1
|
Tsou TC, Yeh SC, Tsai FY, Chen PY. Palmitic acid and lipopolysaccharide induce macrophage TNFα secretion, suppressing browning regulators and mitochondrial respiration in adipocytes. Toxicol Appl Pharmacol 2025; 500:117389. [PMID: 40348028 DOI: 10.1016/j.taap.2025.117389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 05/04/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
Obesity and its associated pro-inflammatory activity contribute significantly to metabolic dysfunction. In contrast, browning of white adipose tissue (WAT) generally improves metabolic health. Our prior research suggested that macrophage-derived pro-inflammatory cytokines suppress key regulators of browning-adrenergic receptor β3 (Adrb3) and peroxisome proliferator-activated receptor γ (Pparg)-as well as energy metabolism mediators-insulin receptor substrate 1 (Irs1) and hormone-sensitive lipase (Lipe)-in diet-induced obese mice. To explore this mechanism, we developed an in vitro model using RAW264.7 macrophages and 3T3-L1 adipocytes exposed to palmitic acid (PA) and/or lipopolysaccharide (LPS). PA (200 μM) and LPS (1.0 μg/ml) synergistically promoted M1 polarization of macrophages and secretion of pro-inflammatory cytokines, with tumor necrosis factor-α (TNFα), C-C motif chemokine ligand 2 (CCL2), CCL5, and interleukin-6 (IL-6) being predominant. Conditioned media from both control and PA-treated macrophages, when exposed to LPS ≥0.01 μg/ml, significantly downregulated Adrb3, Pparg, Irs1, and Lipe in adipocytes. At physiologically relevant LPS levels (≤0.001 μg/ml), PA-treated macrophage media exerted greater suppression of these genes than controls. Among the cytokines, TNFα emerged as the primary mediator, significantly reducing expression of the four key regulators. Furthermore, adipocytes treated with TNFα exhibited significant reductions in both uncoupling protein 1 (Ucp1) expression and mitochondrial respiration. These findings demonstrate that exposure to obesity-associated factors (PA and LPS) induces macrophage-derived TNFα, which suppresses browning and mitochondrial function in adipocytes. This mechanism may inform new therapeutic strategies targeting TNFα to alleviate obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Tsui-Chun Tsou
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan.
| | - Szu-Ching Yeh
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
| | - Feng-Yuan Tsai
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
| | - Pei-Yu Chen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
| |
Collapse
|
2
|
Maher N, Mahmood A, Fareed MA, Kumar N, Rokaya D, Zafar MS. An updated review and recent advancements in carbon-based bioactive coatings for dental implant applications. J Adv Res 2025; 72:265-286. [PMID: 39033875 DOI: 10.1016/j.jare.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Surface coating of dental implants with a bioactive biomaterial is one of the distinguished approaches to improve the osseointegration potential, antibacterial properties, durability, and clinical success rate of dental implants. Carbon-based bioactive coatings, a unique class of biomaterial that possesses excellent mechanical properties, high chemical and thermal stability, osteoconductivity, corrosion resistance, and biocompatibility, have been utilized successfully for this purpose. AIM This review aims to present a comprehensive overview of the structure, properties, coating techniques, and application of the various carbon-based coatings for dental implant applicationswith a particular focuson Carbon-based nanomaterial (CNMs), which is an advanced class of biomaterials. KEY SCIENTIFIC CONCEPTS OF REVIEW Available articles on carbon coatings for dental implants were reviewed using PubMed, Science Direct, and Google Scholar resources. Carbon-based coatings are non-cytotoxic, highly biocompatible, chemically inert, and osteoconductive, which allows the bone cells to come into close contact with the implant surface and prevents bacterial attachment and growth. Current research and advancements are now more focused on carbon-based nanomaterial (CNMs), as this emerging class of biomaterial possesses the advantage of both nanotechnology and carbon and aligns closely with ideal coating material characteristics. Carbon nanotubes, graphene, and its derivatives have received the most attention for dental implant coating. Various coating techniques are available for carbon-based materials, chosen according to substrate type, application requirements, and desired coating thickness. Vapor deposition technique, plasma spraying, laser deposition, and thermal spraying techniques are most commonly employed to coat the carbon structures on the implant surface. Longer duration trials and monitoring are required to ascertain the role of carbon-based bioactive coating for dental implant applications.
Collapse
Affiliation(s)
- Nazrah Maher
- Department of Science of Dental Materials, Dr. Ishrat Ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Anum Mahmood
- Department of Science of Dental Materials, Dr. Ishrat Ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Muhammad Amber Fareed
- Clinical Sciences Department College of Dentistry Ajman University, Ajman, United Arab Emirates; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, 346, United Arab Emirates.
| | - Naresh Kumar
- Department of Science of Dental Materials, Dr. Ishrat Ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Dinesh Rokaya
- Department of Prosthodontics, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madina Al Munawwarrah 41311, Saudi Arabia; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, 346, United Arab Emirates; School of Dentistry, University of Jordan, Amman 11942, Jordan; Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan.
| |
Collapse
|
3
|
Naseem S, Rizwan M. Imo-induced changes in gut hormones and glucose metabolism: A key to improving insulin sensitivity in type 2 diabetes. Diabetes Res Clin Pract 2025; 226:112285. [PMID: 40449625 DOI: 10.1016/j.diabres.2025.112285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/30/2025] [Accepted: 05/26/2025] [Indexed: 06/03/2025]
Abstract
Isomalto-oligosaccharides (IMO) are prebiotic oligosaccharides that have shown promise in improving insulin sensitivity and glucose metabolism, making them potential therapeutic agents for Type 2 Diabetes (T2D). IMO selectively stimulates beneficial gut microbiota, particularly Bifidobacterium and Lactobacillus, leading to the production of short-chain fatty acids (SCFAs) like acetate, propionate, and butyrate. These SCFAs play a pivotal role in enhancing the release of gut hormones such as GLP-1 (Glucagon-like peptide-1) and PYY (Peptide YY), which improve insulin secretion and promote satiety, thus improving glucose homeostasis. Clinical studies have reported that IMO supplementation can lower HbA1c by 0.5% and reduce postprandial glucose spikes, demonstrating its efficacy in glycemic control. Additionally, IMO promotes insulin sensitivity by reducing inflammation and enhancing adiponectin levels. Although the current findings are promising, further research is needed to determine optimal dosing, long-term safety, and the role of individual gut microbiomes in tailoring IMO interventions. Future studies focusing on personalized nutrition strategies and the synergistic effects of IMO with other lifestyle interventions could enhance its applicability as a key component in T2D management.
Collapse
Affiliation(s)
- Sobia Naseem
- Department of Chemistry, University of Engineering and Technology Lahore, Pakistan; Department of Polymer & Process Engineering, University of Engineering and Technology Lahore, Pakistan
| | - Muhammad Rizwan
- Department of Chemistry, University of Engineering and Technology Lahore, Pakistan.
| |
Collapse
|
4
|
Do H, Kwon OC, Ha JW, Chung J, Park YB, Huh JH, Lee SW. Remnant Cholesterol Levels at Diagnosis May Predict Acute Coronary Syndrome Occurrence During Follow-Up in Patients with Antineutrophil Cytoplasmic Antibody-Associated Vasculitis. J Clin Med 2025; 14:2260. [PMID: 40217710 PMCID: PMC11989813 DOI: 10.3390/jcm14072260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/14/2025] Open
Abstract
Background/Objectives: Previous studies have revealed the predictive potential of remnant cholesterol (RC) for acute coronary syndrome (ACS) occurrence in the general population. However, whether this association applies to patients with antineutrophil cytoplasmic antibody-associated vasculitis (AAV), in which a lipid paradox exists, remains unclear. We investigated whether RC levels at diagnosis could predict ACS occurrence during follow-up in patients with AAV. Methods: This study included 139 patients with AAV. ACS was defined as ST-elevation myocardial infarction (STEMI), non-STEMI, or unstable angina occurring after AAV diagnosis. RC levels were calculated as (total cholesterol)-(low-density lipoprotein cholesterol)-(high-density lipoprotein cholesterol). Patients were categorised into three groups by RC tertiles: highest (≥26.2 mg/dL), middle (19.1-26.1 mg/dL), and lowest (≤19.0 mg/dL) tertile groups. Results: The median age of the 139 patients (male, 31.7%) was 58.0 years. During follow-up, six, two, and one patients were diagnosed with ACS in the highest, middle, and lowest tertile groups, respectively. Patients in the highest tertile group exhibited a significantly lower ACS-free survival rate than those in the lowest tertile (p = 0.030). In the multivariable Cox hazards model, male sex (hazard ratio [HR] 9.054, 95% confidence interval [CI] 1.786-45.910), Birmingham vasculitis activity score (HR 1.147, 95% CI 1.033-1.274), and the highest tertile of RC levels (HR 10.818, 95% CI 1.867-62.689) were significantly and independently associated with ACS occurrence during follow-up in patients with AAV. Conclusions: Our findings indicate that RC levels at diagnosis may predict ACS occurrence during follow-up in patients with AAV, regardless of the traditional cardiovascular risk factors.
Collapse
Affiliation(s)
- Hyunsue Do
- Division of Rheumatology, Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon-si 24341, Republic of Korea;
| | - Oh Chan Kwon
- Division of Rheumatology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea;
| | - Jang Woo Ha
- Division of Rheumatology, Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin 16995, Republic of Korea;
| | - Jihye Chung
- Division of Rheumatology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.C.); (Y.-B.P.)
| | - Yong-Beom Park
- Division of Rheumatology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.C.); (Y.-B.P.)
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Ji Hye Huh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang 14068, Republic of Korea
| | - Sang-Won Lee
- Division of Rheumatology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.C.); (Y.-B.P.)
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
5
|
Chai Y, Chen C, Yin X, Wang X, Yu W, Pan H, Qin R, Yang X, Wang Q. Effects of water-soluble vitamins on glycemic control and insulin resistance in adult type 2 diabetes: an umbrella review of meta-analyses. Asia Pac J Clin Nutr 2025; 34:118-130. [PMID: 39828265 PMCID: PMC11742600 DOI: 10.6133/apjcn.202502_34(1).0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/15/2024] [Accepted: 05/16/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND AND OBJECTIVES Growing evidence has explored the effects of water-soluble vitamins supplementation on glycemic control and insulin resistance in diabetic patients; however, the results of previous meta-analyses are inconsistent. To address this, we conducted an umbrella review to synthesize the evidence on these effects. METHODS AND STUDY DESIGN A systematic literature search in Web of science, PubMed, and Cochrane Database of Systematic Reviews was performed from 2012 to November 2022. he quality of the meta-analyses was assessed using AMSTAR-2 and GRADE. RESULTS Fourteen systematic reviews and meta-analyses met the inclusion criteria, examining the effects of five water-soluble vitamins (B-1, B-3, biotin, B-9, and C) on glycemic control and insulin resistance. The findings suggest that vitamin C supplementation can improve glycemic control in type 2 diabetes, as indicated by reduced FBG and HbA1c, with more significant effects observed for durations longer than 30 days. CONCLUSIONS Insulin resistance is improved by folic acid supplementations. More well-designed individual randomized controlled trials are needed in the future, as well as meta-analysis of higher quality.
Collapse
Affiliation(s)
- Yi Chai
- School of Public Health, Qingdao University, Qingdao, China
| | - Chengyu Chen
- School of Public Health, Qingdao University, Qingdao, China
| | - Xueru Yin
- School of Public Health, Qingdao University, Qingdao, China
| | - Xinru Wang
- School of Public Health, Qingdao University, Qingdao, China
| | - Wenyan Yu
- School of Public Health, Qingdao University, Qingdao, China
| | - Haochen Pan
- School of Public Health, Qingdao University, Qingdao, China
| | - Ruiying Qin
- School of Public Health, Qingdao University, Qingdao, China
| | - Xiyue Yang
- School of Public Health, Qingdao University, Qingdao, China
| | - Qiuzhen Wang
- School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
6
|
Begum M, Choubey M, Tirumalasetty MB, Arbee S, Sadik S, Mohib MM, Srivastava S, Minhaz N, Alam R, Mohiuddin MS. Exploring the Molecular Link Between Diabetes and Erectile Dysfunction Through Single-Cell Transcriptome Analysis. Genes (Basel) 2024; 15:1596. [PMID: 39766863 PMCID: PMC11675191 DOI: 10.3390/genes15121596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Erectile dysfunction (ED) is a pathophysiological condition in which the patients cannot achieve an erection during sexual activity, and it is often overlooked yet prevalent among diabetic men, globally affecting approximately 35-75% of diabetic individuals. The precise mechanisms through which diabetes contributes to ED remain elusive, but the existing literature suggests the potential involvement of nerve and vascular damage that affects the penile supply. In the present review, we reanalyze the existing human single-cell transcriptomic data from patients having diabetes mellitus-associated ED with normal erections. The analysis validates the expression of genes associated with antioxidative pathways, growth factors, adipokines, angiogenesis, vascular functions, penile erection, sexual function, and inflammation in diverse cell types from healthy individuals and those with ED. Our transcriptomic analysis reveals alterations in the expression of adiponectin receptors in the pathogenesis of ED compared to their counterparts in healthy subjects. This comprehensive review sheds light on the molecular underpinnings of ED in the context of diabetes, providing an in-depth understanding of the biological and cellular alterations involved and paving the way for possible targeted therapeutic discoveries in the field of diabetes-associated male infertility.
Collapse
Affiliation(s)
- Mahmuda Begum
- Department of Internal Medicine, HCA-St. David’s Medical Center, 919 E 32nd St, Austin, TX 78705, USA;
| | - Mayank Choubey
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, 101 Mineola Blvd, Mineola, NY 11501, USA or (M.C.); (M.B.T.)
| | - Munichandra Babu Tirumalasetty
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, 101 Mineola Blvd, Mineola, NY 11501, USA or (M.C.); (M.B.T.)
| | - Shahida Arbee
- Institute for Molecular Medicine, Aichi Medical University, 1-Yazako, Karimata, Aichi, Nagakute 480-1103, Japan;
| | - Sibly Sadik
- National Institute of Preventive and Social Medicine (NIPSOM), Mohakhali, Dhaka 1212, Bangladesh;
| | - Mohammad Mohabbulla Mohib
- Julius Bernstein Institute of Physiology, Medical School, Martin Luther University of Halle-Wittenberg, Magdeburger Straße 6, 06112 Halle, Germany;
| | | | - Naofel Minhaz
- PGY1, Family Medicine, University of Alberta, 116 St & 85 Ave, Edmonton, AB T6G 2R3, Canada;
| | - Riffat Alam
- Alberta Hospital Edmonton, 17480 Fort Rd NW, Edmonton, AB T5Y 6A8, Canada;
| | - Mohammad Sarif Mohiuddin
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, 101 Mineola Blvd, Mineola, NY 11501, USA or (M.C.); (M.B.T.)
| |
Collapse
|
7
|
Kim J, Kim E, Kim D, Yoon S. Weighted vest intervention during whole-body circuit training improves serum resistin, insulin resistance, and cardiometabolic risk factors in normal-weight obese women. J Exerc Sci Fit 2024; 22:463-473. [PMID: 39525516 PMCID: PMC11550068 DOI: 10.1016/j.jesf.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Background and objectives Obesity is a well-known cause of cardiovascular disease and metabolic disorders. Normal-weight obesity, where the body mass index(BMI) is within the normal range but the body fat percentage is high, also adversely impacts cardiovascular and metabolic health. This study explored the effects of whole-body circuit training using a weighted vest on serum resistin, insulin resistance, and cardiovascular disease risk factors in normal-weight obese women. Methods Thirty-six normal-weight obese women were divided into three groups: Weighted Vest Circuit Training(WVCT)(n = 12), Body Weight Circuit Training(BWCT)(n = 12), and a Control group(CON)(n = 12). Participants in the WVCT and BWCT groups engaged in whole-body circuit training three times per week for eight weeks. Serum resistin, cardiovascular disease risk factors, and insulin resistance were measured before and after the intervention. Results The study revealed significant and impactful findings. There were substantial improvements in body composition(Skeletal Muscle Mass: +7.5 %, p = 0.042, d = 0.80), Serum Resistin(-38.2 %, p = 0.001, d = 0.85), insulin resistance(HOMA-IR: 27.1 %, p < 0.001, d = 0.88), and a reduction in IL-6 levels(-25.4 %, p = 0.082, d = 0.60) in the WVCT group compared to the BWCT and CON groups. The WVCT group outperformed the other groups, demonstrating greater effectiveness in reducing cardiovascular risk factors. Conclusion These findings have significant implications for healthcare. Whole-body circuit training with weighted vests has effectively improved body composition, reduced serum resistin, and lowered insulin resistance, reducing cardiovascular disease risk factors in normal-weight obese women. These results could inform and enhance the treatment and management of obesity-related cardiovascular and metabolic disorders.
Collapse
Affiliation(s)
- Jiwoong Kim
- Department of Physical Education Graduate School, Korea University, Seoul, Republic of Korea
| | - Eunsook Kim
- Department of Physical Education Graduate School, Korea University, Seoul, Republic of Korea
| | - Dohyun Kim
- Department of Physical Education Graduate School, Korea University, Seoul, Republic of Korea
| | - Sungjin Yoon
- Department of Physical Education, College of Education, Korea University, 145 Anamro, Seongbuk-Gu, Seoul, Republic of Korea
| |
Collapse
|
8
|
Tan JTM, Cheney CV, Bamhare NES, Hossin T, Bilu C, Sandeman L, Nankivell VA, Solly EL, Kronfeld-Schor N, Bursill CA. Female Psammomys obesus Are Protected from Circadian Disruption-Induced Glucose Intolerance, Cardiac Fibrosis and Adipocyte Dysfunction. Int J Mol Sci 2024; 25:7265. [PMID: 39000372 PMCID: PMC11242371 DOI: 10.3390/ijms25137265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Circadian disruption increases the development of cardiovascular disease and diabetes. We found that circadian disruption causes glucose intolerance, cardiac fibrosis and adipocyte tissue dysfunction in male sand rats, Psammomys obesus. Whether these effects occur in female P. obesus is unknown. Male and female P. obesus were fed a high energy diet and exposed to a neutral (12 light:12 dark, control) or short (5 light:19 dark, circadian disruption) photoperiod for 20 weeks. Circadian disruption impaired glucose tolerance in males but not females. It also increased cardiac perivascular fibrosis and cardiac expression of inflammatory marker Ccl2 in males, with no effect in females. Females had reduced proapoptotic Bax mRNA and cardiac Myh7:Myh6 hypertrophy ratio. Cardiac protection in females occurred despite reductions in the clock gene Per2. Circadian disruption increased adipocyte hypertrophy in both males and females. This was concomitant with a reduction in adipocyte differentiation markers Pparg and Cebpa in males and females, respectively. Circadian disruption increased visceral adipose expression of inflammatory mediators Ccl2, Tgfb1 and Cd68 and reduced browning marker Ucp1 in males. However, these changes were not observed in females. Collectively, our study show that sex differentially influences the effects of circadian disruption on glucose tolerance, cardiac function and adipose tissue dysfunction.
Collapse
Affiliation(s)
- Joanne T M Tan
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Cate V Cheney
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Nicole E S Bamhare
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Tasnim Hossin
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Carmel Bilu
- School of Zoology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Lauren Sandeman
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Victoria A Nankivell
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Emma L Solly
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | | | - Christina A Bursill
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
9
|
Sokary S, Bawadi H, Zakaria ZZ, Al-Asmakh M. The Effects of Spirulina Supplementation on Cardiometabolic Risk Factors: A Narrative Review. J Diet Suppl 2024; 21:527-542. [PMID: 38251049 DOI: 10.1080/19390211.2023.2301366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Spirulina (Arthrospira platensis) is a cyanobacterium associated with multiple health benefits. Cardiometabolic diseases such as cardiovascular disease, nonalcoholic fatty liver disease, and diabetes are prevalent yet usually preventable non-communicable diseases. Modifiable risk factors for cardiometabolic diseases include excessive body weight, body inflammation, atherogenic lipid profile, and imbalanced glucose metabolism. This review explores the effects of spirulina on cardiometabolic diseases risk factors. Spirulina was effective in reducing body weight, body mass index, and waist circumference, with a potential dose-dependent effect. It also decreased interleukin 6, an important biomarker of body inflammation, by inhibiting NADPH oxidase enzyme, and lowering insulin resistance. spirulina supplementation also reduced triglycerides, low-density lipoprotein cholesterol, and increased high-density lipoprotein cholesterol. Additionally, spirulina reduced fasting blood sugar and post-prandial blood sugar and increased insulin sensitivity, but no effect was observed on glycated hemoglobin A1c. The diverse nutrients, such as phycocyanin, gamma-linolenic acid, and vitamin B12, present in spirulina contribute to its cardiometabolic benefits. The doses used are heterogeneous for most studies, ranging from 1 to 8 grams daily, but most studies administered spirulina for 3 months to observe an effect. The collective evidence suggests that spirulina supplements may help improve risk factors for cardiometabolic diseases, thus, preventing its development. However, due to the heterogeneity of the results, more randomized clinical trials are needed to draw robust conclusions about spirulina's therapeutic potential in ameliorating risk factors for cardiometabolic diseases and fully elucidate the mechanisms by which it exerts its effects.
Collapse
Affiliation(s)
- Sara Sokary
- Department of Human Nutrition, College of Health Science, QU-Health, Qatar University, Doha, Qatar
| | - Hiba Bawadi
- Department of Human Nutrition, College of Health Science, QU-Health, Qatar University, Doha, Qatar
| | - Zain Zaki Zakaria
- Vice President for Medical and Health Sciences Office, Health Cluster, Qatar University, Doha, Qatar
| | - Maha Al-Asmakh
- Department of Biomedical Sciences, College of Health Science, QU-Health, Qatar University, Doha, Qatar
- Biomedical Research Centre, Qatar University, Doha, Qatar
| |
Collapse
|
10
|
Engin A. Endothelial Dysfunction in Obesity and Therapeutic Targets. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:489-538. [PMID: 39287863 DOI: 10.1007/978-3-031-63657-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Parallel to the increasing prevalence of obesity in the world, the mortality from cardiovascular disease has also increased. Low-grade chronic inflammation in obesity disrupts vascular homeostasis, and the dysregulation of adipocyte-derived endocrine and paracrine effects contributes to endothelial dysfunction. Besides the adipose tissue inflammation, decreased nitric oxide (NO)-bioavailability, insulin resistance (IR), and oxidized low-density lipoproteins (oxLDLs) are the main factors contributing to endothelial dysfunction in obesity and the development of cardiorenal metabolic syndrome. While normal healthy perivascular adipose tissue (PVAT) ensures the dilation of blood vessels, obesity-associated PVAT leads to a change in the profile of the released adipo-cytokines, resulting in a decreased vasorelaxing effect. Higher stiffness parameter β, increased oxidative stress, upregulation of pro-inflammatory cytokines, and nicotinamide adenine dinucleotide phosphate (NADP) oxidase in PVAT turn the macrophages into pro-atherogenic phenotypes by oxLDL-induced adipocyte-derived exosome-macrophage crosstalk and contribute to the endothelial dysfunction. In clinical practice, carotid ultrasound, higher leptin levels correlate with irisin over-secretion by human visceral and subcutaneous adipose tissues, and remnant cholesterol (RC) levels predict atherosclerotic disease in obesity. As a novel therapeutic strategy for cardiovascular protection, liraglutide improves vascular dysfunction by modulating a cyclic adenosine monophosphate (cAMP)-independent protein kinase A (PKA)-AMP-activated protein kinase (AMPK) pathway in PVAT in obese individuals. Because the renin-angiotensin-aldosterone system (RAAS) activity, hyperinsulinemia, and the resultant IR play key roles in the progression of cardiovascular disease in obesity, RAAS-targeted therapies contribute to improving endothelial dysfunction. By contrast, arginase reciprocally inhibits NO formation and promotes oxidative stress. Thus, targeting arginase activity as a key mediator in endothelial dysfunction has therapeutic potential in obesity-related vascular comorbidities. Obesity-related endothelial dysfunction plays a pivotal role in the progression of type 2 diabetes (T2D). The peroxisome proliferator-activated receptor gamma (PPARγ) agonist, rosiglitazone (thiazolidinedione), is a popular drug for treating diabetes; however, it leads to increased cardiovascular risk. Selective sodium-glucose co-transporter-2 (SGLT-2) inhibitor empagliflozin (EMPA) significantly improves endothelial dysfunction and mortality occurring through redox-dependent mechanisms. Although endothelial dysfunction and oxidative stress are alleviated by either metformin or EMPA, currently used drugs to treat obesity-related diabetes neither possess the same anti-inflammatory potential nor simultaneously target endothelial cell dysfunction and obesity equally. While therapeutic interventions with glucagon-like peptide-1 (GLP-1) receptor agonist liraglutide or bariatric surgery reverse regenerative cell exhaustion, support vascular repair mechanisms, and improve cardiometabolic risk in individuals with T2D and obesity, the GLP-1 analog exendin-4 attenuates endothelial endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
11
|
Bahari H, Ashtary-Larky D, Goudarzi K, Mirmohammadali SN, Asbaghi O, Hosseini Kolbadi KS, Naderian M, Hosseini A. The effects of pomegranate consumption on glycemic indices in adults: A systematic review and meta-analysis. Diabetes Metab Syndr 2024; 18:102940. [PMID: 38194826 DOI: 10.1016/j.dsx.2024.102940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/16/2023] [Accepted: 01/01/2024] [Indexed: 01/11/2024]
Abstract
BACKGROUND AND AIM Epidemiologic studies have shown that type 2 diabetes (T2D) is more prevalent worldwide; therefore, improving glycemic indices to prevent or control T2D is vital. Randomized controlled trials (RCTs) on the effects of pomegranate consumption on glycemic indices have shown inconsistent results. Therefore, we aim to evaluate the impact of pomegranate consumption on fasting blood glucose (FBG), fasting insulin, hemoglobin A1c (HbA1c), and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) in adults. METHODS A systematic literature search was performed using electronic databases, including PubMed, Web of Science, and Scopus, up to May 2023 to identify eligible RCTs evaluating the effect of pomegranate consumption on glycemic indices. Heterogeneity tests of the included trials were performed using the I2 statistic. Random effects models were assessed based on the heterogeneity tests, and pooled data were determined as the weighted mean difference with a 95 % confidence interval. RESULTS Of 1999 records, 32 eligible RCTs were included in the current study. Our meta-analysis of the pooled findings showed that pomegranate consumption significantly reduced FBG (WMD: -2.22 mg/dL; 95 % CI: -3.95 to -0.50; p = 0.012), fasting insulin (WMD: -1.06 μU/ml; 95%CI: -1.79 to -0.33; p = 0.004), HbA1c (WMD: -0.22 %; 95% CI: -0.43 to -0.01; p = 0.037), and HOMA-IR (WMD: -0.30; 95%CI: -0.61 to -0.00; p = 0.046). CONCLUSION Overall, the results demonstrated that pomegranate consumption benefits glycemic indices in adults. However, further research with long-term interventions is required. PROSPERO REGISTRATION CODE CRD42023422780.
Collapse
Affiliation(s)
- Hossein Bahari
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Damoon Ashtary-Larky
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Kian Goudarzi
- Faculty of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran.
| | | | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | - Moslem Naderian
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Ali Hosseini
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
12
|
Liu T, Wang L, Guo J, Zhao T, Tang H, Dong F, Wang C, Chen J, Tang M. Erythrocyte Membrane Fatty Acid Composition as a Potential Biomarker for Depression. Int J Neuropsychopharmacol 2023; 26:385-395. [PMID: 37217258 PMCID: PMC10289140 DOI: 10.1093/ijnp/pyad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 05/18/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Major depressive disorders is a chronic and severe psychiatric disorder with poor prognosis and quality of life. Abnormal erythrocyte fatty acid (FA) composition in depressed patients were found in our previous study, but the relationship between erythrocyte membrane FA levels and different severity of depressive and anxiety symptoms remains to be explored. METHODS This cross-sectional study included 139 patients with first-diagnosed, drug-naïve depression and 55 healthy controls whose erythrocyte FA composition was analyzed. Patients with depression were divided into severe depression and mild to moderate depression or depression with severe anxiety and mild to moderate anxiety. Then the differences of FA levels among different groups were analyzed. Finally, the receiver operating characteristic curve analysis was applied to identify potential biomarkers in distinguishing the severity of depressive symptoms. RESULTS Levels of erythrocyte membrane FAs were elevated among patients with severe depression compared with healthy controls or patients with mild to moderate depression of almost all kinds. While C18:1n9t (elaidic acid), C20:3n6 (eicosatrienoic acid), C20:4n6 (arachidonic acid), C22:5n3 (docosapentaenoic acid), total fatty acids (FAs), and total monounsaturated FAs were elevated in patients with severe anxiety compared with patients with mild to moderate anxiety. Furthermore, the level of arachidonic acid, C22:4n6 (docosatetraenoic acid), elaidic acid, and the combination of all 3 were associated with the severity of depressive symptoms. CONCLUSIONS The results suggested that erythrocyte membrane FA levels have the potential to be the biological indicator of clinical characteristics for depression, such as depressive symptoms and anxiety. In the future, more research is needed to explore the causal association between FA metabolism and depression.
Collapse
Affiliation(s)
- Ting Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lu Wang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders and Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Jimin Guo
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tingyu Zhao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Tang
- National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Fang Dong
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders and Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Chuanyue Wang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders and Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Jindong Chen
- National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Mimi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
13
|
Radecka A, Lubkowska A. The Significance of Dual-Energy X-ray Absorptiometry (DXA) Examination in Cushing's Syndrome-A Systematic Review. Diagnostics (Basel) 2023; 13:diagnostics13091576. [PMID: 37174967 PMCID: PMC10178172 DOI: 10.3390/diagnostics13091576] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/13/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
In recent years, the usefulness of dual-energy X-ray absorptiometry (DXA) as a valuable complementary method of assessing the content and distribution of adipose and lean tissue as well as bone mineral density and estimating the risk of fractures has been increasingly confirmed. The diagnosis and treatment of Cushing's syndrome remain challenging, and monitoring the effects of treatment is often necessary. DXA tests offer a potential solution to many problems related to the availability of a quick, detailed, and reliable analysis of changes in the content and distribution of individual body composition components. The article discusses total body DXA scans (FMI, VAT, ALMI), lumbar spine scans (VFA, TBS), and osteoporosis scans (BMD, T-score, Z-score)-all are of potential interest in Cushing's syndrome. The article discusses the use of the most important indicators obtained from a DXA test (FMI, VAT, ALMI, BMD, T-score, Z-score, VFA, TBS) and their clinical significance in Cushing's syndrome was verified. The literature from the last decade was used for the study, available in MEDLINE, Web of Science, and ScienceDirect.
Collapse
Affiliation(s)
- Aleksandra Radecka
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, Żołnierska 54, 71-210 Szczecin, Poland
| | - Anna Lubkowska
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, Żołnierska 54, 71-210 Szczecin, Poland
| |
Collapse
|
14
|
Immuno-metabolic effect of pancreastatin inhibitor PSTi8 in diet induced obese mice: In vitro and in vivo findings. Life Sci 2023; 316:121415. [PMID: 36690247 DOI: 10.1016/j.lfs.2023.121415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
AIMS Pancreastatin (PST), an anti-insulin peptide derived from chromogranin A. Its levels increase in cases of obesity, which contributes to adipose tissue inflammation and insulin resistance. This study aims to investigate the immunometabolic effect of PST inhibitor (PSTi8) against PST by using in vitro and in vivo finding. MAIN METHODS 3T3-L1 cells were differentiated with or without PSTi8, and Oil Red O staining was performed. J774A.1 cells were used for macrophage polarization study. The diet-induced obesity and T2DM model was developed in C57BL/6 mice through high-fat diet for 8 weeks. Alzet osmotic pumps were filled with PSTi8 (release rate: 2 mg/kg/day) and implanted in mice for eight weeks. Further, insulin and glucose tolerance tests were performed. Liver and eWAT sections were stained with hematoxylin and eosin. FACS was used to measure mitochondrial ROS and membrane potential, while Oroboros O2k was used to measure oxygen consumption rate. Immunocytochemistry and qRT-PCR were done for protein and gene expression, respectively. KEY FINDINGS PSTi8 inhibited the expression of lipolytic genes and proteins in 3T3-L1 adipocytes. PSTi8 improved the inulin sensitivity, lipid profile, MMP, and OCR levels in the 3T3-L1 adipocyte and eWAT. It also increased the M1 to M2 macrophage polarization in J77A.1 cells and eWAT. Further, PSTi8 attenuated inflammatory CD4+ T, CD8+ T cells and increased the anti-inflammatory T-reg and eosinophil populations in the eWAT. It also reduced the expression of pro-inflammatory genes like Mcp1, Tnfα, and Il-6. SIGNIFICANCE Collectively, PSTi8 exerted its beneficial effect on adipose tissue inflammation and restored energy expenditure against diet-induced obesity.
Collapse
|
15
|
Gao S, Zhang Y, Liang K, Bi R, Du Y. Mesenchymal Stem Cells (MSCs): A Novel Therapy for Type 2 Diabetes. Stem Cells Int 2022; 2022:8637493. [PMID: 36045953 PMCID: PMC9424025 DOI: 10.1155/2022/8637493] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/15/2022] [Accepted: 07/05/2022] [Indexed: 11/25/2022] Open
Abstract
Although plenty of drugs are currently available for type 2 diabetes mellitus (T2DM), a subset of patients still failed to restore normoglycemia. Recent studies proved that symptoms of T2DM patients who are unresponsive to conventional medications could be relieved with mesenchymal stem/stromal cell (MSC) therapy. However, the lack of systematic summary and analysis for animal and clinical studies of T2DM has limited the establishment of standard guidelines in anti-T2DM MSC therapy. Besides, the therapeutic mechanisms of MSCs to combat T2DM have not been thoroughly understood. In this review, we present an overview of the current status of MSC therapy in treating T2DM for both animal studies and clinical studies. Potential mechanisms of MSC-based intervention on multiple pathological processes of T2DM, such as β-cell exhaustion, hepatic dysfunction, insulin resistance, and systemic inflammation, are also delineated. Moreover, we highlight the importance of understanding the pharmacokinetics (PK) of transplanted cells and discuss the hurdles in MSC-based T2DM therapy toward future clinical applications.
Collapse
Affiliation(s)
- Shuang Gao
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuanyuan Zhang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kaini Liang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ran Bi
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
16
|
Longitudinal proteomics study of serum changes after allogeneic HSCT reveals potential markers of metabolic complications related to aGvHD. Sci Rep 2022; 12:14002. [PMID: 35977993 PMCID: PMC9385631 DOI: 10.1038/s41598-022-18221-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/08/2022] [Indexed: 01/19/2023] Open
Abstract
Even though hematopoietic stem cell transplantation (HSCT) allows successful treatment for many malignant and non-malignant disorders, its curative potential remains limited by severe side effects, including infections and other transplant-related complications such as graft-versus-host disease (GvHD). This study examined changes in serum proteome via high-performance two-dimensional gel electrophoresis (2-DE) during HSCT to search for diagnostic biomarkers for post-HSCT complications. Longitudinal proteomic analysis revealed proteins related to metabolic complications and hemolytic anemia. Retinol-binding protein 4 (RBP4), a reliable marker of insulin resistance, was identified, and is possibly associated with the onset mechanism of acute graft-versus-host disease (aGvHD) and/or skin GvHD. Although the cause of insulin resistance is not fully understood, it is thought to be associated with adipocytes inflammation induced by RBP4, iron overload and hemolytic anemia after HSCT, as observed in this study. The present study has demonstrated that insulin resistance and metabolic complications could be immediate complications after transplantation and are associated with aGvHD. The biomarkers revealed in this study are promising tools to be used for improving the early diagnosis of HSCT-associated complications, especially aGvHD, possibly even before clinical manifestations.
Collapse
|
17
|
Apelin and its ratio to lipid factors are associated with cardiovascular diseases: A systematic review and meta-analysis. PLoS One 2022; 17:e0271899. [PMID: 35913970 PMCID: PMC9342781 DOI: 10.1371/journal.pone.0271899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background
The present systematic review and meta-analysis aimed to ascertain if the circulating levels of apelin, as an important regulator of the cardiovascular homeostasis, differ in patients with cardiovascular diseases (CVDs) and controls.
Methods
A comprehensive search was performed in electronic databases including PubMed, Scopus, EMBASE, and Web of Science to identify the studies addressing apelin in CVD up to April 5, 2021. Due to the presence of different units to measure the circulating levels of apelin across the included studies, they expressed the standardized mean difference (SMD) and their 95% confidence interval (CI) as summary effect size. A random-effects model comprising DerSimonian and Laird method was used to pool SMDs.
Results
Twenty-four articles (30 studies) comprised of 1793 cases and 1416 controls were included. Pooled results obtained through random-effects model indicated that apelin concentrations in the cases’ blood samples were significantly lower than those of the control groups (SMD = -0.72, 95% CI: -1.25, -0.18, P = 0.009; I2 = 97.3%, P<0.001). New combined biomarkers showed a significant decrease in SMD of apelin/high-density lipoprotein cholesterol (apelin/HDL-C) ratio [-5.17; 95% CI, -8.72, -1.63, P = 0.000; I2 = 99.0%], apelin/low-density lipoprotein cholesterol (apelin/LDL-C) ratio [-4.31; 95% CI, -6.08, -2.55, P = 0.000; I2 = 98.0%] and apelin/total cholesterol (apelin/TC) ratio [-17.30; 95% CI, -22.85, -11.76, P = 0.000; I2 = 99.1%]. However, no significant differences were found in the SMD of apelin/triacylglycerol (apelin/TG) ratio in cases with CVDs compared to the control group [-2.96; 95% CI, -7.41, 1.49, P = 0.000; I2 = 99.2%].
Conclusion
The association of apelin with CVDs is different based on the region and disease subtypes. These findings account for the possible usefulness of apelin as an additional biomarker in the diagnosis of CVD in diabetic patients and in the diagnosis of patients with CAD. Moreover, apelin/HDL-c, apelin/LDL-c, and apelin/TC ratios could be offered as diagnostic markers for CVD.
Collapse
|
18
|
Dwaib HS, AlZaim I, Ajouz G, Eid AH, El-Yazbi A. Sex Differences in Cardiovascular Impact of Early Metabolic Impairment: Interplay between Dysbiosis and Adipose Inflammation. Mol Pharmacol 2022; 102:481-500. [PMID: 34732528 DOI: 10.1124/molpharm.121.000338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/23/2021] [Indexed: 11/22/2022] Open
Abstract
The evolving view of gut microbiota has shifted toward describing the colonic flora as a dynamic organ in continuous interaction with systemic physiologic processes. Alterations of the normal gut bacterial profile, known as dysbiosis, has been linked to a wide array of pathologies. Of particular interest is the cardiovascular-metabolic disease continuum originating from positive energy intake and high-fat diets. Accumulating evidence suggests a role for sex hormones in modulating the gut microbiome community. Such a role provides an additional layer of modulation of the early inflammatory changes culminating in negative metabolic and cardiovascular outcomes. In this review, we will shed the light on the role of sex hormones in cardiovascular dysfunction mediated by high-fat diet-induced dysbiosis, together with the possible involvement of insulin resistance and adipose tissue inflammation. Insights into novel therapeutic interventions will be discussed as well. SIGNIFICANCE STATEMENT: Increasing evidence implicates a role for dysbiosis in the cardiovascular complications of metabolic dysfunction. This minireview summarizes the available data on the sex-based differences in gut microbiota alterations associated with dietary patterns leading to metabolic impairment. A role for a differential impact of adipose tissue inflammation across sexes in mediating the cardiovascular detrimental phenotype following diet-induced dysbiosis is proposed. Better understanding of this pathway will help introduce early approaches to mitigate cardiovascular deterioration in metabolic disease.
Collapse
Affiliation(s)
- Haneen S Dwaib
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| | - Ibrahim AlZaim
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| | - Ghina Ajouz
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| | - Ali H Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| | - Ahmed El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| |
Collapse
|
19
|
El-Khodary NM, Dabees H, Werida RH. Folic acid effect on homocysteine, sortilin levels and glycemic control in type 2 diabetes mellitus patients. Nutr Diabetes 2022; 12:33. [PMID: 35732620 PMCID: PMC9217798 DOI: 10.1038/s41387-022-00210-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/20/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022] Open
Abstract
Aim The present study aimed to determine the folic acid supplement (FAS) effects on serum homocysteine and sortilin levels, glycemic indices, and lipid profile in type II diabetic patients. Method A double-blind randomized controlled clinical trial have been performed on 100 patients with T2DM randomly divided into two groups that received either placebo or folic acid 5 mg/d for 12 weeks. Results FAS caused a significant decrease in homocysteine and sortilin serum levels (28.2% and 33.7%, P < 0.0001, respectively). After 3 months of intervention, 8.7% decrease in fasting blood glucose (P = 0.0005), 8.2% in HbA1c (P = 0.0002), 13.7% in serum insulin (P < 0.0001) and 21.7% in insulin resistance (P < 0.0001) were found in the folic acid group, however no significant difference was observed in the placebo group. Serum hs-CRP level showed significant positive associations with sortilin (r = 0.237, P = 0.018), homocysteine (r = 0.308, P = 0.002) and fasting blood glucose (r = 0.342, P = 0.000). There were no significant changes in lipid profile in both groups after 12 weeks. Conclusion FAS might be beneficial for reducing homocysteine and sortilin levels, enhancing glycemic control, and improved insulin resistance in patients with T2DM.
Collapse
Affiliation(s)
- Noha M El-Khodary
- Clinical Pharmacy Department, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh City, Egypt
| | - Hossam Dabees
- Internal Medicine and Diabetes Department, Damanhour Medical National Institute, Damanhour City, Egypt
| | - Rehab H Werida
- Clinical Pharmacy & Pharmacy Practice Department, Faculty of Pharmacy, Damanhour University, Damanhour City, Egypt.
| |
Collapse
|
20
|
Maurya M, Jaiswal A, Gupta S, Ali W, Gaikwad AN, Dikshit M, Barthwal MK. Galectin-3 S-glutathionylation regulates its effect on adipocyte insulin signaling. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119234. [PMID: 35143900 DOI: 10.1016/j.bbamcr.2022.119234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Protein-S-glutathionylation promotes redox signaling in physiological and oxidative distress conditions. Galectin-3 (Gal-3) promotes insulin resistance by down-regulating adipocyte insulin signaling, however, its S-glutathionylation and significance is not known. In this context, we report reversible S-glutathionylation of Gal-3. Site-directed mutagenesis established Gal-3 Cys187 as the putative S-glutathionylation site. Glutathionylated Gal-3 prevents Gal-3(WT)-Insulin Receptor interaction and facilitates insulin-induced murine adipocyte p-IRS1(tyr895) and p-AKT(ser473) signaling and glucose uptake in a Gal-3 Cys187 glutathionylation dependent manner in murine adipocytes, as assessed by Western blotting and 2-NBDG uptake assay respectively. Pre-glutathionylated Gal-3 at Cys187 resisted irreversible oxidation by H2O2. M2 macrophages showed enhanced Gal-3 S-glutathionylation when compared to M1 phenotype. Serum and stromal vascular fraction (SVF) isolated from control mice showed increased Gal-3 S-glutathionylation as compared to db/db mice. A significant increase in Gal-3 S-glutathionylation was observed in metformin-treated db/db mice when compared to db/db mice alone. Similar to murine, enhanced Gal-3 S-glutathionylation is observed in primary human monocyte derived M2 macrophages when compared to the M1 macrophage phenotype and Gal-3 regulates primary human adipocyte insulin signaling in a glutathionylation dependent manner. Collectively, we identified Gal-3 S-glutathionylation as a protective phenomenon, which relieves its inhibitory effect on adipocyte insulin signaling.
Collapse
Affiliation(s)
- Mohita Maurya
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anant Jaiswal
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Sanchita Gupta
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Wahid Ali
- King George's Medical University, Lucknow 226003, India
| | | | - Madhu Dikshit
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Manoj Kumar Barthwal
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India.
| |
Collapse
|
21
|
Ramírez-Moreno E, Arias-Rico J, Jiménez-Sánchez RC, Estrada-Luna D, Jiménez-Osorio AS, Zafra-Rojas QY, Ariza-Ortega JA, Flores-Chávez OR, Morales-Castillejos L, Sandoval-Gallegos EM. Role of Bioactive Compounds in Obesity: Metabolic Mechanism Focused on Inflammation. Foods 2022; 11:foods11091232. [PMID: 35563955 PMCID: PMC9101148 DOI: 10.3390/foods11091232] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023] Open
Abstract
Obesity is a disease characterized by an inflammatory process in the adipose tissue due to diverse infiltrated immune cells, an increased secretion of proinflammatory molecules, and a decreased secretion of anti-inflammatory molecules. On the other hand, obesity increases the risk of several diseases, such as cardiovascular diseases, diabetes, and cancer. Their treatment is based on nutritional and pharmacological strategies. However, natural products are currently implemented as complementary and alternative medicine (CAM). Polyphenols and fiber are naturally compounds with potential action to reduce inflammation through several pathways and play an important role in the prevention and treatment of obesity, as well as in other non-communicable diseases. Hence, this review focuses on the recent evidence of the molecular mechanisms of polyphenols and dietary fiber, from Scopus, Science Direct, and PubMed, among others, by using key words and based on recent in vitro and in vivo studies.
Collapse
Affiliation(s)
- Esther Ramírez-Moreno
- Academic Area of Nutrition, Interdisciplinary Research Center, Institute of Health Sciences, Circuit Actopan Tilcuautla s/n, Ex hacienda La Concepción, San Agustin Tlaxiaca, Pachuca 42160, Mexico; (E.R.-M.); (Q.Y.Z.-R.); (J.A.A.-O.)
| | - José Arias-Rico
- Academic Area of Nursing; Institute of Health Sciences, Circuit Actopan Tilcuautla s/n, Ex hacienda La Concepción, San Agustin Tlaxiaca, Pachuca 42160, Mexico; (J.A.-R.); (R.C.J.-S.); (D.E.-L.); (A.S.J.-O.); (O.R.F.-C.); (L.M.-C.)
| | - Reyna Cristina Jiménez-Sánchez
- Academic Area of Nursing; Institute of Health Sciences, Circuit Actopan Tilcuautla s/n, Ex hacienda La Concepción, San Agustin Tlaxiaca, Pachuca 42160, Mexico; (J.A.-R.); (R.C.J.-S.); (D.E.-L.); (A.S.J.-O.); (O.R.F.-C.); (L.M.-C.)
| | - Diego Estrada-Luna
- Academic Area of Nursing; Institute of Health Sciences, Circuit Actopan Tilcuautla s/n, Ex hacienda La Concepción, San Agustin Tlaxiaca, Pachuca 42160, Mexico; (J.A.-R.); (R.C.J.-S.); (D.E.-L.); (A.S.J.-O.); (O.R.F.-C.); (L.M.-C.)
| | - Angélica Saraí Jiménez-Osorio
- Academic Area of Nursing; Institute of Health Sciences, Circuit Actopan Tilcuautla s/n, Ex hacienda La Concepción, San Agustin Tlaxiaca, Pachuca 42160, Mexico; (J.A.-R.); (R.C.J.-S.); (D.E.-L.); (A.S.J.-O.); (O.R.F.-C.); (L.M.-C.)
| | - Quinatzin Yadira Zafra-Rojas
- Academic Area of Nutrition, Interdisciplinary Research Center, Institute of Health Sciences, Circuit Actopan Tilcuautla s/n, Ex hacienda La Concepción, San Agustin Tlaxiaca, Pachuca 42160, Mexico; (E.R.-M.); (Q.Y.Z.-R.); (J.A.A.-O.)
| | - José Alberto Ariza-Ortega
- Academic Area of Nutrition, Interdisciplinary Research Center, Institute of Health Sciences, Circuit Actopan Tilcuautla s/n, Ex hacienda La Concepción, San Agustin Tlaxiaca, Pachuca 42160, Mexico; (E.R.-M.); (Q.Y.Z.-R.); (J.A.A.-O.)
| | - Olga Rocío Flores-Chávez
- Academic Area of Nursing; Institute of Health Sciences, Circuit Actopan Tilcuautla s/n, Ex hacienda La Concepción, San Agustin Tlaxiaca, Pachuca 42160, Mexico; (J.A.-R.); (R.C.J.-S.); (D.E.-L.); (A.S.J.-O.); (O.R.F.-C.); (L.M.-C.)
| | - Lizbeth Morales-Castillejos
- Academic Area of Nursing; Institute of Health Sciences, Circuit Actopan Tilcuautla s/n, Ex hacienda La Concepción, San Agustin Tlaxiaca, Pachuca 42160, Mexico; (J.A.-R.); (R.C.J.-S.); (D.E.-L.); (A.S.J.-O.); (O.R.F.-C.); (L.M.-C.)
| | - Eli Mireya Sandoval-Gallegos
- Academic Area of Nutrition, Interdisciplinary Research Center, Institute of Health Sciences, Circuit Actopan Tilcuautla s/n, Ex hacienda La Concepción, San Agustin Tlaxiaca, Pachuca 42160, Mexico; (E.R.-M.); (Q.Y.Z.-R.); (J.A.A.-O.)
- Correspondence:
| |
Collapse
|
22
|
Muhammad A, Forcados GE, Sani H, Ndidi US, Adamu A, Katsayal BS, Sadiq IZ, Abubakar YS, Sulaiman I, Abubakar IB, Yusuf AP, Malami I, Ibrahim S, Abubakar MB. Epigenetic modifications associated with genes implicated in cytokine storm: The potential biotherapeutic effects of vitamins and minerals in COVID‐19. J Food Biochem 2022; 46:e14079. [DOI: 10.1111/jfbc.14079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/25/2021] [Accepted: 12/31/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Aliyu Muhammad
- Department of Biochemistry, Faculty of Life Sciences Ahmadu Bello University Zaria Nigeria
| | | | - Hadiza Sani
- Department of Medicine Kaduna State University Kaduna Nigeria
| | - Uche Samuel Ndidi
- Department of Biochemistry, Faculty of Life Sciences Ahmadu Bello University Zaria Nigeria
| | - Auwal Adamu
- Department of Biochemistry, Faculty of Life Sciences Ahmadu Bello University Zaria Nigeria
| | | | - Idris Zubairu Sadiq
- Department of Biochemistry, Faculty of Life Sciences Ahmadu Bello University Zaria Nigeria
| | | | - Ibrahim Sulaiman
- Department of Human Physiology Federal University Dutse Dutse Nigeria
| | | | | | - Ibrahim Malami
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences Usmanu Danfodiyo University Sokoto Nigeria
| | - Sani Ibrahim
- Department of Biochemistry, Faculty of Life Sciences Ahmadu Bello University Zaria Nigeria
| | | |
Collapse
|
23
|
Niknam M, Liaghat T, Zarghami M, Akrami M, Shahnematollahi SM, Ahmadipour A, Moazzen F, Soltanabadi S. Ghrelin and ghrelin/total cholesterol ratio as independent predictors for coronary artery disease: a systematic review and meta-analysis. J Investig Med 2022; 70:759-765. [PMID: 35042826 DOI: 10.1136/jim-2021-002100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2021] [Indexed: 11/04/2022]
Abstract
The present meta-analysis aimed to summarize the available data regarding the circulating levels of ghrelin in patients with cardiovascular diseases (CVDs). A comprehensive search was performed in electronic databases including PubMed, Scopus, EMBASE, and Web of Science up to January 20, 2021. Since the circulating levels of ghrelin were measured in different units across the included studies, they were expressed as the standardized mean difference (SMD) and 95% CI (summary effect size). A random-effects model comprising the DerSimonian and Laird method was used to pool SMDs. Sixteen articles (20 studies) comprised of 1087 cases and 437 controls were included. The pooled results showed that there were no significant differences between cases and controls in terms of ghrelin levels (SMD=-0.61, 95% CI -1.38 to 0.16; p=0.120; I2=96.9%, p<0.001). The ghrelin concentrations in the CAD stratum were significantly lower than in controls, whereas they increased in other disease strata. New combined biomarkers demonstrated a significant decrease in the SMD of the ghrelin/total cholesterol (TC) ratio (-1.02; 95% CI -1.74 to -0.29, p=0.000; I2=94.5%). However, no significant differences were found in the SMD of the ghrelin/high-density lipoprotein cholesterol ratio, ghrelin/low-density lipoprotein cholesterol ratio, and ghrelin/triglyceride (TG) ratio in cases with CVDs compared with the control group. Ghrelin was associated with CAD; therefore, it may be considered a biomarker for distinguishing between patients with and without CAD. Furthermore, the ghrelin/TC ratio could be proposed as a diagnostic marker for CVD.
Collapse
Affiliation(s)
- Maryam Niknam
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Taraneh Liaghat
- Cardiovascular Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrdad Zarghami
- Cardiology Department, Fasa University of Medical Science, Fasa, Iran
| | - Mehdi Akrami
- Cardiovascular Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Ahmad Ahmadipour
- Student Research Committee, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Fatemeh Moazzen
- Department of Hematology, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sahar Soltanabadi
- Cardiovascular Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
24
|
Kim MJ, Kim JH, Lee S, Kim B, Kim HY. The protective effects of Aster yomena (Kitam.) Honda on high-fat diet-induced obese C57BL/6J mice. Nutr Res Pract 2022; 16:46-59. [PMID: 35116127 PMCID: PMC8784267 DOI: 10.4162/nrp.2022.16.1.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/07/2021] [Accepted: 11/23/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND/OBJECTIVES Aster yomena (Kitam.) Honda (AY) has remarkable bioactivities, such as antioxidant, anti-inflammation, and anti-cancer activities. On the other hand, the effects of AY against obesity-induced insulin resistance have not been reported. Therefore, this study examined the potential of AY against obesity-associated insulin resistance in high-fat diet (HFD)-fed mice. MATERIALS/METHODS An obesity model was established by feeding C57BL/6J mice a 60% HFD for 16 weeks. The C57BL6/When ethyl acetate fraction from AY (EFAY) at doses of 100 and 200 mg/kg/day was administered orally to mice fed a HFD for the last 4 weeks. Normal and control groups were administered water orally. The body weight and fasting blood glucose were measured every week. Dietary intake was measured every other day. After dissection, blood and tissues were collected from the mice. RESULTS The administration of EFAY reduced body and organ weights significantly compared to HFD-fed control mice. The EFAY-administered groups also improved the serum lipid profile by decreasing the triglyceride, total cholesterol, and low-density lipoprotein compared to the control group. In addition, EFAY ameliorated the insulin resistance-related metabolic dysfunctions, including the fasting blood glucose and serum insulin level, compared to the HFD-fed control mice. The EFAY inhibited lipid synthesis and insulin resistance by down-regulation of hepatic fatty acid synthase and up-regulation of the AMP-activated protein kinase pathway. EFAY also reduced lipid peroxidation in the liver, indicating that EFAY protected hepatic injury induced by obesity. CONCLUSIONS These results suggest that EFAY improved obesity-associated insulin resistance by regulating the lipid and glucose metabolism, suggesting that AY could be used as a functional food to prevent obesity and insulin resistance.
Collapse
Affiliation(s)
- Min Jeong Kim
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Korea
| | - Ji Hyun Kim
- Department of Food Science, Gyeongsang National University, Jinju 52725, Korea
| | - Sanghyun Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Bohkyung Kim
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Korea
| | - Hyun Young Kim
- Department of Food Science, Gyeongsang National University, Jinju 52725, Korea
| |
Collapse
|
25
|
Dwaib HS, Ajouz G, AlZaim I, Rafeh R, Mroueh A, Mougharbil N, Ragi ME, Refaat M, Obeid O, El-Yazbi AF. Phosphorus Supplementation Mitigates Perivascular Adipose Inflammation-Induced Cardiovascular Consequences in Early Metabolic Impairment. J Am Heart Assoc 2021; 10:e023227. [PMID: 34873915 PMCID: PMC9075232 DOI: 10.1161/jaha.121.023227] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background The complexity of the interaction between metabolic dysfunction and cardiovascular complications has long been recognized to extend beyond simple perturbations of blood glucose levels. Yet, structured interventions targeting the root pathologies are not forthcoming. Growing evidence implicates the inflammatory changes occurring in perivascular adipose tissue (PVAT) as early instigators of cardiovascular deterioration. Methods and Results We used a nonobese prediabetic rat model with localized PVAT inflammation induced by hypercaloric diet feeding, which dilutes inorganic phosphorus (Pi) to energy ratio by 50%, to investigate whether Pi supplementation ameliorates the early metabolic impairment. A 12‐week Pi supplementation at concentrations equivalent to and twice as much as that in the control diet was performed. The localized PVAT inflammation was reversed in a dose‐dependent manner. The increased expression of UCP1 (uncoupling protein1), HIF‐1α (hypoxia inducible factor‐1α), and IL‐1β (interleukin‐1β), representing the hallmark of PVAT inflammation in this rat model, were reversed, with normalization of PVAT macrophage polarization. Pi supplementation restored the metabolic efficiency consistent with its putative role as an UCP1 inhibitor. Alongside, parasympathetic autonomic and cerebrovascular dysfunction function observed in the prediabetic model was reversed, together with the mitigation of multiple molecular and histological cardiovascular damage markers. Significantly, a Pi‐deficient control diet neither induced PVAT inflammation nor cardiovascular dysfunction, whereas Pi reinstatement in the diet after a 10‐week exposure to a hypercaloric low‐Pi diet ameliorated the dysfunction. Conclusions Our present results propose Pi supplementation as a simple intervention to reverse PVAT inflammation and its early cardiovascular consequences, possibly through the interference with hypercaloric‐induced increase in UCP1 expression/activity.
Collapse
Affiliation(s)
- Haneen S Dwaib
- Department of Pharmacology and Toxicology Faculty of Medicine The American University of Beirut Beirut Lebanon.,Department of Nutrition and Food Sciences Faculty of Agriculture and Food Sciences The American University of Beirut Beirut Lebanon
| | - Ghina Ajouz
- Department of Pharmacology and Toxicology Faculty of Medicine The American University of Beirut Beirut Lebanon
| | - Ibrahim AlZaim
- Department of Pharmacology and Toxicology Faculty of Medicine The American University of Beirut Beirut Lebanon.,Department of Biochemistry and Molecular Genetics Faculty of Medicine The American University of Beirut Beirut Lebanon
| | - Rim Rafeh
- Department of Pharmacology and Toxicology Faculty of Medicine The American University of Beirut Beirut Lebanon
| | - Ali Mroueh
- INSERM UMR 1260 Regenerative Nanomedicine FMTSUniversity of Strasbourg Strasbourg France
| | - Nahed Mougharbil
- Department of Pharmacology and Toxicology Faculty of Medicine The American University of Beirut Beirut Lebanon
| | - Marie-Elizabeth Ragi
- Department of Nutrition and Food Sciences Faculty of Agriculture and Food Sciences The American University of Beirut Beirut Lebanon
| | - Marwan Refaat
- Department of Biochemistry and Molecular Genetics Faculty of Medicine The American University of Beirut Beirut Lebanon.,Division of Cardiology Department of Internal Medicine Faculty of Medicine The American University of Beirut Beirut Lebanon
| | - Omar Obeid
- Department of Nutrition and Food Sciences Faculty of Agriculture and Food Sciences The American University of Beirut Beirut Lebanon
| | - Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology Faculty of Medicine The American University of Beirut Beirut Lebanon.,Department of Pharmacology and Toxicology Faculty of Pharmacy Alexandria University Alexandria Egypt.,Faculty of Pharmacy Al-Alamein International University Alamein Egypt
| |
Collapse
|
26
|
Ha EE, Quartuccia GI, Ling R, Xue C, Karikari RA, Hernandez-Ono A, Hu KY, Matias CV, Imam R, Cui J, Pellegata NS, Herzig S, Georgiadi A, Soni RK, Bauer RC. Adipocyte-specific tribbles pseudokinase 1 regulates plasma adiponectin and plasma lipids in mice. Mol Metab 2021; 56:101412. [PMID: 34890852 PMCID: PMC8749272 DOI: 10.1016/j.molmet.2021.101412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/16/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Multiple genome-wide association studies (GWAS) have identified SNPs in the 8q24 locus near TRIB1 that are significantly associated with plasma lipids and other markers of cardiometabolic health, and prior studies have revealed the roles of hepatic and myeloid Trib1 in plasma lipid regulation and atherosclerosis. The same 8q24 SNPs are additionally associated with plasma adiponectin levels in humans, implicating TRIB1 in adipocyte biology. Here, we hypothesize that TRIB1 in adipose tissue regulates plasma adiponectin, lipids, and metabolic health. METHODS We investigate the metabolic phenotype of adipocyte-specific Trib1 knockout mice (Trib1_ASKO) fed on chow and high-fat diet (HFD). Through secretomics of adipose tissue explants and RNA-seq of adipocytes and livers from these mice, we further investigate the mechanism of TRIB1 in adipose tissue. RESULTS Trib1_ASKO mice have an improved metabolic phenotype with increased plasma adiponectin levels, improved glucose tolerance, and decreased plasma lipids. Trib1_ASKO adipocytes have increased adiponectin production and secretion independent of the known TRIB1 function of regulating proteasomal degradation. RNA-seq analysis of adipocytes and livers from Trib1_ASKO mice indicates that alterations in adipocyte function underlie the observed plasma lipid changes. Adipose tissue explant secretomics further reveals that Trib1_ASKO adipose tissue has decreased ANGPTL4 production, and we demonstrate an accompanying increase in the lipoprotein lipase (LPL) activity that likely underlies the triglyceride phenotype. CONCLUSIONS This study shows that adipocyte Trib1 regulates multiple aspects of metabolic health, confirming previously observed genetic associations in humans and shedding light on the further mechanisms by which TRIB1 regulates plasma lipids and metabolic health.
Collapse
Affiliation(s)
- Elizabeth E Ha
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| | - Gabriella I Quartuccia
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| | - Ruifeng Ling
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| | - Chenyi Xue
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| | - Rhoda A Karikari
- Institute for Diabetes and Cancer, Helmholtz Centre, Munich, Germany
| | - Antonio Hernandez-Ono
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Krista Y Hu
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| | - Caio V Matias
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| | - Rami Imam
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| | - Jian Cui
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| | | | - Stephan Herzig
- Institute for Diabetes and Cancer, Helmholtz Centre, Munich, Germany
| | | | - Rajesh K Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Robert C Bauer
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA.
| |
Collapse
|
27
|
Daneshafrooz A, Yuzbashian E, Zarkesh M, Asghari G, Mirmiran P, Hedayati M, Abooshahab R, Fanaei SM, Khalaj A. The relation of omentin gene expression and glucose homeostasis of visceral and subcutaneous adipose tissues in non-diabetic adults. Mol Biol Rep 2021; 49:163-169. [PMID: 34739694 DOI: 10.1007/s11033-021-06854-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 10/18/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Adipose tissue (AT) is a passive reservoir for energy storage and an active endocrine organ responsible for synthesizing bioactive molecules called adipokines. Omentin is known as an anti-inflammatory adipokine that can modulate insulin sensitivity. The present study aimed to investigate the relationship between omentin mRNA expression and glucose homeostasis of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) in non-diabetic adults. METHODS VAT and SAT adipose tissues were collected from 137 adults aged ≥ 18 years hospitalized for abdominal surgery. Before surgery, preoperative blood samples were taken from the participants to measure fasting plasma glucose, insulin, and triglyceride. BMI, HOMA-IR, HOMA-B, and QUICKI were calculated. Insulin levels were measured with Mercodia kits using enzyme-linked immunosorbent assay (ELISA). In order to obtain omentin mRNA expression, real-time PCR was performed. RESULTS Overall, 91 (66.4%) subjects were healthy [without insulin resistance (IR)], and 46 (33.6%) participants were with IR. In healthy and IR subjects, omentin gene expression was 1.04 and 2.32, respectively in VAT, and 3.06 and 1.30, respectively, in SAT (P > 0.05). After controlling for age and BMI, linear regression analysis indicated a significant positive association of SAT omentin expression with insulin concentration (β = 0.048; 95% CI 0.009, 0.088, P = 0.017) and HOMA-IR (β = 0.173; 95% CI 0.023, 0.323, P = 0.014). Moreover, a negative association of SAT omentin expression with HOMA-B (β = - 0.001; 95% CI 0.002, - 0.001, P < 0.001) was observed. CONCLUSION This study's finding confirms a direct association between IR with omentin mRNA levels in SAT. Besides, the indicator of insulin sensitivity had an inverse association with omentin gene expression in SAT. This aspect of research suggests that omentin secretion from SAT has a strong link with insulin regulation.
Collapse
Affiliation(s)
- Afsoon Daneshafrooz
- Cellular and Molecular Endocrine Research Center (CMERC), Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, PO Box: 19395-4763, Tehran, Iran
| | - Emad Yuzbashian
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Zarkesh
- Cellular and Molecular Endocrine Research Center (CMERC), Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, PO Box: 19395-4763, Tehran, Iran.
| | - Golaleh Asghari
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center (CMERC), Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, PO Box: 19395-4763, Tehran, Iran.
| | - Raziyeh Abooshahab
- Cellular and Molecular Endocrine Research Center (CMERC), Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, PO Box: 19395-4763, Tehran, Iran.,Curtin Medical School, Curtin University, Bentley, 6102, Australia
| | - S Melika Fanaei
- Medical School, Shadid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Khalaj
- Department of Surgery, Tehran Obesity Treatment Center, Shahed University, Tehran, Iran
| |
Collapse
|
28
|
D'Souza RF, Masson SWC, Woodhead JST, James SL, MacRae C, Hedges CP, Merry TL. α1-Antitrypsin A treatment attenuates neutrophil elastase accumulation and enhances insulin sensitivity in adipose tissue of mice fed a high-fat diet. Am J Physiol Endocrinol Metab 2021; 321:E560-E570. [PMID: 34486403 DOI: 10.1152/ajpendo.00181.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Neutrophils accumulate in insulin-sensitive tissues during obesity and may play a role in impairing insulin sensitivity. The major serine protease expressed by neutrophils is neutrophil elastase (NE), which is inhibited endogenously by α1-antitrypsin A (A1AT). We investigated the effect of exogenous (A1AT) treatment on diet-induced metabolic dysfunction. Male C57Bl/6j mice fed a chow or a high-fat diet (HFD) were randomized to receive intraperitoneal injections three times weekly of either Prolastin (human A1AT; 2 mg) or vehicle (PBS) for 10 wk. Prolastin treatment did not affect plasma NE concentration, body weight, glucose tolerance, or insulin sensitivity in chow-fed mice. In contrast, Prolastin treatment attenuated HFD-induced increases in plasma and white adipose tissue (WAT) NE without affecting circulatory neutrophil levels or increases in body weight. Prolastin-treated mice fed a HFD had improved insulin sensitivity, as assessed by insulin tolerance test, and this was associated with higher insulin-dependent IRS-1 (insulin receptor substrate) and AktSer473 phosphorylation, and reduced inflammation markers in WAT but not liver or muscle. In 3T3-L1 adipocytes, Prolastin reversed recombinant NE-induced impairment of insulin-stimulated glucose uptake and IRS-1 phosphorylation. Furthermore, PDGF mediated p-AktSer473 activation and glucose uptake (which is independent of IRS-1) was not affected by recombinant NE treatment. Collectively, our findings suggest that NE infiltration of WAT during metabolic overload contributes to insulin resistance by impairing insulin-induced IRS-1 signaling.NEW & NOTEWORTHY Neutrophils accumulate in peripheral tissues during obesity and are critical coordinators of tissue inflammatory responses. Here, we provide evidence that inhibition of the primary neutrophil protease, neutrophil elastase, with α1-antitrypsin A (A1AT) can improve insulin sensitivity and glucose homeostasis of mice fed a high-fat diet. This was attributed to improved insulin-induced IRS-1 phosphorylation in white adipose tissue and provides further support for a role of neutrophils in mediating diet-induced peripheral tissue insulin resistance.
Collapse
Affiliation(s)
- Randall F D'Souza
- Discipline of Nutrition, School of Medical Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Stewart W C Masson
- Discipline of Nutrition, School of Medical Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Jonathan S T Woodhead
- Discipline of Nutrition, School of Medical Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Samuel L James
- Discipline of Nutrition, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Caitlin MacRae
- Discipline of Nutrition, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Christopher P Hedges
- Discipline of Nutrition, School of Medical Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Troy L Merry
- Discipline of Nutrition, School of Medical Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
29
|
Kang MJ, Choi W, Yoo SH, Nam SW, Shin PG, Kim KK, Kim GD. Modulation of Inflammatory Pathways and Adipogenesis by the Action of Gentisic Acid in RAW 264.7 and 3T3-L1 Cell Lines. J Microbiol Biotechnol 2021; 31:1079-1087. [PMID: 34226400 PMCID: PMC9705943 DOI: 10.4014/jmb.2105.05004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022]
Abstract
Gentisic acid (GA), a benzoic acid derivative present in various food ingredients, has been shown to have diverse pharmaceutical activities such as anti-carcinogenic, antioxidant, and hepatoprotective effects. In this study, we used a co-culture system to investigate the mechanisms of the anti-inflammatory and anti-adipogenic effects of GA on macrophages and adipocytes, respectively, as well as its effect on obesity-related chronic inflammation. We found that GA effectively suppressed lipopolysaccharide-stimulated inflammatory responses by controlling the production of nitric oxide and pro-inflammatory cytokines and modulating inflammation-related protein pathways. GA treatment also inhibited lipid accumulation in adipocytes by modulating the expression of major adipogenic transcription factors and their upstream protein pathways. Furthermore, in the macrophage-adipocyte co-culture system, GA decreased the production of obesity-related cytokines. These results indicate that GA possesses effective anti-inflammatory and anti-adipogenic activities and may be used in developing treatments for the management of obesity-related chronic inflammatory diseases.
Collapse
Affiliation(s)
- Min-jae Kang
- Department of Microbiology, College of Natural Sciences, Pukyong National University, Busan 48513, Republic of Korea
| | - Woosuk Choi
- UCLA Children’s Discovery and Innovation Institute, Mattel Children’s Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Seung Hyun Yoo
- Department of Microbiology, College of Natural Sciences, Pukyong National University, Busan 48513, Republic of Korea
| | - Soo-Wan Nam
- Biomedical Engineering and Biotechnology Major, Division of Applied Bioengineering, College of Engineering, Dong-Eui University, Busan 47340, Republic of Korea
| | - Pyung-Gyun Shin
- Himchan Agriculture Co., Ltd., Eumseong 27629, Republic of Korea
| | - Keun Ki Kim
- Department of Life Sciences and Environmental Biochemistry, College of Natural Resources and Life Sciences, Pusan National University, Miryang 50463, Republic of Korea
| | - Gun-Do Kim
- Department of Microbiology, College of Natural Sciences, Pukyong National University, Busan 48513, Republic of Korea,Corresponding author Phone: +82-51-629-5618 Fax: +82-51-629-5619 E-mail:
| |
Collapse
|
30
|
Asbaghi O, Ashtary-Larky D, Bagheri R, Moosavian SP, Olyaei HP, Nazarian B, Rezaei Kelishadi M, Wong A, Candow DG, Dutheil F, Suzuki K, Alavi Naeini A. Folic Acid Supplementation Improves Glycemic Control for Diabetes Prevention and Management: A Systematic Review and Dose-Response Meta-Analysis of Randomized Controlled Trials. Nutrients 2021; 13:nu13072355. [PMID: 34371867 PMCID: PMC8308657 DOI: 10.3390/nu13072355] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023] Open
Abstract
Background: There is a growing interest in the considerable benefits of dietary supplementations, such as folic acid, on the glycemic profile. We aimed to investigate the effects of folic acid supplementation on glycemic control markers in adults. Methods: Randomized controlled trials examining the effects of folic acid supplementation on glycemic control markers published up to March 2021 were detected by searching online databases, including Scopus, PubMed, Embase, and ISI web of science, using a combination of related keywords. Mean change and standard deviation (SD) of the outcome measures were used to estimate the mean difference between the intervention and control groups at follow-up. Meta-regression and non-linear dose-response analysis were conducted to evaluate the association between pooled effect size and folic acid dosage (mg/day) and duration of the intervention (week). From 1814 detected studies, twenty-four studies reported fasting blood glucose (FBG), fasting insulin, hemoglobin A1C (HbA1C), and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) as an outcome measure. Results: Results revealed significant reductions in FBG (weighted mean difference (WMD): −2.17 mg/dL, 95% CI: −3.69, −0.65, p = 0.005), fasting insulin (WMD: −1.63 pmol/L, 95% CI: −2.53, −0.73, p < 0.001), and HOMA-IR (WMD: −0.40, 95% CI: −0.70, −0.09, p = 0.011) following folic acid supplementation. No significant effect was detected for HbA1C (WMD: −0.27%, 95% CI: −0.73, 0.18, p = 0.246). The dose-response analysis showed that folic acid supplementation significantly changed HOMA-IR (r = −1.30, p-nonlinearity = 0.045) in non-linear fashion. However, meta-regression analysis did not indicate a linear relationship between dose, duration, and absolute changes in FBG, HOMA-IR, and fasting insulin concentrations. Conclusions: Folic acid supplementation significantly reduces some markers of glycemic control in adults. These reductions were small, which may limit clinical applications for adults with type II diabetes. Further research is necessary to confirm our findings.
Collapse
Affiliation(s)
- Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1416753955, Iran;
| | - Damoon Ashtary-Larky
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran;
| | - Reza Bagheri
- Department of Exercise Physiology, University of Isfahan, Isfahan 8174673441, Iran;
| | - Seyedeh Parisa Moosavian
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran;
| | - Hadi Pourmirzaei Olyaei
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran 1584743311, Iran;
| | - Behzad Nazarian
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad 6813833946, Iran;
| | - Mahnaz Rezaei Kelishadi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran;
| | - Alexei Wong
- Department of Health and Human Performance, Marymount University, Arlington, VA 22207, USA;
| | - Darren G. Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK S4S OA2, Canada;
| | - Frédéric Dutheil
- CNRS, LaPSCo, Physiological and Psychosocial Stress, CHU Clermont-Ferrand, University Hospital of Clermont-Ferrand, Preventive and Occupational Medicine, Université Clermont Auvergne, WittyFit, F-63000 Clermont-Ferrand, France;
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa 359-1192, Japan
- Correspondence: (K.S.); (A.A.N.)
| | - Amirmansour Alavi Naeini
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran;
- Correspondence: (K.S.); (A.A.N.)
| |
Collapse
|
31
|
Tarantino G, Citro V, Balsano C. Liver-spleen axis in nonalcoholic fatty liver disease. Expert Rev Gastroenterol Hepatol 2021; 15:759-769. [PMID: 33878988 DOI: 10.1080/17474124.2021.1914587] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/06/2021] [Indexed: 01/06/2023]
Abstract
Introduction: NAFLD is often under-diagnosed, even though rates of its co-morbidities such as obesity and type2 diabetes mellitus, prominent statuses of inflammation, are significantly high. The spleen-liver axis is gaining much credit in the last years like other well-known organ axes.Areas covered: PubMed/MEDLINE was searched for relevant articles related to concomitant occurrence of NAFLD and spleen. Areas covered in this review include: (1) updated findings of spleen dimensions at ultrasonography, (2) discussion of current data on pathophysiological connections between obesity-related NAFLD and increased volume of the spleen, and (3) analysis of current immune-mediated mechanisms characterizing the so.called chronic low-grade inflammation leading to insulin resistance.Expert opinion: The advances in explaining mechanisms underlying the spleen involvement in immune regulation, coupled with research about the role of spleen in NAFLD, could impact real world outcomes through establishing better tools for a precocious diagnosis. Using both liver and spleen ultrasonography, technique largely dealt with in this review, could expand the possibility to cover an adequate diagnostic path toward NAFLD, reaching a good sensibility and specificity.
Collapse
Affiliation(s)
- Giovanni Tarantino
- Department of Clinical Medicine and Surgery, Federico II University Medical School of Naples, Naples, Italy
| | - Vincenzo Citro
- Department of General Medicine, "Umberto I" Hospital, Nocera Inferiore (SA), Nocera Inferiore, Italy
| | - Clara Balsano
- Department of Clinical Medicine, Life, Health & Environmental Sciences-MESVA, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
32
|
Moreno-Fernandez ME, Sharma V, Stankiewicz TE, Oates JR, Doll JR, Damen MSMA, Almanan MATA, Chougnet CA, Hildeman DA, Divanovic S. Aging mitigates the severity of obesity-associated metabolic sequelae in a gender independent manner. Nutr Diabetes 2021; 11:15. [PMID: 34099626 PMCID: PMC8184786 DOI: 10.1038/s41387-021-00157-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 05/10/2021] [Accepted: 05/19/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Understanding gender-associated bias in aging and obesity-driven metabolic derangements has been hindered by the inability to model severe obesity in female mice. METHODS Here, using chow- or high fat diet (HFD)-feeding regimens at standard (TS) and thermoneutral (TN) housing temperatures, the latter to model obesity in female mice, we examined the impact of gender and aging on obesity-associated metabolic derangements and immune responsiveness. Analysis included quantification of: (i) weight gain and adiposity; (ii) the development and severity of glucose dysmetabolism and non-alcoholic fatty liver disease (NAFLD); and (iii) induction of inflammatory pathways related to metabolic dysfunction. RESULTS We show that under chow diet feeding regimen, aging was accompanied by increased body weight and white adipose tissue (WAT) expansion in a gender independent manner. HFD feeding regimen in aged, compared to young, male mice at TS, resulted in attenuated glucose dysmetabolism and hepatic steatosis. However, under TS housing conditions only aged, but not young, HFD fed female mice developed obesity. At TN however, both young and aged HFD fed female mice developed severe obesity. Independent of gender or housing conditions, aging attenuated the severity of metabolic derangements in HFD-fed obese mice. Tempered severity of metabolic derangements in aged mice was associated with increased splenic frequency of regulatory T (Treg) cells, Type I regulatory (Tr1)-like cells and circulating IL-10 levels and decreased vigor of HFD-driven induction of inflammatory pathways in adipose and liver tissues. CONCLUSION Our findings suggest that aging-associated altered immunological profile and inflammatory vigor may play a dominant role in the attenuation of obesogenic diet-driven metabolic dysfunction.
Collapse
Affiliation(s)
- Maria E Moreno-Fernandez
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
- Division of Immunobiology Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Vishakha Sharma
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
- Division of Immunobiology Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Immunology Graduate Program Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
| | - Traci E Stankiewicz
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
- Division of Immunobiology Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Jarren R Oates
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
- Division of Immunobiology Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Immunology Graduate Program Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
| | - Jessica R Doll
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
- Division of Immunobiology Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Michelle S M A Damen
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
- Division of Immunobiology Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Maha A T A Almanan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
- Division of Immunobiology Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Immunology Graduate Program Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
| | - Claire A Chougnet
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
- Division of Immunobiology Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Immunology Graduate Program Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
| | - David A Hildeman
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
- Division of Immunobiology Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Immunology Graduate Program Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
- Center for Transplant Immunology, and Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center Cincinnati, Ohio, 45229, USA
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA.
- Division of Immunobiology Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Immunology Graduate Program Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA.
- Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA.
| |
Collapse
|
33
|
The pleiotropic effects of antithrombotic drugs in the metabolic-cardiovascular-neurodegenerative disease continuum: impact beyond reduced clotting. Clin Sci (Lond) 2021; 135:1015-1051. [PMID: 33881143 DOI: 10.1042/cs20201445] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 12/25/2022]
Abstract
Antithrombotic drugs are widely used for primary and secondary prevention, as well as treatment of many cardiovascular disorders. Over the past few decades, major advances in the pharmacology of these agents have been made with the introduction of new drug classes as novel therapeutic options. Accumulating evidence indicates that the beneficial outcomes of some of these antithrombotic agents are not solely related to their ability to reduce thrombosis. Here, we review the evidence supporting established and potential pleiotropic effects of four novel classes of antithrombotic drugs, adenosine diphosphate (ADP) P2Y12-receptor antagonists, Glycoprotein IIb/IIIa receptor Inhibitors, and Direct Oral Anticoagulants (DOACs), which include Direct Factor Xa (FXa) and Direct Thrombin Inhibitors. Specifically, we discuss the molecular evidence supporting such pleiotropic effects in the context of cardiovascular disease (CVD) including endothelial dysfunction (ED), atherosclerosis, cardiac injury, stroke, and arrhythmia. Importantly, we highlight the role of DOACs in mitigating metabolic dysfunction-associated cardiovascular derangements. We also postulate that DOACs modulate perivascular adipose tissue inflammation and thus, may reverse cardiovascular dysfunction early in the course of the metabolic syndrome. In this regard, we argue that some antithrombotic agents can reverse the neurovascular damage in Alzheimer's and Parkinson's brain and following traumatic brain injury (TBI). Overall, we attempt to provide an up-to-date comprehensive review of the less-recognized, beneficial molecular aspects of antithrombotic therapy beyond reduced thrombus formation. We also make a solid argument for the need of further mechanistic analysis of the pleiotropic effects of antithrombotic drugs in the future.
Collapse
|
34
|
Dwaib HS, AlZaim I, Eid AH, Obeid O, El-Yazbi AF. Modulatory Effect of Intermittent Fasting on Adipose Tissue Inflammation: Amelioration of Cardiovascular Dysfunction in Early Metabolic Impairment. Front Pharmacol 2021; 12:626313. [PMID: 33897419 PMCID: PMC8062864 DOI: 10.3389/fphar.2021.626313] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/18/2021] [Indexed: 12/15/2022] Open
Abstract
Cardiometabolic syndrome (CMS) is a cluster of maladaptive cardiovascular, renal, thrombotic, inflammatory, and metabolic disorders. It confers a high risk of cardiovascular mortality and morbidity. CMS is triggered by major shifts in lifestyle and dietary habits with increased consumption of refined, calorie-dense diets. Evidence indicates that diet-induced CMS is linked to Adipose tissue (AT) inflammation. This led to the proposal that adipose inflammation may be involved in metabolic derangements, such as insulin resistance and poor glycemic control, as well as the contribution to the inflammatory process predisposing patients to increased cardiovascular risk. Therefore, in the absence of direct pharmacological interventions for the subclinical phase of CMS, time restricted feeding regimens were anticipated to alleviate early metabolic damage and subsequent comorbidities. These regimens, referred to as intermittent fasting (IF), showed a strong positive impact on the metabolic state of obese and non-obese human subjects and animal models, positive AT remodeling in face of overnutrition and high fat diet (HFD) consumption, and improved CV outcomes. Here, we summarize the available evidence on the role of adipose inflammation in triggering cardiovascular impairment in the context of diet induced CMS with an emphasis on the involvement of perivascular adipose tissue. As well, we propose some possible molecular pathways linking intermittent fasting to the ameliorative effect on adipose inflammation and cardiovascular dysfunction under such circumstances. We highlight a number of targets, whose function changes in perivascular adipose tissue inflammation and could be modified by intermittent fasting acting as a novel approach to ameliorate the inflammatory status.
Collapse
Affiliation(s)
- Haneen S. Dwaib
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Ibrahim AlZaim
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Omar Obeid
- Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Ahmed F. El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Faculty of Pharmacy, Al-Alamein International University, Alamein, Egypt
| |
Collapse
|
35
|
Mousavi SM, Beatriz Pizarro A, Akhgarjand C, Bagheri A, Persad E, Karimi E, Wong A, Jayedi A. The effects of Anethum graveolens (dill) supplementation on lipid profile and glycemic control: a systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr 2021; 62:5705-5716. [PMID: 33624557 DOI: 10.1080/10408398.2021.1889459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
There is an increased interest in the potential health benefits of nutraceutical therapies, such as Anethum graveolens (dill). Therefore, this systematic review and meta-analysis aimed to evaluate the effects of Anethum graveolens supplementation on lipid profiles and glycemic indices in adults. A systematic search was performed for literature published through November 2020 via PubMed/Medline, Scopus, ISI Web of Science, and Embase to find randomized controlled trials (RCTs) evaluating the effects of oral supplementation with A. graveolens on lipid profile and measures of glycemic control in adults. The random-effects model was applied to establish the weighted mean difference (WMD) and associated 95% confidence intervals (CI). Seven RCTs with a total number of 330 subjects were included in the final analysis. Pooled results indicated that A. graveolens supplementation significantly decreased low-density lipoprotein cholesterol (LDL) concentration (WMD: -15.64 mg/dL; 95% CI: -24.55 to -6.73; P = 0.001), serum insulin (WMD: -2.28 μU/ml; 95% CI: -3.62 to -0.93; P = 0.001), and HOMA-IR (WMD: -1.06; 95% CI: -1.91 to -0.20; P = 0.01). However, there was no significant effect on serum total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL), and fasting blood glucose (FBS). Subgroup analysis suggested that using A. graveolens in higher doses and long-term duration had beneficial effects on lipid profiles. Dose-response analysis also showed a significant reduction in FBS at doses of 1500 mg/d. The present meta-analysis indicated that Anethum graveolens could exert favorable effects on insulin resistance and serum LDL. Further research is necessary to confirm our findings.
Collapse
Affiliation(s)
- Seyed Mohammad Mousavi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Ana Beatriz Pizarro
- Department of epidemiology and biostatistics, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Camellia Akhgarjand
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Bagheri
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Emma Persad
- Department for Evidence-based Medicine and Evaluation, Danube University Krems, Krems, Austria
| | - Elmira Karimi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Alexei Wong
- Department of Health and Human Performance, Marymount University, Arlington, Virginia, USA
| | - Ahmad Jayedi
- Food Safety Research Center (salt), Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
36
|
Yoon KJ, Ahn A, Park SH, Kwak SH, Kwak SE, Lee W, Yang YR, Kim M, Shin HM, Kim HR, Moon HY. Exercise reduces metabolic burden while altering the immune system in aged mice. Aging (Albany NY) 2021; 13:1294-1313. [PMID: 33406502 PMCID: PMC7834985 DOI: 10.18632/aging.202312] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
Although several evidence has suggested the impact of exercise on the prevention of aging phenotypes, few studies have been conducted on the mechanism by which exercise alters the immune-cell profile, thereby improving metabolism in senile obesity. In this study, we confirmed that 4-week treadmill exercise sufficiently improved metabolic function, including increased lean mass and decreased fat mass, in 88-week-old mice. The expression level of the senescence marker p16 in the white adipose tissue (WAT) was decreased after 4-weeks of exercise. Exercise induced changes in the profiles of immune-cell subsets, including natural killer (NK) cells, central memory CD8+ T cells, eosinophils, and neutrophils, in the stromal vascular fraction of WAT. In addition, it has been shown through transcriptome analysis of WAT that exercise can activate pathways involved in the interaction between WAT and immune cells, in particular NK cells, in aged mice. These results suggest that exercise has a profound effect on changes in immune-cell distribution and senescent-cell scavenging in WAT of aged mice, eventually affecting overall energy metabolism toward a more youthful state.
Collapse
Affiliation(s)
- Kyeong Jin Yoon
- Department of Physical Education, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea.,Institute of Sport Science, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Aram Ahn
- Department of Kinesiology, University of Connecticut, Storrs, CT 06269,USA
| | - Soo Hong Park
- Department of Physical Education, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea.,Institute of Sport Science, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Seung Hee Kwak
- Department of Physical Education, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea.,Institute of Sport Science, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Seong Eun Kwak
- Department of Physical Education, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea.,School of Kinesiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wonsang Lee
- Department of Physical Education, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea.,Institute of Sport Science, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Yong Ryoul Yang
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Minji Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea
| | - Hyun Mu Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea
| | - Hang-Rae Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea.,Medical Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.,Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea
| | - Hyo Youl Moon
- Department of Physical Education, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea.,Institute of Sport Science, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea.,Institute on Aging, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| |
Collapse
|
37
|
Meng F, Sun Q, Zhou D, Li Q, Han J, Liu D, Yang J. Inhibition of Aurora-A improves insulin resistance by ameliorating islet inflammation and controlling interleukin-6 in a diabetic mouse model. Adipocyte 2020; 9:609-619. [PMID: 33043822 PMCID: PMC7553512 DOI: 10.1080/21623945.2020.1829851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Aurora-A kinase, a serine/threonine mitotic kinase, is reportedly upregulated in skin tissues of individuals with type 2 diabetes mellitus , although its function in diabetes is unclear. C57BL/6 J mice were utilized to establish a type 2 diabetic model and explore the functions of Aurora-A in diabetes. Aurora-A was highly expressed in the pancreas of the diabetic mice as confirmed by western blot. Inhibition of Aurora-A did not affect fasting blood glucose and body weight, but did improve insulin resistance, as indicated by improved oral glucose tolerance, insulin tolerance, and the Homoeostasis Model Assessment-Insulin Resistance index. Blockade of Aurora-A dramatically decreased the number of infiltrating macrophages in the pancreas in parallel with decreases in the levels of serum insulin and interleukin-6 (IL-6) mRNA. The levels of phosphorylated forms of protein kinase B, which are the key mediators of in insulin resistance, were not induced in liver, adipocyte tissues, and skeletal muscle by alisertib treatment. Our findings indicate that suppression of Aurora-A could at least partially enhance insulin sensitivity by decreasing the number of infiltrating macrophages and IL-6 level in a type 2 diabetic mouse model.
Collapse
Affiliation(s)
- Fandong Meng
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical University
| | - Qiangwei Sun
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical University
- Department of Endocrinology, Wuhan Third Hospital, Wuhan, China
| | - Dongmei Zhou
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical University
| | - Qiang Li
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University
| | - Jing Han
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University
| | - Deshan Liu
- Department of Traditional Chinese Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Jing Yang
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University
| |
Collapse
|
38
|
Allahyari M, Rajaie A, Fallah H. IRAK inhibitor can improve insulin sensitivity in insulin-resistant mice fed with a high-fat diet. ASIAN BIOMED 2020; 14:253-260. [PMID: 37551306 PMCID: PMC10373392 DOI: 10.1515/abm-2020-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Background Obesity and the inflammation associated with it, play a key role in the development of insulin resistance through the release of inflammatory cytokines and free fatty acids and the stimulation of toll-like receptors (TLR). Interleukin-1 receptor-associated kinase (IRAK), which mediates the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway, is an important molecule in TLR signaling. The NF-κB pathway can reduce insulin efficacy by increasing the expression of proinflammatory cytokines. There is no safe inhibitor for the NF-κB pathway, and for this reason, the upper mediator of this pathway was selected for investigation. Objectives To determine the effects of an IRAK inhibitor on insulin resistance and serum biochemical factors in high-fat-fed insulin-resistant mice. Methods Insulin resistance was developed in C57BL/6J mice by 12 weeks of a high-fat diet. Subsequently, the IRAK 1/4 inhibitor 1-(2-(4-morpholinyl)ethyl)-2-(3-nitrobenzoylamino)benzimidazole (IRAKi)/or pioglitazone, or both, were administered for a further 2 weeks. After 12 h fasting, blood and tissue samples were collected, insulin and glucose levels were assayed, and the homeostatic model assessment was used to quantify insulin resistance (HOMA-IR). Results The IRAKi decreased blood glucose levels significantly (253 ± 14.3 mg/dL vs 390.1 ± 16.6 mg/dL) and increased insulin sensitivity compared with untreated controls. However, we did not find a synergistic effect of IRAKi with pioglitazone in increasing insulin sensitivity. Conclusion IRAKis can increase insulin sensitivity and their efficacy is comparable to pioglitazone. However, combined administration of pioglitazone and IRAKi had no synergistic effect compared with monotherapy.
Collapse
Affiliation(s)
- Mostafa Allahyari
- Student Research Committee, Kerman University of Medical Sciences, Kerman7616913555, Iran
| | - Athena Rajaie
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman7616913555, Iran
| | - Hossein Fallah
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman7616913555, Iran
| |
Collapse
|
39
|
Saito Reis CA, Padron JG, Norman Ing ND, Kendal-Wright CE. High-mobility group box 1 is a driver of inflammation throughout pregnancy. Am J Reprod Immunol 2020; 85:e13328. [PMID: 32851715 DOI: 10.1111/aji.13328] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/10/2020] [Accepted: 08/18/2020] [Indexed: 12/15/2022] Open
Abstract
A proinflammatory response driven by high-mobility group box 1 (HMGB1) is important for the success of both the early stages of pregnancy and parturition initiation. However, the tight regulation of HMGB1 within these two stages is critical, as increased HMGB1 can manifest into pregnancy-related pathologies. Although during the early stages of pregnancy HMGB1 is critical for the development and implantation of the embryo, and uterine decidualization, high levels within the uterine cavity have been linked to pregnancy failure. In addition, chronic inflammation, resultant from increased HMGB1 within the maternal circulation and gestational tissues, also increases the risk for preterm labor, preterm birth, or infant mortality. Due to the link between HMGB1 and several pregnancy pathologies, the possibility of leveraging HMGB1 as a biomarker has been assessed. However, data are limited that demonstrate how known HMGB1 inhibitors could reduce inflammation within pregnancy. Thus, further research is warranted to improve our understanding of the potential of HMGB1 as a therapeutic target to reduce inflammation within pregnancy. This review aims to describe what is understood about the role of HMGB1 that drives inflammation throughout pregnancy and highlight its potential as a biomarker and therapeutic target within this context.
Collapse
Affiliation(s)
- Chelsea A Saito Reis
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI, USA
| | - Justin G Padron
- Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai'i at Manoā, Honolulu, HI, USA
| | - Nainoa D Norman Ing
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI, USA
| | - Claire E Kendal-Wright
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI, USA.,Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai'i at Manoā, Honolulu, HI, USA.,Obstetrics, Gynecology and Women's Health, John A. Burns School of Medicine, University of Hawai'I at Manoā, Honolulu, HI, USA
| |
Collapse
|
40
|
Singh V. Can Vitamins, as Epigenetic Modifiers, Enhance Immunity in COVID-19 Patients with Non-communicable Disease? Curr Nutr Rep 2020; 9:202-209. [PMID: 32661859 PMCID: PMC7356139 DOI: 10.1007/s13668-020-00330-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW The highly infectious transmissible disease, the novel SARS-CoV-2, causing the coronavirus disease (COVID-19), has a median incubation time of 5 to 15 days. The symptoms vary from person to person and many are "hidden carriers." Few people experience immediate reaction and even death within 48 h of infection. However, many show mild to chronic symptoms and recover. Nevertheless, the death rate due to COVID-19 transmission is high especially among patients with non-communicable diseases. The purpose of this review is to provide evidence to consider vitamins as epigenetic modifiers to enhance immunity and reduce inflammatory response in COVID-19 patients with non-communicable diseases. RECENT FINDINGS Clinical evidence has suggested the risk of getting infected is high among individuals with non-communicable diseases such as cardiovascular disease, type-2 diabetes, cancer, acute respiratory distress syndrome, and renal disease, as well as the elderly with high mortality rate among the cohort. The impact is due to an already compromised immune system of patients. Every patient has a different response to COVID-19, which shows that the ability to combat the deadly virus varies individually. Thus, treatment can be personalized and adjusted to help protect and combat COVID-19 infections, especially in individuals with non-communicable diseases. Based on current published scientific and medical evidence, the suggestions made in this article for combination of vitamin therapy as epigenetic modifiers to control the unregulated inflammatory and cytokine marker expressions, further needs to be clinically proven. Future research and clinical trials can apply the suggestions given in this article to support metabolic activities in patients and enhance the immune response.
Collapse
Affiliation(s)
- Varsha Singh
- Centre for Life Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, 140401, India.
| |
Collapse
|
41
|
Fischer AW, Behrens J, Sass F, Schlein C, Heine M, Pertzborn P, Scheja L, Heeren J. Brown adipose tissue lipoprotein and glucose disposal is not determined by thermogenesis in uncoupling protein 1-deficient mice. J Lipid Res 2020; 61:1377-1389. [PMID: 32769145 DOI: 10.1194/jlr.ra119000455] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Adaptive thermogenesis is highly dependent on uncoupling protein 1 (UCP1), a protein expressed by thermogenic adipocytes present in brown adipose tissue (BAT) and white adipose tissue (WAT). Thermogenic capacity of human and mouse BAT can be measured by positron emission tomography-computed tomography quantifying the uptake of 18F-fluodeoxyglucose or lipid tracers. BAT activation is typically studied in response to cold exposure or treatment with β-3-adrenergic receptor agonists such as CL316,243 (CL). Currently, it is unknown whether cold-stimulated uptake of glucose or lipid tracers is a good surrogate marker of UCP1-mediated thermogenesis. In metabolic studies using radiolabeled tracers, we found that glucose uptake is increased in mildly cold-activated BAT of Ucp1 -/- versus WT mice kept at subthermoneutral temperature. Conversely, lower glucose disposal was detected after full thermogenic activation achieved by sustained cold exposure or CL treatment. In contrast, uptake of lipoprotein-derived fatty acids into chronically activated thermogenic adipose tissues was substantially increased in UCP1-deficient mice. This effect is linked to higher sympathetic tone in adipose tissues of Ucp1 -/- mice, as indicated by elevated levels of thermogenic genes in BAT and WAT. Thus, glucose and lipoprotein handling does not necessarily reflect UCP1-dependent thermogenic activity, but especially lipid uptake rather mirrors sympathetic activation of adipose tissues.
Collapse
Affiliation(s)
- Alexander W Fischer
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Janina Behrens
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frederike Sass
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Schlein
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Heine
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Pertzborn
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ludger Scheja
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
42
|
Han Y, Kwon EY, Choi MS. Anti-Diabetic Effects of Allulose in Diet-Induced Obese Mice via Regulation of mRNA Expression and Alteration of the Microbiome Composition. Nutrients 2020; 12:nu12072113. [PMID: 32708827 PMCID: PMC7400868 DOI: 10.3390/nu12072113] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
Allulose has been reported to serve as an anti-obesity and anti-diabetic food component; however, its molecular mechanism is not yet completely understood. This study aims to elucidate the mechanisms of action for allulose in obesity-induced type 2 diabetes mellitus (T2DM), by analyzing the transcriptional and microbial populations of diet-induced obese mice. Thirty-six C57BL/6J mice were divided into four groups, fed with a normal diet (ND), a high-fat diet (HFD), a HFD supplemented with 5% erythritol, or a HFD supplemented with 5% allulose for 16 weeks, in a pair-fed manner. The allulose supplement reduced obesity and comorbidities, including inflammation and hepatic steatosis, and changed the microbial community in HFD-induced obese mice. Allulose attenuated obesity-mediated inflammation, by downregulating mRNA levels of inflammatory response components in the liver, leads to decreased plasma pro-inflammatory marker levels. Allulose suppressed glucose and lipid metabolism-regulating enzyme activities, ameliorating hepatic steatosis and improving dyslipidemia. Allulose improved fasting blood glucose (FBG), plasma glucose, homeostatic model assessment of insulin resistance (HOMA-IR), and the area under the curve (AUC) for the intraperitoneal glucose tolerance test (IPGTT), as well as hepatic lipid levels. Our findings suggested that allulose reduced HFD-induced obesity and improved T2DM by altering mRNA expression and the microbiome community.
Collapse
Affiliation(s)
- Youngji Han
- Department of Food Science and Nutrition, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 702-701, Korea; (Y.H.); (E.-Y.K.)
- Center for Food and Nutritional Genomics Research, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 702-701, Korea
| | - Eun-Young Kwon
- Department of Food Science and Nutrition, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 702-701, Korea; (Y.H.); (E.-Y.K.)
- Center for Food and Nutritional Genomics Research, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 702-701, Korea
| | - Myung-Sook Choi
- Department of Food Science and Nutrition, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 702-701, Korea; (Y.H.); (E.-Y.K.)
- Center for Food and Nutritional Genomics Research, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 702-701, Korea
- Correspondence: ; Tel.: +82-53-950-7936
| |
Collapse
|
43
|
Marzullo P, Di Renzo L, Pugliese G, De Siena M, Barrea L, Muscogiuri G, Colao A, Savastano S, on behalf of Obesity Programs of nutrition, Education, Research and Assessment (OPERA) Group. From obesity through gut microbiota to cardiovascular diseases: a dangerous journey. INTERNATIONAL JOURNAL OF OBESITY SUPPLEMENTS 2020; 10:35-49. [PMID: 32714511 PMCID: PMC7371682 DOI: 10.1038/s41367-020-0017-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The co-existence of humans and gut microbiota started millions of years ago. Until now, a balance gradually developed between gut bacteria and their hosts. It is now recognized that gut microbiota are key to form adequate immune and metabolic functions and, more in general, for the maintenance of good health. Gut microbiota are established before birth under the influence of maternal nutrition and metabolic status, which can impact the future metabolic risk of the offspring in terms of obesity, diabetes, and cardiometabolic disorders during the lifespan. Obesity and diabetes are prone to disrupt the gut microbiota and alter the gut barrier permeability, leading to metabolic endotoxaemia with its detrimental consequences on health. Specific bacterial sequences are now viewed as peculiar signatures of the metabolic syndrome across life stages in each individual, and are linked to pathogenesis of cardiovascular diseases (CVDs) via metabolic products (metabolites) and immune modulation. These mechanisms have been linked, in association with abnormalities in microbial richness and diversity, to an increased risk of developing arterial hypertension, systemic inflammation, nonalcoholic fatty liver disease, coronary artery disease, chronic kidney disease, and heart failure. Emerging strategies for the manipulation of intestinal microbiota represent a promising therapeutic option for the prevention and treatment of CVD especially in individuals prone to CV events.
Collapse
Affiliation(s)
- Paolo Marzullo
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
- Division of General Medicine, IRCCS Istituto Auxologico Italiano, 28923 Piancavallo, Verbania Italy
| | - Laura Di Renzo
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00136 Rome, Italy
| | - Gabriella Pugliese
- Unit of Endocrinology, Dipartimento di Medicina Clinica e Chirurgia, Federico II University, 80131 Naples, Italy
| | - Martina De Siena
- Division of Gastroenterology, Fondazione Policlinico Universitario A. Gemelli IRCCS—Università Cattolica del Sacro Cuore, Roma, Italy
- Digestive Endoscopy Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS—Università Cattolica del Sacro Cuore, Roma, Italy
| | - Luigi Barrea
- Unit of Endocrinology, Dipartimento di Medicina Clinica e Chirurgia, Federico II University, 80131 Naples, Italy
| | - Giovanna Muscogiuri
- Unit of Endocrinology, Dipartimento di Medicina Clinica e Chirurgia, Federico II University, 80131 Naples, Italy
| | - Annamaria Colao
- Unit of Endocrinology, Dipartimento di Medicina Clinica e Chirurgia, Federico II University, 80131 Naples, Italy
| | - Silvia Savastano
- Unit of Endocrinology, Dipartimento di Medicina Clinica e Chirurgia, Federico II University, 80131 Naples, Italy
| | - on behalf of Obesity Programs of nutrition, Education, Research and Assessment (OPERA) Group
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
- Division of General Medicine, IRCCS Istituto Auxologico Italiano, 28923 Piancavallo, Verbania Italy
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00136 Rome, Italy
- Unit of Endocrinology, Dipartimento di Medicina Clinica e Chirurgia, Federico II University, 80131 Naples, Italy
- Division of Gastroenterology, Fondazione Policlinico Universitario A. Gemelli IRCCS—Università Cattolica del Sacro Cuore, Roma, Italy
- Digestive Endoscopy Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS—Università Cattolica del Sacro Cuore, Roma, Italy
| |
Collapse
|
44
|
Dos Santos LS, de Matos RJB, Cordeiro GDS, Dos Santos JN, Perez GDS, Gonçalves MDS, Ribeiro IDO, Barreto Medeiros JM. Perinatal and post-weaning exposure to an obesogenic diet promotes greater expression of nuclear factor-κB and tumor necrosis factor-α in white adipose tissue and hypothalamus of adult rats. Nutr Neurosci 2020; 25:502-510. [PMID: 32496945 DOI: 10.1080/1028415x.2020.1764291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Aim: To analyze the effects of exposure to a high-fat diet during the perinatal period and after weaning on white adipose tissue accumulation and gene expression of TNF- α and NF- κB.Method: Wistar female rats were fed with high-fat (H) or control (C) diet during pregnancy and lactation. The offspring were allocated into four groups: Control Control (CC), offspring of mothers GC, fed a control diet after weaning; Control High-fat (CH), offspring of mothers GC, fed a hight-fat diet after weaning; High-fat Control (HC), offspring of mothers GH, fed with control diet after weaning; and High-fat High-fat (HH), offspring of mothers GH, fed a H diet after weaning.Results: HH and HC groups showed increased body weight compared to CC group and increases in caloric intake, larger amount of white adipose tissue and adipocyte size compared to CC and CH groups. The HH and CH groups showed higher NF-kB expression in white adipose tissue compared to the CC and HC groups, and the HH group also showed higher TNF- α expression. In the hypothalamus, the HH and HC groups exhibited higher TNF- α expression compared to the CC and CH groups.Conclusion: Perinatal and post-weaning exposure to the high-fat diet increases the amount of white adipose tissue, adipocyte size, and expression of the inflammatory genes TNF-α and NF-kB.
Collapse
Affiliation(s)
- Lucimeire Santana Dos Santos
- Graduate Program of Food Nutrition and Health, Department of Nutrition, Federal University of Bahia, Salvador-Bahia, Brazil
| | | | - Gabriele Dos Santos Cordeiro
- Graduate Program of Food Nutrition and Health, Department of Nutrition, Federal University of Bahia, Salvador-Bahia, Brazil
| | - Jean Nunes Dos Santos
- Department of Oral Pathology, School of Dentistry, Federal University of Bahia, Salvador-Bahia, Brazil
| | - Gabriela Dos Santos Perez
- Graduate Program of Food Nutrition and Health, Department of Nutrition, Federal University of Bahia, Salvador-Bahia, Brazil
| | - Mariane Dos Santos Gonçalves
- Graduate Program of Food Nutrition and Health, Department of Nutrition, Federal University of Bahia, Salvador-Bahia, Brazil
| | - Ingrid de Oliveira Ribeiro
- Graduate Program of Food Nutrition and Health, Department of Nutrition, Federal University of Bahia, Salvador-Bahia, Brazil
| | - Jairza Maria Barreto Medeiros
- Graduate Program of Food Nutrition and Health, Department of Nutrition, Federal University of Bahia, Salvador-Bahia, Brazil
| |
Collapse
|
45
|
The obesity paradox: does it exist in the perioperative period? Int Anesthesiol Clin 2020; 58:14-20. [PMID: 32250998 DOI: 10.1097/aia.0000000000000278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Abstract
Spirulina, a cyanobacteria commonly referred to as a blue-green algae, is one of the oldest lifeforms on Earth. Spirulina grows in both fresh and saltwater sources and is known for its high protein and micronutrient content. This review paper will cover the effects of spirulina on weight loss and blood lipids. The currently literature supports the benefits of spirulina for reducing body fat, waist circumference, body mass index and appetite and shows that spirulina has significant benefits for improving blood lipids.
Collapse
Affiliation(s)
| | - Anusha G Bhat
- Department of Internal Medicine, Baystate Medical Center, Springfield, Massachusetts, USA
- Department of Public Heath Practice, School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts, United States
| | - James OKeefe
- Saint Lukes Mid America Heart Institute, University of Missouri-Kansas City, Kansas City, Missouri, USA
| |
Collapse
|
47
|
Antony Rathinasamy JIR, Uddandrao VVS, Raveendran N, Sasikumar V. Antiobesity Effect of Biochanin-A: Effect on Trace Element Metabolism in High Fat Diet-Induced Obesity in Rats. Cardiovasc Hematol Agents Med Chem 2020; 18:21-30. [PMID: 32031077 DOI: 10.2174/1871524920666200207101920] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Imbalanced diets have contributed to the increased prevalence of obesity and other metabolic disorders in the modern world including trace element metabolism. However, the underlying mechanisms are not fully understood. AIM AND OBJECTIVES The present study investigated the effects of Biochanin A (BCA) on the changes in element metabolism induced by HFD-induced obese rats. METHODS BCA was administered orally for 30 days to experimental obese rats. Changes in body weight, glucose, insulin resistance and lipid profiles of plasma, as well as the level of trace elements (Fe, Zn, Mg and Cu) in various tissues (liver, kidney, heart and pancreas) and hepsidine and heme oxygenase, were observed in experimental rats. RESULTS The administration of BCA elicited a significant (p<0.05) reduction in, glucose, insulin, ferritin, total cholesterol, phospholipids, free fatty acids, VLDL-C, LDL-C, triglycerides and hepsidin. Significant alterations were observed in trace elements level, HDL-C, transferrin, bilirubin and HO - 1 level. CONCLUSION These findings suggested that HFD results in derangement of trace elements in the tissues of rats fed with HFD. BCA may alleviate the derangement of HFD induced trace elements metabolism by modulating hyperglycemic and insulin resistance status and altering hepcidin and HO-1.
Collapse
Affiliation(s)
| | - Veera Venkata Sathibabu Uddandrao
- Centre for Biological Sciences, Department of Biochemistry, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode, Namakkal District, Tamilnadu-637215, India
| | - Nivedha Raveendran
- Centre for Biological Sciences, Department of Biochemistry, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode, Namakkal District, Tamilnadu-637215, India
| | - Vadivukkarasi Sasikumar
- Centre for Biological Sciences, Department of Biochemistry, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode, Namakkal District, Tamilnadu-637215, India
| |
Collapse
|
48
|
Askin L, Tanriverdi O, Tibilli H, Turkmen S. Associations between Vaspin Levels and Coronary Artery Disease. CARDIOVASCULAR INNOVATIONS AND APPLICATIONS 2020. [DOI: 10.15212/cvia.2019.0565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The relationship between serum vaspin levels and metabolic or coronary artery disease is currently of interest for researchers. Although adipokine concentrations have been shown to be increased significantly in atherosclerotic lesions, the role adipokines in the atherosclerotic process
remains to be elucidated. Vaspin is a new biological marker associated with obesity and impaired insulin sensitivity. Plasma vaspin concentration has been shown to correlate with the severity of coronary artery disease. Vascular inflammation triggered by vaspin inhibits atherogenesis by suppressing
macrophage foam cell formation and vascular smooth muscle cell migration and proliferation. Vaspin also contributes to plaque stabilization by increasing collagen content and reducing the intraplaque macrophage to vascular smooth muscle cell ratio. The therapeutic goal concerning vaspin is
to fight atherosclerosis and related diseases, as well as to maintain vascular health.
Collapse
Affiliation(s)
- Lutfu Askin
- Department of Cardiology, Adiyaman Education and Research Hospital, Adiyaman, Turkey
| | - Okan Tanriverdi
- Department of Cardiology, Adiyaman Education and Research Hospital, Adiyaman, Turkey
| | - Hakan Tibilli
- Department of Cardiology, Adiyaman Education and Research Hospital, Adiyaman, Turkey
| | - Serdar Turkmen
- Department of Cardiology, Adiyaman Education and Research Hospital, Adiyaman, Turkey
| |
Collapse
|
49
|
Zhang Y, Zheng Y, Fu Y, Wang C. Identification of biomarkers, pathways and potential therapeutic agents for white adipocyte insulin resistance using bioinformatics analysis. Adipocyte 2019; 8:318-329. [PMID: 31407623 PMCID: PMC6768254 DOI: 10.1080/21623945.2019.1649578] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
For the better understanding of insulin resistance (IR), the molecular biomarkers in IR white adipocytes and its potential mechanism, we downloaded two mRNA expression profiles from Gene Expression Omnibus (GEO). The white adipocyte samples in two databases were collected from the human omental adipose tissue of IR obese (IRO) subjects and insulin-sensitive obese (ISO) subjects, respectively. We identified 86 differentially expressed genes (DEGs) between the IRO and ISO subjects using limma package in R software. Gene Set Enrichment Analysis (GSEA) provided evidence that the most gene sets enriched in kidney mesenchyme development in the ISO subjects, as compared with the IRO subjects. The Gene Ontology (GO) analysis indicated that the most significantly enriched in cellular response to interferon-gamma. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that the DEGs were most significantly enriched in cytokine-cytokine receptor interaction. Protein–Protein Interaction (PPI) network was performed with the STRING, and the top 10 hub genes were identified with the Cytohubba. CMap analysis found several small molecular compounds to reverse the altered DEGs, including dropropizine, aceclofenac, melatonin, and so on. Our outputs could empower the novel potential targets to treat omental white adipocyte insulin resistance, diabetes, and diabetes-related diseases.
Collapse
Affiliation(s)
- Yemin Zhang
- Department of Pathology and Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Yuyang Zheng
- Department of Pathology and Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Yalin Fu
- Department of Pathology and Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Changhua Wang
- Department of Pathology and Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
50
|
Involvement of Receptor for Advanced Glycation Endproducts in Hypertensive Disorders of Pregnancy. Int J Mol Sci 2019; 20:ijms20215462. [PMID: 31683992 PMCID: PMC6862609 DOI: 10.3390/ijms20215462] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/18/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022] Open
Abstract
Preeclampsia/hypertensive disorders of pregnancy (PE/HDP) is a serious and potentially life-threatening disease. Recently, PE/HDP has been considered to cause adipose tissue inflammation, but the detailed mechanism remains unknown. We exposed human primary cultured adipocytes with serum from PE/HDP and healthy controls for 24 h, and analyzed mRNA expression of several adipokines, cytokines, and ligands of the receptor for advanced glycation endproducts (RAGE). We found that the mRNA levels of interleukin-6 (IL-6), C-C motif chemokine ligand 2 (CCL2), high mobility group box 1 (HMGB1), and RAGE were significantly increased by the addition of PE/HDP serum. Among RAGE ligands, advanced glycation endproducts (AGE) and HMGB1 increased mRNA levels of IL-6 and CCL2 in SW872 human adipocytes and mouse 3T3-L1 cells. The introduction of small interfering RNA for RAGE (siRAGE) into SW872 cells abolished the AGE- and HMGB1-induced up-regulation of IL-6 and CCL2. In addition, lipopolysaccharide (LPS), a ligand of RAGE, increased the expression of IL-6 and CCL2 and siRAGE attenuated the LPS-induced expression of IL-6 and CCL2. These results strongly suggest that the elevated AGE, HMGB1, and LPS in pregnant women up-regulate the expression of IL-6 and CCL2 via the RAGE system, leading to systemic inflammation such as PE/HDP.
Collapse
|