1
|
Smith LA, Keane EB, Connor K, Chan F, Cunningham MO. In vitro modelling of the neuropathophysiological features of mitochondrial epilepsy. Seizure 2025:S1059-1311(25)00121-9. [PMID: 40410091 DOI: 10.1016/j.seizure.2025.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 05/09/2025] [Accepted: 05/10/2025] [Indexed: 05/25/2025] Open
Abstract
Epilepsy is a common and severe neurological manifestation of primary mitochondrial disease, affecting approximately 60 % of paediatric patients and 20 % of adult patients. Many of the mitochondrial epilepsies, particularly those presenting in childhood, are refractory to anti-epileptic treatment. Moreover, these conditions are typically characterised by severe neurodegeneration and closely associated with neurological decline and premature death. Indeed, there persists an urgent need to delineate the mechanisms underpinning mitochondrial epilepsy in order to develop effective treatments. In this review, we provide an overview of currently available in vitro models of the mitochondrial epilepsies. Such models offer opportunities to characterise early disease pathophysiology and interrogate novel mitochondrial-targeting and anti-epileptic treatments, with an overall aim to modulate seizure associated pathology and activity for the mitochondrial epilepsies. We discuss the use of acute cortical and subcortical brain slice preparations, obtained from both neurosurgical patients and rodents, for modelling the common neuropathophysiological features of mitochondrial epilepsy. We also review the use of induced pluripotent stem cell derived neural and glial culture models, and the development of three-dimensional cerebral organoids, generated from fibroblasts obtained from patients with primary mitochondrial disease. Human-derived, disease-relevant in vitro model systems which recapitulate the complexity and pathological features observed in patient brain tissues are crucial to help bridge the gap between animal models and patients living with mitochondrial epilepsy.
Collapse
Affiliation(s)
- Laura A Smith
- Mitochondrial Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| | - Ella B Keane
- Discipline of Physiology, School of Medicine, Trinity College Dublin, Ireland
| | - Kate Connor
- Discipline of Physiology, School of Medicine, Trinity College Dublin, Ireland
| | - Felix Chan
- Department of Pharmacy, School of Health Sciences, University of Birmingham, Birmingham, B15 2TT, UK; Centre for Human Brain Health (CHBH), University of Birmingham, Birmingham, B15 2TT, UK; Birmingham Centre for Neurogenetics, University of Birmingham, Birmingham, B15 2TT, UK
| | - Mark O Cunningham
- Discipline of Physiology, School of Medicine, Trinity College Dublin, Ireland.
| |
Collapse
|
2
|
Elitt CM, Volpe JJ. Degenerative Disorders of the Newborn. VOLPE'S NEUROLOGY OF THE NEWBORN 2025:967-1007.e17. [DOI: 10.1016/b978-0-443-10513-5.00033-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Andrade-Machado R, Abushanab E, Patel ND, Singh A. Differentiating rhythmic high-amplitude delta with superimposed (poly) spikes from extreme delta brushes: limitations of standardized nomenclature and implications for patient management. World J Pediatr 2024; 20:764-773. [PMID: 38997604 DOI: 10.1007/s12519-024-00816-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 05/03/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND Following the standardized nomenclature proposed by the American Clinical Neurophysiology Society (ACNS), rhythmic high-amplitude delta activity with superimposed spikes (RHADS) can be reported as an extreme delta brush (EDB). The clinical implications of similar electrographic patterns being reported as RHADS versus EDB are important to highlight. We aim to review the electrographic characteristics of RHADS, evaluate whether RHADS is seen in other neurological disorders, and identify the similar and unique characteristics between RHADS and EDB to ultimately determine the most accurate way to differentiate and report these patterns. We believe that the differentiation of RHADS and EDB is important as there is a vast difference in the diagnostic approach and the medical management of associated underlying etiologies. DATA SOURCE We conducted an extensive search on MEDLINE and Pubmed utilizing various combinations of keywords. Searching for "gamma polymerase and EEG", or "RHADS" or "Alpers syndrome and EEG" or "EEG" AND "Alpers-Huttenlocher syndrome". RESULTS Three articles were found to be focused on the description of "RHADS" pattern in Alpers Syndrome. No publication to date were found when searching for the terms "EDB" AND "children", AND "infant" AND "adolescent" excluding "encephalitis" and "neonate". Although RHADS and EDB appear as similar EEG patterns, meticulous analysis can differentiate them. RHADS is not exclusive to patients with Alpers-Huttenlocher syndrome and may manifest in regions beyond the posterior head region. Reactivity to eye-opening and response to anesthesia can be two other elements that help in the differentiation of these patterns. CONCLUSION RHADS is not exclusive to patients with AHS and may manifest in regions beyond the posterior head region. Reactivity to eye-opening and response to anesthesia are features that help in the differentiation of these patterns.
Collapse
Affiliation(s)
- Rene Andrade-Machado
- Children's Hospital of Wisconsin Wauwatosa: Milwaukee, 8915 W Connell Ct, Milwaukee, WI, 53226, USA.
| | - Elham Abushanab
- Children's Hospital of Wisconsin Wauwatosa: Milwaukee, 8915 W Connell Ct, Milwaukee, WI, 53226, USA
| | - Namrata D Patel
- Children's Hospital of Wisconsin Wauwatosa: Milwaukee, 8915 W Connell Ct, Milwaukee, WI, 53226, USA
| | - Avantika Singh
- Children's Hospital of Wisconsin Wauwatosa: Milwaukee, 8915 W Connell Ct, Milwaukee, WI, 53226, USA
| |
Collapse
|
4
|
Bernardino Gomes TM, Vincent AE, Menger KE, Stewart JB, Nicholls TJ. Mechanisms and pathologies of human mitochondrial DNA replication and deletion formation. Biochem J 2024; 481:683-715. [PMID: 38804971 PMCID: PMC11346376 DOI: 10.1042/bcj20230262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
Human mitochondria possess a multi-copy circular genome, mitochondrial DNA (mtDNA), that is essential for cellular energy metabolism. The number of copies of mtDNA per cell, and their integrity, are maintained by nuclear-encoded mtDNA replication and repair machineries. Aberrant mtDNA replication and mtDNA breakage are believed to cause deletions within mtDNA. The genomic location and breakpoint sequences of these deletions show similar patterns across various inherited and acquired diseases, and are also observed during normal ageing, suggesting a common mechanism of deletion formation. However, an ongoing debate over the mechanism by which mtDNA replicates has made it difficult to develop clear and testable models for how mtDNA rearrangements arise and propagate at a molecular and cellular level. These deletions may impair energy metabolism if present in a high proportion of the mtDNA copies within the cell, and can be seen in primary mitochondrial diseases, either in sporadic cases or caused by autosomal variants in nuclear-encoded mtDNA maintenance genes. These mitochondrial diseases have diverse genetic causes and multiple modes of inheritance, and show notoriously broad clinical heterogeneity with complex tissue specificities, which further makes establishing genotype-phenotype relationships challenging. In this review, we aim to cover our current understanding of how the human mitochondrial genome is replicated, the mechanisms by which mtDNA replication and repair can lead to mtDNA instability in the form of large-scale rearrangements, how rearranged mtDNAs subsequently accumulate within cells, and the pathological consequences when this occurs.
Collapse
Affiliation(s)
- Tiago M. Bernardino Gomes
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- NHS England Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, U.K
| | - Amy E. Vincent
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| | - Katja E. Menger
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| | - James B. Stewart
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| | - Thomas J. Nicholls
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| |
Collapse
|
5
|
Magistrati M, Gilea AI, Gerra MC, Baruffini E, Dallabona C. Drug Drop Test: How to Quickly Identify Potential Therapeutic Compounds for Mitochondrial Diseases Using Yeast Saccharomyces cerevisiae. Int J Mol Sci 2023; 24:10696. [PMID: 37445873 DOI: 10.3390/ijms241310696] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Mitochondrial diseases (MDs) refer to a group of clinically and genetically heterogeneous pathologies characterized by defective mitochondrial function and energy production. Unfortunately, there is no effective treatment for most MDs, and current therapeutic management is limited to relieving symptoms. The yeast Saccharomyces cerevisiae has been efficiently used as a model organism to study mitochondria-related disorders thanks to its easy manipulation and well-known mitochondrial biogenesis and metabolism. It has been successfully exploited both to validate alleged pathogenic variants identified in patients and to discover potential beneficial molecules for their treatment. The so-called "drug drop test", a phenotype-based high-throughput screening, especially if coupled with a drug repurposing approach, allows the identification of molecules with high translational potential in a cost-effective and time-saving manner. In addition to drug identification, S. cerevisiae can be used to point out the drug's target or pathway. To date, drug drop tests have been successfully carried out for a variety of disease models, leading to very promising results. The most relevant aspect is that studies on more complex model organisms confirmed the effectiveness of the drugs, strengthening the results obtained in yeast and demonstrating the usefulness of this screening as a novel approach to revealing new therapeutic molecules for MDs.
Collapse
Affiliation(s)
- Martina Magistrati
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Alexandru Ionut Gilea
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Maria Carla Gerra
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Enrico Baruffini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Cristina Dallabona
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| |
Collapse
|
6
|
Olkhova EA, Smith LA, Bradshaw C, Gorman GS, Erskine D, Ng YS. Neurological Phenotypes in Mouse Models of Mitochondrial Disease and Relevance to Human Neuropathology. Int J Mol Sci 2023; 24:ijms24119698. [PMID: 37298649 DOI: 10.3390/ijms24119698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Mitochondrial diseases represent the most common inherited neurometabolic disorders, for which no effective therapy currently exists for most patients. The unmet clinical need requires a more comprehensive understanding of the disease mechanisms and the development of reliable and robust in vivo models that accurately recapitulate human disease. This review aims to summarise and discuss various mouse models harbouring transgenic impairments in genes that regulate mitochondrial function, specifically their neurological phenotype and neuropathological features. Ataxia secondary to cerebellar impairment is one of the most prevalent neurological features of mouse models of mitochondrial dysfunction, consistent with the observation that progressive cerebellar ataxia is a common neurological manifestation in patients with mitochondrial disease. The loss of Purkinje neurons is a shared neuropathological finding in human post-mortem tissues and numerous mouse models. However, none of the existing mouse models recapitulate other devastating neurological phenotypes, such as refractory focal seizures and stroke-like episodes seen in patients. Additionally, we discuss the roles of reactive astrogliosis and microglial reactivity, which may be driving the neuropathology in some of the mouse models of mitochondrial dysfunction, as well as mechanisms through which cellular death may occur, beyond apoptosis, in neurons undergoing mitochondrial bioenergy crisis.
Collapse
Affiliation(s)
- Elizaveta A Olkhova
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Laura A Smith
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Carla Bradshaw
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Gráinne S Gorman
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, UK
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Daniel Erskine
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, UK
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| |
Collapse
|
7
|
Smith LA, Chen C, Lax NZ, Taylor RW, Erskine D, McFarland R. Astrocytic pathology in Alpers' syndrome. Acta Neuropathol Commun 2023; 11:86. [PMID: 37259148 PMCID: PMC10230702 DOI: 10.1186/s40478-023-01579-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/11/2023] [Indexed: 06/02/2023] Open
Abstract
Refractory epilepsy is the main neurological manifestation of Alpers' syndrome, a severe childhood-onset mitochondrial disease caused by bi-allelic pathogenic variants in the mitochondrial DNA (mtDNA) polymerase gamma gene (POLG). The pathophysiological mechanisms underpinning neuronal hyperexcitabilty leading to seizures in Alpers' syndrome remain unknown. However, pathological changes to reactive astrocytes are hypothesised to exacerbate neural dysfunction and seizure-associated cortical activity in POLG-related disease. Therefore, we sought to phenotypically characterise astrocytic pathology in Alpers' syndrome. We performed a detailed quantitative investigation of reactive astrocytes in post-mortem neocortical tissues from thirteen patients with Alpers' syndrome, eight neurologically normal controls and five sudden unexpected death in epilepsy (SUDEP) patients, to control for generalised epilepsy-associated astrocytic pathology. Immunohistochemistry to identify glial fibrillary acidic protein (GFAP)-reactive astrocytes revealed striking reactive astrogliosis localised to the primary visual cortex of Alpers' syndrome tissues, characterised by abnormal-appearing hypertrophic astrocytes. Phenotypic characterisation of individual GFAP-reactive astrocytes demonstrated decreased abundance of mitochondrial oxidative phosphorylation (OXPHOS) proteins and altered expression of key astrocytic proteins including Kir4.1 (subunit of the inwardly rectifying K+ ion channel), AQP4 (astrocytic water channel) and glutamine synthetase (enzyme that metabolises glutamate). These phenotypic astrocytic changes were typically different from the pathology observed in SUDEP tissues, suggesting alternative mechanisms of astrocytic dysfunction between these epilepsies. Crucially, our findings provide further evidence of occipital lobe involvement in Alpers' syndrome and support the involvement of reactive astrocytes in the pathogenesis of POLG-related disease.
Collapse
Affiliation(s)
- Laura A Smith
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
| | - Chun Chen
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
| | - Nichola Z Lax
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders of Adults and Children, Newcastle University, Newcastle Upon Tyne, Newcastle, NE2 4HH UK
| | - Daniel Erskine
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders of Adults and Children, Newcastle University, Newcastle Upon Tyne, Newcastle, NE2 4HH UK
| |
Collapse
|
8
|
Suárez-Rivero JM, López-Pérez J, Muela-Zarzuela I, Pastor-Maldonado C, Cilleros-Holgado P, Gómez-Fernández D, Álvarez-Córdoba M, Munuera-Cabeza M, Talaverón-Rey M, Povea-Cabello S, Suárez-Carrillo A, Piñero-Pérez R, Reche-López D, Romero-Domínguez JM, Sánchez-Alcázar JA. Neurodegeneration, Mitochondria, and Antibiotics. Metabolites 2023; 13:metabo13030416. [PMID: 36984858 PMCID: PMC10056573 DOI: 10.3390/metabo13030416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/05/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Neurodegenerative diseases are characterized by the progressive loss of neurons, synapses, dendrites, and myelin in the central and/or peripheral nervous system. Actual therapeutic options for patients are scarce and merely palliative. Although they affect millions of patients worldwide, the molecular mechanisms underlying these conditions remain unclear. Mitochondrial dysfunction is generally found in neurodegenerative diseases and is believed to be involved in the pathomechanisms of these disorders. Therefore, therapies aiming to improve mitochondrial function are promising approaches for neurodegeneration. Although mitochondrial-targeted treatments are limited, new research findings have unraveled the therapeutic potential of several groups of antibiotics. These drugs possess pleiotropic effects beyond their anti-microbial activity, such as anti-inflammatory or mitochondrial enhancer function. In this review, we will discuss the controversial use of antibiotics as potential therapies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Juan M. Suárez-Rivero
- Institute for Biomedical Researching and Innovation of Cádiz (INiBICA) University Hospital Puerta del Mar, 11009 Cádiz, Spain
| | - Juan López-Pérez
- Institute for Biomedical Researching and Innovation of Cádiz (INiBICA) University Hospital Puerta del Mar, 11009 Cádiz, Spain
| | - Inés Muela-Zarzuela
- Institute for Biomedical Researching and Innovation of Cádiz (INiBICA) University Hospital Puerta del Mar, 11009 Cádiz, Spain
| | - Carmen Pastor-Maldonado
- Department of Molecular Biology Interfaculty Institute for Cell Biology, University of Tuebingen, D-72076 Tuebingen, Germany
| | - Paula Cilleros-Holgado
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - David Gómez-Fernández
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - Mónica Álvarez-Córdoba
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - Manuel Munuera-Cabeza
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - Marta Talaverón-Rey
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - Suleva Povea-Cabello
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - Alejandra Suárez-Carrillo
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - Rocío Piñero-Pérez
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - Diana Reche-López
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - José M. Romero-Domínguez
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - José Antonio Sánchez-Alcázar
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
- Correspondence: ; Tel.: +34-954978071
| |
Collapse
|
9
|
Pedersen ZO, Holm-Yildiz S, Dysgaard T. Nutritional Interventions for Patients with Mitochondrial POLG-Related Diseases: A Systematic Review on Efficacy and Safety. Int J Mol Sci 2022; 23:ijms231810658. [PMID: 36142570 PMCID: PMC9502393 DOI: 10.3390/ijms231810658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 12/03/2022] Open
Abstract
Ketogenic diet is recommended as a treatment to reduce seizure frequency in patients with intractable epilepsy. The evidence and safety results are sparse for diet interventions in patients with pathogenic polymerase gamma (POLG) variants and intractable epilepsy. The aim of this systematic review is to summarize the efficacy of diet treatment on seizure frequency, clinical symptoms, and potential deleterious effect of liver involvement in patients with mitochondrial diseases caused by pathogenic POLG variants. Literature was searched in PubMed, Embase; and Cochrane in April 2022; no filter restrictions were imposed. The reference lists of retrieved studies were checked for additional literature. Eligibility criteria included verified pathogenic POLG variant and diet treatment. Overall, 880 studies were identified, providing eight case-reports representing nine patients eligible for inclusion. In eight of nine cases, clinical symptoms were improved; six out of nine cases reported improvements in seizure frequency. However, increasing levels of liver enzymes after initiating ketogenic diet were found in four of the nine cases, with one case revealing decreased levels of liver enzymes after initiating long-chain triglyceride restriction. Viewed together, the studies imply that ketogenic diet can have a positive impact on seizure frequency, but may induce progression of liver impairment in patients with pathogenic POLG variants.
Collapse
|
10
|
Jha R, Patel H, Dubey R, Goswami JN, Bhagwat C, Saini L, K Manokaran R, John BM, Kovilapu UB, Mohimen A, Saxena A, Sondhi V. Clinical and molecular spectrum associated with Polymerase-γ related disorders. J Child Neurol 2022; 37:246-255. [PMID: 34986040 DOI: 10.1177/08830738211067065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND POLG pathogenic variants are the commonest single-gene cause of inherited mitochondrial disease. However, the data on clinicogenetic associations in POLG-related disorders are sparse. This study maps the clinicogenetic spectrum of POLG-related disorders in the pediatric population. METHODS Individuals were recruited across 6 centers in India. Children diagnosed between January 2015 and August 2020 with pathogenic or likely pathogenic POLG variants and age of onset <15 years were eligible. Phenotypically, patients were categorized into Alpers-Huttenlocher syndrome; myocerebrohepatopathy syndrome; myoclonic epilepsy, myopathy, and sensory ataxia; ataxia-neuropathy spectrum; Leigh disease; and autosomal dominant / recessive progressive external ophthalmoplegia. RESULTS A total of 3729 genetic reports and 4256 hospital records were screened. Twenty-two patients with pathogenic variants were included. Phenotypically, patients were classifiable into Alpers-Huttenlocher syndrome (8/22; 36.4%), progressive external ophthalmoplegia (8/22; 36.4%), Leigh disease (2/22; 9.1%), ataxia-neuropathy spectrum (2/22; 9.1%), and unclassified (2/22; 9.1%). The prominent clinical manifestations included developmental delay (n = 14; 63.7%), neuroregression (n = 14; 63.7%), encephalopathy (n = 11; 50%), epilepsy (n = 11; 50%), ophthalmoplegia (n = 8; 36.4%), and liver dysfunction (n = 8; 36.4%). Forty-four pathogenic variants were identified at 13 loci, and these were clustered at exonuclease (18/44; 40.9%), linker (13/44; 29.5%), polymerase (10/44; 22.7%), and N-terminal domains (3/44; 6.8%). Genotype-phenotype analysis suggested that serious outcomes including neuroregression (odds ratio [OR] 11, 95% CI 2.5, 41), epilepsy (OR 9, 95% CI 2.4, 39), encephalopathy (OR 5.7, 95% CI 1.4, 19), and hepatic dysfunction (OR 4.6, 95% CI 21.3, 15) were associated with at least 1 variant involving linker or polymerase domain. CONCLUSIONS We describe the clinical subgroups and their associations with different POLG domains. These can aid in the development of follow-up and management strategies of presymptomatic individuals.
Collapse
Affiliation(s)
- Ruchika Jha
- Department of Pediatrics, 29590Armed Forces Medical College, Pune, India
| | - Harshkumar Patel
- Department of Pediatric Neurology, 246889Zydus Hospital, Ahmedabad, India
| | - Rachana Dubey
- Department of Pediatric Neurology, Medanta Hospital, Indore, India
| | - Jyotindra N Goswami
- Department of Pediatrics, Army Hospital (Research & Referral), New Delhi, India
| | - Chandana Bhagwat
- Department of Pediatrics, Pediatric Neurology Unit, 29751Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Lokesh Saini
- Department of Pediatrics, Pediatric Neurology Unit, 29751Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ranjith K Manokaran
- Division of Pediatric Neurology, Department of Neurology, 204733Sri Ramachandra Institute of Higher Education, Chennai, India
| | - Biju M John
- Department of Pediatrics, 29590Armed Forces Medical College, Pune, India
| | - Uday B Kovilapu
- Department of Radiodiagnosis, 29590Armed Forces Medical College, Pune, India
| | - Aneesh Mohimen
- Department of Radiodiagnosis, 462017Command Hospital (Central Command), Lucknow, India
| | - Apoorv Saxena
- Department of Pediatrics, 29590Armed Forces Medical College, Pune, India
| | - Vishal Sondhi
- Department of Pediatrics, 29590Armed Forces Medical College, Pune, India
| |
Collapse
|
11
|
Mitochondrial Neurodegeneration. Cells 2022; 11:cells11040637. [PMID: 35203288 PMCID: PMC8870525 DOI: 10.3390/cells11040637] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/28/2022] [Accepted: 02/06/2022] [Indexed: 01/27/2023] Open
Abstract
Mitochondria are cytoplasmic organelles, which generate energy as heat and ATP, the universal energy currency of the cell. This process is carried out by coupling electron stripping through oxidation of nutrient substrates with the formation of a proton-based electrochemical gradient across the inner mitochondrial membrane. Controlled dissipation of the gradient can lead to production of heat as well as ATP, via ADP phosphorylation. This process is known as oxidative phosphorylation, and is carried out by four multiheteromeric complexes (from I to IV) of the mitochondrial respiratory chain, carrying out the electron flow whose energy is stored as a proton-based electrochemical gradient. This gradient sustains a second reaction, operated by the mitochondrial ATP synthase, or complex V, which condensates ADP and Pi into ATP. Four complexes (CI, CIII, CIV, and CV) are composed of proteins encoded by genes present in two separate compartments: the nuclear genome and a small circular DNA found in mitochondria themselves, and are termed mitochondrial DNA (mtDNA). Mutations striking either genome can lead to mitochondrial impairment, determining infantile, childhood or adult neurodegeneration. Mitochondrial disorders are complex neurological syndromes, and are often part of a multisystem disorder. In this paper, we divide the diseases into those caused by mtDNA defects and those that are due to mutations involving nuclear genes; from a clinical point of view, we discuss pediatric disorders in comparison to juvenile or adult-onset conditions. The complementary genetic contributions controlling organellar function and the complexity of the biochemical pathways present in the mitochondria justify the extreme genetic and phenotypic heterogeneity of this new area of inborn errors of metabolism known as ‘mitochondrial medicine’.
Collapse
|
12
|
Gopan A, Sarma MS. Mitochondrial hepatopathy: Respiratory chain disorders- ‘breathing in and out of the liver’. World J Hepatol 2021; 13:1707-1726. [PMID: 34904040 PMCID: PMC8637684 DOI: 10.4254/wjh.v13.i11.1707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/30/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondria, the powerhouse of a cell, are closely linked to the pathophysiology of various common as well as not so uncommon disorders of the liver and beyond. Evolution supports a prokaryotic descent, and, unsurprisingly, the organelle is worthy of being labeled an organism in itself. Since highly metabolically active organs require a continuous feed of energy, any dysfunction in the structure and function of mitochondria can have variable impact, with the worse end of the spectrum producing catastrophic consequences with a multisystem predisposition. Though categorized a hepatopathy, mitochondrial respiratory chain defects are not limited to the liver in time and space. The liver involvement is also variable in clinical presentation as well as in age of onset, from acute liver failure, cholestasis, or chronic liver disease. Other organs like eye, muscle, central and peripheral nervous system, gastrointestinal tract, hematological, endocrine, and renal systems are also variably involved. Diagnosis hinges on recognition of subtle clinical clues, screening metabolic investigations, evaluation of the extra-hepatic involvement, and role of genetics and tissue diagnosis. Treatment is aimed at both circumventing the acute metabolic crisis and long-term management including nutritional rehabilitation. This review lists and discusses the burden of mitochondrial respiratory chain defects, including various settings when to suspect, their evolution with time, including certain specific disorders, their tiered evaluation with diagnostic algorithms, management dilemmas, role of liver transplantation, and the future research tools.
Collapse
Affiliation(s)
- Amrit Gopan
- Department of Gastroenterology, Seth G.S Medical College and K.E.M Hospital, Mumbai 400012, India
| | - Moinak Sen Sarma
- Department of Pediatric Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| |
Collapse
|
13
|
Saccharomyces cerevisiae as a Tool for Studying Mutations in Nuclear Genes Involved in Diseases Caused by Mitochondrial DNA Instability. Genes (Basel) 2021; 12:genes12121866. [PMID: 34946817 PMCID: PMC8701800 DOI: 10.3390/genes12121866] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023] Open
Abstract
Mitochondrial DNA (mtDNA) maintenance is critical for oxidative phosphorylation (OXPHOS) since some subunits of the respiratory chain complexes are mitochondrially encoded. Pathological mutations in nuclear genes involved in the mtDNA metabolism may result in a quantitative decrease in mtDNA levels, referred to as mtDNA depletion, or in qualitative defects in mtDNA, especially in multiple deletions. Since, in the last decade, most of the novel mutations have been identified through whole-exome sequencing, it is crucial to confirm the pathogenicity by functional analysis in the appropriate model systems. Among these, the yeast Saccharomyces cerevisiae has proved to be a good model for studying mutations associated with mtDNA instability. This review focuses on the use of yeast for evaluating the pathogenicity of mutations in six genes, MPV17/SYM1, MRM2/MRM2, OPA1/MGM1, POLG/MIP1, RRM2B/RNR2, and SLC25A4/AAC2, all associated with mtDNA depletion or multiple deletions. We highlight the techniques used to construct a specific model and to measure the mtDNA instability as well as the main results obtained. We then report the contribution that yeast has given in understanding the pathogenic mechanisms of the mutant variants, in finding the genetic suppressors of the mitochondrial defects and in the discovery of molecules able to improve the mtDNA stability.
Collapse
|
14
|
Lim EW, Handzlik MK, Trefts E, Gengatharan JM, Pondevida CM, Shaw RJ, Metallo CM. Progressive alterations in amino acid and lipid metabolism correlate with peripheral neuropathy in PolgD257A mice. SCIENCE ADVANCES 2021; 7:eabj4077. [PMID: 34652935 PMCID: PMC8519573 DOI: 10.1126/sciadv.abj4077] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/24/2021] [Indexed: 05/03/2023]
Abstract
Mitochondria are central to metabolic homeostasis, and progressive mitochondrial defects have diverse metabolic consequences that could drive distinct pathophysiological states. Here, we comprehensively characterized metabolic alterations in PolgD257A mice. Plasma alanine increased markedly with time, with other organic acids accumulating to a lesser extent. These changes were reflective of increased Cori and Cahill cycling in PolgD257A mice and subsequent hypoglycemia, which did not occur during normal mouse aging. Tracing with [15N]ammonium further supported this shift in amino acid metabolism with mild impairment of the urea cycle. We also measured alterations in the lipidome, observing a reduction in canonical lipids and accumulation of 1-deoxysphingolipids, which are synthesized from alanine via promiscuous serine palmitoyltransferase activity and correlate with peripheral neuropathy. Consistent with this metabolic link, PolgD257A mice exhibited thermal hypoalgesia. These results highlight the longitudinal changes that occur in intermediary metabolism upon mitochondrial impairment and identify a contributing mechanism to mitochondria-associated neuropathy.
Collapse
Affiliation(s)
- Esther W. Lim
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Michal K. Handzlik
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Elijah Trefts
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Jivani M. Gengatharan
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Carlos M. Pondevida
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Reuben J. Shaw
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Christian M. Metallo
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| |
Collapse
|
15
|
McKnight CL, Low YC, Elliott DA, Thorburn DR, Frazier AE. Modelling Mitochondrial Disease in Human Pluripotent Stem Cells: What Have We Learned? Int J Mol Sci 2021; 22:7730. [PMID: 34299348 PMCID: PMC8306397 DOI: 10.3390/ijms22147730] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial diseases disrupt cellular energy production and are among the most complex group of inherited genetic disorders. Affecting approximately 1 in 5000 live births, they are both clinically and genetically heterogeneous, and can be highly tissue specific, but most often affect cell types with high energy demands in the brain, heart, and kidneys. There are currently no clinically validated treatment options available, despite several agents showing therapeutic promise. However, modelling these disorders is challenging as many non-human models of mitochondrial disease do not completely recapitulate human phenotypes for known disease genes. Additionally, access to disease-relevant cell or tissue types from patients is often limited. To overcome these difficulties, many groups have turned to human pluripotent stem cells (hPSCs) to model mitochondrial disease for both nuclear-DNA (nDNA) and mitochondrial-DNA (mtDNA) contexts. Leveraging the capacity of hPSCs to differentiate into clinically relevant cell types, these models permit both detailed investigation of cellular pathomechanisms and validation of promising treatment options. Here we catalogue hPSC models of mitochondrial disease that have been generated to date, summarise approaches and key outcomes of phenotypic profiling using these models, and discuss key criteria to guide future investigations using hPSC models of mitochondrial disease.
Collapse
Affiliation(s)
- Cameron L. McKnight
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (C.L.M.); (Y.C.L.); (D.A.E.); (D.R.T.)
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Yau Chung Low
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (C.L.M.); (Y.C.L.); (D.A.E.); (D.R.T.)
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - David A. Elliott
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (C.L.M.); (Y.C.L.); (D.A.E.); (D.R.T.)
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - David R. Thorburn
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (C.L.M.); (Y.C.L.); (D.A.E.); (D.R.T.)
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
- Victorian Clinical Genetics Services, Royal Children’s Hospital, Parkville, VIC 3052, Australia
| | - Ann E. Frazier
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (C.L.M.); (Y.C.L.); (D.A.E.); (D.R.T.)
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
16
|
Breu M, Häfele C, Glatter S, Trimmel-Schwahofer P, Golej J, Male C, Feucht M, Dressler A. Ketogenic Diet in the Treatment of Super-Refractory Status Epilepticus at a Pediatric Intensive Care Unit: A Single-Center Experience. Front Neurol 2021; 12:669296. [PMID: 34149600 PMCID: PMC8209375 DOI: 10.3389/fneur.2021.669296] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/12/2021] [Indexed: 01/01/2023] Open
Abstract
Background: To evaluate the use of the ketogenic diet (KD) for treatment of super-refractory status epilepticus (SRSE) at a pediatric intensive care unit (PICU). Design: A retrospective analysis of all pediatric patients treated for SRSE with the KD at our center was performed using patient data from our prospective longitudinal KD database. Setting: SRSE is defined as refractory SE that continues or recurs 24 h or more after initiation of anesthetic drugs. We describe the clinical and electroencephalographic (EEG) findings of all children treated with KD at our PICU. The KD was administered as add-on after failure of standard treatment. Response was defined as EEG seizure resolution (absence of seizures and suppression–burst ratio ≥50%). Patients: Eight consecutive SRSE patients (four females) treated with KD were included. Median age at onset of SRSE was 13.6 months (IQR 0.9–105), and median age at KD initiation was 13.7 months (IQR 1.9 months to 8.9 years). Etiology was known in 6/8 (75%): genetic in 4 (50%), structural in 1 (12.5%), and autoimmune/inflammatory in 1 (12.5%). Main Results: Time from onset of SRSE to initiation of KD was median 6 days (IQR 1.3–9). Time until clinically relevant ketosis (beta-hydroxybutyrate (BHB) >2 mmol/L in serum) was median 68.0 h (IQR 27.3–220.5). Higher ketosis was achieved when a higher proportion of enteral feeds was possible. Four (50%) patients responded to KD treatment within 7 days. During follow-up (median 4.2 months, IQR 1.6–12.3), 5/8 patients—three of them responders—died within 3–12 months after SRSE. Conclusions: In eight patients with SRSE due to severe etiologies including Alpers syndrome, we report an initial 50% response to KD. KD was used early in SRSE and sufficient levels of ketosis were reached early in most patients. Higher ketosis was achieved with combined enteral and parenteral feedings.
Collapse
Affiliation(s)
- Markus Breu
- Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria
| | - Chiara Häfele
- Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria
| | - Sarah Glatter
- Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria
| | | | - Johann Golej
- Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria
| | - Christoph Male
- Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria
| | - Martha Feucht
- Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria
| | - Anastasia Dressler
- Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria
| |
Collapse
|
17
|
Gowda V, Srinivasan V, Shivappa S. Childhood myocerebrohepatopathy spectrum disorder due to polymerase gamma pathogenic variant. Ann Indian Acad Neurol 2021; 24:942-943. [PMID: 35359545 PMCID: PMC8965953 DOI: 10.4103/aian.aian_607_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/16/2020] [Accepted: 08/03/2020] [Indexed: 11/30/2022] Open
|
18
|
Hikmat O, Naess K, Engvall M, Klingenberg C, Rasmussen M, Tallaksen CM, Brodtkorb E, Ostergaard E, de Coo IFM, Pias-Peleteiro L, Isohanni P, Uusimaa J, Darin N, Rahman S, Bindoff LA. Simplifying the clinical classification of polymerase gamma (POLG) disease based on age of onset; studies using a cohort of 155 cases. J Inherit Metab Dis 2020; 43:726-736. [PMID: 32391929 DOI: 10.1002/jimd.12211] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 01/14/2023]
Abstract
BACKGROUND Variants in POLG are one of the most common causes of inherited mitochondrial disease. Phenotypic classification of POLG disease has evolved haphazardly making it complicated and difficult to implement in everyday clinical practise. The aim of our study was to simplify the classification and facilitate better clinical recognition. METHODS A multinational, retrospective study using data from 155 patients with POLG variants recruited from seven European countries. RESULTS We describe the spectrum of clinical features associated with POLG variants in the largest known cohort of patients. While clinical features clearly form a continuum, stratifying patients simply according to age of onset-onset prior to age 12 years; onset between 12 and 40 years and onset after the age of 40 years, permitted us to identify clear phenotypic and prognostic differences. Prior to 12 years of age, liver involvement (87%), seizures (84%), and feeding difficulties (84%) were the major features. For those with onset between 12 and 40 years, ataxia (90%), peripheral neuropathy (84%), and seizures (71%) predominated, while for those with onset over 40 years, ptosis (95%), progressive external ophthalmoplegia (89%), and ataxia (58%) were the major clinical features. The earlier the onset the worse the prognosis. Patients with epilepsy and those with compound heterozygous variants carried significantly worse prognosis. CONCLUSION Based on our data, we propose a simplified POLG disease classification, which can be used to guide diagnostic investigations and predict disease course.
Collapse
Affiliation(s)
- Omar Hikmat
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway
| | - Karin Naess
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Martin Engvall
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Claus Klingenberg
- Department of Paediatric and Adolescent Medicine, University Hospital of North Norway, Tromso, Norway
- Paediatric Research Group, Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromso, Norway
| | - Magnhild Rasmussen
- Women and Children's Division, Department of Clinical Neurosciences for Children, Oslo University Hospital, Oslo, Norway
- Unit for Congenital and Hereditary Neuromuscular Disorders, Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Chantal Me Tallaksen
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Eylert Brodtkorb
- Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology and Clinical Neurophysiology, St. Olav's University Hospital, Trondheim, Norway
| | - Elsebet Ostergaard
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - I F M de Coo
- Department of Neurology, Medical Spectrum Twente, Enschede, The Netherlands
- Department of Genetics and Cell Biology, University of Maastricht, Maastricht, The Netherlands
| | | | - Pirjo Isohanni
- Department of Pediatric Neurology, Children's Hospital and Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Johanna Uusimaa
- PEDEGO Research Unit, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Department of Pediatric Neurology, Clinic for Children and Adolescents, Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Niklas Darin
- Department of Pediatrics, The Queen Silvia Children's Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Shamima Rahman
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, UK
- Metabolic Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Laurence A Bindoff
- Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
19
|
Sanderson KG, Millar E, Tumber A, Klatt R, Sondheimer N, Vincent A. Rod bipolar cell dysfunction in POLG retinopathy. Doc Ophthalmol 2020; 142:111-118. [PMID: 32567010 DOI: 10.1007/s10633-020-09777-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/09/2020] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To report the clinical and novel electrophysiological features in a child with POLG-related sensory ataxic neuropathy, dysarthria and ophthalmoparesis (SANDO). METHODS The proband, a male child of Indian descent, underwent serial systemic and ophthalmological evaluations from birth until 14 years of age. Eye examinations included visual acuity and extraocular movement assessments, fundus photography, spectral domain optical coherence tomography and full-field electroretinography (ERG). Detailed genetic testing was also performed. RESULTS The child carried a homozygous mutation in POLG (c.911T > G/p.Leu304Arg) and manifested systemic features such as seizures, headaches, areflexia, hypotonia, myopathy and vomiting. The child's distance visual acuity was 0.50 and 0.40 LogMAR in the right and left eyes, respectively. Bilateral ophthalmoplegia and ptosis were observed at 5 years of age. The dark-adapted (DA) ERG responses to 2.29 cd s m-2 and 7.6 cd s m-2 stimuli showed a markedly reduced b/a ratio; an electronegative configuration was noted to a DA 7.6 ERG. CONCLUSION This is the first documented case of an electronegative ERG in a POLG-related disorder consistent with generalized rod ON-bipolar dysfunction. The rest of the proband's systemic and ophthalmological features were consistent with SANDO but some features overlapped with other POLG-related disorders such as Alpers-Huttenlocher syndrome and autosomal dominant progressive external ophthalmoplegia demonstrating the wide phenotypic overlap expected due to POLG mutations.
Collapse
Affiliation(s)
- Kit Green Sanderson
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Eoghan Millar
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Anupreet Tumber
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Regan Klatt
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Neal Sondheimer
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada.,Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Canada
| | - Ajoy Vincent
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada. .,Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, University of Toronto, Toronto, Canada.
| |
Collapse
|
20
|
Abstract
The POLG gene encodes the mitochondrial DNA polymerase that is responsible for replication of the mitochondrial genome. Mutations in POLG can cause early childhood mitochondrial DNA (mtDNA) depletion syndromes or later-onset syndromes arising from mtDNA deletions. POLG mutations are the most common cause of inherited mitochondrial disorders, with as many as 2% of the population carrying these mutations. POLG-related disorders comprise a continuum of overlapping phenotypes with onset from infancy to late adulthood. The six leading disorders caused by POLG mutations are Alpers-Huttenlocher syndrome, which is one of the most severe phenotypes; childhood myocerebrohepatopathy spectrum, which presents within the first 3 years of life; myoclonic epilepsy myopathy sensory ataxia; ataxia neuropathy spectrum; autosomal recessive progressive external ophthalmoplegia; and autosomal dominant progressive external ophthalmoplegia. This Review describes the clinical features, pathophysiology, natural history and treatment of POLG-related disorders, focusing particularly on the neurological manifestations of these conditions.
Collapse
|
21
|
Lim A, Thomas RH. The mitochondrial epilepsies. Eur J Paediatr Neurol 2020; 24:47-52. [PMID: 31973983 DOI: 10.1016/j.ejpn.2019.12.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 01/19/2023]
Abstract
Mitochondria are vital organelles within cells that undertake many important metabolic roles, the most significant of which is to generate energy to support organ function. Dysfunction of the mitochondrion can lead to a wide range of clinical features, predominantly affecting organs with a high metabolic demand such as the brain. One of the main neurological manifestations of mitochondrial disease is metabolic epilepsies. These epileptic seizures are more frequently of posterior quadrant and occipital lobe onset, more likely to present with non-convulsive status epilepticus which may last months and be more resistant to treatment from the onset. The onset of can be of any age. Childhood onset epilepsy is a major phenotypic feature in mitochondrial disorders such as Alpers-Huttenlocher syndrome, pyruvate dehydrogenase complex deficiencies, and Leigh syndrome. Meanwhile, adults with classical mitochondrial disease syndrome such as MELAS, MERFF or POLG-related disorders could present with either focal or generalised seizures. There are no specific curative treatments for mitochondrial epilepsy. Generally, the epileptic seizures should be managed by specialist neurologist with appropriate use of anticonvulsants. As a general rule, especially in disorders associated with mutation in POLG, sodium valproate is best avoided because hepato-toxicity can be fulminant and fatal.
Collapse
Affiliation(s)
- Albert Lim
- Department of Paediatrics, Great Northern Children's Hospital, Queen Victoria Rd, Newcastle-Upon-Tyne, NE1 4LP, United Kingdom; Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle-Upon-Tyne, NE2 4HH, United Kingdom
| | - Rhys H Thomas
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle-Upon-Tyne, NE2 4HH, United Kingdom; Department of Neurology, Royal Victoria Infirmary, Queen Victoria Rd, Newcastle-Upon-Tyne, NE1 4LP, United Kingdom; Institute of Neuroscience, Henry Wellcome Building, Framlington Place, Newcastle University, Newcastle-Upon-Tyne, NE2 4HH, United Kingdom.
| |
Collapse
|
22
|
Saneto RP. An update on Alpers-Huttenlocher syndrome: pathophysiology of disease and rational treatment designs. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1540979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Russell P. Saneto
- Department of Neurology, Division of Pediatric Neurology, University of Washington and Seattle Children’s Hospital, Seattle, WA, USA
- Neuroscience Institute, Center for Integrative Brain Research, Seattle Children’s Hospital, Seattle, WA, USA
| |
Collapse
|
23
|
Hayhurst H, Anagnostou ME, Bogle HJ, Grady JP, Taylor RW, Bindoff LA, McFarland R, Turnbull DM, Lax NZ. Dissecting the neuronal vulnerability underpinning Alpers' syndrome: a clinical and neuropathological study. Brain Pathol 2018; 29:97-113. [PMID: 30021052 PMCID: PMC7379503 DOI: 10.1111/bpa.12640] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/29/2018] [Indexed: 11/28/2022] Open
Abstract
Alpers’ syndrome is an early‐onset neurodegenerative disorder often caused by biallelic pathogenic variants in the gene encoding the catalytic subunit of polymerase‐gamma (POLG) which is essential for mitochondrial DNA (mtDNA) replication. Alpers’ syndrome is characterized by intractable epilepsy, developmental regression and liver failure which typically affects children aged 6 months–3 years. Although later onset variants are now recognized, they differ in that they are primarily an epileptic encephalopathy with ataxia. The disorder is progressive, without cure and inevitably leads to death from drug‐resistant status epilepticus, often with concomitant liver failure. Since our understanding of the mechanisms contributing the neurological features in Alpers’ syndrome is rudimentary, we performed a detailed and quantitative neuropathological study on 13 patients with clinically and histologically‐defined Alpers’ syndrome with ages ranging from 2 months to 18 years. Quantitative immunofluorescence showed severe respiratory chain deficiencies involving mitochondrial respiratory chain subunits of complex I and, to a lesser extent, complex IV in inhibitory interneurons and pyramidal neurons in the occipital cortex and in Purkinje cells of the cerebellum. Diminished densities of these neuronal populations were also observed. This study represents the largest cohort of post‐mortem brains from patients with clinically defined Alpers’ syndrome where we provide quantitative evidence of extensive complex I defects affecting interneurons and Purkinje cells for the first time. We believe interneuron and Purkinje cell pathology underpins the clinical development of seizures and ataxia seen in Alpers’ syndrome. This study also further highlights the extensive involvement of GABAergic neurons in mitochondrial disease.
Collapse
Affiliation(s)
- Hannah Hayhurst
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Maria-Eleni Anagnostou
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Helen J Bogle
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - John P Grady
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Laurence A Bindoff
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Neurology, Haukeland University, Bergen, Norway
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Doug M Turnbull
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Nichola Z Lax
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
24
|
Specific EEG markers in POLG1 Alpers’ syndrome. Clin Neurophysiol 2018; 129:2127-2131. [DOI: 10.1016/j.clinph.2018.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/29/2018] [Accepted: 07/18/2018] [Indexed: 11/21/2022]
|
25
|
Elitt CM, Volpe JJ. Degenerative Disorders of the Newborn. VOLPE'S NEUROLOGY OF THE NEWBORN 2018:823-858.e11. [DOI: 10.1016/b978-0-323-42876-7.00029-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
26
|
Park S, Kang HC, Lee JS, Park YN, Kim S, Koh H. Alpers-Huttenlocher Syndrome First Presented with Hepatic Failure: Can Liver Transplantation Be Considered as Treatment Option? Pediatr Gastroenterol Hepatol Nutr 2017; 20:259-262. [PMID: 29302508 PMCID: PMC5750381 DOI: 10.5223/pghn.2017.20.4.259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/18/2017] [Accepted: 05/26/2017] [Indexed: 11/18/2022] Open
Abstract
Mitochondria play essential role in eukaryotic cells including in the oxidative phosphorylation and generation of adenosine triphosphate via the electron-transport chain. Therefore, defects in mitochondrial DNA (mtDNA) can result in mitochondrial dysfunction which leads to various mitochondrial disorders that may present with various neurologic and non-neurologic manifestations. Mutations in the nuclear gene polymerase gamma (POLG) are associated with mtDNA depletions, and Alpers-Huttenlocher syndrome is one of the most severe manifestations of POLG mutation characterized by the clinical triad of intractable seizures, psychomotor regression, and liver failure. The hepatic manifestation usually occurs late in the disease's course, but in some references, hepatitis was reportedly the first manifestation. Liver transplantation was considered contraindicated in Alpers-Huttenlocher syndrome due to its poor prognosis. We acknowledged a patient with the first manifestation of the disease being hepatic failure who eventually underwent liver transplantation, and whose neurological outcome improved after cocktail therapy.
Collapse
Affiliation(s)
- Sowon Park
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hoon-Chul Kang
- Division of Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jin-Sung Lee
- Division of Clinical Genetics, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Young Nyun Park
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Kim
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hong Koh
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
27
|
Hikmat O, Eichele T, Tzoulis C, Bindoff LA. Understanding the Epilepsy in POLG Related Disease. Int J Mol Sci 2017; 18:ijms18091845. [PMID: 28837072 PMCID: PMC5618494 DOI: 10.3390/ijms18091845] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 12/31/2022] Open
Abstract
Epilepsy is common in polymerase gamma (POLG) related disease and is associated with high morbidity and mortality. Epileptiform discharges typically affect the occipital regions initially and focal seizures, commonly evolving to bilateral convulsive seizures which are the most common seizure types in both adults and children. Our work has shown that mtDNA depletion—i.e., the quantitative loss of mtDNA—in neurones is the earliest and most important factor of the subsequent development of cellular dysfunction. Loss of mtDNA leads to loss of mitochondrial respiratory chain (MRC) components that, in turn, progressively disables energy metabolism. This critically balanced neuronal energy metabolism leads to both a chronic and continuous attrition (i.e., neurodegeneration) and it leaves the neurone unable to cope with increased demand that can trigger a potentially catastrophic cycle that results in acute focal necrosis. We believe that it is the onset of epilepsy that triggers the cascade of damage. These events can be identified in the stepwise evolution that characterizes the clinical, Electroencephalography (EEG), neuro-imaging, and neuropathology findings. Early recognition with prompt and aggressive seizure management is vital and may play a role in modifying the epileptogenic process and improving survival.
Collapse
Affiliation(s)
- Omar Hikmat
- Department of Pediatrics, Haukeland University Hospital, 5021 Bergen, Norway.
- Department of Clinical Medicine (K1), University of Bergen, 5020 Bergen, Norway.
| | - Tom Eichele
- K.G. Jebsen Center for Research on Neuropsychiatric Disorders, University of Bergen, 5009 Bergen, Norway.
- Department of Biological and Medical Psychology, University of Bergen, 5009 Bergen, Norway.
- Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway.
| | - Charalampos Tzoulis
- Department of Clinical Medicine (K1), University of Bergen, 5020 Bergen, Norway.
- Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway.
| | - Laurence A Bindoff
- Department of Clinical Medicine (K1), University of Bergen, 5020 Bergen, Norway.
- Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway.
| |
Collapse
|
28
|
Zhang YF, Wang JT, Gao JB, Lyu YY, Liang JM, Jia FY, Chen YB, Hao YP. [Alpers-Huttenlocher syndrome caused by a novel compound heterozygous mutation of POLG gene: a case report]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:498-501. [PMID: 28506336 PMCID: PMC7389134 DOI: 10.7499/j.issn.1008-8830.2017.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 10/11/2016] [Indexed: 06/07/2023]
Affiliation(s)
- Yan-Feng Zhang
- Department of Pediatric Neurology, First Hospital of Jilin University, Changchun 130021, China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
The clinical spectrum and natural history of early-onset diseases due to DNA polymerase gamma mutations. Genet Med 2017; 19:1217-1225. [DOI: 10.1038/gim.2017.35] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 12/26/2022] Open
|
30
|
Cho JS, Kim SH, Kim HY, Chung T, Kim D, Jang S, Lee SB, Yoo SK, Shin J, Kim JI, Kim H, Hwang H, Chae JH, Choi J, Kim KJ, Lim BC. FARS2 mutation and epilepsy: Possible link with early-onset epileptic encephalopathy. Epilepsy Res 2017; 129:118-124. [DOI: 10.1016/j.eplepsyres.2016.11.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 11/23/2016] [Accepted: 11/30/2016] [Indexed: 11/26/2022]
|
31
|
Walker MA, Mohler KP, Hopkins KW, Oakley DH, Sweetser DA, Ibba M, Frosch MP, Thibert RL. Novel Compound Heterozygous Mutations Expand the Recognized Phenotypes of FARS2-Linked Disease. J Child Neurol 2016; 31:1127-37. [PMID: 27095821 PMCID: PMC4981184 DOI: 10.1177/0883073816643402] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 03/03/2016] [Indexed: 12/28/2022]
Abstract
Mutations in mitochondrial aminoacyl-tRNA synthetases are an increasingly recognized cause of human diseases, often arising in individuals with compound heterozygous mutations and presenting with system-specific phenotypes, frequently neurologic. FARS2 encodes mitochondrial phenylalanyl transfer ribonucleic acid (RNA) synthetase (mtPheRS), perturbations of which have been reported in 6 cases of an infantile, lethal disease with refractory epilepsy and progressive myoclonus. Here the authors report the case of juvenile onset refractory epilepsy and progressive myoclonus with compound heterozygous FARS2 mutations. The authors describe the clinical course over 6 years of care at their institution and diagnostic studies including electroencephalogram (EEG), brain magnetic resonance imaging (MRI), serum and cerebrospinal fluid analyses, skeletal muscle biopsy histology, and autopsy gross and histologic findings, which include features shared with Alpers-Huttenlocher syndrome, Leigh syndrome, and a previously published case of FARS2 mutation associated infantile onset disease. The authors also present structure-guided analysis of the relevant mutations based on published mitochondrial phenylalanyl transfer RNA synthetase and related protein crystal structures as well as biochemical analysis of the corresponding recombinant mutant proteins.
Collapse
Affiliation(s)
- Melissa A Walker
- Division of Child Neurology, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Kyle P Mohler
- Department of Microbiology, Ohio State University, Columbus, OH, USA
| | - Kyle W Hopkins
- Department of Microbiology, Ohio State University, Columbus, OH, USA
| | - Derek H Oakley
- Division of Neuropathology, Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - David A Sweetser
- Department of Medical Genetics, Massachusetts General Hospital, Boston, MA, USA
| | - Michael Ibba
- Department of Microbiology, Ohio State University, Columbus, OH, USA
| | - Matthew P Frosch
- Division of Neuropathology, Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Ronald L Thibert
- Department of Neurology, Division of Child Neurology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
32
|
Saneto RP. Alpers-Huttenlocher syndrome: the role of a multidisciplinary health care team. J Multidiscip Healthc 2016; 9:323-33. [PMID: 27555780 PMCID: PMC4968991 DOI: 10.2147/jmdh.s84900] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Alpers–Huttenlocher syndrome (AHS) is a mitochondrial DNA-depletion syndrome. Age of onset is bimodal: early onset at 2–4 years and later adolescent onset at 17–24 years of age. Early development is usually normal, with epilepsy heralding the disorder in ~50% of patients. The onset of seizures is coupled with progressive cognitive decline. Hepatopathy is variable, and when present is a progressive dysfunction leading to liver failure in many cases. These features of seizures, cognitive degeneration, and hepatopathy represent the “classic triad” of AHS. However, most patients develop other system involvement. Therefore, although AHS is ultimately a lethal disorder, medical care is required for sustained quality of life. Frequently, additional organ systems – gastrointestinal, respiratory, nutritional, and psychiatric – abnormalities appear and need treatment. Rarely, cardiovascular dysfunction and even pregnancy complicate medical treatment. Optimal care requires a team of physicians and caretakers to make sure quality of life is optimized. The care team, together with the family and palliative care specialists, need to be in communication as the disease progresses and medical changes occur. Although the unpredictable losses of function challenge medical care, the team approach can foster the individual quality-of-life care needed for the patient and family.
Collapse
Affiliation(s)
- Russell P Saneto
- Department of Neurology, University of Washington; Division of Pediatric Neurology, Seattle Children's Hospital, Seattle, WA, USA
| |
Collapse
|
33
|
Muona M, Fukata Y, Anttonen AK, Laari A, Palotie A, Pihko H, Lönnqvist T, Valanne L, Somer M, Fukata M, Lehesjoki AE. Dysfunctional ADAM22 implicated in progressive encephalopathy with cortical atrophy and epilepsy. NEUROLOGY-GENETICS 2016; 2:e46. [PMID: 27066583 PMCID: PMC4817901 DOI: 10.1212/nxg.0000000000000046] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/20/2015] [Indexed: 12/26/2022]
Abstract
Objective: To identify the molecular genetic basis of a syndrome characterized by rapidly progressing cerebral atrophy, intractable seizures, and intellectual disability. Methods: We performed exome sequencing in the proband and whole-genome single nucleotide polymorphism genotyping (copy number variant analysis) in the proband-parent trio. We used heterologous expression systems to study the functional consequences of identified mutations. Results: The search for potentially deleterious recessive or de novo variants yielded compound heterozygous missense (c.1202G>A, p.Cys401Tyr) and frameshift deletion (c.2396delG, p.Ser799IlefsTer96) mutations in ADAM22, which encodes a postsynaptic receptor for LGI1. The deleterious effect of the mutations was observed in cell surface binding and immunoprecipitation assays, which revealed that both mutant proteins failed to bind to LGI1. Furthermore, immunoprecipitation assays showed that the frameshift mutant ADAM22 also did not bind to the postsynaptic scaffolding protein PSD-95. Conclusions: The mutations identified abolish the LGI1-ADAM22 ligand-receptor complex and are thus a likely primary cause of the proband's epilepsy syndrome, which is characterized by unusually rapidly progressing cortical atrophy starting at 3–4 months of age. These findings are in line with the implicated role of the LGI1-ADAM22 complex as a key player in nervous system development, specifically in functional maturation of postnatal synapses. Because the frameshift mutation affects an alternatively spliced exon with highest expression in postnatal brain, the combined effect of the mutations is likely to be hypomorphic rather than complete loss of function. This is compatible with the longer survival of the patient compared to Lgi1−/− and Adam22−/− mice, which develop lethal seizures during the first postnatal weeks.
Collapse
Affiliation(s)
- Mikko Muona
- Institute for Molecular Medicine Finland (M.M., A.P.), Neuroscience Center (M.M., A.L., A.-E.L.), and Research Programs Unit, Molecular Neurology (M.M., A.-K.A., A.L., A.-E.L.), University of Helsinki, Finland; Folkhälsan Institute of Genetics (M.M., A.-K.A., A.L., A.-E.L.), Helsinki, Finland; Division of Membrane Physiology (Y.F., M.F.), Department of Cell Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan; Department of Physiological Sciences (Y.F., M.F.), School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan; Medical and Clinical Genetics (A.-K.A.), University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Analytic and Translational Genetics Unit (A.P.), Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA; Program in Medical and Population Genetics (A.P.) and Stanley Center for Psychiatric Research (A.P.), Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA; Program in Genetics and Genomics (A.P.), Biological and Biomedical Sciences, Harvard Medical School, Boston, MA; Wellcome Trust Sanger Institute (A.P.), Wellcome Trust Genome Campus, Hinxton, United Kingdom; Psychiatric & Neurodevelopmental Genetics Unit (A.P.), Department of Psychiatry, and Department of Neurology (A.P.), Massachusetts General Hospital, Boston, MA; Department of Pediatric Neurology (H.P., T.L.), Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Radiology (L.V.), HUS Medical Imaging Center, Helsinki, Finland; and Family Federation of Finland (M.S.), Helsinki, Finland
| | - Yuko Fukata
- Institute for Molecular Medicine Finland (M.M., A.P.), Neuroscience Center (M.M., A.L., A.-E.L.), and Research Programs Unit, Molecular Neurology (M.M., A.-K.A., A.L., A.-E.L.), University of Helsinki, Finland; Folkhälsan Institute of Genetics (M.M., A.-K.A., A.L., A.-E.L.), Helsinki, Finland; Division of Membrane Physiology (Y.F., M.F.), Department of Cell Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan; Department of Physiological Sciences (Y.F., M.F.), School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan; Medical and Clinical Genetics (A.-K.A.), University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Analytic and Translational Genetics Unit (A.P.), Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA; Program in Medical and Population Genetics (A.P.) and Stanley Center for Psychiatric Research (A.P.), Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA; Program in Genetics and Genomics (A.P.), Biological and Biomedical Sciences, Harvard Medical School, Boston, MA; Wellcome Trust Sanger Institute (A.P.), Wellcome Trust Genome Campus, Hinxton, United Kingdom; Psychiatric & Neurodevelopmental Genetics Unit (A.P.), Department of Psychiatry, and Department of Neurology (A.P.), Massachusetts General Hospital, Boston, MA; Department of Pediatric Neurology (H.P., T.L.), Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Radiology (L.V.), HUS Medical Imaging Center, Helsinki, Finland; and Family Federation of Finland (M.S.), Helsinki, Finland
| | - Anna-Kaisa Anttonen
- Institute for Molecular Medicine Finland (M.M., A.P.), Neuroscience Center (M.M., A.L., A.-E.L.), and Research Programs Unit, Molecular Neurology (M.M., A.-K.A., A.L., A.-E.L.), University of Helsinki, Finland; Folkhälsan Institute of Genetics (M.M., A.-K.A., A.L., A.-E.L.), Helsinki, Finland; Division of Membrane Physiology (Y.F., M.F.), Department of Cell Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan; Department of Physiological Sciences (Y.F., M.F.), School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan; Medical and Clinical Genetics (A.-K.A.), University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Analytic and Translational Genetics Unit (A.P.), Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA; Program in Medical and Population Genetics (A.P.) and Stanley Center for Psychiatric Research (A.P.), Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA; Program in Genetics and Genomics (A.P.), Biological and Biomedical Sciences, Harvard Medical School, Boston, MA; Wellcome Trust Sanger Institute (A.P.), Wellcome Trust Genome Campus, Hinxton, United Kingdom; Psychiatric & Neurodevelopmental Genetics Unit (A.P.), Department of Psychiatry, and Department of Neurology (A.P.), Massachusetts General Hospital, Boston, MA; Department of Pediatric Neurology (H.P., T.L.), Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Radiology (L.V.), HUS Medical Imaging Center, Helsinki, Finland; and Family Federation of Finland (M.S.), Helsinki, Finland
| | - Anni Laari
- Institute for Molecular Medicine Finland (M.M., A.P.), Neuroscience Center (M.M., A.L., A.-E.L.), and Research Programs Unit, Molecular Neurology (M.M., A.-K.A., A.L., A.-E.L.), University of Helsinki, Finland; Folkhälsan Institute of Genetics (M.M., A.-K.A., A.L., A.-E.L.), Helsinki, Finland; Division of Membrane Physiology (Y.F., M.F.), Department of Cell Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan; Department of Physiological Sciences (Y.F., M.F.), School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan; Medical and Clinical Genetics (A.-K.A.), University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Analytic and Translational Genetics Unit (A.P.), Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA; Program in Medical and Population Genetics (A.P.) and Stanley Center for Psychiatric Research (A.P.), Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA; Program in Genetics and Genomics (A.P.), Biological and Biomedical Sciences, Harvard Medical School, Boston, MA; Wellcome Trust Sanger Institute (A.P.), Wellcome Trust Genome Campus, Hinxton, United Kingdom; Psychiatric & Neurodevelopmental Genetics Unit (A.P.), Department of Psychiatry, and Department of Neurology (A.P.), Massachusetts General Hospital, Boston, MA; Department of Pediatric Neurology (H.P., T.L.), Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Radiology (L.V.), HUS Medical Imaging Center, Helsinki, Finland; and Family Federation of Finland (M.S.), Helsinki, Finland
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (M.M., A.P.), Neuroscience Center (M.M., A.L., A.-E.L.), and Research Programs Unit, Molecular Neurology (M.M., A.-K.A., A.L., A.-E.L.), University of Helsinki, Finland; Folkhälsan Institute of Genetics (M.M., A.-K.A., A.L., A.-E.L.), Helsinki, Finland; Division of Membrane Physiology (Y.F., M.F.), Department of Cell Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan; Department of Physiological Sciences (Y.F., M.F.), School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan; Medical and Clinical Genetics (A.-K.A.), University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Analytic and Translational Genetics Unit (A.P.), Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA; Program in Medical and Population Genetics (A.P.) and Stanley Center for Psychiatric Research (A.P.), Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA; Program in Genetics and Genomics (A.P.), Biological and Biomedical Sciences, Harvard Medical School, Boston, MA; Wellcome Trust Sanger Institute (A.P.), Wellcome Trust Genome Campus, Hinxton, United Kingdom; Psychiatric & Neurodevelopmental Genetics Unit (A.P.), Department of Psychiatry, and Department of Neurology (A.P.), Massachusetts General Hospital, Boston, MA; Department of Pediatric Neurology (H.P., T.L.), Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Radiology (L.V.), HUS Medical Imaging Center, Helsinki, Finland; and Family Federation of Finland (M.S.), Helsinki, Finland
| | - Helena Pihko
- Institute for Molecular Medicine Finland (M.M., A.P.), Neuroscience Center (M.M., A.L., A.-E.L.), and Research Programs Unit, Molecular Neurology (M.M., A.-K.A., A.L., A.-E.L.), University of Helsinki, Finland; Folkhälsan Institute of Genetics (M.M., A.-K.A., A.L., A.-E.L.), Helsinki, Finland; Division of Membrane Physiology (Y.F., M.F.), Department of Cell Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan; Department of Physiological Sciences (Y.F., M.F.), School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan; Medical and Clinical Genetics (A.-K.A.), University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Analytic and Translational Genetics Unit (A.P.), Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA; Program in Medical and Population Genetics (A.P.) and Stanley Center for Psychiatric Research (A.P.), Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA; Program in Genetics and Genomics (A.P.), Biological and Biomedical Sciences, Harvard Medical School, Boston, MA; Wellcome Trust Sanger Institute (A.P.), Wellcome Trust Genome Campus, Hinxton, United Kingdom; Psychiatric & Neurodevelopmental Genetics Unit (A.P.), Department of Psychiatry, and Department of Neurology (A.P.), Massachusetts General Hospital, Boston, MA; Department of Pediatric Neurology (H.P., T.L.), Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Radiology (L.V.), HUS Medical Imaging Center, Helsinki, Finland; and Family Federation of Finland (M.S.), Helsinki, Finland
| | - Tuula Lönnqvist
- Institute for Molecular Medicine Finland (M.M., A.P.), Neuroscience Center (M.M., A.L., A.-E.L.), and Research Programs Unit, Molecular Neurology (M.M., A.-K.A., A.L., A.-E.L.), University of Helsinki, Finland; Folkhälsan Institute of Genetics (M.M., A.-K.A., A.L., A.-E.L.), Helsinki, Finland; Division of Membrane Physiology (Y.F., M.F.), Department of Cell Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan; Department of Physiological Sciences (Y.F., M.F.), School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan; Medical and Clinical Genetics (A.-K.A.), University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Analytic and Translational Genetics Unit (A.P.), Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA; Program in Medical and Population Genetics (A.P.) and Stanley Center for Psychiatric Research (A.P.), Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA; Program in Genetics and Genomics (A.P.), Biological and Biomedical Sciences, Harvard Medical School, Boston, MA; Wellcome Trust Sanger Institute (A.P.), Wellcome Trust Genome Campus, Hinxton, United Kingdom; Psychiatric & Neurodevelopmental Genetics Unit (A.P.), Department of Psychiatry, and Department of Neurology (A.P.), Massachusetts General Hospital, Boston, MA; Department of Pediatric Neurology (H.P., T.L.), Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Radiology (L.V.), HUS Medical Imaging Center, Helsinki, Finland; and Family Federation of Finland (M.S.), Helsinki, Finland
| | - Leena Valanne
- Institute for Molecular Medicine Finland (M.M., A.P.), Neuroscience Center (M.M., A.L., A.-E.L.), and Research Programs Unit, Molecular Neurology (M.M., A.-K.A., A.L., A.-E.L.), University of Helsinki, Finland; Folkhälsan Institute of Genetics (M.M., A.-K.A., A.L., A.-E.L.), Helsinki, Finland; Division of Membrane Physiology (Y.F., M.F.), Department of Cell Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan; Department of Physiological Sciences (Y.F., M.F.), School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan; Medical and Clinical Genetics (A.-K.A.), University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Analytic and Translational Genetics Unit (A.P.), Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA; Program in Medical and Population Genetics (A.P.) and Stanley Center for Psychiatric Research (A.P.), Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA; Program in Genetics and Genomics (A.P.), Biological and Biomedical Sciences, Harvard Medical School, Boston, MA; Wellcome Trust Sanger Institute (A.P.), Wellcome Trust Genome Campus, Hinxton, United Kingdom; Psychiatric & Neurodevelopmental Genetics Unit (A.P.), Department of Psychiatry, and Department of Neurology (A.P.), Massachusetts General Hospital, Boston, MA; Department of Pediatric Neurology (H.P., T.L.), Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Radiology (L.V.), HUS Medical Imaging Center, Helsinki, Finland; and Family Federation of Finland (M.S.), Helsinki, Finland
| | - Mirja Somer
- Institute for Molecular Medicine Finland (M.M., A.P.), Neuroscience Center (M.M., A.L., A.-E.L.), and Research Programs Unit, Molecular Neurology (M.M., A.-K.A., A.L., A.-E.L.), University of Helsinki, Finland; Folkhälsan Institute of Genetics (M.M., A.-K.A., A.L., A.-E.L.), Helsinki, Finland; Division of Membrane Physiology (Y.F., M.F.), Department of Cell Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan; Department of Physiological Sciences (Y.F., M.F.), School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan; Medical and Clinical Genetics (A.-K.A.), University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Analytic and Translational Genetics Unit (A.P.), Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA; Program in Medical and Population Genetics (A.P.) and Stanley Center for Psychiatric Research (A.P.), Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA; Program in Genetics and Genomics (A.P.), Biological and Biomedical Sciences, Harvard Medical School, Boston, MA; Wellcome Trust Sanger Institute (A.P.), Wellcome Trust Genome Campus, Hinxton, United Kingdom; Psychiatric & Neurodevelopmental Genetics Unit (A.P.), Department of Psychiatry, and Department of Neurology (A.P.), Massachusetts General Hospital, Boston, MA; Department of Pediatric Neurology (H.P., T.L.), Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Radiology (L.V.), HUS Medical Imaging Center, Helsinki, Finland; and Family Federation of Finland (M.S.), Helsinki, Finland
| | - Masaki Fukata
- Institute for Molecular Medicine Finland (M.M., A.P.), Neuroscience Center (M.M., A.L., A.-E.L.), and Research Programs Unit, Molecular Neurology (M.M., A.-K.A., A.L., A.-E.L.), University of Helsinki, Finland; Folkhälsan Institute of Genetics (M.M., A.-K.A., A.L., A.-E.L.), Helsinki, Finland; Division of Membrane Physiology (Y.F., M.F.), Department of Cell Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan; Department of Physiological Sciences (Y.F., M.F.), School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan; Medical and Clinical Genetics (A.-K.A.), University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Analytic and Translational Genetics Unit (A.P.), Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA; Program in Medical and Population Genetics (A.P.) and Stanley Center for Psychiatric Research (A.P.), Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA; Program in Genetics and Genomics (A.P.), Biological and Biomedical Sciences, Harvard Medical School, Boston, MA; Wellcome Trust Sanger Institute (A.P.), Wellcome Trust Genome Campus, Hinxton, United Kingdom; Psychiatric & Neurodevelopmental Genetics Unit (A.P.), Department of Psychiatry, and Department of Neurology (A.P.), Massachusetts General Hospital, Boston, MA; Department of Pediatric Neurology (H.P., T.L.), Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Radiology (L.V.), HUS Medical Imaging Center, Helsinki, Finland; and Family Federation of Finland (M.S.), Helsinki, Finland
| | - Anna-Elina Lehesjoki
- Institute for Molecular Medicine Finland (M.M., A.P.), Neuroscience Center (M.M., A.L., A.-E.L.), and Research Programs Unit, Molecular Neurology (M.M., A.-K.A., A.L., A.-E.L.), University of Helsinki, Finland; Folkhälsan Institute of Genetics (M.M., A.-K.A., A.L., A.-E.L.), Helsinki, Finland; Division of Membrane Physiology (Y.F., M.F.), Department of Cell Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan; Department of Physiological Sciences (Y.F., M.F.), School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan; Medical and Clinical Genetics (A.-K.A.), University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Analytic and Translational Genetics Unit (A.P.), Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA; Program in Medical and Population Genetics (A.P.) and Stanley Center for Psychiatric Research (A.P.), Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA; Program in Genetics and Genomics (A.P.), Biological and Biomedical Sciences, Harvard Medical School, Boston, MA; Wellcome Trust Sanger Institute (A.P.), Wellcome Trust Genome Campus, Hinxton, United Kingdom; Psychiatric & Neurodevelopmental Genetics Unit (A.P.), Department of Psychiatry, and Department of Neurology (A.P.), Massachusetts General Hospital, Boston, MA; Department of Pediatric Neurology (H.P., T.L.), Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Radiology (L.V.), HUS Medical Imaging Center, Helsinki, Finland; and Family Federation of Finland (M.S.), Helsinki, Finland
| |
Collapse
|
34
|
Abstract
Leigh syndrome (LS) is the most common pediatric presentation of a defined mitochondrial disease. This progressive encephalopathy is characterized pathologically by the development of bilateral symmetrical lesions in the brainstem and basal ganglia that show gliosis, vacuolation, capillary proliferation, relative neuronal preservation, and by hyperlacticacidemia in the blood and/or cerebrospinal fluid. Understanding the molecular mechanisms underlying this unique pathology has been challenging, particularly in view of the heterogeneous and not yet fully determined genetic basis of LS. Moreover, animal models that mimic features of LS have only been created relatively recently. Here, we review the pathology of LS and consider what might be the molecular mechanisms underlying its pathogenesis. Data from a wide range of sources, including patient samples, animal models, and studies of hypoxic-ischemic encephalopathy (a condition that shares features with LS), were used to provide insight into the pathogenic mechanisms that may drive lesion development. Based on current data, we suggest that severe ATP depletion, gliosis, hyperlacticacidemia, reactive oxygen species, and potentially excitotoxicity cumulatively contribute to the neuropathogenesis of LS. An intimate understanding of the molecular mechanisms causing LS is required to accelerate the development of LS treatments.
Collapse
|
35
|
Anttonen AK, Hilander T, Linnankivi T, Isohanni P, French RL, Liu Y, Simonović M, Söll D, Somer M, Muth-Pawlak D, Corthals GL, Laari A, Ylikallio E, Lähde M, Valanne L, Lönnqvist T, Pihko H, Paetau A, Lehesjoki AE, Suomalainen A, Tyynismaa H. Selenoprotein biosynthesis defect causes progressive encephalopathy with elevated lactate. Neurology 2015; 85:306-15. [PMID: 26115735 DOI: 10.1212/wnl.0000000000001787] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/26/2015] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVE We aimed to decipher the molecular genetic basis of disease in a cohort of children with a uniform clinical presentation of neonatal irritability, spastic or dystonic quadriplegia, virtually absent psychomotor development, axonal neuropathy, and elevated blood/CSF lactate. METHODS We performed whole-exome sequencing of blood DNA from the index patients. Detected compound heterozygous mutations were confirmed by Sanger sequencing. Structural predictions and a bacterial activity assay were performed to evaluate the functional consequences of the mutations. Mass spectrometry, Western blotting, and protein oxidation detection were used to analyze the effects of selenoprotein deficiency. RESULTS Neuropathology indicated laminar necrosis and severe loss of myelin, with neuron loss and astrogliosis. In 3 families, we identified a missense (p.Thr325Ser) and a nonsense (p.Tyr429*) mutation in SEPSECS, encoding the O-phosphoseryl-tRNA:selenocysteinyl-tRNA synthase, which was previously associated with progressive cerebellocerebral atrophy. We show that the mutations do not completely abolish the activity of SEPSECS, but lead to decreased selenoprotein levels, with demonstrated increase in oxidative protein damage in the patient brain. CONCLUSIONS These results extend the phenotypes caused by defective selenocysteine biosynthesis, and suggest SEPSECS as a candidate gene for progressive encephalopathies with lactate elevation.
Collapse
Affiliation(s)
- Anna-Kaisa Anttonen
- From the Department of Medical Genetics, Haartman Institute (A.-K.A., H.T.), Folkhälsan Institute of Genetics and Neuroscience Center (A.-K.A., A.L., A.-E.L.), Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (T.H., P.I., A.L., E.Y., A.-E.L.), University of Helsinki; Departments of Clinical Genetics (A.-K.A.) and Neurology (A.S.), Helsinki University Central Hospital; Department of Pediatric Neurology (T. Linnankivi, P.I., T. Lönnqvist, H.P.), Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Finland; Department of Biochemistry and Molecular Genetics (R.L.F., M. Simonović), University of Illinois at Chicago; Department of Molecular Biophysics and Biochemistry (Y.L., D.S.), Yale University, New Haven, CT; Norio Centre (M. Somer), Department of Medical Genetics, Helsinki, Finland; Turku Centre for Biotechnology (D.M.-P., G.L.C.), University of Turku and Åbo Akademi University; Department of Pediatric Neurology (M.L.), South Karelia Central Hospital, Lappeenranta; Department of Radiology (L.V.), HUS Medical Imaging Center, Helsinki; and Department of Pathology (A.P.), HUSLAB and University of Helsinki, Finland. G.L.C. is currently affiliated with Van't Hoff Institute for Molecular Sciences, University of Amsterdam, the Netherlands
| | - Taru Hilander
- From the Department of Medical Genetics, Haartman Institute (A.-K.A., H.T.), Folkhälsan Institute of Genetics and Neuroscience Center (A.-K.A., A.L., A.-E.L.), Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (T.H., P.I., A.L., E.Y., A.-E.L.), University of Helsinki; Departments of Clinical Genetics (A.-K.A.) and Neurology (A.S.), Helsinki University Central Hospital; Department of Pediatric Neurology (T. Linnankivi, P.I., T. Lönnqvist, H.P.), Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Finland; Department of Biochemistry and Molecular Genetics (R.L.F., M. Simonović), University of Illinois at Chicago; Department of Molecular Biophysics and Biochemistry (Y.L., D.S.), Yale University, New Haven, CT; Norio Centre (M. Somer), Department of Medical Genetics, Helsinki, Finland; Turku Centre for Biotechnology (D.M.-P., G.L.C.), University of Turku and Åbo Akademi University; Department of Pediatric Neurology (M.L.), South Karelia Central Hospital, Lappeenranta; Department of Radiology (L.V.), HUS Medical Imaging Center, Helsinki; and Department of Pathology (A.P.), HUSLAB and University of Helsinki, Finland. G.L.C. is currently affiliated with Van't Hoff Institute for Molecular Sciences, University of Amsterdam, the Netherlands
| | - Tarja Linnankivi
- From the Department of Medical Genetics, Haartman Institute (A.-K.A., H.T.), Folkhälsan Institute of Genetics and Neuroscience Center (A.-K.A., A.L., A.-E.L.), Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (T.H., P.I., A.L., E.Y., A.-E.L.), University of Helsinki; Departments of Clinical Genetics (A.-K.A.) and Neurology (A.S.), Helsinki University Central Hospital; Department of Pediatric Neurology (T. Linnankivi, P.I., T. Lönnqvist, H.P.), Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Finland; Department of Biochemistry and Molecular Genetics (R.L.F., M. Simonović), University of Illinois at Chicago; Department of Molecular Biophysics and Biochemistry (Y.L., D.S.), Yale University, New Haven, CT; Norio Centre (M. Somer), Department of Medical Genetics, Helsinki, Finland; Turku Centre for Biotechnology (D.M.-P., G.L.C.), University of Turku and Åbo Akademi University; Department of Pediatric Neurology (M.L.), South Karelia Central Hospital, Lappeenranta; Department of Radiology (L.V.), HUS Medical Imaging Center, Helsinki; and Department of Pathology (A.P.), HUSLAB and University of Helsinki, Finland. G.L.C. is currently affiliated with Van't Hoff Institute for Molecular Sciences, University of Amsterdam, the Netherlands
| | - Pirjo Isohanni
- From the Department of Medical Genetics, Haartman Institute (A.-K.A., H.T.), Folkhälsan Institute of Genetics and Neuroscience Center (A.-K.A., A.L., A.-E.L.), Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (T.H., P.I., A.L., E.Y., A.-E.L.), University of Helsinki; Departments of Clinical Genetics (A.-K.A.) and Neurology (A.S.), Helsinki University Central Hospital; Department of Pediatric Neurology (T. Linnankivi, P.I., T. Lönnqvist, H.P.), Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Finland; Department of Biochemistry and Molecular Genetics (R.L.F., M. Simonović), University of Illinois at Chicago; Department of Molecular Biophysics and Biochemistry (Y.L., D.S.), Yale University, New Haven, CT; Norio Centre (M. Somer), Department of Medical Genetics, Helsinki, Finland; Turku Centre for Biotechnology (D.M.-P., G.L.C.), University of Turku and Åbo Akademi University; Department of Pediatric Neurology (M.L.), South Karelia Central Hospital, Lappeenranta; Department of Radiology (L.V.), HUS Medical Imaging Center, Helsinki; and Department of Pathology (A.P.), HUSLAB and University of Helsinki, Finland. G.L.C. is currently affiliated with Van't Hoff Institute for Molecular Sciences, University of Amsterdam, the Netherlands
| | - Rachel L French
- From the Department of Medical Genetics, Haartman Institute (A.-K.A., H.T.), Folkhälsan Institute of Genetics and Neuroscience Center (A.-K.A., A.L., A.-E.L.), Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (T.H., P.I., A.L., E.Y., A.-E.L.), University of Helsinki; Departments of Clinical Genetics (A.-K.A.) and Neurology (A.S.), Helsinki University Central Hospital; Department of Pediatric Neurology (T. Linnankivi, P.I., T. Lönnqvist, H.P.), Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Finland; Department of Biochemistry and Molecular Genetics (R.L.F., M. Simonović), University of Illinois at Chicago; Department of Molecular Biophysics and Biochemistry (Y.L., D.S.), Yale University, New Haven, CT; Norio Centre (M. Somer), Department of Medical Genetics, Helsinki, Finland; Turku Centre for Biotechnology (D.M.-P., G.L.C.), University of Turku and Åbo Akademi University; Department of Pediatric Neurology (M.L.), South Karelia Central Hospital, Lappeenranta; Department of Radiology (L.V.), HUS Medical Imaging Center, Helsinki; and Department of Pathology (A.P.), HUSLAB and University of Helsinki, Finland. G.L.C. is currently affiliated with Van't Hoff Institute for Molecular Sciences, University of Amsterdam, the Netherlands
| | - Yuchen Liu
- From the Department of Medical Genetics, Haartman Institute (A.-K.A., H.T.), Folkhälsan Institute of Genetics and Neuroscience Center (A.-K.A., A.L., A.-E.L.), Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (T.H., P.I., A.L., E.Y., A.-E.L.), University of Helsinki; Departments of Clinical Genetics (A.-K.A.) and Neurology (A.S.), Helsinki University Central Hospital; Department of Pediatric Neurology (T. Linnankivi, P.I., T. Lönnqvist, H.P.), Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Finland; Department of Biochemistry and Molecular Genetics (R.L.F., M. Simonović), University of Illinois at Chicago; Department of Molecular Biophysics and Biochemistry (Y.L., D.S.), Yale University, New Haven, CT; Norio Centre (M. Somer), Department of Medical Genetics, Helsinki, Finland; Turku Centre for Biotechnology (D.M.-P., G.L.C.), University of Turku and Åbo Akademi University; Department of Pediatric Neurology (M.L.), South Karelia Central Hospital, Lappeenranta; Department of Radiology (L.V.), HUS Medical Imaging Center, Helsinki; and Department of Pathology (A.P.), HUSLAB and University of Helsinki, Finland. G.L.C. is currently affiliated with Van't Hoff Institute for Molecular Sciences, University of Amsterdam, the Netherlands
| | - Miljan Simonović
- From the Department of Medical Genetics, Haartman Institute (A.-K.A., H.T.), Folkhälsan Institute of Genetics and Neuroscience Center (A.-K.A., A.L., A.-E.L.), Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (T.H., P.I., A.L., E.Y., A.-E.L.), University of Helsinki; Departments of Clinical Genetics (A.-K.A.) and Neurology (A.S.), Helsinki University Central Hospital; Department of Pediatric Neurology (T. Linnankivi, P.I., T. Lönnqvist, H.P.), Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Finland; Department of Biochemistry and Molecular Genetics (R.L.F., M. Simonović), University of Illinois at Chicago; Department of Molecular Biophysics and Biochemistry (Y.L., D.S.), Yale University, New Haven, CT; Norio Centre (M. Somer), Department of Medical Genetics, Helsinki, Finland; Turku Centre for Biotechnology (D.M.-P., G.L.C.), University of Turku and Åbo Akademi University; Department of Pediatric Neurology (M.L.), South Karelia Central Hospital, Lappeenranta; Department of Radiology (L.V.), HUS Medical Imaging Center, Helsinki; and Department of Pathology (A.P.), HUSLAB and University of Helsinki, Finland. G.L.C. is currently affiliated with Van't Hoff Institute for Molecular Sciences, University of Amsterdam, the Netherlands
| | - Dieter Söll
- From the Department of Medical Genetics, Haartman Institute (A.-K.A., H.T.), Folkhälsan Institute of Genetics and Neuroscience Center (A.-K.A., A.L., A.-E.L.), Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (T.H., P.I., A.L., E.Y., A.-E.L.), University of Helsinki; Departments of Clinical Genetics (A.-K.A.) and Neurology (A.S.), Helsinki University Central Hospital; Department of Pediatric Neurology (T. Linnankivi, P.I., T. Lönnqvist, H.P.), Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Finland; Department of Biochemistry and Molecular Genetics (R.L.F., M. Simonović), University of Illinois at Chicago; Department of Molecular Biophysics and Biochemistry (Y.L., D.S.), Yale University, New Haven, CT; Norio Centre (M. Somer), Department of Medical Genetics, Helsinki, Finland; Turku Centre for Biotechnology (D.M.-P., G.L.C.), University of Turku and Åbo Akademi University; Department of Pediatric Neurology (M.L.), South Karelia Central Hospital, Lappeenranta; Department of Radiology (L.V.), HUS Medical Imaging Center, Helsinki; and Department of Pathology (A.P.), HUSLAB and University of Helsinki, Finland. G.L.C. is currently affiliated with Van't Hoff Institute for Molecular Sciences, University of Amsterdam, the Netherlands
| | - Mirja Somer
- From the Department of Medical Genetics, Haartman Institute (A.-K.A., H.T.), Folkhälsan Institute of Genetics and Neuroscience Center (A.-K.A., A.L., A.-E.L.), Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (T.H., P.I., A.L., E.Y., A.-E.L.), University of Helsinki; Departments of Clinical Genetics (A.-K.A.) and Neurology (A.S.), Helsinki University Central Hospital; Department of Pediatric Neurology (T. Linnankivi, P.I., T. Lönnqvist, H.P.), Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Finland; Department of Biochemistry and Molecular Genetics (R.L.F., M. Simonović), University of Illinois at Chicago; Department of Molecular Biophysics and Biochemistry (Y.L., D.S.), Yale University, New Haven, CT; Norio Centre (M. Somer), Department of Medical Genetics, Helsinki, Finland; Turku Centre for Biotechnology (D.M.-P., G.L.C.), University of Turku and Åbo Akademi University; Department of Pediatric Neurology (M.L.), South Karelia Central Hospital, Lappeenranta; Department of Radiology (L.V.), HUS Medical Imaging Center, Helsinki; and Department of Pathology (A.P.), HUSLAB and University of Helsinki, Finland. G.L.C. is currently affiliated with Van't Hoff Institute for Molecular Sciences, University of Amsterdam, the Netherlands
| | - Dorota Muth-Pawlak
- From the Department of Medical Genetics, Haartman Institute (A.-K.A., H.T.), Folkhälsan Institute of Genetics and Neuroscience Center (A.-K.A., A.L., A.-E.L.), Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (T.H., P.I., A.L., E.Y., A.-E.L.), University of Helsinki; Departments of Clinical Genetics (A.-K.A.) and Neurology (A.S.), Helsinki University Central Hospital; Department of Pediatric Neurology (T. Linnankivi, P.I., T. Lönnqvist, H.P.), Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Finland; Department of Biochemistry and Molecular Genetics (R.L.F., M. Simonović), University of Illinois at Chicago; Department of Molecular Biophysics and Biochemistry (Y.L., D.S.), Yale University, New Haven, CT; Norio Centre (M. Somer), Department of Medical Genetics, Helsinki, Finland; Turku Centre for Biotechnology (D.M.-P., G.L.C.), University of Turku and Åbo Akademi University; Department of Pediatric Neurology (M.L.), South Karelia Central Hospital, Lappeenranta; Department of Radiology (L.V.), HUS Medical Imaging Center, Helsinki; and Department of Pathology (A.P.), HUSLAB and University of Helsinki, Finland. G.L.C. is currently affiliated with Van't Hoff Institute for Molecular Sciences, University of Amsterdam, the Netherlands
| | - Garry L Corthals
- From the Department of Medical Genetics, Haartman Institute (A.-K.A., H.T.), Folkhälsan Institute of Genetics and Neuroscience Center (A.-K.A., A.L., A.-E.L.), Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (T.H., P.I., A.L., E.Y., A.-E.L.), University of Helsinki; Departments of Clinical Genetics (A.-K.A.) and Neurology (A.S.), Helsinki University Central Hospital; Department of Pediatric Neurology (T. Linnankivi, P.I., T. Lönnqvist, H.P.), Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Finland; Department of Biochemistry and Molecular Genetics (R.L.F., M. Simonović), University of Illinois at Chicago; Department of Molecular Biophysics and Biochemistry (Y.L., D.S.), Yale University, New Haven, CT; Norio Centre (M. Somer), Department of Medical Genetics, Helsinki, Finland; Turku Centre for Biotechnology (D.M.-P., G.L.C.), University of Turku and Åbo Akademi University; Department of Pediatric Neurology (M.L.), South Karelia Central Hospital, Lappeenranta; Department of Radiology (L.V.), HUS Medical Imaging Center, Helsinki; and Department of Pathology (A.P.), HUSLAB and University of Helsinki, Finland. G.L.C. is currently affiliated with Van't Hoff Institute for Molecular Sciences, University of Amsterdam, the Netherlands
| | - Anni Laari
- From the Department of Medical Genetics, Haartman Institute (A.-K.A., H.T.), Folkhälsan Institute of Genetics and Neuroscience Center (A.-K.A., A.L., A.-E.L.), Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (T.H., P.I., A.L., E.Y., A.-E.L.), University of Helsinki; Departments of Clinical Genetics (A.-K.A.) and Neurology (A.S.), Helsinki University Central Hospital; Department of Pediatric Neurology (T. Linnankivi, P.I., T. Lönnqvist, H.P.), Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Finland; Department of Biochemistry and Molecular Genetics (R.L.F., M. Simonović), University of Illinois at Chicago; Department of Molecular Biophysics and Biochemistry (Y.L., D.S.), Yale University, New Haven, CT; Norio Centre (M. Somer), Department of Medical Genetics, Helsinki, Finland; Turku Centre for Biotechnology (D.M.-P., G.L.C.), University of Turku and Åbo Akademi University; Department of Pediatric Neurology (M.L.), South Karelia Central Hospital, Lappeenranta; Department of Radiology (L.V.), HUS Medical Imaging Center, Helsinki; and Department of Pathology (A.P.), HUSLAB and University of Helsinki, Finland. G.L.C. is currently affiliated with Van't Hoff Institute for Molecular Sciences, University of Amsterdam, the Netherlands
| | - Emil Ylikallio
- From the Department of Medical Genetics, Haartman Institute (A.-K.A., H.T.), Folkhälsan Institute of Genetics and Neuroscience Center (A.-K.A., A.L., A.-E.L.), Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (T.H., P.I., A.L., E.Y., A.-E.L.), University of Helsinki; Departments of Clinical Genetics (A.-K.A.) and Neurology (A.S.), Helsinki University Central Hospital; Department of Pediatric Neurology (T. Linnankivi, P.I., T. Lönnqvist, H.P.), Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Finland; Department of Biochemistry and Molecular Genetics (R.L.F., M. Simonović), University of Illinois at Chicago; Department of Molecular Biophysics and Biochemistry (Y.L., D.S.), Yale University, New Haven, CT; Norio Centre (M. Somer), Department of Medical Genetics, Helsinki, Finland; Turku Centre for Biotechnology (D.M.-P., G.L.C.), University of Turku and Åbo Akademi University; Department of Pediatric Neurology (M.L.), South Karelia Central Hospital, Lappeenranta; Department of Radiology (L.V.), HUS Medical Imaging Center, Helsinki; and Department of Pathology (A.P.), HUSLAB and University of Helsinki, Finland. G.L.C. is currently affiliated with Van't Hoff Institute for Molecular Sciences, University of Amsterdam, the Netherlands
| | - Marja Lähde
- From the Department of Medical Genetics, Haartman Institute (A.-K.A., H.T.), Folkhälsan Institute of Genetics and Neuroscience Center (A.-K.A., A.L., A.-E.L.), Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (T.H., P.I., A.L., E.Y., A.-E.L.), University of Helsinki; Departments of Clinical Genetics (A.-K.A.) and Neurology (A.S.), Helsinki University Central Hospital; Department of Pediatric Neurology (T. Linnankivi, P.I., T. Lönnqvist, H.P.), Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Finland; Department of Biochemistry and Molecular Genetics (R.L.F., M. Simonović), University of Illinois at Chicago; Department of Molecular Biophysics and Biochemistry (Y.L., D.S.), Yale University, New Haven, CT; Norio Centre (M. Somer), Department of Medical Genetics, Helsinki, Finland; Turku Centre for Biotechnology (D.M.-P., G.L.C.), University of Turku and Åbo Akademi University; Department of Pediatric Neurology (M.L.), South Karelia Central Hospital, Lappeenranta; Department of Radiology (L.V.), HUS Medical Imaging Center, Helsinki; and Department of Pathology (A.P.), HUSLAB and University of Helsinki, Finland. G.L.C. is currently affiliated with Van't Hoff Institute for Molecular Sciences, University of Amsterdam, the Netherlands
| | - Leena Valanne
- From the Department of Medical Genetics, Haartman Institute (A.-K.A., H.T.), Folkhälsan Institute of Genetics and Neuroscience Center (A.-K.A., A.L., A.-E.L.), Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (T.H., P.I., A.L., E.Y., A.-E.L.), University of Helsinki; Departments of Clinical Genetics (A.-K.A.) and Neurology (A.S.), Helsinki University Central Hospital; Department of Pediatric Neurology (T. Linnankivi, P.I., T. Lönnqvist, H.P.), Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Finland; Department of Biochemistry and Molecular Genetics (R.L.F., M. Simonović), University of Illinois at Chicago; Department of Molecular Biophysics and Biochemistry (Y.L., D.S.), Yale University, New Haven, CT; Norio Centre (M. Somer), Department of Medical Genetics, Helsinki, Finland; Turku Centre for Biotechnology (D.M.-P., G.L.C.), University of Turku and Åbo Akademi University; Department of Pediatric Neurology (M.L.), South Karelia Central Hospital, Lappeenranta; Department of Radiology (L.V.), HUS Medical Imaging Center, Helsinki; and Department of Pathology (A.P.), HUSLAB and University of Helsinki, Finland. G.L.C. is currently affiliated with Van't Hoff Institute for Molecular Sciences, University of Amsterdam, the Netherlands
| | - Tuula Lönnqvist
- From the Department of Medical Genetics, Haartman Institute (A.-K.A., H.T.), Folkhälsan Institute of Genetics and Neuroscience Center (A.-K.A., A.L., A.-E.L.), Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (T.H., P.I., A.L., E.Y., A.-E.L.), University of Helsinki; Departments of Clinical Genetics (A.-K.A.) and Neurology (A.S.), Helsinki University Central Hospital; Department of Pediatric Neurology (T. Linnankivi, P.I., T. Lönnqvist, H.P.), Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Finland; Department of Biochemistry and Molecular Genetics (R.L.F., M. Simonović), University of Illinois at Chicago; Department of Molecular Biophysics and Biochemistry (Y.L., D.S.), Yale University, New Haven, CT; Norio Centre (M. Somer), Department of Medical Genetics, Helsinki, Finland; Turku Centre for Biotechnology (D.M.-P., G.L.C.), University of Turku and Åbo Akademi University; Department of Pediatric Neurology (M.L.), South Karelia Central Hospital, Lappeenranta; Department of Radiology (L.V.), HUS Medical Imaging Center, Helsinki; and Department of Pathology (A.P.), HUSLAB and University of Helsinki, Finland. G.L.C. is currently affiliated with Van't Hoff Institute for Molecular Sciences, University of Amsterdam, the Netherlands
| | - Helena Pihko
- From the Department of Medical Genetics, Haartman Institute (A.-K.A., H.T.), Folkhälsan Institute of Genetics and Neuroscience Center (A.-K.A., A.L., A.-E.L.), Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (T.H., P.I., A.L., E.Y., A.-E.L.), University of Helsinki; Departments of Clinical Genetics (A.-K.A.) and Neurology (A.S.), Helsinki University Central Hospital; Department of Pediatric Neurology (T. Linnankivi, P.I., T. Lönnqvist, H.P.), Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Finland; Department of Biochemistry and Molecular Genetics (R.L.F., M. Simonović), University of Illinois at Chicago; Department of Molecular Biophysics and Biochemistry (Y.L., D.S.), Yale University, New Haven, CT; Norio Centre (M. Somer), Department of Medical Genetics, Helsinki, Finland; Turku Centre for Biotechnology (D.M.-P., G.L.C.), University of Turku and Åbo Akademi University; Department of Pediatric Neurology (M.L.), South Karelia Central Hospital, Lappeenranta; Department of Radiology (L.V.), HUS Medical Imaging Center, Helsinki; and Department of Pathology (A.P.), HUSLAB and University of Helsinki, Finland. G.L.C. is currently affiliated with Van't Hoff Institute for Molecular Sciences, University of Amsterdam, the Netherlands
| | - Anders Paetau
- From the Department of Medical Genetics, Haartman Institute (A.-K.A., H.T.), Folkhälsan Institute of Genetics and Neuroscience Center (A.-K.A., A.L., A.-E.L.), Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (T.H., P.I., A.L., E.Y., A.-E.L.), University of Helsinki; Departments of Clinical Genetics (A.-K.A.) and Neurology (A.S.), Helsinki University Central Hospital; Department of Pediatric Neurology (T. Linnankivi, P.I., T. Lönnqvist, H.P.), Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Finland; Department of Biochemistry and Molecular Genetics (R.L.F., M. Simonović), University of Illinois at Chicago; Department of Molecular Biophysics and Biochemistry (Y.L., D.S.), Yale University, New Haven, CT; Norio Centre (M. Somer), Department of Medical Genetics, Helsinki, Finland; Turku Centre for Biotechnology (D.M.-P., G.L.C.), University of Turku and Åbo Akademi University; Department of Pediatric Neurology (M.L.), South Karelia Central Hospital, Lappeenranta; Department of Radiology (L.V.), HUS Medical Imaging Center, Helsinki; and Department of Pathology (A.P.), HUSLAB and University of Helsinki, Finland. G.L.C. is currently affiliated with Van't Hoff Institute for Molecular Sciences, University of Amsterdam, the Netherlands
| | - Anna-Elina Lehesjoki
- From the Department of Medical Genetics, Haartman Institute (A.-K.A., H.T.), Folkhälsan Institute of Genetics and Neuroscience Center (A.-K.A., A.L., A.-E.L.), Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (T.H., P.I., A.L., E.Y., A.-E.L.), University of Helsinki; Departments of Clinical Genetics (A.-K.A.) and Neurology (A.S.), Helsinki University Central Hospital; Department of Pediatric Neurology (T. Linnankivi, P.I., T. Lönnqvist, H.P.), Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Finland; Department of Biochemistry and Molecular Genetics (R.L.F., M. Simonović), University of Illinois at Chicago; Department of Molecular Biophysics and Biochemistry (Y.L., D.S.), Yale University, New Haven, CT; Norio Centre (M. Somer), Department of Medical Genetics, Helsinki, Finland; Turku Centre for Biotechnology (D.M.-P., G.L.C.), University of Turku and Åbo Akademi University; Department of Pediatric Neurology (M.L.), South Karelia Central Hospital, Lappeenranta; Department of Radiology (L.V.), HUS Medical Imaging Center, Helsinki; and Department of Pathology (A.P.), HUSLAB and University of Helsinki, Finland. G.L.C. is currently affiliated with Van't Hoff Institute for Molecular Sciences, University of Amsterdam, the Netherlands
| | - Anu Suomalainen
- From the Department of Medical Genetics, Haartman Institute (A.-K.A., H.T.), Folkhälsan Institute of Genetics and Neuroscience Center (A.-K.A., A.L., A.-E.L.), Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (T.H., P.I., A.L., E.Y., A.-E.L.), University of Helsinki; Departments of Clinical Genetics (A.-K.A.) and Neurology (A.S.), Helsinki University Central Hospital; Department of Pediatric Neurology (T. Linnankivi, P.I., T. Lönnqvist, H.P.), Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Finland; Department of Biochemistry and Molecular Genetics (R.L.F., M. Simonović), University of Illinois at Chicago; Department of Molecular Biophysics and Biochemistry (Y.L., D.S.), Yale University, New Haven, CT; Norio Centre (M. Somer), Department of Medical Genetics, Helsinki, Finland; Turku Centre for Biotechnology (D.M.-P., G.L.C.), University of Turku and Åbo Akademi University; Department of Pediatric Neurology (M.L.), South Karelia Central Hospital, Lappeenranta; Department of Radiology (L.V.), HUS Medical Imaging Center, Helsinki; and Department of Pathology (A.P.), HUSLAB and University of Helsinki, Finland. G.L.C. is currently affiliated with Van't Hoff Institute for Molecular Sciences, University of Amsterdam, the Netherlands
| | - Henna Tyynismaa
- From the Department of Medical Genetics, Haartman Institute (A.-K.A., H.T.), Folkhälsan Institute of Genetics and Neuroscience Center (A.-K.A., A.L., A.-E.L.), Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (T.H., P.I., A.L., E.Y., A.-E.L.), University of Helsinki; Departments of Clinical Genetics (A.-K.A.) and Neurology (A.S.), Helsinki University Central Hospital; Department of Pediatric Neurology (T. Linnankivi, P.I., T. Lönnqvist, H.P.), Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Finland; Department of Biochemistry and Molecular Genetics (R.L.F., M. Simonović), University of Illinois at Chicago; Department of Molecular Biophysics and Biochemistry (Y.L., D.S.), Yale University, New Haven, CT; Norio Centre (M. Somer), Department of Medical Genetics, Helsinki, Finland; Turku Centre for Biotechnology (D.M.-P., G.L.C.), University of Turku and Åbo Akademi University; Department of Pediatric Neurology (M.L.), South Karelia Central Hospital, Lappeenranta; Department of Radiology (L.V.), HUS Medical Imaging Center, Helsinki; and Department of Pathology (A.P.), HUSLAB and University of Helsinki, Finland. G.L.C. is currently affiliated with Van't Hoff Institute for Molecular Sciences, University of Amsterdam, the Netherlands.
| |
Collapse
|
36
|
Coughlin CR, Scharer GH, Friederich MW, Yu HC, Geiger EA, Creadon-Swindell G, Collins AE, Vanlander AV, Coster RV, Powell CA, Swanson MA, Minczuk M, Van Hove JLK, Shaikh TH. Mutations in the mitochondrial cysteinyl-tRNA synthase gene, CARS2, lead to a severe epileptic encephalopathy and complex movement disorder. J Med Genet 2015; 52:532-40. [PMID: 25787132 DOI: 10.1136/jmedgenet-2015-103049] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 02/26/2015] [Indexed: 11/03/2022]
Abstract
BACKGROUND Mitochondrial disease is often suspected in cases of severe epileptic encephalopathy especially when a complex movement disorder, liver involvement and progressive developmental regression are present. Although mutations in either mitochondrial DNA or POLG are often present, other nuclear defects in mitochondrial DNA replication and protein translation have been associated with a severe epileptic encephalopathy. METHODS AND RESULTS We identified a proband with an epileptic encephalopathy, complex movement disorder and a combined mitochondrial respiratory chain enzyme deficiency. The child presented with neurological regression, complex movement disorder and intractable seizures. A combined deficiency of mitochondrial complexes I, III and IV was noted in liver tissue, along with increased mitochondrial DNA content in skeletal muscle. Incomplete assembly of complex V, using blue native polyacrylamide gel electrophoretic analysis and complex I, using western blotting, suggested a disorder of mitochondrial transcription or translation. Exome sequencing identified compound heterozygous mutations in CARS2, a mitochondrial aminoacyl-tRNA synthetase. Both mutations affect highly conserved amino acids located within the functional ligase domain of the cysteinyl-tRNA synthase. A specific decrease in the amount of charged mt-tRNA(Cys) was detected in patient fibroblasts compared with controls. Retroviral transfection of the wild-type CARS2 into patient skin fibroblasts led to the correction of the incomplete assembly of complex V, providing functional evidence for the role of CARS2 mutations in disease aetiology. CONCLUSIONS Our findings indicate that mutations in CARS2 result in a mitochondrial translational defect as seen in individuals with mitochondrial epileptic encephalopathy.
Collapse
Affiliation(s)
- Curtis R Coughlin
- Department of Pediatrics, Section of Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Gunter H Scharer
- Department of Pediatrics, Section of Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA Intellectual and Developmental Disabilities Research Center, University of Colorado School of Medicine, Aurora, Colorado, USA Department of Pediatrics, Section of Clinical Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Marisa W Friederich
- Department of Pediatrics, Section of Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Hung-Chun Yu
- Department of Pediatrics, Section of Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Elizabeth A Geiger
- Department of Pediatrics, Section of Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Geralyn Creadon-Swindell
- Department of Pediatrics, Section of Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Abigail E Collins
- Department of Pediatrics, Section of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Arnaud V Vanlander
- Department of Pediatrics, Division of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Rudy Van Coster
- Department of Pediatrics, Division of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | | | - Michael A Swanson
- Department of Pediatrics, Section of Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | - Johan L K Van Hove
- Department of Pediatrics, Section of Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Tamim H Shaikh
- Department of Pediatrics, Section of Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA Intellectual and Developmental Disabilities Research Center, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
37
|
McKiernan P. Acute liver failure after valproate exposure: Liver transplantation may be indicated beyond childhood. Liver Transpl 2014; 20:1287-9. [PMID: 25179873 DOI: 10.1002/lt.23988] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 08/24/2014] [Indexed: 01/12/2023]
Affiliation(s)
- Patrick McKiernan
- Liver Unit, Birmingham Children's Hospital, Birmingham, United Kingdom
| |
Collapse
|
38
|
Rahman S. Gastrointestinal and hepatic manifestations of mitochondrial disorders. J Inherit Metab Dis 2013; 36:659-73. [PMID: 23674168 DOI: 10.1007/s10545-013-9614-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/13/2013] [Accepted: 04/16/2013] [Indexed: 12/23/2022]
Abstract
Inherited defects of oxidative phosphorylation lead to heterogeneous, often multisystem, mitochondrial diseases. This review highlights those mitochondrial syndromes with prominent gastrointestinal and hepatic symptoms, categorised according to underlying disease mechanism. Mitochondrial encephalopathies with major gastrointestinal involvement include mitochondrial neurogastrointestinal encephalopathy and ethylmalonic encephalopathy, which are each associated with highly specific clinical and metabolic profiles. Mitochondrial hepatopathies are most frequently caused by defects of mitochondrial DNA maintenance and expression. Although mitochondrial disorders are notorious for extreme clinical, biochemical and genetic heterogeneity, there are some pathognomonic clinical and metabolic clues that suggest a specific diagnosis, and these are highlighted. An approach to diagnosis of these complex disorders is presented, together with a genetic classification, including mitochondrial DNA disorders and nuclear-encoded defects of mitochondrial DNA maintenance and translation, OXPHOS complex assembly and mitochondrial membrane lipids. Finally, supportive and experimental therapeutic options for these currently incurable diseases are reviewed, including liver transplantation, allogeneic haematopoietic stem cell transplantation and gene therapy.
Collapse
Affiliation(s)
- Shamima Rahman
- Mitochondrial Research Group, Clinical and Molecular Genetics Unit, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK.
| |
Collapse
|
39
|
Stumpf JD, Saneto RP, Copeland WC. Clinical and molecular features of POLG-related mitochondrial disease. Cold Spring Harb Perspect Biol 2013; 5:a011395. [PMID: 23545419 DOI: 10.1101/cshperspect.a011395] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The inability to replicate mitochondrial genomes (mtDNA) by the mitochondrial DNA polymerase (pol γ) leads to a subset of mitochondrial diseases. Many mutations in POLG, the gene that encodes pol γ, have been associated with mitochondrial diseases such as myocerebrohepatopathy spectrum (MCHS) disorders, Alpers-Huttenlocher syndrome, myoclonic epilepsy myopathy sensory ataxia (MEMSA), ataxia neuropathy spectrum (ANS), and progressive external ophthalmoplegia (PEO). This chapter explores five important topics in POLG-related disease: (1) clinical symptoms that identify and distinguish POLG-related diseases, (2) molecular characterization of defects in polymerase activity by POLG disease variants, (3) the importance of holoenzyme formation in disease presentation, (4) the role of pol γ exonuclease activity and mutagenesis in disease and aging, and (5) novel approaches to therapy and avoidance of toxicity based on primary research in pol γ replication.
Collapse
Affiliation(s)
- Jeffrey D Stumpf
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | |
Collapse
|
40
|
Abstract
Mutations in either nuclear DNA or mitochondrial DNA can result in disruption of oxidative phosphorylation and lead to mitochondrial dysfunction. Mitochondrial disease manifestations occur predominantly in the central nervous system, peripheral nervous system, and/or involve several organ systems. The consequences range from manifestations of a single organ or tissues, such as muscle fatigue, if confined only to muscle, seizures, intellectual disabilities, dementia, and stroke (if to the central nervous system), leading to disability or even early death. The definitive diagnosis of a mitochondrial disorder can be difficult to establish. Criteria and checklists have been established and are more reflective of adult disease. However, in children, when symptoms suggest a mitochondrial disease, neuroimaging features may have more diagnostic impact and additionally these can be used to follow the course, evolution, and recovery of the disease. This review will demonstrate the common neuroimaging patterns in patients with mitochondrial disorders and point out how various newer neuroimaging modalities may be exploited to glean information as to the different aspects of mitochondrial dysfunction or resulting neurological and cognitive disruption, although reports in the literature using these methods remain sparse.
Collapse
Affiliation(s)
- Andrea L Gropman
- Department of Pediatrics and Neurology, Children's National Medical Center and the George Washington University of the Health Sciences, Washington, DC 20010, USA.
| |
Collapse
|
41
|
Abstract
Alpers-Huttenlocher syndrome is an uncommon mitochondrial disease most often associated with mutations in the mitochondrial DNA replicase, polymerase-γ. Alterations in enzyme activity result in reduced levels or deletions in mitochondrial DNA. Phenotypic manifestations occur when the functional content of mitochondrial DNA reaches a critical nadir. The tempo of disease progression and onset varies among patients, even in identical genotypes. The classic clinical triad of seizures, liver degeneration, and progressive developmental regression helps define the disorder, but a wide range of clinical expression occurs. The majority of patients are healthy before disease onset, and seizures herald the disorder in most patients. Seizures can rapidly progress to medical intractability, with frequent episodes of epilepsia partialis continua or status epilepticus. Liver involvement may precede or occur after seizure onset. Regardless, eventual liver failure is common. Both the tempo of disease progression and range of organ involvement vary from patient to patient, and are only partly explained by pathogenic effects of genetic mutations. Diagnosis involves the constellation of organ involvement, not the sequence of signs. This disorder is relentlessly progressive and ultimately fatal.
Collapse
|
42
|
|
43
|
Goldstein A, Bhatia P, Vento JM. Update on nuclear mitochondrial genes and neurologic disorders. Semin Pediatr Neurol 2012; 19:181-93. [PMID: 23245551 DOI: 10.1016/j.spen.2012.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The majority of primary mitochondrial disorders are due to nuclear gene mutations, not aberrations within the mitochondrial genome. The nervous system is frequently involved due to its high-energy demands. Many nonspecific neurologic symptoms may be present in mitochondrial disease; however, there are well-recognized red flags that should alert the clinician to the possibility of mitochondrial disease. There is an ever increasing number of nuclear gene mutations discovered that play a role in primary mitochondrial disease and its neurologic symptomatology. Neurologists need to be aware of the wide neurologic presentation, the red-flag symptoms, and the nuclear gene mutations involved in the pathophysiology of mitochondrial disease to diagnose and manage this patient population.
Collapse
Affiliation(s)
- Amy Goldstein
- Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA.
| | | | | |
Collapse
|
44
|
Abstract
Mitochondrial respiratory chain disorders are relatively common inborn errors of energy metabolism, with a combined prevalence of one in 5000. These disorders typically affect tissues with high energy requirements, and cerebral involvement occurs frequently in childhood, often manifesting in seizures. Mitochondrial diseases are genetically heterogeneous; to date, mutations have been reported in all 37 mitochondrially encoded genes and more than 80 nuclear genes. The major genetic causes of mitochondrial epilepsy are mitochondrial DNA mutations (including those typically associated with the mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes [MELAS] and myoclonic epilepsy with ragged red fibres [MERRF] syndromes); mutations in POLG (classically associated with Alpers syndrome but also presenting as the mitochondrial recessive ataxia syndrome [MIRAS], spinocerebellar ataxia with epilepsy [SCAE], and myoclonus, epilepsy, myopathy, sensory ataxia [MEMSA] syndromes in older individuals) and other disorders of mitochondrial DNA maintenance; complex I deficiency; disorders of coenzyme Q(10) biosynthesis; and disorders of mitochondrial translation such as RARS2 mutations. It is not clear why some genetic defects, but not others, are particularly associated with seizures. Epilepsy may be the presenting feature of mitochondrial disease but is often part of a multisystem clinical presentation. Mitochondrial epilepsy may be very difficult to manage, and is often a poor prognostic feature. At present there are no curative treatments for mitochondrial disease. Individuals with mitochondrial epilepsy are frequently prescribed multiple anticonvulsants, and the role of vitamins and other nutritional supplements and the ketogenic diet remain unproven.
Collapse
Affiliation(s)
- Shamima Rahman
- Mitochondrial Research Group, Clinical and Molecular Genetics Unit, UCL Institute of Child Health, University College London, 30 Guilford Street, London, UK.
| |
Collapse
|
45
|
Khan A, Trevenen C, Wei XC, Sarnat HB, Payne E, Kirton A. Alpers syndrome: the natural history of a case highlighting neuroimaging, neuropathology, and fat metabolism. J Child Neurol 2012; 27:636-40. [PMID: 22114215 DOI: 10.1177/0883073811423973] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mitochondrial diseases are increasingly being recognized as causes of encephalopathy and intractable epilepsy. There is no gold-standard test for diagnosing mitochondrial disease, and the current diagnosis relies on establishing a consistent pattern of evidence from clinical data, neuroimaging, tissue biopsy, and biochemical, genetic, and other investigations. Experience in the diagnosis and treatment of patients with certain forms of mitochondrial disease, such as Alpers syndrome, is largely gained from case reports or small case series. The authors describe a case of Alpers syndrome due to POLG1 mutations, including serial neuroimaging and pathological investigations, to illustrate two main points: (1) Unique characteristics evident on serial diffusion-weighted imaging can be a valuable indicator of Alpers syndrome; and (2) abnormal lipid metabolism can be present in Alpers syndrome, which may need to be considered when using a ketogenic diet.
Collapse
Affiliation(s)
- Aneal Khan
- Departments of Pediatrics and Medical Genetics, University of Calgary, and Alberta Children's Hospital, Calgary, Alberta, Canada.
| | | | | | | | | | | |
Collapse
|
46
|
Nolte KW, Trepels-Kottek S, Honnef D, Weis J, Bien CG, van Baalen A, Ritter K, Czermin B, Rudnik-Schöneborn S, Wagner N, Häusler M. Early muscle and brain ultrastructural changes in polymerase gamma 1-related encephalomyopathy. Neuropathology 2012; 33:59-67. [DOI: 10.1111/j.1440-1789.2012.01317.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Affiliation(s)
- Tiziana Granata
- Department of Pediatric Neuroscience, Fondazione IRCCS Instituto Neurologico Carlo Besta, Milan, Italy.
| |
Collapse
|
48
|
Partial status epilepticus - rapid genetic diagnosis of Alpers' disease. Eur J Paediatr Neurol 2011; 15:558-62. [PMID: 21704543 DOI: 10.1016/j.ejpn.2011.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 05/25/2011] [Accepted: 05/27/2011] [Indexed: 01/19/2023]
Abstract
We describe four children with a devastating encephalopathy characterised by refractory focal seizures and variable liver dysfunction. We describe their electroencephalographic, radiologic, genetic and pathologic findings. The correct diagnosis was established by rapid gene sequencing. POLG1 based Alpers' disease should be considered in any child presenting with partial status epilepticus.
Collapse
|
49
|
Van Hove JLK, Lohr NJ. Metabolic and monogenic causes of seizures in neonates and young infants. Mol Genet Metab 2011; 104:214-30. [PMID: 21839663 DOI: 10.1016/j.ymgme.2011.04.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Revised: 04/20/2011] [Accepted: 04/20/2011] [Indexed: 11/22/2022]
Abstract
Seizures in neonates or young infants present a frequent diagnostic challenge. After exclusion of acquired causes, disturbances of the internal homeostasis and brain malformations, the physician must evaluate for inborn errors of metabolism and for other non-malformative genetic disorders as the cause of seizures. The metabolic causes can be categorized into disorders of neurotransmitter metabolism, disorders of energy production, and synthetic or catabolic disorders associated with brain malformation, dysfunction and degeneration. Other genetic conditions involve channelopathies, and disorders resulting in abnormal growth, differentiation and formation of neuronal populations. These conditions are important given their potential for treatment and the risk for recurrence in the family. In this paper, we will succinctly review the metabolic and genetic non-malformative causes of seizures in neonates and infants less than 6 months of age. We will then provide differential diagnostic clues and a practical paradigm for their evaluation.
Collapse
Affiliation(s)
- Johan L K Van Hove
- Department of Pediatrics, University of Colorado, Clinical Genetics, Aurora, CO 80045, USA.
| | | |
Collapse
|
50
|
Hunter MF, Peters H, Salemi R, Thorburn D, Mackay MT. Alpers syndrome with mutations in POLG: clinical and investigative features. Pediatr Neurol 2011; 45:311-8. [PMID: 22000311 DOI: 10.1016/j.pediatrneurol.2011.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Accepted: 07/14/2011] [Indexed: 10/16/2022]
Abstract
Alpers syndrome is a rare autosomal recessive hepatocerebral degenerative disorder. Seventeen patients with Alpers syndrome or polymerase-γ gene mutations were identified. Case records of 12 patients with Alpers syndrome and polymerase-γ mutations in both alleles were reviewed. All patients manifested developmental delay or regression, refractory epilepsy, and biochemical liver dysfunction. Liver failure occurred in three patients previously treated with valproate. Other signs included ataxia, visual disturbance, motor paresis, and tremor. Myoclonic and focal motor seizures were common, often manifesting as status epilepticus. Electroencephalograms demonstrated absent/slow posterior dominant rhythms. Interictal discharges were common, usually involving the occipital lobes. Rhythmic high-amplitude delta with (poly)spikes was evident in four patients. Magnetic resonance imaging showed migratory, cortical, and subcortical T(2) hyperintensities in four children most often affected the parietal and occipital lobes. Developmental regression and refractory focal motor or myoclonic seizures are consistent clinical features of Alpers syndrome with polymerase-γ mutations. Liver dysfunction constitutes a late manifestation. Migratory T(2)/fluid attenuated inversion recovery signal abnormalities involving metabolically active occipital and sensorimotor cortical regions comprise characteristic imaging findings. Interictal and ictal electroencephalogram patterns are more variable than previously reported. Three common polymerase-γ mutations, in patients of European descent, can assist with rapid diagnosis, circumventing the need for liver biopsy.
Collapse
Affiliation(s)
- Matthew F Hunter
- Genetic Health, Victorian Clinical Genetics Service, Melbourne, Victoria, Australia
| | | | | | | | | |
Collapse
|