI data were sourced from the Genetic Investigation of Anthropometric Traits (GIANT) consortium, encompassing more than 700,000 individuals, with 521 single nucleotide polymorphisms serving as instrumental variables. NAFLD data were obtained from multiple databases, including the eMERGE Network, UK Biobank, Estonian Biobank, and FinnGen, comprising 8434 cases and 770,180 controls. All participants in this study were of European ancestry. We first applied univariate MR analysis to assess the causal relationship between smoking, NAFLD, and BMI. Subsequently, multivariate MR was used to assess the effect of smoking on NAFLD after adjusting for BMI. The coefficient product method was used to calculate the mediating effect of BMI. Results found that both smoking and high BMI were able to increase the risk of NAFLD, with odds ratios of 1.83 (95% confidence interval [CI]: 1.31-2.55) and 1.58 (95% CI: 1.42-1.77), respectively. BMI mediated 73.3% (95% CI: 62.3%-80.5%) of the effect of smoking on NAFLD. The findings support weight control and the encouragement of smoking cessation, especially in obese populations, as strategies to reduce the risk of NAFLD.
Collapse
Affiliation(s)
- Lei Ma
- The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
- The First Affiliated Hospital, Guilin Medical University, Guilin, Guangxi, China
| | - Haixing Jiang
- The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Nanfang Qu
- The First Affiliated Hospital, Guilin Medical University, Guilin, Guangxi, China
| |
Collapse
|
4
|
He S, Lv Y, Gao Z, Peng L. The Nb 4C 3 MXenzyme Attenuates MASH by Scavenging ROS in a Mouse Model. Int J Nanomedicine 2025; 20:5645-5659. [PMID: 40321802 PMCID: PMC12050042 DOI: 10.2147/ijn.s500891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/21/2025] [Indexed: 05/08/2025] Open
Abstract
Objective The incidence of metabolic dysfunction-associated steatohepatitis (MASH) is increasing because people's dietary habits are dominated by high caloric intake and sedentary lifestyles, leading to the accumulation of lipid, reactive oxygen species (ROS) and inflammation. However, treating MASH remains a challenge. Methods Two-dimensional (2D) niobium carbide (Nb4C3) MXene nanoenzymes (MXenzymes) possess both antioxidant and anti-inflammatory properties and have attracted considerable attention in the tumor and engineering fields. The Nb4C3 MXenzyme was developed for MASH therapy and exhibited biosafety and antilipid peroxidation activity. Results Nb4C3 reduced excessive ROS and proinflammatory cytokine levels through its antilipid peroxidation activities, resulting in the inhibition of hepatocyte lipid accumulation and inflammation in a methionine-choline-deficient diet (MCD)-induced murine MASH model. Mechanistically, Nb4C3 not only inhibited lipid accumulation and disrupted lipid metabolism in hepatocytes but also attenuated fatty acid-induced cell death by reducing intracellular ROS levels, which significantly promoted the polarization of M1 macrophages to M2 macrophages by alleviating oxidative stress and suppressing inflammatory factor expression. Conclusion The Nb4C3 MXenzyme can be used as a multifunctional bioactive material to alleviate hepatic steatosis and inflammation in MASH mice through its robust antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Shuying He
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou city, Guangdong Province, People’s Republic of China
| | - Yuerong Lv
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou city, Guangdong Province, People’s Republic of China
| | - Zixian Gao
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou city, Guangdong Province, People’s Republic of China
| | - Liang Peng
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou city, Guangdong Province, People’s Republic of China
- Department of Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou city, Guangdong Province, People’s Republic of China
| |
Collapse
|
5
|
Liu M, Jiang L, Yang J, Yao Y, Puyang X, Ge X, Lu J, Zhang L, Yan Y, Shen H, Song C. Development and Validation of a Machine Learning-based Model for Prediction of Liver Fibrosis and MASH. J Clin Gastroenterol 2025:00004836-990000000-00441. [PMID: 40299904 DOI: 10.1097/mcg.0000000000002166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/09/2025] [Indexed: 05/01/2025]
Abstract
BACKGROUND AND AIM The development of accurate noninvasive tests to identify individuals with metabolic dysfunction-associated steatohepatitis (MASH) and liver fibrosis is of great clinical importance. In this study, we aimed to develop 2 noninvasive diagnostic models on the basis of routine clinical and laboratory data, using machine learning, to identify patients with MASH and significant fibrosis (fibrosis stages 2 to 4), respectively. METHODS This analysis included the training (n=456) and the validation (n=105) sets of patients who underwent liver biopsy and laboratory testing for liver disease at 2 hospitals in China. Logistic regression, random forest, support vector machine, and the XGBoost algorithm were used to construct models, respectively. The best diagnostic models for MASH and significant fibrosis were compared with 7 existing noninvasive scoring systems including AAR, AST to platelet ratio index (APRI), BARD score, fibrosis-4 (FIB-4), fibrotic non-alcoholic steatohepatitis (NASH) index (FNI), homeostatic model assessment of insulin resistance (HOMA-IR), and non-alcoholic fatty liver disease fibrosis score (NFS). Performance was estimated by the area under the receiver operating characteristic curve (AUROC). RESULTS The final noninvasive diagnostic model integrated 19 indicators derived from routine clinical and laboratory tests. The XGBoost models exhibited superior performance in MASH and significant fibrosis with an improved AUROC value (MASH, 0.670, 95% CI 0.530-0.811; significant fibrosis, 0.713, 95% CI 0.611-0.815) compared with other noninvasive scoring systems in the validation set. CONCLUSIONS Utilizing machine learning can assist in diagnosing MASH and significant fibrosis based on clinical epidemiological information with good diagnostic performance.
Collapse
Affiliation(s)
| | | | | | - Yao Yao
- School of Public Health, Nanjing Medical University
| | | | | | - Jing Lu
- Department of Epidemiology
- Health Promotion Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | | | | | | | - Ci Song
- Department of Epidemiology
- Health Promotion Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Büyük M, Berker N, Bağbudar S, Çavuş B, Güllüoğlu M. Hepatic progenitor cell activation and ductular reaction in metabolic dysfunction-associated steatotic liver disease (MASLD): Indicators for disease activity and the degree of fibrosis: The pilot study. Medicine (Baltimore) 2025; 104:e42108. [PMID: 40228280 PMCID: PMC11999437 DOI: 10.1097/md.0000000000042108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/27/2025] [Indexed: 04/16/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) spectrum encompasses steatosis, metabolic dysfunction-associated steatohepatitis, fibrosis, cirrhosis and metabolic dysfunction-associated steatohepatitis-related hepatocellular carcinoma. We evaluated the histomorphologic findings, portal-periportal biliary epithelial cell changes, and factors that may be associated with the degree of fibrosis in liver biopsies of MASLD patients. Hematoxylin-eosin, masson-trichrome, keratin7, keratin19, CD34, and glutamine synthetase-stained biopsies of 34 patients and 10 healthy liver donors (as controls) were retrospectively analyzed. Lobular inflammation was significantly correlated to the ballooning degeneration (P = .023), portal inflammation (P = .003), ductular reaction (DR) grade (P = .027), and the degree of fibrosis (P = .003). Ballooning degeneration (P = .004), and NAS (P = .008) were significantly related to the degree of fibrosis. Portal inflammation had a significant relationship with both DR grade (P < .001) and the degree of fibrosis (P = .002). The presence of hepatic progenitor cells (HPCs) was related to NAS (P = .005) and correlated with the DR grade (P = .002) and the degree of fibrosis (P = .038). Both DR (P < .001) and biliary metaplasia (P = .024) were significantly correlated with the degree of fibrosis. In multivariate analysis, biliary metaplasia (P = .015) and DR (P = .02) were found to be independent factors related to degree of fibrosis. Our results showed that HPC and DR were closely associated with disease activity and degree of fibrosis and might be good indicators of disease progression in MASLD. As pathologists, we might integrate the degree of HPCs and the grade of DR in our pathology reports as these findings might contribute to the disease progression risk categorization of the patients.
Collapse
Affiliation(s)
- Melek Büyük
- Department of Pathology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Neslihan Berker
- Department of Pathology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Sidar Bağbudar
- Department of Pathology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Bilger Çavuş
- Department of Gastroenterology and Hepatology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Mine Güllüoğlu
- Department of Pathology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
7
|
Zhu X, Sun F, Gao X, Liu H, Luo Z, Sun Y, Fan L, Deng J. Predictive value of triglyceride glucose index in non-obese non-alcoholic fatty liver disease. BMJ Open 2025; 15:e083686. [PMID: 40204316 PMCID: PMC11979504 DOI: 10.1136/bmjopen-2023-083686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/21/2025] [Indexed: 04/11/2025] Open
Abstract
OBJECTIVES A large number of patients with non-obese non-alcoholic fatty liver disease (NAFLD) in China remain undiagnosed and untreated due to insufficient awareness and ineffective pharmacotherapy. Therefore, a convenient, predictive marker and diagnostic tools are imperative. This study aimed to investigate the ability of the triglyceride glucose index (TyG) in predicting non-obese NAFLD. DESIGN An observational cross-sectional study. SETTING Department of Health Management, large urban academic medical centre and DRYAD database data. PARTICIPANTS This study included 456 patients with non-obese NAFLD and matched 456 non-fatty liver controls according to age, sex and body mass index (BMI). PRIMARY AND SECONDARY OUTCOME MEASURES The receiver operating characteristic (ROC) curve was used to evaluate the predictive role of the TyG index in non-obese NAFLD. Based on the TyG index, a clinical prediction model for non-obese NAFLD was constructed, then the prediction model was verified by the DRYAD database (n=11 562). RESULTS TyG in non-obese NAFLD was higher than that in controls (9.00 (8.66-9.40) vs 8.46 (8.10-8.83), p<0.001). Logistic regression analysis showed that TyG was an independent risk factor for non-obese NAFLD (OR=9.03, 95% CI: 5.46 to 14.94, p<0.001). ROC analysis showed that the area under the curve (AUC) was 0.78, the sensitivity was 82.5%, the specificity was 60.5%. Based on the TyG index, sex, age and BMI, the AUC of the predictive model for non-obese NAFLD was 0.78 (95% CI: 0.75 to 0.81, p<0.001). Using the DRYAD database to verify the prediction model, the AUC of the verification group was 0.85 (95% CI: 0.84 to 0.86, p<0.001). CONCLUSIONS The high level of the TyG may be an independent risk factor for non-obese NAFLD. The prediction model for non-obese NAFLD based on the TyG index has good clinical prediction value.
Collapse
Affiliation(s)
- Xiaopeng Zhu
- Department of Health Management, Daping Hospital, Army Medical University, Chongqing, Chongqing, China
| | - Fang Sun
- Department of Health Management, Daping Hospital, Army Medical University, Chongqing, Chongqing, China
| | - Xia Gao
- Department of Health Management, Daping Hospital, Army Medical University, Chongqing, Chongqing, China
| | - He Liu
- Department of Health Management, Daping Hospital, Army Medical University, Chongqing, Chongqing, China
| | - ZhongYan Luo
- Department of Health Management, Daping Hospital, Army Medical University, Chongqing, Chongqing, China
| | - Yijian Sun
- Department of Health Management, Daping Hospital, Army Medical University, Chongqing, Chongqing, China
| | - Liqi Fan
- Department of Health Management, Daping Hospital, Army Medical University, Chongqing, Chongqing, China
| | - Juan Deng
- Department of Health Management, Daping Hospital, Army Medical University, Chongqing, Chongqing, China
| |
Collapse
|
8
|
Xu Y, Wang Y, Yao X, Zhao Q, Chen B, Wang N, Zhang T, Jiang Y, Wu Y, He N, Zhao G, Sun Z, Liu X. Prevalence, Incidence, and Recovery of Metabolic Dysfunction-associated Steatotic Liver Disease and Associations With Weight Loss and Lipid Reduction in a Chinese Community-based Cohort. J Epidemiol 2025; 35:195-205. [PMID: 39401903 PMCID: PMC11882351 DOI: 10.2188/jea.je20240224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/23/2024] [Indexed: 03/08/2025] Open
Abstract
BACKGROUND As the most common chronic liver disease worldwide, the natural history of metabolic dysfunction-associated steatotic liver disease (MASLD) in the general population is barely reported. METHODS The Shanghai Suburban Adult Cohort and Biobank study recruited 36,404 adults between 2016 and 2017, and followed up 25,085 participants between 2019 and 2023 in Songjiang District. A questionnaire survey was conducted using face-to-face interview, and physical examination and laboratory tests were conducted. MASLD was diagnosed using liver ultrasound and the cardiometabolic risk factors (CMRF). RESULTS A total of 36,122 and 21,831 participants met the criteria for baseline and follow-up analyses. The prevalence of MASLD at baseline was 36.8% overall, and 73.6% among those with a body mass index (BMI) over 28 kg/m2. After a median follow-up time of 4.26 years, the incidence density for MASLD was 8.4, and the recovery density was 11.4 per 100 person-years overall and was 20.0 and 8.4 per 100 person-years for those with baseline BMI over 28 kg/m2. Per 1 kg/m2 increase in baseline BMI was associated with a 15% increase in incidence (hazard ratio [HR] 1.15; 95% confidence interval [CI], 1.14-1.17) and an 8% decrease in recovery (HR 0.92; 95% CI, 0.90-0.93). From baseline to follow-up visit, participants who remained non-obese or remained normal cardiometabolic status always showed the lowest incidence and the highest recovery rate, followed by those with improved status. CONCLUSION The prevalence and incidence of MASLD were high among Shanghai residents, and active recovery was also observed. Obesity was the most important risk factor, and weight loss and lipid level reduction were beneficial for preventing or reversing MASLD.
Collapse
Affiliation(s)
- Yurou Xu
- The Key Laboratory of Public Health Safety of Ministry of Education, Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Youyi Wang
- The Key Laboratory of Public Health Safety of Ministry of Education, Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Xiajing Yao
- Songjiang District Center for Disease Control and Prevention, Shanghai, China
| | - Qi Zhao
- The Key Laboratory of Public Health Safety of Ministry of Education, Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Bo Chen
- The Key Laboratory of Public Health Safety of Ministry of Education, Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Na Wang
- The Key Laboratory of Public Health Safety of Ministry of Education, Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Tiejun Zhang
- The Key Laboratory of Public Health Safety of Ministry of Education, Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Yonggen Jiang
- Songjiang District Center for Disease Control and Prevention, Shanghai, China
| | - Yiling Wu
- Songjiang District Center for Disease Control and Prevention, Shanghai, China
| | - Na He
- The Key Laboratory of Public Health Safety of Ministry of Education, Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Genming Zhao
- The Key Laboratory of Public Health Safety of Ministry of Education, Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Zhongxing Sun
- Songjiang District Center for Disease Control and Prevention, Shanghai, China
| | - Xing Liu
- The Key Laboratory of Public Health Safety of Ministry of Education, Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Zhou F, Deng S, Luo Y, Liu Z, Liu C. Research Progress on the Protective Effect of Green Tea Polyphenol (-)-Epigallocatechin-3-Gallate (EGCG) on the Liver. Nutrients 2025; 17:1101. [PMID: 40218859 PMCID: PMC11990830 DOI: 10.3390/nu17071101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/15/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025] Open
Abstract
The liver, as the primary metabolic organ, is susceptible to an array of factors that can harm liver cells and give rise to different liver diseases. Epigallocatechin gallate (EGCG), a natural compound found in green tea, exerts numerous beneficial effects on the human body. Notably, EGCG displays antioxidative, antibacterial, antiviral, anti-inflammatory, and anti-tumor properties. This review specifically highlights the pivotal role of EGCG in liver-related diseases, focusing on viral hepatitis, autoimmune hepatitis, fatty liver disease, and hepatocellular carcinoma. EGCG not only inhibits the entry and replication of hepatitis B and C viruses within hepatocytes, but also mitigates hepatocytic damage caused by hepatitis-induced inflammation. Furthermore, EGCG exhibits significant therapeutic potential against hepatocellular carcinoma. Combinatorial use of EGCG and anti-hepatocellular carcinoma drugs enhances the sensitivity of drug-resistant cancer cells to chemotherapeutic agents, leading to improved therapeutic outcomes. Thus, the combination of EGCG and anti-hepatocellular carcinoma drugs holds promise as an effective approach for treating drug-resistant hepatocellular carcinoma. In conclusion, EGCG possesses hepatoprotective properties against various forms of liver damage and emerges as a potential drug candidate for liver diseases.
Collapse
Affiliation(s)
- Fang Zhou
- School of Chemistry and Environmental Sciences, Xiangnan University, Chenzhou 423000, China;
| | - Sengwen Deng
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; (S.D.); (C.L.)
| | - Yong Luo
- School of Chemistry and Environmental Sciences, Xiangnan University, Chenzhou 423000, China;
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China;
| | - Changwei Liu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; (S.D.); (C.L.)
| |
Collapse
|
10
|
Fan S, Chen W, Li Y, Guo K, Tang H, Ye J, Zhou Z, Tan M, Wei H, Huang X, Huang K, Ke X. Qige Decoction attenuated non-alcoholic fatty liver disease through regulating SIRT6-PPARα-mediated fatty acid oxidation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156395. [PMID: 39855055 DOI: 10.1016/j.phymed.2025.156395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 11/24/2024] [Accepted: 01/12/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Sirtuin 6 (SIRT6), a potential therapeutic target for non-alcoholic fatty liver disease (NAFLD), has been shown to regulate fatty acid oxidation (FAO) by interacting with peroxisome proliferator-activated receptor α (PPARα). However, the impact of SIRT6-PPARα pathway on NAFLD phenotype has not yet been reported. Qige decoction (QG), a traditional Chinese medicine (TCM) formula, is widely applied to treat disorders of glycolipid metabolism. Our previous experiments showed that QG reduced hepatic steatosis and provided preliminary evidence that QG may promote FAO. However, a thorough understanding of molecular mechanisms by which QG regulates FAO requires further investigation. PURPOSE To investigate the role of SIRT6-PPARα signalling pathway on NAFLD phenotype and explore the mechanism by which QG improves NAFLD and its relationship with FAO regulated by SIRT6-PPARα signalling pathway. METHODS In vivo study, NAFLD mice induced by high fat diet (HFD) were divided into two parts. The first part involved four groups: control (CON), model (MOD), PPARα agonist (WY-14,643, WY), and SIRT6 inhibitor (OSS-128,167, OS) groups. The second part involved five groups: CON group, MOD group, positive drug (POS) group, low dose QG (QGL) group, and high dose QG (QGH) group. Widely-targeted lipidomic were performed by UHPLC-QTOF/MS to analyse differential lipids (DELs) in the liver, while differentially expressed genes (DEGs) were analysed by transcriptome analysis on the Illumina sequencing platform. In vitro study, co-immunoprecipitation and dual luciferase assay were employed to further identify the molecular mechanisms of SIRT6-PPARα interaction. The lentiviral vector, TG assay, and acetyl-CoA assay were used to clarify the indispensable role of the SIRT6-PPARα signalling pathway on QG amelioration of lipid accumulation in vitro. RESULTS Down-regulation of SIRT6 inhibited PPARα-mediated FAO and aggravated lipid accumulation in hepatocytes both in vivo and in vitro. SIRT6 bound to PPARα in HepG2 cells; however, SIRT6 activation of the PPARα promoter was not detected. Along with QG reduced hepatocyte lipid accumulation, SIRT6-PPARα signalling pathway was upregulated in vivo and in vitro. However, the alleviating effect of QG on lipid accumulation was blocked by SIRT6 silencing in vitro. CONCLUSION This study verified that SIRT6-PPARα signalling pathway inhibition exacerbated NAFLD dyslipidaemia and hepatic steatosis. In addition, this study provided the first in-depth analysis of the molecular mechanisms by which QG ameliorates NFALD, involving promotion of FAO through activation of the SIRT6-PPARα signalling pathway. Our study offers significant insights for the clinical application of QG.
Collapse
Affiliation(s)
- Simin Fan
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 51000 Guangdong, PR China; First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou 510410 Guangdong, PR China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405 Guangdong, PR China
| | - Wei Chen
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405 Guangdong, PR China
| | - Yanfang Li
- First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou 510410 Guangdong, PR China
| | - Kaixin Guo
- First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou 510410 Guangdong, PR China
| | - Hui Tang
- First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou 510410 Guangdong, PR China
| | - Jintong Ye
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405 Guangdong, PR China
| | - Zunming Zhou
- First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou 510410 Guangdong, PR China
| | - Meiao Tan
- First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou 510410 Guangdong, PR China
| | - Haoyang Wei
- First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou 510410 Guangdong, PR China
| | - Xiwen Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405 Guangdong, PR China
| | - Keer Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405 Guangdong, PR China.
| | - Xuehong Ke
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405 Guangdong, PR China.
| |
Collapse
|
11
|
Shi D, Tan Q, Zhang Y, Qi X, Xu X, Xu G, Bai R, Deng J, Chen M, Jiang T, Mei Y. Serum uric acid trajectories and risk of metabolic dysfunction-associated steatotic liver disease in China: a 2019-2021 cohort health survey. BMC Public Health 2025; 25:653. [PMID: 39962427 PMCID: PMC11834244 DOI: 10.1186/s12889-024-21214-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 12/26/2024] [Indexed: 02/20/2025] Open
Abstract
OBJECTIVE To investigate the associations between serum uric acid (UA) trajectories and the risk of metabolic dysfunction-associated steatotic liver disease (MASLD) in large cohort survey 2019-2021. METHODS This cohort health survey included 11,644 participants without MASLD before January 1, 2021. Among them, 5578 (47.90%) were men and 6066 (52.10%) were women. The group-based trajectory model method was applied to identify serum UA trajectories from January 1, 2019, to December 30, 2021. New-onset MASLD events in 2021 were treated as outcomes. A logistic regression model was used to assess associations between UA trajectories and incidence of MASLD. RESULTS Four distinct serum UA trajectories among both sexes were identified: "low-stable" trajectory 1 (n = 783 men; n = 1143 women), "moderate-moderate increasing" trajectory 2 (n = 2794 men; n = 3266 women), "moderate high-moderate increasing" trajectory 3 (n = 1660 men; n = 1464 women), and "high-increasing" trajectory 4 (n = 341 men; n = 193 women). During the 3-year follow-up period, 840 (15.06%) men and 408 (6.72%) women developed MASLD, respectively. Compared with the trajectory 1 group, the trajectory 4 group had the highest risk (odds ration [OR] 2.99 [95% confidence interval {CI} 1.70, 5.24] for men; OR 2.37 [95% CI 1.04, 5.33] for women), followed by the trajectory 3 (OR 2.23 [95% CI 1.52, 3.30] for men; OR 2.37 [95% CI 1.45, 3.92] for women) and trajectory 2 (OR 1.43 [95% CI 1.07, 1.94] for men; OR 1.37 [95% CI 0.93, 2.03] for women) groups. CONCLUSIONS High serum UA trajectories were independent risk factors for MASLD in both sexes, which is critical for informing prevention and treatment strategies in public health initiatives and clinical practice.
Collapse
Affiliation(s)
- Dan Shi
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Qilong Tan
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
- School of Public Health, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Yong Zhang
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
- Department of Health Management, The Second Hospital Affiliated to Chongqing Medical University, Chongqing, 400011, China
| | - Xiaoya Qi
- Department of Health Management, The Second Hospital Affiliated to Chongqing Medical University, Chongqing, 400011, China
| | - Xiaoyang Xu
- Department of Health Management, The Second Hospital Affiliated to Chongqing Medical University, Chongqing, 400011, China
| | - Guoqiong Xu
- Department of Health Management, The Second Hospital Affiliated to Chongqing Medical University, Chongqing, 400011, China
| | - Ruixue Bai
- Department of Health Management, The Second Hospital Affiliated to Chongqing Medical University, Chongqing, 400011, China
| | - Jing Deng
- Department of Health Management, The Second Hospital Affiliated to Chongqing Medical University, Chongqing, 400011, China
| | - Mengxue Chen
- Department of Health Management, The Second Hospital Affiliated to Chongqing Medical University, Chongqing, 400011, China
| | - Tao Jiang
- Department of Health Management, The Second Hospital Affiliated to Chongqing Medical University, Chongqing, 400011, China.
| | - Ying Mei
- Department of Health Management, The Second Hospital Affiliated to Chongqing Medical University, Chongqing, 400011, China.
| |
Collapse
|
12
|
Ran Q, Huang M, Wang L, Li Y, Wu W, Liu X, Chen J, Yang M, Han K, Guo X. Integrated bioinformatics and multi-omics to investigate the mechanism of Rhododendron molle Flos-induced hepatotoxicity. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119308. [PMID: 39746411 DOI: 10.1016/j.jep.2024.119308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/11/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Drug-induced liver injury (DILI) is an important and common adverse drug event. Rhododendron molle Flos (RMF), as one of toxic Traditional Chinese medicines (TCMs), holds a prominent position in clinical practice for treating rheumatoid arthritis. However, the toxicity of RMF limits its safe. Most of the concerns are about its rapid neurotoxicity and cardiotoxicity, with less attention paid to its hepatotoxicity, and the mechanism of which is still unclear. AIM OF THE STUDY To reveal the mechanism of RMF-induced hepatotoxicity by bioinformatics and multi-omics. MATERIALS AND METHODS Rats were intragastric administered RMF at doses of 0.8 g/kg, 0.4 g/kg, and 0.2 g/kg once daily for 2 weeks. Initially, hepatotoxicity was then evaluated using liver function enzymes, antioxidant enzymes, and histopathology. Subsequently, network toxicology, transcriptomics, and metabolomics were used to identify the genes and metabolites. In addition, molecular docking and Western blot were employed to verify toxic components and key targets. RESULTS RMF caused abnormal levels of ALT, γ-GT, TBIL, and TBA in the serum of rats, as well as abnormal levels of MDA, GSH-Px, and SOD in the liver, leading to inflammatory infiltration of liver cells, with a dose-dependent manner. RMF disordered the steroid hormone biosynthesis, pyruvate metabolism, fatty acid biosynthesis, and arachidonic acid metabolism. Six key targets were identified- UGT1A6, CYP2E1, ACOT1, ACSL5, CTH, and PKLR, along with their corresponding metabolites, namely 17β-estradiol, estriol, arachidonic acid, octadecanoic acid, and pyruvic acid. The hepatotoxicity could be attributed to five diterpenoid components, including grayanotoxin-III, rhodojaponin (RJ)-I, RJ-II, RJ-III, and RJ-V. CONCLUSIONS This study comprehensively identified the toxic components, upstream targets, and downstream metabolites of RMF-induced liver toxicity, providing a basis for evaluating and monitoring liver function in patients during clinical application.
Collapse
Affiliation(s)
- Qiang Ran
- Department of Orthopedics, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China.
| | - Mengjun Huang
- National-Local Joint Engineering Research Center for Innovative Targeted Drugs, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Lijuan Wang
- Department of Pathology, Chongqing Traditional Chinese Medicine Hospital (the First Affiliated Hospital of Chongqing College of Traditional Chinese Medicine), Chongqing, 400021, China.
| | - Yanyan Li
- Department of Pharmacy, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China.
| | - Wenhui Wu
- Department of Preparation Center, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China.
| | - Xia Liu
- Department of Pharmacy, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China.
| | - Juan Chen
- Department of Preparation Center, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China.
| | - Min Yang
- Department of Preparation Center, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China.
| | - Keqing Han
- Department of Pharmacy, Shaanxi Provincial Tuberculosis Prevention and Control Hospital (the Fifth People's Hospital of Shaanxi Province), Xi'an, Shanxi, 710100, China.
| | - Xiaohong Guo
- Department of Preparation Center, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China.
| |
Collapse
|
13
|
El‐Kassas M, Mostafa H, Abdellatif W, Shoman S, Esmat G, Brahmania M, Liu H, Lee SS. Lubiprostone Reduces Fat Content on MRI-PDFF in Patients With MASLD: A 48-Week Randomised Controlled Trial. Aliment Pharmacol Ther 2025; 61:628-635. [PMID: 39744921 PMCID: PMC11754939 DOI: 10.1111/apt.18478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/01/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025]
Abstract
BACKGROUND AND AIMS The laxative lubiprostone has been shown to decrease intestinal permeability. We aimed to assess the safety and efficacy of lubiprostone administered for 48 weeks in patients with metabolic dysfunction-associated steatotic liver disease (MASLD). APPROACH AND RESULTS A randomised placebo-controlled trial was conducted in a specialised MASLD outpatient clinic at the National Hepatology and Tropical Medicine Research Institute, Cairo, Egypt. The recruited patients had radiological evidence of MASLD along with other criteria for diagnosis. Eligible patients were randomly assigned to receive either placebo or lubiprostone 24 μg orally twice daily for 48 weeks. The liver fat content was quantified by magnetic resonance imaging estimated proton density fat fraction (MRI-PDFF). Between November 2020 and February 2023, 176 patients were screened, of whom 116 were eligible. Fifty-nine patients were randomised to receive placebo, while 57 patients were randomised to receive lubiprostone. Due mostly to patient dropout (i.e., loss to follow-up), complete data were available for 40 patients in each group. Compared with placebo group, 48-week lubiprostone treatment significantly reduced fat quantity (p = 0.04). Despite a significant reduction in body weight in the control group, no significant difference was found between both groups regarding fibrosis score by transient elastography or in serum ALT levels. One patient in the lubiprostone group developed severe diarrhoea requiring treatment stoppage. No other serious adverse events occurred. CONCLUSION Lubiprostone was well tolerated and reduced liver fat content as measured by MRI-PDFF in patients with MASLD over 48 weeks. Lubiprostone appears promising to treat MASLD and warrants more extensive studies to confirm such efficacy. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT05768334.
Collapse
Affiliation(s)
- Mohamed El‐Kassas
- Endemic Medicine Department, Faculty of MedicineHelwan UniversityCairoEgypt
- Liver Disease Research Center, College of MedicineKing Saud UniversityRiyadhSaudi Arabia
- Steatotic Liver Disease Study Foundation in Middle East and North Africa (SLMENA)CairoEgypt
| | - Hala Mostafa
- Endemic Medicine Department, Faculty of MedicineHelwan UniversityCairoEgypt
| | - Wessam Abdellatif
- Radiology DepartmentNational Hepatology & Tropical Medicine Research Institute (NHTMRI)CairoEgypt
| | - Sohier Shoman
- Gastroenterology and Hepatology DepartmentNational Hepatology & Tropical Medicine Research Institute (NHTMRI)CairoEgypt
| | - Gamal Esmat
- Hepatology and Endemic Medicine Department, Faculty of MedicineCairo UniversityCairoEgypt
| | - Mayur Brahmania
- Liver UnitUniversity of Calgary Cumming School of MedicineCalgaryAlbertaCanada
| | - Hongqun Liu
- Liver UnitUniversity of Calgary Cumming School of MedicineCalgaryAlbertaCanada
| | - Samuel S. Lee
- Liver UnitUniversity of Calgary Cumming School of MedicineCalgaryAlbertaCanada
| |
Collapse
|
14
|
Zheng QX, Xu JH, Yang FJ, Liu ZP, Wang MD, Hao YJ, Li C, Niu ZY, Xu XF, Gao HJ, Li YF, Gong JB, Chen Z, Pawlik TM, Shen F, Lu J, Yang T. A Novel Liver Metastasis Score for Patients Undergoing Surgical Resection of Gastroenteropancreatic Neuroendocrine Tumors: A Multi-institutional Study. Ann Surg Oncol 2025; 32:1176-1186. [PMID: 39480603 DOI: 10.1245/s10434-024-16389-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND Liver metastasis impacts survival in patients with gastroenteropancreatic neuroendocrine tumors (GEP-NETs); however, current guidelines lack consensus on post-resection surveillance and adjuvant therapy. A comprehensive risk stratification tool is needed to guide personalized management. OBJECTIVE We aimed to develop and validate a predictive model for liver metastasis risk after surgical resection of GEP-NETs that incorporates pathological factors and adjuvant therapy. METHODS Patients with GEP-NETs who underwent surgical resection with curative intent at three major Chinese hospitals (2010-2022) were identified. Univariable and multivariable Cox regression analysis identified independent risk factors of liver metastasis. The liver metastasis score (LMS) was developed using weighted risk factors and validated by tenfold cross-validation. RESULTS Among the 724 patients included in the analytic cohort, liver metastasis occurred in 66 patients (9.1%) at a median of 36 months; patients with liver metastasis had a worse 5-year overall survival (no liver metastasis 63.6% vs. liver metastasis 95.8%; p < 0.001). Independent predictors were Ki-67 index (hazard ratio [HR] 10.36 for Ki-67 3-20%, HR 18.30 for Ki-67 >20%, vs. <3%), vascular invasion (HR 5.03), lymph node metastases (HR 2.24), and lack of adjuvant therapy (HR 3.03). The LMS demonstrated excellent discrimination (C-index 0.888) and stratified patients into low, intermediate, and high-risk relative to 5-year risk of liver metastasis: 2.9%, 20.8%, and 49.7%, respectively (p < 0.001). CONCLUSIONS The novel LMS effectively predicted the risk of liver metastasis after surgical resection of GEP-NETs. This validated model can help guide personalized surveillance and adjuvant treatment strategies, potentially improving outcomes for high-risk patients.
Collapse
Affiliation(s)
- Qi-Xuan Zheng
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jia-Hao Xu
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Fa-Ji Yang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhi-Peng Liu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ming-Da Wang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Yi-Jie Hao
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chao Li
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Zhe-Yu Niu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xin-Fei Xu
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Heng-Jun Gao
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yi-Fan Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Jin-Bo Gong
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Zhong Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Timothy M Pawlik
- Department of Surgery, Ohio State University, Wexner Medical Center, Columbus, OH, USA
| | - Feng Shen
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Jun Lu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Tian Yang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
15
|
Lv D, Wang Z, Liu H, Meng C. Predictive Value of the Triglyceride-Glucose Index for Metabolic-Associated Fatty Liver Disease in Individuals with Different Metabolic Obese Phenotypes. Diabetes Metab Syndr Obes 2025; 18:125-133. [PMID: 39834613 PMCID: PMC11742748 DOI: 10.2147/dmso.s500042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
Objective To investigate the relationship between triglyceride-glucose (TyG) index and metabolic-associated fatty liver disease (MAFLD), and to evaluate the predictive value of the TyG index for MAFLD in individuals with different metabolic obese phenotypes. The aim is to provide a novel approach for the screening and early diagnosis of MAFLD in the general population. Methods A total of 2614 subjects were recruited and classified into four categories of metabolic obese phenotypes based on their body mass index (BMI) and metabolic status. Basic data and general blood indices were collected and analyzed. The TyG index was calculated, and an abdominal ultrasound was performed to detect the presence of fatty liver disease. The aforementioned data were then subjected to statistical analysis. Results The TyG index was significantly higher in the MAFLD group than in the non-MAFLD group (P < 0.001). Furthermore, the TyG index in the metabolically unhealthy and obese (MUO) group and the metabolically unhealthy normal weight (MUNW) group was significantly higher than that in the metabolically healthy and obese (MHO) group and the metabolically healthy normal weight (MHNW) group (P < 0.001). The area under the curve (AUC) of the TyG index for predicting MAFLD in the MHNW, MUNW, MHO, and MUO groups was 0.765, 0.766, 0.659, and 0.650, respectively. The critical values were 8.575, 9.075, 8.795, and 9.165, respectively. Conclusion The TyG index is a reliable predictor of MAFLD risk, exhibiting a higher predictive ability for the risk of developing MAFLD in individuals with normal BMI compared to those with abnormal BMI. The findings of this study lend support for the use of the TyG index as a screening tool and for guiding subsequent management of patients with MAFLD.
Collapse
Affiliation(s)
- Dan Lv
- Physical Examination Center, Hebei General Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Zepu Wang
- Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Huanxin Liu
- Physical Examination Center, Hebei General Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Cuiqiao Meng
- Physical Examination Center, Hebei General Hospital, Shijiazhuang, Hebei, People’s Republic of China
| |
Collapse
|
16
|
Luo WJ, Dong XW, Ye H, Zhao QS, Zhang QB, Guo WY, Liu HW, Xu F. Vitamin D 1,25-Dihydroxyvitamin D 3 reduces lipid accumulation in hepatocytes by inhibiting M1 macrophage polarization. World J Gastrointest Oncol 2024; 16:4685-4699. [PMID: 39678811 PMCID: PMC11577380 DOI: 10.4251/wjgo.v16.i12.4685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/09/2024] [Accepted: 10/08/2024] [Indexed: 11/12/2024] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD), which is a significant liver condition associated with metabolic syndrome, is the leading cause of liver diseases globally and its prevalence is on the rise in most nations. The protective impact of vitamin D on NAFLD and its specific mechanism remains unclear. AIM To examine the role of vitamin D in NAFLD and how vitamin D affects the polarization of hepatic macrophages in NAFLD through the vitamin D receptor (VDR)-peroxisome proliferator activated receptor (PPAR)γ pathway. METHODS Wild-type C57BL/6 mice were provided with a high-fat diet to trigger NAFLD model and administered 1,25-dihydroxy-vitamin D [1,25(OH)2D3] supplementation. 1,25(OH)2D3 was given to RAW264.7 macrophages that had been treated with lipid, and a co-culture with AML12 hepatocytes was set up. Lipid accumulation, lipid metabolism enzymes, M1/M2 phenotype markers, proinflammatory cytokines and VDR-PPARγ pathway were determined. RESULTS Supplementation with 1,25(OH)2D3 relieved hepatic steatosis and decreased the proinflammatory M1 polarization of hepatic macrophages in NAFLD. Administration of 1,25(OH)2D3 suppressed the proinflammatory M1 polarization of macrophages induced by fatty acids, thereby directly relieving lipid accumulation and metabolism in hepatocytes. The VDR-PPARγ pathway had a notable impact on reversing lipid-induced proinflammatory M1 polarization of macrophages regulated by the administration of 1,25(OH)2D3. CONCLUSION Supplementation with 1,25(OH)2D3 improved hepatic steatosis and lipid metabolism in NAFLD, linked to its capacity to reverse the proinflammatory M1 polarization of hepatic macrophages, partially by regulating the VDR-PPARγ pathway. The involvement of 1,25(OH)2D3 in inhibiting fatty-acid-induced proinflammatory M1 polarization of macrophages played a direct role in relieving lipid accumulation and metabolism in hepatocytes.
Collapse
Affiliation(s)
- Wen-Jing Luo
- Department of Gastroenterology, Ningbo Medical Center Lihuili Hospital, Ningbo 315000, Zhejiang Province, China
| | - Xian-Wen Dong
- Department of Gastroenterology, Ningbo Medical Center Lihuili Hospital, Ningbo 315000, Zhejiang Province, China
| | - Hua Ye
- Department of Gastroenterology, Ningbo Medical Center Lihuili Hospital, Ningbo 315000, Zhejiang Province, China
| | - Qiao-Su Zhao
- Department of Gastroenterology, Ningbo Medical Center Lihuili Hospital, Ningbo 315000, Zhejiang Province, China
| | - Qiu-Bo Zhang
- Department of Gastroenterology, Ningbo Medical Center Lihuili Hospital, Ningbo 315000, Zhejiang Province, China
| | - Wen-Ying Guo
- Department of Gastroenterology, Ningbo Medical Center Lihuili Hospital, Ningbo 315000, Zhejiang Province, China
| | - Hui-Wei Liu
- Department of Gastroenterology, Ningbo Medical Center Lihuili Hospital, Ningbo 315000, Zhejiang Province, China
| | - Feng Xu
- Department of Gastroenterology, Ningbo Medical Center Lihuili Hospital, Ningbo 315000, Zhejiang Province, China
| |
Collapse
|
17
|
Frăsinariu OE, Lupu VV, Trandafir LM, Streanga V, Jechel E, Bararu-Bojan I, Vasiliu I, Cuciureanu M, Loghin II, Mitrofan C, Nedelcu AH, Knieling A, Lupu A. Metabolic syndrome therapy in pediatric age - between classic and modern. From diets to pipeline drugs. Front Nutr 2024; 11:1475111. [PMID: 39723164 PMCID: PMC11669255 DOI: 10.3389/fnut.2024.1475111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024] Open
Abstract
The metabolic syndrome, made up of the sum of the entities that define it (obesity, hypertension, dyslipidemias and non-alcoholic hepatic steatosis) has gained an important place in the research of the last decades. This aspect is mainly due to the complexity of management in pediatric practice. The main directions in his approach therefore bring together the concern of counteracting the noise or systemic, of the multiple intercurrents at the physiopathological level, as well as the negative imprint exerted on the quality of life. Its appearance and evolution are currently controversial topics, but the influence of genetic predisposition and lifestyle (diet, physical activity, psychological balance) are certainties. Considering the escalation of the incident at the global level, it is self-evident that it is necessary to know the pathogenesis and practice countermeasures for prophylactic or therapeutic purposes. The present work aims to summarize general aspects related to the metabolic syndrome encountered in pediatric age, with an emphasis on complementary therapeutic perspectives and their effectiveness, by analyzing the latest data from the specialized literature, accessed with the help of international databases (e.g., PubMed, Web of Science, Scopus, Embase, Google Scholar).
Collapse
Affiliation(s)
- Otilia Elena Frăsinariu
- Faculty of Medicine, Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
| | - Vasile Valeriu Lupu
- Faculty of Medicine, Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
| | - Laura Mihaela Trandafir
- Faculty of Medicine, Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
| | - Violeta Streanga
- Faculty of Medicine, Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
| | - Elena Jechel
- Faculty of Medicine, Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
| | - Iris Bararu-Bojan
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
| | - Ioana Vasiliu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
| | - Magdalena Cuciureanu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
| | - Isabela Ioana Loghin
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
| | - Costica Mitrofan
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
| | - Alin Horatiu Nedelcu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
| | - Anton Knieling
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
| | - Ancuta Lupu
- Faculty of Medicine, Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
| |
Collapse
|
18
|
Liu Y, Fan Y, Liu J, Liu X, Li X, Hu J. Application and mechanism of Chinese herb medicine in the treatment of non-alcoholic fatty liver disease. Front Pharmacol 2024; 15:1499602. [PMID: 39605910 PMCID: PMC11598537 DOI: 10.3389/fphar.2024.1499602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver condition closely associated with metabolic syndrome, with its incidence rate continuously rising globally. Recent studies have shown that the development of NAFLD is associated with insulin resistance, lipid metabolism disorder, oxidative stress and endoplasmic reticulum stress. Therapeutic strategies for NAFLD include lifestyle modifications, pharmacological treatments, and emerging biological therapies; however, there is currently no specific drug to treat NAFLD. However Chinese herb medicine (CHM) has shown potential in the treatment of NAFLD due to its unique therapeutic concepts and methods for centuries in China. This review aims to summarize the pathogenesis of NAFLD and some CHMs that have been shown to have therapeutic effects on NAFLD, thus enriching the scientific connotation of TCM theories and facilitating the exploration of TCM in the treatment of NAFLD.
Collapse
Affiliation(s)
- Yuqiao Liu
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Fan
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jibin Liu
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiyang Liu
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiuyan Li
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingqing Hu
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Xin-Huangpu Joint Innovation Institute of Chinese Medicine, Guangzhou, China
| |
Collapse
|
19
|
Kwon Y, Chung JA, Choi YJ, Lee YM, Choi SY, Yoo IH, Kim TH, Jeong SJ. Relationship of the Degree of Sarcopenia with the Severity of Nonalcoholic Fatty Liver Disease and Cardiometabolic Risk in Adolescents. Life (Basel) 2024; 14:1457. [PMID: 39598255 PMCID: PMC11595966 DOI: 10.3390/life14111457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
The association between nonalcoholic fatty liver disease (NAFLD) and sarcopenia has been suggested. We investigated sarcopenia's impact on NAFLD severity and its relationship with cardiometabolic risk in adolescents. We conducted a retrospective study on 122 patients aged 13-18 years and diagnosed with both NAFLD and sarcopenia by laboratory tests, abdominal ultrasound (US), and multifrequency bioelectrical impedance analysis. Sarcopenia was stratified into tertiles based on the skeletal muscle-to-fat ratio (MFR), NAFLD severity was established by the US, and cardiometabolic risk was assessed by the triglyceride-glucose (TyG) index and the atherogenic index of plasma (AIP). Compared with the other patients, those in the lower MFR tertiles exhibited a greater severity of NAFLD (p < 0.001) and significantly higher TyG index and AIP. The independent effect of MFR was observed to have a negative correlation with the severity of NAFLD (p < 0.001). Based on the aforementioned results, the degree of sarcopenia can be considered as one of the risk factors of severe NAFLD and might be an indicator of cardiometabolic risk in adolescents. Weight training to reach the amount of muscle mass could be included in the treatment strategies to improve or prevent NAFLD in adolescents with sarcopenia.
Collapse
Affiliation(s)
- Yoowon Kwon
- Department of Pediatrics, Chungnam National University Sejong Hospital, Chungnam National University School of Medicine, Sejong 30099, Republic of Korea;
| | - Jin A Chung
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam 13496, Republic of Korea;
| | - You Jin Choi
- Department of Pediatrics, Ilsan Paik Hospital, Inje University College of Medicine, Ilsan 10380, Republic of Korea;
| | - Yoo Min Lee
- Department of Pediatrics, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon 14584, Republic of Korea;
| | - So Yoon Choi
- Department of Pediatrics, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan 49267, Republic of Korea;
| | - In Hyuk Yoo
- Department of Pediatrics, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Tae Hyeong Kim
- Department of Pediatrics, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea;
| | - Su Jin Jeong
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam 13496, Republic of Korea;
| |
Collapse
|
20
|
Jain AK, Busgang SA, Gennings C, Yates KP, Schwimmer JB, Rosenthal P, Murray KF, Molleston JP, Scheimann A, Xanthakos SA, Behling CA, Carpenter D, Fishbein M, Neuschwander-Tetri BA, Tonasia J, Vos MB. Environmental toxicants modulate disease severity in pediatric metabolic dysfunction-associated steatohepatitis. J Pediatr Gastroenterol Nutr 2024; 79:943-953. [PMID: 39282813 PMCID: PMC11955998 DOI: 10.1002/jpn3.12346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/15/2024] [Accepted: 06/05/2024] [Indexed: 09/28/2024]
Abstract
OBJECTIVES Metabolic dysfunction-associated steatotic liver disease (MASLD) is common in children. We hypothesized environmental toxins could drive progression to metabolic dysfunction-associated steatohepatitis (MASH), and assayed serum toxins and metabolites in children with histologically characterized MASLD/MASH. METHODS Environmental chemicals, common in household items, perfluoroalkyl substances (PFAS), polybrominated flame retardants (polybrominated diphenyl ethers [PBDEs]), and metabolic profiles were assayed in children enrolled in the multicenter NASH Clinical Research Network Pediatric Database 2. Mixture models, using repeated holdout weighted quantile sum regression (WQSrh) were run in addition to single chemical/metabolite logistic regression. For metabolomic analyses, random subset version of WQSrh was used for the large number of predictors versus participants. Nominal and false discovery rate (FDR) p-values (two-sided) were computed. RESULTS Four hundred and thirty-five children distributed across MASH (n = 293) and MASLD (n = 142), with 304 (69.9%) males. Mean (standard deviation) for Nonalcoholic Steatohepatitis Score (NAS) and alanine aminotransferase (ALT) for MASLD were 3.1 (1.0), 67.9 (43.4), and for MASH 4.2 (1.4), 144 (121). There was an inverse association between PFAS/PBDE mixture and MASH versus MASLD, lobular inflammation (p = 0.026), NAS (p = 0.009, FDR p = 0.04), and log-transformed ALT (p = 0.005, FDR p = 0.025) driven by perfluorohexane sulfonate (PFHXS). Metabolites from positive hydrophilic interaction liquid chromatography mode, biliverdin (p = 0.002) and 1-methylhistidine (associated with meat ingestion, p = 0.02) and reverse phase negative mode, hippuric acid (solvent exposure, p = 0.022) significantly associated with MASH. CONCLUSIONS Significant negative PFAS/PBDE mixture effect and odds of MASH were dominated by PHFXS. Several metabolites are significantly associated with MASH which inform mechanistic pathways and could drive key therapeutic and diagnostic strategies in children.
Collapse
Affiliation(s)
- Ajay K. Jain
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Saint Louis University, St. Louis, Missouri, USA
| | - Stefanie A. Busgang
- HHEAR Data Center, Icahn School of Medicine at Mount Sinai, Statistical Services and Methods Development Resource, New York, New York, USA
| | - Chris Gennings
- HHEAR Data Center, Icahn School of Medicine at Mount Sinai, Statistical Services and Methods Development Resource, New York, New York, USA
| | - Katherine P. Yates
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jeffrey B. Schwimmer
- Department of Pediatrics, Division of Gastroenterology, UC San Diego, La Jolla, California, USA
- Department of Gastroenterology, Rady Children’s Hospital, San Diego, California, USA
| | - Philip Rosenthal
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, San Francisco Benioff Children’s Hospital, University of California, San Francisco, California, USA
| | - Karen F. Murray
- Pediatrics Institute, Cleveland Clinic and Cleveland Clinic Children’s Hospital, Cleveland, Ohio, USA
| | - Jean P. Molleston
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Indiana University School of Medicine/Riley Hospital for Children, Indianapolis, Indiana, USA
| | - Ann Scheimann
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Stavra A. Xanthakos
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Cynthia A. Behling
- Department of Pediatrics, Division of Gastroenterology, UC San Diego, La Jolla, California, USA
- Department of Gastroenterology, Pacific Rim Pathology, San Diego, California, USA
| | - Danielle Carpenter
- Department of Pathology, Saint Louis University, St. Louis, Missouri, USA
| | - Mark Fishbein
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - James Tonasia
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Miriam B. Vos
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Emory University School of Medicine, Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
21
|
Malik A, Javaid S, Malik MI, Qureshi S. Relationship between sarcopenia and metabolic dysfunction-associated steatotic liver disease (MASLD): A systematic review and meta-analysis. Ann Hepatol 2024; 29:101544. [PMID: 39214253 DOI: 10.1016/j.aohep.2024.101544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/13/2024] [Accepted: 06/17/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION AND OBJECTIVES Metabolic dysfunction-associated steatotic liver disease (MASLD) formerly known as Nonalcoholic fatty liver disease (NAFLD) is a common chronic disease. Identifying MASLD risk factors could help early intervention and reduce the burden of the disease. Previous studies investigated the association between sarcopenia and NAFLD. Several trials were published after the last meta-analysis with indecisive results. This is an updated meta-analysis which aims to assess the association between sarcopenia, MASLD, and MASLD-related fibrosis. MATERIALS AND METHODS Relevant trials published on PubMed, Web of Science, Scopus, and Cochrane Library databases until October 2022 were included. We included studies in which skeletal mass index (SMI) or sarcopenia was compared between patients with and without NAFLD now MASLD. Also, studies comparing fibrosis between MASLD patients with and without sarcopenia were included. Data were pooled as odds ratios (ORs) and 95 % confidence intervals (CIs) using Review Manager Software. RESULTS A total of 25 studies were included. The incidence of sarcopenia was significantly higher in MASLD than controls (OR, 1.25; 95 % CI, 1.08-1.44; P = 0.003). SMI odds showed no significant difference between MASLD patients and controls (OR, 1.02; 95 % CI, 0.91-1.15; P = 0.7). MASLD patients with sarcopenia had higher odds of fibrosis than MASLD patients without sarcopenia (OR, 1.49; 95 % CI, 1.03-2.14; P = 0.03). CONCLUSIONS Sarcopenia increased MASLD's probability and was associated with a higher probability of liver fibrosis in MASLD patients. However, SMI had no predictive value of MASLD occurrence.
Collapse
Affiliation(s)
- Adnan Malik
- Mountain Vista Medical Center, Mesa Arizona, USA.
| | | | | | | |
Collapse
|
22
|
Dong H, Zhao Y, Teng H, Jiang T, Yue Y, Zhang S, Fan L, Yan M, Shao S. Pueraria lobata antioxidant extract ameliorates non-alcoholic fatty liver by altering hepatic fat accumulation and oxidative stress. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118468. [PMID: 38906339 DOI: 10.1016/j.jep.2024.118468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/07/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pueraria lobata is essential medicinal and edible homologous plants widely cultivated in Asian countries. Therefore, P. lobata is widely used in the food, health products and pharmaceutical industries and have significant domestic and international market potential and research value. P. lobata has remarkable biological activities in protecting liver, relieving alcoholism, antioxidation, anti-tumor and anti-inflammation in clinic. However, the potential mechanism of ethyl acetate extract of Pueraria lobata after 70% alcohol extraction (APL) ameliorating nonalcoholic fatty liver disease (NAFLD) has not been clarified. AIM OF THE STUDY This study aimed to investigate the ameliorative effect of P. lobata extract on human hepatoma cells and injury in rats, and to evaluate its therapeutic potential for ameliorating NAFLD. METHODS Firstly, the effective part of P. lobata extract was determined as APL by measuring its total substances and antioxidant activity. And then the in vitro and in vivo models of NAFLD were adopted., HepG2 cells were incubated with palmitic acid (PA) and hydrogen peroxide (H2O2). In order to evaluate the effect of APL, Simvastatin and Vitamin C (VC) were used as positive control. Various parameters related to lipogenesis and fatty acid β-oxidation were studied, such as intracellular lipid accumulation, reactive oxygen species (ROS), Western Blot, mitochondrial membrane potential, apoptosis, and the mechanism of APL improving NAFLD. The chemical components of APL were further determined by HPLC and UPLC-MS, and molecular docking was carried out with Keap1/Nrf2/HO-1 pathway related proteins. RESULTS APL significantly reduced lipid accumulation and levels of oxidative stress-related factors in vitro and in vivo. Immunohistochemical、Western Blot and PCR analysis showed that the expressions of Nrf2 and HO-1 were up-regulated in APL treatment. The Nrf2 inhibitor ML385 can block the rescue by APL of cellular oxidative stress and lipid accumulation induced by H2O2 and PA, demonstrating its dependence on Nrf2. UPLC/MS analysis showed that there were 3'-hydroxyl puerarin, puerarin, 3'-methoxy puerarin, daidzein, genistin, ononin, daidzin and genistein. CONCLUSION This study further clarified the mechanism of P. lobata extract in improving NAFLD, which provided a scientific basis for developing new drugs to protect liver injury and laid a solid foundation for developing P. lobata Chinese herbal medicine resources.
Collapse
Affiliation(s)
- Hongying Dong
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yu Zhao
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - He Teng
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Ting Jiang
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yihan Yue
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Shuang Zhang
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Lin Fan
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Mingming Yan
- Changchun University of Chinese Medicine, Changchun, Jilin, China; Jilin Provincial Science and Technology Innovation Center of Health Food of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China.
| | - Shuai Shao
- Changchun University of Chinese Medicine, Changchun, Jilin, China; Jilin Provincial Science and Technology Innovation Center of Health Food of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China.
| |
Collapse
|
23
|
Guo Z, Yao Z, Huang B, Wu D, Li Y, Chen X, Lu Y, Wang L, Lv W. MAFLD-related hepatocellular carcinoma: Exploring the potent combination of immunotherapy and molecular targeted therapy. Int Immunopharmacol 2024; 140:112821. [PMID: 39088919 DOI: 10.1016/j.intimp.2024.112821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/11/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024]
Abstract
Hepatocellular carcinoma (HCC) is a common cause of cancer-related mortality and morbidity globally, and with the prevalence of metabolic-related diseases, the incidence of metabolic dysfunction-associated fatty liver disease (MAFLD) related hepatocellular carcinoma (MAFLD-HCC) continues to rise with the limited efficacy of conventional treatments, which has created a major challenge for HCC surveillance. Immune checkpoint inhibitors (ICIs) and molecularly targeted drugs offer new hope for advanced MAFLD-HCC, but the evidence for the use of both types of therapy in this type of tumour is still insufficient. Theoretically, the combination of immunotherapy, which awakens the body's anti-tumour immunity, and targeted therapies, which directly block key molecular events driving malignant progression in HCC, is expected to produce synergistic effects. In this review, we will discuss the progress of immunotherapy and molecular targeted therapy in MAFLD-HCC and look forward to the opportunities and challenges of the combination therapy.
Collapse
Affiliation(s)
- Ziwei Guo
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ziang Yao
- Department of Traditional Chinese Medicine, Peking University People 's Hospital, Beijing 100044, China
| | - Bohao Huang
- Beijing University of Chinese Medicine, Beijing 100105, China
| | - Dongjie Wu
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yanbo Li
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xiaohan Chen
- Department of Hematology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yanping Lu
- Department of Hepatology, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen 518100, China.
| | - Li Wang
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Wenliang Lv
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
24
|
Poo CL, Lau MS, Nasir NLM, Nik Zainuddin NAS, Rahman MRAA, Mustapha Kamal SK, Awang N, Muhammad H. A Scoping Review on Hepatoprotective Mechanism of Herbal Preparations through Gut Microbiota Modulation. Curr Issues Mol Biol 2024; 46:11460-11502. [PMID: 39451562 PMCID: PMC11506797 DOI: 10.3390/cimb46100682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 10/26/2024] Open
Abstract
Liver diseases cause millions of deaths globally. Current treatments are often limited in effectiveness and availability, driving the search for alternatives. Herbal preparations offer potential hepatoprotective properties. Disrupted gut microbiota is linked to liver disorders. This scoping review aims to explore the effects of herbal preparations on hepatoprotective mechanisms, particularly in the context of non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), and hepatic steatosis, with a focus on gut microbiota modulation. A systematic search was performed using predetermined keywords in four electronic databases (PubMed, Scopus, EMBASE, and Web of Science). A total of 55 studies were included for descriptive analysis, covering study characteristics such as disease model, dietary model, animal model, intervention details, comparators, and study outcomes. The findings of this review suggest that the hepatoprotective effects of herbal preparations are closely related to their interactions with the gut microbiota. The hepatoprotective mechanisms of herbal preparations are shown through their effects on the gut microbiota composition, intestinal barrier, and microbial metabolites, which resulted in decreased serum levels of liver enzymes and lipids, improved liver pathology, inhibition of hepatic fatty acid accumulation, suppression of inflammation and oxidative stress, reduced insulin resistance, and altered bile acid metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hussin Muhammad
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam 40170, Selangor, Malaysia; (C.L.P.); (M.S.L.); (N.L.M.N.); (N.A.S.N.Z.); (M.R.A.A.R.); (S.K.M.K.); (N.A.)
| |
Collapse
|
25
|
Yang A, Zhu X, Zhang L, Zhang D, Jin M, Lv G, Ding Y. Evaluating the efficacy of 8 non-invasive models in predicting MASLD and progression: a prospective study. BMC Gastroenterol 2024; 24:365. [PMID: 39402469 PMCID: PMC11472641 DOI: 10.1186/s12876-024-03449-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Selecting the optimal non-invasive diagnostic model for MASLD (Metabolic Dysfunction-Associated Steatosis Liver Disease) and steatosis progression is a critical issue given the variety of available models. We aimed to compare the performance of eight clinical prediction models for diagnosing and predicting the progression of hepatic steatosis using MRI-PDFF (Magnetic Resonance Imaging-Derived Proton Density Fat Fraction), and validate the findings with FibroScan and histopathological results. METHODS In this study, 846 participants were initially enrolled, with 108 undergoing liver biopsy and 706 completing one-year follow-up, including 26 who underwent repeat biopsy. We calculated scores for eight clinical prediction models (FAST, KNAFLD, HSI, FLI, Liver Fat Score, Liver Fat Equation, BAAT, LAP) using collected clinical data and defined steatosis progression as a 30% relative increase in liver fat content (LFC) measured by MRI-PDFF. CAP(Controlled Attenuation Parameter) and LSM (Liver Stiffness Measurement) were obtained by Fibroscan. MRI-PDFF served as the reference standard for evaluating model accuracy, and sensitivity analyses were performed using liver biopsy and Fibroscan results. RESULTS Among the eight clinical models, NAS (nonalcoholic fatty liver disease activity score) showed higher correlation with the FAST and KNAFLD models (r: 0.62 and 0.52, respectively). Among the whole cohort (N = 846), KNAFLD was the best model for predicting different degrees of hepatic steatosis (AUC = 0.84). When the KNAFLD score was above 2.935, LFC was significantly higher (4.4% vs. 19.7%, P < 0.001). After 1 year of follow-up (N = 706), FAST performed best in predicting MASLD progression (AUC = 0.84); with dFAST > -0.02, LFC increased (8.6-10.9%, P < 0.05), mean LSM increased by 0.51 kPa, and with dFAST < -0.02, LFC significantly decreased (11.5-8.5%, P < 0.05), mean LSM and NAS decreased by 0.87 kPa and 0.76, respectively (both P < 0.05). CONCLUSIONS Most models demonstrated good diagnostic and prognostic capabilities for hepatic steatosis, with FAST and KNAFLD showing particular promise as primary non-invasive tools in clinical practice. TRAIL REGISTRATION Chinese Clinical Trial Registry NO: ChiCTR2100054743, Registered December 26, 2021.
Collapse
Affiliation(s)
- Aruhan Yang
- Phase I Clinical Research Center, First Hospital of Jilin University, No. 71 Xinmin Street, Changchun, 130021, China
| | - Xiaoxue Zhu
- Phase I Clinical Research Center, First Hospital of Jilin University, No. 71 Xinmin Street, Changchun, 130021, China
| | - Lei Zhang
- Department of Radiology, First Hospital of Jilin University, Changchun, China
| | - Dezhi Zhang
- Department of Ultrasound, The First Hospital of Jilin University, Changchun, China
| | - Meishan Jin
- Department of Pathology, The First Hospital of Jilin University, Changchun, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital of Jilin University, No. 71 Xinmin Street, Changchun, 130021, China.
| | - Yanhua Ding
- Phase I Clinical Research Center, First Hospital of Jilin University, No. 71 Xinmin Street, Changchun, 130021, China.
| |
Collapse
|
26
|
Ruze R, Chen Y, Song J, Xu R, Yin X, Xu Q, Wang C, Zhao Y. Enhanced cytokine signaling and ferroptosis defense interplay initiates obesity-associated pancreatic ductal adenocarcinoma. Cancer Lett 2024; 601:217162. [PMID: 39127339 DOI: 10.1016/j.canlet.2024.217162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Obesity is a significant risk factor for various cancers, including pancreatic cancer (PC), but the underlying mechanisms are still unclear. In our study, pancreatic ductal epithelial cells were cultured using serum from human subjects with diverse metabolic statuses, revealing that serum from patients with obesity alters inflammatory cytokine signaling and ferroptosis, where a mutual enhancement between interleukin 34 (IL-34) expression and ferroptosis defense was observed in these cells. Notably, oncogenic KRASG12D amplified their interaction and this leads to the initiation of pancreatic ductal adenocarcinoma (PDAC) in diet-induced obese mice via macrophage-mediated immunosuppression. Single-cell RNA sequencing (scRNA-seq) of human samples showed that cytokine signaling, ferroptosis defense, and immunosuppression are correlated with the patients' body mass index (BMI) during PDAC progression. Our findings provide a mechanistic link between obesity, inflammation, ferroptosis defense, and pancreatic cancer, suggesting novel therapeutic targets for the prevention and treatment of obesity-associated PDAC.
Collapse
Affiliation(s)
- Rexiati Ruze
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS&PUMC), Beijing, 100730, China; Department of Hepatobiliary and Echinococcosis Surgery, Digestive and Vascular Surgery Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China; General Surgery Laboratory, Key Laboratory of Research in Pancreatic Tumor, CAMS, Beijing, 100023, China; National Science and Technology Key Infrastructure on Translational Medicine in PUMCH, Beijing, 100023, China; State Key Laboratory of Complex Severe and Rare Diseases, PUMCH, CAMS&PUMC, Beijing, 100023, China.
| | - Yuan Chen
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS&PUMC), Beijing, 100730, China; General Surgery Laboratory, Key Laboratory of Research in Pancreatic Tumor, CAMS, Beijing, 100023, China; National Science and Technology Key Infrastructure on Translational Medicine in PUMCH, Beijing, 100023, China; State Key Laboratory of Complex Severe and Rare Diseases, PUMCH, CAMS&PUMC, Beijing, 100023, China.
| | - Jianlu Song
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS&PUMC), Beijing, 100730, China; General Surgery Laboratory, Key Laboratory of Research in Pancreatic Tumor, CAMS, Beijing, 100023, China; National Science and Technology Key Infrastructure on Translational Medicine in PUMCH, Beijing, 100023, China; State Key Laboratory of Complex Severe and Rare Diseases, PUMCH, CAMS&PUMC, Beijing, 100023, China.
| | - Ruiyuan Xu
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS&PUMC), Beijing, 100730, China; General Surgery Laboratory, Key Laboratory of Research in Pancreatic Tumor, CAMS, Beijing, 100023, China; National Science and Technology Key Infrastructure on Translational Medicine in PUMCH, Beijing, 100023, China; State Key Laboratory of Complex Severe and Rare Diseases, PUMCH, CAMS&PUMC, Beijing, 100023, China.
| | - Xinpeng Yin
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS&PUMC), Beijing, 100730, China; General Surgery Laboratory, Key Laboratory of Research in Pancreatic Tumor, CAMS, Beijing, 100023, China; National Science and Technology Key Infrastructure on Translational Medicine in PUMCH, Beijing, 100023, China; State Key Laboratory of Complex Severe and Rare Diseases, PUMCH, CAMS&PUMC, Beijing, 100023, China.
| | - Qiang Xu
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS&PUMC), Beijing, 100730, China; General Surgery Laboratory, Key Laboratory of Research in Pancreatic Tumor, CAMS, Beijing, 100023, China; National Science and Technology Key Infrastructure on Translational Medicine in PUMCH, Beijing, 100023, China; State Key Laboratory of Complex Severe and Rare Diseases, PUMCH, CAMS&PUMC, Beijing, 100023, China.
| | - Chengcheng Wang
- General Surgery Laboratory, Key Laboratory of Research in Pancreatic Tumor, CAMS, Beijing, 100023, China; National Science and Technology Key Infrastructure on Translational Medicine in PUMCH, Beijing, 100023, China; State Key Laboratory of Complex Severe and Rare Diseases, PUMCH, CAMS&PUMC, Beijing, 100023, China; Medical Research Center, PUMCH, CAMS&PUMC, Beijing, 100730, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS&PUMC), Beijing, 100730, China; General Surgery Laboratory, Key Laboratory of Research in Pancreatic Tumor, CAMS, Beijing, 100023, China; National Science and Technology Key Infrastructure on Translational Medicine in PUMCH, Beijing, 100023, China; State Key Laboratory of Complex Severe and Rare Diseases, PUMCH, CAMS&PUMC, Beijing, 100023, China.
| |
Collapse
|
27
|
Hashim HT, Alhatemi AQM, Riaz S, Al‐Ghuraibawi MA, Alabide AS, Saeed H, Sulaiman FA, Alhussain MAA, Shallan MA, Al‐Obaidi AD, Saab O, Al‐Obaidi H, Hashim AT, Merza N. Unveiling Resmetirom: A systematic review and meta-analysis on its impact on liver function and safety in non-alcoholic steatohepatitis treatment. JGH Open 2024; 8:e70025. [PMID: 39359614 PMCID: PMC11444049 DOI: 10.1002/jgh3.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/01/2024] [Indexed: 10/04/2024]
Abstract
Background and Aim The role of Resmetirom in non-alcoholic steatohepatitis (NASH) represents a promising therapeutic approach in addressing the growing global burden of liver disease. With NASH emerging as a leading cause of liver-related morbidity and mortality worldwide, there is an urgent need for effective treatments. Resmetirom, a selective thyroid hormone receptor-β agonist, offers potential benefits in improving liver histology and metabolic parameters in patients with NASH. This review examines the current evidence surrounding Resmetirom's role in NASH management. Methods A systematic review and meta-analysis was done by searching in Cochrane Central Register of Controlled Trials (CENTRAL), PubMed, MEDLINE (including MEDLINE InProcess) (OvidSP), Web of Science, Embase (OvidSP), and Scopus databases. ROB2 Cochrane tool was used for assessing risk of bias in randomized controlled trials (RCTs). In the analysis, we used RevMan Cochrane software. Results The study showed that patients who were treated with Resmetirom had significantly lower low-density lipoprotein-cholesterol (LDL-C) levels (mean difference [MD] -10.45; 95% confidence interval [CI] -15.86 to -5.83; P < 0.001) and alanine aminotransferase (ALT) levels (MD -7.18; 95% CI -12.67 to -1.68; P = 0.01) as compared with those in the placebo group. The risk of adverse events including diarrhea [risk ratio (RR) 1.81; 95% CI 1.40 to 2.35; P < 0.001] and nausea (RR 1.72; 95% CI 1.31 to 2.27; P < 0.001) was significantly increased for the Resmetirom group as compared with the placebo group. Conclusion Resmetirom presents a promising therapeutic option for NASH, offering potential benefits in reducing liver fat content and improving histological outcomes. The encouraging results from clinical trials suggest that Resmetirom may address an unmet need in NASH management, providing hope for patients with this progressive liver disease. Further research and long-term studies are warranted to validate its efficacy and safety profile in larger patient populations.
Collapse
Affiliation(s)
| | | | - Sania Riaz
- Internal Medicine DepartmentAllama Iqbal Medical CollegeLahorePakistan
| | | | | | - Humza Saeed
- Department of internal medicineRawalpindi Medical UniversityRawalpindiPakistan
| | | | | | - Maythum Ali Shallan
- Anesthesia Techniques Department, College of Health and Medical TechniquesAl‐Mustaqbal UniversityBabylonIraq
| | | | - Omar Saab
- Department of Internal MedicineCleavland ClinicCleavlandOhioUSA
| | - Hasan Al‐Obaidi
- Department of internal medicineJamaica Hospital Medical CenterNew York CityNew YorkUSA
| | - Ali Talib Hashim
- Department of internal medicineGolestan University of Medical SciencesGorganIran
| | - Nooraldin Merza
- Department of Internal MedicineUniversity of ToledoToledoOhioUSA
| |
Collapse
|
28
|
Mohamed AA, Hassanin S, Mohamed AA, Zaafar D, Mohamed R, Hassan MB, Hassanin ASA, Alsayed Abouahmad E, Sakr MA, Abd el salam SM, Abdelghafour RA, Muharram NM, Darwish MK, faried S, Nasraldin K, Hafez W. Adipokine (adiponectin-rs1501299) Gene Variant and Patient Characteristics in Relation to Metabolic-associated Fatty Liver Disease. J Clin Exp Hepatol 2024; 14:101409. [PMID: 38699515 PMCID: PMC11060945 DOI: 10.1016/j.jceh.2024.101409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/03/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Several genetic and metabolic variables, most notably the variation in the adipokine gene rs1501298, have been linked to metabolic-associated fatty liver disease etiopathogenesis (MAFLD). Liver biopsy, the gold standard for diagnosing MAFLD, is an invasive procedure; therefore, alternative diagnostic methods are required. Consequently, the integration of these metabolic variables with some of the patients' characteristics may facilitate the development of noninvasive diagnostic methods that aid in the early detection of MAFLD, identification of at-risk individuals and planning of management strategies. METHODS This study included 224 Egyptians (107 healthy individuals and 117 MAFLD patients). Age, sex, BMI, clinical and laboratory characteristics, and rs1501299 adipokine gene polymorphisms were examined. The rs1501299 variant, insulin resistance, hypertension, obesity, blood pressure, lipid profile, hemoglobin A1C level, and hepatic fibrosis predictors were evaluated for MAFLD risk. The feasibility and effectiveness of developing non-invasive MAFLD diagnostic models will be investigated. RESULTS The +276G/T (rs1501299) polymorphism (GG vs GT/TT) was linked with MAFLD (OR: 0.43, CI: 0.26-0.69, P = 0.002). The GG variants had lower MAFLD rates than those of the GT and TT variants. In addition to altered lipid profiles, patients with MAFLD showed increased gamma-glutamyl transferase levels (GGT: 56 IU/L vs. 36 IU/L). Genetic diversity also affects the accuracy of hepatic fibrosis and steatosis prediction. Hepatic fibrosis and steatosis predictors had receiver operating characteristic (ROC) AUCs of 0.529%, 0.846%, and 0.700-0.825%, respectively. We examined a diagnostic model based on these variables and demonstrated its effectiveness. CONCLUSION The Adipokine variant rs1501299 increased the risk of MAFLD. Identifying and genotyping this variation and other metabolic variables allow for a noninvasive diagnostic model for early MAFLD diagnosis and identification of those at risk. This study illuminates the prevention and management of MAFLD. Further research with more participants is needed to verify these models and to prove their MAFLD diagnostic efficacy.
Collapse
Affiliation(s)
- Amal A. Mohamed
- Department of Biochemistry, National Hepatology and Tropical Medicine Research Institute, GOTHI, Cairo, Egypt
| | - Soha Hassanin
- Department of Biochemistry, Faculty of Pharmacy, Modern University for Technology and Information, Egypt
| | - Ahmed A. Mohamed
- Intensive Care Department, Theodor Bilharz Research Institute (TBRI), El-Nile St., Warrak El-Hader, Imbaba Giza, Egypt
| | - Dalia Zaafar
- Clinical Pharmacology Department, Faculty of Pharmacy, Modern University for Technology and Information, Egypt
| | - Rasha Mohamed
- Department of Internal Medicine, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed B. Hassan
- Department of Internal Medicine, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Al-Shaymaa A. Hassanin
- Department of Tropical Medicine and Gastroenterology, Faculty of Medicine, Minia University, Egypt
| | | | - Mohamed A. Sakr
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Suez University, P.O. Box: 43221, Suez, Egypt
| | - Soha M. Abd el salam
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Suez University, P.O. Box: 43221, Suez, Egypt
| | | | - Nashwa M. Muharram
- Medical Biochemistry and Molecular Biology, Faculty of Medicine, Menoufia University, Egypt
| | - Marwa K. Darwish
- Chemistry Department (Biochemistry Branch), Faculty of Science, Suez University, Suez, P.O. 43518, Egypt
- College of Applied Medical Sciences, Shaqraa University, Al Quwayiyah, Kingdom of Saudi Arabia
| | - Saadia faried
- Department of Tropical Medicine, National Hepatology and Tropical Medicine Research Institute, GOTHI, Cairo, Egypt
| | - Karmia Nasraldin
- Faculty of Biotechnology, Modern Science and Arts University, Egypt
| | - Wael Hafez
- Internal Medicine Department, Medical Research and Clinical Studies Institute, 33 El Buhouth St, Ad Doqi, Dokki, Cairo Governorate 12622, Egypt
| |
Collapse
|
29
|
Li Y, He Q, Chen S, Dli H, Zhao J, Sun X, Yang P, Mao Q, Xia H. BI-7273, a BRD9 inhibitor, reduces lipid accumulation by downregulating the AKT/mTOR/SREBP1 signaling pathway. Biochem Pharmacol 2024; 226:116412. [PMID: 38971334 DOI: 10.1016/j.bcp.2024.116412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/24/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Increases in de novo lipogenesis that disturbed lipid homeostasis and caused lipid accumulation are a major cause of NAFLD and obesity. SREBP1 is a crucial regulatory factor controlling the expression of rate-limiting enzymes of lipid synthesis. A reduction in SREBP1expression can reduce lipid accumulation. Thus, we utilized an SREBP1-luciferase-KI HEK293 cell line constructed by our lab to screen 200 kinds of epigenetic drugs for their ability to downregulate SREBP1expression. BI-7273, an inhibitor of bromodomain-containing protein 9 (BRD9), was screened and found to decrease SREBP1 expression. What is more, BI-7273 has been confirmed that it could reduce lipid accumulation in HepG2 cells by BODIPY staining, and significantly decrease the protein expression of SREBP1 and FASN. To explore the potential mechanism BI-7273 reducing lipid accumulation, RNA sequencing (RNA-seq) was performed and demonstrated that BI-7273 reduced lipid accumulation by downregulating the AKT/mTOR/SREBP1 pathway in vitro. Finally, these results were verified in NAFLD and obesity mouse model induced by high fat diet (HFD). The results indicated that BI-7273 could decrease mouse body weight and improve insulin sensitivity, but also exhibited a strong negative correlation with serum lipid levels, and also demonstrated that BI-7273 reduced lipid accumulation via AKT/mTOR/SREBP1 pathway in vivo. In conclusion, our results revealed that BI-7273 decreases lipid accumulation by downregulating the AKT/mTOR/SREBP1 pathway in vivo and in vitro. This is the first report demonstrating the protective effect of this BRD9 inhibitor against NAFLD and obesity. BRD9 may be a novel target for the discovery of effective drugs to treat lipid metabolism disorders.
Collapse
Affiliation(s)
- Yu Li
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an 710062, Shaanxi, PR China
| | - Qiongyan He
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an 710062, Shaanxi, PR China
| | - Shuyu Chen
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an 710062, Shaanxi, PR China
| | - Huma Dli
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an 710062, Shaanxi, PR China
| | - Junli Zhao
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an 710062, Shaanxi, PR China
| | - Xiaohong Sun
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an 710062, Shaanxi, PR China
| | - Peiyan Yang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an 710062, Shaanxi, PR China
| | - Qinwen Mao
- Department of Pathology, University of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT 84112, USA
| | - Haibin Xia
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an 710062, Shaanxi, PR China.
| |
Collapse
|
30
|
Xu Y, Bai L, Yang X, Huang J, Wang J, Wu X, Shi J. Recent advances in anti-inflammation via AMPK activation. Heliyon 2024; 10:e33670. [PMID: 39040381 PMCID: PMC11261115 DOI: 10.1016/j.heliyon.2024.e33670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
Inflammation is a complex physiological phenomenon, which is the body's defensive response, but abnormal inflammation can have adverse effects, and many diseases are related to the inflammatory response. AMPK, as a key sensor of cellular energy status, plays a crucial role in regulating cellular energy homeostasis and glycolipid metabolism. In recent years, the anti-inflammation effect of AMPK and related signalling cascade has begun to enter everyone's field of vision - not least the impact on metabolic diseases. A great number of studies have shown that anti-inflammatory drugs work through AMPK and related pathways. Herein, this article summarises recent advances in compounds that show anti-inflammatory effects by activating AMPK and attempts to comment on them.
Collapse
Affiliation(s)
- Yihua Xu
- School of Basic Medical Science, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Lan Bai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xinwei Yang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan, China
| | - Jianli Huang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Jie Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Xianbo Wu
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
31
|
Lv JJ, Zhang YC, Li XY, Guo H, Yang CH. The burden of non-alcoholic fatty liver disease among working-age people in the Western Pacific Region, 1990-2019: an age-period-cohort analysis of the Global Burden of Disease study. BMC Public Health 2024; 24:1852. [PMID: 38992625 PMCID: PMC11238482 DOI: 10.1186/s12889-024-19047-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 06/04/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND The growing prevalence of non-alcoholic fatty liver disease (NAFLD) in younger populations, particularly those of working age (15-64 years), has become a public health concern. Being diagnosed at a younger age implies a greater likelihood of accruing disability-adjusted life years (DALYs) later in life due to potential progression to conditions such as cirrhosis or hepatocellular carcinoma. This study aims to analyze NAFLD prevalence trends over three decades globally, regionally, and nationally, with a focus on age, period, and birth cohort associations. METHODS Global, regional, and country time trends in the prevalence of NAFLD among working-age people from 1990 to 2019: Age-period-cohort analysis based on Global Burden of Disease Study 2019 estimates and 95% uncertainty interval (UI) of NAFLD prevalence in the working age population was extracted from the Global Burden of Diseases, Injuries and Risk Factors Study 2019. Age-period-cohort models were used to estimate the prevalence within each age group from 1990 to 2019 (local drift, % per year), fitted longitudinal age-specific rates adjusted for period bias (age effect), and period/cohort relative risk (period/cohort effect). RESULTS The global age-standardized prevalence (ASPR) of NAFLD increased significantly from 1990 (14,477.6 per 100 000) to 2019 (19,837.6 per 100 000). In the Western Pacific, there were 42,903.8 NAFLD cases in 2019, 54.15% higher than in 1990. The ASPR also increased significantly in the region over the past three decades. At the national level, Palau had the highest ASPR while Brunei Darussalam had the lowest. Age-period-cohort analysis showed that in the Western Pacific, unlike globally, the risk of NAFLD declined after age 60-64 years. Relative to 1980-1989, incidence and DALY risks decreased but prevalence increased in subsequent birth cohorts. Future predictions indicate an upward trend in NAFLD burden, especially among women and medium (SDI) regions like China. CONCLUSION Non-alcoholic fatty liver disease imparts an immense health burden that continues to grow globally and in the Asia Pacific region. Our work highlights working age adults as an at-risk group and calls attention to socioeconomic gradients within Western Pacific countries. Upward future projections demonstrate that NAFLD prevention is an urgent priority.
Collapse
Affiliation(s)
- Jia-Jie Lv
- Department of Vascular Surgery, School of Medicine, Shanghai Putuo People's Hospital Tongji University, Huangpu District, No.1291 Jiangning Road, Shanghai, 200060, China
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yi-Chi Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, Huangpu District, Shanghai, 200011, China
| | - Xin-Yu Li
- Department of Vascular Surgery, School of Medicine, Shanghai Putuo People's Hospital Tongji University, Huangpu District, No.1291 Jiangning Road, Shanghai, 200060, China
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, Huangpu District, Shanghai, 200011, China
| | - Hong Guo
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Putuo District, Shanghai, 200065, China.
| | - Cheng-Hao Yang
- Department of Vascular Surgery, School of Medicine, Shanghai Putuo People's Hospital Tongji University, Huangpu District, No.1291 Jiangning Road, Shanghai, 200060, China.
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
| |
Collapse
|
32
|
Liu CQ, Hu B. Scale offers the possibility of identifying adherence to lifestyle interventions in patients with non-alcoholic fatty liver disease. World J Gastroenterol 2024; 30:3179-3181. [PMID: 39006387 PMCID: PMC11238675 DOI: 10.3748/wjg.v30.i25.3179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/27/2024] [Accepted: 06/17/2024] [Indexed: 07/01/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder, and dietary and lifestyle interventions remain the mainstays of NAFLD therapy. Zeng et al established a prediction system to evaluate adherence to lifestyle interventions in patients with NAFLD and choose optimal management. Here, we discuss the application scenarios of the scale and the areas warranting further attention, aiming to provide a possible reference for clinical recommendations.
Collapse
Affiliation(s)
- Cen-Qin Liu
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Bing Hu
- Department of Gastroenterology and Hepatology/Medical Engineering Integration Laboratory of Digestive Endoscopy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
33
|
Singh S, Kumar A, Gupta S, Agrawal R. Curative role of natural PPARγ agonist in non-alcoholic fatty liver disease (NAFLD). Tissue Barriers 2024; 12:2289830. [PMID: 38050958 PMCID: PMC11262216 DOI: 10.1080/21688370.2023.2289830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
NAFLD is a condition that develops when the liver accumulates excess fat without alcohol consumption. This chronic liver ailment progresses along with insulin resistant and is typically not diagnosed until the patients have cirrhosis. Nuclear hormone receptor superfamily PPARs are essential for metabolism of fatty acids and glucose. In liver, lipid metabolism is regulated by nuclear receptors and PPARα, and PPARβ/δ encourages fatty acid β-oxidation. PPAR-γ, an energy-balanced receptor is a crucial regulator in NAFLD. The partial activation of PPAR-γ could lead to increased level of adiponectin and insulin sensitivity, thus improved NAFLD. Because of less side effects, natural compounds are emerged as potential therapeutic agents for NAFLD by PPARγ agonists. Although the results from preclinical studies are promising, further research is needed to determine the potential dosing and efficacy of mentioned compounds in human subjects. In this review, we summarize the effect of natural PPARγ agonist in the NAFLD.
Collapse
Affiliation(s)
- Swati Singh
- College of Pharmacy, JSS Academy of Technical Sciences, Noida, Uttar Pradesh, India
| | - Anit Kumar
- Department of Pharmacology, Divine College of Pharmacy, Bihar, India
| | - Suruchi Gupta
- School of Pharmacy, YBN University, Ranchi, Jharkhand, India
| | - Rohini Agrawal
- College of Pharmacy, JSS Academy of Technical Sciences, Noida, Uttar Pradesh, India
| |
Collapse
|
34
|
Shakhshir M, Zyoud SH. Mapping global research trends: Nutrition associations with nonalcoholic fatty liver disease - a Scopus bibliometric analysis. World J Gastroenterol 2024; 30:3106-3119. [PMID: 38983957 PMCID: PMC11230064 DOI: 10.3748/wjg.v30.i24.3106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/10/2024] [Accepted: 06/05/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND Several bibliometric analyses have been carried out to identify research hotspots and trends in nonalcoholic fatty liver disease (NAFLD) research. Nonetheless, there are still significant knowledge gaps that must be filled to advance our understanding of and ability to treat NAFLD. AIM To evaluate, through bibliometric and visual analysis, the current status of related research, related research frontiers, and the developmental trends in the field of diet and NAFLD. METHODS We retrieved publications about diet and NAFLD published between 1987 and 2022 from Scopus. Next, we used VOSviewer 1.6.20 to perform bibliometric analysis and visualization. RESULTS We found a total of 1905 studies, including 1637 (85.93%) original articles and 195 (10.24%) reviews, focused on the examination of NAFLD and its correlation with diet that were published between 1987 and 2022. Among the remaining five types of documents, 38 were letters, notes, editorials, meeting minutes, or brief surveys, representing 1.99% of the total documents. The countries with the most publications on this topic were China (n = 539; 28.29%), followed by the United States (n = 379; 19.90%), Japan (n = 133; 6.98%), and South Korea (n = 127; 6.6%). According to the citation analysis, the retrieved papers were cited an average of 32.3 times and had an h-index of 106, with 61014 total citations. The two main clusters on the map included those related to: (1) Inflammation and oxidative stress; and (2) Dietary interventions for NAFLD. CONCLUSION This was the first study to use data taken from Scopus to visualize network mapping in a novel bibliometric analysis of studies focused on diet and NAFLD. After 2017, the two domains that received the most attention were "dietary interventions for NAFL"' and "'inflammation and oxidative stress implicated in NAFLD and its correlation with diet." We believe that this study provides important information for academics, dietitians, and doctors, and that additional research on dietary interventions and NAFLD is warranted.
Collapse
Affiliation(s)
- Muna Shakhshir
- Department of Nutrition, An-Najah National University Hospital, Nablus 44839, Palestine
- Department of Public Health, College of Medicine and Health Sciences, An-Najah National University, Nablus 44839, Palestine
| | - Sa'ed H Zyoud
- Department of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah National University, Nablus 44839, Palestine
- Poison Control and Drug Information Center, College of Medicine and Health Sciences, An-Najah National University, Nablus 44839, Palestine
- Clinical Research Center, An-Najah National University Hospital, Nablus 44839, Palestine
| |
Collapse
|
35
|
Yao YX, Yu YJ, Dai S, Zhang CY, Xue XY, Zhou ML, Yao CH, Li YX. Kaempferol efficacy in metabolic diseases: Molecular mechanisms of action in diabetes mellitus, obesity, non-alcoholic fatty liver disease, steatohepatitis, and atherosclerosis. Biomed Pharmacother 2024; 175:116694. [PMID: 38713943 DOI: 10.1016/j.biopha.2024.116694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/09/2024] Open
Abstract
The incidence of metabolic diseases has progressively increased, which has a negative impact on human health and life safety globally. Due to the good efficacy and limited side effects, there is growing interest in developing effective drugs to treat metabolic diseases from natural compounds. Kaempferol (KMP), an important flavonoid, exists in many vegetables, fruits, and traditional medicinal plants. Recently, KMP has received widespread attention worldwide due to its good potential in the treatment of metabolic diseases. To promote the basic research and clinical application of KMP, this review provides a timely and comprehensive summary of the pharmacological advances of KMP in the treatment of four metabolic diseases and its potential molecular mechanisms of action, including diabetes mellitus, obesity, non-alcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH), and atherosclerosis. According to the research, KMP shows remarkable therapeutic effects on metabolic diseases by regulating multiple signaling transduction pathways such as NF-κB, Nrf2, AMPK, PI3K/AKT, TLR4, and ER stress. In addition, the most recent literature on KMP's natural source, pharmacokinetics studies, as well as toxicity and safety are also discussed in this review, thus providing a foundation and evidence for further studies to develop novel and effective drugs from natural compounds. Collectively, our manuscript strongly suggested that KMP could be a promising candidate for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Yu-Xin Yao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
| | - Yu-Jie Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
| | - Shu Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
| | - Chao-Yang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
| | - Xin-Yan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
| | - Meng-Ling Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
| | - Chen-Hao Yao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
| | - Yun-Xia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China.
| |
Collapse
|
36
|
Lei L, Gao X, Zhai J, Liu S, Liu Q, Li C, Cao H, Feng C, Chen L, Lei L, Pan X, Li P, Liu Z, Huan Y, Shen Z. The GPR40 novel agonist SZZ15-11 improves non-alcoholic fatty liver disease by activating the AMPK pathway and restores metabolic homeostasis in diet-induced obese mice. Diabetes Obes Metab 2024; 26:2257-2266. [PMID: 38497233 DOI: 10.1111/dom.15539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 03/19/2024]
Abstract
AIM Non-alcoholic fatty liver is the most common cause of chronic liver disease. GPR40 is a potential therapeutic target for energy metabolic disorders. GPR40 is a potential therapeutic target for energy metabolic disorders. SZZ15-11 is a newly synthesized GPR40 agonist. In this study, we estimate the potency of SZZ15-11 in fatty liver treatment. METHODS In vivo, diet-induced obese (DIO) mice received SZZ15-11 (50 mg/kg) and TAK875 (50 mg/kg) for 6 weeks. Blood glucose and lipid, hepatocyte lipid and liver morphology were analysed. In vitro, HepG2 cells and GPR40-knockdown HepG2 cells induced with 0.3 mM oleic acid were treated with SZZ15-11. Triglyceride and total cholesterol of cells were measured. At the same time, the AMPK pathway regulating triglycerides and cholesterol esters synthesis was investigated via western blot and quantitative polymerase chain reaction in both liver tissue and HepG2 cells. RESULTS SZZ15-11 was found to not only attenuate hyperglycaemia and hyperlipidaemia but also ameliorate fatty liver disease in DIO mice. At the same time, SZZ15-11 decreased triglyceride and total cholesterol content in HepG2 cells. Whether examined in the liver of DIO mice or in HepG2 cells, SZZ15-11 upregulated AMPKα phosphorylation and then downregulated the expression of the cholesterogenic key enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase and inhibited acetyl-CoA carboxylase activity. Furthermore, SZZ15-11 promotes AMPK activity via [cAMP]i accumulation. CONCLUSION This study confirmed that SZZ15-11, a novel GPR40 agonist, improves hyperlipidaemia and fatty liver, partially via Gs signalling and the AMPK pathway in hepatocytes.
Collapse
Affiliation(s)
- Lei Lei
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuefeng Gao
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiayu Zhai
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuainan Liu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Quan Liu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Caina Li
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui Cao
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cunyu Feng
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Leilei Chen
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liran Lei
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuan Pan
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pingping Li
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhanzhu Liu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Huan
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhufang Shen
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
37
|
Leibenguth MT, Coulibaly JT, Silué KD, N’Gbesso YK, El Wahed AA, Utzinger J, Becker SL, Schneitler S. Rapid appraisal of liver diseases using transient elastography, abdominal ultrasound, and microbiology in Côte d'Ivoire: A single-center study. PLoS Negl Trop Dis 2024; 18:e0012262. [PMID: 38900826 PMCID: PMC11218973 DOI: 10.1371/journal.pntd.0012262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/02/2024] [Accepted: 05/31/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Liver diseases of infectious and non-infectious etiology cause considerable morbidity and mortality, particularly in low- and middle-income countries (LMICs). However, data on the prevalence of liver diseases and underlying risk factors in LMICs are scarce. The objective of this study was to elucidate the occurrence of infectious diseases among individuals with chronic liver damage in a rural setting of Côte d'Ivoire. METHODOLOGY In 2021, we screened 696 individuals from four villages in the southern part of Côte d'Ivoire for hepatic fibrosis and steatosis, employing transient elastography (TE) and controlled attenuation parameter (CAP). We classified CAP ≥248 dB/m as steatosis, TE ≥7.2 kPa as fibrosis, and did subgroup analysis for participants with TE ranging from 7.2 kPa to 9.1 kPa. Clinical and microbiologic characteristics were compared to an age- and sex-matched control group (TE <6.0 kPa; n = 109). Stool samples were subjected to duplicate Kato-Katz thick smears for diagnosis of Schistosoma mansoni. Venous blood samples were examined for hepatitis B and hepatitis C virus. Additionally, an abdominal ultrasound examination was performed. PRINCIPAL FINDINGS Among 684 individuals with valid TE measurements, TE screening identified hepatic pathologies in 149 participants (17% with fibrosis and 6% with steatosis). 419 participants were included for further analyses, of which 261 had complete microbiologic analyses available. The prevalence of S. mansoni, hepatitis B, and hepatitis C were 30%, 14%, and 7%, respectively. Logistic regression analysis revealed higher odds for having TE results between 7.2 kPa and 9.1 kPa in individuals with S. mansoni infection (odds ratio [OR] = 3.02, 95% confidence interval [CI] = 1.58-5.76, P = 0.001), while HCV infection (OR = 5.02, 95% CI = 1.72-14.69, P = 0.003) and steatosis (OR = 4.62, 95% CI = 1.60-13.35, P = 0.005) were found to be risk factors for TE ≥9.2 kPa. CONCLUSIONS/SIGNIFICANCE Besides viral hepatitis, S. mansoni also warrants consideration as a pathogen causing liver fibrosis in Côte d'Ivoire. In-depth diagnostic work-up among individuals with abnormal TE findings might be a cost-effective public health strategy.
Collapse
Affiliation(s)
- Marie T. Leibenguth
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg/Saar, Germany
| | - Jean T. Coulibaly
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, Abidjan, Côte d’Ivoire
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire
| | - Kigbafori D. Silué
- Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, Abidjan, Côte d’Ivoire
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire
| | - Yves K. N’Gbesso
- Ministère de la Santé et de l’Hygiène Publique, Centre de Santé Urbain d’Azaguié, Azaguié, Côte d’Ivoire
| | - Ahmed Abd El Wahed
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, Leipzig, Germany
| | - Jürg Utzinger
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Sören L. Becker
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg/Saar, Germany
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Sophie Schneitler
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg/Saar, Germany
- Institute of Pneumology at the University of Cologne, Bethanien Hospital, Clinic for Pneumology and Allergology, Centre of Sleep Medicine and Respiratory Care, Solingen, Germany
| |
Collapse
|
38
|
Nendouvhada LP, Sibuyi NRS, Fadaka AO, Meyer S, Madiehe AM, Meyer M, Gabuza KB. Phytonanotherapy for the Treatment of Metabolic Dysfunction-Associated Steatotic Liver Disease. Int J Mol Sci 2024; 25:5571. [PMID: 38891759 PMCID: PMC11171778 DOI: 10.3390/ijms25115571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 04/27/2024] [Accepted: 04/27/2024] [Indexed: 06/21/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as nonalcoholic fatty liver disease, is a steatotic liver disease associated with metabolic syndrome (MetS), especially obesity, hypertension, diabetes, hyperlipidemia, and hypertriglyceridemia. MASLD in 43-44% of patients can progress to metabolic dysfunction-associated steatohepatitis (MASH), and 7-30% of these cases will progress to liver scarring (cirrhosis). To date, the mechanism of MASLD and its progression is not completely understood and there were no therapeutic strategies specifically tailored for MASLD/MASH until March 2024. The conventional antiobesity and antidiabetic pharmacological approaches used to reduce the progression of MASLD demonstrated favorable peripheral outcomes but insignificant effects on liver histology. Alternatively, phyto-synthesized metal-based nanoparticles (MNPs) are now being explored in the treatment of various liver diseases due to their unique bioactivities and reduced bystander effects. Although phytonanotherapy has not been explored in the clinical treatment of MASLD/MASH, MNPs such as gold NPs (AuNPs) and silver NPs (AgNPs) have been reported to improve metabolic processes by reducing blood glucose levels, body fat, and inflammation. Therefore, these actions suggest that MNPs can potentially be used in the treatment of MASLD/MASH and related metabolic diseases. Further studies are warranted to investigate the feasibility and efficacy of phytonanomedicine before clinical application.
Collapse
Affiliation(s)
- Livhuwani P. Nendouvhada
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa (A.O.F.); (M.M.)
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Nicole R. S. Sibuyi
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa (A.O.F.); (M.M.)
- Health Platform, Advanced Materials Division, Mintek, Randburg 2194, South Africa
| | - Adewale O. Fadaka
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa (A.O.F.); (M.M.)
| | - Samantha Meyer
- Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville 7535, South Africa;
| | - Abram M. Madiehe
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa (A.O.F.); (M.M.)
| | - Mervin Meyer
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa (A.O.F.); (M.M.)
| | - Kwazikwakhe B. Gabuza
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa (A.O.F.); (M.M.)
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
| |
Collapse
|
39
|
Liu H, Zhang L, Cheng H, Chi P, Zhuang Y, Alifu X, Zhou H, Qiu Y, Huang Y, Ainiwan D, Si S, Yu Y. The associations of maternal liver biomarkers in early pregnancy with the risk of gestational diabetes mellitus: a prospective cohort study and Mendelian randomization analysis. Front Endocrinol (Lausanne) 2024; 15:1396347. [PMID: 38836232 PMCID: PMC11148214 DOI: 10.3389/fendo.2024.1396347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
Background Associations of liver function with the risk of gestational diabetes mellitus (GDM) remain unclear. This study aimed to examine the relationship and the potential causality between maternal liver biomarkers and the risk of subsequent GDM, as well as to evaluate the interaction between liver biomarkers and lipids on GDM risk. Methods In an ongoing Zhoushan Pregnant Women Cohort, pregnant women who finished the first prenatal follow-up record, underwent liver function tests in early pregnancy, and completed the GDM screening were included in this study. Logistic regression models were used to investigate the association, and the inverse-variance weighted method supplemented with other methods of two-sample Mendelian randomization (MR) analysis was applied to deduce the causality. Results Among 9,148 pregnant women, 1,668 (18.2%) developed GDM. In general, the highest quartile of liver function index (LFI), including ALT, AST, GGT, ALP, and hepatic steatosis index, was significantly associated with an increased risk of GDM (OR ranging from 1.29 to 3.15), especially an elevated risk of abnormal postprandial blood glucose level. Moreover, the causal link between ALT and GDM was confirmed by the MR analysis (OR=1.28, 95%CI:1.05-1.54). A significant interaction between AST/ALT and TG on GDM risk was observed (P interaction = 0.026). Conclusion Elevated levels of LFI in early pregnancy were remarkably associated with an increased risk of GDM in our prospective cohort. Besides, a positive causal link between ALT and GDM was suggested.
Collapse
Affiliation(s)
- Hui Liu
- Clinical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Libi Zhang
- Department of Public Health and Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Department of Epidemiology & Health Statistics, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haoyue Cheng
- Department of Public Health and Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Department of Epidemiology & Health Statistics, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
| | - Peihan Chi
- Department of Public Health and Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Department of Epidemiology & Health Statistics, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yan Zhuang
- Department of Public Health and Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Department of Epidemiology & Health Statistics, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xialidan Alifu
- Department of Public Health and Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Department of Epidemiology & Health Statistics, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haibo Zhou
- Department of Public Health and Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Department of Epidemiology & Health Statistics, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yiwen Qiu
- Department of Public Health and Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Department of Epidemiology & Health Statistics, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ye Huang
- Department of Public Health and Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Department of Epidemiology & Health Statistics, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
| | - Diliyaer Ainiwan
- Department of Public Health and Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Department of Epidemiology & Health Statistics, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shuting Si
- Yiwu Maternity and Children Hospital (Yiwu Branch of Children's Hospital Zhejiang University School of Medicine), Yiwu, China
| | - Yunxian Yu
- Department of Public Health and Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Department of Epidemiology & Health Statistics, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
40
|
Shen Y, Liu J, Yao B, Zhang Y, Huang S, Liang C, Huang J, Tang Y, Wang X. Non-alcoholic fatty liver disease changes the expression and activity of hepatic drug-metabolizing enzymes and transporters in rats. Toxicol Lett 2024; 396:36-47. [PMID: 38663832 DOI: 10.1016/j.toxlet.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/14/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases, which can cause serious complications and gradually increase the mortality rate. However, the effects of NAFLD on drug-metabolizing enzymes and transporters remain unclear, which may cause some confusion regarding patient medication. In this study, a NAFLD rat model was constructed by feeding rats with methionine and choline deficiency diets for 6 weeks, and the mRNA and protein levels of drug-metabolizing enzymes and transporter were analyzed by real-time fluorescent quantitative PCR and Western blot, respectively. The activity of drug-metabolizing enzymes was detected by cocktail methods. In the NAFLD rat model, the mRNA expression of phase I enzymes, phase II enzymes, and transporters decreased. At the protein level, only CYP1A1, CYP1B1, CYP2C11, and CYP2J3 presented a decrease. In addition, the activities of CYP1A2, CYP2B1, CYP2C11, CYP2D1, CYP3A2, UGT1A1, UGT1A3, UGT1A6, and UGT1A9 decreased. These changes may be caused by the alteration of FXR, HNF4α, LXRα, LXRβ, PXR, and RXR. In conclusion, NAFLD changes the expression and activity of hepatic drug-metabolizing enzymes and transporters in rats, which may affect drug metabolism and pharmacokinetics. In clinical medication, drug monitoring should be strengthened to avoid potential risks.
Collapse
Affiliation(s)
- Yifei Shen
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Jie Liu
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Bingyi Yao
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Yuanjin Zhang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Shengbo Huang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Chenmeizi Liang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Junze Huang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Yu Tang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Xin Wang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China.
| |
Collapse
|
41
|
Zahra N, Rafique S, Naveed Z, Nadeem J, Waqas M, Ali A, Shah M, Idrees M. Regulatory pathways and therapeutic potential of PDE4 in liver pathophysiology. Life Sci 2024; 345:122565. [PMID: 38521388 DOI: 10.1016/j.lfs.2024.122565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/25/2024]
Abstract
Phosphodiesterase 4 (PDE4), crucial in regulating the cyclic adenosine monophosphate (cAMP) signaling pathway, significantly impacts liver pathophysiology. This article highlights the comprehensive effects of PDE4 on liver health and disease, and its potential as a therapeutic agent. PDE4's role in degrading cAMP disrupts intracellular signaling, increasing pro-inflammatory cytokines like tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6). This contributes to liver inflammation in conditions such as hepatitis and non-alcoholic steatohepatitis (NASH). Additionally, PDE4 is a key factor in liver fibrosis, characterized by excessive extracellular matrix deposition. Inhibiting PDE4 shows promise in reducing liver fibrosis by decreasing the activation of hepatic stellate cells, which is pivotal in fibrogenesis. PDE4 also influences hepatocyte apoptosis a common feature of liver diseases. PDE4 inhibitors protect against hepatocyte apoptosis by raising intracellular cAMP levels, thus activating anti-apoptotic pathways. This suggests potential in targeting PDE4 to prevent hepatocyte loss. Moreover, PDE4 regulates hepatic glucose production and lipid metabolism, essential for liver function. Altering cAMP levels through PDE4 affects enzymes in these metabolic pathways, making PDE4 a target for metabolic disorders like type 2 diabetes and non-alcoholic fatty liver disease (NAFLD). Since PDE4 plays a multifaceted role in liver pathophysiology, influencing PDE4's mechanisms in liver diseases could lead to novel therapeutic strategies. Still, extensive research is required to explore the molecular mechanisms and clinical potential of targeting PDE4 in liver pathologies.
Collapse
Affiliation(s)
- Noureen Zahra
- National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Shazia Rafique
- National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan.
| | - Zoya Naveed
- National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Jannat Nadeem
- National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Muhammad Waqas
- Department of Biotechnology and Genetic Engineering, Hazara University Mansehra, Pakistan
| | - Amjad Ali
- Department of Biotechnology and Genetic Engineering, Hazara University Mansehra, Pakistan
| | - Masaud Shah
- Department of Physiology Ajou University, South Korea
| | - Muhammad Idrees
- National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| |
Collapse
|
42
|
Koutny F, Wiemann D, Eckert A, Meyhöfer S, Fritsch M, Pappa A, Wiegand S, Weyer M, Wurm M, Weghuber D, Holl RW. Poorly controlled pediatric type 1 diabetes mellitus is a risk factor for metabolic dysfunction associated steatotic liver disease (MASLD): An observational study. J Pediatr Gastroenterol Nutr 2024; 78:1027-1037. [PMID: 38558281 DOI: 10.1002/jpn3.12194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 04/04/2024]
Abstract
OBJECTIVES Recent studies have suggested a link between type 1 diabetes mellitus (T1D) and metabolic dysfunction associated steatotic liver disease (MASLD) in children and adolescent, but longitudinal evidence is lacking. This study aimed to investigate the potential association between poorly controlled T1D and elevated alanine aminotransferase (ALT), serving as a proxy for MASLD in children and adolescents over time. METHODS The study included 32,325 children aged 2-17 years with T1D from Germany, Austria, and Switzerland who had undergone at least one assessment of liver enzyme levels recorded in the Diabetes-Patienten- Verlaufsdokumentation registry. Multivariable logistic and Cox regression models were calculated to show possible associations between T1D and elevated ALT values (>26 U/L in males, >22 U/L in females) as a proxy for MASLD. RESULTS Children with poorly controlled T1D (HbA1c > 11%) exhibited increased odds of elevated ALT values, after adjustment for age, sex, diabetes duration and overweight (odds ratio [OR] 2.54; 95% confidence interval [CI], 2.10-3.10; p < 0.01). This finding is substantiated by a longitudinal analysis, which reveals that inadequately controlled T1D was associated with a higher hazard ratio (HR) of elevated ALT values compared to children with controlled T1D over an observation period extending up to 5.5 (HR: 1.54; 95% CI, 1.19-2.01; p < 0.01). CONCLUSION In conclusion, the current study strongly links poorly controlled T1D in children and adolescents to MASLD irrespective of overweight. This association is not only present cross-sectionally but also increases over time. The study underscores the critical role of effective diabetes management in reducing the risk of MASLD in this population.
Collapse
Affiliation(s)
- Florian Koutny
- Department of Human Medicine, PhD Medical Science, Paracelsus Medical University, Salzburg, Austria
- Department of Internal Medicine 2, Gastroenterology and Hepatology and Rheumatology, Karl Landsteiner University of Health Sciences, University Hospital of St. Pölten, St. Pölten, Austria
| | - Dagobert Wiemann
- Department of Pediatrics, University of Magdeburg, Magdeburg, Germany
| | - Alexander Eckert
- Institute of Epidemiology and Medical Biometry, ZIBMT, University of Ulm, Germany, and German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Svenja Meyhöfer
- Institute for Endocrinology & Diabetes, University of Lübeck, Lübeck, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department of Internal Medicine 1, Endocrinology & Diabetes, University of Lübeck, Lübeck, Germany
| | - Maria Fritsch
- Department of Pediatrics, Medical University of Graz, Austria
| | - Angeliki Pappa
- Department of Pediatric and Adolescent Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Susanna Wiegand
- Department of Pediatric Endocrinology and Diabetes, Center for social-pediatric care, Charité, Germany
| | - Marc Weyer
- Kamillus-Klinik Internal Medicine, Asbach, Germany
| | - Michael Wurm
- Department of Paediatrics, St. Hedwigs Campus, University Children's Hospital Regensburg, Regensburg, Germany
| | - Daniel Weghuber
- Department of Human Medicine, PhD Medical Science, Paracelsus Medical University, Salzburg, Austria
| | - Reinhard W Holl
- Institute of Epidemiology and Medical Biometry, ZIBMT, University of Ulm, Germany, and German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| |
Collapse
|
43
|
Ma P, Ou H, Sun Z, Lu Y, Li M, Xu L, Liang Y, Zheng J, Ou Y. IAVPGEVA: Orally Available DPP4-Targeting Soy Glycinin Derived Octapeptide with Therapeutic Potential in Nonalcoholic Steatohepatitis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7167-7178. [PMID: 38511978 DOI: 10.1021/acs.jafc.3c08932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
IAVPGEVA, an octapeptide derived from soybean 11S globulin hydrolysis, also known as SGP8, has exhibited regulatory effects on lipid metabolism, inflammation, and fibrosis in vitro. Studies using MCD and HFD-induced nonalcoholic steatohepatitis (NASH) models in mice show that SGP8 attenuates hepatic injury and metabolic disorders. Mechanistic studies suggest that SGP8 inhibits the JNK-c-Jun pathway in L02 cells and liver tissue under metabolic stress and targets DPP4 with DPP4 inhibitory activity. In conclusion, the results suggest that SGP8 is an orally available DPP4-targeting peptide with therapeutic potential in NASH.
Collapse
Affiliation(s)
- Peng Ma
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, Jiangsu, China
| | - Hao Ou
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, Jiangsu, China
| | - Zhongkan Sun
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, Jiangsu, China
| | - Yunbiao Lu
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, Jiangsu, China
| | - Mengdan Li
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, Jiangsu, China
| | - Liuxin Xu
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, Jiangsu, China
| | - Yan Liang
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, Jiangsu, China
| | - Jiawei Zheng
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, Jiangsu, China
| | - Yu Ou
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, Jiangsu, China
| |
Collapse
|
44
|
Liu Q, Cheng L, Wang M, Shen L, Zhang C, Mu J, Hu Y, Yang Y, He K, Yan H, Zhao L, Yang S. Dietary sodium acetate and sodium butyrate improve high-carbohydrate diet utilization by regulating gut microbiota, liver lipid metabolism, oxidative stress, and inflammation in largemouth bass (Micropterus salmoides). J Anim Sci Biotechnol 2024; 15:50. [PMID: 38566217 PMCID: PMC10988814 DOI: 10.1186/s40104-024-01009-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/03/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Adequate level of carbohydrates in aquafeeds help to conserve protein and reduce cost. However, studies have indicated that high-carbohydrate (HC) diet disrupt the homeostasis of the gut-liver axis in largemouth bass, resulting in decreased intestinal acetate and butyrate level. METHOD Herein, we had concepted a set of feeding experiment to assess the effects of dietary sodium acetate (SA) and sodium butyrate (SB) on liver health and the intestinal microbiota in largemouth bass fed an HC diet. The experimental design comprised 5 isonitrogenous and isolipidic diets, including LC (9% starch), HC (18% starch), HCSA (18% starch; 2 g/kg SA), HCSB (18% starch; 2 g/kg SB), and HCSASB (18% starch; 1 g/kg SA + 1 g/kg SB). Juvenile largemouth bass with an initial body weight of 7.00 ± 0.20 g were fed on these diets for 56 d. RESULTS We found that dietary SA and SB reduced hepatic triglyceride accumulation by activating autophagy (ATG101, LC3B and TFEB), promoting lipolysis (CPT1α, HSL and AMPKα), and inhibiting adipogenesis (FAS, ACCA, SCD1 and PPARγ). In addition, SA and SB decreased oxidative stress in the liver (CAT, GPX1α and SOD1) by activating the Keap1-Nrf2 pathway. Meanwhile, SA and SB alleviated HC-induced inflammation by downregulating the expression of pro-inflammatory factors (IL-1β, COX2 and Hepcidin1) through the NF-κB pathway. Importantly, SA and SB increased the abundance of bacteria that produced acetic acid and butyrate (Clostridium_sensu_stricto_1). Combined with the KEGG analysis, the results showed that SA and SB enriched carbohydrate metabolism and amino acid metabolism pathways, thereby improving the utilization of carbohydrates. Pearson correlation analysis indicated that growth performance was closely related to hepatic lipid deposition, autophagy, antioxidant capacity, inflammation, and intestinal microbial composition. CONCLUSIONS In conclusion, dietary SA and SB can reduce hepatic lipid deposition; and alleviate oxidative stress and inflammation in largemouth bass fed on HC diet. These beneficial effects may be due to the altered composition of the gut microbiota caused by SA and SB. The improvement effects of SB were stronger than those associated with SA.
Collapse
Affiliation(s)
- Qiao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Liangshun Cheng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Maozhu Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lianfeng Shen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Chengxian Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jin Mu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yifan Hu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yihui Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Kuo He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Haoxiao Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
45
|
Zhu Y, Tang H, Zhao H, Lu J, Lin K, Ni J, Zhao B, Wu G, Tan C. Vinpocetine represses the progression of nonalcoholic steatohepatitis in mice by mediating inflammasome components via NF-κB signaling. GASTROENTEROLOGIA Y HEPATOLOGIA 2024; 47:366-376. [PMID: 37562770 DOI: 10.1016/j.gastrohep.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 06/15/2023] [Accepted: 07/18/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Inflammasome activation is known to be involved in nonalcoholic steatohepatitis (NASH). Vinpocetine is a derivative of vincamine and is reported to suppress the activation of inflammasome. METHODS This study explored the therapeutical potential of Vinpocetine on NASH. Mice were fed with a choline-deficient (MCD) or chow diet in the presence or absence of Vinpocetine for 8 weeks. H&E staining and biochemical assays were determined to evaluate the hepatic steatosis and fibrosis symptoms. In addition, primary hepatocytes and Kupffer cells were isolated and induced by MCD or lipopolysaccharides/cholesterol crystals with or without Vinpocetine. ELISAs, qPCR, and Western blotting were applied to determine the levels of NASH-related biomarkers in both in vivo mouse model and in vitro cell models. RESULTS Treatment of Vinpocetine did not cause observable side effects against and MCD-induced cells and mouse NASH model. However, treatment of Vinpocetine ameliorated hepatic steatosis and fibrosis and suppressed the levels of alanine transaminase and aspartate transferase in the mouse NASH model. In addition, treatment of Vinpocetine suppressed the mRNA and protein levels of inflammasome components both in vitro and in vivo. CONCLUSION Vinpocetine suppressed NASH in mice by mediating inflammasome components via nuclear factor κB signaling.
Collapse
Affiliation(s)
- Yingwei Zhu
- Department of Gastroenterology, Jiangnan University Medical Center (JUMC), No. 68 Zhongshan Road, Wuxi 214002, Jiangsu, China; Department of Gastroenterology, Wuxi No. 2 People's Hospital, Affiliated Wuxi Clinical College of Nantong University, No. 68 Zhongshan Road, Wuxi 214002, Jiangsu, China
| | - Hong Tang
- Department of Pathology, Jiangnan University Medical Center (JUMC), No. 68 Zhongshan Road, Wuxi 214002, Jiangsu, China
| | - Han Zhao
- Department of Gastroenterology, Jiangnan University Medical Center (JUMC), No. 68 Zhongshan Road, Wuxi 214002, Jiangsu, China
| | - Jian Lu
- Department of Gastroenterology, Jiangnan University Medical Center (JUMC), No. 68 Zhongshan Road, Wuxi 214002, Jiangsu, China
| | - Kai Lin
- Department of Gastroenterology, Jiangnan University Medical Center (JUMC), No. 68 Zhongshan Road, Wuxi 214002, Jiangsu, China
| | - Jingbin Ni
- Department of Gastroenterology, Jiangnan University Medical Center (JUMC), No. 68 Zhongshan Road, Wuxi 214002, Jiangsu, China
| | - Bo Zhao
- Department of Gastroenterology, Jiangnan University Medical Center (JUMC), No. 68 Zhongshan Road, Wuxi 214002, Jiangsu, China
| | - Gaojue Wu
- Department of Gastroenterology, Jiangnan University Medical Center (JUMC), No. 68 Zhongshan Road, Wuxi 214002, Jiangsu, China; Department of Gastroenterology, Wuxi No. 2 People's Hospital, Affiliated Wuxi Clinical College of Nantong University, No. 68 Zhongshan Road, Wuxi 214002, Jiangsu, China.
| | - Chunxiao Tan
- Department of Gastroenterology, Jiangnan University Medical Center (JUMC), No. 68 Zhongshan Road, Wuxi 214002, Jiangsu, China.
| |
Collapse
|
46
|
Zhu S, Wu Z, Wang W, Wei L, Zhou H. A revisit of drugs and potential therapeutic targets against non-alcoholic fatty liver disease: learning from clinical trials. J Endocrinol Invest 2024; 47:761-776. [PMID: 37839037 DOI: 10.1007/s40618-023-02216-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/01/2023] [Indexed: 10/17/2023]
Abstract
PURPOSE Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease, with a worldwide prevalence of 25%. Although numerous clinical trials have been conducted over the last few decades, an effective treatment has not been approved yet. Extensive research has accumulated a large amount of data and experience; however, the vast number of clinical trials and new therapeutic targets for NAFLD make it impossible to keep abreast of the relevant information. Therefore, a systematic analysis of the existing trials is necessary. METHODS Here, we reviewed clinical trials on NAFLD registered in the mandated federal database, ClinicalTrials.gov, to generate a detailed overview of the trials related to drugs and therapeutic targets for NAFLD treatment. Following screening for pertinence to therapy, a total of 440 entries were identified that included active trials as well as those that have already been completed, suspended, terminated, or withdrawn. RESULTS We summarize and systematically analyze the state, drug development pipeline, and discovery of treatment targets for NAFLD. We consider possible factors that may affect clinical outcomes. Furthermore, we discussed these results to explore the mechanisms responsible for clinical outcomes. CONCLUSION We summarised the landscape of current clinical trials and suggested the directions for future NAFLD therapy to assist internal medicine specialists in treating the whole clinical spectrum of this highly prevalent liver disease.
Collapse
Affiliation(s)
- S Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Z Wu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - W Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - L Wei
- School of Life Science, Anhui Medical University, Hefei, 230032, China.
| | - H Zhou
- School of Life Science, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
47
|
Wang N, Que H, Luo Q, Zheng W, Li H, Wang Q, Gu J. Mechanisms of ferroptosis in nonalcoholic fatty liver disease and therapeutic effects of traditional Chinese medicine: a review. Front Med (Lausanne) 2024; 11:1356225. [PMID: 38590315 PMCID: PMC10999571 DOI: 10.3389/fmed.2024.1356225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/22/2024] [Indexed: 04/10/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by excessive accumulation of fat in hepatocytes (nonalcoholic fatty liver (NAFL)), and lobular inflammation and hepatocyte damage (which characterize nonalcoholic steatohepatitis (NASH) are found in most patients). A subset of patients will gradually develop liver fibrosis, cirrhosis, and eventually hepatocellular carcinoma, which is a deadly disease that threatens human life worldwide. Ferroptosis, a novel nonapoptotic form of programmed cell death (PCD) characterized by iron-dependent accumulation of reactive oxygen radicals and lipid peroxides, is closely related to NAFLD. Traditional Chinese medicine (TCM) has unique advantages in the prevention and treatment of NAFLD due to its multicomponent, multipathway and multitarget characteristics. In this review, we discuss the effect of TCM on NAFLD by regulating ferroptosis, in order to provide reference for the further development and application of therapeutic drugs to treat NAFLD.
Collapse
Affiliation(s)
- Nan Wang
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Hanyun Que
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Qiulin Luo
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Wenxin Zheng
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Hong Li
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Qin Wang
- College of Pharmacy, Southwest Minzu University, Chengdu, China
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Jian Gu
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| |
Collapse
|
48
|
Rahimlou M, Baghdadi G, Khodi A, Rahimi Z, Saki N, Banaei Jahromi N, Cheraghian B, Tavasolian R, Hosseini SA. Polyphenol consumption and Nonalcoholic fatty liver disease risk in adults. Sci Rep 2024; 14:6752. [PMID: 38514756 PMCID: PMC10957908 DOI: 10.1038/s41598-024-57416-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024] Open
Abstract
In this cross-sectional investigation, the primary objective was to explore the correlation between the consumption of polyphenols and the likelihood of non-alcoholic fatty liver disease (NAFLD) in the adult population participating in the Hoveyzeh cohort. Data from the Hoveyzeh cohort study, part of the Persian Cohort Study, involving 10,009 adults aged 35-70, were analyzed. Exclusions were made for missing data, extreme energy intake, and liver cancer patients. Dietary habits were assessed using a food frequency questionnaire, and polyphenol intake was calculated using the Phenol Explorer database. Logistic regression analyses, adjusted for confounders, were performed to assess the relationship between polyphenol subclasses (total polyphenols, total flavonoids, phenolic acid, and lignin) and NAFLD. Among 9894 participants, those in the highest quintile of total polyphenol (OR 0.65, CI 0.5-0.84; P = 0.007), phenolic acid (OR 0.67, CI 0.52-0.86; P < 0.001), and lignin intake (OR 0.69, CI 0.52-0.87; P = 0.001) demonstrated lower odds of NAFLD compared to the lowest quintile, even after adjusting for confounding factors. However, no significant association was found between total flavonoid intake and NAFLD (OR 1.26, CI 0.96-1.67; P = 0.47). Subgroup analysis indicated a significant inverse association between total polyphenols and NAFLD in women (OR 0.64, CI 0.42-0.93; P = 0.001). Higher intake of total polyphenols, phenolic acid, and lignin was associated with reduced odds of NAFLD among adults in the Hoveyzeh cohort. This suggests that dietary patterns rich in these polyphenols may play a role in mitigating the risk of NAFLD. Further interventional and longitudinal studies are needed to validate these findings and explore potential preventive strategies involving polyphenol-rich diets.
Collapse
Affiliation(s)
- Mehran Rahimlou
- Department of Nutrition, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ghazal Baghdadi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Khodi
- Taylor's University, Subang Jaya, Malaysia
| | - Zahra Rahimi
- Department of Biostatistics and Epidemiology, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nader Saki
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nasrin Banaei Jahromi
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Nutrition and Metabolic Disease Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bahman Cheraghian
- Alimentary Tract Research Center, Department of Biostatistics & Epidemiology, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ronia Tavasolian
- Department of Nutrition, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Seyed Ahmad Hosseini
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Nutrition and Metabolic Disease Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
49
|
Huang Y, Liu X, Wang HY, Chen JY, Zhang X, Li Y, Lu Y, Dong Z, Liu K, Wang Z, Wang Q, Fan G, Zou J, Liu S, Shao C. Single-cell transcriptome landscape of zebrafish liver reveals hepatocytes and immune cell interactions in understanding nonalcoholic fatty liver disease. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109428. [PMID: 38325594 DOI: 10.1016/j.fsi.2024.109428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/27/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is becoming the most common chronic liver disease in the world. Immunity is the major contributing factor in NAFLD; however, the interaction of immune cells and hepatocytes in disease progression has not been fully elucidated. As a popular species for studying NAFLD, zebrafish, whose liver is a complex immune system mediated by immune cells and non-immune cells in maintaining immune tolerance and homeostasis. Understanding the cellular composition and immune environment of zebrafish liver is of great significance for its application in NAFLD. Here, we established a liver atlas that consists of 10 cell types using single-cell RNA sequencing (scRNA-seq). By examining the heterogeneity of hepatocytes and analyzing the expression of NAFLD-associated genes in the specific cluster, we provide a potential target cell model to study NAFLD. Additionally, our analysis identified two subtypes of distinct resident macrophages with inflammatory and non-inflammatory functions and characterized the successive stepwise development of T cell subclusters in the liver. Importantly, we uncovered the possible regulation of macrophages and T cells on target cells of fatty liver by analyzing the cellular interaction between hepatocytes and immune cells. Our data provide valuable information for an in-depth study of immune cells targeting hepatocytes to regulate the immune balance in NAFLD.
Collapse
Affiliation(s)
- Yingyi Huang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266072, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266072, Qingdao, Shandong, China
| | - Xiang Liu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266072, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266072, Qingdao, Shandong, China
| | - Hong-Yan Wang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266072, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266072, Qingdao, Shandong, China
| | - Jian-Yang Chen
- BGI Research, 266555, Qingdao, Shandong, China; Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, Shandong, China
| | - Xianghui Zhang
- BGI Research, 266555, Qingdao, Shandong, China; Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, Shandong, China
| | - Yubang Li
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266072, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266072, Qingdao, Shandong, China
| | - Yifang Lu
- BGI Research, 266555, Qingdao, Shandong, China; Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, Shandong, China
| | - Zhongdian Dong
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, 524088, Zhanjiang, Guangdong, China
| | - Kaiqiang Liu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266072, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266072, Qingdao, Shandong, China
| | - Zhongduo Wang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, 524088, Zhanjiang, Guangdong, China
| | - Qian Wang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266072, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266072, Qingdao, Shandong, China
| | - Guangyi Fan
- BGI Research, 266555, Qingdao, Shandong, China; Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, Shandong, China; BGI Research, 518083, Shenzhen, China
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, 201306, Shanghai, China
| | - Shanshan Liu
- MGI Tech, 518083, Shenzhen, China; BGI Research, 518083, Shenzhen, China.
| | - Changwei Shao
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266072, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266072, Qingdao, Shandong, China.
| |
Collapse
|
50
|
Liu Q, Li X, Li Y, Luo Q, Fan Q, Lu A, Guan D, Li J. A novel network pharmacology strategy to decode mechanism of Wuling Powder in treating liver cirrhosis. Chin Med 2024; 19:36. [PMID: 38429802 PMCID: PMC10905787 DOI: 10.1186/s13020-024-00896-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/26/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Liver cirrhosis is a chronic liver disease with hepatocyte necrosis and lesion. As one of the TCM formulas Wuling Powder (WLP) is widely used in the treatment of liver cirrhosis. However, it's key functional components and action mechanism still remain unclear. We attempted to explore the Key Group of Effective Components (KGEC) of WLP in the treatment of Liver cirrhosis through integrative pharmacology combined with experiments. METHODS The components and potential target genes of WLP were extracted from published databases. A novel node importance calculation model considering both node control force and node bridging force is designed to construct the Function Response Space (FRS) and obtain key effector proteins. The genetic knapsack algorithm was employed to select KGEC. The effectiveness and reliability of KGEC were evaluated at the functional level by using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Finally, the effectiveness and potential mechanism of KGEC were confirmed by CCK-8, qPCR and Western blot. RESULTS 940 effective proteins were obtained in FRS. KEGG pathways and GO terms enrichments analysis suggested that effective proteins well reflect liver cirrhosis characteristics at the functional level. 29 components of WLP were defined as KGEC, which covered 100% of the targets of the effective proteins. Additionally, the pathways enriched for the KGEC targets accounted for 83.33% of the shared genes between the targets and the pathogenic genes enrichment pathways. Three components scopoletin, caryophyllene oxide, and hydroxyzinamic acid from KGEC were selected for in vivo verification. The qPCR results demonstrated that all three components significantly reduced the mRNA levels of COL1A1 in TGF-β1-induced liver cirrhosis model. Furthermore, the Western blot assay indicated that these components acted synergistically to target the NF-κB, AMPK/p38, cAMP, and PI3K/AKT pathways, thus inhibiting the progression of liver cirrhosis. CONCLUSION In summary, we have developed a new model that reveals the key components and potential mechanisms of WLP for the treatment of liver cirrhosis. This model provides a reference for the secondary development of WLP and offers a methodological strategy for studying TCM formulas.
Collapse
Affiliation(s)
- Qinwen Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Xiaowei Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Yi Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Qian Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Qiling Fan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Aiping Lu
- Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Hong Kong, China.
- Guangdong-Hong Kong-Macau Joint Lab On Chinese Medicine and Immune Disease Research, Guangzhou, China.
| | - Daogang Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China.
| | - Jiahui Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
- Center for Genetics and Developmental Systems Biology, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|