1
|
Chen M, Miao G, Roman MJ, Devereux RB, Fabsitz RR, Zhang Y, Umans JG, Cole SA, Fiehn O, Zhao J. Longitudinal Lipidomic Profile of Subclinical Peripheral Artery Disease in American Indians: The Strong Heart Family Study. Prev Chronic Dis 2025; 22:E18. [PMID: 40338792 PMCID: PMC12087469 DOI: 10.5888/pcd22.240220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025] Open
Abstract
Introduction Peripheral artery disease (PAD) and dyslipidemia are both independent predictors of cardiovascular disease, but the association between individual lipid species and subclinical PAD, assessed by ankle-brachial index (ABI), is lacking in large-scale longitudinal studies. Methods We used liquid chromatography-mass spectrometry to repeatedly measure 1,542 lipid species from 1,886 American Indian adults attending 2 clinical examinations (mean ~5 years apart) in the Strong Heart Family Study. We used generalized estimating equation models to identify baseline lipid species associated with change in ABI and the Cox frailty regression to examine whether lipids associated with change in ABI were also associated with incident coronary heart disease (CHD). We also examined the longitudinal association between change in lipid species and change in ABI and the cross-sectional association of individual lipids with ABI. All models were adjusted for age, sex, body mass index, smoking, alcohol use, hypertension, estimated glomerular filtration rate, diabetes, and lipid-lowering medication. Results Baseline levels of 120 lipid species, including glycerophospholipids, glycerolipids, fatty acids, and sphingomyelins, were associated with change in ABI. Among these, higher baseline levels of 3 known lipids (phosphatidylinositol[16:0/20:4], triacylglycerol[48:2], triacylglycerol[55:1]) were associated with a lower risk of CHD (hazard ratios [95% CIs] ranged from 0.67 [0.46-0.99] to 0.76 [0.58-0.99]), while cholesterol was associated with a higher risk of CHD (hazard ratio [95% CI] = 1.37 [1.00-1.87]). Longitudinal changes in 32 lipids were significantly associated with change in ABI during 5-year follow-up. Plasma levels of glycerophospholipids, triacylglycerols, and glycosylceramides were significantly associated with ABI in the cross-sectional analysis. Conclusion Altered plasma lipidome is significantly associated with subclinical PAD in American Indians beyond traditional risk factors. If validated, the identified lipid species may serve as novel biomarkers for PAD in this high-risk but understudied population.
Collapse
Affiliation(s)
- Mingjing Chen
- Department of Epidemiology, College of Public Health & Health Professions, University of Florida, Gainesville
| | - Guanhong Miao
- Department of Epidemiology, College of Public Health & Health Professions, University of Florida, Gainesville
| | - Mary J Roman
- Division of Cardiology, Weill Cornell Medical College, New York, New York
| | - Richard B Devereux
- Division of Cardiology, Weill Cornell Medical College, New York, New York
| | | | - Ying Zhang
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Jason G Umans
- MedStar Health Research Institute, Hyattsville, Maryland
- Georgetown-Howard Universities Center for Clinical and Translational Science, Washington, District of Columbia
| | | | - Oliver Fiehn
- West Coast Metabolomics Center, University of California, Davis
| | - Jinying Zhao
- Department of Epidemiology, College of Public Health & Health Professions, University of Florida, 2004 Mowry Rd, Gainesville, FL 32610
| |
Collapse
|
2
|
Greenfield S, Stevens NC, Bishop L, Rabow Z, Soto DC, Abdullah AO, Miller RA, Fiehn O. Drug-Based Lifespan Extension in Mice Strongly Affects Lipids Across Six Organs. Aging Cell 2025; 24:e14465. [PMID: 40129070 PMCID: PMC12073903 DOI: 10.1111/acel.14465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 03/26/2025] Open
Abstract
Caloric restriction is associated with slow aging in model organisms. Additionally, some drugs have also been shown to slow aging in rodents. To better understand metabolic mechanisms that are involved in increased lifespan, we analyzed metabolomic differences in six organs of 12-month-old mice using five interventions leading to extended longevity, specifically caloric restriction, 17-α estradiol, and caloric restriction mimetics rapamycin, canagliflozin, and acarbose. These interventions generally have a stronger effect in males than in females. Using Jonckheere's trend test to associate increased average lifespans with metabolic changes for each sex, we found sexual dimorphism in metabolism of plasma, liver, gastrocnemius muscle, kidney, and inguinal fat. Plasma showed the strongest trend of differentially expressed compounds, highlighting potential benefits of plasma in tracking healthy aging. Using chemical set enrichment analysis, we found that the majority of these affected compounds were lipids, particularly in male tissues, in addition to significant differences in trends for amino acids, which were particularly apparent in the kidney. We also found strong metabolomic effects in adipose tissues. Inguinal fat exhibited surprising increases in neutral lipids with polyunsaturated side chains in male mice. In female mice, gonadal fat showed trends proportional to lifespan extension effect across multiple lipid classes, particularly phospholipids. Interestingly, for most tissues, we found similar changes induced by lifespan-extending interventions to metabolomic differences between untreated 12-month-old mice and 4-month-old mice. This finding implies that lifespan-extending treatments tend to reverse metabolic phenotypes to a biologically younger stage.
Collapse
Affiliation(s)
- Sara Greenfield
- West Coast Metabolomics CenterUniversity of CaliforniaDavisCaliforniaUSA
| | | | - Lauren Bishop
- West Coast Metabolomics CenterUniversity of CaliforniaDavisCaliforniaUSA
| | - Zachary Rabow
- West Coast Metabolomics CenterUniversity of CaliforniaDavisCaliforniaUSA
| | - Daniela C. Soto
- Department of Biochemistry & Molecular Medicine, MIND InstituteUniversity of CaliforniaDavisCaliforniaUSA
| | | | - Richard A. Miller
- Department of Pathology and Geriatrics CenterUniversity of MichiganAnn ArborMichiganUSA
| | - Oliver Fiehn
- West Coast Metabolomics CenterUniversity of CaliforniaDavisCaliforniaUSA
| |
Collapse
|
3
|
Campbell MK, Chew NWS, Mehta A. Beyond Cholesterol: Unraveling Residual Lipidomic Risk in Cardiovascular Health. Curr Atheroscler Rep 2025; 27:37. [PMID: 40095146 DOI: 10.1007/s11883-025-01284-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
PURPOSE OF REVIEW This paper reviews the existing literature on lipidomics as a tool for improved cardiovascular risk estimation in both primary and secondary prevention populations. RECENT FINDINGS Detailed lipidomic signatures identified by mass spectrometry have been shown to enhance risk estimation for clinical CAD and the presence of subclinical CAD on CTCA in multiple large cohort populations. In patients with established atherosclerotic disease, ceramide and phospholipid-based risk scores improve prediction for recurrent cardiovascular events and cardiovascular death. Lipidomic profiles and lipidomic-enhanced risk scores have been shown to improve prediction of incident cardiovascular disease, recurrent cardiovascular events and cardiovascular death independent of traditional risk factors. Simplified risk scores utilizing the ratios of several ceramide species improve clinical utility, however resources and infrastructure limit widespread implementation. There are currently no therapeutics to address lipidomic risk aside from traditional risk factor modification.
Collapse
Affiliation(s)
- Matthew K Campbell
- Department of Internal Medicine, Virginia Commonwealth University Health, Virginia Commonwealth University School of Medicine, Richmond, USA
| | - Nicholas W S Chew
- Department of Cardiology, National University Heart Centre, National University Health System, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Anurag Mehta
- VCU Health Pauley Heart Center, Virginia Commonwealth University School of Medicine, PO Box 980036, 1200 East Broad Street, VA, 23298, Richmond, USA.
| |
Collapse
|
4
|
Sivanandham S, Sivanandham R, Xu C, Symmonds J, Sette P, He T, Funderburg N, Abdel-Mohsen M, Landay A, Apetrei C, Pandrea I. Plasma lipidomic alterations during pathogenic SIV infection with and without antiretroviral therapy. Front Immunol 2025; 16:1475160. [PMID: 40129985 PMCID: PMC11931036 DOI: 10.3389/fimmu.2025.1475160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 02/05/2025] [Indexed: 03/26/2025] Open
Abstract
Introduction Lipid profiles change in human immunodeficiency virus (HIV) infection and correlate with inflammation. Lipidomic alterations are impacted by multiple non-HIV-related behavioral risk factors; thus, use of animal models in which these behavioral factors are controlled may inform on the specific lipid changes induced by simian immunodeficiency virus (SIV) infection and/or antiretroviral therapy (ART). Methods Using ultrahigh Performance Liquid Chromatography-Tandem Mass Spectroscopy, we assessed and compared (ANOVA) longitudinal lipid changes in naïve and ART-treated SIV-infected pigtailed macaques (PTMs). Key parameters of infection (IL-6, TNFa, D-dimer, CRP and CD4+ T cell counts) were correlated (Spearman) with lipid concentrations at critical time points of infection and treatment. Results Sphingomyelins (SM) and lactosylceramides (LCER) increased during acute infection, returning to baseline during chronic infection; Hexosylceramides (HCER) increased throughout infection, being normalized with prolonged ART; Phosphatidylinositols (PI) and lysophosphatidylcholines (LPC) decreased with SIV infection and did not return to normal with ART; Phosphatidylethanolamines (PE), lysophosphatidylethanolamines (LPE) and phosphatidylcholines (PC) were unchanged by SIV infection, yet significantly decreased throughout ART. Specific lipid species (SLS) were also substantially modified by SIV and/or ART in most lipid classes. In conclusion, using a metabolically controlled model, we identified specific lipidomics signatures of SIV infection and/or ART, some of which were similar to people living with HIV (PWH). Many SLS were identical to those involved in development of organ dysfunctions encountered in virally suppressed individuals. Lipid changes also correlated with markers of disease progression, inflammation and coagulation. Discussion Our data suggest that lipidomic profile alterations contribute to residual systemic inflammation and comorbidities seen in HIV/SIV infections and therefore may be used as biomarkers of SIV/HIV comorbidities. Further exploration into the benefits of interventions targeting dyslipidemia is needed for the prevention HIV-related comorbidities.
Collapse
Affiliation(s)
- Sindhuja Sivanandham
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ranjit Sivanandham
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Cuiling Xu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jen Symmonds
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Paola Sette
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Tianyu He
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Nicholas Funderburg
- Division of Medical Laboratory Science, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, United States
| | - Mohamed Abdel-Mohsen
- Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA, United States
| | - Alan Landay
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Cristian Apetrei
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
5
|
Yan J. Two-Sample Mendelian Randomization Analyses Identified Lipid Species Associated With Intracranial Aneurysm Formation. Brain Behav 2025; 15:e70435. [PMID: 40103236 PMCID: PMC11919785 DOI: 10.1002/brb3.70435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/24/2025] [Accepted: 03/02/2025] [Indexed: 03/20/2025] Open
Abstract
OBJECTIVES Intracranial aneurysm (IA) poses a significant health risk, and its formation involves various factors, including lipid metabolism, while former research only focused on the standard lipid. The purpose of this study is to explore 179 lipid variants' impact on unruptured intracranial aneurysms (uIA). MATERIALS AND METHODS Utilizing GWAS data for lipids and uIAs, MR analyses were employed with pleiotropy, heterogeneity, and sensitivity tests. Reverse MR analyses were then conducted. RESULTS MR analyses revealed seven lipids associated with uIAs: TAG (51:3). SE (27:1/16:1), PC (18:2_18:2), TAG (48:1), TAG (48:2), and TAG (51:3) were identified as uIA risk factors, while SE (27:1/18:1) and SM (d34:0) exhibited protective effects. Reverse MR analysis showed no bidirectional causal relationships. CONCLUSIONS This study identifies specific lipid variants causally linked to uIAs, shedding light on their roles in IA formation. These findings contribute to future research on IA risk assessment and potential therapeutic interventions.
Collapse
Affiliation(s)
- Junqing Yan
- Nanxiang Branch of Ruijin HospitalShanghaiChina
| |
Collapse
|
6
|
Zhao F, Shao M, Li M, Li T, Zheng Y, Sun W, Ni C, Li L. Sphingolipid metabolites involved in the pathogenesis of atherosclerosis: perspectives on sphingolipids in atherosclerosis. Cell Mol Biol Lett 2025; 30:18. [PMID: 39920588 PMCID: PMC11804087 DOI: 10.1186/s11658-024-00679-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/17/2024] [Indexed: 02/09/2025] Open
Abstract
Atherosclerosis, with its complex pathogenesis, is a leading underlying cause of many cardiovascular diseases, which are increasingly prevalent in the population. Sphingolipids play an important role in the development of atherosclerosis. Key metabolites and enzymes in sphingolipid metabolism influence the pathogenesis of atherosclerosis in a variety of ways, including inflammatory responses and oxidative stress. Thus, an investigation of sphingolipid metabolism-related metabolites and key enzymes may provide novel insights and treatment targets for atherosclerosis. This review discusses various mechanisms and research progress on the relationship between various sphingolipid metabolites, related enzymes, and atherosclerosis. Finally, we look into the future research direction of phytosphingolipids.
Collapse
Affiliation(s)
- Fufangyu Zhao
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Mingyan Shao
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Mingrui Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Tianxing Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yanfei Zheng
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Wenlong Sun
- Institute of Biomedical Research, School of Life Sciences, Shandong University of Technology, Zibo, 255000, Shandong, China.
| | - Cheng Ni
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Lingru Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
7
|
Gengatharan JM, Handzlik MK, Chih ZY, Ruchhoeft ML, Secrest P, Ashley EL, Green CR, Wallace M, Gordts PLSM, Metallo CM. Altered sphingolipid biosynthetic flux and lipoprotein trafficking contribute to trans-fat-induced atherosclerosis. Cell Metab 2025; 37:274-290.e9. [PMID: 39547233 DOI: 10.1016/j.cmet.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 08/08/2024] [Accepted: 10/18/2024] [Indexed: 11/17/2024]
Abstract
Dietary fat drives the pathogenesis of atherosclerotic cardiovascular disease (ASCVD), particularly through circulating cholesterol and triglyceride-rich lipoprotein remnants. Industrially produced trans-unsaturated fatty acids (TFAs) incorporated into food supplies significantly promote ASCVD. However, the molecular trafficking of TFAs responsible for this association is not well understood. Here, we demonstrate that TFAs are preferentially incorporated into sphingolipids by serine palmitoyltransferase (SPT) and secreted from cells in vitro. Administering high-fat diets (HFDs) enriched in TFAs to Ldlr-/- mice accelerated hepatic very-low-density lipoprotein (VLDL) and sphingolipid secretion into circulation to promote atherogenesis compared with a cis-unsaturated fatty acid (CFA)-enriched HFD. SPT inhibition mitigated these phenotypes and reduced circulating atherogenic VLDL enriched in TFA-derived polyunsaturated sphingomyelin. Transcriptional analysis of human liver revealed distinct regulation of SPTLC2 versus SPTLC3 subunit expression, consistent with human genetic correlations in ASCVD, further establishing sphingolipid metabolism as a critical node mediating the progression of ASCVD in response to specific dietary fats.
Collapse
Affiliation(s)
- Jivani M Gengatharan
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Michal K Handzlik
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Zoya Y Chih
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Maureen L Ruchhoeft
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Patrick Secrest
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ethan L Ashley
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Courtney R Green
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Martina Wallace
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Philip L S M Gordts
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA; Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA
| | - Christian M Metallo
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
8
|
Khan TJ, Semenkovich CF, Zayed MA. De novo lipid synthesis in cardiovascular tissue and disease. Atherosclerosis 2025; 400:119066. [PMID: 39616863 DOI: 10.1016/j.atherosclerosis.2024.119066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/14/2024] [Accepted: 11/21/2024] [Indexed: 12/13/2024]
Abstract
Most tissues have the capacity for endogenous lipid synthesis. A crucial foundational pathway for lipid synthesis is de novo lipid synthesis (DNL), a ubiquitous and complex metabolic process that occurs at high levels in the liver, adipose and brain tissue. Under normal physiological conditions, DNL is vital in converting excess carbohydrates into fatty acids. DNL is linked to other pathways, including the endogenous synthesis of phospholipids and sphingolipids. However, abnormal lipid synthesis can contribute to various pathologies and clinical conditions. Experimental studies involving dietary restriction and in vivo genetic modifications provide compelling evidence demonstrating the significance of lipid synthesis in maintaining normal cardiovascular tissue function. Similarly, clinical investigations suggest altered lipid synthesis can harm cardiac and arterial tissues, thereby influencing cardiovascular disease (CVD) development and progression. Consequently, there is increased interest in exploring pharmacological interventions that target lipid synthesis metabolic pathways as potential strategies to alleviate CVD. Here we review the physiological and pathological impact of endogenous lipid synthesis and its implications for CVD. Since lipid synthesis can be targeted pharmacologically, enhancing our understanding of the molecular and biochemical mechanisms underlying lipid generation and cardiovascular function may prompt new insights into CVD and its treatment.
Collapse
Affiliation(s)
- Tariq J Khan
- Washington University School of Medicine, Department of Surgery, Section of Vascular Surgery, St. Louis, MO, USA
| | - Clay F Semenkovich
- Washington University School of Medicine, Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research, St. Louis, MO, USA; Washington University School of Medicine, Department of Cell Biology and Physiology, St. Louis, MO, USA
| | - Mohamed A Zayed
- Washington University School of Medicine, Department of Surgery, Section of Vascular Surgery, St. Louis, MO, USA; Washington University School of Medicine, Department of Surgery, Division of Surgical Sciences, St. Louis, MO, USA; Washington University School of Medicine, Department of Radiology, St. Louis, MO, USA; Washington University School of Medicine, Division of Molecular Cell Biology, St. Louis, MO, USA; Washington University, McKelvey School of Engineering, Department of Biomedical Engineering, St. Louis, MO, USA; Veterans Affairs St. Louis Health Care System, St. Louis, MO, USA.
| |
Collapse
|
9
|
Broussard JL, Garfield A, Zarini S, Brozinick JT, Perreault L, Newsom SA, Kahn D, Kerege A, Berry KZ, Bui HH, Bergman BC. Combined diet and exercise training decreases serum lipids associated with insulin resistance. Obesity (Silver Spring) 2024; 32:2334-2344. [PMID: 39587896 PMCID: PMC11601951 DOI: 10.1002/oby.24156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 11/27/2024]
Abstract
OBJECTIVE Circulating lipids are linked with insulin resistance and increased cardiovascular disease risk. We previously reported that dihydroceramides, a specific type of sphingolipid, are elevated in insulin-resistant individuals; however, little is known regarding whether insulin-sensitizing lifestyle interventions can improve profiles of sphingolipids and other lipid species. METHODS A total of 21 individuals with obesity participated in a 3-month lifestyle intervention of combined weight loss and exercise training. Insulin sensitivity was assessed by hyperinsulinemic-euglycemic clamps, and serum lipidomics was conducted. RESULTS Following the intervention, BMI was significantly reduced by 10%; VO2peak and insulin sensitivity increased by 12% and 57%, respectively; and total serum triacylglycerol (TAG), diacylglycerol, dihydroceramides, sphingosine-1-phosphate, and sphinganine-1-phosphate were significantly reduced, as were specific species of dihydroceramides (C18:0 and C24:1). Individuals with higher preintervention TAG concentrations had significant decreases in serum lipids, which were not significantly changed in individuals with lower preintervention TAG. CONCLUSIONS These data show that serum sphingolipid species previously linked to insulin resistance in humans can be reduced with insulin-sensitizing lifestyle interventions. Furthermore, individuals with elevated serum TAG may significantly benefit from lifestyle interventions that increase insulin sensitivity due to a greater decrease in serum lipids related to insulin resistance.
Collapse
Affiliation(s)
- Josiane L. Broussard
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Amanda Garfield
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Simona Zarini
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Leigh Perreault
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sean A. Newsom
- School of Exercise, Sport, and Health Sciences, Oregon State University, Corvallis, OR, USA
| | - Darcy Kahn
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anna Kerege
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Karin Zemski Berry
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Bryan C. Bergman
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
10
|
López-Yerena A, Muñoz-García N, de Santisteban Villaplana V, Padro T, Badimon L. Effect of Moderate Beer Intake on the Lipid Composition of Human Red Blood Cell Membranes. Nutrients 2024; 16:3541. [PMID: 39458535 PMCID: PMC11510343 DOI: 10.3390/nu16203541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Growing evidence suggests that erythrocyte membrane lipids are subject to changes during their lifespan. Factors such as the type of dietary intake and its composition contribute to the changes in red blood cell (RBC) membranes. Due to the high antioxidant content of beer, we aimed to investigate the effect of moderate beer consumption on the lipid composition of RBCs membranes from healthy overweight individuals. Methods: We conducted a four-weeks, prospective two-arm longitudinal crossed-over study, where participants (n = 36) were randomly assigned to alcohol-free beer group or traditional beer group. The lipids of RBCs membranes were assessed at the beginning and the end of the intervention by thin-layer chromatography. Results: Four-weeks of alcohol-free beer promoted changes in fatty acids (FA), free cholesterol (FC), phosphatidylethanolamine (PE) and phosphatidylcholine (PC) (p < 0.05). Meanwhile, traditional beer intake led to changes in FA, FC, phospholipids (PL), PE and PC (p < 0.05). The observed alterations in membrane lipids were found to be independent of sex and BMI as influencing factors. Conclusions: The lipid composition of erythrocyte membranes is distinctly but mildly influenced by the consumption of both non-alcoholic and conventional beer, with no effects on RBC membrane fluidity.
Collapse
Affiliation(s)
- Anallely López-Yerena
- Institut Recerca Sant Pau, Sant Antoni Maria Claret 167, 08025 Barcelona, Spain; (A.L.-Y.); (N.M.-G.); (V.d.S.V.); (T.P.)
| | - Natalia Muñoz-García
- Institut Recerca Sant Pau, Sant Antoni Maria Claret 167, 08025 Barcelona, Spain; (A.L.-Y.); (N.M.-G.); (V.d.S.V.); (T.P.)
| | - Victoria de Santisteban Villaplana
- Institut Recerca Sant Pau, Sant Antoni Maria Claret 167, 08025 Barcelona, Spain; (A.L.-Y.); (N.M.-G.); (V.d.S.V.); (T.P.)
- School of Pharmacy and Food Sciences, University of Barcelona (UB), 08036 Barcelona, Spain
| | - Teresa Padro
- Institut Recerca Sant Pau, Sant Antoni Maria Claret 167, 08025 Barcelona, Spain; (A.L.-Y.); (N.M.-G.); (V.d.S.V.); (T.P.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Lina Badimon
- Institut Recerca Sant Pau, Sant Antoni Maria Claret 167, 08025 Barcelona, Spain; (A.L.-Y.); (N.M.-G.); (V.d.S.V.); (T.P.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Cardiovascular Research Chair, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| |
Collapse
|
11
|
Chen M, Gao M, Wang H, Chen Q, Liu X, Mo Q, Huang X, Ye X, Zhang D. Jingangteng capsules ameliorate liver lipid disorders in diabetic rats by regulating microflora imbalances, metabolic disorders, and farnesoid X receptor. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155806. [PMID: 38876009 DOI: 10.1016/j.phymed.2024.155806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND The plant Smilax china L., also known as Jingangteng, is suspected of regulating glucose and lipid metabolism. Jingangteng capsules (JGTCs) are commonly used to treat gynecological inflammation in clinical practice. However, it is not clear whether JGTCs can regulate glucose and lipid metabolism, and the mechanism is unclear. PURPOSE To investigate the impact and mechanism of action of JGTCs on diabetes and liver lipid disorders in rats. METHODS The chemical constituents of JGTCs were examined using ultra-high-performance liquid chromatography with quadrupole time-of-flight mass spectrometry. A high-fat diet and streptozotocin-induced diabetes model was used to evaluate anti-diabetic effects by assessing blood glucose and lipid levels and liver function. The mechanism was explored using fecal 16S rRNA gene sequencing and metabolomics profiling, reverse transcription-quantiative polymerase chain reaction (RT-qPCR), and Western blot analysis. RESULTS Thirty-three components were identified in JGTCs. The serological and histomorphological assays revealed that JGTC treatment reduced levels of blood glucose and lipids, aspartate aminotransferase, alanine aminotransferase, and lipid accumulation in the liver of diabetic rats. According to 16S rDNA sequencing, JGTCs improved species richness and diversity in diabetic rats' intestinal flora and restored 22 dysregulated bacteria to control levels. Fecal metabolomics analysis showed that the altered fecal metabolites were rich in metabolites, such as histidine, taurine, low taurine, tryptophan, glycerophospholipid, and arginine. Serum metabolomics analysis indicated that serum metabolites were enriched in the metabolism of glycerophospholipids, fructose and mannose, galactose, linoleic acid, sphingolipids, histidine, valine, leucine and isoleucine biosynthesis, and tryptophan metabolism. Heatmaps revealed a strong correlation between metabolic parameters and gut microbial phylotypes. Molecular biology assays showed that JGTC treatment reversed the decreased expression of farnesoid X receptor (FXR) in the liver of diabetic rats and inhibited the expression of lipogenic genes (Srebp1c and FAS) as well as inflammation-related genes (interleukin (IL)-β, tumor necrosis factor (TNF)-α, and IL-6). Liver metabolomics analysis indicated that JGTC could significantly regulate a significant number of bile acid metabolites associated with FXR, such as glyco-beta-muricholic acid, glycocholic acid, tauro-beta-muricholic acid, and tauro-gamma-muricholic acid. CONCLUSIONS This was the first study to investigate the mechanisms of JGTCs' effects on liver lipid disorders in diabetic rats. JGTCs inhibited liver lipid accumulation and inflammatory responses in diabetic rats by affecting intestinal flora and metabolic disorders and regulating FXR-fat synthesis-related pathways to alleviate diabetic lipid disorders.
Collapse
Affiliation(s)
- Mi Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, No. 88 Xianning Avenue, Xian'an District, Xianning, Hubei Province 437100, PR China
| | - Manjun Gao
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, No. 88 Xianning Avenue, Xian'an District, Xianning, Hubei Province 437100, PR China
| | - Hao Wang
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, No. 16 West Huangjiahu Road, Hongshan District, Wuhan, Hubei Province 430065, PR China
| | - Qingjie Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, No. 88 Xianning Avenue, Xian'an District, Xianning, Hubei Province 437100, PR China
| | - Xiufen Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, No. 88 Xianning Avenue, Xian'an District, Xianning, Hubei Province 437100, PR China
| | - Qigui Mo
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, No. 88 Xianning Avenue, Xian'an District, Xianning, Hubei Province 437100, PR China
| | - Xingqiong Huang
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, No. 88 Xianning Avenue, Xian'an District, Xianning, Hubei Province 437100, PR China
| | - Xiaochuan Ye
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, No. 16 West Huangjiahu Road, Hongshan District, Wuhan, Hubei Province 430065, PR China.
| | - Dandan Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, No. 88 Xianning Avenue, Xian'an District, Xianning, Hubei Province 437100, PR China.
| |
Collapse
|
12
|
Fretts AM, Jensen PN, Sitlani CM, Hoofnagle A, Lidgard B, Umans JG, Siscovick DS, King IB, Howard BV, Cole SA, Lemaitre RN. Circulating Sphingolipids and All-Cause Mortality: The Strong Heart Family Study. J Am Heart Assoc 2024; 13:e032536. [PMID: 38904223 PMCID: PMC11255722 DOI: 10.1161/jaha.123.032536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 05/17/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND A growing body of research indicates that associations of ceramides and sphingomyelins with mortality depend on the chain length of the fatty acid acylated to the backbone sphingoid base. We examined associations of 8 ceramide and sphingomyelin species with mortality among an American Indian population. METHODS AND RESULTS The analysis comprised 2688 participants from the SHFS (Strong Heart Family Study). Plasma ceramide and sphingomyelin species carrying long-chain (ie, 16:0) and very-long-chain (ie, 20:0, 22:0, 24:0) saturated fatty acids were measured by sequential liquid chromatography and mass spectroscopy using samples from 2001 to 2003. Participants were followed for 18.8 years (2001-2020). Associations of ceramides and sphingomyelins with mortality were assessed using Cox models. The mean age of participants was 40.8 years. There were 574 deaths during a median 17.4-year follow-up. Ceramides and sphingomyelins carrying fatty acid 16:0 were positively associated with mortality. Ceramides and sphingomyelins carrying longer fatty acids were inversely associated with mortality. Per SD difference in each ceramide and sphingomyelin species, hazard ratios for death were: 1.68 (95% CI, 1.44-1.96) for ceramide-16 (Cer-16), 0.82 (95% CI, 0.71-0.95) for Cer-20, 0.60 (95% CI, 0.51-0.70) for Cer-22, 0.67 (95% CI, 0.56-0.79) for Cer-24, 1.80 (95% CI-1.57, 2.05) for sphingomyelin-16 (SM-16), 0.54 (95% CI, 0.47-0.62) for SM-20, 0.50 (95% CI, 0.44-0.57) for SM-22, and 0.59 (95% CI, 0.52-0.67) for SM-24. CONCLUSIONS The direction/magnitude of associations of ceramides and sphingomyelins with mortality differs according to the length of the fatty acid acylated to the backbone sphingoid base. REGISTRATION URL: https://www.clinicatrials.gov; Unique identifier: NCT00005134.
Collapse
Affiliation(s)
- Amanda M. Fretts
- Department of EpidemiologyUniversity of WashingtonSeattleWAUSA
- Cardiovascular Health Research UnitUniversity of WashingtonSeattleWAUSA
| | - Paul N. Jensen
- Cardiovascular Health Research UnitUniversity of WashingtonSeattleWAUSA
- Department of MedicineUniversity of WashingtonSeattleWAUSA
| | - Colleen M. Sitlani
- Cardiovascular Health Research UnitUniversity of WashingtonSeattleWAUSA
- Department of MedicineUniversity of WashingtonSeattleWAUSA
| | - Andy Hoofnagle
- Department of Laboratory MedicineUniversity of WashingtonSeattleWAUSA
| | - Benjamin Lidgard
- Department of NephrologyUniversity of WashingtonSeattleWashingtonUSA
| | | | | | - Irena B. King
- Department of Internal MedicineUniversity of New MexicoAlbuquerqueNMUSA
| | - Barbara V. Howard
- MedStar Health Research InstituteHyattsvilleMDUSA
- Georgetown and Howard Universities Center for Clinical and Translational ScienceWashingtonDCUSA
| | | | - Rozenn N. Lemaitre
- Cardiovascular Health Research UnitUniversity of WashingtonSeattleWAUSA
- Department of MedicineUniversity of WashingtonSeattleWAUSA
| |
Collapse
|
13
|
Wilkerson JL, Tatum SM, Holland WL, Summers SA. Ceramides are fuel gauges on the drive to cardiometabolic disease. Physiol Rev 2024; 104:1061-1119. [PMID: 38300524 PMCID: PMC11381030 DOI: 10.1152/physrev.00008.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/02/2024] Open
Abstract
Ceramides are signals of fatty acid excess that accumulate when a cell's energetic needs have been met and its nutrient storage has reached capacity. As these sphingolipids accrue, they alter the metabolism and survival of cells throughout the body including in the heart, liver, blood vessels, skeletal muscle, brain, and kidney. These ceramide actions elicit the tissue dysfunction that underlies cardiometabolic diseases such as diabetes, coronary artery disease, metabolic-associated steatohepatitis, and heart failure. Here, we review the biosynthesis and degradation pathways that maintain ceramide levels in normal physiology and discuss how the loss of ceramide homeostasis drives cardiometabolic pathologies. We highlight signaling nodes that sense small changes in ceramides and in turn reprogram cellular metabolism and stimulate apoptosis. Finally, we evaluate the emerging therapeutic utility of these unique lipids as biomarkers that forecast disease risk and as targets of ceramide-lowering interventions that ameliorate disease.
Collapse
Affiliation(s)
- Joseph L Wilkerson
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Sean M Tatum
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - William L Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
14
|
Sundaraswamy PM, Minami Y, Jayaprakash J, B Gowda SG, Takatsu H, Gowda D, Shin HW, Hui SP. A facile method for monitoring sphingomyelin synthase activity in HeLa cells using liquid chromatography/mass spectrometry. Analyst 2024; 149:3293-3301. [PMID: 38713069 DOI: 10.1039/d4an00304g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Sphingomyelin synthase (SMS) is a sphingolipid-metabolizing enzyme involved in the de novo synthesis of sphingomyelin (SM) from ceramide (Cer). Recent studies have indicated that SMS is a key therapeutic target for metabolic diseases such as fatty liver, type 2 diabetes, atherosclerosis, and colorectal cancer. However, very few SMS inhibitors have been identified because of the limited sensitivity and selectivity of the current fluorescence-based screening assay. In this study, we developed a simple cell-based assay coupled with liquid chromatography/tandem mass spectrometry (LC-MS/MS) to screen for SMS inhibitors. HeLa cells stably expressing SMS1 or SMS2 were used for the screening. A non-fluorescent unnatural C6-Cer was used as a substrate for SMS to produce C6-SM. C6-Cer and C6-SM levels in the cells were monitored and quantified using LC-MS/MS. The activity of ginkgolic acid C15:1 (GA), a known SMS inhibitor, was measured. GA had half-maximal inhibitory concentrations of 5.5 μM and 3.6 μM for SMS1 and SMS2, respectively. To validate these findings, hSMS1 and hSMS2 proteins were optimized for molecular docking studies. In silico analyses were conducted to assess the interaction of GA with SMS1 and SMS2, and its binding affinity. This study offers an analytical approach for screening novel SMS inhibitors and provides in silico support for the experimental findings.
Collapse
Affiliation(s)
- Punith M Sundaraswamy
- Graduate School of Global Food Resources, Hokkaido University, Kita-9, Nishi-9, Kita-Ku, Sapporo 060-0809, Japan.
| | - Yusuke Minami
- Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan
| | - Jayashankar Jayaprakash
- Graduate School of Global Food Resources, Hokkaido University, Kita-9, Nishi-9, Kita-Ku, Sapporo 060-0809, Japan.
| | - Siddabasave Gowda B Gowda
- Graduate School of Global Food Resources, Hokkaido University, Kita-9, Nishi-9, Kita-Ku, Sapporo 060-0809, Japan.
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan.
| | - Hiroyuki Takatsu
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Divyavani Gowda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan.
| | - Hye-Won Shin
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
15
|
Rigamonti AE, Polledri E, Favero C, Caroli D, Bondesan A, Grugni G, Mai S, Cella SG, Fustinoni S, Sartorio A. Metabolomic profiling of Prader-Willi syndrome compared with essential obesity. Front Endocrinol (Lausanne) 2024; 15:1386265. [PMID: 38812813 PMCID: PMC11133515 DOI: 10.3389/fendo.2024.1386265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction Prader-Willi syndrome (PWS) is a rare disease, which shows a peculiar clinical phenotype, including obesity, which is different from essential obesity (EOB). Metabolomics might represent a valuable tool to reveal the biochemical mechanisms/pathways underlying clinical differences between PWS and EOB. The aim of the present (case-control, retrospective) study was to determine the metabolomic profile that characterizes PWS compared to EOB. Methods A validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) targeted metabolomic approach was used to measure a total of 188 endogenous metabolites in plasma samples of 32 patients with PWS (F/M = 23/9; age: 31.6 ± 9.2 years; body mass index [BMI]: 42.1 ± 7.0 kg/m2), compared to a sex-, age- and BMI-matched group of patients with EOB (F/M = 23/9; age: 31.4 ± 6.9 years; BMI: 43.5 ± 3.5 kg/m2). Results Body composition in PWS was different when compared to EOB, with increased fat mass and decreased fat-free mass. Glycemia and HDL cholesterol were higher in patients with PWS than in those with EOB, while insulinemia was lower, as well as heart rate. Resting energy expenditure was lower in the group with PWS than in the one with EOB, a difference that was missed after fat-free mass correction. Carrying out a series of Tobit multivariable linear regressions, adjusted for sex, diastolic blood pressure, and C reactive protein, a total of 28 metabolites was found to be associated with PWS (vs. non-PWS, i.e., EOB), including 9 phosphatidylcholines (PCs) ae, 5 PCs aa, all PCs aa, 7 lysoPCs a, all lysoPCs, 4 acetylcarnitines, and 1 sphingomyelin, all of which were higher in PWS than EOB. Conclusions PWS exhibits a specific metabolomic profile when compared to EOB, suggesting a different regulation of some biochemical pathways, fundamentally related to lipid metabolism.
Collapse
Affiliation(s)
| | - Elisa Polledri
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Chiara Favero
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Diana Caroli
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-endocrinological Research, Piancavallo-Verbania, Italy
| | - Adele Bondesan
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-endocrinological Research, Piancavallo-Verbania, Italy
| | - Graziano Grugni
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-endocrinological Research, Piancavallo-Verbania, Italy
| | - Stefania Mai
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Laboratory of Metabolic Research, Piancavallo-Verbania, Italy
| | - Silvano G. Cella
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Silvia Fustinoni
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandro Sartorio
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-endocrinological Research, Piancavallo-Verbania, Italy
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-endocrinological Research, Milan, Italy
| |
Collapse
|
16
|
He M, Hou G, Liu M, Peng Z, Guo H, Wang Y, Sui J, Liu H, Yin X, Zhang M, Chen Z, Rensen PCN, Lin L, Wang Y, Shi B. Lipidomic studies revealing serological markers associated with the occurrence of retinopathy in type 2 diabetes. J Transl Med 2024; 22:448. [PMID: 38741137 PMCID: PMC11089707 DOI: 10.1186/s12967-024-05274-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 05/04/2024] [Indexed: 05/16/2024] Open
Abstract
PURPOSE The duration of type 2 diabetes mellitus (T2DM) and blood glucose levels have a significant impact on the development of T2DM complications. However, currently known risk factors are not good predictors of the onset or progression of diabetic retinopathy (DR). Therefore, we aimed to investigate the differences in the serum lipid composition in patients with T2DM, without and with DR, and search for potential serological indicators associated with the development of DR. METHODS A total of 622 patients with T2DM hospitalized in the Department of Endocrinology of the First Affiliated Hospital of Xi'an JiaoTong University were selected as the discovery set. One-to-one case-control matching was performed according to the traditional risk factors for DR (i.e., age, duration of diabetes, HbA1c level, and hypertension). All cases with comorbid chronic kidney disease were excluded to eliminate confounding factors. A total of 42 pairs were successfully matched. T2DM patients with DR (DR group) were the case group, and T2DM patients without DR (NDR group) served as control subjects. Ultra-performance liquid chromatography-mass spectrometry (LC-MS/MS) was used for untargeted lipidomics analysis on serum, and a partial least squares discriminant analysis (PLS-DA) model was established to screen differential lipid molecules based on variable importance in the projection (VIP) > 1. An additional 531 T2DM patients were selected as the validation set. Next, 1:1 propensity score matching (PSM) was performed for the traditional risk factors for DR, and a combined 95 pairings in the NDR and DR groups were successfully matched. The screened differential lipid molecules were validated by multiple reaction monitoring (MRM) quantification based on mass spectrometry. RESULTS The discovery set showed no differences in traditional risk factors associated with the development of DR (i.e., age, disease duration, HbA1c, blood pressure, and glomerular filtration rate). In the DR group compared with the NDR group, the levels of three ceramides (Cer) and seven sphingomyelins (SM) were significantly lower, and one phosphatidylcholine (PC), two lysophosphatidylcholines (LPC), and two SMs were significantly higher. Furthermore, evaluation of these 15 differential lipid molecules in the validation sample set showed that three Cer and SM(d18:1/24:1) molecules were substantially lower in the DR group. After excluding other confounding factors (e.g., sex, BMI, lipid-lowering drug therapy, and lipid levels), multifactorial logistic regression analysis revealed that a lower abundance of two ceramides, i.e., Cer(d18:0/22:0) and Cer(d18:0/24:0), was an independent risk factor for the occurrence of DR in T2DM patients. CONCLUSION Disturbances in lipid metabolism are closely associated with the occurrence of DR in patients with T2DM, especially in ceramides. Our study revealed for the first time that Cer(d18:0/22:0) and Cer(d18:0/24:0) might be potential serological markers for the diagnosis of DR occurrence in T2DM patients, providing new ideas for the early diagnosis of DR.
Collapse
Affiliation(s)
- Mingqian He
- Department of Endocrinology, the First Affiliated Hospital of Xi'an JiaoTong University, No.277, West Yanta Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Guixue Hou
- BGI-SHENZHEN, No. 21 Hongan 3rd Street, Yantian District, Shenzhen, Guangdong, 518083, P.R. China
| | - Mengmeng Liu
- Department of Endocrinology, the First Affiliated Hospital of Xi'an JiaoTong University, No.277, West Yanta Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Zhaoyi Peng
- Department of Endocrinology, the First Affiliated Hospital of Xi'an JiaoTong University, No.277, West Yanta Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Hui Guo
- Department of Endocrinology, the First Affiliated Hospital of Xi'an JiaoTong University, No.277, West Yanta Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Yue Wang
- Department of Endocrinology, the First Affiliated Hospital of Xi'an JiaoTong University, No.277, West Yanta Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Jing Sui
- Department of Endocrinology and International Medical Center, the First Affiliated Hospital of Xi'an JiaoTong University, No.277, West Yanta Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Hui Liu
- Biobank, The First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, Shaanxi, 710061, China
| | - Xiaoming Yin
- Chengdu HuiXin Life Technology, Chengdu, Sichuan, 610091, P.R. China
| | - Meng Zhang
- Department of Endocrinology, the First Affiliated Hospital of Xi'an JiaoTong University, No.277, West Yanta Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Ziyi Chen
- Department of Endocrinology, the First Affiliated Hospital of Xi'an JiaoTong University, No.277, West Yanta Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Patrick C N Rensen
- Department of Endocrinology, the First Affiliated Hospital of Xi'an JiaoTong University, No.277, West Yanta Road, Xi'an, Shaanxi, 710061, P.R. China
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, P.O. Box 9600, Leiden, 2300 RA, The Netherlands
| | - Liang Lin
- BGI-SHENZHEN, No. 21 Hongan 3rd Street, Yantian District, Shenzhen, Guangdong, 518083, P.R. China.
- , Building NO.7, BGI Park, No. 21 Hongan 3rd Street, Yantian District, Shenzhen, Guangdong, 518083, P.R. China.
| | - Yanan Wang
- Department of Endocrinology, the First Affiliated Hospital of Xi'an JiaoTong University, No.277, West Yanta Road, Xi'an, Shaanxi, 710061, P.R. China.
- Med-X institute, Center for Immunological and Metabolic Diseases, the First Affiliated Hospital of Xi'an JiaoTong University, Xi'an JiaoTong university, Xi'an, Shaanxi, 710061, P.R. China.
| | - Bingyin Shi
- Department of Endocrinology, the First Affiliated Hospital of Xi'an JiaoTong University, No.277, West Yanta Road, Xi'an, Shaanxi, 710061, P.R. China.
| |
Collapse
|
17
|
Morita SY. Phospholipid biomarkers of coronary heart disease. J Pharm Health Care Sci 2024; 10:23. [PMID: 38734675 PMCID: PMC11088770 DOI: 10.1186/s40780-024-00344-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024] Open
Abstract
Coronary heart disease, also known as ischemic heart disease, is induced by atherosclerosis, which is initiated by subendothelial retention of lipoproteins. Plasma lipoproteins, including high density lipoprotein, low density lipoprotein (LDL), very low density lipoprotein, and chylomicron, are composed of a surface monolayer containing phospholipids and cholesterol and a hydrophobic core containing triglycerides and cholesteryl esters. Phospholipids play a crucial role in the binding of apolipoproteins and enzymes to lipoprotein surfaces, thereby regulating lipoprotein metabolism. High LDL-cholesterol is a well-known risk factor for coronary heart disease, and statins reduce the risk of coronary heart disease by lowering LDL-cholesterol levels. In contrast, the relationships of phospholipids in plasma lipoproteins with coronary heart disease have not yet been established. To further clarify the physiological and pathological roles of phospholipids, we have developed the simple high-throughput assays for quantifying all major phospholipid classes, namely phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidic acid, phosphatidylinositol, phosphatidylglycerol + cardiolipin, and sphingomyelin, using combinations of specific enzymes and a fluorogenic probe. These enzymatic fluorometric assays will be helpful in elucidating the associations between phospholipid classes in plasma lipoproteins and coronary heart disease and in identifying phospholipid biomarkers. This review describes recent progress in the identification of phospholipid biomarkers of coronary heart disease.
Collapse
Affiliation(s)
- Shin-Ya Morita
- Department of Pharmacotherapeutics, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan.
| |
Collapse
|
18
|
Alp G, Oztas Y, Yalcinkaya A, Ozel S, Yildirim N, Unal S. Plasma sphingolipids in patients with sickle cell disease: Multiple-site vaso-occlusive crises could be associated with lower sphingolipid levels. Lipids 2024; 59:75-82. [PMID: 38332401 DOI: 10.1002/lipd.12389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024]
Abstract
Although sickle cell disease (SCD) and its manifestations have been associated with various lipid alterations, there are a few studies exploring the impact of sphingolipids in SCD. In this study, we determined plasma ceramide (Cer) and sphingomyelin (CerPCho) species and investigated their association with the crisis in SCD. SCD patients (N = 27) suffering from vaso-occlusive crisis (VOC) or acute chest syndrome (ACS) were involved in this study. Blood samples were drawn at crisis and later at steady state periods. Clinical history, white blood cell count (WBC), C-reactive protein and lactate dehydrogenase (LDH) levels were recorded. 16:0, 18:0, 20:0, 22:0 Cer and 16:0, 18:0, 24:0 CerPCho were measured via LC-MS/MS. All measured Cer and CerPCho levels of SCD patients at crisis and steady-state were found to be similar. Inflammation-related parameters were significantly higher in patients with ACS compared to single-site VOC. Patients with multiple-site VOC were found to have significantly lower sphingolipid levels compared with those with single-site VOC, at crisis (16, 18, 24 CerPCho and 18, 22 Cer) and at steady-state (24:0 CerPCho and 18 Cer). Our results show that sphingolipid levels in SCD patients are similar during crisis and at steady state. However, lower sphingolipid levels appear to be associated with the development of multiple-site VOC. Since the differences were observed at both crisis and steady-state, sphingolipid level could be an underlying factor associated with crisis characteristics in patients with SCD.
Collapse
Affiliation(s)
- Gokce Alp
- Faculty of Engineering, Department of Chemical Engineering, Hacettepe University, Ankara, Turkey
| | - Yesim Oztas
- Faculty of Medicine, Department of Medical Biochemistry, Hacettepe University, Ankara, Turkey
| | - Ahmet Yalcinkaya
- Faculty of Medicine, Department of Medical Biochemistry, Hacettepe University, Ankara, Turkey
| | - Selinay Ozel
- Faculty of Science, Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Nazim Yildirim
- Faculty of Medicine, Department of Pediatrics Hematology, Mersin University, Mersin, Turkey
| | - Selma Unal
- Faculty of Medicine, Department of Pediatrics Hematology, Mersin University, Mersin, Turkey
| |
Collapse
|
19
|
Desjardins LC, Brière F, Tremblay AJ, Rancourt-Bouchard M, Drouin-Chartier JP, Corbeil J, Lemelin V, Charest A, Schaefer EJ, Lamarche B, Couture P. Substitution of dietary monounsaturated fatty acids from olive oil for saturated fatty acids from lard increases low-density lipoprotein apolipoprotein B-100 fractional catabolic rate in subjects with dyslipidemia associated with insulin resistance: a randomized controlled trial. Am J Clin Nutr 2024; 119:1270-1279. [PMID: 38518848 PMCID: PMC11130675 DOI: 10.1016/j.ajcnut.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/21/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024] Open
Abstract
BACKGROUND The substitution of monounsaturated acids (MUFAs) for saturated fatty acids (SFAs) is recommended for cardiovascular disease prevention but its impact on lipoprotein metabolism in subjects with dyslipidemia associated with insulin resistance (IR) remains largely unknown. OBJECTIVES This study aimed to evaluate the impact of substituting MUFAs for SFAs on the in vivo kinetics of apolipoprotein (apo)B-containing lipoproteins and on the plasma lipidomic profile in adults with IR-induced dyslipidemia. METHODS Males and females with dyslipidemia associated with IR (n = 18) were recruited for this crossover double-blind randomized controlled trial. Subjects consumed, in random order, a diet rich in SFAs (SFAs: 13.4%E; MUFAs: 14.4%E) and a diet rich in MUFAs (SFAs: 7.1%E; MUFAs: 20.7%E) in fully controlled feeding conditions for periods of 4 wk each, separated by a 4-wk washout. At the end of each diet, fasting plasma samples were taken together with measurements of the in vivo kinetics of apoB-containing lipoproteins. RESULTS Substituting MUFAs for SFAs had no impact on triglyceride-rich lipoprotein apoB-48 fractional catabolic rate (FCR) (Δ = -8.9%, P = 0.4) and production rate (Δ = 0.0%, P = 0.9), although it decreased very low-density lipoprotein apoB-100 pool size (PS) (Δ = -22.5%; P = 0.01). This substitution also reduced low-density lipoprotein cholesterol (LDL-C) (Δ = -7.0%; P = 0.01), non-high-density lipoprotein cholesterol (Δ = -2.5%; P = 0.04), and LDL apoB-100 PS (Δ = -6.0%; P = 0.05). These differences were partially attributed to an increase in LDL apoB-100 FCR (Δ = +1.6%; P = 0.05). The MUFA diet showed reduced sphingolipid concentrations and elevated glycerophospholipid levels compared with the SFA diet. CONCLUSIONS This study demonstrated that substituting dietary MUFAs for SFAs decreases LDL-C levels and LDL PS by increasing LDL apoB-100 FCR and results in an overall improved plasma lipidomic profile in individuals with IR-induced lipidemia. TRIAL REGISTRATION This trial was registered as clinicaltrials.gov as NCT03872349.
Collapse
Affiliation(s)
- Louis-Charles Desjardins
- Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Canada; School of Nutrition, Université Laval, Quebec, Canada
| | - Francis Brière
- Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Canada; Faculty of Medicine, Université Laval, Quebec, Canada
| | - André J Tremblay
- Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Canada
| | - Maryka Rancourt-Bouchard
- Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Canada; School of Nutrition, Université Laval, Quebec, Canada; Faculty of Pharmacy, Université Laval, Quebec, Canada
| | - Jean-Philippe Drouin-Chartier
- Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Canada; Faculty of Pharmacy, Université Laval, Quebec, Canada
| | - Jacques Corbeil
- Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Canada; Faculty of Medicine, Université Laval, Quebec, Canada; Big Data Research Centre, Université Laval, Quebec, Canada
| | - Valéry Lemelin
- CHU de Québec-Université Laval Research Center, Quebec, Canada
| | - Amélie Charest
- Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Canada; School of Nutrition, Université Laval, Quebec, Canada
| | | | - Benoît Lamarche
- Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Canada; School of Nutrition, Université Laval, Quebec, Canada
| | - Patrick Couture
- Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Canada; Faculty of Medicine, Université Laval, Quebec, Canada; CHU de Québec-Université Laval Research Center, Quebec, Canada.
| |
Collapse
|
20
|
Kui H, Lei Y, Jia C, Xin Q, Tursun R, Zhong M, Liu C, Yuan R. Antithrombotic pharmacodynamics and metabolomics study in raw and processed products of Whitmania pigra Whitman. Heliyon 2024; 10:e27828. [PMID: 38596067 PMCID: PMC11002550 DOI: 10.1016/j.heliyon.2024.e27828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/11/2024] Open
Abstract
Objective As a traditional Chinese medicine, leech has obvious pharmacological activities in anticoagulantion and antithrombosis. Whitmania pigra Whitman (WP) is the most commonly used leech in the Chinese market. It is often used in clinical applications after high-temperature processing by talcum powder to remove the fishy taste and facilitate crushing. The anticoagulant and thrombolytic active ingredients are protein and polypeptide, which may denaturate and lose activity after high-temperature processing. The rationality of its processing has been questioned in recent years. This study aims to investigate the effect of talcum powder scalding on the antithrombotic activity of WP in vivo and to discuss its pharmacodynamic mechanism in vivo. Methods Raw and talcum-powdered processed WP were administered intragastrically for 14 days, and carrageenan was injected intraperitoneally to prepare a mouse model of tail vein thrombosis. The incidence rate of tail vein thrombosis and the thrombus area under pathological tissue sections were calculated to evaluate the antithrombotic effect between raw and processed WP. Non-targeted metabolomics was conducted using UPLC-Q-TOF/MS technology to analyze the changes of small molecule metabolites in the body after administration of WP. Results After intragastric administration, both the raw product and the processed product of WP could inhibit the thrombosis induced by carrageenan, and the processed product had a more apparent antithrombotic effect than the raw product. The administration of WP could regulate the changes of some small molecular metabolites, such as amino acids, lipids, and steroids, in Sphingolipid metabolism and Glycerophospholipid metabolism. Conclusions Based on the results of pharmacodynamics and metabolomics, processed WP will not reduce the antithrombotic activity of WP. This study provided a scientific basis for the rational use of leeches.
Collapse
Affiliation(s)
- Hongqian Kui
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, China
| | - Yan Lei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, China
| | - Chunxue Jia
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, China
| | - Quancheng Xin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, China
| | - Rustam Tursun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, China
| | - Miao Zhong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, China
| | - Chuanxin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, China
- Department of Metabolism and Endocrinology, Endocrine, and Metabolic Disease Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan, University of Science and Technology, Medical Key Laboratory of Hereditary Rare Diseases of Henan, Luoyang Sub-center of National Clinical Research Center for Metabolic Diseases, Luoyang, China
| | - Ruijuan Yuan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, China
| |
Collapse
|
21
|
Wan Z, Su J, Zhu X, Liu X, Guo Y, Xiang D, Zhou X, Peng X, Tao R, Cao Q, Lang G, Huang Y, Zhu B. Distinct Lipidomic Profiles between People Living with HIV Treated with E/C/F/TAF or B/F/TAF: An Open-Label Prospective Cohort Study. Infect Dis Ther 2024; 13:727-744. [PMID: 38489119 PMCID: PMC11058159 DOI: 10.1007/s40121-024-00943-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/15/2024] [Indexed: 03/17/2024] Open
Abstract
INTRODUCTION Elvitegravir/cobicistat/emtricitabine/tenofovir alafenamide (E/C/F/TAF) has been increasingly replaced by bictegravir/emtricitabine/tenofovir alafenamide (B/F/TAF) in the treatment of human immunodeficiency virus (HIV) owing to its more favorable pharmacokinetics and fewer drug-drug interactions. However, the effect of this switch on plasma lipids and lipidomic profiles remains poorly characterized. METHODS HIV infected patients on an E/C/F/TAF regimen were recruited into the study and followed up every 12 weeks. Participants were divided into E/C/F/TAF and B/F/TAF groups depending on whether they were switched to B/F/TAF during follow-up. Clinical information and blood samples were collected at 0, 12, and 24 weeks, and lipidomic analysis was performed using liquid chromatography mass spectrometry. RESULTS No significant differences were observed between the groups at baseline. At week 24, patients switched to B/F/TAF had lower triglyceride [mmol/L; 1.23 (0.62) versus 2.03 (0.75), P = 0.001] and very low-density lipoprotein cholesterol [mmol/L; 0.64 (0.26) versus 0.84 (0.32), P = 0.037) compared with patients who continued E/C/F/TAF therapy. Small decrease from baseline in Framingham general cardiovascular risk score (FRS) was observed in the B/F/TAF arm [week (W) 0: 2.59 (1.57) versus W24: 2.18 (1.01), P = 0.043]. Lipidomic analysis indicated that E/C/F/TAF treatment increased the levels of several diglycerides (DGs), triacylglycerols (TAGs), and lyso-phosphatidylcholines (LPCs), whereas switching to B/F/TAF led to increased sphingolipids and glycerophospholipids. After adjusting for demographic and clinical parameters, only DG (16:0/18:2), DG (18:2/22:6), DG (18:3/18:2), DG (20:5/18:2), TAG (18:3/18:2/21:5), TAG (20:5/18:2/22:6), and LPC (22:6) were found to be significantly associated with FRS (regression coefficient of 0.17-6.02, P < 0.05). Most of these FRS associate lipid species were significantly elevated in individuals treated with E/C/F/TAF instead of individuals treated with B/F/TAF. CONCLUSION E/C/F/TAF promotes the accumulation of lipid species closely associated with cardiovascular disease (CVD) risk among people living with HIV, whereas B/F/TAF has a decreased impact on CVD-related lipid profile and is associated with lower CVD risk. A graphical abstract is available with this article. TRIAL REGISTRATION ClinicalTrials.gov; identifier, NCT06019273.
Collapse
Affiliation(s)
- Zhikai Wan
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, China
| | - Junwei Su
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, China
| | - Xueling Zhu
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, China
| | - Xiang Liu
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, China
| | - Yongzheng Guo
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, China
| | - Dairong Xiang
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, China
| | - Xiaotang Zhou
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, China
| | - Xiaorong Peng
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, China
| | - Ran Tao
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, China
| | - Qing Cao
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, China
| | - Guanjing Lang
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, China
| | - Ying Huang
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, China
| | - Biao Zhu
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, China.
| |
Collapse
|
22
|
Wen X, Fretts AM, Miao G, Malloy KM, Zhang Y, Umans JG, Cole SA, Best LG, Fiehn O, Zhao J. Plasma lipidomic markers of diet quality are associated with incident coronary heart disease in American Indian adults: the Strong Heart Family Study. Am J Clin Nutr 2024; 119:748-755. [PMID: 38160800 PMCID: PMC11347812 DOI: 10.1016/j.ajcnut.2023.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/15/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Identifying lipidomic markers of diet quality is needed to inform the development of biomarkers of diet, and to understand the mechanisms driving the diet- coronary heart disease (CHD) association. OBJECTIVES This study aimed to identify lipidomic markers of diet quality and examine whether these lipids are associated with incident CHD. METHODS Using liquid chromatography-mass spectrometry, we measured 1542 lipid species from 1694 American Indian adults (aged 18-75 years, 62% female) in the Strong Heart Family Study. Participants were followed up for development of CHD through 2020. Information on the past year diet was collected using the Block Food Frequency Questionnaire, and diet quality was assessed using the Alternative Healthy Eating Index-2010 (AHEI). Mixed-effects linear regression was used to identify individual lipids cross-sectionally associated with AHEI. In prospective analysis, Cox frailty model was used to estimate the hazard ratio (HR) of each AHEI-related lipid for incident CHD. All models were adjusted for age, sex, center, education, body mass index, smoking, alcohol drinking, level of physical activity, energy intake, diabetes, hypertension, and use of lipid-lowering drugs. Multiple testing was controlled at a false discovery rate of <0.05. RESULTS Among 1542 lipid species measured, 71 lipid species (23 known), including acylcarnitine, cholesterol esters, glycerophospholipids, sphingomyelins and triacylglycerols, were associated with AHEI. Most of the identified lipids were associated with consumption of ω-3 (n-3) fatty acids. In total, 147 participants developed CHD during a mean follow-up of 17.8 years. Among the diet-related lipids, 10 lipids [5 known: cholesterol ester (CE)(22:5)B, phosphatidylcholine (PC)(p-14:0/22:1)/PC(o-14:0/22:1), PC(p-38:3)/PC(o-38:4)B, phosphatidylethanolamine (PE)(p-18:0/20:4)/PE(o-18:0/20:4), and sphingomyelin (d36:2)A] were associated with incident CHD. On average, each standard deviation increase in the baseline level of these 5 lipids was associated with 17%-23% increased risk of CHD (from HR: 1.17; 95% CI: 1, 1.36; to HR: 1.23; 95% CI: 1.05, 1.43). CONCLUSIONS In this study, lipidomic markers of diet quality in American Indian adults are found. Some diet-related lipids are associated with risk of CHD beyond established risk factors.
Collapse
Affiliation(s)
- Xiaoxiao Wen
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL, United States; Center for Genetic Epidemiology and Bioinformatics, University of Florida, Gainesville, FL, United States
| | - Amanda M Fretts
- Department of Epidemiology, University of Washington, Seattle, WA, United States
| | - Guanhong Miao
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL, United States; Center for Genetic Epidemiology and Bioinformatics, University of Florida, Gainesville, FL, United States
| | - Kimberly M Malloy
- Center for American Indian Health Research, Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Ying Zhang
- Center for American Indian Health Research, Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jason G Umans
- Biomarker, Biochemistry, and Biorepository Core, MedStar Health Research Institute, Hyattsville, MD, United States; Georgetown-Howard Universities Center for Clinical and Translational Science, Washington, DC, United States
| | - Shelley A Cole
- Population Health, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Lyle G Best
- Missouri Breaks Industries Research, Timber Lake, SD, United States
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California-Davis, Davis, CA, United States
| | - Jinying Zhao
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL, United States; Center for Genetic Epidemiology and Bioinformatics, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
23
|
Belik E, Dyleva Y, Uchasova E, Ivanov S, Stasev A, Zinets M, Gruzdeva O. Sphingomyelins of Local Fat Depots and Blood Serum as Promising Biomarkers of Cardiovascular Diseases. Sovrem Tekhnologii Med 2024; 16:54-64. [PMID: 39421630 PMCID: PMC11482092 DOI: 10.17691/stm2024.16.1.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Indexed: 10/19/2024] Open
Abstract
Assessment of the blood lipid spectrum does not always properly reflect local dysfunctional changes in the adipose tissue and prevents identification of all patients at high risk of cardiovascular diseases (CVD). Monitoring of changes in sphingomyelin levels allows to assess and anticipate the development and/or severity of these diseases, as well as to make sphingomyelins new therapeutic targets. The aim of the study was to evaluate the sphingomyelin spectrum of local fat depots and blood serum in connection with clinical and instrumental indicators in patients with coronary artery disease (CAD) and patients with degenerative acquired valvular heart disease (AVHD). Materials and Methods The study analyzed samples of subcutaneous, epicardial, perivascular adipose tissue (SAT, EAT, PVAT, respectively) received from 30 patients with CAD and 30 patients with AVHD. Sphingomyelin spectrum of the blood serum was assessed using a high-resolution chromatography-mass spectrometric complex (liquid chromatograph of the Agilent 1200 series (Agilent Technologies, USA) with a maXis impact mass spectrometric detector (Bruker Daltonics, Germany)). Determination of the levels of sphingomyelins (SM) in adipose tissue samples was conducted by high performance liquid chromatography with mass spectrometric detection in the mass/charge ratio range from 100 to 1700. Results Consistent sphingomyelin spectrum of local fat depots and blood serum was revealed in CAD and AVHD. However, the content of SM varied: in CAD, a specific enhancement of SM in epicardial adipose tissue was observed compared to subcutaneous and perivascular localization. In AVHD, PVAT was characterized by a statistically significant increase in the levels of all SM relative to EAT. Almost all measured SM types in the serum of patients with CAD were higher than the levels in the AVHD group. Conclusion Established associations of indicators of the sphingomyelin profile of adipose tissue and blood serum with clinical and instrumental indicators in CVD indicate the relationship between the metabolism of SM in adipose tissue of cardiac localization and disorders of systolic and diastolic function of the LV in patients with CVD, multivessel coronary disease in CAD and allow the use of SM as promising biomarkers of CVD. However, further research is needed to clarify the nature of these relationships.
Collapse
Affiliation(s)
- E.V. Belik
- Researcher, Laboratory of Homeostasis Research, Department of Experimental Medicine; Research Institute for Complex Issues of Cardiovascular Diseases, 6 Academician L.S. Barbarash Blvd, Kemerovo, 650002, Russia
| | - Yu.A. Dyleva
- Senior Researcher, Laboratory for Homeostasis Research, Department of Experimental Medicine; Research Institute for Complex Issues of Cardiovascular Diseases, 6 Academician L.S. Barbarash Blvd, Kemerovo, 650002, Russia
| | - E.G. Uchasova
- Senior Researcher, Laboratory for Homeostasis Research, Department of Experimental Medicine; Research Institute for Complex Issues of Cardiovascular Diseases, 6 Academician L.S. Barbarash Blvd, Kemerovo, 650002, Russia
| | - S.V. Ivanov
- Leading Researcher, Laboratory of X-ray Endovascular and Reconstructive Surgery of the Heart and Vessels, Department of Cardiovascular Surgery; Research Institute for Complex Issues of Cardiovascular Diseases, 6 Academician L.S. Barbarash Blvd, Kemerovo, 650002, Russia
| | - A.N. Stasev
- Senior Researcher, Laboratory of Heart Diseases, Department of Cardiovascular Surgery; Research Institute for Complex Issues of Cardiovascular Diseases, 6 Academician L.S. Barbarash Blvd, Kemerovo, 650002, Russia
| | - M.G. Zinets
- Cardiac Surgeon, Department of Cardiac Surgery No.1; Research Institute for Complex Issues of Cardiovascular Diseases, 6 Academician L.S. Barbarash Blvd, Kemerovo, 650002, Russia
| | - O.V. Gruzdeva
- Associate Professor, Professor of the Russian Academy of Sciences, Head of the Laboratory for Homeostasis Research, Department of Experimental Medicine; Research Institute for Complex Issues of Cardiovascular Diseases, 6 Academician L.S. Barbarash Blvd, Kemerovo, 650002, Russia; Head of the Department of Medical Biochemistry; Kemerovo State Medical University, 22A Voroshilov St., Kemerovo, 650056, Russia
| |
Collapse
|
24
|
Li CZ, Wu LM, Zhu CX, Du HY, Chen GX, Yang F. The impacts of dietary sphingomyelin supplementation on metabolic parameters of healthy adults: a systematic review and meta-analysis of randomized controlled trials. Front Nutr 2024; 11:1363077. [PMID: 38463938 PMCID: PMC10922005 DOI: 10.3389/fnut.2024.1363077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/06/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Studies have shown that sphingomyelin (SM) and its metabolites play signaling roles in the regulation of human health. Endogenous SM is involved in metabolic syndrome (MetS), while dietary SM supplementation may maintain lipid metabolism and prevent or alleviate MetS. Therefore, we hypothesized that dietary SM supplementation is beneficial for human health. AIMS In order to examine the impacts of dietary SM on metabolic indexes in adults without MetS, we performed a meta-analysis to test our hypothesis. METHODS A comprehensive search was performed to retrieve randomized controlled trials that were conducted between 2003 and 2023 to examine the effects of dietary SM supplementation on metabolic parameters in the Cochrane Library, PubMed, Web of Science, Embase, and ClinicalTrials.gov databases. RevMan 5.4 and Stata 14.0 software were used for meta-analysis, a sensitivity analysis, the risk of bias, and the overall quality of the resulted evidence. RESULTS Eventually, 10 articles were included in this meta-analysis. Dietary SM supplementation did not affect the endline blood SM level. When compared to the control, SM supplementation reduced the blood total cholesterol level [MD: -12.97, 95% CI: (-14.57, -11.38), p < 0.00001], low-density lipoprotein cholesterol level [MD: -6.62, 95% CI: (-10.74, -2.49), p = 0.002], and diastolic blood pressure [MD: -3.31; 95% CI (-4.03, -2.58), p < 0.00001] in adults without MetS. The supplementation also increased high-density lipoprotein level [MD:1.41, 95% CI: (0.94, 1.88), p < 0.00001] and muscle fiber conduction velocity [MD: 95% 1.21 CI (0.53, 1.88), p = 0.0005]. The intake of SM had no effect on the blood phospholipids and lyso-phosphatidylcholine, but slightly decreased phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol concentrations. Dietary SM supplementation reduced insulin level [MD: -0.63; 95% CI (-0.96, -0.31), p = 0.0001] and HOMA-IR [MD: -0.23; 95% CI (-0.31, -0.16), p < 0.00001] without affecting blood levels of glucose and inflammatory cytokines. CONCLUSION Overall, dietary SM supplementation had a protective effect on blood lipid profiles and insulin level, but had limited impacts on other metabolic parameters in adults without MetS. More clinical trials and basic research are required. SYSTEMATIC REVIEW REGISTRATION PROSPERO, identifier CRD42023438460.
Collapse
Affiliation(s)
- Chen-Zi Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Li-Mei Wu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Chen-Xi Zhu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Huan-Yu Du
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Guo-Xun Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fang Yang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
25
|
Toh DWK, Zhou H, Cazenave-Gassiot A, Choi H, Burla B, Bendt AK, Wenk MR, Ling LH, Kim JE. Effects of wolfberry ( Lycium barbarum) consumption on the human plasma lipidome and its association with cardiovascular disease risk factors: a randomized controlled trial of middle-aged and older adults. Front Nutr 2024; 11:1258570. [PMID: 38439925 PMCID: PMC10909962 DOI: 10.3389/fnut.2024.1258570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
Background Long-term wolfberry intake as part of a healthy dietary pattern was recognized to have beneficial vascular outcomes. Characterization of the plasma lipidome may further provide comprehensive insights into pathways underlying these cardiovascular protective effects. Objective We analyzed the plasma lipidome of subjects who adhered to a healthy dietary pattern either with or without wolfberry and investigated the associations between the plasma lipidomic profile and cardiovascular health-related indicators. Methods In this 16-week, parallel design, randomized controlled trial, middle-aged and older adults (n = 41) were provided dietary counseling and assigned to either consume or not consume 15 g of wolfberry daily. At baseline and post-intervention, plasma lipidomics was assayed, and its relationships with classical CVD risk factors, vascular health, oxidant burden, carotenoids status, body composition, and anthropometry were examined. Results From the plasma lipidome, 427 lipid species from 26 sub-classes were quantified. In the wolfberry and control groups, significant changes were prominent for 27 and 42 lipid species, respectively (P < 0.05 with > 0.2-fold change). Fold changes for seven lipid species were also markedly different between the two groups. Examining the relationships between the plasma lipidome and CVD-related risk factors, total cholesterol revealed a marked positive correlation with 13 ceramide species, while HDL-cholesterol which was notably increased with wolfberry consumption showed a positive correlation with 10 phosphatidylcholine species. Oxidant burden, as represented by plasma 8-isoprostanes, was also inversely associated with lipidomic triglycerides and ether-triglycerides (41 species) and directly associated with hexosylceramides (eight species) and sphingomyelins (six species). There were no differential associations with CVD risk detected between groups. Conclusion Characteristic alterations to the plasma lipidome were observed with healthy dietary pattern adherence and wolfberry consumption. An examination of these fluctuations suggests potential biochemical mechanisms that may mediate the antioxidant and cardiovascular protective effects of healthy dietary pattern adherence and wolfberry intake. This study was registered at clinicaltrials.gov as NCT0353584.
Collapse
Affiliation(s)
- Darel Wee Kiat Toh
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Hanzhang Zhou
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Amaury Cazenave-Gassiot
- Department of Biochemistry and Precision Medicine TRP, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Hyungwon Choi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Bo Burla
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Anne Katherin Bendt
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Markus R. Wenk
- Department of Biochemistry and Precision Medicine TRP, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Lieng Hsi Ling
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Cardiology, National University Heart Centre, Singapore, Singapore
| | - Jung Eun Kim
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore, Singapore
| |
Collapse
|
26
|
Qian X, Jia H, Wang J, He S, Yu M, Feng X, Gong Q, An Y, Wang X, Shi N, Li H, Zou Z, Li G, Chen Y. Circulating palmitoyl sphingomyelin levels predict the 10-year increased risk of cardiovascular disease death in Chinese adults: findings from the Da Qing Diabetes Study. Cardiovasc Diabetol 2024; 23:37. [PMID: 38245731 PMCID: PMC10800040 DOI: 10.1186/s12933-023-02116-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/30/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Higher levels of palmitoyl sphingomyelin (PSM, synonymous with sphingomyelin 16:0) are associated with an increased risk of cardiovascular disease (CVD) in people with diabetes. Whether circulating PSM levels can practically predict the long-term risk of CVD and all-cause death remains unclear. This study aimed to investigate whether circulating PSM is a real predictor of CVD death in Chinese adults with or without diabetes. METHODS A total of 286 and 219 individuals with and without diabetes, respectively, from the original Da Qing Diabetes Study were enrolled. Blood samples collected in 2009 were used as a baseline to assess circulating PSM levels. The outcomes of CVD and all-cause death were followed up from 2009 to 2020, and 178 participants died, including 87 deaths due to CVD. Cox proportional hazards regression was used to estimate HRs and their 95% CIs for the outcomes. RESULTS Fractional polynomial regression analysis showed a linear association between baseline circulating PSM concentration (log-2 transformed) and the risk of all-cause and CVD death (p < 0.001), but not non-CVD death (p > 0.05), in all participants after adjustment for confounders. When the participants were stratified by PSM-tertile, the highest tertile, regardless of diabetes, had a higher incidence of CVD death (41.5 vs. 14.7 and 22.2 vs. 2.9 per 1000 person-years in patients with and without diabetes, respectively, all log-rank p < 0.01). Individuals with diabetes in the highest tertile group had a higher risk of CVD death than those in the lowest tertile (HR = 2.73; 95%CI, 1.20-6.22). CONCLUSIONS Elevated PSM levels are significantly associated with a higher 10-year risk of CVD death, but not non-CVD death, in Chinese adults with diabetes. These findings suggest that PSM is a potentially useful long-term predictor of CVD death in individuals with diabetes.
Collapse
Affiliation(s)
- Xin Qian
- Endocrinology Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongmei Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinping Wang
- Department of Cardiology, Da Qing First Hospital, Da Qing, China
| | - Siyao He
- Endocrinology Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meng Yu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinxing Feng
- Endocrinology Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiuhong Gong
- Endocrinology Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yali An
- Endocrinology Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuan Wang
- Endocrinology Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Na Shi
- Endocrinology Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui Li
- Department of Cardiology, Da Qing First Hospital, Da Qing, China
| | - Zhongmei Zou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Guangwei Li
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing, China.
| | - Yanyan Chen
- Endocrinology Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
27
|
Dodangeh S, Taghizadeh H, Hosseinkhani S, Khashayar P, Pasalar P, Meybodi HRA, Razi F, Larijani B. Metabolomics signature of cardiovascular disease in patients with diabetes, a narrative review. J Diabetes Metab Disord 2023; 22:985-994. [PMID: 37975080 PMCID: PMC10638133 DOI: 10.1007/s40200-023-01256-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/19/2023] [Indexed: 11/19/2023]
Abstract
Objectives The exact underlying mechanism of developing diabetes-related cardiovascular disease (CVD) among patients with type 2 diabetes (T2D) is not clear. Metabolomics can provide a platform enabling the prediction, diagnosis, and understanding of the risk of CVD in patients with diabetes mellitus. The aim of this review is to summarize the available evidence on the relationship between metabolomics and cardiovascular diseases in patients with diabetes. Methods The literature was searched to find out studies that have investigated the relationship between the alteration of specific metabolites and cardiovascular diseases in patients with diabetes. Results Evidence proposed that changes in the metabolism of certain amino acids, lipids, and carbohydrates, independent of traditional CVD risk factors, are associated with increased CVD risk. Conclusions Metabolomics can provide a platform to enable the prediction, diagnosis, and understanding of the risk of CVD in patients with diabetes mellitus. The association of the alteration in specific metabolites with CVD may be considered in the investigations for the development of new therapeutic targets for the prevention of CVD in patients with diabetes mellitus.
Collapse
Affiliation(s)
- Salimeh Dodangeh
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hananeh Taghizadeh
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Hosseinkhani
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Pouria Khashayar
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Parvin Pasalar
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular -Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Aghaei Meybodi
- Evidence-based Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Razi
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Cukoski S, Lindemann CH, Arjune S, Todorova P, Brecht T, Kühn A, Oehm S, Strubl S, Becker I, Kämmerer U, Torres JA, Meyer F, Schömig T, Hokamp NG, Siedek F, Gottschalk I, Benzing T, Schmidt J, Antczak P, Weimbs T, Grundmann F, Müller RU. Feasibility and impact of ketogenic dietary interventions in polycystic kidney disease: KETO-ADPKD-a randomized controlled trial. Cell Rep Med 2023; 4:101283. [PMID: 37935200 PMCID: PMC10694658 DOI: 10.1016/j.xcrm.2023.101283] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/21/2023] [Accepted: 10/16/2023] [Indexed: 11/09/2023]
Abstract
Ketogenic dietary interventions (KDIs) are beneficial in animal models of autosomal-dominant polycystic kidney disease (ADPKD). KETO-ADPKD, an exploratory, randomized, controlled trial, is intended to provide clinical translation of these findings (NCT04680780). Sixty-six patients were randomized to a KDI arm (ketogenic diet [KD] or water fasting [WF]) or the control group. Both interventions induce significant ketogenesis on the basis of blood and breath acetone measurements. Ninety-five percent (KD) and 85% (WF) report the diet as feasible. KD leads to significant reductions in body fat and liver volume. Additionally, KD is associated with reduced kidney volume (not reaching statistical significance). Interestingly, the KD group exhibits improved kidney function at the end of treatment, while the control and WF groups show a progressive decline, as is typical in ADPKD. Safety-relevant events are largely mild, expected (initial flu-like symptoms associated with KD), and transient. Safety assessment is complemented by nuclear magnetic resonance (NMR) lipid profile analyses.
Collapse
Affiliation(s)
- Sadrija Cukoski
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Christoph Heinrich Lindemann
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Sita Arjune
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Rare Diseases Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases, Cologne, Germany
| | - Polina Todorova
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Theresa Brecht
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Adrian Kühn
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Simon Oehm
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Sebastian Strubl
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Ingrid Becker
- Institute of Medical Statistics and Computational Biology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Ulrike Kämmerer
- Department of Obstetrics and Gynecology, University Hospital of Würzburg, Würzburg, Germany
| | - Jacob Alexander Torres
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Franziska Meyer
- University of Cologne, Faculty of Medicine and University Hospital, Institute of Diagnostic and Interventional Radiology, Cologne, Germany
| | - Thomas Schömig
- University of Cologne, Faculty of Medicine and University Hospital, Institute of Diagnostic and Interventional Radiology, Cologne, Germany
| | - Nils Große Hokamp
- University of Cologne, Faculty of Medicine and University Hospital, Institute of Diagnostic and Interventional Radiology, Cologne, Germany
| | - Florian Siedek
- University of Cologne, Faculty of Medicine and University Hospital, Institute of Diagnostic and Interventional Radiology, Cologne, Germany
| | - Ingo Gottschalk
- University of Cologne, Faculty of Medicine and University Hospital, Division of Prenatal Medicine, Department of Obstetrics and Gynecology, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Rare Diseases Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases, Cologne, Germany
| | - Johannes Schmidt
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Bonacci GmbH, Cologne, Germany
| | - Philipp Antczak
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases, Cologne, Germany
| | - Thomas Weimbs
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Franziska Grundmann
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Rare Diseases Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases, Cologne, Germany.
| |
Collapse
|
29
|
Meade R, Chao Y, Harroun N, Li C, Hafezi S, Hsu FF, Semenkovich CF, Zayed MA. Ceramides in peripheral arterial plaque lead to endothelial cell dysfunction. JVS Vasc Sci 2023; 4:100181. [PMID: 38077163 PMCID: PMC10704331 DOI: 10.1016/j.jvssci.2023.100181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/22/2023] [Indexed: 02/12/2024] Open
Abstract
Background Peripheral arterial atheroprogression is increasingly prevalent, and is a risk factor for major limb amputations in individuals with risk factors such as diabetes. We previously demonstrated that bioactive lipids are significantly altered in arterial tissue of individuals with diabetes and advanced peripheral arterial disease. Methods Here we evaluated whether sphingolipid ceramide 18:1/16:0 (C16) is a cellular regulator in endothelial cells and peripheral tibial arterial tissue in individuals with diabetes. Results We observed that C16 is the single most elevated ceramide in peripheral arterial tissue from below the knee in individuals with diabetes (11% increase, P < .05). C16 content in tibial arterial tissue positively correlates with sphingomyelin (SPM) content in patients with and without diabetes (r2 = 0.5, P < .005; r2 = 0.17, P < .05; respectively). Tibial arteries of individuals with diabetes demonstrated no difference in CERS6 expression (encoding ceramide synthase 6; the predominate ceramide synthesis enzyme), but higher SMPD expression (encoding sphingomyelin phosphodiesterase that catalyzes ceramide synthesis from sphingomyelins; P < .05). SMPD4, but not SMPD2, was particularly elevated in maximally diseased (Max) tibial arterial segments (P < .05). In vitro, exogenous C16 caused endothelial cells (HUVECs) to have decreased proliferation (P < .03), increased apoptosis (P < .003), and decreased autophagy (P < .008). Selective knockdown of SMPD2 and SMPD4 decreased native production of C16 (P < .01 and P < .001, respectively), but only knockdown of SMPD4 rescued cellular proliferation (P < .005) following exogenous supplementation with C16. Conclusions Our findings suggest that C16 is a tissue biomarker for peripheral arterial disease severity in the setting of diabetes, and can impact endothelial cell viability and function. Clinical relevance Peripheral arterial disease and its end-stage manifestation known as chronic limb-threatening ischemia (CLTI) represent ongoing prevalent and intricate medical challenges. Individuals with diabetes have a heightened risk of developing CLTI and experiencing its complications, including wounds, ulcers, and major amputations. In the present study, we conducted a comprehensive examination of the molecular lipid composition within arterial segments from individuals with CLTI, and with and without diabetes. Our investigations unveiled a striking revelation: the sphingolipid ceramide 18:1/16:0 emerged as the predominant ceramide species that was significantly elevated in the peripheral arterial intima below the knee in patients with diabetes. Moreover, this heightened ceramide presence is associated with a marked impairment of endothelial cell function and viability. Additionally, our study revealed a concurrent elevation in the expression of sphingomyelin phosphodiesterases, enzymes responsible for catalyzing ceramide synthesis from sphingomyelins, within maximally diseased arterial segments. These findings underscore the pivotal role of ceramides and their biosynthesis enzymes in the context of CLTI, offering new insights into potential therapeutic avenues for managing this challenging disease process.
Collapse
Affiliation(s)
- Rodrigo Meade
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | - Yang Chao
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | - Nikolai Harroun
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | - Chenglong Li
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | - Shahab Hafezi
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | - Fong-Fu Hsu
- Division of Endocrinology, Lipid, and Metabolism, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Clay F. Semenkovich
- Division of Endocrinology, Lipid, and Metabolism, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Mohamed A. Zayed
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO
- Department of Surgery, Veterans Affairs St. Louis Health Care System, St. Louis, MO
- Department of Radiology, Washington University School of Medicine, St. Louis, MO
- Division of Molecular Cell Biology, Washington University School of Medicine, St. Louis, MO
- Department of Biomedical Engineering, Washington University, McKelvey School of Engineering, St. Louis, MO
| |
Collapse
|
30
|
Lidgard B, Hoofnagle AN, Zelnick LR, de Boer IH, Fretts AM, Kestenbaum BR, Lemaitre RN, Robinson-Cohen C, Bansal N. High-Density Lipoprotein Lipidomics and Mortality in CKD. Kidney Med 2023; 5:100708. [PMID: 37731962 PMCID: PMC10507644 DOI: 10.1016/j.xkme.2023.100708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023] Open
Abstract
Rationale & Objective Patients with chronic kidney disease (CKD) have dysfunctional high-density lipoprotein (HDL) particles that lack cardioprotective properties; altered lipid composition may be associated with these changes. To investigate HDL lipids as potential cardiovascular risk factors in CKD, we tested the associations of HDL ceramides, sphingomyelins, and phosphatidylcholines with mortality. Study Design We leveraged data from a longitudinal prospective cohort of participants with CKD. Setting & Participants We included participants aged greater than 21 years with CKD, excluding those on maintenance dialysis or with prior kidney transplant. Exposure HDL particles were isolated using density gradient ultracentrifugation. We quantified the relative abundance of HDL ceramides, sphingomyelins, and phosphatidylcholines via liquid chromatography tandem mass spectrometry (LC-MS/MS). Outcomes Our primary outcome was all-cause mortality. Analytical Approach We tested associations using Cox regressions adjusted for demographics, comorbid conditions, laboratory values, medication use, and highly correlated lipids with opposed effects, controlling for multiple comparisons with false discovery rates (FDR). Results There were 168 deaths over a median follow-up of 6.12 years (interquartile range, 3.71-9.32). After adjustment, relative abundance of HDL ceramides (HR, 1.22 per standard deviation; 95% CI, 1.06-1.39), sphingomyelins with long fatty acids (HR, 1.44; 95% CI, 1.05-1.98), and saturated and monounsaturated phosphatidylcholines (HR, 1.22; 95% CI, 1.06-1.41) were significantly associated with increased risk of all-cause mortality (FDR < 5%). Limitations We were unable to test associations with cardiovascular disease given limited power. HDL lipidomics may not reflect plasma lipidomics. LC-MS/MS is unable to differentiate between glucosylceramides and galactosylceramides. The cohort was comprised of research volunteers in the Seattle area with CKD. Conclusions Greater relative HDL abundance of 3 classes of lipids was associated with higher risk of all-cause mortality in CKD; sphingomyelins with very long fatty acids were associated with a lower risk. Altered lipid composition of HDL particles may be a novel cardiovascular risk factor in CKD. Plain-Language Summary Patients with chronic kidney disease have abnormal high-density lipoprotein (HDL) particles that lack the beneficial properties associated with these particles in patients with normal kidney function. To investigate if small lipid molecules found on the surface of HDL might be associated with these changes, we tested the associations of lipid molecules found on HDL with death among patients with chronic kidney disease. We found that several lipid molecules found on the surface of HDL were associated with increased risk of death among these patients. These findings suggest that lipid molecules may be risk factors for death among patients with chronic kidney disease.
Collapse
|
31
|
Hammad SM, Lopes-Virella MF. Circulating Sphingolipids in Insulin Resistance, Diabetes and Associated Complications. Int J Mol Sci 2023; 24:14015. [PMID: 37762318 PMCID: PMC10531201 DOI: 10.3390/ijms241814015] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Sphingolipids play an important role in the development of diabetes, both type 1 and type 2 diabetes, as well as in the development of both micro- and macro-vascular complications. Several reviews have been published concerning the role of sphingolipids in diabetes but most of the emphasis has been on the possible mechanisms by which sphingolipids, mainly ceramides, contribute to the development of diabetes. Research on circulating levels of the different classes of sphingolipids in serum and in lipoproteins and their importance as biomarkers to predict not only the development of diabetes but also of its complications has only recently emerged and it is still in its infancy. This review summarizes the previously published literature concerning sphingolipid-mediated mechanisms involved in the development of diabetes and its complications, focusing on how circulating plasma sphingolipid levels and the relative content carried by the different lipoproteins may impact their role as possible biomarkers both in the development of diabetes and mainly in the development of diabetic complications. Further studies in this field may open new therapeutic avenues to prevent or arrest/reduce both the development of diabetes and progression of its complications.
Collapse
Affiliation(s)
- Samar M. Hammad
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Maria F. Lopes-Virella
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC 29425, USA
| |
Collapse
|
32
|
Lidgard B, Bansal N, Zelnick LR, Hoofnagle AN, Fretts AM, Longstreth WT, Shlipak MG, Siscovick DS, Umans JG, Lemaitre RN. Evaluation of plasma sphingolipids as mediators of the relationship between kidney disease and cardiovascular events. EBioMedicine 2023; 95:104765. [PMID: 37634384 PMCID: PMC10474367 DOI: 10.1016/j.ebiom.2023.104765] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Sphingolipids are a family of circulating lipids with regulatory and signaling roles that are strongly associated with both eGFR and cardiovascular disease. Patients with chronic kidney disease (CKD) are at high risk for cardiovascular events, and have different plasma concentrations of certain plasma sphingolipids compared to patients with normal kidney function. We hypothesize that circulating sphingolipids partially mediate the associations between eGFR and cardiovascular events. METHODS We measured the circulating concentrations of 8 sphingolipids, including 4 ceramides and 4 sphingomyelins with the fatty acids 16:0, 20:0, 22:0, and 24:0, in plasma from 3,463 participants in a population-based cohort (Cardiovascular Health Study) without prevalent cardiovascular disease. We tested the adjusted mediation effects by these sphingolipids of the associations between eGFR and incident cardiovascular disease via quasi-Bayesian Monte Carlo method with 2,000 simulations, using a Bonferroni correction for significance. FINDINGS The mean (±SD) eGFR was 70 (±16) mL/min/1.73 m2; 62% of participants were women. Lower eGFR was associated with higher plasma ceramide-16:0 and sphingomyelin-16:0, and lower ceramides and sphingomyelins-20:0 and -22:0. Lower eGFR was associated with risk of incident heart failure and ischemic stroke, but not myocardial infarction. Five of eight sphingolipids partially mediated the association between eGFR and heart failure. The sphingolipids associated with the greatest proportion mediated were ceramide-16:0 (proportion mediated 13%, 95% CI 8-22%) and sphingomyelin-16:0 (proportion mediated 10%, 95% CI 5-17%). No sphingolipids mediated the association between eGFR and ischemic stroke. INTERPRETATION Plasma sphingolipids partially mediated the association between lower eGFR and incident heart failure. Altered sphingolipids metabolism may be a novel mechanism for heart failure in patients with CKD. FUNDING This study was supported by T32 DK007467 and a KidneyCure Ben J. Lipps Research Fellowship (Dr. Lidgard). Sphingolipid measurements were supported by R01 HL128575 (Dr. Lemaitre) and R01 HL111375 (Dr. Hoofnagle) from the National Heart, Lung, and Blood Institute (NHLBI).
Collapse
Affiliation(s)
- Benjamin Lidgard
- Department of Medicine, University of Washington, United States.
| | - Nisha Bansal
- Department of Medicine, University of Washington, United States
| | - Leila R Zelnick
- Department of Medicine, University of Washington, United States
| | | | - Amanda M Fretts
- Department of Medicine, University of Washington, United States
| | | | - Michael G Shlipak
- Kidney Health Research Collaborative, San Francisco Veterans Affairs Healthcare System and University of California San Francisco, United States
| | | | | | | |
Collapse
|
33
|
Tate BN, Van Guilder GP, Aly M, Spence LA, Diaz-Rubio ME, Le HH, Johnson EL, McFadden JW, Perry CA. Changes in Choline Metabolites and Ceramides in Response to a DASH-Style Diet in Older Adults. Nutrients 2023; 15:3687. [PMID: 37686719 PMCID: PMC10489641 DOI: 10.3390/nu15173687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
This feeding trial evaluated the impact of the Dietary Approaches to Stop Hypertension diet on changes in plasma choline, choline metabolites, and ceramides in obese older adults; 28 adults consumed 3oz (n = 15) or 6oz (n = 13) of beef within a standardized DASH diet for 12 weeks. Plasma choline, betaine, methionine, dimethylglycine (DMG), phosphatidylcholine (PC), lysophosphotidylcholine (LPC), sphingomyelin, trimethylamine-N-oxide (TMAO), L-carnitine, ceramide, and triglycerides were measured in fasted blood samples. Plasma LPC, sphingomyelin, and ceramide species were also quantified. In response to the study diet, with beef intake groups combined, plasma choline decreased by 9.6% (p = 0.012); DMG decreased by 10% (p = 0.042); PC decreased by 51% (p < 0.001); total LPC increased by 281% (p < 0.001); TMAO increased by 26.5% (p < 0.001); total ceramide decreased by 22.1% (p < 0.001); and triglycerides decreased by 18% (p = 0.021). All 20 LPC species measured increased (p < 0.01) with LPC 16:0 having the greatest response. Sphingomyelin 16:0, 18:0, and 18:1 increased (all p < 0.001) by 10.4%, 22.5%, and 24%, respectively. In contrast, we observed that sphingomyelin 24:0 significantly decreased by 10%. Ceramide 22:0 and 24:0 decreased by 27.6% and 10.9% (p < 0.001), respectively, and ceramide 24:1 increased by 36.8% (p = 0.013). Changes in choline and choline metabolites were in association with anthropometric and cardiometabolic outcomes. These findings show the impact of the DASH diet on choline metabolism in older adults and demonstrate the influence of diet to modify circulating LPC, sphingomyelin, and ceramide species.
Collapse
Affiliation(s)
- Brianna N. Tate
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA; (B.N.T.); (J.W.M.)
| | - Gary P. Van Guilder
- High Altitude Exercise Physiology Department, Western Colorado University, Gunnison, CO 81231, USA;
| | - Marwa Aly
- Department of Applied Health Science, Indiana University School of Public Health, Bloomington, IN 47405, USA; (M.A.); (L.A.S.)
| | - Lisa A. Spence
- Department of Applied Health Science, Indiana University School of Public Health, Bloomington, IN 47405, USA; (M.A.); (L.A.S.)
| | - M. Elena Diaz-Rubio
- Proteomic and Metabolomics Facility, Cornell University, Ithaca, NY 14853, USA;
| | - Henry H. Le
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA; (H.H.L.); (E.L.J.)
| | - Elizabeth L. Johnson
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA; (H.H.L.); (E.L.J.)
| | - Joseph W. McFadden
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA; (B.N.T.); (J.W.M.)
| | - Cydne A. Perry
- Department of Applied Health Science, Indiana University School of Public Health, Bloomington, IN 47405, USA; (M.A.); (L.A.S.)
| |
Collapse
|
34
|
Ya'ar Bar S, Pintel N, Abd Alghne H, Khattib H, Avni D. The therapeutic potential of sphingolipids for cardiovascular diseases. Front Cardiovasc Med 2023; 10:1224743. [PMID: 37608809 PMCID: PMC10440740 DOI: 10.3389/fcvm.2023.1224743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/17/2023] [Indexed: 08/24/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide and Inflammation plays a critical role in the development of CVD. Despite considerable progress in understanding the underlying mechanisms and various treatment options available, significant gaps in therapy necessitate the identification of novel therapeutic targets. Sphingolipids are a family of lipids that have gained attention in recent years as important players in CVDs and the inflammatory processes that underlie their development. As preclinical studies have shown that targeting sphingolipids can modulate inflammation and ameliorate CVDs, targeting sphingolipids has emerged as a promising therapeutic strategy. This review discusses the current understanding of sphingolipids' involvement in inflammation and cardiovascular diseases, the existing therapeutic approaches and gaps in therapy, and explores the potential of sphingolipids-based drugs as a future avenue for CVD treatment.
Collapse
Affiliation(s)
- Sapir Ya'ar Bar
- Department of Natural Compound, Nutrition, and Health, MIGAL, Kiryat Shmona, Israel
| | - Noam Pintel
- Department of Natural Compound, Nutrition, and Health, MIGAL, Kiryat Shmona, Israel
| | - Hesen Abd Alghne
- Department of Natural Compound, Nutrition, and Health, MIGAL, Kiryat Shmona, Israel
- Tel-Hai College Department of Biotechnology, Kiryat Shmona, Israel
| | - Hamdan Khattib
- Department of Natural Compound, Nutrition, and Health, MIGAL, Kiryat Shmona, Israel
- Department of Gastroenterology and Hepatology, Tel Aviv University Sackler Faculty of Medicine, Tel Aviv, Israel
| | - Dorit Avni
- Department of Natural Compound, Nutrition, and Health, MIGAL, Kiryat Shmona, Israel
- Tel-Hai College Department of Biotechnology, Kiryat Shmona, Israel
| |
Collapse
|
35
|
Miao G, Fiehn O, Malloy KM, Zhang Y, Lee ET, Howard BV, Zhao J. Longitudinal lipidomic signatures of all-cause and CVD mortality in American Indians: findings from the Strong Heart Study. GeroScience 2023; 45:2669-2687. [PMID: 37055600 PMCID: PMC10651623 DOI: 10.1007/s11357-023-00793-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/05/2023] [Indexed: 04/15/2023] Open
Abstract
Dyslipidemia is an independent and modifiable risk factor for aging and age-related disorders. Routine lipid panel cannot capture all individual lipid species in blood (i.e., blood lipidome). To date, a comprehensive assessment of the blood lipidome associated with mortality is lacking in large-scale community-dwelling individuals, especially in a longitudinal setting. Using liquid chromatograph-mass spectrometry, we repeatedly measured individual lipid species in 3,821 plasma samples collected at two visits (~ 5.5 years apart) from 1,930 unique American Indians in the Strong Heart Family Study. We first identified baseline lipids associated with risks for all-cause mortality and CVD mortality (mean follow-up period: 17.8 years) in American Indians, followed by replication of top hits in European Caucasians in the Malmö Diet and Cancer-Cardiovascular Cohort (n = 3,943, mean follow-up period: 23.7 years). The model adjusted age, sex, BMI, smoking, hypertension, diabetes, and LDL-c at baseline. We then examined the associations between changes in lipid species and risk of mortality. Multiple testing was controlled by false discovery rate (FDR). We found that baseline levels and longitudinal changes of multiple lipid species, e.g., cholesterol esters, glycerophospholipids, sphingomyelins, and triacylglycerols, were significantly associated with risks of all-cause or CVD mortality. Many lipids identified in American Indians could be replicated in European Caucasians. Network analysis identified differential lipid networks associated with risk of mortality. Our findings provide novel insight into the role of dyslipidemia in disease mortality and offer potential biomarkers for early prediction and risk reduction in American Indians and other ethnic groups.
Collapse
Affiliation(s)
- Guanhong Miao
- Department of Epidemiology, College of Public Health & Health Professions and College of Medicine, University of Florida, 2004 Mowry Rd, Gainesville, FL, 32610, USA
- Center for Genetic Epidemiology and Bioinformatics, University of Florida, Gainesville, FL, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California-Davis, Davis, CA, USA
| | - Kimberly M Malloy
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ying Zhang
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Elisa T Lee
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Jinying Zhao
- Department of Epidemiology, College of Public Health & Health Professions and College of Medicine, University of Florida, 2004 Mowry Rd, Gainesville, FL, 32610, USA.
- Center for Genetic Epidemiology and Bioinformatics, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
36
|
Li Z, He M, Chen G, Souaiaia T, Worgall TS, Jiang XC. Effect of Total SMS Activity on LDL Catabolism in Mice. Arterioscler Thromb Vasc Biol 2023; 43:1251-1261. [PMID: 37128925 PMCID: PMC10330209 DOI: 10.1161/atvbaha.123.319031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Sphingomyelin (SM) and cholesterol are 2 key lipid partners on cell membranes and on lipoproteins. Many studies have indicated the influence of cholesterol on SM metabolism. This study examined the influence of SM biosynthesis on cholesterol metabolism. METHODS Inducible global Sms1 KO (knockout)/global Sms2 KO mice were prepared to evaluate the effect of whole-body SM biosynthesis deficiency on lipoprotein metabolism. Tissue cholesterol, SM, ceramide, and glucosylceramide levels were measured. Triglyceride production rate and LDL (low-density lipoprotein) catabolism were measured. Lipid rafts were isolated and LDL receptor mass and function were evaluated. Also, the effects of exogenous sphingolipids on hepatocytes were investigated. RESULTS We found that total SMS (SM synthase) depletion significantly reduced plasma SM levels. Also, the total deficiency significantly induced plasma cholesterol, apoB (apolipoprotein B), and apoE (apolipoprotein E) levels. Importantly, total SMS deficiency, but not SMS2 deficiency, dramatically decreased LDL receptors in the liver and attenuated LDL uptake through the receptor. Further, we found that total SMS deficiency greatly reduced LDL receptors in the lipid rafts, which contained significantly lower SM and significantly higher glucosylceramide, as well as cholesterol. Furthermore, we treated primary hepatocytes and Huh7 cells (a human hepatoma cell line) with SM, ceramide, or glucosylceramide, and we found that only SM could upregulate LDL receptor levels in a dose-dependent fashion. CONCLUSIONS Whole-body SM biosynthesis plays an important role in LDL cholesterol catabolism. The total SMS deficiency, but not SMS2 deficiency, reduces LDL uptake and causes LDL cholesterol accumulation in the circulation. Given the fact that serum SM level is a risk factor for cardiovascular diseases, inhibiting SMS2 but not SMS1 should be the desirable approach.
Collapse
Affiliation(s)
- Zhiqiang Li
- Department of Cell Biology, State University of New York, Downstate Health Sciences University, Brooklyn (Z.L., M.H., G.C., T.S., X.-C.J.)
- Molecular and Cellular Cardiology Program, VA New York Harbor Healthcare System (Z.L., X.-C.J.)
| | - Mulin He
- Department of Cell Biology, State University of New York, Downstate Health Sciences University, Brooklyn (Z.L., M.H., G.C., T.S., X.-C.J.)
| | - Guangzhi Chen
- Department of Cell Biology, State University of New York, Downstate Health Sciences University, Brooklyn (Z.L., M.H., G.C., T.S., X.-C.J.)
| | - Tade Souaiaia
- Department of Cell Biology, State University of New York, Downstate Health Sciences University, Brooklyn (Z.L., M.H., G.C., T.S., X.-C.J.)
| | - Tilla S Worgall
- Department of Pathology and Cell Biology, Columbia University, New York (T.S.W.)
| | - Xian-Cheng Jiang
- Department of Cell Biology, State University of New York, Downstate Health Sciences University, Brooklyn (Z.L., M.H., G.C., T.S., X.-C.J.)
- Molecular and Cellular Cardiology Program, VA New York Harbor Healthcare System (Z.L., X.-C.J.)
| |
Collapse
|
37
|
Sojo L, Santos-González E, Riera L, Aguilera A, Barahona R, Pellicer P, Buxó M, Mayneris-Perxachs J, Fernandez-Balsells M, Fernández-Real JM. Plasma Lipidomics Profiles Highlight the Associations of the Dual Antioxidant/Pro-oxidant Molecules Sphingomyelin and Phosphatidylcholine with Subclinical Atherosclerosis in Patients with Type 1 Diabetes. Antioxidants (Basel) 2023; 12:antiox12051132. [PMID: 37237999 DOI: 10.3390/antiox12051132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Here, we report on our study of plasma lipidomics profiles of patients with type 1 diabetes (T1DM) and explore potential associations. One hundred and seven patients with T1DM were consecutively recruited. Ultrasound imaging of peripheral arteries was performed using a high image resolution B-mode ultrasound system. Untargeted lipidomics analysis was performed using UHPLC coupled to qTOF/MS. The associations were evaluated using machine learning algorithms. SM(32:2) and ether lipid species (PC(O-30:1)/PC(P-30:0)) were significantly and positively associated with subclinical atherosclerosis (SA). This association was further confirmed in patients with overweight/obesity (specifically with SM(40:2)). A negative association between SA and lysophosphatidylcholine species was found among lean subjects. Phosphatidylcholines (PC(40:6) and PC(36:6)) and cholesterol esters (ChoE(20:5)) were associated positively with intima-media thickness both in subjects with and without overweight/obesity. In summary, the plasma antioxidant molecules SM and PC differed according to the presence of SA and/or overweight status in patients with T1DM. This is the first study showing the associations in T1DM, and the findings may be useful in the targeting of a personalized approach aimed at preventing cardiovascular disease in these patients.
Collapse
Affiliation(s)
- Lidia Sojo
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta Hospital, 17007 Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), 17007 Girona, Spain
| | - Elena Santos-González
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta Hospital, 17007 Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), 17007 Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Lídia Riera
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta Hospital, 17007 Girona, Spain
| | - Alex Aguilera
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta Hospital, 17007 Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), 17007 Girona, Spain
- Department of Medical Sciences, School of Medicine, 17003 Girona, Spain
| | - Rebeca Barahona
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta Hospital, 17007 Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), 17007 Girona, Spain
- Department of Medical Sciences, School of Medicine, 17003 Girona, Spain
| | - Paula Pellicer
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta Hospital, 17007 Girona, Spain
| | - Maria Buxó
- Girona Biomedical Research Institute (IDIBGI), 17007 Girona, Spain
| | - Jordi Mayneris-Perxachs
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta Hospital, 17007 Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), 17007 Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Mercè Fernandez-Balsells
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta Hospital, 17007 Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), 17007 Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Department of Medical Sciences, School of Medicine, 17003 Girona, Spain
| | - José-Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta Hospital, 17007 Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), 17007 Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Department of Medical Sciences, School of Medicine, 17003 Girona, Spain
| |
Collapse
|
38
|
Effect of Total Sphingomyelin Synthase Activity on Low Density Lipoprotein Catabolism in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.527088. [PMID: 36798262 PMCID: PMC9934588 DOI: 10.1101/2023.02.03.527088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Background Sphingomyelin (SM) and cholesterol are two key lipid partners on cell membranes and on lipoproteins. Many studies have indicated the influence of cholesterol on SM metabolism. This study examined the influence of SM biosynthesis on cholesterol metabolism. Methods Inducible global Sms1 KO/global Sms2 KO mice were prepared to evaluate the effect of whole-body SM biosynthesis deficiency on lipoprotein metabolism. Tissue cholesterol, SM, ceramide, and glucosylceramide levels were measured. TG production rate and LDL catabolism were measured. Lipid rafts were isolated and LDL receptor mass and function were evaluated. Also, the effects of exogenous sphingolipids on hepatocytes were investigated. Results We found that total SMS depletion significantly reduced plasma SM levels. Also, the total deficiency significantly induced plasma cholesterol, apoB, and apoE levels. Importantly, total SMS deficiency, but not SMS2 deficiency, dramatically decreased LDL receptors in the liver and attenuated LDL uptake through the receptor. Further, we found that total SMS deficiency greatly reduced LDL receptors in the lipid rafts which contained significantly lower SM and significantly higher glucosylceramide as well as cholesterol. Furthermore, we treated primary hepatocytes and Huh7 cells (a human hepatoma cell line) with SM, ceramide, or glucosylceramide, and we found that only SM could up-regulate LDL receptor levels in a dose-dependent fashion. Conclusions Whole-body SM biosynthesis plays an important role in LDL-cholesterol catabolism. The total SMS deficiency, but not SMS2 deficiency, reduces LDL uptake and causes LDL-cholesterol accumulation in the circulation. Given the fact that serum SM level is a risk factor for cardiovascular diseases, inhibiting SMS2 but not SMS1 should be the desirable approach. Graphic Abstract
Collapse
|
39
|
Monteiro JP, Ferreira HB, Melo T, Flanagan C, Urbani N, Neves J, Domingues P, Domingues MR. The plasma phospholipidome of the bottlenose dolphin ( Tursiops truncatus) is modulated by both sex and developmental stage. Mol Omics 2023; 19:35-47. [PMID: 36314173 DOI: 10.1039/d2mo00202g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lipidomics represent a valid complementary tool to the biochemical analysis of plasma in humans. However, in cetaceans, these tools have been unexplored. Here, we evaluated how the plasma lipid composition of Tursiops truncatus is modulated by developmental stage and sex, aiming at a potential use of lipidomics in integrated strategies to monitor cetacean health. We characterized the fatty acid profile and detected a total of 26 fatty acids in T. truncatus plasma. The most abundant fatty acids were palmitic acid (C16:0), stearic acid (C18:0) and oleic acid (C18:1n-9). Interestingly, there are consistent differences between the fatty acid profile of mature female and mature male specimens. Phospholipidome analysis identified 320 different lipid species belonging to phosphatidylcholine (PC, 105 lipid species), lysophosphatidylcholine (42), phosphatidylethanolamine (PE, 67), lysophosphatidylethanolamine (18), phosphatidylglycerol (14), lysophosphatidylglycerol (8), phosphatidylinositol (14), lysophosphatidylinositol (2), phosphatidylserine (3), sphingomyelin (45) and ceramides (2) classes. The statistical analysis of the phospholipidome showed that its composition allows discriminating mature animals between sexes and mature males from immature males. Notably, discrimination between sexes is mainly determined by the contents of PE plasmalogens and lysophospholipids (LPC and LPE), while the differences between mature and immature male animals were mainly determined by the levels of PC lipids. This is the first time that a correlation between developmental stage and sex and the lipid composition of the plasma has been established in cetaceans. Being able to discern between age and sex-related changes is an encouraging step towards using these tools to also detect differences related to disease/dysfunction processes.
Collapse
Affiliation(s)
- João P Monteiro
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal. .,CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Helena B Ferreira
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal. .,CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Tânia Melo
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal. .,CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | | | | | | | - Pedro Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal. .,CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal. .,CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
40
|
Di Pietro P, Izzo C, Abate AC, Iesu P, Rusciano MR, Venturini E, Visco V, Sommella E, Ciccarelli M, Carrizzo A, Vecchione C. The Dark Side of Sphingolipids: Searching for Potential Cardiovascular Biomarkers. Biomolecules 2023; 13:168. [PMID: 36671552 PMCID: PMC9855992 DOI: 10.3390/biom13010168] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/31/2022] [Accepted: 01/11/2023] [Indexed: 01/14/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death and illness in Europe and worldwide, responsible for a staggering 47% of deaths in Europe. Over the past few years, there has been increasing evidence pointing to bioactive sphingolipids as drivers of CVDs. Among them, most studies place emphasis on the cardiovascular effect of ceramides and sphingosine-1-phosphate (S1P), reporting correlation between their aberrant expression and CVD risk factors. In experimental in vivo models, pharmacological inhibition of de novo ceramide synthesis averts the development of diabetes, atherosclerosis, hypertension and heart failure. In humans, levels of circulating sphingolipids have been suggested as prognostic indicators for a broad spectrum of diseases. This article provides a comprehensive review of sphingolipids' contribution to cardiovascular, cerebrovascular and metabolic diseases, focusing on the latest experimental and clinical findings. Cumulatively, these studies indicate that monitoring sphingolipid level alterations could allow for better assessment of cardiovascular disease progression and/or severity, and also suggest them as a potential target for future therapeutic intervention. Some approaches may include the down-regulation of specific sphingolipid species levels in the circulation, by inhibiting critical enzymes that catalyze ceramide metabolism, such as ceramidases, sphingomyelinases and sphingosine kinases. Therefore, manipulation of the sphingolipid pathway may be a promising strategy for the treatment of cardio- and cerebrovascular diseases.
Collapse
Affiliation(s)
- Paola Di Pietro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Carmine Izzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Angela Carmelita Abate
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Paola Iesu
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Maria Rosaria Rusciano
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | | | - Valeria Visco
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Eduardo Sommella
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Albino Carrizzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
- Vascular Physiopathology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
- Vascular Physiopathology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy
| |
Collapse
|
41
|
Surendran A, Ismail U, Atefi N, Bagchi AK, Singal PK, Shah A, Aliani M, Ravandi A. Lipidomic Predictors of Coronary No-Reflow. Metabolites 2023; 13:79. [PMID: 36677004 PMCID: PMC9861202 DOI: 10.3390/metabo13010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
The ‘no-reflow’ phenomenon (NRP) after primary percutaneous coronary intervention (PCI) is a serious complication among acute ST-segment elevation myocardial infarction (STEMI) patients. Herein, a comprehensive lipidomics approach was used to quantify over 300 distinct molecular species in circulating plasma from 126 patients with STEMI before and after primary PCI. Our analysis showed that three lipid classes: phosphatidylcholine (PC), alkylphosphatidylcholine (PC(O)), and sphingomyelin (SM), were significantly elevated (p < 0.05) in no-reflow patients before primary PCI. The levels of individual fatty acids and total fatty acid levels were significantly lower (p < 0.05) in no-reflow subjects after PCI. The grouping of patients based on ECG ST-segment resolution (STR) also demonstrated the same trend, confirming the possible role of these differential lipids in the setting of no-reflow. Sphingomyelin species, SM 41:1 and SM 41:2, was invariably positively correlated with corrected TIMI frame count (CTFC) at pre-PCI and post-PCI. The plasma levels of SM 42:1 exhibited an inverse association (p < 0.05) consistently with tumor necrosis factor-alpha (TNF-α) at pre-PCI and post-PCI. In conclusion, we identified plasma lipid profiles that distinguish individuals at risk of no-reflow and provided novel insights into how dyslipidemia may contribute to NRP after primary PCI.
Collapse
Affiliation(s)
- Arun Surendran
- Cardiovascular Lipidomics Laboratory, St. Boniface Hospital, Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
- Mass Spectrometry and Proteomics Core Facility, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Umar Ismail
- Section of Cardiology, Department of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Negar Atefi
- Cardiovascular Lipidomics Laboratory, St. Boniface Hospital, Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Ashim K. Bagchi
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72204, USA
| | - Pawan K. Singal
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Ashish Shah
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
- Section of Cardiology, Department of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Michel Aliani
- Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Amir Ravandi
- Cardiovascular Lipidomics Laboratory, St. Boniface Hospital, Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
- Section of Cardiology, Department of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
42
|
Padilha M, Ferreira ALL, Normando P, Freire SDSR, Fiamoncini J, Brennan L, Yin X, Kac G. Prepregnancy Body Mass Index and Lipoprotein Fractions are Associated with Changes in Women's Serum Metabolome from Late Pregnancy to the First Months of Postpartum. J Nutr 2023; 153:56-65. [PMID: 36913479 DOI: 10.1016/j.tjnut.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Pregnancy and postpartum are periods of intense changes in women's metabolism. The knowledge of the metabolites and maternal factors underlying these changes is limited. OBJECTIVES We aimed to investigate the maternal factors that could influence serum metabolome changes from late pregnancy to the first months of postpartum. METHODS Sixty-eight healthy women from a Brazilian prospective cohort were included. Maternal blood and general characteristics were collected during pregnancy (28-35 wk) and postpartum (27-45 d). A targeted metabolomics approach was applied to quantify 132 serum metabolites, including amino acids, biogenic amines, acylcarnitines, lysophosphatidylcholines (LPC), diacyl phosphatidylcholines (PC), alkyl:acyl phosphatidylcholines (PC-O), sphingomyelins with (SM) and without hydroxylation [SM(OH)], and hexoses. Metabolome changes from pregnancy to postpartum were measured as log2 fold change (log2FC), and simple linear regressions were employed to evaluate associations between maternal variables and metabolite log2FC. Multiple comparison-adjusted P values of < 0.05 were considered significant. RESULTS Of 132 metabolites quantified in serum, 90 changed from pregnancy to postpartum. Most metabolites belonging to PC and PC-O classes decreased, whereas most LPC, acylcarnitines, biogenic amines, and a few amino acids increased in postpartum. Maternal prepregnancy body mass index (ppBMI) showed positive associations with leucine and proline. A clear opposite change pattern was observed for most metabolites across ppBMI categories. Few phosphatidylcholines were decreased in women with normal ppBMI, while an increase was observed in women with obesity. Similarly, women with high postpartum levels of total cholesterol, LDL cholesterol, and non-HDL cholesterol showed increased sphingomyelins, whereas a decrease was observed for women with lower levels of those lipoproteins. CONCLUSIONS The results revealed several maternal serum metabolomic changes from pregnancy to postpartum, and the maternal ppBMI and plasma lipoproteins were associated with these changes. We highlight the importance of the nutritional care of women prepregnancy to improve their metabolic risk profile.
Collapse
Affiliation(s)
- Marina Padilha
- Department of Social and Applied Nutrition, Federal University of Rio de Janeiro, Josué de Castro Nutrition Institute, Rio de Janeiro, Brazil
| | - Ana Lorena Lima Ferreira
- Department of Social and Applied Nutrition, Federal University of Rio de Janeiro, Josué de Castro Nutrition Institute, Rio de Janeiro, Brazil
| | - Paula Normando
- Department of Social and Applied Nutrition, Federal University of Rio de Janeiro, Josué de Castro Nutrition Institute, Rio de Janeiro, Brazil
| | - Samary da Silva Rosa Freire
- Department of Social and Applied Nutrition, Federal University of Rio de Janeiro, Josué de Castro Nutrition Institute, Rio de Janeiro, Brazil
| | - Jarlei Fiamoncini
- Food Research Center, Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lorraine Brennan
- School of Agriculture and Food Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Xiaofei Yin
- School of Agriculture and Food Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Gilberto Kac
- Department of Social and Applied Nutrition, Federal University of Rio de Janeiro, Josué de Castro Nutrition Institute, Rio de Janeiro, Brazil.
| |
Collapse
|
43
|
Liu Y, Zhao W, Lu Y, Zhao Y, Zhang Y, Dai M, Hai S, Ge N, Zhang S, Huang M, Liu X, Li S, Yue J, Lei P, Dong B, Dai L, Dong B. Systematic metabolic characterization of mental disorders reveals age-related metabolic disturbances as potential risk factors for depression in older adults. MedComm (Beijing) 2022; 3:e165. [PMID: 36204590 PMCID: PMC9523679 DOI: 10.1002/mco2.165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/01/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Mental disorders are associated with dysregulated metabolism, but comprehensive investigations of their metabolic similarities and differences and their clinical relevance are few. Here, based on the plasma metabolome and lipidome of subcohort1, comprising 100 healthy participants, 55 cases with anxiety, 52 persons with depression, and 41 individuals with comorbidity, which are from WCHAT, a perspective cohort study of community-dwelling older adults aged over 50, multiple metabolites as potential risk factors of mental disorders were identified. Furthermore, participants with mental illnesses were classified into three subtypes (S1, S2, and S3) by unsupervised classification with lipidomic data. Among them, S1 showed higher triacylglycerol and lower sphingomyelin, while S2 displayed opposite features. The metabolic profile of S3 was like that of the normal group. Compared with S3, individuals in S1 and S2 had worse quality of life, and suffered more from sleep and cognitive disorders. Notably, an assessment of 6,467 individuals from the WCHAT showed an age-related increase in the incidence of depression. Seventeen depression-related metabolites were significantly correlated with age, which were validated in an independent subcohort2. Collectively, this work highlights the clinical relevance of metabolic perturbation in mental disorders, and age-related metabolic disturbances may be a bridge-linking aging and depressive.
Collapse
Affiliation(s)
- Yu Liu
- National Clinical Research Center for Geriatrics and Department of General PracticeState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Wanyu Zhao
- National Clinical Research Center for Geriatrics and Department of General PracticeState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Ying Lu
- National Clinical Research Center for Geriatrics and Department of General PracticeState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yunli Zhao
- Department of Health Research Methods, Evidence, and ImpactMcMaster UniversityHamiltonOntarioCanada
| | - Yan Zhang
- National Clinical Research Center for Geriatrics and Department of General PracticeState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Miao Dai
- National Clinical Research Center for Geriatrics and Department of General PracticeState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Shan Hai
- National Clinical Research Center for Geriatrics and Department of General PracticeState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Ning Ge
- National Clinical Research Center for Geriatrics and Department of General PracticeState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Shuting Zhang
- Department of Neurology, West China HospitalSichuan UniversityChengduChina
| | - Mingjin Huang
- The Third Hospital of MianyangSichuan Mental Health CenterMianyangChina
| | - Xiaohui Liu
- School of Life SciencesTsinghua UniversityBeijingChina
| | - Shuangqing Li
- National Clinical Research Center for Geriatrics and Department of General PracticeState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Jirong Yue
- National Clinical Research Center for Geriatrics and Department of General PracticeState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Peng Lei
- National Clinical Research Center for Geriatrics and Department of General PracticeState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Biao Dong
- National Clinical Research Center for Geriatrics and Department of General PracticeState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and Department of General PracticeState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Birong Dong
- National Clinical Research Center for Geriatrics and Department of General PracticeState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
44
|
Functional Association of miR-133b and miR-21 Through Novel Gene Targets ATG5, LRP6 and SGPP1 in Coronary Artery Disease. Mol Diagn Ther 2022; 26:655-664. [PMID: 36197604 DOI: 10.1007/s40291-022-00615-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Atherosclerosis, a progressive manifestation of coronary artery disease, has been observed to be regulated by microRNAs (miRNAs) targeting various protein-coding genes involved in several pathophysiological events of coronary artery disease. OBJECTIVE In our previous report, we identified differential expression profiles of candidate miRNAs, miR-133b and miR-21, in patients with coronary artery disease as compared with controls, suggesting their possible implication in the pathophysiology of coronary artery disease. To better understand the functional role of these miRNAs, we sought to predict and validate their target genes while assessing the expression pattern of these genes in patients with coronary artery disease, as well as in macrophages. METHODS Potential target genes of miR-133b and miR-21 were predicted bioinformatically followed by validation through the identification of their expression at the protein level in patients with coronary artery disease (n-30), as well as in macrophages treated with respective miRNA inhibitors (antagomiRs), through immunoblotting. RESULTS SGPP1, a gene associated with the sphingolipid pathway, was predicted to be a potential target gene of miR-133b while ATG5 and LRP6 were target genes of miR-21 while being associated with autophagy and Wnt signalling pathways, respectively. SGPP1 was observed to be upregulated significantly (p = 0.019) by 2.07-fold, whereas ATG5 and LRP6 were found to be downregulated (p = 0.026 and 0.007, respectively) by 3.28-fold and 8.46-fold, respectively, in patients with coronary artery disease as compared with controls. Expression patterns of all the genes were also found to be modulated when cells were treated with respective miRNA inhibitors. CONCLUSIONS Results from the present study suggest that SGPP1, ATG5 and LRP6, target genes of miR-133b and miR-21, may serve as potential therapeutic hotspots in the management of coronary artery disease, which undoubtedly merit further experimental confirmation.
Collapse
|
45
|
Yang F, Chen G. The nutritional functions of dietary sphingomyelin and its applications in food. Front Nutr 2022; 9:1002574. [PMID: 36337644 PMCID: PMC9626766 DOI: 10.3389/fnut.2022.1002574] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Sphingolipids are common structural components of cell membranes and are crucial for cell functions in physiological and pathophysiological conditions. Sphingomyelin and its metabolites, such as sphingoid bases, ceramide, ceramide-1-phosphate, and sphingosine-1-phosphate, play signaling roles in the regulation of human health. The diverse structures of sphingolipids elicit various functions in cellular membranes and signal transduction, which may affect cell growth, differentiation, apoptosis, and maintain biological activities. As nutrients, dietary sphingomyelin and its metabolites have wide applications in the food and pharmaceutical industry. In this review, we summarized the distribution, classifications, structures, digestion, absorption and metabolic pathways of sphingolipids, and discussed the nutritional functioning of sphingomyelin in chronic metabolic diseases. The possible implications of dietary sphingomyelin in the modern food preparations including dairy products and infant formula, skin improvement, delivery system and oil organogels are also evaluated. The production of endogenous sphingomyelin is linked to pathological changes in obesity, diabetes, and atherosclerosis. However, dietary supplementations of sphingomyelin and its metabolites have been shown to maintain cholesterol homeostasis and lipid metabolism, and to prevent or treat these diseases. This seemly paradoxical phenomenon shows that dietary sphingomyelin and its metabolites are candidates for food additives and functional food development for the prevention and treatment of chronic metabolic diseases in humans.
Collapse
Affiliation(s)
- Fang Yang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Guoxun Chen
- Department of Nutrition, The University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
46
|
Zarini S, Brozinick JT, Zemski Berry KA, Garfield A, Perreault L, Kerege A, Bui HH, Sanders P, Siddall P, Kuo MS, Bergman BC. Serum dihydroceramides correlate with insulin sensitivity in humans and decrease insulin sensitivity in vitro. J Lipid Res 2022; 63:100270. [PMID: 36030929 PMCID: PMC9508341 DOI: 10.1016/j.jlr.2022.100270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/04/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022] Open
Abstract
Serum ceramides, especially C16:0 and C18:0 species, are linked to CVD risk and insulin resistance, but details of this association are not well understood. We performed this study to quantify a broad range of serum sphingolipids in individuals spanning the physiologic range of insulin sensitivity and to determine if dihydroceramides cause insulin resistance in vitro. As expected, we found that serum triglycerides were significantly greater in individuals with obesity and T2D compared with athletes and lean individuals. Serum ceramides were not significantly different within groups but, using all ceramide data relative to insulin sensitivity as a continuous variable, we observed significant inverse relationships between C18:0, C20:0, and C22:0 species and insulin sensitivity. Interestingly, we found that total serum dihydroceramides and individual species were significantly greater in individuals with obesity and T2D compared with athletes and lean individuals, with C18:0 species showing the strongest inverse relationship to insulin sensitivity. Finally, we administered a physiological mix of dihydroceramides to primary myotubes and found decreased insulin sensitivity in vitro without changing the overall intracellular sphingolipid content, suggesting a direct effect on insulin resistance. These data extend what is known regarding serum sphingolipids and insulin resistance and show the importance of serum dihydroceramides to predict and promote insulin resistance in humans.
Collapse
Affiliation(s)
- Simona Zarini
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Joseph T Brozinick
- Division of Eli Lilly and Co., Lilly Research Laboratories, Indianapolis, Indiana, USA
| | - Karin A Zemski Berry
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Amanda Garfield
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Leigh Perreault
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Anna Kerege
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Hai Hoang Bui
- Division of Eli Lilly and Co., Lilly Research Laboratories, Indianapolis, Indiana, USA
| | - Phil Sanders
- Division of Eli Lilly and Co., Lilly Research Laboratories, Indianapolis, Indiana, USA
| | - Parker Siddall
- Division of Eli Lilly and Co., Lilly Research Laboratories, Indianapolis, Indiana, USA
| | - Ming Shang Kuo
- Division of Eli Lilly and Co., Lilly Research Laboratories, Indianapolis, Indiana, USA
| | - Bryan C Bergman
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
47
|
Lake JA, Yan Y, Dekkers JCM, Qiu J, Brannick EM, Abasht B. Identification of circulating metabolites associated with wooden breast and white striping. PLoS One 2022; 17:e0274208. [PMID: 36156596 PMCID: PMC9512222 DOI: 10.1371/journal.pone.0274208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 08/23/2022] [Indexed: 01/10/2023] Open
Abstract
Current diagnostic methods for wooden breast and white striping, common breast muscle myopathies of modern commercial broiler chickens, rely on subjective examinations of the pectoralis major muscle, time-consuming microscopy, or expensive imaging technologies. Further research on these disorders would benefit from more quantitative and objective measures of disease severity that can be used in live birds. To this end, we utilized untargeted metabolomics alongside two statistical approaches to evaluate plasma metabolites associated with wooden breast and white striping in 250 male commercial broiler chickens. First, mixed linear modeling was employed to identify metabolites with a significant association with these muscle disorders and found 98 metabolites associated with wooden breast and 44 metabolites associated with white striping (q-value < 0.05). Second, a support vector machine was constructed using stepwise feature selection to determine the smallest subset of metabolites with the highest categorization accuracy for wooden breast. The final support vector machine achieved 94% accuracy using only 6 metabolites. The metabolite 3-methylhistidine, which is often used as an index of myofibrillar breakdown in skeletal muscle, was the top metabolite for both wooden breast and white striping in our mixed linear model and was also the metabolite with highest marginal prediction accuracy (82%) for wooden breast in our support vector machine. Overall, this study identified a candidate set of metabolites for an objective measure of wooden breast or white striping severity in live birds and expanded our understanding of these muscle disorders.
Collapse
Affiliation(s)
- Juniper A. Lake
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, United States of America
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Yiren Yan
- Institute for Financial Services Analytics, University of Delaware, Newark, Delaware, United States of America
| | - Jack C. M. Dekkers
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - Jing Qiu
- Department of Applied Economics and Statistics, University of Delaware, Newark, Delaware, United States of America
| | - Erin M. Brannick
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Behnam Abasht
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, United States of America
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware, United States of America
| |
Collapse
|
48
|
Chen J, Cao D, Jiang S, Liu X, Pan W, Cui H, Yang W, Liu Z, Jin J, Zhao Z. Triterpenoid saponins from Ilex pubescens promote blood circulation in blood stasis syndrome by regulating sphingolipid metabolism and the PI3K/AKT/eNOS signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154242. [PMID: 35728385 DOI: 10.1016/j.phymed.2022.154242] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 05/27/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Blood stasis syndrome (BSS) is a severe disorder involving disturbances in glycerophosphocholine metabolism. Ilex pubescens (IP) can regulate the levels of lipids, such as lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE); however, the main active constituent of IP and its corresponding mechanism in BSS treatment are still unclear. PURPOSE To explore the mechanisms by which triterpenoid saponins of IP (IPTS) promote blood circulation using system pharmacology-based approaches. METHODS Sprague-Dawley (SD) rat BSS model was prepared by oral administration of IPTS for 7 days followed by adrenaline hydrochloride injection before immersion in ice water. Coagulation parameters in plasma and thromboxane B2 (TXB2), endothelin (ET) and 6-keto-PGF1α in serum were measured. The possible influence on abdominal aortas was evaluated by histopathology assessment. Human vein endothelial cells (HUVECs) were incubated with ox-LDL, and the effects of IPTS on cell viability and LDH release were investigated. UPLC-QTOF-MS/MS was used for metabolic profile analysis of lipid-soluble components in rat plasma and intracellular metabolites in HUVECs. Network pharmacology was used to predict the relevant targets and model pathways of BSS and the main components of IPTS. Molecular docking, molecular dynamics (MD) simulation and biochemical assays were used to predict molecular interactions between the active components of IPTS and target proteins. RT-PCR was used to detect the mRNA level of target proteins. Western blotting and immunohistochemistry (IHC) were used to verify the mechanisms by which IPTS promotes blood circulation in BSS. RESULTS IPTS improved blood biochemical function in the process of BSS and played a role in vascular protection and maintenance of the normal morphology of blood vessels. Furthermore, metabolite pathways involved in steroid biosynthesis and sphingolipid metabolism were significantly perturbed. Both metabolomics analysis and network pharmacology results showed that IPTS ameliorates vascular injury and that lipid accumulation may be mediated by PI3K/AKT signaling pathway activation. MD simulation and enzyme inhibitory activity results suggested that the main components of IPTS can form stable complexes with PI3K, AKT and eNOS and that the complexes have significant binding affinity. PI3K, AKT, p-AKT, and eNOS mRNA and protein levels were considerably elevated in the IPTS-treated group. Thus, IPTS protects the vasculature by regulating the PI3K/AKT signaling pathway, activating eNOS and increasing the release of NO. CONCLUSION A possible mechanism by which IPTS prevents BSS is proposed: IPTS can promote blood circulation by modulating sphingolipid metabolism and activating the PI3K/AKT/eNOS signaling pathways.
Collapse
Affiliation(s)
- Jie Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Di Cao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; School of Pharmacy, Wannan Medical College, Anhui, 241002, China
| | - Shiqin Jiang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xia Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Wencong Pan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Hui Cui
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Weiqun Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhongqiu Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jing Jin
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Zhongxiang Zhao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
49
|
Borodzicz-Jażdżyk S, Jażdżyk P, Łysik W, Cudnoch-Jȩdrzejewska A, Czarzasta K. Sphingolipid metabolism and signaling in cardiovascular diseases. Front Cardiovasc Med 2022; 9:915961. [PMID: 36119733 PMCID: PMC9471951 DOI: 10.3389/fcvm.2022.915961] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/05/2022] [Indexed: 01/10/2023] Open
Abstract
Sphingolipids are a structural component of the cell membrane, derived from sphingosine, an amino alcohol. Its sphingoid base undergoes various types of enzymatic transformations that lead to the formation of biologically active compounds, which play a crucial role in the essential pathways of cellular signaling, proliferation, maturation, and death. The constantly growing number of experimental and clinical studies emphasizes the pivotal role of sphingolipids in the pathophysiology of cardiovascular diseases, including, in particular, ischemic heart disease, hypertension, heart failure, and stroke. It has also been proven that altering the sphingolipid metabolism has cardioprotective properties in cardiac pathologies, including myocardial infarction. Recent studies suggest that selected sphingolipids may serve as valuable biomarkers useful in the prognosis of cardiovascular disorders in clinical practice. This review aims to provide an overview of the current knowledge of sphingolipid metabolism and signaling in cardiovascular diseases.
Collapse
Affiliation(s)
- Sonia Borodzicz-Jażdżyk
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Jażdżyk
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
- Second Department of Psychiatry, Institute of Psychiatry and Neurology in Warsaw, Warsaw, Poland
| | - Wojciech Łysik
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Cudnoch-Jȩdrzejewska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Czarzasta
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
50
|
Cao Z, Wang J, Weng Z, Tao X, Xu Y, Li X, Tan X, Liu Z, Qu C. Metabolomic analysis of serum from pure coronary artery ectasia patients based on UPLC-QE/MS technique. Clin Chim Acta 2022; 534:93-105. [PMID: 35853548 DOI: 10.1016/j.cca.2022.06.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/08/2022] [Accepted: 06/23/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Coronary artery ectasia (CAE) is a cardiovascular disorder characterized by abnormal coronary artery dilation and disturbed coronary flow. The exact pathophysiology of CAE is still unclear. We aimed to investigate differences in metabolomic profiles between CAE patients and healthy controls. METHODS Radial artery blood samples were collected from 14 pure CAE patients, 12 mixed CAE patients with atherosclerosis, and 14 controls with normal angiography. Differential serum metabolites were analyzed by untargeted ultra-high performance liquid chromatography-mass spectrometry. Serum ICAM-1, VEGF, ROS, and glutathione levels were also measured. RESULTS Ten metabolites distinguished pure CAE patients from controls and mixed CAE, including 1-cyano-2-hydroxy-3-butene, 2,3-dihydro-6-methyl-5-(5-methyl-2-furanyl)-1H-pyrrolizine, 2-propionylpyrrole, 2-pyrrolidinone, 3-(2-furanylmethylene)pyrrolidine, D-alanine, furanofukinin, o-ethyltoluene, rotundine A, and SM(d18:1/18:1(9Z)). Related metabolic pathways include amino acid metabolism, sphingolipid dysfunction, energy metabolism, mitochondrial dysfunction, and oxidative stress. Serum concentrations of ICAM-1, VEGF and ROS were significantly elevated in CAE patients compared to controls, while glutathione decreased significantly in CAE patients. Moreover, ICAM-1 levels were negatively correlated with 2-propionylpyrrole, and VEGF levels were negatively correlated with SM(d18:1/18:1(9Z)), while GSH and ROS levels were correlated with the abundance of SM(d18:1/18:1(9Z)), further confirming systemic inflammation and oxidative stress in CAE. CONCLUSIONS This is the first report describing differential serum metabolomic profiles of pure CAE patients compared to mixed CAE and healthy controls, which revealed 10 potential biomarkers that can provide an early diagnosis of pure CAE. These discriminatory metabolites and related metabolic pathways can help to better understand the pathogenesis of pure CAE.
Collapse
Affiliation(s)
- Zhe Cao
- Department of Cardiology, Nanjing Medical University Second Affiliated Hospital, Nanjing Medical University, Nanjing 210011, China
| | - Jinyu Wang
- Department of Cardiology, Nanjing Medical University Second Affiliated Hospital, Nanjing Medical University, Nanjing 210011, China
| | - Zuyi Weng
- Phase Ⅰ Clinical Trials Unit, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210011, China
| | - Xinyu Tao
- Department of Geriatric, Nanjing Medical University Second Affiliated Hospital, Nanjing Medical University, Nanjing 210011, China
| | - Ying Xu
- Department of Intensive Care Unit, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210011, China
| | - Xiaoqing Li
- Department of Geriatric, Nanjing Medical University Second Affiliated Hospital, Nanjing Medical University, Nanjing 210011, China
| | - Xiao Tan
- Department of Cardiology, Nanjing Medical University Second Affiliated Hospital, Nanjing Medical University, Nanjing 210011, China
| | - Zhengxia Liu
- Department of Geriatric, Nanjing Medical University Second Affiliated Hospital, Nanjing Medical University, Nanjing 210011, China.
| | - Chen Qu
- Department of Geriatric, Nanjing Medical University Second Affiliated Hospital, Nanjing Medical University, Nanjing 210011, China.
| |
Collapse
|