1
|
Zhao J, Yang J, Yang F, Wang Y, Xia Q, Ren F, Zhang Y. An integrated zebrafish model and network pharmacology to investigate the mechanism of Chrysanthemum for treating metabolic dysfunction-associated fatty liver disease. Food Chem 2025; 473:143134. [PMID: 39893923 DOI: 10.1016/j.foodchem.2025.143134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
Chrysanthemum (Chrysanthemum morifolium Ramat) is a food, which serves both as a medicinal and culinary resource in China; however, its active ingredients and mechanisms underlying its hepatoprotective effects remain elusive. This study aimed to investigate the protective effect of water extract from chrysanthemum flowers (WEFC) against metabolic dysfunction-associated fatty liver induced by thioacetamide (TAA) in zebrafish and its underlying mechanisms. The protective effect of WEFC against TAA-induced liver injury was investigated using the liver-specific transgenic zebrafish line, Tg(fabp10a:DsRed). Network pharmacology was used to analyze the potential targets and ingredients. Quantitative polymerase chain reaction was used to verify the associated mechanisms. Molecular protein docking was performed to identify the targets. WEFC and its component prunin attenuated TAA-induced liver injury and reversed the changes in lipid pathway-related gene expression induced by TAA. Therefore, prunin may play an important role in protecting the liver through RAC-alpha serine/threonine-protein kinase (AKT1) activation.
Collapse
Affiliation(s)
- Jingcheng Zhao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan 250103, China; Uygur Medical Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830049, China
| | - Jing Yang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan 250103, China
| | - Fei Yang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan 250103, China
| | - Yuanhao Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan 250103, China
| | - Qing Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan 250103, China
| | - Fengming Ren
- Chongqing Pharmaceutical Planting Research Institute, Chongqing 408435, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan 250103, China.
| |
Collapse
|
2
|
Xu J, Li Y, Feng Z, Chen H. Cigarette Smoke Contributes to the Progression of MASLD: From the Molecular Mechanisms to Therapy. Cells 2025; 14:221. [PMID: 39937012 DOI: 10.3390/cells14030221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 02/13/2025] Open
Abstract
Cigarette smoke (CS), an intricate blend comprising over 4000 compounds, induces abnormal cellular reactions that harm multiple tissues. Non-alcoholic fatty liver disease (NAFLD) is a prevalent chronic liver disease (CLD), encompassing non-alcoholic fatty liver (NAFL), non-alcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular carcinoma (HCC). Recently, the term NAFLD has been changed to metabolic dysfunction-associated steatotic liver disease (MASLD), and NASH has been renamed metabolic dysfunction-associated steatohepatitis (MASH). A multitude of experiments have confirmed the association between CS and the incidence and progression of MASLD. However, the specific signaling pathways involved need to be updated with new scientific discoveries. CS exposure can disrupt lipid metabolism, induce inflammation and apoptosis, and stimulate liver fibrosis through multiple signaling pathways that promote the progression of MASLD. Currently, there is no officially approved efficacious pharmaceutical intervention in clinical practice. Therefore, lifestyle modifications have emerged as the primary therapeutic approach for managing MASLD. Smoking cessation and the application of a series of natural ingredients have been shown to ameliorate pathological changes in the liver induced by CS, potentially serving as an effective approach to decelerating MASLD development. This article aims to elucidate the specific signaling pathways through which smoking promotes MASLD, while summarizing the reversal factors identified in recent studies, thereby offering novel insights for future research on and the treatment of MASLD.
Collapse
Affiliation(s)
- Jiatong Xu
- Queen Mary School, Medical College, Nanchang University, Nanchang 330006, China
| | - Yifan Li
- Queen Mary School, Medical College, Nanchang University, Nanchang 330006, China
| | - Zixuan Feng
- Queen Mary School, Medical College, Nanchang University, Nanchang 330006, China
| | - Hongping Chen
- Department of Histology and Embryology, Jiangxi Medical College, Nanchang University, Nanchang 330019, China
| |
Collapse
|
3
|
Kubota N, Kubota T, Kadowaki T. Physiological and pathophysiological actions of insulin in the liver. Endocr J 2025; 72:149-159. [PMID: 39231651 PMCID: PMC11850106 DOI: 10.1507/endocrj.ej24-0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/21/2024] [Indexed: 09/06/2024] Open
Abstract
The liver plays an important role in the control of glucose homeostasis. When insulin levels are low, such as in the fasting state, gluconeogenesis and glycogenolysis are stimulated to maintain the blood glucose levels. Conversely, in the presence of increased insulin levels, such as after a meal, synthesis of glycogen and lipid occurs to maintain the blood glucose levels within normal range. Insulin receptor signaling regulates glycogenesis, gluconeogenesis and lipogenesis through downstream pathways such as the insulin receptor substrate (IRS)-phosphoinositide 3 (PI3) kinase-Akt pathway. IRS-1 and IRS-2 are abundantly expressed in the liver and are thought to be responsible for transmitting the insulin signal from the insulin receptor to the intracellular effectors involved in the regulation of glucose and lipid homeostasis. Impaired insulin receptor signaling can cause hepatic insulin resistance and lead to type 2 diabetes. In the present study, we focus on a concept called "selective insulin resistance," which has received increasing attention recently: the frequent coexistence of hyperglycemia and hepatic steatosis in people with type 2 diabetes and obesity suggests that it is possible for the insulin signaling regulating gluconeogenesis to be impaired even while that regulating lipogenesis is preserved, suggestive of selective insulin resistance. In this review, we review the progress in research on the insulin actions and insulin signaling in the liver.
Collapse
Affiliation(s)
- Naoto Kubota
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Tetsuya Kubota
- Division of Diabetes and Metabolism, The Institute of Medical Science, Asahi Life Foundation, Tokyo 103-0002, Japan
| | | |
Collapse
|
4
|
Inoue J. [Identification of Food-derived Bioactive Components with Physiological Effects]. YAKUGAKU ZASSHI 2025; 145:23-28. [PMID: 39756920 DOI: 10.1248/yakushi.24-00173-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Food-derived components with physiological effects have been attracting attention in recent years, and studies have comprehensively analyzed these components. In this study, we sought to identify food components with functional properties for the prevention and improvement of metabolic syndrome. We performed a luciferase reporter assay using fatty acid synthase (FAS) and low-density lipoprotein receptor (LDL) receptor gene promoters. Naturally occurring isothiocyanate sulforaphane impaired FAS promoter activity and reduced sterol regulatory element-binding protein (SREBP) target gene expression in human hepatoma Huh-7 cells. Sulforaphane reduced SREBP proteins by promoting the degradation of the SREBP precursor. Furthermore, we screened LDL receptor promoter effectors and observed that extract from sweet cherry peduncles induces LDL receptor gene promoter activity. Several analytical and chemical methods revealed that chrysin 7O-β-D-glucopyranoside in cherry peduncle extract stimulated LDL receptor gene promoter activity. Thus, this comprehensive search for components that alter the expression of genes associated with lipid metabolism led to the discovery of new functions of food components.
Collapse
Affiliation(s)
- Jun Inoue
- Faculty of Applied Biosciences, Tokyo University of Agriculture
| |
Collapse
|
5
|
Yang NV, Chao JY, Garton KA, Tran T, King SM, Orr J, Oei JH, Crawford A, Kang M, Zalpuri R, Jorgens DM, Konchadi P, Chorba JS, Theusch E, Krauss RM. TOMM40 regulates hepatocellular and plasma lipid metabolism via an LXR-dependent pathway. Mol Metab 2024; 90:102056. [PMID: 39489289 PMCID: PMC11600064 DOI: 10.1016/j.molmet.2024.102056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
OBJECTIVE The gene encoding TOMM40 (Transporter of Outer Mitochondrial Membrane 40) is adjacent to that encoding APOE, which has a central role in lipid and lipoprotein metabolism. While human genetic variants near APOE and TOMM40 have been shown to be strongly associated with plasma lipid levels, a specific role for TOMM40 in lipid metabolism has not been established, and the present study was aimed at assessing this possibility. METHODS TOMM40 was knocked down by siRNA in human hepatoma HepG2 cells, and effects on mitochondrial function, lipid phenotypes, and crosstalk between mitochondria, ER, and lipid droplets were examined. Additionally, hepatic and plasma lipid levels were measured in mice following shRNA-induced knockdown of Tomm40 shRNA. RESULTS In HepG2 cells, TOMM40 knockdown upregulated expression of APOE and LDLR in part via activation of LXRB (NR1H2) by oxysterols, with consequent increased uptake of VLDL and LDL. This is in part due to disruption of mitochondria-endoplasmic reticulum contact sites, with resulting accrual of reactive oxygen species and non-enzymatically derived oxysterols. With TOMM40 knockdown, cellular triglyceride and lipid droplet content were increased, effects attributable in part to receptor-mediated VLDL uptake, since lipid staining was significantly reduced by concomitant suppression of either LDLR or APOE. In contrast, cellular cholesterol content was reduced due to LXRB-mediated upregulation of the ABCA1 transporter as well as increased production and secretion of oxysterol-derived cholic acid. Consistent with the findings in hepatoma cells, in vivo knockdown of TOMM40 in mice resulted in significant reductions of plasma triglyceride and cholesterol concentrations, reduced hepatic cholesterol and increased triglyceride content, and accumulation of lipid droplets leading to development of steatosis. CONCLUSIONS These findings demonstrate a role for TOMM40 in regulating hepatic lipid and plasma lipoprotein levels and identify mechanisms linking mitochondrial function with lipid metabolism.
Collapse
Affiliation(s)
- Neil V Yang
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA, USA; Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Justin Y Chao
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Kelly A Garton
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA, USA
| | - Tommy Tran
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Sarah M King
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Joseph Orr
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Jacob H Oei
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Alexandra Crawford
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Misun Kang
- Electron Microscope Laboratory, University of California, Berkeley, CA, USA
| | - Reena Zalpuri
- Electron Microscope Laboratory, University of California, Berkeley, CA, USA
| | - Danielle M Jorgens
- Electron Microscope Laboratory, University of California, Berkeley, CA, USA
| | - Pranav Konchadi
- Department of Medicine, University of California, San Francisco, CA, USA
| | - John S Chorba
- Department of Medicine, University of California, San Francisco, CA, USA; Division of Cardiology, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA
| | - Elizabeth Theusch
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Ronald M Krauss
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA, USA; Department of Pediatrics, University of California, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, CA, USA.
| |
Collapse
|
6
|
Kim MH, Kim SJ, Park WJ, Lee DH, Kim KK. GR113808, a serotonin receptor 4 antagonist, prevents high-fat-diet-induced obesity, fatty liver formation, and insulin resistance in C57BL/6J mice. BMC Pharmacol Toxicol 2024; 25:76. [PMID: 39394150 PMCID: PMC11470721 DOI: 10.1186/s40360-024-00800-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND The burden of nonalcoholic fatty liver disease is increasing, and limited therapeutic drugs are available for its treatment. Serotonin binds to approximately 14 serotonin receptors (HTR) and plays diverse roles in obesity and metabolic complications. In this study, we focused on the function of HTR4 on nonalcoholic fatty liver disease using GR113808, a selective HTR4 antagonist. METHODS Male C57BL/6J mice were fed high-fat diet for 12 weeks with intraperitoneal GR113808 injection, and HTR expression, weight changes, glucose and lipid metabolism, hepatic fat accumulation, changes in adipose tissue, the changes in transcriptional factors of signaling pathways, and inflammations were assessed. Hep3B cells and 3T3-L1 cells were treated with siRNA targeting HTR4 to downregulate its expression and then cultured with palmitate to mimic a high-fat diet. The changes in transcriptional factors of signaling pathways, and inflammations were assessed in those cells. RESULTS After feeding a high-fat diet to male C57BL/6J mice, HTR4 expression in the liver and adipose tissues decreased. GR113808 suppressed body weight gain and improved glucose intolerance. Furthermore, GR113808 not only decreased fatty liver formation but also reduced adipose tissue size. Additionally, GR113808 reduced inflammatory cytokine serum levels and inflammasome complex formation in both tissues. Palmitate treatment in HTR4-downregulated Hep3B cells, also reduced peroxisome proliferator-activated receptor γ and sterol regulatory element-binding protein-1 pathway induction as well as inflammasome complex formation, thus decreasing inflammatory cytokine levels. HTR4 downregulation in 3T3-L1 cells also reduced palmitate-induced inflammasome complex formation and inflammatory cytokine production. Palmitate-induced insulin resistance in Hep3B cells, but not in 3T3-L1 cells, was improved by HTR4 downregulation. CONCLUSIONS In summary, GR113808 protected against fatty liver formation and improved inflammation in the liver and adipose tissue. Downregulation of HTR4 ameliorated insulin resistance in the liver. These results suggest that HTR4 could serve as a promising therapeutic target for metabolic diseases.
Collapse
Affiliation(s)
- Min Hee Kim
- Department of Biochemistry, Ewha Womans University College of Medicine, Seoul, 07084, Republic of Korea
- Department of Biochemistry, Gachon University College of Medicine, Incheon, 21565, Republic of Korea
| | - Su-Jeong Kim
- Department of Biochemistry, Gachon University College of Medicine, Incheon, 21565, Republic of Korea
| | - Woo-Jae Park
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul, 06974, Republic of Korea.
| | - Dae Ho Lee
- Department of Internal Medicine, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, 21565, Republic of Korea
| | - Kyoung-Kon Kim
- Department of Family Medicine, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, 21565, Republic of Korea.
| |
Collapse
|
7
|
Nguyen LH, Cho YE, Kim S, Kim Y, Kwak J, Suh JS, Lee J, Son K, Kim M, Jang ES, Song N, Choi B, Kim J, Tak Y, Hwang T, Jo J, Lee EW, Kim SB, Kim S, Kwon OB, Kim S, Lee SR, Lee H, Kim TJ, Hwang S, Yun H. Discovery of N-Aryl- N'-[4-(aryloxy)cyclohexyl]squaramide-Based Inhibitors of LXR/SREBP-1c Signaling Pathway Ameliorating Steatotic Liver Disease: Navigating the Role of SIRT6 Activation. J Med Chem 2024; 67:17608-17628. [PMID: 39259827 DOI: 10.1021/acs.jmedchem.4c01597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is primarily attributed to the abnormal upregulation of hepatic lipogenesis, which is especially caused by the overactivation of the liver X receptor/sterol regulatory element-binding protein-1c (LXR/SREBP-1c) pathway in hepatocytes. In this study, we report the rational design and synthesis of a novel series of squaramides via bioisosteric replacement, which was evaluated for its inhibitory activity on the LXR/SREBP-1c pathway using dual cell-based assays. Compound 31 was found to significantly downregulate LXR, SREBP-1c, and their target genes associated with lipogenesis. Further investigation revealed that compound 31 may indirectly inhibit the LXR/SREBP-1c pathway by activating the upstream regulator sirtuin 6 (SIRT6). Encouragingly, compound 31 substantially attenuated lipid accumulation in HepG2 cells and in the liver of high-fat-diet-fed mice. These findings suggest that compound 31 holds promise as a candidate for the development of treatments for MASLD and other lipid metabolism-related diseases.
Collapse
Affiliation(s)
- Long Huu Nguyen
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Ye Eun Cho
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Soyeong Kim
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Yeonsoo Kim
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Jinsook Kwak
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Jung-Soo Suh
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Jinyoung Lee
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Kyuwon Son
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Minseong Kim
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Eun Seo Jang
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Naghyun Song
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - BuChul Choi
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Jiah Kim
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Yealin Tak
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Taeyeon Hwang
- Korea Bioinformation Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, Republic of Korea
| | - Jeyun Jo
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Sang-Bum Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Sanghyun Kim
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Oh-Bin Kwon
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Sangok Kim
- Korea Bioinformation Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, Republic of Korea
| | - Seoung Rak Lee
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
- Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Haeseung Lee
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
- Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Tae-Jin Kim
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Seonghwan Hwang
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
- Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Hwayoung Yun
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
- Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
8
|
Białek W, Hryniewicz-Jankowska A, Czechowicz P, Sławski J, Collawn JF, Czogalla A, Bartoszewski R. The lipid side of unfolded protein response. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159515. [PMID: 38844203 DOI: 10.1016/j.bbalip.2024.159515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/16/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024]
Abstract
Although our current knowledge of the molecular crosstalk between the ER stress, the unfolded protein response (UPR), and lipid homeostasis remains limited, there is increasing evidence that dysregulation of either protein or lipid homeostasis profoundly affects the other. Most research regarding UPR signaling in human diseases has focused on the causes and consequences of disrupted protein folding. The UPR itself consists of very complex pathways that function to not only maintain protein homeostasis, but just as importantly, modulate lipid biogenesis to allow the ER to adjust and promote cell survival. Lipid dysregulation is known to activate many aspects of the UPR, but the complexity of this crosstalk remains a major research barrier. ER lipid disequilibrium and lipotoxicity are known to be important contributors to numerous human pathologies, including insulin resistance, liver disease, cardiovascular diseases, neurodegenerative diseases, and cancer. Despite their medical significance and continuous research, however, the molecular mechanisms that modulate lipid synthesis during ER stress conditions, and their impact on cell fate decisions, remain poorly understood. Here we summarize the current view on crosstalk and connections between altered lipid metabolism, ER stress, and the UPR.
Collapse
Affiliation(s)
- Wojciech Białek
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | | | - Paulina Czechowicz
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Jakub Sławski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Rafał Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland.
| |
Collapse
|
9
|
Feng X, Zhang R, Yang Z, Zhang K, Xing J. Mechanism of Metabolic Dysfunction-associated Steatotic Liver Disease: Important role of lipid metabolism. J Clin Transl Hepatol 2024; 12:815-826. [PMID: 39280069 PMCID: PMC11393839 DOI: 10.14218/jcth.2024.00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 09/18/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease, has a high global prevalence and can progress to metabolic dysfunction-associated steatohepatitis, cirrhosis, and hepatocellular carcinoma. The pathogenesis of MASLD is primarily driven by disturbances in hepatic lipid metabolism, involving six key processes: increased hepatic fatty acid uptake, enhanced fatty acid synthesis, reduced oxidative degradation of fatty acids, increased cholesterol uptake, elevated cholesterol synthesis, and increased bile acid synthesis. Consequently, maintaining hepatic lipid metabolic homeostasis is essential for effective MASLD management. Numerous novel molecules and Chinese proprietary medicines have demonstrated promising therapeutic potential in treating MASLD, primarily by inhibiting lipid synthesis and promoting lipid oxidation. In this review, we summarized recent research on MASLD, elucidated the molecular mechanisms by which lipid metabolism disorders contribute to MASLD pathogenesis, and discussed various lipid metabolism-targeted therapeutic approaches for MASLD.
Collapse
Affiliation(s)
- Xiaoxi Feng
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Rutong Zhang
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhenye Yang
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Kaiguang Zhang
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jun Xing
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
10
|
Kikuchi O, Ikeuchi Y, Kobayashi M, Tabei Y, Yokota‐Hashimoto H, Kitamura T. Imeglimin enhances glucagon secretion through an indirect mechanism and improves fatty liver in high-fat, high-sucrose diet-fed mice. J Diabetes Investig 2024; 15:1177-1190. [PMID: 38874179 PMCID: PMC11363097 DOI: 10.1111/jdi.14249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/03/2024] [Accepted: 05/24/2024] [Indexed: 06/15/2024] Open
Abstract
AIMS/INTRODUCTION Imeglimin is a recently approved oral antidiabetic agent that improves insulin resistance, and promotes insulin secretion from pancreatic β-cells. Here, we investigated the effects of imeglimin on glucagon secretion from pancreatic α-cells. MATERIALS AND METHODS Experiments were carried out in high-fat, high-sucrose diet-fed mice. The effects of imeglimin were examined using insulin and glucose tolerance tests, glucose clamp studies, and measurements of glucagon secretion from isolated islets. Glucagon was measured using both the standard and the sequential protocol of Mercodia sandwich enzyme-linked immunosorbent assay; the latter eliminates cross-reactivities with other proglucagon-derived peptides. RESULTS Plasma glucagon, insulin and glucagon-like peptide-1 levels were increased by imeglimin administration in high-fat, high-sucrose diet-fed mice. Glucose clamp experiments showed that the glucagon increase was not caused by reduced blood glucose levels. After both single and long-term administration of imeglimin, glucagon secretions were significantly enhanced during glucose tolerance tests. Milder enhancement was observed when using the sequential protocol. Long-term administration of imeglimin did not alter α-cell mass. Intraperitoneal imeglimin administration did not affect glucagon secretion, despite significantly decreased blood glucose levels. Imeglimin did not enhance glucagon secretion from isolated islets. Imeglimin administration improved fatty liver by suppressing de novo lipogenesis through decreasing sterol regulatory element binding protein-1c and carbohydrate response element binding protein and their target genes, while enhancing fatty acid oxidation through increasing carnitine palmitoyltransferase I. CONCLUSIONS Overall, the present results showed that imeglimin enhances glucagon secretion through an indirect mechanism. Our findings also showed that glucagon secretion promoted by imeglimin could contribute to improvement of fatty liver through suppressing de novo lipogenesis and enhancing fatty acid oxidation.
Collapse
Affiliation(s)
- Osamu Kikuchi
- Metabolic Signal Research CenterInstitute for Molecular and Cellular Regulation, Gunma UniversityGunmaJapan
| | - Yuichi Ikeuchi
- Metabolic Signal Research CenterInstitute for Molecular and Cellular Regulation, Gunma UniversityGunmaJapan
| | - Masaki Kobayashi
- Metabolic Signal Research CenterInstitute for Molecular and Cellular Regulation, Gunma UniversityGunmaJapan
| | - Yoko Tabei
- Metabolic Signal Research CenterInstitute for Molecular and Cellular Regulation, Gunma UniversityGunmaJapan
| | - Hiromi Yokota‐Hashimoto
- Metabolic Signal Research CenterInstitute for Molecular and Cellular Regulation, Gunma UniversityGunmaJapan
| | - Tadahiro Kitamura
- Metabolic Signal Research CenterInstitute for Molecular and Cellular Regulation, Gunma UniversityGunmaJapan
| |
Collapse
|
11
|
Fu K, Dai S, Ma C, Zhang Y, Zhang S, Wang C, Gong L, Zhou H, Li Y. Lignans are the main active components of
Schisandrae Chinensis Fructus for liver disease treatment: a review. FOOD SCIENCE AND HUMAN WELLNESS 2024; 13:2425-2444. [DOI: 10.26599/fshw.2022.9250200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Duan Z, Yang M, Yang J, Wu Z, Zhu Y, Jia Q, Ma X, Yin Y, Zheng J, Yang J, Jiang S, Hu L, Zhang J, Liu D, Huo Y, Yao L, Sun Y. AGFG1 increases cholesterol biosynthesis by disrupting intracellular cholesterol homeostasis to promote PDAC progression. Cancer Lett 2024; 598:217130. [PMID: 39089666 DOI: 10.1016/j.canlet.2024.217130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
PURPOSE Cholesterol metabolism reprograming has been acknowledged as a novel feature of cancers. Pancreatic ductal adenocarcinoma (PDAC) is a cancer with a high demand of cholesterol for rapid growth. The underlying mechanism of how cholesterol metabolism homestasis are disturbed in PDAC is explored. EXPERIMENTAL DESIGN The relevance between PDAC and cholesterol was confirmed in TCGA database. The expression and clinical association were discovered in TCGA and GEO datasets. Knockdown and overexpression of AGFG1 was adopted to perform function studies. RNA sequencing, cholesterol detection, transmission electron microscope, co-immunoprecipitation, and immunofluorescence et al. were utilized to reveal the underlying mechanism. RESULTS AGFG1 was identified as one gene positively correlated with cholesterol metabolism in PDAC as revealed by bioinformatics analysis. AGFG1 expression was then found associated with poor prognosis in PDAC. AGFG1 knockdown led to decreased proliferation of tumor cells both in vitro and in vivo. By RNA sequencing, we found AGFG1 upregulated expression leads to enhanced intracellular cholesterol biosynthesis. AGFG1 knockdown suppressed cholesterol biosynthesis and an accumulation of cholesterol in the ER. Mechanistically, we confirmed that AGFG1 interacted with CAV1 to relocate cholesterol for the proceeding of cholesterol biosynthesis, therefore causing disorders in intracellular cholesterol metabolism. CONCLUSIONS Our study demonstrates the tumor-promoting role of AGFG1 by disturbing cholesterol metabolism homestasis in PDAC. Our study has present a new perspective on cancer therapeutic approach based on cholerstrol metabolism in PDAC.
Collapse
Affiliation(s)
- Zonghao Duan
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Minwei Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Jian Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Department of General Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, PR China; Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100029, PR China
| | - Zheng Wu
- Department of Radiation Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Yuheng Zhu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Qinyuan Jia
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Xueshiyu Ma
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Yifan Yin
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Jiahao Zheng
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jianyu Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Shuheng Jiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Lipeng Hu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Junfeng Zhang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China; Department of General Surgery, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, 201800, PR China
| | - Dejun Liu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China.
| | - Yanmiao Huo
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China.
| | - Linli Yao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| | - Yongwei Sun
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China.
| |
Collapse
|
13
|
Xu X, Jin W, Chang R, Ding X. Research progress of SREBP and its role in the pathogenesis of autoimmune rheumatic diseases. Front Immunol 2024; 15:1398921. [PMID: 39224584 PMCID: PMC11366632 DOI: 10.3389/fimmu.2024.1398921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Autoimmune rheumatic diseases comprise a group of immune-related disorders characterized by non-organ-specific inflammation. These diseases include systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), ankylosing spondylitis (AS), gout, among others. Typically involving the hematologic system, these diseases may also affect multiple organs and systems. The pathogenesis of autoimmune rheumatic immune diseases is complex, with diverse etiologies, all associated with immune dysfunction. The current treatment options for this type of disease are relatively limited and come with certain side effects. Therefore, the urgent challenge remains to identify novel therapeutic targets for these diseases. Sterol regulatory element-binding proteins (SREBPs) are basic helix-loop-helix-leucine zipper transcription factors that regulate the expression of genes involved in lipid and cholesterol biosynthesis. The expression and transcriptional activity of SREBPs can be modulated by extracellular stimuli such as polyunsaturated fatty acids, amino acids, glucose, and energy pathways including AKT-mTORC and AMP-activated protein kinase (AMPK). Studies have shown that SREBPs play roles in regulating lipid metabolism, cytokine production, inflammation, and the proliferation of germinal center B (GCB) cells. These functions are significant in the pathogenesis of rheumatic and immune diseases (Graphical abstract). Therefore, this paper reviews the potential mechanisms of SREBPs in the development of SLE, RA, and gout, based on an exploration of their functions.
Collapse
Affiliation(s)
| | | | | | - Xinghong Ding
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
14
|
Luo S, Weng X, Xu J, Lin H. Correlation between ZJU index and hepatic steatosis and liver fibrosis in American adults with NAFLD. Front Med (Lausanne) 2024; 11:1443811. [PMID: 39211343 PMCID: PMC11357965 DOI: 10.3389/fmed.2024.1443811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Background ZJU index, a novel calculation combining blood glucose, body mass index (BMI), lipids and liver functions, is closely related with non-alcoholic fatty liver disease (NAFLD). However, the correlation between ZJU index and hepatic steatosis and liver fibrosis has not been reported in the studies. This study aims to examine the correlation between these variables. Methods Data from the 2017-2020 NHANES were collected for a cross-sectional study, to explore the linear relationship between ZJU, liver stiffness measurements (LSM) and controlled attenuation parameters (CAP) with multivariate linear regression models. Restricted cubic spline (RCS) regression and threshold effect analyses were utilized to describe the nonlinear relationship. The correlation in subgroups was analyzed based on race, gender, drinking, age, BMI, diabetes and moderate activities. Results In this population-based study, a total of 2,122 adults aged 18-80 years old with NAFLD were included. According to the multivariate linear regression analysis, ZJU had a significant positive correlation with liver fibrosis (LSM, β = 0.182, 95%CI = 0.154-0.211, p < 0.001) and hepatic steatosis (CAP, β = 2.35, 95%CI = 2.14-2.56, p < 0.001), which was stronger in males. According to the RCS analysis, an inverted L-shaped relationship between ZJU and CAP (inflection point at 60.56) and a J-shaped relationship between ZJU index and LSM (inflection point at 51.27) were observed. Conclusion ZJU had a positive correlation with CAP and LSM in American adults with NAFLD. The findings suggest that ZJU may be a valuable biomarker for assessing the severity of liver fibrosis and hepatic steatosis in individuals with NAFLD.
Collapse
Affiliation(s)
- Shuang Luo
- Department of Gastroenterology, Pingyang Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaolu Weng
- Department of Endocrinology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jing Xu
- Department of Endocrinology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hao Lin
- Department of Gastroenterology, Pingyang Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
15
|
Kang C, Xiao Q, Wang X, Guo W, Zhang H, Yuan L, Zhao Z, Hao W. Chlormequat chloride induces hepatic steatosis by promoting mTOR/SREBP1 mediated lipogenesis via AMPK inhibition. Food Chem Toxicol 2024; 190:114790. [PMID: 38849044 DOI: 10.1016/j.fct.2024.114790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/22/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Chlormequat chloride (CCC), a widely used plant growth regulator, is a choline analogue that has been shown to have endocrine-disrupting effects. Previous studies have shown that maternal exposure to CCC could induce hyperlipidemia and growth disruption in rat offspring. This study aims to further investigate the effects of peripubertal exposure to CCC on pubertal development and lipid homeostasis, as well as the underlying mechanisms. In vivo, male weanling rats were exposed to CCC (0, 20, 75 and 200 mg/kg bw/day) from post-natal day 21-60 via daily oral gavage. The results in rats showed that 75 mg/kg CCC treatment induced hepatic steatosis, predominantly microvesicular steatosis with a small amount of macrovesicular steatosis, in rat livers and 200 mg/kg CCC treatment induced liver damage including inflammatory infiltration, hepatic sinusoidal dilation and necrosis. In vitro, HepG2 cells were treated with CCC (0, 30, 60, 120, 240 and 480 μg/mL) for 24 h. And the results showed that CCC above 120 μg/mL induced an increase in triglyceride and neutral lipid levels of HepG2 cells. Mechanism exploration revealed that CCC treatment promoted the activation of mTOR/SREBP1 signalling pathway and inhibited activation of AMPK in both in vivo rat livers and in vitro HepG2 cells. Treatment with AMPK activator Acadesine (AICAR) could alleviate the lipid accumulation in HepG2 cells induced by CCC. Collectively, the present results indicate that CCC might induce hepatic steatosis by promoting mTOR/SREBP1 mediated lipogenesis via AMPK inhibition.
Collapse
Affiliation(s)
- Chengping Kang
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Qianqian Xiao
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Xiaoxia Wang
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Wanqian Guo
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Haoran Zhang
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Lilan Yuan
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Zhe Zhao
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China.
| |
Collapse
|
16
|
Su F, Koeberle A. Regulation and targeting of SREBP-1 in hepatocellular carcinoma. Cancer Metastasis Rev 2024; 43:673-708. [PMID: 38036934 PMCID: PMC11156753 DOI: 10.1007/s10555-023-10156-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/10/2023] [Indexed: 12/02/2023]
Abstract
Hepatocellular carcinoma (HCC) is an increasing burden on global public health and is associated with enhanced lipogenesis, fatty acid uptake, and lipid metabolic reprogramming. De novo lipogenesis is under the control of the transcription factor sterol regulatory element-binding protein 1 (SREBP-1) and essentially contributes to HCC progression. Here, we summarize the current knowledge on the regulation of SREBP-1 isoforms in HCC based on cellular, animal, and clinical data. Specifically, we (i) address the overarching mechanisms for regulating SREBP-1 transcription, proteolytic processing, nuclear stability, and transactivation and (ii) critically discuss their impact on HCC, taking into account (iii) insights from pharmacological approaches. Emphasis is placed on cross-talk with the phosphatidylinositol-3-kinase (PI3K)-protein kinase B (Akt)-mechanistic target of rapamycin (mTOR) axis, AMP-activated protein kinase (AMPK), protein kinase A (PKA), and other kinases that directly phosphorylate SREBP-1; transcription factors, such as liver X receptor (LXR), peroxisome proliferator-activated receptors (PPARs), proliferator-activated receptor γ co-activator 1 (PGC-1), signal transducers and activators of transcription (STATs), and Myc; epigenetic mechanisms; post-translational modifications of SREBP-1; and SREBP-1-regulatory metabolites such as oxysterols and polyunsaturated fatty acids. By carefully scrutinizing the role of SREBP-1 in HCC development, progression, metastasis, and therapy resistance, we shed light on the potential of SREBP-1-targeting strategies in HCC prevention and treatment.
Collapse
Affiliation(s)
- Fengting Su
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Andreas Koeberle
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria.
| |
Collapse
|
17
|
Jung I, Koo DJ, Lee WY. Insulin Resistance, Non-Alcoholic Fatty Liver Disease and Type 2 Diabetes Mellitus: Clinical and Experimental Perspective. Diabetes Metab J 2024; 48:327-339. [PMID: 38310873 PMCID: PMC11140401 DOI: 10.4093/dmj.2023.0350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/26/2024] [Indexed: 02/06/2024] Open
Abstract
It has been generally accepted that insulin resistance (IR) and reduced insulin secretory capacity are the basic pathogenesis of type 2 diabetes mellitus (T2DM). In addition to genetic factors, the persistence of systemic inflammation caused by obesity and the associated threat of lipotoxicity increase the risk of T2DM. In particular, the main cause of IR is obesity and subjects with T2DM have a higher body mass index (BMI) than normal subjects according to recent studies. The prevalence of T2DM with IR has increased with increasing BMI during the past three decades. According to recent studies, homeostatic model assessment of IR was increased compared to that of the 1990s. Rising prevalence of obesity in Korea have contributed to the development of IR, non-alcoholic fatty liver disease and T2DM and cutting this vicious cycle is important. My colleagues and I have investigated this pathogenic mechanism on this theme through clinical and experimental studies over 20 years and herein, I would like to summarize some of our studies with deep gratitude for receiving the prestigious 2023 Sulwon Award.
Collapse
Affiliation(s)
- Inha Jung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| | - Dae-Jeong Koo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Changwon Fatima Hospital, Changwon, Korea
| | - Won-Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
18
|
Yousof TR, Bouchard CC, Alb M, Lynn EG, Lhoták S, Jiang H, MacDonald M, Li H, Byun JH, Makda Y, Athanasopoulos M, Maclean KN, Cherrington NJ, Naqvi A, Igdoura SA, Krepinsky JC, Steinberg GR, Austin RC. Restoration of the ER stress response protein TDAG51 in hepatocytes mitigates NAFLD in mice. J Biol Chem 2024; 300:105655. [PMID: 38237682 PMCID: PMC10875272 DOI: 10.1016/j.jbc.2024.105655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 02/16/2024] Open
Abstract
Endoplasmic reticulum stress is associated with insulin resistance and the development of nonalcoholic fatty liver disease. Deficiency of the endoplasmic reticulum stress response T-cell death-associated gene 51 (TDAG51) (TDAG51-/-) in mice promotes the development of high-fat diet (HFD)-induced obesity, fatty liver, and hepatic insulin resistance. However, whether this effect is due specifically to hepatic TDAG51 deficiency is unknown. Here, we report that hepatic TDAG51 protein levels are consistently reduced in multiple mouse models of liver steatosis and injury as well as in liver biopsies from patients with liver disease compared to normal controls. Delivery of a liver-specific adeno-associated virus (AAV) increased hepatic expression of a TDAG51-GFP fusion protein in WT, TDAG51-/-, and leptin-deficient (ob/ob) mice. Restoration of hepatic TDAG51 protein was sufficient to increase insulin sensitivity while reducing body weight and fatty liver in HFD fed TDAG51-/- mice and in ob/ob mice. TDAG51-/- mice expressing ectopic TDAG51 display improved Akt (Ser473) phosphorylation, post-insulin stimulation. HFD-fed TDAG51-/- mice treated with AAV-TDAG51-GFP displayed reduced lipogenic gene expression, increased beta-oxidation and lowered hepatic and serum triglycerides, findings consistent with reduced liver weight. Further, AAV-TDAG51-GFP-treated TDAG51-/- mice exhibited reduced hepatic precursor and cleaved sterol regulatory-element binding proteins (SREBP-1 and SREBP-2). In vitro studies confirmed the lipid-lowering effect of TDAG51 overexpression in oleic acid-treated Huh7 cells. These studies suggest that maintaining hepatic TDAG51 protein levels represents a viable therapeutic approach for the treatment of obesity and insulin resistance associated with nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Tamana R Yousof
- Division of Nephrology, Department of Medicine, The Research Institute of St. Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Celeste C Bouchard
- Division of Nephrology, Department of Medicine, The Research Institute of St. Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Mihnea Alb
- Division of Nephrology, Department of Medicine, The Research Institute of St. Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Edward G Lynn
- Division of Nephrology, Department of Medicine, The Research Institute of St. Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Sárka Lhoták
- Division of Nephrology, Department of Medicine, The Research Institute of St. Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Hua Jiang
- Department of Pediatrics, School of Medicine, University of Colorado Health Sciences Center, Aurora, Colorado, USA
| | - Melissa MacDonald
- Division of Nephrology, Department of Medicine, The Research Institute of St. Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Hui Li
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, USA
| | - Jae H Byun
- Division of Nephrology, Department of Medicine, The Research Institute of St. Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Yumna Makda
- Division of Nephrology, Department of Medicine, The Research Institute of St. Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | | | - Kenneth N Maclean
- Department of Pediatrics, School of Medicine, University of Colorado Health Sciences Center, Aurora, Colorado, USA
| | - Nathan J Cherrington
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, USA
| | - Asghar Naqvi
- Department of Pathology and Molecular Medicine, St. Joseph's Healthcare Hamilton, McMaster University, Hamilton, Ontario, Canada
| | - Suleiman A Igdoura
- Department of Biology, McMaster University, Hamilton, Ontario, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Joan C Krepinsky
- Division of Nephrology, Department of Medicine, The Research Institute of St. Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada; Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada; Division of Endocrinology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Richard C Austin
- Division of Nephrology, Department of Medicine, The Research Institute of St. Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada; Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
19
|
Mohibi S, Zhang Y, Perng V, Chen M, Zhang J, Chen X. Ferredoxin 1 is essential for embryonic development and lipid homeostasis. eLife 2024; 13:e91656. [PMID: 38251655 PMCID: PMC10846857 DOI: 10.7554/elife.91656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/19/2024] [Indexed: 01/23/2024] Open
Abstract
Mammalian ferredoxin 1 and 2 (FDX1/2) belong to an evolutionary conserved family of iron-sulfur cluster containing proteins and act as electron shutters between ferredoxin reductase (FDXR) and numerous proteins involved in critical biological pathways. FDX1 is involved in biogenesis of steroids and bile acids, Vitamin A/D metabolism, and lipoylation of tricarboxylic acid (TCA) cycle enzymes. FDX1 has been extensively characterized biochemically but its role in physiology and lipid metabolism has not been explored. In this study, we generated Fdx1-deficient mice and showed that knockout of both alleles of the Fdx1 gene led to embryonic lethality. We also showed that like Fdxr+/-+/-, Fdx1+/-+/- had a shorter life span and were prone to steatohepatitis. However, unlike Fdxr+/-+/-, Fdx1+/-+/- were not prone to spontaneous tumors. Additionally, we showed that FDX1 deficiency led to lipid droplet accumulation possibly via the ABCA1-SREBP1/2 pathway. Specifically, untargeted lipidomic analysis showed that FDX1 deficiency led to alterations in several classes of lipids, including cholesterol, triacylglycerides, acylcarnitines, ceramides, phospholipids and lysophospholipids. Taken together, our data indicate that FDX1 is essential for mammalian embryonic development and lipid homeostasis at both cellular and organismal levels.
Collapse
Affiliation(s)
- Shakur Mohibi
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California, DavisDavisUnited States
| | - Yanhong Zhang
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California, DavisDavisUnited States
| | - Vivian Perng
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California, DavisDavisUnited States
| | - Mingyi Chen
- Department of Pathology, University of Texas Southwestern Medical Center, DallasDallasUnited States
| | - Jin Zhang
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California, DavisDavisUnited States
| | - Xinbin Chen
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California, DavisDavisUnited States
| |
Collapse
|
20
|
Chandrasekaran P, Weiskirchen R. The Role of SCAP/SREBP as Central Regulators of Lipid Metabolism in Hepatic Steatosis. Int J Mol Sci 2024; 25:1109. [PMID: 38256181 PMCID: PMC10815951 DOI: 10.3390/ijms25021109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is rapidly increasing worldwide at an alarming pace, due to an increase in obesity, sedentary and unhealthy lifestyles, and unbalanced dietary habits. MASLD is a unique, multi-factorial condition with several phases of progression including steatosis, steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Sterol element binding protein 1c (SREBP1c) is the main transcription factor involved in regulating hepatic de novo lipogenesis. This transcription factor is synthesized as an inactive precursor, and its proteolytic maturation is initiated in the membrane of the endoplasmic reticulum upon stimulation by insulin. SREBP cleavage activating protein (SCAP) is required as a chaperon protein to escort SREBP from the endoplasmic reticulum and to facilitate the proteolytic release of the N-terminal domain of SREBP into the Golgi. SCAP inhibition prevents activation of SREBP and inhibits the expression of genes involved in triglyceride and fatty acid synthesis, resulting in the inhibition of de novo lipogenesis. In line, previous studies have shown that SCAP inhibition can resolve hepatic steatosis in animal models and intensive research is going on to understand the effects of SCAP in the pathogenesis of human disease. This review focuses on the versatile roles of SCAP/SREBP regulation in de novo lipogenesis and the structure and molecular features of SCAP/SREBP in the progression of hepatic steatosis. In addition, recent studies that attempt to target the SCAP/SREBP axis as a therapeutic option to interfere with MASLD are discussed.
Collapse
Affiliation(s)
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, D-52074 Aachen, Germany
| |
Collapse
|
21
|
Wang X, Chen Y, Meng H, Meng F. SREBPs as the potential target for solving the polypharmacy dilemma. Front Physiol 2024; 14:1272540. [PMID: 38269061 PMCID: PMC10806128 DOI: 10.3389/fphys.2023.1272540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/26/2023] [Indexed: 01/26/2024] Open
Abstract
The phenomenon of polypharmacy is a common occurrence among older people with multiple health conditions due to the rapid increase in population aging and the popularization of clinical guidelines. The prevalence of metabolic syndrome is growing quickly, representing a serious threat to both the public and the worldwide healthcare systems. In addition, it enhances the risk of cardiovascular disease as well as mortality and morbidity. Sterol regulatory element binding proteins (SREBPs) are basic helix-loop-helix leucine zipper transcription factors that transcriptionally modulate genes that regulate lipid biosynthesis and uptake, thereby serving an essential role in biological systems regulation. In this article, we have described the structure of SREBPs and explored their activation and regulation of signals. We also reveal that SREBPs are intricately involved in the modulation of metabolic diseases and thus have tremendous potential as the novel target for single-drug therapy for multiple diseases.
Collapse
Affiliation(s)
| | | | | | - Fanbo Meng
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis (Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute), Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
22
|
Shen S, Shen M, Kuang L, Yang K, Wu S, Liu X, Wang Y, Wang Y. SIRT1/SREBPs-mediated regulation of lipid metabolism. Pharmacol Res 2024; 199:107037. [PMID: 38070792 DOI: 10.1016/j.phrs.2023.107037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/13/2024]
Abstract
Sirtuins, also called silent information regulator 2, are enzymes that rely on nicotinamide adenine dinucleotide (NAD+) to function as histone deacetylases. Further investigation is warranted to explore the advantageous impacts of Sirtuin 1 (SIRT1), a constituent of the sirtuin group, on lipid metabolism, in addition to its well-researched involvement in extending lifespan. The regulation of gene expression has been extensively linked to SIRT1. Sterol regulatory element-binding protein (SREBP) is a substrate of SIRT1 that has attracted significant interest due to its role in multiple cellular processes including cell cycle regulation, DNA damage repair, and metabolic functions. Hence, the objective of this analysis was to investigate and elucidate the correlation between SIRT1 and SREBPs, as well as assess the contribution of SIRT1/SREBPs in mitigating lipid metabolism dysfunction. The objective of this research was to investigate whether SIRT1 and SREBPs could be utilized as viable targets for therapeutic intervention in managing complications associated with diabetes.
Collapse
Affiliation(s)
- Shan Shen
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Mingyang Shen
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Lirun Kuang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Keyu Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Shiran Wu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Xinde Liu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Yuting Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Yong Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| |
Collapse
|
23
|
Takeuchi Y, Murayama Y, Aita Y, Mehrazad Saber Z, Karkoutly S, Tao D, Katabami K, Ye C, Shikama A, Masuda Y, Izumida Y, Miyamoto T, Matsuzaka T, Kawakami Y, Shimano H, Yahagi N. GR-KLF15 pathway controls hepatic lipogenesis during fasting. FEBS J 2024; 291:259-271. [PMID: 37702262 DOI: 10.1111/febs.16957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/10/2023] [Accepted: 09/11/2023] [Indexed: 09/14/2023]
Abstract
During periods of fasting, the body undergoes a metabolic shift from carbohydrate utilization to the use of fats and ketones as an energy source, as well as the inhibition of de novo lipogenesis and the initiation of gluconeogenesis in the liver. The transcription factor sterol regulatory element-binding protein-1 (SREBP-1), which plays a critical role in the regulation of lipogenesis, is suppressed during fasting, resulting in the suppression of hepatic lipogenesis. We previously demonstrated that the interaction of fasting-induced Kruppel-like factor 15 (KLF15) with liver X receptor serves as the essential mechanism for the nutritional regulation of SREBP-1 expression. However, the underlying mechanisms of KLF15 induction during fasting remain unclear. In this study, we show that the glucocorticoid receptor (GR) regulates the hepatic expression of KLF15 and, subsequently, lipogenesis through the KLF15-SREBP-1 pathway during fasting. KLF15 is necessary for the suppression of SREBP-1 by GR, as demonstrated through experiments using KLF15 knockout mice. Additionally, we show that GR is involved in the fasting response, with heightened binding to the KLF15 enhancer. It has been widely known that the hypothalamic-pituitary-adrenal (HPA) axis regulates the secretion of glucocorticoids and plays a significant role in the metabolic response to undernutrition. These findings demonstrate the importance of the HPA-axis-regulated GR-KLF15 pathway in the regulation of lipid metabolism in the liver during fasting.
Collapse
Affiliation(s)
- Yoshinori Takeuchi
- Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Yuki Murayama
- Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yuichi Aita
- Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Zahra Mehrazad Saber
- Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Samia Karkoutly
- Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Duhan Tao
- Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kyoka Katabami
- Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Chen Ye
- Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Akito Shikama
- Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yukari Masuda
- Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yoshihiko Izumida
- Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takafumi Miyamoto
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takashi Matsuzaka
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yasushi Kawakami
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Naoya Yahagi
- Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| |
Collapse
|
24
|
Ohguro H, Umetsu A, Sato T, Furuhashi M, Watanabe M. Lipid Metabolism Regulators Are the Possible Determinant for Characteristics of Myopic Human Scleral Stroma Fibroblasts (HSSFs). Int J Mol Sci 2023; 25:501. [PMID: 38203671 PMCID: PMC10778967 DOI: 10.3390/ijms25010501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/25/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
The purpose of the current investigation was to elucidate what kinds of responsible mechanisms induce elongation of the sclera in myopic eyes. To do this, two-dimensional (2D) cultures of human scleral stromal fibroblasts (HSSFs) obtained from eyes with two different axial length (AL) groups, <26 mm (low AL group, n = 2) and >27 mm (high AL group, n = 3), were subjected to (1) measurements of Seahorse mitochondrial and glycolytic indices to evaluate biological aspects and (2) analysis by RNA sequencing. Extracellular flux analysis revealed that metabolic indices related to mitochondrial and glycolytic functions were higher in the low AL group than in the high AL group, suggesting that metabolic activities of HSSF cells are different depending the degree of AL. Based upon RNA sequencing of these low and high AL groups, the bioinformatic analyses using gene ontology (GO) enrichment analysis and ingenuity pathway analysis (IPA) of differentially expressed genes (DEGs) identified that sterol regulatory element-binding transcription factor 2 (SREBF2) is both a possible upstream regulator and a causal network regulator. Furthermore, SREBF1, insulin-induced gene 1 (INSIG1), and insulin-like growth factor 1 (IGF1) were detected as upstream regulators, and protein tyrosine phosphatase receptor type O (PTPRO) was detected as a causal network regulator. Since those possible regulators were all pivotally involved in lipid metabolisms including fatty acid (FA), triglyceride (TG) and cholesterol (Chol) biosynthesis, the findings reported here indicate that FA, TG and Chol biosynthesis regulation may be responsible mechanisms inducing AL elongation via HSSF.
Collapse
Affiliation(s)
- Hiroshi Ohguro
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Hokkaido, Japan; (H.O.); (A.U.)
| | - Araya Umetsu
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Hokkaido, Japan; (H.O.); (A.U.)
| | - Tatsuya Sato
- Department of Cardiovascular, Renal and Metabolic Medicine, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Hokkaido, Japan
- Department of Cellular Physiology and Signal Transduction, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Hokkaido, Japan
| | - Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Hokkaido, Japan
| | - Megumi Watanabe
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Hokkaido, Japan; (H.O.); (A.U.)
| |
Collapse
|
25
|
Li N, Li X, Ding Y, Liu X, Diggle K, Kisseleva T, Brenner DA. SREBP Regulation of Lipid Metabolism in Liver Disease, and Therapeutic Strategies. Biomedicines 2023; 11:3280. [PMID: 38137501 PMCID: PMC10740981 DOI: 10.3390/biomedicines11123280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/26/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Sterol regulatory element-binding proteins (SREBPs) are master transcription factors that play a crucial role in regulating genes involved in the biogenesis of cholesterol, fatty acids, and triglycerides. As such, they are implicated in several serious liver diseases, including non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), fibrosis, and hepatocellular carcinoma (HCC). SREBPs are subject to regulation by multiple cofactors and critical signaling pathways, making them an important target for therapeutic interventions. In this review, we first introduce the structure and activation of SREBPs, before focusing on their function in liver disease. We examine the mechanisms by which SREBPs regulate lipogenesis, explore how alterations in these processes are associated with liver disease, and evaluate potential therapeutic strategies using small molecules, natural products, or herb extracts that target these pathways. Through this analysis, we provide new insights into the versatility and multitargets of SREBPs as factors in the modulation of different physiological stages of liver disease, highlighting their potential targets for therapeutic treatment.
Collapse
Affiliation(s)
- Na Li
- College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
- Graduate School of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaodan Li
- College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
- Graduate School of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yifu Ding
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Shanghai 200031, China;
| | - Xiao Liu
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA (T.K.)
| | - Karin Diggle
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA (T.K.)
| | - Tatiana Kisseleva
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA (T.K.)
| | - David A. Brenner
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA (T.K.)
- Sanford Burnham Prebys, La Jolla, CA 92037, USA
| |
Collapse
|
26
|
Gowda D, Shekhar C, B. Gowda SG, Chen Y, Hui SP. Crosstalk between Lipids and Non-Alcoholic Fatty Liver Disease. LIVERS 2023; 3:687-708. [DOI: 10.3390/livers3040045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), a complex liver disorder that can result in non-alcoholic steatohepatitis, cirrhosis, and liver cancer, is the accumulation of fat in the liver seen in people due to metabolic dysfunction. The pathophysiology of NAFLD is influenced by several variables, such as metabolic dysregulation, oxidative stress, inflammation, and genetic susceptibility. This illness seriously threatens global health because of its link to obesity, insulin resistance, type 2 diabetes, and other metabolic disorders. In recent years, lipid–NAFLD crosstalk has drawn a lot of interest. Through numerous methods, lipids have been connected to the onset and advancement of the illness. The connection between lipids and NAFLD is the main topic of the current review, along with the various therapeutic targets and currently available drugs. The importance of hepatic lipid metabolism in the progression of NAFLD is summarized with the latest results in the field.
Collapse
Affiliation(s)
- Divyavani Gowda
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Chandra Shekhar
- Department of Physiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Siddabasave Gowda B. Gowda
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
- Graduate School of Global Food Resources, Hokkaido University, Sapporo 060-0812, Japan
| | - Yifan Chen
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
27
|
Han SI, Nakakuki M, Nakagawa Y, Wang Y, Araki M, Yamamoto Y, Tokiwa H, Takeda H, Mizunoe Y, Motomura K, Ohno H, Kainoh K, Murayama Y, Aita Y, Takeuchi Y, Osaki Y, Miyamoto T, Sekiya M, Matsuzaka T, Yahagi N, Sone H, Daitoku H, Sato R, Kawano H, Shimano H. Rhomboid protease RHBDL4/RHBDD1 cleaves SREBP-1c at endoplasmic reticulum monitoring and regulating fatty acids. PNAS NEXUS 2023; 2:pgad351. [PMID: 37954160 PMCID: PMC10637267 DOI: 10.1093/pnasnexus/pgad351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/02/2023] [Indexed: 11/14/2023]
Abstract
The endoplasmic reticulum (ER)-embedded transcription factors, sterol regulatory element-binding proteins (SREBPs), master regulators of lipid biosynthesis, are transported to the Golgi for proteolytic activation to tune cellular cholesterol levels and regulate lipogenesis. However, mechanisms by which the cell responds to the levels of saturated or unsaturated fatty acids remain underexplored. Here, we show that RHBDL4/RHBDD1, a rhomboid family protease, directly cleaves SREBP-1c at the ER. The p97/VCP, AAA-ATPase complex then acts as an auxiliary segregase to extract the remaining ER-embedded fragment of SREBP-1c. Importantly, the enzymatic activity of RHBDL4 is enhanced by saturated fatty acids (SFAs) but inhibited by polyunsaturated fatty acids (PUFAs). Genetic deletion of RHBDL4 in mice fed on a Western diet enriched in SFAs and cholesterol prevented SREBP-1c from inducing genes for lipogenesis, particularly for synthesis and incorporation of PUFAs, and secretion of lipoproteins. The RHBDL4-SREBP-1c pathway reveals a regulatory system for monitoring fatty acid composition and maintaining cellular lipid homeostasis.
Collapse
Affiliation(s)
- Song-Iee Han
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Masanori Nakakuki
- Pharmaceutical Research Center, Mochida Pharmaceutical Co., Ltd., Gotemba, Shizuoka 412-8524, Japan
| | - Yoshimi Nakagawa
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Division of Complex Biosystem Research, Department of Research and Development, Institute of Natural Medicine, University of Toyama, Toyama, Toyama 930-0194, Japan
| | - Yunong Wang
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Masaya Araki
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuta Yamamoto
- Department of Chemistry, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
| | - Hiroaki Tokiwa
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, Daigaku-Nishi, Gifu 501-1196, Japan
| | - Hiroyuki Takeda
- Division of Proteo Drug Discovery Sciences, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Yuhei Mizunoe
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Kaori Motomura
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Hiroshi Ohno
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Kenta Kainoh
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuki Murayama
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuichi Aita
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yoshinori Takeuchi
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yoshinori Osaki
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Takafumi Miyamoto
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Motohiro Sekiya
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Takashi Matsuzaka
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Naoya Yahagi
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Hirohito Sone
- Department of Internal Medicine, Faculty of Medicine, Niigata University, Niigata, Niigata 951-8510, Japan
| | - Hiroaki Daitoku
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Ryuichiro Sato
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, Nutri-Life Science Laboratory, The University of Tokyo, Tokyo 113-8657, Japan
| | - Hiroyuki Kawano
- Pharmaceutical Research Center, Mochida Pharmaceutical Co., Ltd., Gotemba, Shizuoka 412-8524, Japan
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
- Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
28
|
Rashidpour A, Wu Y, Almajano MP, Fàbregas A, Metón I. Chitosan-Based Sustained Expression of Sterol Regulatory Element-Binding Protein 1a Stimulates Hepatic Glucose Oxidation and Growth in Sparus aurata. Mar Drugs 2023; 21:562. [PMID: 37999386 PMCID: PMC10672111 DOI: 10.3390/md21110562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023] Open
Abstract
The administration of a single dose of chitosan nanoparticles driving the expression of sterol regulatory element-binding protein 1a (SREBP1a) was recently associated with the enhanced conversion of carbohydrates into lipids. To address the effects of the long-lasting expression of SREBP1a on the growth and liver intermediary metabolism of carnivorous fish, chitosan-tripolyphosphate (TPP) nanoparticles complexed with a plasmid expressing the N terminal active domain of hamster SREBP1a (pSG5-SREBP1a) were injected intraperitoneally every 4 weeks (three doses in total) to gilthead sea bream (Sparus aurata) fed high-protein-low-carbohydrate and low-protein-high-carbohydrate diets. Following 70 days of treatment, chitosan-TPP-pSG5-SREBP1a nanoparticles led to the sustained upregulation of SREBP1a in the liver of S. aurata. Independently of the diet, SREBP1a overexpression significantly increased their weight gain, specific growth rate, and protein efficiency ratio but decreased their feed conversion ratio. In agreement with an improved conversion of dietary carbohydrates into lipids, SREBP1a expression increased serum triglycerides and cholesterol as well as hepatic glucose oxidation via glycolysis and the pentose phosphate pathway, while not affecting gluconeogenesis and transamination. Our findings support that the periodical administration of chitosan-TPP-DNA nanoparticles to overexpress SREBP1a in the liver enhanced the growth performance of S. aurata through a mechanism that enabled protein sparing by enhancing dietary carbohydrate metabolisation.
Collapse
Affiliation(s)
- Ania Rashidpour
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Yuanbing Wu
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028 Barcelona, Spain
| | - María Pilar Almajano
- Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain
| | - Anna Fàbregas
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Isidoro Metón
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028 Barcelona, Spain
| |
Collapse
|
29
|
Hendrix S, Zelcer N. A new SPRING in lipid metabolism. Curr Opin Lipidol 2023; 34:201-207. [PMID: 37548386 DOI: 10.1097/mol.0000000000000894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
PURPOSE OF REVIEW The SREBP transcription factors are master regulators of lipid homeostasis owing to their role in controlling cholesterol and fatty acid metabolism. The core machinery required to promote their trafficking and proteolytic activation has been established close to 20 years ago. In this review, we summarize the current understanding of a newly identified regulator of SREBP signaling, SPRING (formerly C12ORF49), its proposed mechanism of action, and its role in lipid metabolism. RECENT FINDINGS Using whole-genome functional genetic screens we, and others, have recently identified SPRING as a novel regulator of SREBP signaling. SPRING is a Golgi-resident single-pass transmembrane protein that is required for proteolytic activation of SREBPs in this compartment. Mechanistic studies identified regulation of S1P, the protease that cleaves SREBPs, and control of retrograde trafficking of the SREBP chaperone SCAP from the Golgi to the ER as processes requiring SPRING. Emerging studies suggest an important role for SPRING in regulating circulating and hepatic lipid levels in mice and potentially in humans. SUMMARY Current studies support the notion that SPRING is a novel component of the core SREBP-activating machinery. Additional studies are warranted to elucidate its role in cellular and systemic lipid metabolism.
Collapse
Affiliation(s)
- Sebastian Hendrix
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences and Gastroenterology and Metabolism, University of Amsterdam, Meibergdreef 15, Amsterdam, the Netherlands
| | | |
Collapse
|
30
|
Zhang C, Ma T, Liu C, Ma D, Wang J, Liu M, Ran J, Wang X, Deng X. PM 2.5 induced liver lipid metabolic disorders in C57BL/6J mice. Front Endocrinol (Lausanne) 2023; 14:1212291. [PMID: 37780625 PMCID: PMC10539470 DOI: 10.3389/fendo.2023.1212291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/16/2023] [Indexed: 10/03/2023] Open
Abstract
PM2.5 can cause adverse health effects via several pathways, such as inducing pulmonary and systemic inflammation, penetration into circulation, and activation of the autonomic nervous system. In particular, the impact of PM2.5 exposure on the liver, which plays an important role in metabolism and detoxification to maintain internal environment homeostasis, is getting more attention in recent years. In the present study, C57BL/6J mice were randomly assigned and treated with PM2.5 suspension and PBS solution for 8 weeks. Then, hepatic tissue was prepared and identified by metabolomics analysis and transcriptomics analysis. PM2.5 exposure can cause extensive metabolic disturbances, particularly in lipid and amino acids metabolic dysregulation.128 differential expression metabolites (DEMs) and 502 differently expressed genes (DEGs) between the PM2.5 exposure group and control group were detected. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that DEGs were significantly enriched in two disease pathways, non-alcoholic fatty liver disease (NAFLD) and type II diabetes mellitus (T2DM), and three signaling pathways, which are TGF-beta signaling, AMPK signaling, and mTOR signaling. Besides, further detection of acylcarnitine levels revealed accumulation in liver tissue, which caused restricted lipid consumption. Furthermore, lipid droplet accumulation in the liver was confirmed by Oil Red O staining, suggesting hepatic steatosis. Moreover, the aberrant expression of three key transcription factors revealed the potential regulatory effects in lipid metabolic disorders, the peroxisomal proliferative agent-activated receptors (PPARs) including PPARα and PPARγ is inhibited, and the activated sterol regulator-binding protein 1 (SREBP1) is overexpressed. Our results provide a novel molecular and genetic basis for a better understanding of the mechanisms of PM2.5 exposure-induced hepatic metabolic diseases, especially in lipid metabolism.
Collapse
Affiliation(s)
- Chenxiao Zhang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tengfei Ma
- College of Basic Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chang Liu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ding Ma
- College of Basic Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Wang
- College of Basic Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meng Liu
- College of Basic Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinjun Ran
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueting Wang
- Department of Cardiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaobei Deng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
31
|
Gao F, Guan X, Zhang W, Han T, Liu X, Shi B. Oxidized Soybean Oil Evoked Hepatic Fatty Acid Metabolism Disturbance in Rats and their Offspring. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13483-13494. [PMID: 37667911 DOI: 10.1021/acs.jafc.3c02466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
The oxidation of fats and oils is an undisputed subject of science, given the effect of oxidized fats and oils on food quality and safety. This study aimed to determine whether maternal exposure to oxidized soybean oil (OSO) causes lipid metabolism disorders in the liver and whether this lipid metabolism disorder can be transmitted to offspring or even worsened. A total of 60 female Sprague-Dawley (SD) rats were divided randomly into four groups in this study. Treatment groups received a pure diet of OSO with a peroxide value of 200, 400, or 800 mEqO2/kg, while the control group received fresh soybean oil (FSO). As for our results, OSO affected serum biochemical parameters in the maternal generation (F0) and induced liver histopathology changes, inflammation, and oxidative stress. Moreover, the expression of genes related to the liver X receptor α (LXRα)─sterol regulatory element binding protein-1c (SREBP-1c) signaling pathway was changed. Similar trends were found in the livers of offspring on postnatal days 21 and 56. In conclusion, exposure to OSO during gestation and lactation can affect liver lipid synthesis. Additionally, it is detrimental to the development of the offspring's liver, affecting fatty acid metabolism and causing liver damage.
Collapse
Affiliation(s)
- Feng Gao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xin Guan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Wentao Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Tingting Han
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xinyu Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Baoming Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
32
|
Fan Z, Sun X, Chen X, Liu H, Miao X, Guo Y, Xu Y, Li J, Zou X, Li Z. C-C motif chemokine CCL11 is a novel regulator and a potential therapeutic target in non-alcoholic fatty liver disease. JHEP Rep 2023; 5:100805. [PMID: 37555008 PMCID: PMC10404559 DOI: 10.1016/j.jhepr.2023.100805] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND & AIMS Non-alcoholic fatty liver disease (NAFLD) is characterised by accelerated lipid deposition, aberrant inflammation, and excessive extracellular matrix production in the liver. Short of effective intervention, NAFLD can progress to cirrhosis and hepatocellular carcinoma. In the present study we investigated the involvement of the C-C motif ligand 11 (CCL11) in NAFLD pathogenesis. METHODS NAFLD was induced by feeding mice with a high-fat high-carbohydrate diet. CCL11 targeting was achieved by genetic deletion or pharmaceutical inhibition. The transcriptome was analysed using RNA-seq. RESULTS We report that CCL11 expression was activated at the transcription level by free fatty acids (palmitate) in hepatocytes. CCL11 knockdown attenuated whereas CCL11 treatment directly promoted production of pro-inflammatory/pro-lipogenic mediators in hepatocytes. Compared with wild-type littermates, CCL11 knockout mice displayed an ameliorated phenotype of NAFLD when fed a high-fat high-carbohydrate diet as evidenced by decelerated body weight gain, improved insulin sensitivity, dampened lipid accumulation, reduced immune cell infiltration, and weakened liver fibrosis. RNA-seq revealed that interferon regulatory factor 1 as a mediator of CCL11 induced changes in hepatocytes. Importantly, CCL11 neutralisation or antagonism mitigated NAFLD pathogenesis in mice. Finally, a positive correlation between CCL11 expression and NAFLD parameters was identified in human patients. CONCLUSIONS Our data suggest that CCL11 is a novel regulator of NAFLD and can be effectively targeted for NAFLD intervention. IMPACT AND IMPLICATIONS Non-alcoholic fatty liver disease (NAFLD) precedes cirrhosis and hepatocellular carcinoma. In this paper we describe the regulatory role of CCL11, a C-C motif ligand chemokine, in NAFLD pathogenesis. Our data provide novel insights and translational potential for NAFLD intervention.
Collapse
Affiliation(s)
- Zhiwen Fan
- Department of Pathology, Nanjing Drum Tower Hospital Affiliated with Nanjing University School of Medicine, Nanjing, China
| | - Xinyue Sun
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Xuelian Chen
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Huimin Liu
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Xiulian Miao
- College of Life Sciences and Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Yan Guo
- College of Life Sciences and Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Yong Xu
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
- College of Life Sciences and Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Jie Li
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, China
| | - Xiaoping Zou
- Department of Gastroenterology, Taikang Xianlin Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing, China
- Department of Gastroenterology, Nanjing Drum Tower Hospital Affiliated with Nanjing University School of Medicine, Nanjing, China
| | - Zilong Li
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
- College of Life Sciences and Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
33
|
Picón DF, Skouta R. Unveiling the Therapeutic Potential of Squalene Synthase: Deciphering Its Biochemical Mechanism, Disease Implications, and Intriguing Ties to Ferroptosis. Cancers (Basel) 2023; 15:3731. [PMID: 37509391 PMCID: PMC10378455 DOI: 10.3390/cancers15143731] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/12/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Squalene synthase (SQS) has emerged as a promising therapeutic target for various diseases, including cancers, owing to its pivotal role in the mevalonate pathway and the antioxidant properties of squalene. Primarily, SQS orchestrates the head-to-head condensation reaction, catalyzing the fusion of two farnesyl pyrophosphate molecules, leading to the formation of squalene, which has been depicted as a highly effective oxygen-scavenging agent in in vitro studies. Recent studies have depicted this isoprenoid as a protective layer against ferroptosis due to its potential regulation of lipid peroxidation, as well as its protection against oxidative damage. Therefore, beyond its fundamental function, recent investigations have unveiled additional roles for SQS as a regulator of lipid peroxidation and programmed cell death pathways, such as ferroptosis-a type of cell death characterized by elevated levels of lipid peroxide, one of the forms of reactive oxygen species (ROS), and intracellular iron concentration. Notably, thorough explorations have shed light on the distinctive features that set SQS apart from other members within the isoprenoid synthase superfamily. Its unique biochemical structure, intricately intertwined with its reaction mechanism, has garnered significant attention. Moreover, considerable evidence substantiates the significance of SQS in various disease contexts, and its intriguing association with ferroptosis and lipid peroxidation. The objective of this report is to analyze the existing literature comprehensively, corroborating these findings, and provide an up-to-date perspective on the current understanding of SQS as a prospective therapeutic target, as well as its intricate relationship with ferroptosis. This review aims to consolidate the knowledge surrounding SQS, thereby contributing to the broader comprehension of its potential implications in disease management and therapeutic interventions.
Collapse
Affiliation(s)
| | - Rachid Skouta
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
34
|
Masschelin PM, Saha P, Ochsner SA, Cox AR, Kim KH, Felix JB, Sharp R, Li X, Tan L, Park JH, Wang L, Putluri V, Lorenzi PL, Nuotio-Antar AM, Sun Z, Kaipparettu BA, Putluri N, Moore DD, Summers SA, McKenna NJ, Hartig SM. Vitamin B2 enables regulation of fasting glucose availability. eLife 2023; 12:e84077. [PMID: 37417957 PMCID: PMC10328530 DOI: 10.7554/elife.84077] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 06/24/2023] [Indexed: 07/08/2023] Open
Abstract
Flavin adenine dinucleotide (FAD) interacts with flavoproteins to mediate oxidation-reduction reactions required for cellular energy demands. Not surprisingly, mutations that alter FAD binding to flavoproteins cause rare inborn errors of metabolism (IEMs) that disrupt liver function and render fasting intolerance, hepatic steatosis, and lipodystrophy. In our study, depleting FAD pools in mice with a vitamin B2-deficient diet (B2D) caused phenotypes associated with organic acidemias and other IEMs, including reduced body weight, hypoglycemia, and fatty liver disease. Integrated discovery approaches revealed B2D tempered fasting activation of target genes for the nuclear receptor PPARα, including those required for gluconeogenesis. We also found PPARα knockdown in the liver recapitulated B2D effects on glucose excursion and fatty liver disease in mice. Finally, treatment with the PPARα agonist fenofibrate activated the integrated stress response and refilled amino acid substrates to rescue fasting glucose availability and overcome B2D phenotypes. These findings identify metabolic responses to FAD availability and nominate strategies for the management of organic acidemias and other rare IEMs.
Collapse
Affiliation(s)
- Peter M Masschelin
- Department of Diabetes, Endocrinology, and Metabolism, Baylor College of MedicineHoustonUnited States
- Department of Medicine, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Pradip Saha
- Department of Diabetes, Endocrinology, and Metabolism, Baylor College of MedicineHoustonUnited States
- Department of Medicine, Baylor College of MedicineHoustonUnited States
| | - Scott A Ochsner
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Aaron R Cox
- Department of Diabetes, Endocrinology, and Metabolism, Baylor College of MedicineHoustonUnited States
- Department of Medicine, Baylor College of MedicineHoustonUnited States
| | - Kang Ho Kim
- Department of Anesthesiology, University of Texas Health Sciences CenterHoustonUnited States
| | - Jessica B Felix
- Department of Diabetes, Endocrinology, and Metabolism, Baylor College of MedicineHoustonUnited States
- Department of Medicine, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Robert Sharp
- Department of Diabetes, Endocrinology, and Metabolism, Baylor College of MedicineHoustonUnited States
- Department of Medicine, Baylor College of MedicineHoustonUnited States
| | - Xin Li
- Department of Diabetes, Endocrinology, and Metabolism, Baylor College of MedicineHoustonUnited States
- Department of Medicine, Baylor College of MedicineHoustonUnited States
| | - Lin Tan
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Jun Hyoung Park
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Liping Wang
- Department of Nutrition and Integrative Physiology, University of UtahSalt Lake CityUnited States
| | - Vasanta Putluri
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | | | - Zheng Sun
- Department of Diabetes, Endocrinology, and Metabolism, Baylor College of MedicineHoustonUnited States
- Department of Medicine, Baylor College of MedicineHoustonUnited States
| | | | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - David D Moore
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
- Department of Nutritional Sciences and Toxicology, University of California, BerkeleyBerkeleyUnited States
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of UtahSalt Lake CityUnited States
| | - Neil J McKenna
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Sean M Hartig
- Department of Diabetes, Endocrinology, and Metabolism, Baylor College of MedicineHoustonUnited States
- Department of Medicine, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
35
|
Uehara K, Santoleri D, Whitlock AEG, Titchenell PM. Insulin Regulation of Hepatic Lipid Homeostasis. Compr Physiol 2023; 13:4785-4809. [PMID: 37358513 PMCID: PMC10760932 DOI: 10.1002/cphy.c220015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
The incidence of obesity, insulin resistance, and type II diabetes (T2DM) continues to rise worldwide. The liver is a central insulin-responsive metabolic organ that governs whole-body metabolic homeostasis. Therefore, defining the mechanisms underlying insulin action in the liver is essential to our understanding of the pathogenesis of insulin resistance. During periods of fasting, the liver catabolizes fatty acids and stored glycogen to meet the metabolic demands of the body. In postprandial conditions, insulin signals to the liver to store excess nutrients into triglycerides, cholesterol, and glycogen. In insulin-resistant states, such as T2DM, hepatic insulin signaling continues to promote lipid synthesis but fails to suppress glucose production, leading to hypertriglyceridemia and hyperglycemia. Insulin resistance is associated with the development of metabolic disorders such as cardiovascular and kidney disease, atherosclerosis, stroke, and cancer. Of note, nonalcoholic fatty liver disease (NAFLD), a spectrum of diseases encompassing fatty liver, inflammation, fibrosis, and cirrhosis, is linked to abnormalities in insulin-mediated lipid metabolism. Therefore, understanding the role of insulin signaling under normal and pathologic states may provide insights into preventative and therapeutic opportunities for the treatment of metabolic diseases. Here, we provide a review of the field of hepatic insulin signaling and lipid regulation, including providing historical context, detailed molecular mechanisms, and address gaps in our understanding of hepatic lipid regulation and the derangements under insulin-resistant conditions. © 2023 American Physiological Society. Compr Physiol 13:4785-4809, 2023.
Collapse
Affiliation(s)
- Kahealani Uehara
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dominic Santoleri
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anna E. Garcia Whitlock
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paul M. Titchenell
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
36
|
Basha A, May SC, Anderson RM, Samala N, Mirmira RG. Non-Alcoholic Fatty Liver Disease: Translating Disease Mechanisms into Therapeutics Using Animal Models. Int J Mol Sci 2023; 24:9996. [PMID: 37373143 PMCID: PMC10298283 DOI: 10.3390/ijms24129996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a range of pathologies arising from fat accumulation in the liver in the absence of excess alcohol use or other causes of liver disease. Its complications include cirrhosis and liver failure, hepatocellular carcinoma, and eventual death. NAFLD is the most common cause of liver disease globally and is estimated to affect nearly one-third of individuals in the United States. Despite knowledge that the incidence and prevalence of NAFLD are increasing, the pathophysiology of the disease and its progression to cirrhosis remain insufficiently understood. The molecular pathogenesis of NAFLD involves insulin resistance, inflammation, oxidative stress, and endoplasmic reticulum stress. Better insight into these molecular pathways would allow for therapies that target specific stages of NAFLD. Preclinical animal models have aided in defining these mechanisms and have served as platforms for screening and testing of potential therapeutic approaches. In this review, we will discuss the cellular and molecular mechanisms thought to contribute to NAFLD, with a focus on the role of animal models in elucidating these mechanisms and in developing therapies.
Collapse
Affiliation(s)
- Amina Basha
- Kovler Diabetes Center, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Sarah C. May
- Kovler Diabetes Center, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Ryan M. Anderson
- Kovler Diabetes Center, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Niharika Samala
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Raghavendra G. Mirmira
- Kovler Diabetes Center, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
37
|
Qin L, Huang T, Jing R, Wen J, Cao M. Mulberry leaf extract reduces abdominal fat deposition via adenosine-activated protein kinase/sterol regulatory element binding protein-1c/acetyl-CoA carboxylase signaling pathway in female Arbor Acre broilers. Poult Sci 2023; 102:102638. [PMID: 37015160 DOI: 10.1016/j.psj.2023.102638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 04/03/2023] Open
Abstract
This experiment was carried out to investigate the mechanism of action of mulberry leaf extract (MLE) in reducing abdominal fat accumulation in female broilers. A total of 192 one-day-old female Arbor Acres (AA) broilers were divided into 4 diet groups, with each group consisting of 8 replicates with 6 birds per replicate. The diets contained a basal diet and 3 test diets with supplementation of 400, 800, or 1,200 MLE mg/kg, respectively. The trial had 2 phases that lasted from 1 to 21 d and from 22 to 56 d, respectively. The growth performance, abdominal fat deposition, fatty acid composition, serum biochemistry and mRNA expression of genes related to fat metabolism in liver were determined. The results showed that, 1) dietary supplementation with MLE had no significant impact on broilers final body weight, average daily gain (ADG), or feed to gain ration (F/G) (P > 0.05), but linearly reduced abdominal fat accumulation in both experimental phases (P < 0.05); 2) the total contents of monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA), such as palmitoleic acid, oleic acid, and eicosadienoic acid, were increased quadratically as a result of dietary supplements of 400, 800, and 1,200 mg/kg MLE (P < 0.01), while the total contents of saturated fatty acids (SFA), such as teracosanoic acid were decreased (P < 0.01); 3) the addition of 800 or 1,200 MLE mg/kg to the diet linearly reduced total cholesterol (TC) in the serum and liver (P < 0.05). Adenosine-activated protein kinase (AMPK) mRNA expression in the liver was quadratically increased by the addition of 800 or 1,200 MLE mg/kg to the diet (P < 0.05), and the mRNA expression of sterol regulatory element binding protein-1c (SREBP-1c), acetyl-CoA carboxylase (ACC), and acetyl-CoA carboxylate), fatty acid synthase (FAS) were linearly decreased (P < 0.05). In conclusion, MLE can be employed as a viable fat loss feed supplement in fast-growing broiler diets since it reduces abdominal fat deposition in female AA broilers via the AMPK/SREBP-1c/ACC signaling pathway. MLE can also be utilized to modify the fatty acid profile in female broilers (AA) at varied inclusion levels.
Collapse
|
38
|
Lee HJ, Lee J, Yang MJ, Kim YC, Hong SP, Kim JM, Hwang GS, Koh GY. Endothelial cell-derived stem cell factor promotes lipid accumulation through c-Kit-mediated increase of lipogenic enzymes in brown adipocytes. Nat Commun 2023; 14:2754. [PMID: 37179330 PMCID: PMC10183046 DOI: 10.1038/s41467-023-38433-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Active thermogenesis in the brown adipose tissue (BAT) facilitating the utilization of lipids and glucose is critical for maintaining body temperature and reducing metabolic diseases, whereas inactive BAT accumulates lipids in brown adipocytes (BAs), leading to BAT whitening. Although cellular crosstalk between endothelial cells (ECs) and adipocytes is essential for the transport and utilization of fatty acid in BAs, the angiocrine roles of ECs mediating this crosstalk remain poorly understood. Using single-nucleus RNA sequencing and knock-out male mice, we demonstrate that stem cell factor (SCF) derived from ECs upregulates gene expressions and protein levels of the enzymes for de novo lipogenesis, and promotes lipid accumulation by activating c-Kit in BAs. In the early phase of lipid accumulation induced by denervation or thermoneutrality, transiently expressed c-Kit on BAs increases the protein levels of the lipogenic enzymes via PI3K and AKT signaling. EC-specific SCF deletion and BA-specific c-Kit deletion attenuate the induction of the lipogenic enzymes and suppress the enlargement of lipid droplets in BAs after denervation or thermoneutrality in male mice. These data provide insight into SCF/c-Kit signaling as a regulator that promotes lipid accumulation through the increase of lipogenic enzymes in BAT when thermogenesis is inhibited.
Collapse
Affiliation(s)
- Hyuek Jong Lee
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.
| | - Jueun Lee
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 03760, Republic of Korea
| | - Myung Jin Yang
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Young-Chan Kim
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seon Pyo Hong
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Jung Mo Kim
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 03760, Republic of Korea.
- Colleage of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Gou Young Koh
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
39
|
Shimoda T, Shimizu H, Iwasaki W, Liu H, Kamo Y, Tada K, Hanai T, Hori S, Joe GH, Tanaka Y, Sato M, Miyazaki H, Ishizuka S. A diet supplemented with cholic acid elevates blood pressure accompanied by albuminuria in rats. Biosci Biotechnol Biochem 2023; 87:434-441. [PMID: 36623851 DOI: 10.1093/bbb/zbad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
A diet supplemented with cholic acid (CA), the primary 12α-hydroxylated bile acid, can induce hepatic lipid accumulation in rats without obesity. This study examined the effects of a CA-supplemented diet on blood pressure (BP). After acclimation, WKAH/HkmSlc rats (3 weeks old) were divided into two groups and fed with a control AIN-93-based diet or a CA-supplemented diet (0.5 g CA/kg) for 13 weeks. The CA diet increased systolic and diastolic BP as well as hepatic lipid concentrations in the rats. No changes were found in the blood sodium concentration. Urinary albumin concentration increased in CA-fed rats. An increase was observed in the hepatic expression of ATP-binding cassette subfamily B member 1B that correlated BPs and urinary albumin concentration accompanied by an increase in portal taurocholic acid concentration. These results suggest that 12α-hydroxylated bile acids are involved in increased BP and albuminuria via alteration of hepatic function.
Collapse
Affiliation(s)
- Tomoko Shimoda
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Hidehisa Shimizu
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Japan
| | - Wakana Iwasaki
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Hongxia Liu
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Yoshie Kamo
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Koji Tada
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Taketo Hanai
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Shota Hori
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Ga-Hyun Joe
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
- Research Faculty of Fisheries, Hokkaido University, Hakodate, Japan
| | - Yasutake Tanaka
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
- Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Masao Sato
- Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Hitoshi Miyazaki
- Graduate School of Life and Environment Sciences, University of Tsukuba, Tsukuba, Japan
| | - Satoshi Ishizuka
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
40
|
Ramatchandirin B, Pearah A, He L. Regulation of Liver Glucose and Lipid Metabolism by Transcriptional Factors and Coactivators. Life (Basel) 2023; 13:life13020515. [PMID: 36836874 PMCID: PMC9962321 DOI: 10.3390/life13020515] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) worldwide is on the rise and NAFLD is becoming the most common cause of chronic liver disease. In the USA, NAFLD affects over 30% of the population, with similar occurrence rates reported from Europe and Asia. This is due to the global increase in obesity and type 2 diabetes mellitus (T2DM) because patients with obesity and T2DM commonly have NAFLD, and patients with NAFLD are often obese and have T2DM with insulin resistance and dyslipidemia as well as hypertriglyceridemia. Excessive accumulation of triglycerides is a hallmark of NAFLD and NAFLD is now recognized as the liver disease component of metabolic syndrome. Liver glucose and lipid metabolisms are intertwined and carbon flux can be used to generate glucose or lipids; therefore, in this review we discuss the important transcription factors and coactivators that regulate glucose and lipid metabolism.
Collapse
Affiliation(s)
| | - Alexia Pearah
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ling He
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Baltimore, MD 21287, USA
- Correspondence: ; Tel.: +1-410-502-5765; Fax: +1-410-502-5779
| |
Collapse
|
41
|
Shi H, Prough RA, McClain CJ, Song M. Different Types of Dietary Fat and Fructose Interactions Result in Distinct Metabolic Phenotypes in Male Mice. J Nutr Biochem 2023; 111:109189. [PMID: 36272691 DOI: 10.1016/j.jnutbio.2022.109189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/19/2022] [Accepted: 09/20/2022] [Indexed: 11/06/2022]
Abstract
Fat and fructose are the two major components over-represented in the Western diet. The aim of this study was to determine the combined effects of different types of dietary fat and fructose on the development of nonalcoholic fatty liver disease (NAFLD) in a murine model. Eight-week-old male C57BL/6J mice were fed with high-fat diet enriched with saturated fat (HSF), or omega-6 polyunsaturated fat (n6HUSF), or omega-3 polyunsaturated fat (n3HUSF) with 42% of calories derived from the fat. Fructose supplementation was given via 10% fructose (w/v) in the drinking water ad libitum for 20 weeks. While both HSF and n6HUSF fed mice developed obesity, HSF fed mice exhibited severe hepatic steatosis associated with hepatomegaly and liver injury. Fructose feeding promotes the development of liver fibrosis in HSF fed mice. n6HUSF fed mice were characterized with moderate hepatic steatosis, accompanied with hypertriglyceridemia and hyperlipidemia. Notably, fructose supplementation led to remarkable glucose intolerance in n6HUSF fed mice compared to controls. Hepatic lipidomic analysis revealed that the total saturated fatty acids and total monounsaturated fatty acids were significantly increased by fructose in the free fatty acid pool in HSF fed mice. Moreover, fructose supplementation increased hepatic and plasma cholesterol levels in the HSF fed mice. Our data suggest that excess energy from HSF intake results in fat storage in the liver, likely due to impaired triglyceride secretion; whereas excess energy from n6HUSF diet is stored in the periphery. Both effects are exacerbated by fructose supplementation. n3HUSF is beneficial, even consumed with fructose.
Collapse
Affiliation(s)
- Hongxue Shi
- Department of Pharmacology and Toxicology; Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Russell A Prough
- Hepatobiology and Toxicology Center; Department of Biochemistry and Molecular Genetics
| | - Craig J McClain
- Department of Pharmacology and Toxicology; Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition; Hepatobiology and Toxicology Center; University of Louisville Alcohol Research Center, University of Louisville School of Medicine, Louisville, Kentucky, USA; Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky, USA
| | - Ming Song
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition; Hepatobiology and Toxicology Center.
| |
Collapse
|
42
|
Lee KC, Wu PS, Lin HC. Pathogenesis and treatment of non-alcoholic steatohepatitis and its fibrosis. Clin Mol Hepatol 2023; 29:77-98. [PMID: 36226471 PMCID: PMC9845678 DOI: 10.3350/cmh.2022.0237] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/11/2022] [Indexed: 02/02/2023] Open
Abstract
The initial presentation of non-alcoholic steatohepatitis (NASH) is hepatic steatosis. The dysfunction of lipid metabolism within hepatocytes caused by genetic factors, diet, and insulin resistance causes lipid accumulation. Lipotoxicity, oxidative stress, mitochondrial dysfunction, and endoplasmic reticulum stress would further contribute to hepatocyte injury and death, leading to inflammation and immune dysfunction in the liver. During the healing process, the accumulation of an excessive amount of fibrosis might occur while healing. During the development of NASH and liver fibrosis, the gut-liver axis, adipose-liver axis, and renin-angiotensin system (RAS) may be dysregulated and impaired. Translocation of bacteria or its end-products entering the liver could activate hepatocytes, Kupffer cells, and hepatic stellate cells, exacerbating hepatic steatosis, inflammation, and fibrosis. Bile acids regulate glucose and lipid metabolism through Farnesoid X receptors in the liver and intestine. Increased adipose tissue-derived non-esterified fatty acids would aggravate hepatic steatosis. Increased leptin also plays a role in hepatic fibrogenesis, and decreased adiponectin may contribute to hepatic insulin resistance. Moreover, dysregulation of peroxisome proliferator-activated receptors in the liver, adipose, and muscle tissues may impair lipid metabolism. In addition, the RAS may contribute to hepatic fatty acid metabolism, inflammation, and fibrosis. The treatment includes lifestyle modification, pharmacological therapy, and non-pharmacological therapy. Currently, weight reduction by lifestyle modification or surgery is the most effective therapy. However, vitamin E, pioglitazone, and obeticholic acid have also been suggested. In this review, we will introduce some new clinical trials and experimental therapies for the treatment of NASH and related fibrosis.
Collapse
Affiliation(s)
- Kuei-Chuan Lee
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan,Department of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan,Corresponding author : Kuei-Chuan Lee Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, 201, Section 2, Shih-Pai Road, Taipei 11217, Taiwan Tel: +886 2 2871 2121, Fax: +886 2 2873 9318, E-mail:
| | - Pei-Shan Wu
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan,Department of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan,Endoscopy Center for Diagnosis and Treatment, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Han-Chieh Lin
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan,Department of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan,Corresponding author : Kuei-Chuan Lee Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, 201, Section 2, Shih-Pai Road, Taipei 11217, Taiwan Tel: +886 2 2871 2121, Fax: +886 2 2873 9318, E-mail:
| |
Collapse
|
43
|
Transcriptional profiling of drug-induced liver injury biomarkers: association of hepatic Srebf1/Pparα signaling and crosstalk of thrombin, alcohol dehydrogenase, MDR and DNA damage regulators. Mol Cell Biochem 2022:10.1007/s11010-022-04648-1. [PMID: 36583794 DOI: 10.1007/s11010-022-04648-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/17/2022] [Indexed: 12/31/2022]
Abstract
Cell stress transcribing genes provide a diverse platform of molecular mediators that vary in response to toxicity. Common drug-induced liver injury (DILI) biomarkers are usually expressed in mild toxicity and limited to confirming it rather than categorizing its intensity. Thus, new parametric biomarkers are needed to be explored. Classifying the toxicological response based on the dose-level and severity of stimuli will aid in the evaluation and approach against drug exposure. The present research explored the involvement of gene expression of potential biomarkers as a severity-specific hallmark in different acetaminophen (APAP)-induced hepatotoxicity levels in C57BL/6 mice. The differentially expressed genes were annotated and analyzed using bioinformatics tools to predict canonical pathways altered by DILI. The results revealed alteration in genes encoding for antioxidant enhancement; Slc7a11, bile efflux; MDR4, fatty acid metabolism and transcriptional factors namely Srebf1 and Pparα. Potential APAP toxicity biomarkers included Adh1 and thrombin, and other DNA damage and stress chaperones which were changed at least fourfold between control and the three tested severity models. The current investigation demonstrates a dose-mediated association of several hallmark genes in APAP-induced liver damage and addressed the involvement of uncommonly studied molecular responses. Such biomarkers can be further developed into predictive models, translated for risk assessment against drug exposure and guide in building theragnostic targets.
Collapse
|
44
|
Florance I, Ramasubbu S. Current Understanding on the Role of Lipids in Macrophages and Associated Diseases. Int J Mol Sci 2022; 24:ijms24010589. [PMID: 36614031 PMCID: PMC9820199 DOI: 10.3390/ijms24010589] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 11/30/2022] [Accepted: 12/09/2022] [Indexed: 12/31/2022] Open
Abstract
Lipid metabolism is the major intracellular mechanism driving a variety of cellular functions such as energy storage, hormone regulation and cell division. Lipids, being a primary component of the cell membrane, play a pivotal role in the survival of macrophages. Lipids are crucial for a variety of macrophage functions including phagocytosis, energy balance and ageing. However, functions of lipids in macrophages vary based on the site the macrophages are residing at. Lipid-loaded macrophages have recently been emerging as a hallmark for several diseases. This review discusses the significance of lipids in adipose tissue macrophages, tumor-associated macrophages, microglia and peritoneal macrophages. Accumulation of macrophages with impaired lipid metabolism is often characteristically observed in several metabolic disorders. Stress signals differentially regulate lipid metabolism. While conditions such as hypoxia result in accumulation of lipids in macrophages, stress signals such as nutrient deprivation initiate lipolysis and clearance of lipids. Understanding the biology of lipid accumulation in macrophages requires the development of potentially active modulators of lipid metabolism.
Collapse
|
45
|
Fan S, Zhou Z, Ye J, Li Y, Huang K, Ke X. Integration of Lipidomics and Transcriptomics Reveals the Efficacy and Mechanism of Qige Decoction on NAFLD. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1-13. [PMID: 36452137 PMCID: PMC9705084 DOI: 10.1155/2022/9739032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) is increasing as obesity and diabetes become more common. There are no drugs approved for NAFLD yet. Qige decoction (QGD), a traditional Chinese medicine (TCM) formula, is used for NAFLD and hyperlipidemia treatment in TCM and has shown hypolipidemic and hepatoprotective effects. This study tried to interpret the pharmacology and molecular mechanisms of QGD in NAFLD rats. Firstly, the therapeutic effects of QGD on high-fat diet (HFD)-induced NAFLD rats were evaluated. Then, integration of lipidomics and transcriptomics was conducted to explore the possible pathways and targets of QGD against NAFLD. QGD at low dosage (QGL) administration reduced serum total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) (
). Liver histopathology indicated that QGL could alleviate hepatic steatosis. The main differential lipids (DELs) affected by QGD were glycerolipids. KEGG enrichment analysis suggested that the main pathways by which QGD improved NAFLD may be cholesterol metabolism, glycerolipid metabolism, and insulin resistance. Transcriptome sequencing identified 179 upregulated and 194 downregulated mRNAs after QGD treatment. An interaction network based on DELs and differential genes (DEGs) suggested that QGD inhibited hepatic steatosis mainly by reducing hepatic insulin resistance and triglyceride biosynthesis via the PPP1R3C/SIK1/CRTC2 and PPP1R3C/SIK1/SREBP1 signal axis, respectively. These findings indicated that QGD could protect against NAFLD induced by HFD. The improvement of hepatic insulin resistance and the reduction of triglyceride biosynthesis might be the potential mechanisms.
Collapse
Affiliation(s)
- Simin Fan
- First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou 510410, Guangdong, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510410, Guangdong, China
| | - Zunming Zhou
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- Postdoctoral Research Station of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Jintong Ye
- First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou 510410, Guangdong, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510410, Guangdong, China
| | - Yanfang Li
- First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou 510410, Guangdong, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510410, Guangdong, China
| | - Keer Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Xuehong Ke
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| |
Collapse
|
46
|
Lactobacillus sakei MJM60958 as a Potential Probiotic Alleviated Non-Alcoholic Fatty Liver Disease in Mice Fed a High-Fat Diet by Modulating Lipid Metabolism, Inflammation, and Gut Microbiota. Int J Mol Sci 2022; 23:ijms232113436. [PMID: 36362221 PMCID: PMC9658623 DOI: 10.3390/ijms232113436] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common liver disease with a rapidly increasing number of cases worldwide. This study aimed to evaluate the effects of Lactobacillus sakei MJM60958 (MJM60958) on NAFLD in vitro and in vivo. In in vitro tests, MJM60958 significantly inhibited lipid accumulation by 46.79% in HepG2 cells stimulated with oleic acid and cholesterol (OA-C). Moreover, MJM60958 showed safe and probiotic characteristics in vitro. In the animal study, MJM60958 administration in a high-fat diet-induced NAFLD mouse model significantly reduced body weight and liver weight, and controlled aspartate aminotransferase (ALT), aspartate transaminase (AST), triglyceride (TG), urea nitrogen (BUN), and uric acid (UA) levels in the blood, which are features of NAFLD. Further, treatment with MJM60958 also reduced steatosis scores in liver tissues, serum leptin and interleukin, and increased serum adiponectin content. Moreover, administration of MJM60958 resulted in a significantly decreased expression of some genes and proteins which are related to lipid accumulation, such as fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), and sterol regulatory element-binding protein 1 (SREBP-1), and also upregulated genes and protein expression of lipid oxidation such as peroxisome proliferator-activated receptor alpha (PPARα) and carnitine palmitoyltransferase 1a (CPT1A). Administration of MJM60958 increased the relative abundance of specific microbial taxa such as Verrucomicrobia, which are abundant in non-NAFLD mice, and reduced Firmicutes, which are a major group in NAFLD mice. MJM60958 affected the modulation of gut microbiota and altered the strain profile of short-chain fatty acids (SCFAs) production in the cecum by reduced lactic acid and enhanced acetic acid production. Overall, MJM60958 showed potential as a probiotic that can prevent and treat NAFLD.
Collapse
|
47
|
Young EN, Dogan M, Watkins C, Bajwa A, Eason JD, Kuscu C, Kuscu C. A Review of Defatting Strategies for Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2022; 23:ijms231911805. [PMID: 36233107 PMCID: PMC9569609 DOI: 10.3390/ijms231911805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/30/2022] Open
Abstract
Non-alcoholic fatty liver disease is a huge cause of chronic liver failure around the world. This condition has become more prevalent as rates of metabolic syndrome, type 2 diabetes, and obesity have also escalated. The unfortunate outcome for many people is liver cirrhosis that warrants transplantation or being unable to receive a transplant since many livers are discarded due to high levels of steatosis. Over the past several years, however, a great deal of work has gone into understanding the pathophysiology of this disease as well as possible treatment options. This review summarizes various defatting strategies including in vitro use of pharmacologic agents, machine perfusion of extracted livers, and genomic approaches targeting specific proteins. The goal of the field is to reduce the number of necessary transplants and expand the pool of organs available for use.
Collapse
|
48
|
Nezhadebrahimi A, Sepehri H, Jahanshahi M, Marjani M, Marjani A. The effect of simvastatin on gene expression of low-density lipoprotein receptor, sterol regulatory element-binding proteins, stearoyl-CoA desaturase 1 mRNA in rat hepatic tissues. Arch Physiol Biochem 2022; 128:1383-1390. [PMID: 32643419 DOI: 10.1080/13813455.2020.1772829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The study aimed to assess the effect of simvastatin on gene expression of LDLR, SREBPs, and SCD1 in rat hepatic tissues fed with high-fat diets (HFD) and its association with some biochemical parameters. Thirty-two male Wister albino rats were divided into four equal groups (three test and one control groups). The biochemical parameters were determined by using spectrophotometer techniques and the Elisa method. Low-density lipoprotein receptor, sterol regulatory element-binding proteins, stearoyl-CoA desaturase1, Beta-actin were analysed by real-time quantitative polymerase chain reaction (RT-PCR) method. At the end of study, the livers of the rats were separated and changes of hepatic tissue were determined. LDLR, SREBP2, and SCD1 expression increased significantly when compared G1 versus G4 and G2 versus G4. The expression of LDLR, SREBP2, and SCD1 also increased significantly when compared G2 versus G3, G1versus G3 and G1 versus G3 and G2 versus G3. The serum level of cholesterol, triglyceride, glucose, LDL, and HDL increased significantly when compared G1 versus G3. LDL showed significantly decreased when compared G1 versus G2. Cholesterol, glucose and HDL and triglyceride levels were increased significantly when compared G1 versus G4 and G2. Treatment of rats with HFD and simvastatin 20 mg/kg, triglyceride and LDL were almost the same as a control group and LDLR expression increased 98% in liver tissue. Gene expressions may be up-regulated in liver tissue and they showed different effects on biochemical parameters.
Collapse
Affiliation(s)
- Abbas Nezhadebrahimi
- Department of Biochemistry and Biophysics, Student Research Center, Metabolic Disorders Research Center, Gorgan Faculty of Medicine, Golestan University Medical Sciences, Gorgan, Iran
- Department of Physiology, Neuroscience Research Center, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hamid Sepehri
- Department of Physiology, Neuroscience Research Center, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehrdad Jahanshahi
- Neuroscience Research Center, Department of Anatomy, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Majid Marjani
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus, Turkey
| | - Abdoljalal Marjani
- Metabolic Disorders Research Center, Department of Biochemistry and Biophysics, Gorgan Faculty of Medicine, Golestan University Medical Sciences, Gorgan, Iran
| |
Collapse
|
49
|
Bengoechea-Alonso MT, Aldaalis A, Ericsson J. Loss of the Fbw7 tumor suppressor rewires cholesterol metabolism in cancer cells leading to activation of the PI3K-AKT signalling axis. Front Oncol 2022; 12:990672. [PMID: 36176395 PMCID: PMC9513553 DOI: 10.3389/fonc.2022.990672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
The sterol regulatory-element binding proteins (SREBPs) are transcription factors controlling cholesterol and fatty acid synthesis and metabolism. There are three SREBP proteins, SREBP1a, SREBP1c and SREBP2, with SREBP1a being the strongest transcription factor. The expression of SREBP1a is restricted to rapidly proliferating cells, including cancer cells. The SREBP proteins are translated as large, inactive precursors bound to the endoplasmic reticulum (ER) membranes. These precursors undergo a two-step cleavage process that releases the amino terminal domains of the proteins, which translocate to the nucleus and function as transcription factors. The nuclear forms of the SREBPs are rapidly degraded by the ubiquitin-proteasome system in a manner dependent on the Fbw7 ubiquitin ligase. Consequently, inactivation of Fbw7 results in the stabilization of active SREBP1 and SREBP2 and enhanced expression of target genes. We report that the inactivation of Fbw7 in cancer cells blocks the proteolytic maturation of SREBP2. The same is true in cells expressing a cancer-specific loss-of-function Fbw7 protein. Interestingly, the activation of SREBP2 is restored in response to cholesterol depletion, suggesting that Fbw7-deficient cells accumulate cholesterol. Importantly, inactivation of SREBP1 in Fbw7-deficient cells also restores the cholesterol-dependent regulation of SREBP2, suggesting that the stabilization of active SREBP1 molecules could be responsible for the blunted activation of SREBP2 in Fbw7-deficient cancer cells. We suggest that this could be an important negative feedback loop in cancer cells with Fbw7 loss-of-function mutations to protect these cells from the accumulation of toxic levels of cholesterol and/or cholesterol metabolites. Surprisingly, we also found that the inactivation of Fbw7 resulted in the activation of AKT. Importantly, the activation of AKT was dependent on SREBP1 and on the accumulation of cholesterol. Thus, we suggest that the loss of Fbw7 rewires lipid metabolism in cancer cells to support cell proliferation and survival.
Collapse
Affiliation(s)
- Maria T. Bengoechea-Alonso
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Arwa Aldaalis
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Johan Ericsson
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
- *Correspondence: Johan Ericsson,
| |
Collapse
|
50
|
Stress-Induced Premature Senescence Related to Oxidative Stress in the Developmental Programming of Nonalcoholic Fatty Liver Disease in a Rat Model of Intrauterine Growth Restriction. Antioxidants (Basel) 2022; 11:antiox11091695. [PMID: 36139771 PMCID: PMC9495674 DOI: 10.3390/antiox11091695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Metabolic syndrome (MetS) refers to cardiometabolic risk factors, such as visceral obesity, dyslipidemia, hyperglycemia/insulin resistance, arterial hypertension and non-alcoholic fatty liver disease (NAFLD). Individuals born after intrauterine growth restriction (IUGR) are particularly at risk of developing metabolic/hepatic disorders later in life. Oxidative stress and cellular senescence have been associated with MetS and are observed in infants born following IUGR. However, whether these mechanisms could be particularly associated with the development of NAFLD in these individuals is still unknown. IUGR was induced in rats by a maternal low-protein diet during gestation versus. a control (CTRL) diet. In six-month-old offspring, we observed an increased visceral fat mass, glucose intolerance, and hepatic alterations (increased transaminase levels, triglyceride and neutral lipid deposit) in male rats with induced IUGR compared with the CTRL males; no differences were found in females. In IUGR male livers, we identified some markers of stress-induced premature senescence (SIPS) (lipofuscin deposit, increased protein expression of p21WAF, p16INK4a and Acp53, but decreased pRb/Rb ratio, foxo-1 and sirtuin-1 protein and mRNA expression) associated with oxidative stress (higher superoxide anion levels, DNA damages, decreased Cu/Zn SOD, increased catalase protein expression, increased nfe2 and decreased keap1 mRNA expression). Impaired lipogenesis pathways (decreased pAMPK/AMPK ratio, increased pAKT/AKT ratio, SREBP1 and PPARγ protein expression) were also observed in IUGR male livers. At birth, no differences were observed in liver histology, markers of SIPS and oxidative stress between CTRL and IUGR males. These data demonstrate that the livers of IUGR males at adulthood display SIPS and impaired liver structure and function related to oxidative stress and allow the identification of specific therapeutic strategies to limit or prevent adverse consequences of IUGR, particularly metabolic and hepatic disorders.
Collapse
|