1
|
Zhang Z, Mi K, Wang Z, Yang X, Meng S, Tian X, Han Y, Qu Y, Zhu L, Chen J. Using optimized CT type to predict histological classifications of thymic epithelial tumors: a radiomics integrated analysis. Insights Imaging 2025; 16:67. [PMID: 40121346 PMCID: PMC11929666 DOI: 10.1186/s13244-025-01933-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 02/09/2025] [Indexed: 03/25/2025] Open
Abstract
OBJECTIVE To develop and externally validate an integrated model that utilizes optimized radiomics features from non-contrast-enhanced CT (NE-CT) or contrast-enhanced CT (CE-CT), along with morphological features and clinical risk factors, to predict histological classifications of thymic epithelial tumors (TETs). METHODS A total of 182 patients with TET, classified as the low-risk group and the high-risk group based on histology, were divided into a training cohort (N = 122, center 1) and an external validation cohort (N = 60, center 2). Radiomics features were extracted from different CT types, followed by feature selection, including consistency, correlation, and importance tests, to generate Rad-scores for both NE-CT and CE-CT. The integrated model was developed by combining the optimal Rad-score, morphological features, and clinical risk factors using multivariate logistic regression. Model performance was assessed by the area under the receiver operating characteristic curve (AUC) and compared by Delong test. A nomogram was used to visually present the integrated model. RESULTS A total of 851 radiomics features were extracted, with NE-CT and CE-CT Rad-scores consisting of four and five features, respectively. The AUCs of the CE-CT Rad-score were higher than those of the NE-CT Rad-score in both the training cohort (0.783 vs 0.749) and the external validation cohort (0.775 vs 0.723, p = 0.361). The integrated model, combining five morphological features and the CE-CT Rad-score, achieved AUCs of 0.814 and 0.802 in the training and external validation cohorts, respectively. CONCLUSION The integrated model, incorporating radiomics features from CE-CT and morphological features, can help to identify the histological classifications of TETs. CRITICAL RELEVANCE STATEMENT This study developed an integrated model based on radiomics features from contrast-enhanced CT and morphological features, demonstrating that the integrated model has impressive predictive capability in distinguishing histological classifications of thymic epithelial tumors through external validation. KEY POINTS Radiomics features extracted from CT more effectively represented thymic epithelial tumor (TET) heterogeneity than morphological features. The radiomics model using contrast-enhanced CT outperformed that using non-contrast-enhanced CT in identifying histological classifications of TET. The integrated model, combining radiomics and morphological features, exhibited the highest performance in predicting TET histological classifications.
Collapse
Affiliation(s)
- Zhengping Zhang
- Department of Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, China
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Kede Mi
- Department of Medical, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Zhaojun Wang
- Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiaoyan Yang
- Department of Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, China
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Shuping Meng
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xingcang Tian
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yanzhu Han
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yuling Qu
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Li Zhu
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Juan Chen
- Department of Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, China.
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
2
|
Bilgin E, Yaltirik Bilgin E, Bayrak A, Törenek Ş. Effectiveness of CT Histogram Analysis to Differentiate Lung Metastases From Second Primary Lung Cancer to Decrease Need for Lung Biopsy. J Comput Assist Tomogr 2025:00004728-990000000-00428. [PMID: 40008970 DOI: 10.1097/rct.0000000000001742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/29/2025] [Indexed: 02/27/2025]
Abstract
OBJECTIVE Differentiating lung metastasis from second primary lung cancer is crucial for determining the appropriate treatment strategy. Lung biopsy, the gold standard for diagnosis, is an invasive procedure. This study aimed to evaluate the potential of CT histogram analysis as a noninvasive method for differentiating these 2 conditions in solitary pulmonary nodules. METHODS A retrospective analysis was conducted on CT images of patients with solitary pulmonary nodule, confirmed to be either lung metastasis or second primary lung cancer histopathologically. Histogram analysis features of the lesion and perilesional area were extracted from the CT images and subjected to statistical analysis to identify significant differences between the 2 groups. The performance of histogram analysis was assessed using sensitivity, specificity, and area under the ROC curve. RESULTS The data of 26 (46%) patients whose lung biopsy pathology was determined as second primary lung cancer and 30 (54%) patients defined as lung metastasis were investigated. The second primary lung cancer's mean pathologic tumor diameter was statistically higher than the lung metastasis [25.3 (5.7) mm, 18.3(5.6) mm; P=0.003]. The mean skewness (P=0.020) and entropy (P=0.018) values in the second primary lung cancer were statistically significantly lower in the lesion area. There was a statistically significant difference in the mean measurement of SD (P=0.001), skewness (P<0.001), kurtosis (P<0.001), and entropy (P<0.001) values between the 2 groups in the perilesional area. CONCLUSION CT histogram analysis shows promise as a noninvasive method for differentiating lung metastasis from second primary lung cancer in solitary pulmonary nodules.
Collapse
Affiliation(s)
- Erkan Bilgin
- Department of Radiology, Dr. Abdurrahman Yurtaslan Ankara Oncology Training and Research Hospital, Ankara, Turkey
| | | | | | | |
Collapse
|
3
|
Liu Y, Luo C, Wu Y, Zhou S, Ruan G, Li H, Chen W, Lin Y, Liu L, Quan T, He X. Computed tomography radiomics-based combined model for predicting thymoma risk subgroups: a multicenter retrospective study. Acad Radiol 2025:S1076-6332(25)00010-8. [PMID: 39966073 DOI: 10.1016/j.acra.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 02/20/2025]
Abstract
RATIONALE AND OBJECTIVES Accurately distinguishing histological subtypes and risk categorization of thymomas is difficult. To differentiate the histologic risk categories of thymomas, we developed a combined radiomics model based on non-enhanced and contrast-enhanced computed tomography (CT) radiomics, clinical, and semantic features. MATERIALS AND METHODS In total, 360 patients with pathologically-confirmed thymomas who underwent CT examinations were retrospectively recruited from three centers. Patients were classified using improved pathological classification criteria as low-risk (LRT: types A and AB) or high-risk (HRT: types B1, B2, and B3). The training and external validation sets comprised 274 (from centers 1 and 2) and 86 (center 3) patients, respectively. A clinical-semantic model was built using clinical and semantic variables. Radiomics features were filtered using intraclass correlation coefficients, correlation analysis, and univariate logistic regression. An optimal radiomics model (Rad_score) was constructed using the AutoML algorithm, while a combined model was constructed by integrating Rad_score with clinical and semantic features. The predictive and clinical performances of the models were evaluated using receiver operating characteristic/calibration curve analyses and decision-curve analysis, respectively. RESULTS Radiomics and combined models (area under curve: training set, 0.867 and 0.884; external validation set, 0.792 and 0.766, respectively) exhibited performance superior to the clinical-semantic model. The combined model had higher accuracy than the radiomics model (0.79 vs. 0.78, p<0.001) in the entire cohort. The original_firstorder_median of venous phase had the highest relative importance among features in the radiomics model. CONCLUSION Radiomics and combined radiomics models may serve as noninvasive discrimination tools to differentiate thymoma risk classifications.
Collapse
Affiliation(s)
- Yifei Liu
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou 510060, Guangdong, China (Y.L., C.L., S.Z., G.R., H.L., L.L., T.Q.).
| | - Chao Luo
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou 510060, Guangdong, China (Y.L., C.L., S.Z., G.R., H.L., L.L., T.Q.).
| | - Yongshun Wu
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou 511457, Guangdong, China (Y.W.).
| | - Shumin Zhou
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou 510060, Guangdong, China (Y.L., C.L., S.Z., G.R., H.L., L.L., T.Q.).
| | - Guangying Ruan
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou 510060, Guangdong, China (Y.L., C.L., S.Z., G.R., H.L., L.L., T.Q.).
| | - Haojiang Li
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou 510060, Guangdong, China (Y.L., C.L., S.Z., G.R., H.L., L.L., T.Q.).
| | - Wanyuan Chen
- Department of Pathology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China (W.C.).
| | - Yi Lin
- Rehabilitation Medicine Center, Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China (Y.L., X.H.).
| | - Lizhi Liu
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou 510060, Guangdong, China (Y.L., C.L., S.Z., G.R., H.L., L.L., T.Q.).
| | - Tingting Quan
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou 510060, Guangdong, China (Y.L., C.L., S.Z., G.R., H.L., L.L., T.Q.).
| | - Xiaodong He
- Rehabilitation Medicine Center, Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China (Y.L., X.H.).
| |
Collapse
|
4
|
Mamiya H, Tochigi T, Hayano K, Ohira G, Imanishi S, Maruyama T, Kurata Y, Takahashi Y, Hirata A, Matsubara H. Texture analysis of CT colonography to develop a novel imaging biomarker for the management of colorectal cancer. Ann Gastroenterol Surg 2025; 9:145-152. [PMID: 39759993 PMCID: PMC11693556 DOI: 10.1002/ags3.12852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 01/07/2025] Open
Abstract
Background Recent studies have focused on evaluating the biomarker value of textural features in radiological images. Our study investigated whether or not a texture analysis of computed tomographic colonography (CTC) images could be a novel biomarker for colorectal cancer (CRC). Methods This retrospective study investigated 263 patients with CRC who underwent contrast-enhanced CTC (CE-CTC) before curative surgery between January 2014 and December 2017. Multiple texture analyses (fractal, histogram, and gray-level co-occurrence matrix [GLCM] texture analyses) were applied to CE-CTC (portal-venous phase), and fractal dimension (FD), skewness, kurtosis, entropy, and GLCM texture parameters, including GLCM-correlation, GLCM-autocorrelation, GLCM-entropy, and GLCM-homogeneity, of the tumor were calculated. These texture parameters were compared with pathological factors (tumor depth, lymph node metastasis, vascular invasion, and lymphatic invasion) and overall survival (OS). Results Tumor depth was significantly associated with FD, kurtosis, entropy, GLCM-correlation, GLCM-autocorrelation, GLCM-entropy, and GLCM-homogeneity (p = 0.001, 0.001, 0.001, 0.001, 0.018, 0.008, and 0.001, respectively); lymph node metastasis was associated with GLCM-homogeneity (p = 0.004); lymphatic invasion was associated with GLCM-correlation and GLCM-homogeneity (p = 0.001 and 0.012, respectively); and venous invasion was associated with FD, entropy, GLCM-correlation, GLCM-autocorrelation, and GLCM-entropy of the tumor (p = 0.001, 0.033, 0.021, 0.046, respectively). In the Kaplan-Meier analysis, patients with high GLCM-correlation tumors or high GLCM-homogeneity tumors showed a significantly worse OS than others (p = 0.001 and 0.04, respectively). Multivariate analyses showed that the GLCM correlation was an independent prognostic factor for the OS (p = 0.021). Conclusion CE-CTC-derived texture parameters may be clinically useful biomarkers for managing CRC patients.
Collapse
Affiliation(s)
- Hisashi Mamiya
- Department of Frontier SurgeryChiba University Graduate School of MedicineChibaJapan
| | - Toru Tochigi
- Department of Frontier SurgeryChiba University Graduate School of MedicineChibaJapan
| | - Koichi Hayano
- Department of Frontier SurgeryChiba University Graduate School of MedicineChibaJapan
| | - Gaku Ohira
- Department of Frontier SurgeryChiba University Graduate School of MedicineChibaJapan
| | - Shunsuke Imanishi
- Department of Frontier SurgeryChiba University Graduate School of MedicineChibaJapan
| | - Tetsuro Maruyama
- Department of Frontier SurgeryChiba University Graduate School of MedicineChibaJapan
| | - Yoshihiro Kurata
- Department of Frontier SurgeryChiba University Graduate School of MedicineChibaJapan
| | - Yumiko Takahashi
- Department of Frontier SurgeryChiba University Graduate School of MedicineChibaJapan
| | - Atsushi Hirata
- Department of Frontier SurgeryChiba University Graduate School of MedicineChibaJapan
| | - Hisahiro Matsubara
- Department of Frontier SurgeryChiba University Graduate School of MedicineChibaJapan
| |
Collapse
|
5
|
Salazar P, Cheung P, Ganeshan B, Oikonomou A. Predefined and data-driven CT radiomics predict recurrence-free and overall survival in patients with pulmonary metastases treated with stereotactic body radiotherapy. PLoS One 2024; 19:e0311910. [PMID: 39739866 DOI: 10.1371/journal.pone.0311910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/20/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND This retrospective study explores two radiomics methods combined with other clinical variables for predicting recurrence free survival (RFS) and overall survival (OS) in patients with pulmonary metastases treated with stereotactic body radiotherapy (SBRT). METHODS 111 patients with 163 metastases treated with SBRT were included with a median follow-up time of 927 days. First-order radiomic features were extracted using two methods: 2D CT texture analysis (CTTA) using TexRAD software, and a data-driven technique: functional principal components analysis (FPCA) using segmented tumoral and peri-tumoural 3D regions. RESULTS Using both Kaplan-Meier analysis with its log-rank tests and multivariate Cox regression analysis, the best radiomic features of both methods were selected: CTTA-based "entropy" and the FPCA-based first mode of variation of tumoural CT density histogram: "F1." Predictive models combining radiomic variables and age showed a C-index of 0.62 95% with a CI of (0.57-0.67). "Clinical indication for SBRT" and "lung primary cancer origin" were strongly associated with RFS and improved the RFS C-index: 0.67 (0.62-0.72) when combined with the best radiomic features. The best multivariate Cox model for predicting OS combined CTTA-based features-skewness and kurtosis-with size and "lung primary cancer origin" with a C-index of 0.67 (0.61-0.74). CONCLUSION In conclusion, concise predictive models including CT density-radiomics of metastases, age, clinical indication, and lung primary cancer origin can help identify those patients with probable earlier recurrence or death prior to SBRT treatment so that more aggressive treatment can be applied.
Collapse
Affiliation(s)
- Pascal Salazar
- Canon Medical Informatics, Minnetonka, MN, United States of America
| | - Patrick Cheung
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Balaji Ganeshan
- Institute of Nuclear Medicine, University College London, London, United Kingdom
| | - Anastasia Oikonomou
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Cooke PV, Wu MP, Rathi VK, Chen S, Kappauf C, Roof SA, Lin DT, Deschler DG. Salvage surgery for recurrent or residual hypopharyngeal squamous cell carcinoma: A systematic review. Head Neck 2024; 46:2725-2736. [PMID: 38716810 DOI: 10.1002/hed.27794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/21/2024] [Accepted: 04/22/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND This systematic review aggregates the data of studies that include site-specific analyses of patients undergoing salvage surgery for residual or recurrent hypopharyngeal squamous cell carcinoma. METHODS The primary outcomes are disease-free, disease-specific, and overall survival (DFS, DSS, and OS, respectively). Secondary outcomes include complications and postoperative feeding requirements. RESULTS Fifteen studies met the inclusion criteria with a total of 442 patients. Two-year DFS is reported from 30.0 to 50.0% and 5-year DFS ranges from 15.0 to 57.1%. Five-year DSS ranges from 28.0 to 57.1%. Two-year OS ranges from 38.8 to 52.0% and 5-year OS ranges from 15.5 to 57.1%. Complications include pharyngocutaneous fistula (0.0-71.4%), carotid artery rupture (2.9-13.3%), and stomal stenosis (4.2-20.0%). Complete oral feeding achieved following surgery ranges from 61.9 to 100.0%, while complete gastrostomy tube dependence ranges from 0.0 to 28.6%. CONCLUSIONS Salvage surgery for residual or recurrent hypopharyngeal squamous cell carcinoma has a relatively high complication rate and should be offered to patients with the understanding of a guarded prognosis.
Collapse
Affiliation(s)
- Peter V Cooke
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michael P Wu
- Department of Otolaryngology, Massachusetts Eye and Ear, Boston, Massachusetts, USA
| | - Vinay K Rathi
- Department of Otolaryngology, Massachusetts Eye and Ear, Boston, Massachusetts, USA
| | - Sida Chen
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Catharine Kappauf
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Scott A Roof
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Derrick T Lin
- Department of Otolaryngology, Massachusetts Eye and Ear, Boston, Massachusetts, USA
| | - Daniel G Deschler
- Department of Otolaryngology, Massachusetts Eye and Ear, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Ma T, Zhao M, Li X, Song X, Wang L, Ye Z. A machine learning based radiomics approach for predicting No. 14v station lymph node metastasis in gastric cancer. Front Med (Lausanne) 2024; 11:1464632. [PMID: 39493708 PMCID: PMC11527654 DOI: 10.3389/fmed.2024.1464632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/04/2024] [Indexed: 11/05/2024] Open
Abstract
Purpose To evaluate the potential of radiomics approach for predicting No. 14v station lymph node metastasis (14vM) in gastric cancer (GC). Methods The contrast enhanced CT (CECT) images with corresponding clinical information of 288 GC patients were retrospectively collected. Patients were separated into training set (n = 202) and testing set (n = 86). A total of 1,316 radiomics feature were extracted from portal venous phase images of CECT. Seven machine learning (ML) algorithms including naïve Bayes (NB), k-nearest neighbor (KNN), decision tree (DT), logistic regression (LR), random forest (RF), eXtreme gradient boosting (XGBoost) and support vector machine (SVM) were trained for development of optimal radiomics signature. A combined model was established by combining radiomics with important clinicopathological factors. The diagnostic ability of the signature and model were evaluated. Results LR algorithm was chosen for signature construction. The radiomics signature exhibited good discrimination accuracy of 14vM with AUCs of 0.83 in the training and 0.77 in the testing set. The risk of 14vM showed significant association with higher radiomics score. A combined model exhibited increased predictive ability and good agreement in the training (AUC = 0.87) and testing (AUC = 0.85) sets. Conclusion The ML-based radiomics model provided a promising image biomarker for preoperative detection of 14vM and may help the surgeon to decide whether to add 14v dissection to lymphadenectomy.
Collapse
Affiliation(s)
- Tingting Ma
- Department of Radiology, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- The Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Mengran Zhao
- Department of Radiology, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- The Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Xiangli Li
- Health Management Center, Weifang People’s Hospital, Weifang, China
| | - Xiangchao Song
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- The Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Lingwei Wang
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- The Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Zhaoxiang Ye
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- The Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| |
Collapse
|
8
|
Gulinac M, Mileva N, Miteva D, Velikova T, Dikov D. Primary Signet-Ring-Cell Carcinoma in the Colorectum: A Case-Based Literature Review. GASTROENTEROLOGY INSIGHTS 2024; 15:632-646. [DOI: 10.3390/gastroent15030046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2024] Open
Abstract
Primary colorectal signet-ring-cell carcinoma of the colon and rectum (PSRCCR) is an extremely rare subtype of mucinous adenocarcinoma with a reported rate of less than 1%. This low rate is mainly because it is generally diagnosed at advanced stages. The most common stage at which it is diagnosed for the first time is III or IV, with a lower median survival than other histological subtypes. To diagnose PSRCCR of the colon, at least half of the tumor must be consistent with a signet-ring-cell pattern. This review aims to provide a comprehensive overview of PSRCCR by synthesizing the existing literature and clinical data. Our objective was to elucidate the clinical features, diagnostic challenges, histopathological characteristics, molecular alterations, treatment modalities, and prognostic factors associated with this carcinoma. Additionally, we highlighted the significance of early detection, accurate diagnosis, and personalized therapeutic approaches in improving outcomes for patients with this challenging malignancy. By presenting a case report on the topic, we aimed to enhance understanding among clinicians, pathologists, and researchers, ultimately contributing to optimized management strategies and improved patient care for PSRCCR.
Collapse
Affiliation(s)
- Milena Gulinac
- Department of General and Clinical Pathology, Medical University of Plovdiv, Bul. Vasil Aprilov 15A, 4000 Plovdiv, Bulgaria
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak Str., 1407 Sofia, Bulgaria
| | - Niya Mileva
- Medical Faculty, Medical University of Sofia, 1 Georgi Sofiyski Str., 1431 Sofia, Bulgaria
| | - Dimitrina Miteva
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak Str., 1407 Sofia, Bulgaria
- Department of Genetics, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Str., 1164 Sofia, Bulgaria
| | - Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak Str., 1407 Sofia, Bulgaria
| | - Dorian Dikov
- Department of General and Clinical Pathology, Grand Hospital de l’Este Francilien, Medical Faculty, 77600 Jossigny, France
| |
Collapse
|
9
|
van Staalduinen EK, Matthews R, Khan A, Punn I, Cattell RF, Li H, Franceschi A, Samara GJ, Czerwonka L, Bangiyev L, Duong TQ. Improved Cervical Lymph Node Characterization among Patients with Head and Neck Squamous Cell Carcinoma Using MR Texture Analysis Compared to Traditional FDG-PET/MR Features Alone. Diagnostics (Basel) 2023; 14:71. [PMID: 38201380 PMCID: PMC10802850 DOI: 10.3390/diagnostics14010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Accurate differentiation of benign and malignant cervical lymph nodes is important for prognosis and treatment planning in patients with head and neck squamous cell carcinoma. We evaluated the diagnostic performance of magnetic resonance image (MRI) texture analysis and traditional 18F-deoxyglucose positron emission tomography (FDG-PET) features. This retrospective study included 21 patients with head and neck squamous cell carcinoma. We used texture analysis of MRI and FDG-PET features to evaluate 109 histologically confirmed cervical lymph nodes (41 metastatic, 68 benign). Predictive models were evaluated using area under the curve (AUC). Significant differences were observed between benign and malignant cervical lymph nodes for 36 of 41 texture features (p < 0.05). A combination of 22 MRI texture features discriminated benign and malignant nodal disease with AUC, sensitivity, and specificity of 0.952, 92.7%, and 86.7%, which was comparable to maximum short-axis diameter, lymph node morphology, and maximum standard uptake value (SUVmax). The addition of MRI texture features to traditional FDG-PET features differentiated these groups with the greatest AUC, sensitivity, and specificity (0.989, 97.5%, and 94.1%). The addition of the MRI texture feature to lymph node morphology improved nodal assessment specificity from 70.6% to 88.2% among FDG-PET indeterminate lymph nodes. Texture features are useful for differentiating benign and malignant cervical lymph nodes in patients with head and neck squamous cell carcinoma. Lymph node morphology and SUVmax remain accurate tools. Specificity is improved by the addition of MRI texture features among FDG-PET indeterminate lymph nodes. This approach is useful for differentiating benign and malignant cervical lymph nodes.
Collapse
Affiliation(s)
- Eric K. van Staalduinen
- Albert Einstein College of Medicine and Montefiore Medical Center, Department of Radiology, Bronx, NY 10467, USA
- Stony Brook Medicine, Department of Radiology, Stony Brook, NY 11794, USA (A.F.); (L.B.)
| | - Robert Matthews
- Stony Brook Medicine, Department of Radiology, Stony Brook, NY 11794, USA (A.F.); (L.B.)
| | - Adam Khan
- Stony Brook Medicine, Department of Radiology, Stony Brook, NY 11794, USA (A.F.); (L.B.)
| | - Isha Punn
- Stony Brook Medicine, Department of Radiology, Stony Brook, NY 11794, USA (A.F.); (L.B.)
| | - Renee F. Cattell
- Stony Brook Medicine, Department of Radiology, Stony Brook, NY 11794, USA (A.F.); (L.B.)
| | - Haifang Li
- Stony Brook Medicine, Department of Radiology, Stony Brook, NY 11794, USA (A.F.); (L.B.)
| | - Ana Franceschi
- Stony Brook Medicine, Department of Radiology, Stony Brook, NY 11794, USA (A.F.); (L.B.)
| | - Ghassan J. Samara
- Stony Brook Medicine, Department of Radiology, Stony Brook, NY 11794, USA (A.F.); (L.B.)
| | - Lukasz Czerwonka
- Stony Brook Medicine, Department of Radiology, Stony Brook, NY 11794, USA (A.F.); (L.B.)
| | - Lev Bangiyev
- Stony Brook Medicine, Department of Radiology, Stony Brook, NY 11794, USA (A.F.); (L.B.)
| | - Tim Q. Duong
- Albert Einstein College of Medicine and Montefiore Medical Center, Department of Radiology, Bronx, NY 10467, USA
| |
Collapse
|
10
|
Xia F, Guo F, Liu Z, Zeng J, Ma X, Yu C, Li C. Enhanced CT combined with texture analysis for differential diagnosis of pleomorphic adenoma and adenolymphoma. BMC Med Imaging 2023; 23:169. [PMID: 37891554 PMCID: PMC10612226 DOI: 10.1186/s12880-023-01129-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
OBJECTIVE This study sought to evaluate the worth of the general characteristics of enhanced CT images and the histogram parameters of each stage in distinguishing pleomorphic adenoma (PA) and adenolymphoma (AL). METHODS The imaging features and histogram parameters of preoperative enhanced CT images in 20 patients with PA and 29 patients with AL were analyzed. Tumor morphology and histogram parameters of PA and AL were compared. Area under the curve (AUC), sensitivity, and subject operational feature specificity (ROC) analysis were used to determine the differential diagnostic effect of single-stage or multi-stage parameter combinations. RESULTS The difference in CT value and net enhancement value of arterial phase (AP) were significant (p < 0.05); Flat sweep phase (FSP), AP mean, percentiles, 10th, 50th, 90th, 99th and arterial period variance and venous phase (VP) kurtosis in the nine histogram parameters of each period (p < 0.05). An analysis of the ROC curve revealed a maximum area beneath the curve (AUC) in the 90th percentile of FSP for a single-parameter differential diagnosis to be 0.870. The diagnostic efficacy of the mean value of FSP + The 90th percentile of AP + Kurtosis of VP was the best in multi-parameter combination diagnosis, with an AUC of 0.925, and the sensitivity and specificity of 0.900 and 0.850, respectively. CONCLUSION The histogram analysis of enhanced CT images is valuable for the differentiation of PA and AL. Moreover, the combination of single-stage parameters or multi-stage parameters can improve the differential diagnosis efficiency.
Collapse
Affiliation(s)
- Feifei Xia
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Shihezi University, Shihezi, 832000, China
| | - Foqing Guo
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Shihezi University, Shihezi, 832000, China
| | - Zhe Liu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Shihezi University, Shihezi, 832000, China
| | - Jie Zeng
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Shihezi University, Shihezi, 832000, China
| | - Xuehua Ma
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Shihezi University, Shihezi, 832000, China
| | - Chongqing Yu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Shihezi University, Shihezi, 832000, China
| | - Changxue Li
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Shihezi University, Shihezi, 832000, China.
| |
Collapse
|
11
|
Lee K, Goh J, Jang J, Hwang J, Kwak J, Kim J, Eom K. Feasibility study of computed tomography texture analysis for evaluation of canine primary adrenal gland tumors. Front Vet Sci 2023; 10:1126165. [PMID: 37711438 PMCID: PMC10499047 DOI: 10.3389/fvets.2023.1126165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 08/01/2023] [Indexed: 09/16/2023] Open
Abstract
Objective This study aimed to investigate the feasibility of computed tomography (CT) texture analysis for distinguishing canine adrenal gland tumors and its usefulness in clinical decision-making. Materials and methods The medical records of 25 dogs with primary adrenal masses who underwent contrast CT and a histopathological examination were retrospectively reviewed, of which 12 had adenomas (AAs), 7 had adenocarcinomas (ACCs), and 6 had pheochromocytomas (PHEOs). Conventional CT evaluation of each adrenal gland tumor included the mean, maximum, and minimum attenuation values in Hounsfield units (HU), heterogeneity of the tumor parenchyma, and contrast enhancement (type, pattern, and degree), respectively, in each phase. In CT texture analysis, precontrast and delayed-phase images of 18 adrenal gland tumors, which could be applied for ComBat harmonization were used, and 93 radiomic features (18 first-order and 75 second-order statistics) were extracted. Then, ComBat harmonization was applied to compensate for the batch effect created by the different CT protocols. The area under the receiver operating characteristic curve (AUC) for each significant feature was used to evaluate the diagnostic performance of CT texture analysis. Results Among the conventional features, PHEO showed significantly higher mean and maximum precontrast HU values than ACC (p < 0.05). Eight second-order features on the precontrast images showed significant differences between the adrenal gland tumors (p < 0.05). However, none of them were significantly different between AA and PHEO, or between precontrast images and delayed-phase images. This result indicates that ACC exhibited more heterogeneous and complex textures and more variable intensities with lower gray-level values than AA and PHEO. The correlation, maximal correlation coefficient, and gray level non-uniformity normalized were significantly different between AA and ACC, and between ACC and PHEO. These features showed high AUCs in discriminating ACC and PHEO, which were comparable or higher than the precontrast mean and maximum HU (AUC = 0.865 and 0.860, respectively). Conclusion Canine primary adrenal gland tumor differentiation can be achieved with CT texture analysis on precontrast images and may have a potential role in clinical decision-making. Further prospective studies with larger populations and cross-validation are warranted.
Collapse
Affiliation(s)
- Kyungsoo Lee
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Jinhyong Goh
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Jaeyoung Jang
- Jang Jae Young Veterinary Surgery Center, Seong-nam, Gyunggi-do, Republic of Korea
| | | | - Jungmin Kwak
- Saram and Animal Medical Center, Yongin-si, Gyunggi-do, Republic of Korea
| | - Jaehwan Kim
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Kidong Eom
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Durot C, Durot E, Mulé S, Morland D, Godard F, Quinquenel A, Delmer A, Soyer P, Hoeffel C. Pretreatment CT Texture Parameters as Predictive Biomarkers of Progression-Free Survival in Follicular Lymphoma Treated with Immunochemotherapy and Rituximab Maintenance. Diagnostics (Basel) 2023; 13:2237. [PMID: 37443630 DOI: 10.3390/diagnostics13132237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The purpose of this study was to determine whether texture analysis features present on pretreatment unenhanced computed tomography (CT) images, derived from 18F-fluorodeoxyglucose positron emission/computed tomography (18-FDG PET/CT), can predict progression-free survival (PFS), progression-free survival at 24 months (PFS 24), time to next treatment (TTNT), and overall survival in patients with high-tumor-burden follicular lymphoma treated with immunochemotherapy and rituximab maintenance. Seventy-two patients with follicular lymphoma were retrospectively included. Texture analysis was performed on unenhanced CT images extracted from 18-FDG PET/CT examinations that were obtained within one month before treatment. Skewness at a fine texture scale (SSF = 2) was an independent predictor of PFS (hazard ratio = 3.72 (95% CI: 1.15, 12.11), p = 0.028), PFS 24 (hazard ratio = 13.38; 95% CI: 1.29, 138.13; p = 0.029), and TTNT (hazard ratio = 5.11; 95% CI: 1.18, 22.13; p = 0.029). Skewness values above -0.015 at SSF = 2 were significantly associated with lower PFS, PFS 24, and TTNT. Kurtosis without filtration was an independent predictor of PFS (SSF = 0; HR = 1.22 (95% CI: 1.04, 1.44), p = 0.013), and TTNT (SSF = 0; hazard ratio = 1.23; 95% CI: 1.04, 1.46; p = 0.013). This study shows that pretreatment unenhanced CT texture analysis-derived tumor skewness and kurtosis may be used as predictive biomarkers of PFS and TTNT in patients with high-tumor-burden follicular lymphoma treated with immunochemotherapy and rituximab maintenance.
Collapse
Affiliation(s)
- Carole Durot
- Department of Radiology, Reims University Hospital, 45 Rue Cognacq-Jay, 51092 Reims, France
| | - Eric Durot
- Department of Hematology, Reims University Hospital, 45 Rue Cognacq-Jay, 51092 Reims, France
| | - Sébastien Mulé
- Department of Radiology, Henri Mondor University Hospital, 51 Avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France
- Faculté de Médecine, Université Paris-Est Créteil, 61 Avenue du Général de Gaulle, 94000 Créteil, France
| | - David Morland
- Department of Nuclear Medicine, Godinot Institute, 1 Rue du Général Koenig, 51100 Reims, France
- CReSTIC, EA 3804, University of Reims Champagne-Ardenne, UFR Moulin de la Housse, 51867 Reims, France
| | - François Godard
- Department of Radiology, Henri Mondor University Hospital, 51 Avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France
| | - Anne Quinquenel
- Department of Hematology, Reims University Hospital, 45 Rue Cognacq-Jay, 51092 Reims, France
| | - Alain Delmer
- Department of Hematology, Reims University Hospital, 45 Rue Cognacq-Jay, 51092 Reims, France
| | - Philippe Soyer
- Department of Radiology, Hôpital Cochin, AP-HP, 27 Rue du Faubourg Saint-Jacques, 75014 Paris, France
- Faculté de Médecine, Université Paris Cité, 75006 Paris, France
| | - Christine Hoeffel
- Department of Radiology, Reims University Hospital, 45 Rue Cognacq-Jay, 51092 Reims, France
- CReSTIC, EA 3804, University of Reims Champagne-Ardenne, UFR Moulin de la Housse, 51867 Reims, France
| |
Collapse
|
13
|
Gao X, Cui J, Wang L, Wang Q, Ma T, Yang J, Ye Z. The value of machine learning based radiomics model in preoperative detection of perineural invasion in gastric cancer: a two-center study. Front Oncol 2023; 13:1205163. [PMID: 37388227 PMCID: PMC10303108 DOI: 10.3389/fonc.2023.1205163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/30/2023] [Indexed: 07/01/2023] Open
Abstract
Purpose To establish and validate a machine learning based radiomics model for detection of perineural invasion (PNI) in gastric cancer (GC). Methods This retrospective study included a total of 955 patients with GC selected from two centers; they were separated into training (n=603), internal testing (n=259), and external testing (n=93) sets. Radiomic features were derived from three phases of contrast-enhanced computed tomography (CECT) scan images. Seven machine learning (ML) algorithms including least absolute shrinkage and selection operator (LASSO), naïve Bayes (NB), k-nearest neighbor (KNN), decision tree (DT), logistic regression (LR), random forest (RF), eXtreme gradient boosting (XGBoost) and support vector machine (SVM) were trained for development of optimal radiomics signature. A combined model was constructed by aggregating the radiomic signatures and important clinicopathological characteristics. The predictive ability of the radiomic model was then assessed with receiver operating characteristic (ROC) and calibration curve analyses in all three sets. Results The PNI rates for the training, internal testing, and external testing sets were 22.1, 22.8, and 36.6%, respectively. LASSO algorithm was selected for signature establishment. The radiomics signature, consisting of 8 robust features, revealed good discrimination accuracy for the PNI in all three sets (training set: AUC = 0.86; internal testing set: AUC = 0.82; external testing set: AUC = 0.78). The risk of PNI was significantly associated with higher radiomics scores. A combined model that integrated radiomics and T stage demonstrated enhanced accuracy and excellent calibration in all three sets (training set: AUC = 0.89; internal testing set: AUC = 0.84; external testing set: AUC = 0.82). Conclusion The suggested radiomics model exhibited satisfactory prediction performance for the PNI in GC.
Collapse
Affiliation(s)
- Xujie Gao
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Department of Radiology, National Clinical Research Center for Cancer, Tianjin, China
- Department of Radiology, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- The Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Jingli Cui
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Department of Radiology, National Clinical Research Center for Cancer, Tianjin, China
- Department of Radiology, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- The Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Department of General Surgery, Weifang People’s Hospital, Weifang, Shandong, China
| | - Lingwei Wang
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Department of Radiology, National Clinical Research Center for Cancer, Tianjin, China
- Department of Radiology, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- The Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Qiuyan Wang
- Department of Radiology, Weifang People’s Hospital, Weifang, Shandong, China
| | - Tingting Ma
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Department of Radiology, National Clinical Research Center for Cancer, Tianjin, China
- Department of Radiology, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- The Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Department of Radiology, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
| | - Jilong Yang
- Department of Radiology, National Clinical Research Center for Cancer, Tianjin, China
- Department of Radiology, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- The Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhaoxiang Ye
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Department of Radiology, National Clinical Research Center for Cancer, Tianjin, China
- Department of Radiology, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- The Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| |
Collapse
|
14
|
Xia F, Zha X, Qin W, Wu H, Li Z, Li C. Histogram analysis of ultrasonographic images in the differentiation of benign and malignant parotid gland tumors. Oral Surg Oral Med Oral Pathol Oral Radiol 2023:S2212-4403(23)00437-6. [PMID: 37258328 DOI: 10.1016/j.oooo.2023.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/13/2023] [Accepted: 04/22/2023] [Indexed: 06/02/2023]
Abstract
OBJECTIVE We evaluated the diagnostic value of histogram analysis (HA) using ultrasonographic (US) images for differentiation among pleomorphic adenoma (PA), adenolymphoma (AL), and malignant tumors (MT) of the parotid gland. STUDY DESIGN Preoperative US images of 48 patients with PA, 39 patients with AL, and 17 patients with MT were retrospectively analyzed for gray-scale histograms. Nine first-order texture features derived from histograms of the tumors were compared. Area under the receiver operating characteristic curve (AUC) was used to evaluate the diagnostic performance of texture features. The Youden index maximum exponent was used to calculate sensitivity and specificity. RESULTS Statistically significant differences were discovered in Mean and Skewness HA values between PA and AL (P<0.001), and in Mean values between AL and MT (P<0.001). However, comparison of PA and MT showed no statistically significant differences (P>0.01). Excellent discrimination was detected between PA and AL (AUC=0.802), and between AL and MT (AUC=0.822). The combination of Mean plus Skewness improved discrimination between PA and AL (AUC=0.823) with sensitivity values reaching 1.00. However, Mean plus Skewness applied to differentiate PA from AL and Mean values applied to distinguish AL and MT resulted in low specificity, indicating many false positive interpretations. CONCLUSIONS Histogram analysis is useful for differentiating PA from AL and AL from MT but not PA from MT.
Collapse
Affiliation(s)
- Feifei Xia
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China; School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Xiaoyu Zha
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China
| | - Wenjuan Qin
- Department of Ultrasound, First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China
| | - Hui Wu
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China
| | - Zeying Li
- School of Medicine, Shihezi University, Shihezi, Xinjiang, China; Department of Pathology, First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang China
| | - Changxue Li
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China.
| |
Collapse
|
15
|
Guo W, Liu J, Wang X, Yuan H. Predicting the Risk of Thymic Tumors Using Texture Analysis of Contrast-Enhanced Chest Computed Tomography. J Comput Assist Tomogr 2023:00004728-990000000-00164. [PMID: 36944121 DOI: 10.1097/rct.0000000000001467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
OBJECTIVE This study aimed to explore the value of contrast-enhanced computed tomography texture features for predicting the risk of malignant thymic epithelial tumor. METHODS Data of 97 patients with pathologically confirmed thymic epithelial tumors treated at in our hospital from March 2015 to October 2021 were retrospectively analyzed. Based on the World Health Organization classification of thymic epithelial tumors, patients were divided into a high-risk group (types B2, B3, and C; n = 45) and a low-risk group (types A, AB, and B1; n = 52). Texture analysis was performed using a first-order, gray-level histogram method. Six features were evaluated: mean, variance, skewness, kurtosis, energy, and entropy. The association between contrast-enhanced computed tomography texture features and the risk of malignancy in thymic epithelial tumors was analyzed. The predictive thresholds of predictive texture features were determined by receiver operating characteristics analysis. RESULTS The mean, skewness, and entropy were significantly greater in the high-risk group than in the low-risk group (P < 0.05); however, variance, kurtosis, and energy were comparable in the two groups (P > 0.05). The area under curve of mean, skewness, and entropy was 0.670, 0.760, and 0.880, respectively. The optimal cutoff value of entropy for predicting risk of malignancy was 7.74, with sensitivity, specificity, and accuracy of 80.0%, 80.0%, and 75%, respectively. CONCLUSIONS Contrast-enhanced computed tomography texture features, especially entropy, may be a useful tool to predict the risk of malignancy in thymic epithelial tumors.
Collapse
Affiliation(s)
- Wei Guo
- From the Department of Radiology, Peking University Third Hospital, Beijing
| | - Jianfang Liu
- Department of Radiology, Union Hospital of Fujian Medical University, Fuzhou, PR China
| | - Xiaohua Wang
- From the Department of Radiology, Peking University Third Hospital, Beijing
| | - Huishu Yuan
- From the Department of Radiology, Peking University Third Hospital, Beijing
| |
Collapse
|
16
|
Bologna M, Corino V, Cavalieri S, Calareso G, Gazzani SE, Poli T, Ravanelli M, Mattavelli D, de Graaf P, Nauta I, Scheckenbach K, Licitra L, Mainardi L. Prognostic radiomic signature for head and neck cancer: development and validation on a multi-centric MRI dataset. Radiother Oncol 2023; 183:109638. [PMID: 37004837 DOI: 10.1016/j.radonc.2023.109638] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND AND PURPOSE Prognosis in locally advanced head and neck cancer (HNC) is currently based on TNM staging system and tumor subsite. However, quantitative imaging features (i.e., radiomic features) from magnetic resonance imaging (MRI) may provide additional prognostic info. The aim of this work is to develop and validate an MRI-based prognostic radiomic signature for locally advanced HNC. MATERIALS AND METHODS Radiomic features were extracted from T1- and T2-weighted MRI (T1w and T2w) using the segmentation of the primary tumor as mask. In total 1072 features (536 per image type) were extracted for each tumor. A retrospective multi-centric dataset (n=285) was used for features selection and model training. The selected features were used to fit a Cox proportional hazard regression model for overall survival (OS) that outputs the radiomic signature. The signature was then validated on a prospective multi-centric dataset (n=234). Prognostic performance for OS and disease-free survival (DFS) was evaluated using C-index. Additional prognostic value of the radiomic signature was explored. RESULTS The radiomic signature had C-index=0.64 for OS and C-index=0.60 for DFS in the validation set. The addition of the radiomic signature to other clinical features (TNM staging and tumor subsite) increased prognostic ability for both OS (HPV- C-index 0.63 to 0.65; HPV+ C-index 0.75 to 0.80) and DFS (HPV- C-index 0.58 to 0.61; HPV+ C-index 0.64 to 0.65). CONCLUSION An MRI-based prognostic radiomic signature was developed and prospectively validated. Such signature can successfully integrate clinical factors in both HPV+ and HPV- tumors. Grant support: European Union Horizon 2020 Framework Programme, Grant/Award, Number: 689715.
Collapse
Affiliation(s)
- Marco Bologna
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Milan, Italy.
| | - Valentina Corino
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Milan, Italy
| | - Stefano Cavalieri
- Head and Neck Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano and Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Giuseppina Calareso
- Radiology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Silvia Eleonora Gazzani
- Unit of Diagnostic and Interventional Radiology, Department of Surgical Sciences, University of Parma, Parma, Italy
| | - Tito Poli
- Unit of Maxillo-Facial Surgery, Department of Biomedical, Biotechnological and Translational Sciences (S.Bi.Bi.T.), University of Parma, Parma, Italy
| | - Marco Ravanelli
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Davide Mattavelli
- Department of Otorhinolaryngology Head and Neck Surgery, Spedali Civili di Brescia and University of Brescia, Brescia, Italy
| | - Pim de Graaf
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Irene Nauta
- Department of Otolaryngology/Head and Neck Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, The Netherlands
| | - Kathrin Scheckenbach
- Department of Otolaryngology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lisa Licitra
- Head and Neck Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano and Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan. Milan, Italy
| | - Luca Mainardi
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Milan, Italy
| |
Collapse
|
17
|
Radiomics Applications in Head and Neck Tumor Imaging: A Narrative Review. Cancers (Basel) 2023; 15:cancers15041174. [PMID: 36831517 PMCID: PMC9954362 DOI: 10.3390/cancers15041174] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Recent advances in machine learning and artificial intelligence technology have ensured automated evaluation of medical images. As a result, quantifiable diagnostic and prognostic biomarkers have been created. We discuss radiomics applications for the head and neck region in this paper. Molecular characterization, categorization, prognosis and therapy recommendation are given special consideration. In a narrative manner, we outline the fundamental technological principles, the overall idea and usual workflow of radiomic analysis and what seem to be the present and potential challenges in normal clinical practice. Clinical oncology intends for all of this to ensure informed decision support for personalized and useful cancer treatment. Head and neck cancers present a unique set of diagnostic and therapeutic challenges. These challenges are brought on by the complicated anatomy and heterogeneity of the area under investigation. Radiomics has the potential to address these barriers. Future research must be interdisciplinary and focus on the study of certain oncologic functions and outcomes, with external validation and multi-institutional cooperation in order to achieve this.
Collapse
|
18
|
Association of Multi-Phasic MR-Based Radiomic and Dosimetric Features with Treatment Response in Unresectable Hepatocellular Carcinoma Patients following Novel Sequential TACE-SBRT-Immunotherapy. Cancers (Basel) 2023; 15:cancers15041105. [PMID: 36831445 PMCID: PMC9954441 DOI: 10.3390/cancers15041105] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
This study aims to investigate the association of pre-treatment multi-phasic MR-based radiomics and dosimetric features with treatment response to a novel sequential trans-arterial chemoembolization (TACE) plus stereotactic body radiotherapy (SBRT) plus immunotherapy regimen in unresectable Hepatocellular Carcinoma (HCC) sub-population. Twenty-six patients with unresectable HCC were retrospectively analyzed. Radiomic features were extracted from 42 lesions on arterial phase (AP) and portal-venous phase (PVP) MR images. Delta-phase (DeltaP) radiomic features were calculated as AP-to-PVP ratio. Dosimetric data of the tumor was extracted from dose-volume-histograms. A two-sided independent Mann-Whitney U test was used to assess the clinical association of each feature, and the classification performance of each significant independent feature was assessed using logistic regression. For the 3-month timepoint, four DeltaP-derived radiomics that characterize the temporal change in intratumoral randomness and uniformity were the only contributors to the treatment response association (p-value = 0.038-0.063, AUC = 0.690-0.766). For the 6-month timepoint, DeltaP-derived radiomic features (n = 4) maintained strong clinical associations with the treatment response (p-value = 0.047-0.070, AUC = 0.699-0.788), additional AP-derived radiomic features (n = 4) that reflect baseline tumoral arterial-enhanced signal pattern and tumor morphology (n = 1) that denotes initial tumor burden were shown to have strong associations with treatment response (p-value = 0.028-0.074, AUC = 0.719-0.773). This pilot study successfully demonstrated associations of pre-treatment multi-phasic MR-based radiomics with tumor response to the novel treatment regimen.
Collapse
|
19
|
Andersen MB, Harders SW, Thygesen J, Ganeshan B, Torp Madsen HH, Rasmussen F. Potential impact of texture analysis in contrast enhanced CT in non-small cell lung cancer as a marker of survival: A retrospective feasibility study. Medicine (Baltimore) 2022; 101:e31855. [PMID: 36482650 PMCID: PMC9726401 DOI: 10.1097/md.0000000000031855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The objective of this feasibility study was to assess computed tomography (CT) texture analysis (CTTA) of pulmonary lesions as a predictor of overall survival in patients with suspected lung cancer on contrast-enhanced computed tomography (CECT). In a retrospective pilot study, 94 patients (52 men and 42 women; mean age, 67.2 ± 10.8 yrs) from 1 center with non-small cell lung cancer (NSCLC) underwent CTTA on the primary lesion by 2 individual readers. Both simple and multivariate Cox regression analyses correlating textural parameters with overall survival were performed. Statistically significant parameters were selected, and optimal cutoff values were determined. Kaplan-Meier plots based on these results were produced. Simple Cox regression analysis showed that normalized uniformity had a hazard ratio (HR) of 16.059 (3.861-66.788, P < .001), and skewness had an HR of 1.914 (1.330-2.754, P < .001). The optimal cutoff values for both parameters were 0.8602 and 0.1554, respectively. Normalized uniformity, clinical stage, and skewness were found to be prognostic factors for overall survival in multivariate analysis. Tumor heterogeneity, assessed by normalized uniformity and skewness on CECT may be a prognostic factor for overall survival.
Collapse
Affiliation(s)
- Michael Brun Andersen
- Department of Radiology, Aarhus University Hospital, Skejby, Denmark
- Department of Radiology, Copenhagen University Hospital, Gentofte, Denmark
- Department of Clinical Medicine, Copenhagen University, Copenhagen, Denmark
- * Correspondence: Michael Brun Andersen, Department of Radiology, Copenhagen University Hospital, Gentofte Hospitalsvej 1, Hellerup 2900, Denmark (e-mail: )
| | | | - Jesper Thygesen
- Department of Clinical Engineering c/o Aarhus University Hospital, Central Denmark Region, Skejby, Denmark
| | - Balaji Ganeshan
- Institute of Nuclear Medicine, University College London, London, UK
| | | | - Finn Rasmussen
- Department of Radiology, Aarhus University Hospital, Skejby, Denmark
| |
Collapse
|
20
|
Ma T, Cui J, Wang L, Li H, Ye Z, Gao X. A multiphase contrast-enhanced CT radiomics model for prediction of human epidermal growth factor receptor 2 status in advanced gastric cancer. Front Genet 2022; 13:968027. [PMID: 36276942 PMCID: PMC9585247 DOI: 10.3389/fgene.2022.968027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Accurate evaluation of human epidermal growth factor receptor 2 (HER2) status is of great importance for appropriate management of advanced gastric cancer (AGC) patients. This study aims to develop and validate a CT-based radiomics model for prediction of HER2 overexpression in AGC. Materials and Methods: Seven hundred and forty-five consecutive AGC patients (median age, 59 years; interquartile range, 52–66 years; 515 male and 230 female) were enrolled and separated into training set (n = 521) and testing set (n = 224) in this retrospective study. Radiomics features were extracted from three phases images of contrast-enhanced CT scans. A radiomics signature was built based on highly reproducible features using the least absolute shrinkage and selection operator method. Univariable and multivariable logistical regression analysis were used to establish predictive model with independent risk factors of HER2 overexpression. The predictive performance of radiomics model was assessed in the training and testing sets. Results: The positive rate of HER2 was 15.9% and 13.8% in the training set and testing set, respectively. The positive rate of HER2 in intestinal-type GC was significantly higher than that in diffuse-type GC. The radiomics signature comprised eight robust features demonstrated good discrimination ability for HER2 overexpression in the training set (AUC = 0.84) and the testing set (AUC = 0.78). A radiomics-based model that incorporated radiomics signature and pathological type showed good discrimination and calibration in the training (AUC = 0.85) and testing (AUC = 0.84) sets. Conclusion: The proposed radiomics model showed favorable accuracy for prediction of HER2 overexpression in AGC.
Collapse
Affiliation(s)
- Tingting Ma
- Department of Radiology, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Jingli Cui
- National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Department of General Surgery, Weifang People’s Hospital, Weifang, Shandong, China
| | - Lingwei Wang
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- The Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Hui Li
- National Clinical Research Center for Cancer, Tianjin, China
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Zhaoxiang Ye
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- The Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- *Correspondence: Zhaoxiang Ye, ; Xujie Gao,
| | - Xujie Gao
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- The Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- *Correspondence: Zhaoxiang Ye, ; Xujie Gao,
| |
Collapse
|
21
|
Zhang Z, Yi X, Pei Q, Fu Y, Li B, Liu H, Han Z, Chen C, Pang P, Lin H, Gong G, Yin H, Zai H, Chen BT. CT radiomics identifying non-responders to neoadjuvant chemoradiotherapy among patients with locally advanced rectal cancer. Cancer Med 2022; 12:2463-2473. [PMID: 35912919 PMCID: PMC9939108 DOI: 10.1002/cam4.5086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/05/2022] [Accepted: 05/07/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Early detection of non-response to neoadjuvant chemoradiotherapy (nCRT) for locally advanced colorectal cancer (LARC) remains challenging. We aimed to assess whether pretreatment radiotherapy planning computed tomography (CT) radiomics could distinguish the patients with no response or no downstaging after nCRT from those with response and downstaging after nCRT. MATERIALS AND METHODS Patients with LARC who were treated with nCRT were retrospectively enrolled between March 2009 and March 2019. Traditional radiological characteristics were analyzed by visual inspection and radiomic features were analyzed through computational methods from the pretreatment radiotherapy planning CT images. Differentiation models were constructed using radiomic methods and clinicopathological characteristics for predicting non-response to nCRT. Model performance was assessed for classification efficiency, calibration, discrimination, and clinical application. RESULTS This study enrolled a total of 215 patients, including 151 patients in the training cohort (50 non-responders and 101 responders) and 64 patients in the validation cohort (21 non-responders and 43 responders). For predicting non-response, the model constructed with an ensemble machine learning method had higher performance with area under the curve (AUC) values of 0.92 and 0.89 as compared to the model constructed with the logistic regression method (AUC: 0.72 and 0.71 for the training and validation cohorts, respectively). Both decision curve and calibration curve analyses confirmed that the ensemble machine learning model had higher prediction performance. CONCLUSION Pretreatment CT radiomics achieved satisfying performance in predicting non-response to nCRT and could be helpful to assist in treatment planning for patients with LARC.
Collapse
Affiliation(s)
- Zinan Zhang
- Department of Radiology (Xiangya Hospital)Central South UniversityChangshaHunanP.R. China,Department of Gastroenterology (The Third Xiangya Hospital)Central South UniversityChangshaHunanP.R. China
| | - Xiaoping Yi
- Department of Radiology (Xiangya Hospital)Central South UniversityChangshaHunanP.R. China,National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyXiangya HospitalChangshaHunanP.R. China,National Clinical Research Center for Geriatric Disorders (Xiangya Hospital)Central South UniversityChangshaHunanP.R. China,Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaHunanP.R. China,Hunan Engineering Research Center of Skin Health and DiseaseChangshaHunanP.R. China
| | - Qian Pei
- Department of General Surgery (Xiangya Hospital)Central South UniversityChangshaHunanP.R. China
| | - Yan Fu
- Department of Radiology (Xiangya Hospital)Central South UniversityChangshaHunanP.R. China,National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyXiangya HospitalChangshaHunanP.R. China
| | - Bin Li
- Department of Oncology (Xiangya Hospital)Central South UniversityChangshaHunanP.R. China
| | - Haipeng Liu
- Department of Radiology (Xiangya Hospital)Central South UniversityChangshaHunanP.R. China
| | - Zaide Han
- Department of Radiology (Xiangya Hospital)Central South UniversityChangshaHunanP.R. China
| | - Changyong Chen
- Department of Radiology (Xiangya Hospital)Central South UniversityChangshaHunanP.R. China
| | - Peipei Pang
- Department of Pharmaceuticals and DiagnosisGE HealthcareChangshaP.R. China
| | - Huashan Lin
- Department of Pharmaceuticals and DiagnosisGE HealthcareChangshaP.R. China
| | - Guanghui Gong
- Department of Pathology, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
| | - Hongling Yin
- Department of Pathology, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
| | - Hongyan Zai
- Department of General Surgery (Xiangya Hospital)Central South UniversityChangshaHunanP.R. China
| | - Bihong T. Chen
- Department of Diagnostic RadiologyCity of Hope National Medical CenterDuarteCaliforniaUSA
| |
Collapse
|
22
|
COŞKUN N, YÜKSEL AÖ, CANYİĞİT M, ÖZDEMİR E. Radiomics analysis of pre-treatment F-18 FDG PET/CT for predicting response to transarterial radioembolization in liver tumors. JOURNAL OF HEALTH SCIENCES AND MEDICINE 2022. [DOI: 10.32322/jhsm.1118649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Aim: To investigate the relationship between the textural features extracted from pre-treatment fluorine-18 fluorodeoxyglucose positron emission with computed tomography (F-18 FDG PET/CT) and the response to treatment in patients undergoing transarterial radioembolization (TARE) due to primary or metastatic liver tumors.
Material and Method: A total of 25 liver lesions from the pre-treatment F-18 PET/CT images of 14 patients were segmented manually. Standard uptake value (SUV) metrics and radiomics features were extracted for each lesion. Metabolic treatment response was determined according to PERCIST criteria in 18F-FDG PET/CT imaging performed 2 months after the treatment. Feature selection was done with recursive feature elimination (RFE). The association between selected features and treatment response was evaluated with logistic regression analysis.
Results: Eventually, 13 lesions responded to TARE, while 12 lesions remain stable or progressed. All standard uptake values and 27 out of 30 textural heterogeneity indicators were significantly higher in lesions that responded to treatment. SUVmax, kurtosis and dissimilarity features were selected by the RFE algorithm for the prediction of response to TARE. Logistic regression analysis revealed that all three parameters were significantly associated with treatment outcome.
Conclusion: Textural features extracted from pre-treatment F-18 FDG PET/CT in patients undergoing TARE due to liver tumors are promising biomarkers that can be potentially used to predict metabolic treatment response.
Collapse
Affiliation(s)
- Nazım COŞKUN
- SAĞLIK BİLİMLERİ ÜNİVERSİTESİ, ANKARA ŞEHİR SAĞLIK UYGULAMA VE ARAŞTIRMA MERKEZİ, DAHİLİ TIP BİLİMLERİ BÖLÜMÜ
| | - Alptuğ Özer YÜKSEL
- SAĞLIK BİLİMLERİ ÜNİVERSİTESİ, ANKARA ŞEHİR SAĞLIK UYGULAMA VE ARAŞTIRMA MERKEZİ, DAHİLİ TIP BİLİMLERİ BÖLÜMÜ, NÜKLEER TIP ANABİLİM DALI
| | - Murat CANYİĞİT
- YILDIRIM BEYAZIT ÜNİVERSİTESİ, TIP FAKÜLTESİ, DAHİLİ TIP BİLİMLERİ BÖLÜMÜ, RADYOLOJİ ANABİLİM DALI
| | - Elif ÖZDEMİR
- YILDIRIM BEYAZIT ÜNİVERSİTESİ, TIP FAKÜLTESİ, DAHİLİ TIP BİLİMLERİ BÖLÜMÜ, NÜKLEER TIP ANABİLİM DALI
| |
Collapse
|
23
|
Cilla S, Macchia G, Lenkowicz J, Tran EH, Pierro A, Petrella L, Fanelli M, Sardu C, Re A, Boldrini L, Indovina L, De Filippo CM, Caradonna E, Deodato F, Massetti M, Valentini V, Modugno P. CT angiography-based radiomics as a tool for carotid plaque characterization: a pilot study. Radiol Med 2022; 127:743-753. [DOI: 10.1007/s11547-022-01505-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/20/2022] [Indexed: 11/27/2022]
|
24
|
Yang B, Liu C, Wu R, Zhong J, Li A, Ma L, Zhong J, Yin S, Zhou C, Ge Y, Tao X, Zhang L, Lu G. Development and Validation of a DeepSurv Nomogram to Predict Survival Outcomes and Guide Personalized Adjuvant Chemotherapy in Non-Small Cell Lung Cancer. Front Oncol 2022; 12:895014. [PMID: 35814402 PMCID: PMC9260694 DOI: 10.3389/fonc.2022.895014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/02/2022] [Indexed: 11/22/2022] Open
Abstract
Objective To develop and validate a DeepSurv nomogram based on radiomic features extracted from computed tomography images and clinicopathological factors, to predict the overall survival and guide individualized adjuvant chemotherapy in patients with non-small cell lung cancer (NSCLC). Patients and Methods This retrospective study involved 976 consecutive patients with NSCLC (training cohort, n=683; validation cohort, n=293). DeepSurv was constructed based on 1,227 radiomic features, and the risk score was calculated for each patient as the output. A clinical multivariate Cox regression model was built with clinicopathological factors to determine the independent risk factors. Finally, a DeepSurv nomogram was constructed by integrating the risk score and independent clinicopathological factors. The discrimination capability, calibration, and clinical usefulness of the nomogram performance were assessed using concordance index evaluation, the Greenwood-Nam-D’Agostino test, and decision curve analysis, respectively. The treatment strategy was analyzed using a Kaplan–Meier curve and log-rank test for the high- and low-risk groups. Results The DeepSurv nomogram yielded a significantly better concordance index (training cohort, 0.821; validation cohort 0.768) with goodness-of-fit (P<0.05). The risk score, age, thyroid transcription factor-1, Ki-67, and disease stage were the independent risk factors for NSCLC.The Greenwood-Nam-D’Agostino test showed good calibration performance (P=0.39). Both high- and low-risk patients did not benefit from adjuvant chemotherapy, and chemotherapy in low-risk groups may lead to a poorer prognosis. Conclusions The DeepSurv nomogram, which is based on the risk score and independent risk factors, had good predictive performance for survival outcome. Further, it could be used to guide personalized adjuvant chemotherapy in patients with NSCLC.
Collapse
Affiliation(s)
- Bin Yang
- Medical Imaging Center, Calmette Hospital and The First Hospital of Kunming (Affiliated Calmette Hospital of Kunming Medical University), Kunming, China
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chengxing Liu
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ren Wu
- Department of Medical Imaging, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Jing Zhong
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ang Li
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lu Ma
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jian Zhong
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Saisai Yin
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Changsheng Zhou
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | | | - Xinwei Tao
- Siemens Healthineers Ltd., Shanghai, China
| | - Longjiang Zhang
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Guangming Lu, ; Longjiang Zhang,
| | - Guangming Lu
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Medical Imaging, Jinling Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Guangming Lu, ; Longjiang Zhang,
| |
Collapse
|
25
|
Ungan G, Lavandier AF, Rouanet J, Hordonneau C, Chauveau B, Pereira B, Boyer L, Garcier JM, Mansard S, Bartoli A, Magnin B. Metastatic melanoma treated by immunotherapy: discovering prognostic markers from radiomics analysis of pretreatment CT with feature selection and classification. Int J Comput Assist Radiol Surg 2022; 17:1867-1877. [PMID: 35650345 DOI: 10.1007/s11548-022-02662-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/26/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Immunotherapy has dramatically improved the prognosis of patients with metastatic melanoma (MM). Yet, there is a lack of biomarkers to predict whether a patient will benefit from immunotherapy. Our aim was to create radiomics models on pretreatment computed tomography (CT) to predict overall survival (OS) and treatment response in patients with MM treated with anti-PD-1 immunotherapy. METHODS We performed a monocentric retrospective analysis of 503 metastatic lesions in 71 patients with 46 radiomics features extracted following lesion segmentation. Predictive accuracies for OS < 1 year versus > 1 year and treatment response versus no response was compared for five feature selection methods (sequential forward selection, recursive, Boruta, relief, random forest) and four classifiers (support vector machine (SVM), random forest, K-nearest neighbor, logistic regression (LR)) used with or without SMOTE data augmentation. A fivefold cross-validation was performed at the patient level, with a tumour-based classification. RESULTS The highest accuracy level for OS predictions was obtained with 3D lesions (0.91) without clinical data integration when combining Boruta feature selection and the LR classifier, The highest accuracy for treatment response prediction was obtained with 3D lesions (0.88) without clinical data integration when combining Boruta feature selection, the LR classifier and SMOTE data augmentation. The accuracy was significantly higher concerning OS prediction with 3D segmentation (0.91 vs 0.86) while clinical data integration led to improved accuracy notably in 2D lesions (0.76 vs 0.87) regarding treatment response prediction. Skewness was the only feature found to be an independent predictor of OS (HR (CI 95%) 1.34, p-value 0.001). CONCLUSION This is the first study to investigate CT texture parameter selection and classification methods for predicting MM prognosis with treatment by immunotherapy. Combining pretreatment CT radiomics features from a single tumor with data selection and classifiers may accurately predict OS and treatment response in MM treated with anti-PD-1.
Collapse
Affiliation(s)
- Gulnur Ungan
- EnCoV, Institut Pascal, UMR 6602 CNRS, Université Clermont Auvergne, 28 place Henri Dunant, 63000, Clermont-Ferrand, France
| | - Anne-Flore Lavandier
- Department of Medical Imaging, CHU Clermont Ferrand, 1 place Lucie Aubrac, 63100, Clermont-Ferrand, France
| | - Jacques Rouanet
- Dermatology Department, CHU Clermont Ferrand, 1 place Lucie Aubrac, 63100, Clermont-Ferrand, France
| | - Constance Hordonneau
- Department of Medical Imaging, CHU Clermont Ferrand, 1 place Lucie Aubrac, 63100, Clermont-Ferrand, France
| | - Benoit Chauveau
- Department of Medical Imaging, CHU Clermont Ferrand, 1 place Lucie Aubrac, 63100, Clermont-Ferrand, France
| | - Bruno Pereira
- Biostatistics Unit, DRCI, CHU Clermont Ferrand, 58 rue Montalembert, 63000, Clermont-Ferrand, France
| | - Louis Boyer
- Department of Medical Imaging, CHU Clermont Ferrand, 1 place Lucie Aubrac, 63100, Clermont-Ferrand, France
| | - Jean-Marc Garcier
- Department of Medical Imaging, CHU Clermont Ferrand, 1 place Lucie Aubrac, 63100, Clermont-Ferrand, France.,Anatomy Department, Université Clermont Auvergne, 28 place Henri Dunant, 63000, Clermont-Ferrand, France
| | - Sandrine Mansard
- Dermatology Department, CHU Clermont Ferrand, 1 place Lucie Aubrac, 63100, Clermont-Ferrand, France
| | - Adrien Bartoli
- EnCoV, Institut Pascal, UMR 6602 CNRS, Université Clermont Auvergne, 28 place Henri Dunant, 63000, Clermont-Ferrand, France
| | - Benoit Magnin
- EnCoV, Institut Pascal, UMR 6602 CNRS, Université Clermont Auvergne, 28 place Henri Dunant, 63000, Clermont-Ferrand, France. .,Department of Medical Imaging, CHU Clermont Ferrand, 1 place Lucie Aubrac, 63100, Clermont-Ferrand, France. .,Anatomy Department, Université Clermont Auvergne, 28 place Henri Dunant, 63000, Clermont-Ferrand, France.
| |
Collapse
|
26
|
Tomita H, Yamashiro T, Iida G, Tsubakimoto M, Mimura H, Murayama S. Radiomics analysis for differentiating of cervical lymphadenopathy between cancer of unknown primary and malignant lymphoma on unenhanced computed tomography. NAGOYA JOURNAL OF MEDICAL SCIENCE 2022; 84:269-285. [PMID: 35967951 PMCID: PMC9350581 DOI: 10.18999/nagjms.84.2.269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/03/2021] [Indexed: 12/03/2022]
Abstract
To investigate the usefulness of texture analysis to discriminate between cervical lymph node (LN) metastasis from cancer of unknown primary (CUP) and cervical LN involvement of malignant lymphoma (ML) on unenhanced computed tomography (CT). Cervical LN metastases in 17 patients with CUP and cervical LN involvement in 17 patients with ML were assessed by 18F-FDG PET/CT. The texture features were obtained in the total cross-sectional area (CSA) of the targeted LN, following the contour of the largest cervical LN on unenhanced CT. Values for the max standardized uptake value (SUVmax) and the mean SUV value (SUVmean), and 34 texture features were compared using a Mann-Whitney U test. The diagnostic accuracy and area under the curve (AUC) of the combination of the texture features were evaluated by support vector machine (SVM) with nested cross-validation. The SUVmax and SUVmean did not differ significantly between cervical LN metastases from CUP and cervical LN involvement from ML. However, significant differences of 9 texture features of the total CSA were observed (p = 0.001 - 0.05). The best AUC value of 0.851 for the texture feature of the total CSA were obtained from the correlation in the gray-level co-occurrence matrix features. SVM had the best AUC and diagnostic accuracy of 0.930 and 84.8%. Radiomics analysis appears to be useful for differentiating cervical LN metastasis from CUP and cervical LN involvement of ML on unenhanced CT.
Collapse
Affiliation(s)
- Hayato Tomita
- Department of Radiology, University of the Ryukyus Graduate School of Medicine, Nishihara, Japan
,Department of Radiology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Tsuneo Yamashiro
- Department of Radiology, University of the Ryukyus Graduate School of Medicine, Nishihara, Japan
| | - Gyo Iida
- Department of Radiology, University of the Ryukyus Graduate School of Medicine, Nishihara, Japan
| | - Maho Tsubakimoto
- Department of Radiology, University of the Ryukyus Graduate School of Medicine, Nishihara, Japan
| | - Hidefumi Mimura
- Department of Radiology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Sadayuki Murayama
- Department of Radiology, University of the Ryukyus Graduate School of Medicine, Nishihara, Japan
| |
Collapse
|
27
|
Yao W, Yang S, Ge Y, Fan W, Xiang L, Wan Y, Gu K, Zhao Y, Zha R, Bu J. Computed Tomography Radiomics-Based Prediction of Microvascular Invasion in Hepatocellular Carcinoma. Front Med (Lausanne) 2022; 9:819670. [PMID: 35402463 PMCID: PMC8987588 DOI: 10.3389/fmed.2022.819670] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/18/2022] [Indexed: 12/12/2022] Open
Abstract
Background Due to the high recurrence rate in hepatocellular carcinoma (HCC) after resection, preoperative prognostic prediction of HCC is important for appropriate patient management. Exploring and developing preoperative diagnostic methods has great clinical value in treating patients with HCC. This study sought to develop and evaluate a novel combined clinical predictive model based on standard triphasic computed tomography (CT) to discriminate microvascular invasion (MVI) in hepatocellular carcinoma (HCC). Methods The preoperative findings of 82 patients with HCC, including conventional clinical factors, CT imaging findings, and CT texture analysis (TA), were analyzed retrospectively. All included cases were divided into MVI-negative (n = 33; no MVI) and MVI-positive (n = 49; low or high risk of MVI) groups. TA parameters were extracted from non-enhanced, arterial, portal venous, and equilibrium phase images and subsequently calculated using the Artificial Intelligence Kit. After statistical analyses, a clinical model comprising conventional clinical and CT image risk factors, radiomics signature models, and a novel combined model (fused radiomic signature) was constructed. The area under the curve (AUC) of the receiver operating characteristics (ROC) curve was used to assess the performance of the various models in discriminating MVI. Results We found that tumor diameter and pathological grade were effective clinical predictors in clinical model and 12 radiomics features were effective for MVI prediction of each CT phase. The AUCs of the clinical, plain, artery, venous, and delay models were 0.77 (95% CI: 0.67–0.88), 0.75 (95% CI: 0.64–0.87), 0.79 (95% CI: 0.69–0.89), 0.73 (95% CI: 0.61–0.85), and 0.80 (95% CI: 0.70–0.91), respectively. The novel combined model exhibited the best performance, with an AUC of 0.83 (95% CI: 0.74–0.93). Conclusions Models derived from triphasic CT can preoperatively predict MVI in patients with HCC. Of the models tested here, the novel combined model was most predictive and could become a useful tool to guide subsequent personalized treatment of HCC.
Collapse
Affiliation(s)
- Wenjun Yao
- Department of Radiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shuo Yang
- Department of Radiology, Anhui Mental Health Center, Hefei, China
| | | | - Wenlong Fan
- Department of Radiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Xiang
- Department of Radiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yang Wan
- Department of Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kangchen Gu
- Department of Radiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yan Zhao
- School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Rujing Zha
- Department of Radiology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, School of Life Science, University of Science and Technology of China, Hefei, China
| | - Junjie Bu
- School of Biomedical Engineering, Anhui Medical University, Hefei, China.,The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
28
|
Tomita H, Kobayashi T, Takaya E, Mishiro S, Hirahara D, Fujikawa A, Kurihara Y, Mimura H, Kobayashi Y. Deep learning approach of diffusion-weighted imaging as an outcome predictor in laryngeal and hypopharyngeal cancer patients with radiotherapy-related curative treatment: a preliminary study. Eur Radiol 2022; 32:5353-5361. [PMID: 35201406 DOI: 10.1007/s00330-022-08630-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/15/2022] [Accepted: 02/02/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES This preliminary study aimed to develop a deep learning (DL) model using diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) maps to predict local recurrence and 2-year progression-free survival (PFS) in laryngeal and hypopharyngeal cancer patients treated with various forms of radiotherapy-related curative therapy. METHODS Seventy patients with laryngeal and hypopharyngeal cancers treated by radiotherapy, chemoradiotherapy, or induction-(chemo)radiotherapy were enrolled and divided into training (N = 49) and test (N = 21) groups based on presentation timeline. All patients underwent MR before and 4 weeks after the start of radiotherapy. The DL models that extracted imaging features on pre- and intra-treatment DWI and ADC maps were trained to predict the local recurrence within a 2-year follow-up. In the test group, each DL model was analyzed for recurrence prediction. Additionally, the Kaplan-Meier and multivariable Cox regression analyses were performed to evaluate the prognostic significance of the DL models and clinical variables. RESULTS The highest area under the receiver operating characteristics curve and accuracy for predicting the local recurrence in the DL model were 0.767 and 81.0%, respectively, using intra-treatment DWI (DWIintra). The log-rank test showed that DWIintra was significantly associated with PFS (p = 0.013). DWIintra was an independent prognostic factor for PFS in multivariate analysis (p = 0.023). CONCLUSION DL models using DWIintra may have prognostic value in patients with laryngeal and hypopharyngeal cancers treated by curative radiotherapy. The model-related findings may contribute to determining the therapeutic strategy in the early stage of the treatment. KEY POINTS • Deep learning models using intra-treatment diffusion-weighted imaging have prognostic value in patients with laryngeal and hypopharyngeal cancers treated by curative radiotherapy. • The findings from these models may contribute to determining the therapeutic strategy at the early stage of the treatment.
Collapse
Affiliation(s)
- Hayato Tomita
- Department of Radiology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan.
| | - Tatsuaki Kobayashi
- Department of Advanced Biomedical Imaging Informatics, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Eichi Takaya
- School of Science for Open and Environmental Systems, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Sono Mishiro
- Department of AI Research Lab, Harada Academy, 2-54-4, Higashitaniyama, Kagoshima, Kagoshima, 891-0113, Japan
| | - Daisuke Hirahara
- Department of AI Research Lab, Harada Academy, 2-54-4, Higashitaniyama, Kagoshima, Kagoshima, 891-0113, Japan
| | - Atsuko Fujikawa
- Department of Radiology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Yoshiko Kurihara
- Department of Radiology, Machida Municipal Hospital, 2-15-41 Asahi-cho, Machida, Tokyo, 194-0023, Japan
| | - Hidefumi Mimura
- Department of Radiology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Yasuyuki Kobayashi
- Department of Advanced Biomedical Imaging Informatics, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| |
Collapse
|
29
|
Rabe E, Cioni D, Baglietto L, Fornili M, Gabelloni M, Neri E. Can the computed tomography texture analysis of colorectal liver metastases predict the response to first-line cytotoxic chemotherapy? World J Hepatol 2022; 14:244-259. [PMID: 35126852 PMCID: PMC8790398 DOI: 10.4254/wjh.v14.i1.244] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/04/2021] [Accepted: 12/02/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Artificial intelligence in radiology has the potential to assist with the diagnosis, prognostication and therapeutic response prediction of various cancers. A few studies have reported that texture analysis can be helpful in predicting the response to chemotherapy for colorectal liver metastases, however, the results have varied. Necrotic metastases were not clearly excluded in these studies and in most studies the full range of texture analysis features were not evaluated. This study was designed to determine if the computed tomography (CT) texture analysis results of non-necrotic colorectal liver metastases differ from previous reports. A larger range of texture features were also evaluated to identify potential new biomarkers.
AIM To identify potential new imaging biomarkers with CT texture analysis which can predict the response to first-line cytotoxic chemotherapy in non-necrotic colorectal liver metastases (CRLMs).
METHODS Patients who presented with CRLMs from 2012 to 2020 were retrospectively selected on the institutional radiology information system of our private radiology practice. The inclusion criteria were non-necrotic CRLMs with a minimum size of 10 mm (diagnosed on archived 1.25 mm portal venous phase CT scans) which were treated with standard first-line cytotoxic chemotherapy (FOLFOX, FOLFIRI, FOLFOXIRI, CAPE-OX, CAPE-IRI or capecitabine). The final study cohort consisted of 29 patients. The treatment response of the CRLMs was classified according to the RECIST 1.1 criteria. By means of CT texture analysis, various first and second order texture features were extracted from a single non-necrotic target CRLM in each responding and non-responding patient. Associations between features and response to chemotherapy were assessed by logistic regression models. The prognostic accuracy of selected features was evaluated by using the area under the curve.
RESULTS There were 15 responders (partial response) and 14 non-responders (7 stable and 7 with progressive disease). The responders presented with a higher number of CRLMs (P = 0.05). In univariable analysis, eight texture features of the responding CRLMs were associated with treatment response, but due to strong correlations among some of the features, only two features, namely minimum histogram gradient intensity and long run low grey level emphasis, were included in the multiple analysis. The area under the receiver operating characteristic curve of the multiple model was 0.80 (95%CI: 0.64 to 0.96), with a sensitivity of 0.73 (95%CI: 0.48 to 0.89) and a specificity of 0.79 (95%CI: 0.52 to 0.92).
CONCLUSION Eight first and second order texture features, but particularly minimum histogram gradient intensity and long run low grey level emphasis are significantly correlated with treatment response in non-necrotic CRLMs.
Collapse
Affiliation(s)
- Etienne Rabe
- Academic Radiology, Master in Oncologic Imaging, Department of Translational Research, University of Pisa, Pisa 56126, Italy
- Bay Radiology-Cancercare Oncology Centre, Bay Radiology, Port Elizabeth 6001, Eastern Cape, South Africa
| | - Dania Cioni
- Academic Radiology, Master in Oncologic Imaging, Department of Translational Research, University of Pisa, Pisa 56126, Italy
| | - Laura Baglietto
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56126, Italy
| | - Marco Fornili
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56126, Italy
| | - Michela Gabelloni
- Academic Radiology, Master in Oncologic Imaging, Department of Translational Research, University of Pisa, Pisa 56126, Italy
| | - Emanuele Neri
- Academic Radiology, Master in Oncologic Imaging, Department of Translational Research, University of Pisa, Pisa 56126, Italy
| |
Collapse
|
30
|
Non-contrast-enhanced CT texture analysis of primary and metastatic pancreatic ductal adenocarcinomas: value in assessment of histopathological grade and differences between primary and metastatic lesions. Abdom Radiol (NY) 2022; 47:4151-4159. [PMID: 36104481 PMCID: PMC9626421 DOI: 10.1007/s00261-022-03646-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 01/18/2023]
Abstract
PURPOSE To evaluate the utility of non-contrast-enhanced CT texture analysis (CTTA) for predicting the histopathological differentiation of pancreatic ductal adenocarcinomas (PDAC) and to compare non-contrast-enhanced CTTA texture features between primary PDAC and hepatic metastases of PDAC. METHODS This retrospective study included 120 patients with histopathologically confirmed PDAC. Sixty-five patients underwent CT-guided biopsy of primary PDAC, while 55 patients underwent CT-guided biopsy of hepatic PDAC metastasis. All lesions were segmented in non-contrast-enhanced CT scans for CTTA based on histogram analysis, co-occurrence matrix, and run-length matrix. Statistical analysis was conducted for 372 texture features using Mann-Whitney U test, Bonferroni-Holm correction, and receiver operating characteristic (ROC) analysis. A p value < 0.05 was considered statistically significant. RESULTS Three features were identified that differed significantly between histopathological G2 and G3 primary tumors. Of these, "low gray-level zone emphasis" yielded the largest AUC (0.87 ± 0.04), reaching a sensitivity and specificity of 0.76 and 0.83, respectively, when a cut-off value of 0.482 was applied. Fifty-four features differed significantly between primary and hepatic metastatic PDAC. CONCLUSION Non-contrast-enhanced CTTA of PDAC identified differences in texture features between primary G2 and G3 tumors that could be used for non-invasive tumor assessment. Extensive differences between the features of primary and metastatic PDAC on CTTA suggest differences in tumor microenvironment.
Collapse
|
31
|
Sellami S, Bourbonne V, Hatt M, Tixier F, Bouzid D, Lucia F, Pradier O, Goasduff G, Visvikis D, Schick U. Predicting response to radiotherapy of head and neck squamous cell carcinoma using radiomics from cone-beam CT images. Acta Oncol 2022; 61:73-80. [PMID: 34632924 DOI: 10.1080/0284186x.2021.1983207] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Radiotherapy (RT) for head and neck cancer is now guided by cone-beam computed tomography (CBCT). We aim to identify a CBCT radiomic signature predictive of progression to RT. MATERIAL AND METHODS A cohort of 93 patients was split into training (n = 60) and testing (n = 33) sets. A total of 88 features were extracted from the gross tumor volume (GTV) on each CBCT. Receiver operating characteristic (ROC) curves were used to determine the power of each feature at each week of treatment to predict progression to radio(chemo)therapy. Only features with AUC > 0.65 at each week were pre-selected. Absolute differences were calculated between features from each weekly CBCT and baseline CBCT1 images. The smallest detectable change (C = 1.96 × SD, SD being the standard deviation of differences between feature values calculated on CBCT1 and CBCTn) with its confidence interval (95% confidence interval [CI]) was determined for each feature. The features for which the change was larger than C for at least 5% of patients were then selected. A radiomics-based model was built at the time-point that showed the highest AUC and compared with models relying on clinical variables. RESULTS Seven features had an AUC > 0.65 at each week, and six exhibited a change larger than the predefined CI 95%. After exclusion of inter-correlated features, only one parameter remains, Coarseness. Among clinical variable, only hemoglobin value was significant. AUC for predicting the treatment response were 0.78 (p = .006), 0.85 (p < .001), and 0.99 (p < .001) for clinical, CBCT4-radiomics (Coarseness) and clinical + radiomics based models respectively. The mean AUC of this last model on a 5-fold cross-validation was 0.80 (±0.09). On the testing cohort, the best prediction was given by the combined model (balanced accuracy [BAcc] 0.67 , p < .001). CONCLUSIONS We described a feature selection methodology for delta-radiomics that is able to select reproducible features which are informative due to their change during treatment. A selected delta radiomics feature may improve clinical-based prediction models.
Collapse
Affiliation(s)
- S. Sellami
- Radiation Oncology Department, University Hospital, Brest, France
| | - V. Bourbonne
- Radiation Oncology Department, University Hospital, Brest, France
| | - M. Hatt
- INSERM, UMR 1101, LaTIM, University of Brest, Brest, France
| | - F. Tixier
- INSERM, UMR 1101, LaTIM, University of Brest, Brest, France
| | - D. Bouzid
- INSERM, UMR 1101, LaTIM, University of Brest, Brest, France
| | - F. Lucia
- Radiation Oncology Department, University Hospital, Brest, France
- INSERM, UMR 1101, LaTIM, University of Brest, Brest, France
| | - O. Pradier
- Radiation Oncology Department, University Hospital, Brest, France
- INSERM, UMR 1101, LaTIM, University of Brest, Brest, France
- Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale, Brest, France
| | - G. Goasduff
- Radiation Oncology Department, University Hospital, Brest, France
| | - D. Visvikis
- INSERM, UMR 1101, LaTIM, University of Brest, Brest, France
| | - U. Schick
- Radiation Oncology Department, University Hospital, Brest, France
- INSERM, UMR 1101, LaTIM, University of Brest, Brest, France
- Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale, Brest, France
| |
Collapse
|
32
|
Chen X, Fu R, Shao Q, Chen Y, Ye Q, Li S, He X, Zhu J. Application of artificial intelligence to pancreatic adenocarcinoma. Front Oncol 2022; 12:960056. [PMID: 35936738 PMCID: PMC9353734 DOI: 10.3389/fonc.2022.960056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/24/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Pancreatic cancer (PC) is one of the deadliest cancers worldwide although substantial advancement has been made in its comprehensive treatment. The development of artificial intelligence (AI) technology has allowed its clinical applications to expand remarkably in recent years. Diverse methods and algorithms are employed by AI to extrapolate new data from clinical records to aid in the treatment of PC. In this review, we will summarize AI's use in several aspects of PC diagnosis and therapy, as well as its limits and potential future research avenues. METHODS We examine the most recent research on the use of AI in PC. The articles are categorized and examined according to the medical task of their algorithm. Two search engines, PubMed and Google Scholar, were used to screen the articles. RESULTS Overall, 66 papers published in 2001 and after were selected. Of the four medical tasks (risk assessment, diagnosis, treatment, and prognosis prediction), diagnosis was the most frequently researched, and retrospective single-center studies were the most prevalent. We found that the different medical tasks and algorithms included in the reviewed studies caused the performance of their models to vary greatly. Deep learning algorithms, on the other hand, produced excellent results in all of the subdivisions studied. CONCLUSIONS AI is a promising tool for helping PC patients and may contribute to improved patient outcomes. The integration of humans and AI in clinical medicine is still in its infancy and requires the in-depth cooperation of multidisciplinary personnel.
Collapse
Affiliation(s)
- Xi Chen
- Department of General Surgery, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Ruibiao Fu
- Department of General Surgery, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Shao
- Department of Surgical Ward 1, Ningbo Women and Children’s Hospital, Ningbo, China
| | - Yan Chen
- Department of General Surgery, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Qinghuang Ye
- Department of General Surgery, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Sheng Li
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Xiongxiong He
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Jinhui Zhu
- Department of General Surgery, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Jinhui Zhu,
| |
Collapse
|
33
|
Overall Survival Prognostic Modelling of Non-small Cell Lung Cancer Patients Using Positron Emission Tomography/Computed Tomography Harmonised Radiomics Features: The Quest for the Optimal Machine Learning Algorithm. Clin Oncol (R Coll Radiol) 2021; 34:114-127. [PMID: 34872823 DOI: 10.1016/j.clon.2021.11.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/01/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023]
Abstract
AIMS Despite the promising results achieved by radiomics prognostic models for various clinical applications, multiple challenges still need to be addressed. The two main limitations of radiomics prognostic models include information limitation owing to single imaging modalities and the selection of optimum machine learning and feature selection methods for the considered modality and clinical outcome. In this work, we applied several feature selection and machine learning methods to single-modality positron emission tomography (PET) and computed tomography (CT) and multimodality PET/CT fusion to identify the best combinations for different radiomics modalities towards overall survival prediction in non-small cell lung cancer patients. MATERIALS AND METHODS A PET/CT dataset from The Cancer Imaging Archive, including subjects from two independent institutions (87 and 95 patients), was used in this study. Each cohort was used once as training and once as a test, followed by averaging of the results. ComBat harmonisation was used to address the centre effect. In our proposed radiomics framework, apart from single-modality PET and CT models, multimodality radiomics models were developed using multilevel (feature and image levels) fusion. Two different methods were considered for the feature-level strategy, including concatenating PET and CT features into a single feature set and alternatively averaging them. For image-level fusion, we used three different fusion methods, namely wavelet fusion, guided filtering-based fusion and latent low-rank representation fusion. In the proposed prognostic modelling framework, combinations of four feature selection and seven machine learning methods were applied to all radiomics modalities (two single and five multimodalities), machine learning hyper-parameters were optimised and finally the models were evaluated in the test cohort with 1000 repetitions via bootstrapping. Feature selection and machine learning methods were selected as popular techniques in the literature, supported by open source software in the public domain and their ability to cope with continuous time-to-event survival data. Multifactor ANOVA was used to carry out variability analysis and the proportion of total variance explained by radiomics modality, feature selection and machine learning methods was calculated by a bias-corrected effect size estimate known as ω2. RESULTS Optimum feature selection and machine learning methods differed owing to the applied radiomics modality. However, minimum depth (MD) as feature selection and Lasso and Elastic-Net regularized generalized linear model (glmnet) as machine learning method had the highest average results. Results from the ANOVA test indicated that the variability that each factor (radiomics modality, feature selection and machine learning methods) introduces to the performance of models is case specific, i.e. variances differ regarding different radiomics modalities and fusion strategies. Overall, the greatest proportion of variance was explained by machine learning, except for models in feature-level fusion strategy. CONCLUSION The identification of optimal feature selection and machine learning methods is a crucial step in developing sound and accurate radiomics risk models. Furthermore, optimum methods are case specific, differing due to the radiomics modality and fusion strategy used.
Collapse
|
34
|
Gharavi SMH, Faghihimehr A. Clinical Application of Artificial Intelligence in PET Imaging of Head and Neck Cancer. PET Clin 2021; 17:65-76. [PMID: 34809871 DOI: 10.1016/j.cpet.2021.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Applications of "artificial intelligence" (AI) have been exponentially expanding in health care. Readily accessible archives of enormous digital data in medical imaging have made radiology a leader in exploring and taking advantage of this technology. AI-assisted radiology has paved the way toward another level of precision in medicine. In this article, the authors aim to review current AI applications in PET imaging of head and neck cancers, beginning with radiomics and followed by deep learning in each section.
Collapse
Affiliation(s)
- Seyed Mohammad H Gharavi
- Virginia Commonwealth University, VCU School of Medicine, Department of Radiology, West Hospital, 1200 East Broad Street, North Wing, Room 2-013, Box 980470, Richmond, VA 23298-0470, USA.
| | - Armaghan Faghihimehr
- Virginia Commonwealth University, VCU School of Medicine, Department of Radiology, West Hospital, 1200 East Broad Street, North Wing, Room 2-013, Box 980470, Richmond, VA 23298-0470, USA
| |
Collapse
|
35
|
Assessment of CT to CBCT contour mapping for radiomic feature analysis in prostate cancer. Sci Rep 2021; 11:22737. [PMID: 34815464 PMCID: PMC8610973 DOI: 10.1038/s41598-021-02154-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 11/03/2021] [Indexed: 01/06/2023] Open
Abstract
This study provides a quantitative assessment of the accuracy of a commercially available deformable image registration (DIR) algorithm to automatically generate prostate contours and additionally investigates the robustness of radiomic features to differing contours. Twenty-eight prostate cancer patients enrolled on an institutional review board (IRB) approved protocol were selected. Planning CTs (pCTs) were deformably registered to daily cone-beam CTs (CBCTs) to generate prostate contours (auto contours). The prostate contours were also manually drawn by a physician. Quantitative assessment of deformed versus manually drawn prostate contours on daily CBCT images was performed using Dice similarity coefficient (DSC), mean distance-to-agreement (MDA), difference in center-of-mass position (ΔCM) and difference in volume (ΔVol). Radiomic features from 6 classes were extracted from each contour. Lin’s concordance correlation coefficient (CCC) and mean absolute percent difference in radiomic feature-derived data (mean |%Δ|RF) between auto and manual contours were calculated. The mean (± SD) DSC, MDA, ΔCM and ΔVol between the auto and manual prostate contours were 0.90 ± 0.04, 1.81 ± 0.47 mm, 2.17 ± 1.26 mm and 5.1 ± 4.1% respectively. Of the 1,010 fractions under consideration, 94.8% of DIRs were within TG-132 recommended tolerance. 30 radiomic features had a CCC > 0.90 and 21 had a mean |%∆|RF < 5%. Auto-propagation of prostate contours resulted in nearly 95% of DIRs within tolerance recommendations of TG-132, leading to the majority of features being regarded as acceptably robust. The use of auto contours for radiomic feature analysis is promising but must be done with caution.
Collapse
|
36
|
Guerrisi A, Russillo M, Loi E, Ganeshan B, Ungania S, Desiderio F, Bruzzaniti V, Falcone I, Renna D, Ferraresi V, Caterino M, Solivetti FM, Cognetti F, Morrone A. Exploring CT Texture Parameters as Predictive and Response Imaging Biomarkers of Survival in Patients With Metastatic Melanoma Treated With PD-1 Inhibitor Nivolumab: A Pilot Study Using a Delta-Radiomics Approach. Front Oncol 2021; 11:704607. [PMID: 34692481 PMCID: PMC8529867 DOI: 10.3389/fonc.2021.704607] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/08/2021] [Indexed: 01/08/2023] Open
Abstract
In the era of artificial intelligence and precision medicine, the use of quantitative imaging methodological approaches could improve the cancer patient’s therapeutic approaches. Specifically, our pilot study aims to explore whether CT texture features on both baseline and first post-treatment contrast-enhanced CT may act as a predictor of overall survival (OS) and progression-free survival (PFS) in metastatic melanoma (MM) patients treated with the PD-1 inhibitor Nivolumab. Ninety-four lesions from 32 patients treated with Nivolumab were analyzed. Manual segmentation was performed using a free-hand polygon approach by drawing a region of interest (ROI) around each target lesion (up to five lesions were selected per patient according to RECIST 1.1). Filtration-histogram-based texture analysis was employed using a commercially available research software called TexRAD (Feedback Medical Ltd, London, UK; https://fbkmed.com/texrad-landing-2/) Percentage changes in texture features were calculated to perform delta-radiomics analysis. Texture feature kurtosis at fine and medium filter scale predicted OS and PFS. A higher kurtosis is correlated with good prognosis; kurtosis values greater than 1.11 for SSF = 2 and 1.20 for SSF = 3 were indicators of higher OS (fine texture: 192 HR = 0.56, 95% CI = 0.32–0.96, p = 0.03; medium texture: HR = 0.54, 95% CI = 0.29–0.99, p = 0.04) and PFS (fine texture: HR = 0.53, 95% CI = 0.29–0.95, p = 0.03; medium texture: HR = 0.49, 209 95% CI = 0.25–0.96, p = 0.03). In delta-radiomics analysis, the entropy percentage variation correlated with OS and PFS. Increasing entropy indicates a worse outcome. An entropy variation greater than 5% was an indicator of bad prognosis. CT delta-texture analysis quantified as entropy predicted OS and PFS. Baseline CT texture quantified as kurtosis also predicted survival baseline. Further studies with larger cohorts are mandatory to confirm these promising exploratory results.
Collapse
Affiliation(s)
- Antonino Guerrisi
- Radiology and Diagnostic Imaging Unit, Department of Clinical and Dermatological Research, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Michelangelo Russillo
- Medical Oncology Unit 1, Department of Clinical and Cancer Research IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Emiliano Loi
- Medical Physics and Expert Systems Laboratory, 3 Department of Research and Advanced Technologies, Istituti Fisioterapici Ospitalieri - IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Balaji Ganeshan
- Institute of Nuclear Medicine, Imaging Department, University College Hospital, London, United Kingdom
| | - Sara Ungania
- Medical Physics and Expert Systems Laboratory, 3 Department of Research and Advanced Technologies, Istituti Fisioterapici Ospitalieri - IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Flora Desiderio
- Radiology and Diagnostic Imaging Unit, Department of Clinical and Dermatological Research, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Vicente Bruzzaniti
- Medical Physics and Expert Systems Laboratory, 3 Department of Research and Advanced Technologies, Istituti Fisioterapici Ospitalieri - IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Italia Falcone
- Medical Oncology Unit 1, Department of Clinical and Cancer Research IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Davide Renna
- Medical Oncology 1, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Virginia Ferraresi
- Medical Oncology Unit 1, Department of Clinical and Cancer Research IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Mauro Caterino
- Radiology and Diagnostic Imaging Unit, Department of Clinical and Dermatological Research, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Francesco Maria Solivetti
- Radiology and Diagnostic Imaging Unit, Department of Clinical and Dermatological Research, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Francesco Cognetti
- Medical Oncology Unit 1, Department of Clinical and Cancer Research IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Aldo Morrone
- Scientific Director, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| |
Collapse
|
37
|
Bonnin A, Durot C, Barat M, Djelouah M, Grange F, Mulé S, Soyer P, Hoeffel C. CT texture analysis as a predictor of favorable response to anti-PD1 monoclonal antibodies in metastatic skin melanoma. Diagn Interv Imaging 2021; 103:97-102. [PMID: 34666945 DOI: 10.1016/j.diii.2021.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE The purpose of this study was to determine whether texture analysis features on pretreatment contrast-enhanced computed tomography (CT) images and their evolution can predict treatment response of metastatic skin melanoma (SM) treated with anti-PD1 monoclonal antibodies. MATERIALS AND METHODS Sixty patients (29 men, 31 women; median age, 56 years; age range: 27-91 years) with metastatic SM treated with pembrolizumab (43/60; 72%) or nivolumab (17/60; 28%) were included. Texture analysis of SM metastases was performed on baseline and first post-treatment evaluation CT examinations. Mean gray-level, entropy, kurtosis, skewness, and standard deviation values were derived from the pixel distribution histogram before and after spatial filtration at different anatomic scales, ranging from fine to coarse. Lasso penalized Cox regression analyses were performed to identify independent variables associated with favorable response to treatment. RESULTS A total of 127 metastases were analyzed, with a median of two metastases per patient. Skewness at fine texture scale (spatial scale filtration [SSF] = 2; Hazard ratio [HR]: 3.51; 95% CI: 2.08-8.57; P = 0.010), skewness at medium texture scale (SSF = 3; HR: 0.56; 95% CI: 0.11-1.59; P = 0.014), variation of entropy at fine texture scale (SSF = 2; HR: 37.76; 95% CI: 3.48-496.22; P = 0.008) and LDH above the threshold of 248 UI/L (HR: 3.56; 95% CI: 1.78-21.35; P = 0.032] were independent predictors of response to treatment. CONCLUSION Pretreatment CT texture analysis-derived tumor skewness and variation of entropy between baseline and first control CT examination may be used as predictors of favorable response to anti-PD1 monoclonal antibodies in patients with metastatic SM.
Collapse
Affiliation(s)
- Angèle Bonnin
- Department of Abdominal Radiology, Reims University Hospital, 51092 Reims, France; Department of Radiology, Cochin Hospital, AP-HP, 75014 Paris, France; Université de Paris, Faculté de Médecine, 75006 Paris, France
| | - Carole Durot
- Department of Abdominal Radiology, Reims University Hospital, 51092 Reims, France
| | - Maxime Barat
- Department of Radiology, Cochin Hospital, AP-HP, 75014 Paris, France; Université de Paris, Faculté de Médecine, 75006 Paris, France
| | - Manel Djelouah
- Department of Abdominal Radiology, Reims University Hospital, 51092 Reims, France
| | - Florent Grange
- Department of Dermatology, Valence Hospital, 26000 Valence, France
| | - Sébastien Mulé
- Department of Radiology, Henri Mondor University Hospital, APH-HP, 94000 Créteil, France
| | - Philippe Soyer
- Department of Radiology, Cochin Hospital, AP-HP, 75014 Paris, France; Université de Paris, Faculté de Médecine, 75006 Paris, France
| | - Christine Hoeffel
- Department of Abdominal Radiology, Reims University Hospital, 51092 Reims, France; CRESTIC, Reims Champagne-Ardenne University, 51000 Reims, France.
| |
Collapse
|
38
|
Zhang YH, Brehmer K, Svensson A, Herlin G, Stål P, Brismar TB. Variation in textural parameters of hepatic lesions during contrast medium injection. Acta Radiol 2021; 62:1317-1323. [PMID: 33108894 DOI: 10.1177/0284185120964904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Textural parameters extracted using quantitative imaging techniques have been shown to have prognostic value for hepatocellular carcinoma (HCC). PURPOSE To evaluate whether the contrast medium timing of the image acquisition affects the reproducibility of textural parameters in HCC and hepatic tissue. MATERIAL AND METHODS This retrospective study included 17 patients with 37 HCC lesions. Perfusion computed tomography (CT) was obtained after 50 mL contrast medium injection. HCC lesions were segmented for analysis. The gray-level co-occurrence (GLCM) textural analysis parameters, homogeneity, energy, entropy, inertia, and correlation were calculated. Variation was quantified by calculating the SD of each parameter during respective perfusion series and the inter lesion variation as the SD among the lesions. RESULTS The average change in texture parameters in both HCC and hepatic tissue per second after injection was 0.01% to 0.3% of the respective texture parameter. In HCC, the average variation in homogeneity, energy, and entropy within each lesion after contrast medium injection was significantly less than the variation observed among the lesions (23% to 74%, P < 0.001). Significant differences in energy, entropy, inertia, and correlation between hepatic tissue and HCC were observed. However, when considering the intra-individual variation of hepatic tissue over time, only the HCC parameter energy was significantly outside that 95% confidence interval (P < 0.02). CONCLUSION The contrast medium timing does not affect the reproducibility of textural parameters in HCC and hepatic tissue. Thus, contrast medium timing should not be an issue at CT texture analysis of HCC.
Collapse
Affiliation(s)
- Yi-Hua Zhang
- Division of Medical Imaging and Technology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Katharina Brehmer
- Division of Medical Imaging and Technology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anders Svensson
- Division of Medical Imaging and Technology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Gunnar Herlin
- Division of Medical Imaging and Technology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Per Stål
- Division of Hepatology, Karolinska University Hospital, Stockholm, Sweden
| | | |
Collapse
|
39
|
Rajgor AD, Patel S, McCulloch D, Obara B, Bacardit J, McQueen A, Aboagye E, Ali T, O'Hara J, Hamilton DW. The application of radiomics in laryngeal cancer. Br J Radiol 2021; 94:20210499. [PMID: 34586899 PMCID: PMC8631034 DOI: 10.1259/bjr.20210499] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Radiomics is the conversion of medical images into quantitative high-dimensional data. Laryngeal cancer, one of the most common head and neck cancers, has risen globally by 58.7%. CT, MRI and PET are acquired during the diagnostic process providing potential data for radiomic analysis and correlation with outcomes.This review aims to examine the applications of this technique to laryngeal cancer and the future considerations for translation into clinical practice. METHODS A comprehensive systematic review-informed search of the MEDLINE and EMBASE databases was undertaken. Keywords "laryngeal cancer" OR "larynx" OR "larynx cancer" OR "head and neck cancer" were combined with "radiomic" OR "signature" OR "machine learning" OR "artificial intelligence". Additional articles were obtained from bibliographies using the "snowball method". RESULTS The included studies (n = 15) demonstrated that radiomic features are significantly associated with various clinical outcomes (including stage, overall survival, treatment response, progression-free survival) and that predictive models incorporating radiomic features are superior to those that do not. Two studies demonstrated radiomics could improve laryngeal cancer staging whilst 12 studies affirmed its predictive capability for clinical outcomes. CONCLUSIONS Radiomics has potential for improving multiple aspects of laryngeal cancer care; however, the heterogeneous cohorts and lack of data on laryngeal cancer exclusively inhibits firm conclusions. Large prospective well-designed studies in laryngeal cancer are required to progress this field. Furthermore, to implement radiomics into clinical practice, a unified research effort is required to standardise radiomics practice. ADVANCES IN KNOWLEDGE This review has highlighted the value of radiomics in enhancing laryngeal cancer care (including staging, prognosis and predicting treatment response).
Collapse
Affiliation(s)
- Amarkumar Dhirajlal Rajgor
- Otolaryngology Department, Newcastle-Upon-Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK.,Applied Cancer Therapeutics and Outcomes, Newcastle University, Newcastle Upon Tyne, UK.,National Institute for Health Research, Academic Clinical Fellow, Newcastle University, Newcastle Upon Tyne, UK
| | - Shreena Patel
- East of England NHS Foundation Trainee, Bedfordshire, UK
| | - David McCulloch
- Radiology Department, Newcastle-Upon-Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Boguslaw Obara
- School of Computing, Newcastle University, Urban Sciences Building, Newcastle upon Tyne, UK
| | - Jaume Bacardit
- School of Computing, Newcastle University, Urban Sciences Building, Newcastle upon Tyne, UK
| | - Andrew McQueen
- Radiology Department, Newcastle-Upon-Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Eric Aboagye
- Imperial College London Cancer Imaging Centre, Department of Surgery & Cancer, Hammersmith Hospital, London, UK
| | - Tamir Ali
- Radiology Department, Newcastle-Upon-Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - James O'Hara
- Otolaryngology Department, Newcastle-Upon-Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK.,Applied Cancer Therapeutics and Outcomes, Newcastle University, Newcastle Upon Tyne, UK
| | - David Winston Hamilton
- Otolaryngology Department, Newcastle-Upon-Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK.,Applied Cancer Therapeutics and Outcomes, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
40
|
Atkinson C, Ganeshan B, Endozo R, Wan S, Aldridge MD, Groves AM, Bomanji JB, Gaze MN. Radiomics-Based Texture Analysis of 68Ga-DOTATATE Positron Emission Tomography and Computed Tomography Images as a Prognostic Biomarker in Adults With Neuroendocrine Cancers Treated With 177Lu-DOTATATE. Front Oncol 2021; 11:686235. [PMID: 34408979 PMCID: PMC8366561 DOI: 10.3389/fonc.2021.686235] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/12/2021] [Indexed: 12/25/2022] Open
Abstract
Purpose Neuroendocrine tumors (NET) are rare cancers with variable behavior. A better understanding of prognosis would aid individualized management. The aim of this hypothesis-generating pilot study was to investigate the prognostic potential of tumor heterogeneity and tracer avidity in NET using texture analysis (TA) of 68Ga-DOTATATE positron emission tomography (PET) and non-enhanced computed tomography (CT) performed at baseline in patients treated with 177Lu-DOTATATE. It aims to justify a larger-scale study to evaluate its clinical value. Methods The pretherapy 68Ga-DOTATATE PET-CT scans of 44 patients with metastatic NET (carcinoid, pancreatic, thyroid, head and neck, catecholamine-secreting, and unknown primary NET) treated with 177Lu-DOTATATE were analyzed retrospectively using commercially available texture analysis research software. Image filtration extracted and enhanced objects of different sizes (fine, medium, coarse), then quantified heterogeneity by statistical and histogram-based parameters (mean intensity, standard deviation, entropy, mean of positive pixels, skewness, and kurtosis). Regions of interest were manually drawn around up to five of the most 68Ga-DOTATATE avid lesions for each patient. 68Gallium uptake on PET was quantified as SUVmax and SUVmean. Associations between imaging and clinical markers with progression-free (PFS) and overall survival (OS) were assessed using univariate Kaplan-Meier analysis. Independence of the significant univariate markers of survival was tested using multivariate Cox regression analysis. Results Measures of heterogeneity (higher kurtosis, higher entropy, and lower skewness) on coarse-texture scale CT and unfiltered PET images predicted shorter PFS (CT coarse kurtosis: p=0.05, PET entropy: p=0.01, PET skewness: p=0.03) and shorter OS (CT coarse kurtosis: p=0.05, PET entropy: p=0.01, PET skewness p=0.02). Conventional PET parameters such as SUVmax and SUVmean showed trends towards predicting outcome but were not statistically significant. Multivariate analysis identified that CT-TA (coarse kurtosis: HR=2.57, 95% CI=1.22–5.38, p=0.013) independently predicted PFS, and PET-TA (unfiltered skewness: HR=9.05, 95% CI=1.19–68.91, p=0.033) independently predicted OS. Conclusion These preliminary data generate a hypothesis that radiomic analysis of neuroendocrine cancer on 68Ga-DOTATATE PET-CT may be of prognostic value and a valuable addition to the assessment of patients.
Collapse
Affiliation(s)
- Charlotte Atkinson
- Departments of Oncology and Nuclear Medicine, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Balaji Ganeshan
- Institute of Nuclear Medicine, University College London, London, United Kingdom
| | - Raymond Endozo
- Institute of Nuclear Medicine, University College London, London, United Kingdom
| | - Simon Wan
- Departments of Oncology and Nuclear Medicine, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Matthew D Aldridge
- Departments of Oncology and Nuclear Medicine, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Ashley M Groves
- Institute of Nuclear Medicine, University College London, London, United Kingdom
| | - Jamshed B Bomanji
- Departments of Oncology and Nuclear Medicine, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Mark N Gaze
- Departments of Oncology and Nuclear Medicine, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
41
|
Kim TY, Lee JY, Lee YJ, Park DW, Tae K, Choi YY. CT texture analysis of tonsil cancer: Discrimination from normal palatine tonsils. PLoS One 2021; 16:e0255835. [PMID: 34379652 PMCID: PMC8357133 DOI: 10.1371/journal.pone.0255835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/23/2021] [Indexed: 11/18/2022] Open
Abstract
The purposes of the study were to determine whether there are differences in texture analysis parameters between tonsil cancers and normal tonsils, and to correlate texture analysis with 18F-FDG PET/CT to investigate the relationship between texture analysis and metabolic parameters. Sixty-four patients with squamous cell carcinoma of the palatine tonsil were included. A ROI was drawn, including all slices, to involve the entire tumor. The contralateral normal tonsil was used for comparison with the tumors. Texture analysis parameters, mean, standard deviation (SD), entropy, mean positive pixels, skewness, and kurtosis were obtained using commercially available software. Parameters were compared between the tumor and the normal palatine tonsils. Comparisons were also performed among early tonsil cancer, advanced tonsil cancer, and normal tonsils. An ROC curve analysis was performed to assess discrimination of tumor from normal tonsils. Correlation between texture analysis and 18F-FDG PET/CT was performed. Compared to normal tonsils, the tumors showed a significantly lower mean, higher SD, higher entropy, lower skewness, and higher kurtosis on most filters (p<0.001). On comparisons among normal tonsils, early cancers, and advanced tonsil cancers, SD and entropy showed significantly higher values on all filters (p<0.001) between early cancers and normal tonsils. The AUC from the ROC analysis was 0.91, obtained from the entropy. A mild correlation was shown between texture parameters and metabolic parameters. The texture analysis parameters, especially entropy, showed significant differences in contrast-enhanced CT results between tumor and normal tonsils, and between early tonsil cancers and normal tonsils. Texture analysis can be useful as an adjunctive tool for the diagnosis of tonsil cancers.
Collapse
Affiliation(s)
- Tae-Yoon Kim
- Department of Radiology, Hanyang University Guri Hospital, Guri, Republic of Korea
| | - Ji Young Lee
- Department of Radiology, Hanyang University Hospital, Seoul, Republic of Korea
- * E-mail: (JYL); (YJL)
| | - Young-Jun Lee
- Department of Radiology, Hanyang University Hospital, Seoul, Republic of Korea
- * E-mail: (JYL); (YJL)
| | - Dong Woo Park
- Department of Radiology, Hanyang University Guri Hospital, Guri, Republic of Korea
| | - Kyung Tae
- Department of Otolaryngology-Head and Neck Surgery, Hanyang University Hospital, Seoul, Republic of Korea
| | - Yun Young Choi
- Department of Nuclear Medicine, Hanyang University Hospital, Seoul, Republic of Korea
| |
Collapse
|
42
|
Maleki F, Le WT, Sananmuang T, Kadoury S, Forghani R. Machine Learning Applications for Head and Neck Imaging. Neuroimaging Clin N Am 2021; 30:517-529. [PMID: 33039001 DOI: 10.1016/j.nic.2020.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The head and neck (HN) consists of a large number of vital anatomic structures within a compact area. Imaging plays a central role in the diagnosis and management of major disorders affecting the HN. This article reviews the recent applications of machine learning (ML) in HN imaging with a focus on deep learning approaches. It categorizes ML applications in HN imaging into deep learning and traditional ML applications and provides examples of each category. It also discusses the main challenges facing the successful deployment of ML-based applications in the clinical setting and provides suggestions for addressing these challenges.
Collapse
Affiliation(s)
- Farhad Maleki
- Augmented Intelligence & Precision Health Laboratory (AIPHL), Department of Radiology & Research Institute of the McGill University Health Centre, 5252 Boulevard de Maisonneuve Ouest, Montreal, Quebec H4A 3S5, Canada
| | - William Trung Le
- Polytechnique Montreal, PO Box 6079, succ. Centre-ville, Montreal, Quebec H3C 3A7, Canada
| | - Thiparom Sananmuang
- Department of Diagnostic and Therapeutic Radiology and Research, Faculty of Medicine Ramathibodi Hospital, Ratchathewi, Bangkok 10400, Thailand
| | - Samuel Kadoury
- Polytechnique Montreal, PO Box 6079, succ. Centre-ville, Montreal, Quebec H3C 3A7, Canada; CHUM Research Center, 900 St Denis Street, Montreal, Quebec H2X 0A9, Canada
| | - Reza Forghani
- Augmented Intelligence & Precision Health Laboratory (AIPHL), Department of Radiology & Research Institute of the McGill University Health Centre, 5252 Boulevard de Maisonneuve Ouest, Montreal, Quebec H4A 3S5, Canada; Department of Radiology, McGill University, 1650 Cedar Avenue, Montreal, Quebec H3G1A4, Canada; Segal Cancer Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Cote Ste-Catherine Road, Montreal, Quebec H3T 1E2, Canada; Gerald Bronfman Department of Oncology, McGill University, Suite 720, 5100 Maisonneuve Boulevard West, Montreal, Quebec H4A3T2, Canada; Department of Otolaryngology, Head and Neck Surgery, Royal Victoria Hospital, McGill University Health Centre, 1001 boul. Decarie Boulevard, Montreal, Quebec H3A 3J1, Canada.
| |
Collapse
|
43
|
Song SE, Seo BK, Cho KR, Woo OH, Ganeshan B, Kim ES, Cha J. Prediction of Inflammatory Breast Cancer Survival Outcomes Using Computed Tomography-Based Texture Analysis. Front Bioeng Biotechnol 2021; 9:695305. [PMID: 34354986 PMCID: PMC8329959 DOI: 10.3389/fbioe.2021.695305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/18/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Although inflammatory breast cancer (IBC) has poor overall survival (OS), there is little information about using imaging features for predicting the prognosis. Computed tomography (CT)-based texture analysis, a non-invasive technique to quantify tumor heterogeneity, could be a potentially useful imaging biomarker. The aim of the article was to investigate the usefulness of chest CT-based texture analysis to predict OS in IBC patients. Methods: Of the 3,130 patients with primary breast cancers between 2006 and 2016, 104 patients (3.3%) with IBC were identified. Among them, 98 patients who underwent pre-treatment contrast-enhanced chest CT scans, got treatment in our institution, and had a follow-up period of more than 2 years were finally included for CT-based texture analysis. Texture analysis was performed on CT images of 98 patients, using commercially available software by two breast radiologists. Histogram-based textural features, such as quantification of variation in CT attenuation (mean, standard deviation, mean of positive pixels [MPP], entropy, skewness, and kurtosis), were recorded. To dichotomize textural features for survival analysis, receiver operating characteristic curve analysis was used to determine cutoff points. Clinicopathologic variables, such as age, node stage, metastasis stage at the time of diagnosis, hormonal receptor positivity, human epidermal growth factor receptor 2 positivity, and molecular subtype, were assessed. A Cox proportional hazards model was used to determine the association of textural features and clinicopathologic variables with OS. Results: During a mean follow-up period of 47.9 months, 41 of 98 patients (41.8%) died, with a median OS of 20.0 months. The textural features of lower mean attenuation, standard deviation, MPP, and entropy on CT images were significantly associated with worse OS, as was the M1 stage among clinicopathologic variables (all P-values < 0.05). In multivariate analysis, lower mean attenuation (hazard ratio [HR], 3.26; P = 0.003), lower MPP (HR, 3.03; P = 0.002), and lower entropy (HR, 2.70; P = 0.009) on chest CT images were significant factors independent from the M1 stage for predicting worse OS. Conclusions: Lower mean attenuation, MPP, and entropy on chest CT images predicted worse OS in patients with IBC, suggesting that CT-based texture analysis provides additional predictors for OS.
Collapse
Affiliation(s)
- Sung Eun Song
- Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Bo Kyoung Seo
- Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, South Korea
| | - Kyu Ran Cho
- Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Ok Hee Woo
- Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Balaji Ganeshan
- Institute of Nuclear Medicine, University College London Hospitals NHS Trust, London, United Kingdom
| | - Eun Sil Kim
- Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, South Korea
| | - Jaehyung Cha
- Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, South Korea
| |
Collapse
|
44
|
Gul M, Bonjoc KJC, Gorlin D, Wong CW, Salem A, La V, Filippov A, Chaudhry A, Imam MH, Chaudhry AA. Diagnostic Utility of Radiomics in Thyroid and Head and Neck Cancers. Front Oncol 2021; 11:639326. [PMID: 34307123 PMCID: PMC8293690 DOI: 10.3389/fonc.2021.639326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/08/2021] [Indexed: 11/21/2022] Open
Abstract
Radiomics is an emerging field in radiology that utilizes advanced statistical data characterizing algorithms to evaluate medical imaging and objectively quantify characteristics of a given disease. Due to morphologic heterogeneity and genetic variation intrinsic to neoplasms, radiomics have the potential to provide a unique insight into the underlying tumor and tumor microenvironment. Radiomics has been gaining popularity due to potential applications in disease quantification, predictive modeling, treatment planning, and response assessment - paving way for the advancement of personalized medicine. However, producing a reliable radiomic model requires careful evaluation and construction to be translated into clinical practices that have varying software and/or medical equipment. We aim to review the diagnostic utility of radiomics in otorhinolaryngology, including both cancers of the head and neck as well as the thyroid.
Collapse
Affiliation(s)
- Maryam Gul
- Amaze Research Foundation, Department of Biomarker Discovery, Anaheim, CA, United States
| | - Kimberley-Jane C. Bonjoc
- Department of Diagnostic and Interventional Radiology, City of Hope National Medical Center, Duarte, CA, United States
| | - David Gorlin
- Department of Diagnostic and Interventional Radiology, City of Hope National Medical Center, Duarte, CA, United States
| | - Chi Wah Wong
- Department of Diagnostic and Interventional Radiology, City of Hope National Medical Center, Duarte, CA, United States
| | - Amirah Salem
- Department of Diagnostic and Interventional Radiology, City of Hope National Medical Center, Duarte, CA, United States
| | - Vincent La
- Department of Diagnostic and Interventional Radiology, City of Hope National Medical Center, Duarte, CA, United States
| | - Aleksandr Filippov
- Department of Diagnostic and Interventional Radiology, City of Hope National Medical Center, Duarte, CA, United States
| | - Abbas Chaudhry
- Amaze Research Foundation, Department of Biomarker Discovery, Anaheim, CA, United States
| | - Muhammad H. Imam
- Florida Cancer Specialists, Department of Oncology, Orlando, FL, United States
| | - Ammar A. Chaudhry
- Department of Diagnostic and Interventional Radiology, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
45
|
Yang B, Zhou L, Zhong J, Lv T, Li A, Ma L, Zhong J, Yin S, Huang L, Zhou C, Li X, Ge YQ, Tao X, Zhang L, Son Y, Lu G. Combination of computed tomography imaging-based radiomics and clinicopathological characteristics for predicting the clinical benefits of immune checkpoint inhibitors in lung cancer. Respir Res 2021; 22:189. [PMID: 34183009 PMCID: PMC8240400 DOI: 10.1186/s12931-021-01780-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 06/14/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND In this study, we tested whether a combination of radiomic features extracted from baseline pre-immunotherapy computed tomography (CT) images and clinicopathological characteristics could be used as novel noninvasive biomarkers for predicting the clinical benefits of non-small cell lung cancer (NSCLC) patients treated with immune checkpoint inhibitors (ICIs). METHODS The data from 92 consecutive patients with lung cancer who had been treated with ICIs were retrospectively analyzed. In total, 88 radiomic features were selected from the pretreatment CT images for the construction of a random forest model. Radiomics model 1 was constructed based on the Rad-score. Using multivariate logistic regression analysis, the Rad-score and significant predictors were integrated into a single predictive model (radiomics nomogram model 1) to predict the durable clinical benefit (DCB) of ICIs. Radiomics model 2 was developed based on the same Rad-score as radiomics model 1.Using multivariate Cox proportional hazards regression analysis, the Rad-score, and independent risk factors, radiomics nomogram model 2 was constructed to predict the progression-free survival (PFS). RESULTS The models successfully predicted the patients who would benefit from ICIs. For radiomics model 1, the area under the receiver operating characteristic curve values for the training and validation cohorts were 0.848 and 0.795, respectively, whereas for radiomics nomogram model 1, the values were 0.902 and 0.877, respectively. For the PFS prediction, the Harrell's concordance indexes for the training and validation cohorts were 0.717 and 0.760, respectively, using radiomics model 2, whereas they were 0.749 and 0.791, respectively, using radiomics nomogram model 2. CONCLUSIONS CT-based radiomic features and clinicopathological factors can be used prior to the initiation of immunotherapy for identifying NSCLC patients who are the most likely to benefit from the therapy. This could guide the individualized treatment strategy for advanced NSCLC.
Collapse
Affiliation(s)
- Bin Yang
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Li Zhou
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Sch Med, Nanjing, 210002, Jiangsu, China
| | - Jing Zhong
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Tangfeng Lv
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Sch Med, Nanjing, 210002, Jiangsu, China
| | - Ang Li
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Lu Ma
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Jian Zhong
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Saisai Yin
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Litang Huang
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Southeast University, Sch Med, Nanjing, 210002, Nanjing, China
| | - Changsheng Zhou
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Xinyu Li
- Department of Medical Imaging, Affiliated Jinling Hospital, Nanjing Medical University, Nanjing, 210002, China
| | - Ying Qian Ge
- Siemens Healthineers Ltd., Shanghai, 200000, China
| | - Xinwei Tao
- Siemens Healthineers Ltd., Shanghai, 200000, China
| | - Longjiang Zhang
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China.
| | - Yong Son
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Sch Med, Nanjing, 210002, Jiangsu, China.
| | - Guangming Lu
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China.
| |
Collapse
|
46
|
Chen Y, Li H, Feng J, Suo S, Feng Q, Shen J. A Novel Radiomics Nomogram for the Prediction of Secondary Loss of Response to Infliximab in Crohn's Disease. J Inflamm Res 2021; 14:2731-2740. [PMID: 34194236 PMCID: PMC8238542 DOI: 10.2147/jir.s314912] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/08/2021] [Indexed: 12/23/2022] Open
Abstract
Purpose The prediction of the loss of response (LOR) to infliximab (IFX) is crucial for optimizing treatment strategies and shifting biologics. However, a secondary LOR is difficult to predict by endoscopy due to the intestinal stricture, perforation, and fistulas. This study aimed to develop and validate a radiomic nomogram for the prediction of secondary LOR to IFX in patients with Crohn’s disease (CD). Patients and Methods A total of 186 biologic-naive patients diagnosed with CD between September 2016 and June 2019 were enrolled. Secondary LOR was determined during week 54. Computed tomography enterography (CTE) texture analysis (TA) features were extracted from lesions and analyzed using LIFEx software. Feature selection was performed by least absolute shrinkage and selection operator (LASSO) and ten-fold cross validation. A nomogram was constructed using multivariable logistic regression, and the internal validation was approached by ten-fold cross validation. Results Predictors contained in the radiomics nomogram included three first-order and five second-order signatures. The prediction model presented significant discrimination (AUC, 0.880; 95% CI, 0.816–0.944) and high calibration (mean absolute error of = 0.028). Decision curve analysis (DCA) indicated that the nomogram provided clinical net benefit. Ten-fold cross validation assessed the stability of the nomogram with an AUC of 0.817 and an accuracy of 0.819. Conclusion This novel radiomics nomogram provides a predictive tool to assess secondary LOR to IFX in patients with Crohn’s disease. This tool will help physicians decide when to switch therapy.
Collapse
Affiliation(s)
- Yueying Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200127, People's Republic of China
| | - Hanyang Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200127, People's Republic of China
| | - Jing Feng
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200127, People's Republic of China
| | - Shiteng Suo
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Qi Feng
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Jun Shen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200127, People's Republic of China
| |
Collapse
|
47
|
Watanabe H, Hayano K, Ohira G, Imanishi S, Hanaoka T, Hirata A, Kano M, Matsubara H. Quantification of Structural Heterogeneity Using Fractal Analysis of Contrast-Enhanced CT Image to Predict Survival in Gastric Cancer Patients. Dig Dis Sci 2021; 66:2069-2074. [PMID: 32691383 DOI: 10.1007/s10620-020-06479-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 07/04/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Malignant tumor essentially implies structural heterogeneity. Fractal analysis of medical imaging has a potential to quantify this structural heterogeneity in the tumor AIMS: The purpose of this study is to quantify this structural abnormality in the tumor applying fractal analysis to contrast-enhanced computed tomography (CE-CT) image and to evaluate its biomarker value for predicting survival of surgically treated gastric cancer patients. METHODS A total of 108 gastric cancer patients (77 men and 31 women; mean age: 69.1 years), who received curative surgery without any neoadjuvant therapy, were retrospectively investigated. Portal-phase CE-CT images were analyzed with use of a plug-in tool for ImageJ (NIH, Bethesda, USA), and the fractal dimension (FD) in the tumor was calculated using a differential box-counting method to quantify structural heterogeneity in the tumor. Tumor FD was compared with clinicopathologic features and disease-specific survival (DSS). RESULTS High FD value of the tumor significantly associated with high T stage and high pathological stage (P = 0.009, 0.007, respectively). In Kaplan-Meier analysis, patients with higher FD tumors (FD > 0.9746) showed a significantly worse DSS (P = 0.009, log rank). Multivariate analysis demonstrated that tumor FD, T stage, and N stage were independent prognostic factors for DSS. In subset analysis of lymph-node positive gastric cancers, only tumor FD was an independent prognostic factor for DSS. CONCLUSION CT fractal analysis can be a useful biomarker for gastric cancer patients, reflecting survival and clinicopathologic features.
Collapse
Affiliation(s)
- Hiroki Watanabe
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Koichi Hayano
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan.
| | - Gaku Ohira
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Shunsuke Imanishi
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Toshiharu Hanaoka
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Atsushi Hirata
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Masayuki Kano
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| |
Collapse
|
48
|
Ganeshan B, Miles K, Afaq A, Punwani S, Rodriguez M, Wan S, Walls D, Hoy L, Khan S, Endozo R, Shortman R, Hoath J, Bhargava A, Hanson M, Francis D, Arulampalam T, Dindyal S, Chen SH, Ng T, Groves A. Texture Analysis of Fractional Water Content Images Acquired during PET/MRI: Initial Evidence for an Association with Total Lesion Glycolysis, Survival and Gene Mutation Profile in Primary Colorectal Cancer. Cancers (Basel) 2021; 13:2715. [PMID: 34072712 PMCID: PMC8199380 DOI: 10.3390/cancers13112715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 01/07/2023] Open
Abstract
To assess the capability of fractional water content (FWC) texture analysis (TA) to generate biologically relevant information from routine PET/MRI acquisitions for colorectal cancer (CRC) patients. Thirty consecutive primary CRC patients (mean age 63.9, range 42-83 years) prospectively underwent FDG-PET/MRI. FWC tumor parametric images generated from Dixon MR sequences underwent TA using commercially available research software (TexRAD). Data analysis comprised (1) identification of functional imaging correlates for texture features (TF) with low inter-observer variability (intraclass correlation coefficient: ICC > 0.75), (2) evaluation of prognostic performance for FWC-TF, and (3) correlation of prognostic imaging signatures with gene mutation (GM) profile. Of 32 FWC-TF with ICC > 0.75, 18 correlated with total lesion glycolysis (TLG, highest: rs = -0.547, p = 0.002). Using optimized cut-off values, five MR FWC-TF identified a good prognostic group with zero mortality (lowest: p = 0.017). For the most statistically significant prognostic marker, favorable prognosis was significantly associated with a higher number of GM per patient (medians: 7 vs. 1.5, p = 0.009). FWC-TA derived from routine PET/MRI Dixon acquisitions shows good inter-operator agreement, generates biological relevant information related to TLG, GM count, and provides prognostic information that can unlock new clinical applications for CRC patients.
Collapse
Affiliation(s)
- Balaji Ganeshan
- Research Department of Imaging, Division of Medicine, University College London (UCL), London WC1E 6BT, UK; (K.M.); (S.P.); (D.W.); (L.H.); (J.H.); (S.-H.C.); (A.G.)
| | - Kenneth Miles
- Research Department of Imaging, Division of Medicine, University College London (UCL), London WC1E 6BT, UK; (K.M.); (S.P.); (D.W.); (L.H.); (J.H.); (S.-H.C.); (A.G.)
| | - Asim Afaq
- Imaging Division, Surgery and Cancer Board, University College London Hospitals (UCLH) NHS Foundation Trust, University College Hospital (UCH), London NW1 2BU, UK; (A.A.); (M.R.); (S.W.); (S.K.); (R.E.); (R.S.); (S.D.)
- Department of Radiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Shonit Punwani
- Research Department of Imaging, Division of Medicine, University College London (UCL), London WC1E 6BT, UK; (K.M.); (S.P.); (D.W.); (L.H.); (J.H.); (S.-H.C.); (A.G.)
| | - Manuel Rodriguez
- Imaging Division, Surgery and Cancer Board, University College London Hospitals (UCLH) NHS Foundation Trust, University College Hospital (UCH), London NW1 2BU, UK; (A.A.); (M.R.); (S.W.); (S.K.); (R.E.); (R.S.); (S.D.)
| | - Simon Wan
- Imaging Division, Surgery and Cancer Board, University College London Hospitals (UCLH) NHS Foundation Trust, University College Hospital (UCH), London NW1 2BU, UK; (A.A.); (M.R.); (S.W.); (S.K.); (R.E.); (R.S.); (S.D.)
| | - Darren Walls
- Research Department of Imaging, Division of Medicine, University College London (UCL), London WC1E 6BT, UK; (K.M.); (S.P.); (D.W.); (L.H.); (J.H.); (S.-H.C.); (A.G.)
| | - Luke Hoy
- Research Department of Imaging, Division of Medicine, University College London (UCL), London WC1E 6BT, UK; (K.M.); (S.P.); (D.W.); (L.H.); (J.H.); (S.-H.C.); (A.G.)
| | - Saif Khan
- Imaging Division, Surgery and Cancer Board, University College London Hospitals (UCLH) NHS Foundation Trust, University College Hospital (UCH), London NW1 2BU, UK; (A.A.); (M.R.); (S.W.); (S.K.); (R.E.); (R.S.); (S.D.)
| | - Raymond Endozo
- Imaging Division, Surgery and Cancer Board, University College London Hospitals (UCLH) NHS Foundation Trust, University College Hospital (UCH), London NW1 2BU, UK; (A.A.); (M.R.); (S.W.); (S.K.); (R.E.); (R.S.); (S.D.)
| | - Robert Shortman
- Imaging Division, Surgery and Cancer Board, University College London Hospitals (UCLH) NHS Foundation Trust, University College Hospital (UCH), London NW1 2BU, UK; (A.A.); (M.R.); (S.W.); (S.K.); (R.E.); (R.S.); (S.D.)
| | - John Hoath
- Research Department of Imaging, Division of Medicine, University College London (UCL), London WC1E 6BT, UK; (K.M.); (S.P.); (D.W.); (L.H.); (J.H.); (S.-H.C.); (A.G.)
| | - Aman Bhargava
- Institute of Health Barts and London Medical School, Queen Mary University of London (QMUL), London E1 2AD, UK;
| | - Matthew Hanson
- Division of Cancer and Clinical Support, Barking, Havering and Redbridge University Hospitals NHS Trust, Queens and King George Hospitals, Essex IG3 8YB, UK;
| | - Daren Francis
- Department of Colorectal Surgery, Royal Free London NHS Foundation Trust, Barnet and Chase Farm Hospitals, London NW3 2QG, UK;
| | - Tan Arulampalam
- Department of Surgery, East Suffolk and North Essex NHS Foundation Trust, Colchester General Hospital, Colchester CO4 5JL, UK;
| | - Sanjay Dindyal
- Imaging Division, Surgery and Cancer Board, University College London Hospitals (UCLH) NHS Foundation Trust, University College Hospital (UCH), London NW1 2BU, UK; (A.A.); (M.R.); (S.W.); (S.K.); (R.E.); (R.S.); (S.D.)
| | - Shih-Hsin Chen
- Research Department of Imaging, Division of Medicine, University College London (UCL), London WC1E 6BT, UK; (K.M.); (S.P.); (D.W.); (L.H.); (J.H.); (S.-H.C.); (A.G.)
- Department of Nuclear Medicine, Keelung Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | - Tony Ng
- School of Cancer & Pharmaceutical Sciences, King’s College London (KCL), London WC2R 2LS, UK;
| | - Ashley Groves
- Research Department of Imaging, Division of Medicine, University College London (UCL), London WC1E 6BT, UK; (K.M.); (S.P.); (D.W.); (L.H.); (J.H.); (S.-H.C.); (A.G.)
| |
Collapse
|
49
|
Comparison of CT Texture Analysis Software Platforms in Renal Cell Carcinoma: Reproducibility of Numerical Values and Association With Histologic Subtype Across Platforms. AJR Am J Roentgenol 2021; 216:1549-1557. [PMID: 33852332 DOI: 10.2214/ajr.20.22823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE. The purpose of this article is to evaluate interobserver, intraobserver, and interplatform variability and compare the previously established association between texture metrics and tumor histologic subtype using three commercially available CT texture analysis (CTTA) software platforms on the same dataset of large (> 7 cm) renal cell carcinomas (RCCs). MATERIALS AND METHODS. CT-based texture analysis was performed on contrast-enhanced MDCT images of large (> 7 cm) untreated RCCs in 124 patients (median age, 62 years; 82 men and 42 women) using three different software platforms. Using this previously studied cohort, texture features were compared across platforms. Features were correlated with histologic subtype, and strength of association was compared between platforms. Single-slice and volumetric measures from one platform were compared. Values for interobserver and intraobserver variability on a tumor subset (n = 30) were assessed across platforms. RESULTS. Metrics including mean gray-level intensity, SD, and volume correlated fairly well across platforms (concordance correlation coefficient [CCC], 0.66-0.99; mean relative difference [MRD], 0.17-5.97%). Entropy showed high variability (CCC, 0.04; MRD, 44.5%). Mean, SD, mean of positive pixels (MPP), and entropy were associated with clear cell histologic subtype on almost all platforms (p < .05). Mean, SD, entropy, and MPP were highly reproducible on most platforms on both interobserver and intraobserver analysis. CONCLUSION. Select texture metrics were reproducible across platforms and readers, but other metrics were widely variable. If clinical models are developed that use CTTA for medical decision making, these differences in reproducibility of some features across platforms need to be considered, and standardization is critical for more widespread adaptation and implementation.
Collapse
|
50
|
Takahashi Y, Hayano K, Ohira G, Imanishi S, Hanaoka T, Watanabe H, Hirata A, Kawasaki Y, Miyauchi H, Matsubara H. Histogram Analysis of Diffusion-Weighted MR Imaging as a Biomarker to Predict Survival of Surgically Treated Colorectal Cancer Patients. Dig Dis Sci 2021; 66:1227-1232. [PMID: 32409951 DOI: 10.1007/s10620-020-06318-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 05/02/2020] [Indexed: 01/22/2023]
Abstract
BACKGROUND Structural abnormality is a well-recognized feature of malignancy. On the other hand, diffusion-weighted MRI (DWI) has been reported as a tool that can reflect tumor biology. AIMS The purpose of this study is to apply histogram analysis to DWI to quantify structural abnormality of colorectal cancer, and evaluate its biomarker value. METHODS This is a retrospective study of 80 (46 men and 34 women; median age: 68.0 years) colorectal cancer patients who underwent DWI followed by curative surgery at the Chiba University Hospital between 2009 and 2011. Median follow-up time was 62.2 months. Histogram parameters including signal intensity of kurtosis and skewness of the tumor were measured on DWI at b = 1000, and mean apparent diffusion coefficient value (ADC) of the tumor was also measured on ADC map generated by DWIs at b = 0 and 1000. Associations of tumor parameters (kurtosis, skewness, and ADC) with pathological features were analyzed, and these parameters were also compared with overall survival (OS) and relapse-free survival (RFS) using Cox regression and Kaplan-Meier analysis. RESULTS ADC of the tumor did not have significant associations with any pathological factors, but kurtosis and skewness of signal intensity in the tumor was significantly different between tumors with distant metastases and those without (4.23 ± 1.31 vs. 3.24 ± 1.32, p = 0.04; 1.09 ± 0.39 vs. 0.57 ± 0.58, p = 0.03). Kurtosis of the tumor was significantly correlated with OS and RFS (p = 0.04, p = 0.03, respectively), and skewness was significantly correlated with OS (p = 0.03) in Cox regression analysis. Higher kurtosis or higher skewness of the tumor was associated with worse OS in Kaplan-Meier analysis (p = 0.01, p = 0.009, log-rank). In subset analysis, there were 50 patients (32 men and 18 women) of lymph node-negative colorectal cancers (≤ stage II); skewness of signal intensity in the tumor was associated with OS using univariate Cox regression analysis (p = 0.04). CONCLUSIONS Histogram analysis of DWI can be a prognostic biomarker for colorectal cancer.
Collapse
Affiliation(s)
- Yumiko Takahashi
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8677, Japan
| | - Koichi Hayano
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8677, Japan.
| | - Gaku Ohira
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8677, Japan
| | - Shunsuke Imanishi
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8677, Japan
| | - Toshiharu Hanaoka
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8677, Japan
| | - Hiroki Watanabe
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8677, Japan
| | - Atsushi Hirata
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8677, Japan
| | - Yohei Kawasaki
- Biostatistics Section, Clinical Research Center, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8677, Japan
| | - Hideaki Miyauchi
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8677, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8677, Japan
| |
Collapse
|