1
|
Niranjana VS, Ponnan S, Mukundan A, Prabu AA, Wang HC. Emerging Trends in Silane-Modified Nanomaterial-Polymer Nanocomposites for Energy Harvesting Applications. Polymers (Basel) 2025; 17:1416. [PMID: 40430711 PMCID: PMC12114705 DOI: 10.3390/polym17101416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 05/05/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Nanomaterials (NMs) have gained tremendous attention in various applications in the modern era. The most significant challenge associated with NMs is their strong propensity to aggregate. The chemical surface modification of NMs has garnered notable attention in managing NM dispersion and aggregation. Among the modification approaches, the silane modification of NMs has generated great interest among researchers as a versatile approach to tailoring the surface characteristics of NMs. This review comprehensively examined the recent advancements in silane modification techniques with a focus on triboelectric nanogenerator (TENG) applications. It provides an overview of silane chemistry and its interaction with diverse NMs, elucidating the underlying mechanisms governing the successful surface functionalization process. This review emphasized the silane modification, such as improved mechanical properties of composites, enhanced electrical and thermal conductivity, functional coatings, water treatment, textile industries, catalysis, membrane applications, and biomedical applications, of various NMs. In particular, the role of silane-modified NMs in advancing energy harvesting technologies was highlighted, showcasing their potential to enhance the performance and stability of next-generation devices.
Collapse
Affiliation(s)
| | - Sathiyanathan Ponnan
- Department of Materials Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Arvind Mukundan
- Department of Mechanical Engineering, Advanced Institute of Manufacturing with High Tech Innovations and Research Center for Innovative Research on Aging Society, National Chung Cheng University, Chia Yi County 62102, Taiwan
| | - Arun Anand Prabu
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, India;
| | - Hsiang-Chen Wang
- Department of Mechanical Engineering, Advanced Institute of Manufacturing with High Tech Innovations and Research Center for Innovative Research on Aging Society, National Chung Cheng University, Chia Yi County 62102, Taiwan
- Technology Development, Hitspectra Intelligent Technology Co., Ltd., Kaohsiung 80661, Taiwan
| |
Collapse
|
2
|
Wen C, Lin X, Wang J, Liu H, Liu G, Xu X, Zhang J, Liu J. Protein-Pectin Delivery Carriers for Food Bioactive Ingredients: Preparation, Release Mechanism, and Application. Compr Rev Food Sci Food Saf 2025; 24:e70183. [PMID: 40285448 DOI: 10.1111/1541-4337.70183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 04/02/2025] [Accepted: 04/13/2025] [Indexed: 04/29/2025]
Abstract
Food bioactive ingredients have received widespread attention due to their excellent nutritional and functional properties, regulating the organism. However, some food bioactive ingredients have the disadvantages of poor stability and low bioavailability, which limits their wider application in food. The current study has recently shown a growing interest in designing delivery systems due to their advantages in encapsulating, protecting, and controlling the release of food bioactive ingredients. This review summarizes the classification of protein-pectin delivery carriers, including emulsions, nanoparticles, microcapsules, gels, and films. Besides, the typical preparation methods and the factors affecting the stability of the carriers were presented. Moreover, the release mechanism of the protein-pectin delivery carriers was introduced. Furthermore, the applications of protein-pectin delivery carriers were also described. The protein-pectin delivery carriers have broad research prospects in the functional food and nutritional field. Protein-pectin delivery carriers can enhance the protection of food bioactive ingredient delivery due to their strong interaction force and excellent emulsification properties. Therefore, they can effectively protect food bioactive ingredients from harsh processing conditions and adverse environments in vivo, and improve their physicochemical properties, stability, and bioavailability, which have good application prospects.
Collapse
Affiliation(s)
- Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Xinying Lin
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Jieyu Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Huimin Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| |
Collapse
|
3
|
Niroula A, Poortinga AT, Nazir A. Pickering stabilization of double emulsions: Basic concepts, rationale, preparation, potential applications, challenges, and future perspectives. Adv Colloid Interface Sci 2025; 343:103531. [PMID: 40347519 DOI: 10.1016/j.cis.2025.103531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 04/18/2025] [Accepted: 04/25/2025] [Indexed: 05/14/2025]
Abstract
Double emulsions (DEs) offer unique compartmentalized structures but are inherently unstable, prompting significant scientific and industrial efforts to enhance their stability. One promising strategy is the use of solid particles-known as Pickering stabilization-resulting in Pickering double emulsions (PDEs), which overcome many limitations of conventional low-molecular-weight (LMW) surfactants. However, the term "Pickering" is often misused in the literature to describe any formulation containing particles, regardless of whether the interface is fully stabilized by them. This review aims to clarify the concept of Pickering stabilization, outline the rationale for its application to DEs, and examine preparation mechanisms, interfacial approaches, potential applications, and current challenges. Particles with dual wettability and high desorption energy irreversibly adsorb at interfaces, forming robust mechanical barriers that inhibit coalescence and reduce diffusion or escape of internal droplets. PDEs can be prepared via two-step emulsification, one-step processes, or advanced microfluidic methods. A variety of Pickering approaches have been developed to engineer particles capable of dual interfacial stabilization, enabling sophisticated functions such as (co-)encapsulation, controlled release, and the formation of hierarchical structures like microspheres, colloidosomes, and antibubbles. To unlock the full potential of PDEs for industrial applications, future research should prioritize eliminating surfactant use, developing safe and sustainable particles, and advancing scalable production methods without compromising emulsion stability or performance.
Collapse
Affiliation(s)
- Anuj Niroula
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Albert T Poortinga
- Department of Mechanical Engineering, Polymer Technology, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Akmal Nazir
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
4
|
Yang J, Sun Y, Dong X, Li M, Qin Y, Dai L, Sun Q. Interaction of starch nanoparticles with digestive enzymes and its effect on the release of polyphenols in simulated gastrointestinal fluids. Food Chem 2025; 472:142883. [PMID: 39824084 DOI: 10.1016/j.foodchem.2025.142883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/24/2024] [Accepted: 01/10/2025] [Indexed: 01/20/2025]
Abstract
This study investigates the interaction of amino-modified starch nanoparticles (NH2-SNPs) and unmodified SNPs with pepsin and trypsin and the influence of the formation of protein coronas on the release of polyphenols. We discovered that NH2-SNPs bound loosely to pepsin, while they bound tightly to trypsin, by quartz crystal microbalance with dissipation monitoring and zeta potential measurement. SNPs did not easily bind to the two digestive enzymes. In addition, the influence of NH2-SNPs on digestive enzymes was investigated by ultraviolet-visible spectrophotometry, and circular dichroism spectroscopy, showing that the addition of NH2-SNPs had no effect on the conformational structure of pepsin and trypsin. Using NH2-SNPs and SNPs to load four polyphenols revealed that the nanoparticles had a slow-release effect on the polyphenols, but the presence of protein coronas had little effect on the release. The release was mainly related to the destruction of the starch-based carrier by the amylase in digestive enzymes.
Collapse
Affiliation(s)
- Jie Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Qingdao Special Food Research Institute, Qingdao, 266109, China
| | - Yujing Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Xuyan Dong
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Qingdao Special Food Research Institute, Qingdao, 266109, China
| | - Man Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Qingdao Special Food Research Institute, Qingdao, 266109, China
| | - Yang Qin
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Qingdao Special Food Research Institute, Qingdao, 266109, China
| | - Lei Dai
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Qingdao Special Food Research Institute, Qingdao, 266109, China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Qingdao Special Food Research Institute, Qingdao, 266109, China.
| |
Collapse
|
5
|
Yudishter, Shams R, Dash KK. Polysaccharide nanoparticles as building blocks for food processing applications: A comprehensive review. Food Sci Biotechnol 2025; 34:527-546. [PMID: 39958179 PMCID: PMC11822165 DOI: 10.1007/s10068-024-01695-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/05/2024] [Accepted: 08/19/2024] [Indexed: 02/18/2025] Open
Abstract
Polysaccharides are renewable biomacromolecules obtained from natural sources like plants, bacteria, and algae, and are utilized for production of nanomaterials. Chitosan, cellulose, starch, alginate, hyaluronic acid, dextran, pectin, and glycosaminoglycans are examples of polysaccharides often utilized in production of nanomaterials. Chitosan nanoparticles are utilized in administration of drugs, wound healing, and a wide range of biomedical applications. Nanocellulose, a cellulose derivative, is utilized in nanocomposites, drug delivery systems, and as reinforcing agent in a variety of materials. In food sector, starch nanoparticles are employed to encapsulate and regulate the release of beneficial substances. Polysaccharide nanoparticles are highly suitable for food packaging due to their biocompatibility, surface activity, and controlled release capabilities. Based on this, the article provides an overview of the usage of polysaccharides in the development of nanomaterials. The chemical, technical, and functional features of polysaccharides, as well as prospective sources and applications are discussed in this article.
Collapse
Affiliation(s)
- Yudishter
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab India
| | - Rafeeya Shams
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab India
| | - Kshirod Kumar Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal India
| |
Collapse
|
6
|
C M, N M, N K S, M D, C IR, E S. Evaluation of high temperature impacts and nanotechnology as a shield against temperature stress on tomatoes - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177551. [PMID: 39557167 DOI: 10.1016/j.scitotenv.2024.177551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Rising temperature due to changing climate significantly impacts the production of tomato. The morpho-physiological functions of tomato such as gas exchange, growth and development, flowering, fruit setting, quality, fruit size, weight that can influence the yield and production is drastically affected by higher temperatures. Among the growth stages of tomato, flowering and fruit setting stage is highly vulnerable to high temperature resulting in reduced flower numbers, increased flower abortion, stigma exertion, abnormal ovule, reduced pollen germination, pollen numbers, pollen tube development, pollen viability and increased male sterility. The flower to fruit ratio and duration also highly influenced by higher temperatures. It significantly reduced fruit set, fruit number, weight and quality (Lycopene, carotenoids), changing sugars and acids ratio. Apart from day temperature, the asymmetrically rising night temperature and difference in day and night temperature pattern plays a considerable role in physiological and biochemical processes of tomato. Nanotechnology proves to be a successful tool for sustainable production of tomato than many other alternative mitigation strategies due to its localized action, low quantity requirement, minimal wastage, less residues, eco friendliness, biodegradability, multifunctionality, synergistic capabilities and higher plant productivity. It imitates the antioxidant enzymes playing active role in physiological functions in tomato thereby inducing tolerance mechanisms for managing high temperature stress. Further research should focus on use of several other nanoparticles that have potential but not yet experimented on tomato to mitigate heat stress and producing biodegradable, green synthesized nanoparticles that are cost effective and affordable to farmers.
Collapse
Affiliation(s)
- Musierose C
- Agro Climate Research Centre, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Maragatham N
- Centre for Students Welfare, Tamil Nadu Agricultural University, Coimbatore 641003, India.
| | - Sathyamoorthy N K
- Agro Climate Research Centre, Tamil Nadu Agricultural University, Coimbatore 641003, India.
| | - Djanaguiraman M
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India.
| | - Indu Rani C
- Department of Vegetable Sciences, Tamil Nadu Agricultural University, Coimbatore 641003, India.
| | - Somasundaram E
- Agri Business Management, Tamil Nadu Agricultural University, Coimbatore 641003, India.
| |
Collapse
|
7
|
Huang S, Li Y, Sun S, Liu TC, Xiao Q, Zhang Y. Prolamin and prolamin-polysaccharide composite nanoparticles for oral drug and nutrient delivery systems: A review. Int J Biol Macromol 2024; 283:137567. [PMID: 39549796 DOI: 10.1016/j.ijbiomac.2024.137567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/04/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
Prolamin-based nanoparticles, particularly those composed of prolamin-polysaccharide composites, have garnered significant interest as oral delivery systems in recent research. This review provides a thorough analysis of the current advancements in these composite nanoparticles with prolamins derived from various cereals, including maize, wheat, sorghum, and millet, with a focus on their applications in oral drug delivery. It discusses the mechanisms by which these composites enhance nanoparticle performance, especially in terms of stability. The review also explores the differences among various prolamins and clarifies the reasons for their performance characteristics as encapsulants for nanoparticles. Additionally, it offers an in-depth examination of various preparation methods for these composite nanoparticles, such as the traditional anti-solvent method, pH-driven method, and several innovative techniques. The study highlights the physicochemical and encapsulation properties of these composite nanoparticles and underscores their novel applications, which hold promise for future use in the food and pharmaceutical sectors. The findings aim to support the integration of prolamin-polysaccharide composites into these industries, ultimately accelerating the development of new applications for these nanoparticles.
Collapse
Affiliation(s)
- Shan Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China
| | - Yi Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Shengqian Sun
- Research Institute of Food and Agriculture Nutrition, Standard Investment (China) Ltd., No. 2138 Wanyuan Rd, Shanghai 201103, PR China
| | - Tristan C Liu
- Research Institute of Food and Agriculture Nutrition, Standard Investment (China) Ltd., No. 2138 Wanyuan Rd, Shanghai 201103, PR China
| | - Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China.
| | - Yue Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310012, PR China.
| |
Collapse
|
8
|
Kamath AP, Nayak PG, John J, Mutalik S, Balaraman AK, Krishnadas N. Revolutionizing neurotherapeutics: Nanocarriers unveiling the potential of phytochemicals in Alzheimer's disease. Neuropharmacology 2024; 259:110096. [PMID: 39084596 DOI: 10.1016/j.neuropharm.2024.110096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/15/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Neurological disorders pose a huge worldwide challenge to the healthcare system, necessitating innovative strategies for targeted drug delivery to the central nervous system. Alzheimer's disease (AD) is an untreatable neurodegenerative condition characterized by dementia and alterations in a patient's physiological and mental states. Since ancient times, medicinal plants have been an important source of bioactive phytochemicals with immense therapeutic potential. This review investigates new and safer alternatives for prevention and treatment of disease related to inevitable side effects associated with synthetic compounds. This review examines how nanotechnology can help in enhancing the delivery of neuroprotective phytochemicals in AD. Nevertheless, despite their remarkable neuroprotective properties, these natural products often have poor therapeutic efficacy due to low bioavailability, limited solubility and imperfect blood brain barrier (BBB) penetration. Nanotechnology produces personalized drug delivery systems which are necessary for solving such problems. In overcoming these challenges, nanotechnology might be employed as a way forward whereby customized medication delivery systems would be established as a result. The use of nanocarriers in the design and application of important phytochemicals is highlighted by this review, which indicate potential for revolutionizing neuroprotective drug delivery. We also explore the complications and possibilities of using nanocarriers to supply nutraceuticals and improve patients' standard of living, and preclinical as well as clinical investigations displaying that these techniques are effective in mitigating neurodegenerative diseases. In order to fight brain diseases and improve patient's health, scientists and doctors can employ nanotechnology with its possible therapeutic interventions.
Collapse
Affiliation(s)
- Akshatha P Kamath
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Pawan Ganesh Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Jeena John
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ashok Kumar Balaraman
- Centre for Research and Innovation, University of Cyberjaya, Persiaran Bestari, Cyber 11, 63000, Cyberjaya, Selangor, Malaysia
| | - Nandakumar Krishnadas
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
9
|
Issler T, Turner RJ, Prenner EJ. Membrane-Nanoparticle Interactions: The Impact of Membrane Lipids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404152. [PMID: 39212640 DOI: 10.1002/smll.202404152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/08/2024] [Indexed: 09/04/2024]
Abstract
The growing field of nanotechnology presents opportunity for applications across many sectors. Nanostructures, such as nanoparticles, hold distinct properties based on their size, shape, and chemical modifications that allow them to be utilized in both highly specific as well as broad capacities. As the classification of nanoparticles becomes more well-defined and the list of applications grows, it is imperative that their toxicity be investigated. One such cellular system that is of importance are cellular membranes (biomembranes). Membranes present one of the first points of contact for nanoparticles at the cellular level. This review will address current studies aimed at defining the biomolecular interactions of nanoparticles at the level of the cell membrane, with a specific focus of the interactions of nanoparticles with prominent lipid systems.
Collapse
Affiliation(s)
- Travis Issler
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Raymond J Turner
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Elmar J Prenner
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
10
|
Huerta-Aguilar CA, Bazany-Rodríguez IJ, Hansberg-Pastor V, Camacho-Arroyo I, Reyes-Dominguez IA, Cervantes-Avilés PA, Thangarasu P. ZnO-Salen NPs Employed as Chemosensor for Detection of Al 3+ and K + in Aqueous Medium, Developing Human Cell Images. J Fluoresc 2024:10.1007/s10895-024-03913-4. [PMID: 39215912 DOI: 10.1007/s10895-024-03913-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
ZnO nanoparticles (NPs) were prepared and characterized by different analytical methods and then they were used to decorate with N, N´-bis(salicylidene)ethylenediamine (salen) in order to perform as receptor for the metal ions in an aqueous medium. The results show that ZnO-salen selectively detects Al3+ ions in aqueous medium since the intensity of fluorescence has been enhanced significantly. However, the presence of K+ in the medium further intensified the fluorescence emission for the [ZnO-salen-Al3+] system. The above system has been applied to recognize Al3+ and K+ in cells by developing the cell images, for which, the fluorescence image is brightened if a human glioblastoma U251 cell contains [ZnO-salen-Al3+] + K+ ions, consisting of the fluorescence titration. The binding global constant for Al3+ and the subsequent recognition of K+ by ZnO-salen resulted in β2(Al3+) = 6.61 × 103 and β2(K+) = 3.71 × 103 with a detection limit of 36.51 µM for Al3+ and 17.39 µM for K+. In the cell toxicity analysis, the cell viability was over 85% for the ZnO-salen even in the concentration as high as 100 mM.
Collapse
Affiliation(s)
| | - Iván J Bazany-Rodríguez
- Faculty of Chemistry, Universidad Nacional Autónoma de Mexico, CDMX, Mexico City, 04510, Mexico
| | - Valeria Hansberg-Pastor
- Faculty of Chemistry, Universidad Nacional Autónoma de Mexico, CDMX, Mexico City, 04510, Mexico
| | - Ignacio Camacho-Arroyo
- Instituto Nacional de Perinatología-Facultad de Química, Unidad de Investigación en Reproducción Humana, Universidad Nacional Autónoma de México, CDMX, Mexico City, 04510, Mexico
| | | | | | - Pandiyan Thangarasu
- Faculty of Chemistry, Universidad Nacional Autónoma de Mexico, CDMX, Mexico City, 04510, Mexico.
| |
Collapse
|
11
|
Wang A, Lenaghan SC, Zhong Q. Structures and interactions forming stable shellac-casein nanocomplexes with a pH-cycle. Int J Biol Macromol 2024; 267:131585. [PMID: 38621557 DOI: 10.1016/j.ijbiomac.2024.131585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
Casein forms diverse structures with functionalities tunable by complexation with surfactants, and shellac is an emerging surfactant. In the present work, molecular and mesoscopic structures of shellac and micellar casein and the underlying interactions after treatment with a pH-cycle were investigated. Dispersions with 0.5 % w/v shellac and various shellac:casein mass ratios were prepared at pH 12.0 to dissolve shellac and dissociate casein micelles, followed by neutralization to pH 7.0 to form complexes. Both covalent and non-covalent (hydrogen bonding, electrostatic, and hydrophobic) interactions contributed to the complex formation. The formed complexes had an average diameter of ~80 nm. The complexation of shellac and casein prevented the precipitation of protonated shellac during neutralization, and dispersions with casein:shellac mass ratios of 2:1 and above were absent of precipitates at pH 7.0. The formed nanocomplexes may have applications for preparing novel colloidal systems and loading lipophilic bioactive compounds.
Collapse
Affiliation(s)
- Anyi Wang
- Department of Food Science, University of Tennessee, Knoxville, TN, USA
| | - Scott C Lenaghan
- Department of Food Science, University of Tennessee, Knoxville, TN, USA; Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA
| | - Qixin Zhong
- Department of Food Science, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
12
|
Das SK, Sen K, Ghosh B, Ghosh N, Sinha K, Sil PC. Molecular mechanism of nanomaterials induced liver injury: A review. World J Hepatol 2024; 16:566-600. [PMID: 38689743 PMCID: PMC11056894 DOI: 10.4254/wjh.v16.i4.566] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/05/2024] [Accepted: 03/19/2024] [Indexed: 04/24/2024] Open
Abstract
The unique physicochemical properties inherent to nanoscale materials have unveiled numerous potential applications, spanning beyond the pharmaceutical and medical sectors into various consumer industries like food and cosmetics. Consequently, humans encounter nanomaterials through diverse exposure routes, giving rise to potential health considerations. Noteworthy among these materials are silica and specific metallic nanoparticles, extensively utilized in consumer products, which have garnered substantial attention due to their propensity to accumulate and induce adverse effects in the liver. This review paper aims to provide an exhaustive examination of the molecular mechanisms underpinning nanomaterial-induced hepatotoxicity, drawing insights from both in vitro and in vivo studies. Primarily, the most frequently observed manifestations of toxicity following the exposure of cells or animal models to various nanomaterials involve the initiation of oxidative stress and inflammation. Additionally, we delve into the existing in vitro models employed for evaluating the hepatotoxic effects of nanomaterials, emphasizing the persistent endeavors to advance and bolster the reliability of these models for nanotoxicology research.
Collapse
Affiliation(s)
- Sanjib Kumar Das
- Department of Zoology, Jhargram Raj College, Jhargram 721507, India
| | - Koushik Sen
- Department of Zoology, Jhargram Raj College, Jhargram 721507, India
| | - Biswatosh Ghosh
- Department of Zoology, Bidhannagar College, Kolkata 700064, India
| | - Nabanita Ghosh
- Department of Zoology, Maulana Azad College, Kolkata 700013, India
| | - Krishnendu Sinha
- Department of Zoology, Jhargram Raj College, Jhargram 721507, India.
| | - Parames C Sil
- Department of Molecular Medicine, Bose Institute, Calcutta 700054, India
| |
Collapse
|
13
|
Gohari G, Jiang M, Manganaris GA, Zhou J, Fotopoulos V. Next generation chemical priming: with a little help from our nanocarrier friends. TRENDS IN PLANT SCIENCE 2024; 29:150-166. [PMID: 38233253 DOI: 10.1016/j.tplants.2023.11.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/19/2024]
Abstract
Plants are exposed to multiple threats linked to climate change which can cause critical yield losses. Therefore, designing novel crop management tools is crucial. Chemical priming has recently emerged as an effective technology for improving tolerance to stress factors. Several compounds such as phytohormones, reactive species, and synthetic chimeras have been identified as promising priming agents. Following remarkable developments in nanotechnology, several unique nanocarriers (NCs) have been engineered that can act as smart delivery systems. These provide an eco-friendly, next-generation method for chemical priming, leading to increased efficiency and reduced overall chemical usage. We review novel engineered NCs (NENCs) as vehicles for chemical agents in advanced priming strategies, and address challenges and opportunities to be met towards achieving sustainable agriculture.
Collapse
Affiliation(s)
- Gholamreza Gohari
- Department of Agricultural Sciences Biotechnology and Food Science, Cyprus University of Technology, Lemesos, Cyprus; Department of Horticulture, Faculty of Horticulture, University of Maragheh, Maragheh, Iran
| | - Meng Jiang
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya, PR China
| | - George A Manganaris
- Department of Agricultural Sciences Biotechnology and Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | - Jie Zhou
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya, PR China; Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, PR China
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences Biotechnology and Food Science, Cyprus University of Technology, Lemesos, Cyprus.
| |
Collapse
|
14
|
Zhong Q, Reyes-Jurado F, Calumba KF. Structured soft particulate matters for delivery of bioactive compounds in foods and functioning in the colon. SOFT MATTER 2024; 20:277-293. [PMID: 38090993 DOI: 10.1039/d3sm00866e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The present review discusses challenges, perspectives, and current needs of delivering bioactive compounds (BCs) using soft particulate matters (SPMs) for gut health. SPMs can entrap BCs for incorporation in foods, preserve their bioactivities during processing, storage, and gastrointestinal digestion, and deliver BCs to functioning sites in the colon. To enable these functions, physical, chemical, and biological properties of BCs are integrated in designing various types of SPMs to overcome environmental factors reducing the bioavailability and bioactivity of BCs. The design principles are applied using food grade molecules with the desired properties to produce SPMs by additionally considering the cost, sustainability, and scalability of manufacturing processes. Lastly, to make delivery systems practical, impacts of SPMs on food quality are to be evaluated case by case, and health benefits of functional foods incorporated with delivery systems are to be confirmed and must outweigh the cost of preparing SPMs.
Collapse
Affiliation(s)
- Qixin Zhong
- Department of Food Science, University of Tennessee, Knoxville, TN, USA.
| | | | - Kriza Faye Calumba
- Department of Food Science, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
15
|
Rathee S, Ojha A, Upadhyay A, Xiao J, Bajpai VK, Ali S, Shukla S. Biogenic engineered nanomaterials for enhancing bioavailability via developing nano-iron-fortified smart foods: advances, insight, and prospects of nanobionics in fortification of food. Food Funct 2023; 14:9083-9099. [PMID: 37750182 DOI: 10.1039/d3fo02473c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Iron deficiency is a significant cause of iron deficiency anemia (IDA). Treatment of IDA is challenging due to several challenges, including low target bioavailability, low palatability, poor pharmacokinetics, and extended therapeutic regimes. Nanotechnology holds the promise of revolutionizing the management and treatment of IDA. Smart biogenic engineered nanomaterials (BENMs) such as lipids, protein, carbohydrates, and complex nanomaterials have been the subject of extensive research and opened new avenues for people and the planet due to their enhanced physicochemical, rheological, optoelectronic, thermomechanical, biological, magnetic, and nutritional properties. Additionally, they show eco-sustainability, low biotoxicity, active targeting, enhanced permeation and retention, and stimuli-responsive characteristics. We examine the opportunities offered by emerging smart BENMs for the treatment of iron deficiency anemia by utilizing iron-fortified smart foods. We review the progress made so far and other future directions to maximize the impact of smart nanofortification on the global population. The toxicity effects are also discussed with commercialization challenges.
Collapse
Affiliation(s)
- Shweta Rathee
- Department of Food Science and Technology, National Institute of Food Science Technology Entrepreneurship and Management, Kundli, Sonipat, India.
| | - Ankur Ojha
- Department of Food Science and Technology, National Institute of Food Science Technology Entrepreneurship and Management, Kundli, Sonipat, India.
| | - Ashutosh Upadhyay
- Department of Food Science and Technology, National Institute of Food Science Technology Entrepreneurship and Management, Kundli, Sonipat, India.
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain
| | - Vivek K Bajpai
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Sajad Ali
- Department of Biotechnology, Yeungnam University, South Korea.
| | - Shruti Shukla
- Department of Nanotechnology, North Eastern Hill University (NEHU), East Khasi Hills, Shillong, 793022, Meghalaya, India.
| |
Collapse
|
16
|
Laganà A, Facciolà A, Iannazzo D, Celesti C, Polimeni E, Biondo C, Di Pietro A, Visalli G. Promising Materials in the Fight against Healthcare-Associated Infections: Antibacterial Properties of Chitosan-Polyhedral Oligomeric Silsesquioxanes Hybrid Hydrogels. J Funct Biomater 2023; 14:428. [PMID: 37623672 PMCID: PMC10456118 DOI: 10.3390/jfb14080428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/08/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023] Open
Abstract
New technologies and materials could help in this fight against healthcare-associated infections. As the majority of these infections are caused by antibiotic-resistant bacteria, the development of materials with intrinsic antibacterial properties is a promising field of research. We combined chitosan (CS), with antibacterial properties, with polyhedral oligomeric silsesquioxanes (POSS), a biocompatible polymer with physico-chemical, mechanical, and rheological properties, creating a hydrogel using cross-linking agent genipin. The antibacterial properties of CS and CS-POSS hydrogels were investigated against nosocomial Gram-positive and Gram-negative bacteria both in terms of membrane damage and surface charge variations, and finally, the anti-biofilm property was studied through confocal microscopy. Both materials showed a good antibacterial capacity against all analyzed strains, both in suspension, with % decreases between 36.36 and 73.58 for CS and 29.86 and 66.04 for CS-POSS, and in plates with % decreases between 55.29 and 78.32 and 17.00 and 53.99 for CS and CS-POSS, respectively. The treated strains compared to the baseline condition showed an important membrane damage, which also determined a variation of surface charges, and finally, for both hydrogels, a remarkable anti-biofilm property was highlighted. Our findings showed a possible future use of these biocompatible materials in the manufacture of medical and surgical devices with intrinsic antibacterial and anti-biofilm properties.
Collapse
Affiliation(s)
- Antonio Laganà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (A.L.); (A.F.); (A.D.P.)
- Istituto Clinico Polispecialistico C.O.T., Cure Ortopediche Traumatologiche s.p.a., 98124 Messina, Italy
| | - Alessio Facciolà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (A.L.); (A.F.); (A.D.P.)
| | - Daniela Iannazzo
- Department of Electronic Engineering, Industrial Chemistry and Engineering, University of Messina, 98166 Messina, Italy; (D.I.); (C.C.)
| | - Consuelo Celesti
- Department of Electronic Engineering, Industrial Chemistry and Engineering, University of Messina, 98166 Messina, Italy; (D.I.); (C.C.)
| | - Evelina Polimeni
- Department of Human Pathology, University of Messina, 98125 Messina, Italy; (E.P.); (C.B.)
| | - Carmelo Biondo
- Department of Human Pathology, University of Messina, 98125 Messina, Italy; (E.P.); (C.B.)
| | - Angela Di Pietro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (A.L.); (A.F.); (A.D.P.)
| | - Giuseppa Visalli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (A.L.); (A.F.); (A.D.P.)
| |
Collapse
|
17
|
Lv J, Zhou X, Wang W, Cheng Y, Wang F. Solubilization mechanism of self-assembled walnut protein nanoparticles and curcumin encapsulation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4908-4918. [PMID: 36929026 DOI: 10.1002/jsfa.12559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/20/2023] [Accepted: 03/16/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Native walnut protein is an alkali-soluble protein that seriously limits the application of walnut protein. The pH-shifting method could improve the solubility of walnut proteins and enable the encapsulation of active ingredients. The present study aimed to prepare water-soluble nanoparticles of curcumin using walnut protein and evaluate the process of walnut protein self-assembly, interaction between walnut protein and curcumin, encapsulation properties, and stability of nanoparticles. RESULTS The solubility of native walnut protein was poor, but the solubility of walnut protein nanoparticles (WPNP) formed by walnut protein after pH-shifting significantly improved to 91.5 ± 1.2%. This is because, during the process of pH changing from 7 to 12 and back to 7, walnut protein first unfolded under alkaline conditions and then refolded under pH drive, finally forming an internal hydrophobic and external hydrophilic shell-core structures. The quenching type of walnut protein and curcumin was static quenching, and the quenching constant was 2.0 × 1014 mol-1 L-1 s-1 , indicating that the interaction between walnut protein and curcumin was non-covalent. Adding curcumin resulted in the formation of nanoparticles with small particle size compared with the no-load. The loading capacity of curcumin-loaded walnut protein nanoparticles (WPNP-C) was 222 mg g-1 walnut protein isolate. Under the same mass, the curcumin equivalent concentration in aqueous solution of WPNP-C was 17 000 times higher than that of the native curcumin. CONCLUSION The solubility of the self-assembled WPNP significantly increased after pH-shifting treatment. The walnut protein carrier could improve the stability of the encapsulated curcumin. Therefore, walnut proteins could be used as water-soluble carriers for hydrophobic drugs. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiao Lv
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
- Department of Science and Engineering, Hebei Agricultural University, Cangzhou, China
| | - Xin Zhou
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Wenjie Wang
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Yifan Cheng
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Fengjun Wang
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| |
Collapse
|
18
|
Hessel V, Escribà-Gelonch M, Schmidt S, Tran NN, Davey K, Al-Ani LA, Muhd Julkapli N, Abdul Wahab Y, Khalil I, Woo MW, Gras S. Nanofood Process Technology: Insights on How Sustainability Informs Process Design. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:11437-11458. [PMID: 37564955 PMCID: PMC10410668 DOI: 10.1021/acssuschemeng.3c01223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/10/2023] [Indexed: 08/12/2023]
Abstract
Nanostructured products are an actively growing area for food research, but there is little information on the sustainability of processes used to make these products. In this Review, we advocate for selection of sustainable process technologies during initial stages of laboratory-scale developments of nanofoods. We show that selection is assisted by predictive sustainability assessment(s) based on conventional technologies, including exploratory ex ante and "anticipatory" life-cycle assessment. We demonstrate that sustainability assessments for conventional food process technologies can be leveraged to design nanofood process concepts and technologies. We critically review emerging nanostructured food products including encapsulated bioactive molecules and processes used to structure these foods at laboratory, pilot, and industrial scales. We apply a rational method via learning lessons from sustainability of unit operations in conventional food processing and critically apportioned lessons between emerging and conventional approaches. We conclude that this method provides a quantitative means to incorporate sustainability during process design for nanostructured foods. Findings will be of interest and benefit to a range of food researchers, engineers, and manufacturers of process equipment.
Collapse
Affiliation(s)
- Volker Hessel
- School
of Chemical Engineering, The University
of Adelaide, Adelaide 5005, SA, Australia
| | | | - Svenja Schmidt
- School
of Chemical Engineering, The University
of Adelaide, Adelaide 5005, SA, Australia
| | - Nam Nghiep Tran
- School
of Chemical Engineering, The University
of Adelaide, Adelaide 5005, SA, Australia
| | - Kenneth Davey
- School
of Chemical Engineering, The University
of Adelaide, Adelaide 5005, SA, Australia
| | - Lina A. Al-Ani
- Nanotechnology
and Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Nurhidayatullaili Muhd Julkapli
- Nanotechnology
and Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Yasmin Abdul Wahab
- Nanotechnology
and Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Ibrahim Khalil
- Healthcare
Pharmaceuticals Limited, Rajendrapur, Gazipur 1741, Bangladesh
| | - Meng Wai Woo
- Department
of Chemical & Materials Engineering, University of Auckland, Auckland 1142, New Zealand
| | - Sally Gras
- Department
of Chemical Engineering and Bio21 Molecular Science and Biotechnology
Institute, University of Melbourne, Melbourne 3010, Australia
| |
Collapse
|
19
|
Senevirathna K, Jayawickrama SM, Jayasinghe YA, Prabani KIP, Akshala K, Pradeep RGGR, Damayanthi HDWT, Hettiarachchi K, Dorji T, Lucero‐Prisno DE, Rajapakse RMG, Kanmodi KK, Jayasinghe RD. Nanoplatforms: The future of oral cancer treatment. Health Sci Rep 2023; 6:e1471. [PMID: 37547360 PMCID: PMC10397482 DOI: 10.1002/hsr2.1471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 08/08/2023] Open
Abstract
Background and Aims Cytotoxicity is a key disadvantage of using chemotherapeutic drugs to treat cancer. This can be overcome by encapsulating chemotherapeutic drugs in suitable carriers for targeted delivery, allowing them to be released only at the cancerous sites. Herein, we aim to review the recent scientific developments in the utilization of nanotechnology-based drug delivery systems for treating oral malignancies that can lead to further improvements in clinical practice. Methods A comprehensive literature search was conducted on PubMed, Google Scholar, ScienceDirect, and other notable databases to identify recent peer-reviewed clinical trials, reviews, and research articles related to nanoplatforms and their applications in oral cancer treatment. Results Nanoplatforms offer a revolutionary strategy to overcome the challenges associated with conventional oral cancer treatments, such as poor drug solubility, non-specific targeting, and systemic toxicity. These nanoscale drug delivery systems encompass various formulations, including liposomes, polymeric nanoparticles, dendrimers, and hydrogels, which facilitate controlled release and targeted delivery of therapeutic agents to oral cancer sites. By exploiting the enhanced permeability and retention effect, Nanoplatforms accumulate preferentially in the tumor microenvironment, increasing drug concentration and minimizing damage to healthy tissues. Additionally, nanoplatforms can be engineered to carry multiple drugs or a combination of drugs and diagnostic agents, enabling personalized and precise treatment approaches. Conclusion The utilization of nanoplatforms in oral cancer treatment holds significant promise in revolutionizing therapeutic strategies. Despite the promising results in preclinical studies, further research is required to evaluate the safety, efficacy, and long-term effects of nanoformulations in clinical settings. If successfully translated into clinical practice, nanoplatform-based therapies have the potential to improve patient outcomes, reduce side effects, and pave the way for more personalized and effective oral cancer treatments.
Collapse
Affiliation(s)
- Kalpani Senevirathna
- Centre for Research in Oral Cancer, Faculty of Dental SciencesUniversity of PeradeniyaPeradeniyaSri Lanka
| | - Shalindu M. Jayawickrama
- Centre for Research in Oral Cancer, Faculty of Dental SciencesUniversity of PeradeniyaPeradeniyaSri Lanka
| | - Yovanthi A. Jayasinghe
- Centre for Research in Oral Cancer, Faculty of Dental SciencesUniversity of PeradeniyaPeradeniyaSri Lanka
| | - Karunakalage I. P. Prabani
- Centre for Research in Oral Cancer, Faculty of Dental SciencesUniversity of PeradeniyaPeradeniyaSri Lanka
| | - Kushani Akshala
- Department of Agricultural Biology, Faculty of AgricultureUniversity of PeradeniyaPeradeniyaSri Lanka
| | | | | | - Kalani Hettiarachchi
- Centre for Research in Oral Cancer, Faculty of Dental SciencesUniversity of PeradeniyaPeradeniyaSri Lanka
| | - Thinley Dorji
- Department of Internal MedicineCentral Regional Referral HospitalGelegphuBhutan
| | - Don E. Lucero‐Prisno
- Department of Global Health and DevelopmentLondon School of Hygiene and Tropical MedicineLondonUK
| | | | - Kehinde K. Kanmodi
- Faculty of DentistryUniversity of PuthisastraPhnom PenhCambodia
- School of DentistryUniversity of RwandaKigaliRwanda
- School of Health and Life SciencesTeesside UniversityMiddlesbroughUK
- Cephas Health Research Initiative IncIbadanNigeria
| | - Ruwan D. Jayasinghe
- Centre for Research in Oral Cancer, Faculty of Dental SciencesUniversity of PeradeniyaPeradeniyaSri Lanka
- Faculty of DentistryUniversity of PuthisastraPhnom PenhCambodia
| |
Collapse
|
20
|
Tan JS, Jaffar Ali MNB, Gan BK, Tan WS. Next-generation viral nanoparticles for targeted delivery of therapeutics: Fundamentals, methods, biomedical applications, and challenges. Expert Opin Drug Deliv 2023; 20:955-978. [PMID: 37339432 DOI: 10.1080/17425247.2023.2228202] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/19/2023] [Indexed: 06/22/2023]
Abstract
INTRODUCTION Viral nanoparticles (VNPs) are virus-based nanocarriers that have been studied extensively and intensively for biomedical applications. However, their clinical translation is relatively low compared to the predominating lipid-based nanoparticles. Therefore, this article describes the fundamentals, challenges, and solutions of the VNP-based platform, which will leverage the development of next-generation VNPs. AREAS COVERED Different types of VNPs and their biomedical applications are reviewed comprehensively. Strategies and approaches for cargo loading and targeted delivery of VNPs are examined thoroughly. The latest developments in controlled release of cargoes from VNPs and their mechanisms are highlighted too. The challenges faced by VNPs in biomedical applications are identified, and solutions are provided to overcome them. EXPERT OPINION In the development of next-generation VNPs for gene therapy, bioimaging and therapeutic deliveries, focus must be given to reduce their immunogenicity, and increase their stability in the circulatory system. Modular virus-like particles (VLPs) which are produced separately from their cargoes or ligands before all the components are coupled can speed up clinical trials and commercialization. In addition, removal of contaminants from VNPs, cargo delivery across the blood brain barrier (BBB), and targeting of VNPs to organelles intracellularly are challenges that will preoccupy researchers in this decade.
Collapse
Affiliation(s)
- Jia Sen Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Muhamad Norizwan Bin Jaffar Ali
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Bee Koon Gan
- Department of Biological Science, Faculty of Science, National University of Singapore, Singapore
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
21
|
Aboelezz E, Pogue BW. Review of nanomaterial advances for ionizing radiation dosimetry. APPLIED PHYSICS REVIEWS 2023; 10:021312. [PMID: 37304732 PMCID: PMC10249220 DOI: 10.1063/5.0134982] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/01/2023] [Indexed: 06/13/2023]
Abstract
There are a wide range of applications with ionizing radiation and a common theme throughout these is that accurate dosimetry is usually required, although many newer demands are provided by improved features in higher range, multi-spectral and particle type detected. Today, the array of dosimeters includes both offline and online tools, such as gel dosimeters, thermoluminescence (TL), scintillators, optically stimulated luminescence (OSL), radiochromic polymeric films, gels, ionization chambers, colorimetry, and electron spin resonance (ESR) measurement systems. Several future nanocomposite features and interpretation of their substantial behaviors are discussed that can lead to improvements in specific features, such as (1) lower sensitivity range, (2) less saturation at high range, (3) overall increased dynamic range, (4) superior linearity, (5) linear energy transfer and energy independence, (6) lower cost, (7) higher ease of use, and (8) improved tissue equivalence. Nanophase versions of TL and ESR dosimeters and scintillators each have potential for higher range of linearity, sometimes due to superior charge transfer to the trapping center. Both OSL and ESR detection of nanomaterials can have increased dose sensitivity because of their higher readout sensitivity with nanoscale sensing. New nanocrystalline scintillators, such as perovskite, have fundamentally important advantages in sensitivity and purposeful design for key new applications. Nanoparticle plasmon coupled sensors doped within a lower Zeff material have been an effective way to achieve enhanced sensitivity of many dosimetry systems while still achieving tissue equivalency. These nanomaterial processing techniques and unique combinations of them are key steps that lead to the advanced features. Each must be realized through industrial production and quality control with packaging into dosimetry systems that maximize stability and reproducibility. Ultimately, recommendations for future work in this field of radiation dosimetry were summarized throughout the review.
Collapse
Affiliation(s)
- Eslam Aboelezz
- Ionizing Radiation Metrology Department, National Institute of Standards, Giza, Egypt
| | - Brian W. Pogue
- Department of Medical Physics, University of Wisconsin-Madison, Madison 53705, USA
| |
Collapse
|
22
|
Ghaffar S, Abbas A, Naeem-Ul-Hassan M, Assad N, Sher M, Ullah S, Alhazmi HA, Najmi A, Zoghebi K, Al Bratty M, Hanbashi A, Makeen HA, Amin HMA. Improved Photocatalytic and Antioxidant Activity of Olive Fruit Extract-Mediated ZnO Nanoparticles. Antioxidants (Basel) 2023; 12:1201. [PMID: 37371931 DOI: 10.3390/antiox12061201] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Photodegradation is an efficient strategy for the removal of organic pollutants from wastewater. Due to their distinct properties and extensive applications, semiconductor nanoparticles have emerged as promising photocatalysts. In this work, olive (Olea Europeae) fruit extract-based zinc oxide nanoparticles (ZnO@OFE NPs) were successfully biosynthesized using a one-pot sustainable method. The prepared ZnO NPs were systematically characterized using UV-Vis, FTIR, SEM, EDX and XRD and their photocatalytic and antioxidant activity was evaluated. SEM demonstrated the formation of spheroidal nanostructures (57 nm) of ZnO@OFE and the EDX analysis confirmed its composition. FTIR suggested the modification/capping of the NPs with functional groups of phytochemicals from the extract. The sharp XRD reflections revealed the crystalline nature of the pure ZnO NPs with the most stable hexagonal wurtzite phase. The photocatalytic activity of the synthesized catalysts was evaluated by measuring the degradation of methylene blue (MB) and methyl orange (MO) dyes under sunlight irradiation. Improved degradation efficiencies of 75% and 87% were achieved within only 180 min with photodegradation rate constant k of 0.008 and 0.013 min-1 for MB and MO, respectively. The mechanism of degradation was proposed. Additionally, ZnO@OFE NPs exhibited potent antioxidant activity against DPPH, hydroxyl, peroxide and superoxide radicals. Hence, ZnO@OFE NPs may have potential as a cost-effective and green photocatalyst for wastewater treatment.
Collapse
Affiliation(s)
- Sadia Ghaffar
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | - Azhar Abbas
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
- Department of Chemistry, Government Ambala Muslim Graduate College Sargodha, Sargodha 40100, Pakistan
| | | | - Nasir Assad
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | - Muhammad Sher
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | - Sami Ullah
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | - Hassan A Alhazmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 82912, Saudi Arabia
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 82912, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 82912, Saudi Arabia
| | - Khalid Zoghebi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 82912, Saudi Arabia
| | - Mohammed Al Bratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 82912, Saudi Arabia
| | - Ali Hanbashi
- Department of Pharmacology, College of Pharmacy, Jazan University, Jazan 82912, Saudi Arabia
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 82912, Saudi Arabia
| | - Hatem M A Amin
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
23
|
Wen S, Zhao Y, Wang M, Yuan H, Xu H. Micro(nano)plastics in food system: potential health impacts on human intestinal system. Crit Rev Food Sci Nutr 2022; 64:1429-1447. [PMID: 36066327 DOI: 10.1080/10408398.2022.2116559] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Micro(nano)plastics (MNPs) in human food system have been broadly recognized by researchers and have drawn an increasing public attention to their potential health risks, particularly the risk to the intestinal system regarding the long-term exposure to MNPs through food consumption. This study aims to review the environmental properties (formation and composition) of MNPs and MNPs pollution in human food system following the order of food production, food processing and food consumption. The current analytic and identical technologies utilized by researchers are also summarized in this review. In fact, parts of commonly consumed food raw materials, processed food and the way to take in food all become the possible sources for human MNPs ingestion. In addition, the available literatures investigating MNPs-induced intestinal adverse effect are discussed from in vitro models and in vivo mammalian experiments, respectively. Particle translocation, cytotoxicity, damaged gut barrier, intestinal inflammation as well as microbial alteration are mostly reported. Moreover, the practical remediation strategies for MNPs pollution are also illustrated in the last section. This review is expected to provide a research insight for foodborne MNPs and arouse more public awareness of MNPs pollution in food and potential risk for human intestinal health.
Collapse
Affiliation(s)
- Siyue Wen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yu Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Mengqi Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Hongbin Yuan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
24
|
Photodegradation and reaction kinetics for eosin yellow using ZnO nanoparticles as catalysts. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02244-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
25
|
Rexlin J, Vijayakumar S, Nilavukkarasi M, Vidhya E, Alharthi NS, Sajjad M, Punitha VN, Praseetha PK. Bioengineered ZnO nanoparticles as a nano priming agent in Cyamopsis tetragonoloba (L).Taub. to improve yield and disease resistance. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02526-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Elsayed A, Safwat A, Abdelsattar AS, Essam K, Nofal R, Makky S, El-Shibiny A. The antibacterial and biofilm inhibition activity of encapsulated silver nanoparticles in emulsions and its synergistic effect with E. coli bacteriophage. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2081191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Amera Elsayed
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt
| | - Anan Safwat
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt
| | - Abdallah S. Abdelsattar
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt
- Center for X-Ray and Determination of Structure of Matter, Zewail City of Science and Technology, Giza, Egypt
| | - Kareem Essam
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt
| | - Rana Nofal
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt
| | - Salsabil Makky
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt
- Faculty of Environmental Agricultural Sciences, Arish University, Arish, Egypt
| |
Collapse
|
27
|
Kiani BH, Ikram F, Fatima H, Alhodaib A, Haq IU, Ur-Rehman T, Naz I. Comparative evaluation of biomedical and phytochemical applications of zinc nanoparticles by using Fagonia cretica extracts. Sci Rep 2022; 12:10024. [PMID: 35705691 PMCID: PMC9200713 DOI: 10.1038/s41598-022-14193-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/02/2022] [Indexed: 11/25/2022] Open
Abstract
The use of the green approach for nanoparticle synthesis yielded noticeable concern due to its eco-friendliness, cost-effectiveness, and reduced production of toxic chemicals. The current study was designed to formulate Zinc oxide nanoparticles (ZnO NPs) by using Fagonia cretica extracts, evaluating its phytochemical content, and different biological activities. Four different solvents; methanol (MeOH), n-Hexane (n–H), aqueous (Aq), and ethyl acetate (EA), had been utilized in the extracting method. ZnO NPs were successfully synthesized and characterized by UV–vis spectroscopy and scanning electron microscopy (SEM). The UV–vis spectra showed absorbance peaks between 350–400 nm range and SEM analysis revealed spherical morphology with particle sizes ranging from 65–80 nm. In phytochemical analysis, crude extracts exhibited the highest phytochemical content as they contain enriched secondary metabolites. n-hexane extract showed the highest phenolic contents while aqueous extracts showed the highest flavonoid content. Maximum free radicle scavenging activity was observed in NPs synthesized from ethyl-acetate extract with an IC50 value of 35.10 µg/ml. Significant antibacterial activity was exhibited by NPs polar solvents against K. pneumonae, E. coli, and B. subtilis. Polar solvents showed considerable antifungal potential against A. flavus and F. solani. NPs synthesized from nH extract showed potential cytotoxic activity with an LC50 value of 42.41 µg/ml against brine shrimps. A noteworthy antidiabetic activity was exhibited by nanoparticles synthesized from methanol extract i.e., 52.61 ± 0.36%. Significant bald zones were observed in nanoparticles synthesized from methanol extract rendering protein kinase inhibition. The present study highlights the significance of F. indica as a natural source for synthesizing functional nanoparticles with substantial antioxidant, antimicrobial, cytotoxic, protein kinase inhibitory, and antidiabetic properties.
Collapse
Affiliation(s)
- Bushra Hafeez Kiani
- Department of Biological Sciences (Female Campus), Faculty of Basic and Applied Sciences, International Islamic University Islamabad, Islamabad, 44000, Pakistan.
| | - Fizza Ikram
- Department of Biological Sciences (Female Campus), Faculty of Basic and Applied Sciences, International Islamic University Islamabad, Islamabad, 44000, Pakistan
| | - Humaira Fatima
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Aiyeshah Alhodaib
- Department of Physics, College of Science, Qassim University, Buraydah, 51452, Saudi Arabia.
| | - Ihsan-Ul- Haq
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Tofeeq Ur-Rehman
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Iffat Naz
- Department of Biology, Science Unit, Deanship of Educational Services, Qassim University, Buraydah, 51452, Saudi Arabia
| |
Collapse
|
28
|
Joudeh N, Linke D. Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. J Nanobiotechnology 2022; 20:262. [PMID: 35672712 PMCID: PMC9171489 DOI: 10.1186/s12951-022-01477-8] [Citation(s) in RCA: 360] [Impact Index Per Article: 120.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/23/2022] [Indexed: 12/31/2022] Open
Abstract
Interest in nanomaterials and especially nanoparticles has exploded in the past decades primarily due to their novel or enhanced physical and chemical properties compared to bulk material. These extraordinary properties have created a multitude of innovative applications in the fields of medicine and pharma, electronics, agriculture, chemical catalysis, food industry, and many others. More recently, nanoparticles are also being synthesized ‘biologically’ through the use of plant- or microorganism-mediated processes, as an environmentally friendly alternative to the expensive, energy-intensive, and potentially toxic physical and chemical synthesis methods. This transdisciplinary approach to nanoparticle synthesis requires that biologists and biotechnologists understand and learn to use the complex methodology needed to properly characterize these processes. This review targets a bio-oriented audience and summarizes the physico–chemical properties of nanoparticles, and methods used for their characterization. It highlights why nanomaterials are different compared to micro- or bulk materials. We try to provide a comprehensive overview of the different classes of nanoparticles and their novel or enhanced physicochemical properties including mechanical, thermal, magnetic, electronic, optical, and catalytic properties. A comprehensive list of the common methods and techniques used for the characterization and analysis of these properties is presented together with a large list of examples for biogenic nanoparticles that have been previously synthesized and characterized, including their application in the fields of medicine, electronics, agriculture, and food production. We hope that this makes the many different methods more accessible to the readers, and to help with identifying the proper methodology for any given nanoscience problem.
Collapse
|
29
|
Parvathiraja C, Shailajha S. High-performance visible light photocatalyst antibacterial applications of ZnO and plasmonic-decorated ZnO nanoparticles. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02488-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Rahman TU, Anwar MR, Zeb MA, Liaqat W. Green synthesis, characterization, antibacterial activity of metal nanoparticles and composite oxides using leaves extract of Ocimum basilicum L. Microsc Res Tech 2022; 85:2857-2865. [PMID: 35460328 DOI: 10.1002/jemt.24134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 04/04/2022] [Accepted: 04/14/2022] [Indexed: 11/06/2022]
Abstract
Nanoparticles plays a key role in the development of novel antibacterial substances against various pathogenic microorganisms. These nanoparticles due to their smaller size could be very effective as they can improve the antibacterial activity through lysis of bacterial cell wall. In the present research work, ZnO, MgO, NiO, AlO nanoparticles, and MgNiO, and AlZnO composite oxides were synthesized by green method from Ocimum basilicum leaves extract. The nanoparticles formed were evaluated using FTIR, XRD, EDX, and SEM to confirm the formation of NPs and to determine the morphology, elemental composition, shape and size, composition, and nature of bonds present in the NPs. Further, the NPs were tested for their antibacterial activity. In particular, ZnO NPs showed a good inhibitory effect against Pseudomonas aeruginosa with 20 mm zone of inhibition. Hence, the process reported herein could be optimized for large-scale preparation of NPs.
Collapse
Affiliation(s)
- Taj Ur Rahman
- Department of Chemistry, Mohi-Ud-Din Islamic University, AJ&K, Pakistan
| | | | | | - Wajiha Liaqat
- Department of Chemistry, Mohi-Ud-Din Islamic University, AJ&K, Pakistan
| |
Collapse
|
31
|
Recent Advances in the Gastrointestinal Fate of Organic and Inorganic Nanoparticles in Foods. NANOMATERIALS 2022; 12:nano12071099. [PMID: 35407216 PMCID: PMC9000219 DOI: 10.3390/nano12071099] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 12/11/2022]
Abstract
Inorganic or organic nanoparticles are often incorporated into foods to enhance their quality, stability, nutrition, or safety. When they pass through the gastrointestinal environment, the properties of these nanoparticles are altered, which impacts their biological effects and potential toxicity. Consequently, there is a need to understand how different kinds of nanoparticles behave within the gastrointestinal tract. In this article, the current understanding of the gastrointestinal fate of nanoparticles in foods is reviewed. Initially, the fundamental physicochemical and structural properties of nanoparticles are discussed, including their compositions, sizes, shapes, and surface chemistries. Then, the impact of food matrix effects and gastrointestinal environments on the fate of ingested nanoparticles is discussed. In particular, the influence of nanoparticle properties on food digestion and nutraceutical bioavailability is highlighted. Finally, future research directions are highlighted that will enable the successful utilization of nanotechnology in foods while also ensuring they are safe.
Collapse
|
32
|
Moradi M, Razavi R, Omer AK, Farhangfar A, McClements DJ. Interactions between nanoparticle-based food additives and other food ingredients: A review of current knowledge. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
Berehu HM, S A, Khan MI, Chakraborty R, Lavudi K, Penchalaneni J, Mohapatra B, Mishra A, Patnaik S. Cytotoxic Potential of Biogenic Zinc Oxide Nanoparticles Synthesized From Swertia chirayita Leaf Extract on Colorectal Cancer Cells. Front Bioeng Biotechnol 2022; 9:788527. [PMID: 34976976 PMCID: PMC8714927 DOI: 10.3389/fbioe.2021.788527] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/23/2021] [Indexed: 12/24/2022] Open
Abstract
Chemotherapy side effects, medication resistance, and tumor metastasis impede the advancement of cancer treatments, resulting in a poor prognosis for cancer patients. In the last decade, nanoparticles (NPs) have emerged as a promising drug delivery system. Swertia chirayita has long been used as a treatment option to treat a variety of ailments. Zinc oxide nanoparticles (ZnO-NPs) were synthesized from ethanolic and methanolic extract of S. chirayita leaves. ZnO-NPs were characterized using UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron Microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD). Its anti-cancer activities were analyzed using cytotoxicity assays [MTT assay and acridine orange (AO) staining] and quantitative real-time PCR (qRT-PCR) using colorectal cancer (CRC) cells (HCT-116 and Caco-2) and control cells (HEK-293). The ZnO-NPs synthesized from the ethanolic extract of S. chirayita have an average size of 24.67 nm, whereas those from methanolic extract have an average size of 22.95 nm with a spherical shape. MTT assay showed NPs’ cytotoxic potential on cancer cells (HCT-116 and Caco-2) when compared to control cells (HEK-293). The IC50 values of ethanolic and methanolic extract ZnO-NPs for HCT-116, Caco-2, and HEK-293 were 34.356 ± 2.71 and 32.856 ± 2.99 μg/ml, 52.15 ± 8.23 and 63.1 ± 12.09 μg/ml, and 582.84 ± 5.26 and 615.35 ± 4.74 μg/ml, respectively. Acridine orange staining confirmed the ability of ZnO-NPs to induce apoptosis. qRT-PCR analysis revealed significantly enhanced expression of E-cadherin whereas a reduced expression of vimentin and CDK-1. Altogether, these results suggested anti-cancer properties of synthesized ZnO-NPs in CRC.
Collapse
Affiliation(s)
- Hadgu Mendefro Berehu
- Disease Biology Laboratory, School of Biotechnology KIIT Deemed to Be University, Odisha, India
| | - Anupriya S
- Disease Biology Laboratory, School of Biotechnology KIIT Deemed to Be University, Odisha, India
| | - Md Imran Khan
- Disease Biology Laboratory, School of Biotechnology KIIT Deemed to Be University, Odisha, India
| | - Rajasree Chakraborty
- Disease Biology Laboratory, School of Biotechnology KIIT Deemed to Be University, Odisha, India
| | - Kousalya Lavudi
- Disease Biology Laboratory, School of Biotechnology KIIT Deemed to Be University, Odisha, India
| | - Josthna Penchalaneni
- Department of Biotechnology, Sri Padmavati Mahila Visvavidyalam, Tirupati, India
| | - Bibhashee Mohapatra
- Disease Biology Laboratory, School of Biotechnology KIIT Deemed to Be University, Odisha, India
| | - Amrita Mishra
- Disease Biology Laboratory, School of Biotechnology KIIT Deemed to Be University, Odisha, India
| | - Srinivas Patnaik
- Disease Biology Laboratory, School of Biotechnology KIIT Deemed to Be University, Odisha, India
| |
Collapse
|
34
|
Designing delivery systems for functional ingredients by protein/polysaccharide interactions. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
35
|
Zhang J, Hassane Hamadou A, Chen C, Xu B. Encapsulation of phenolic compounds within food-grade carriers and delivery systems by pH-driven method: a systematic review. Crit Rev Food Sci Nutr 2021:1-22. [PMID: 34730038 DOI: 10.1080/10408398.2021.1998761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In comparison to conventional encapsulation methods of phenolic compounds (PCs), pH-driven method is green, simple and requires low energy consumption. It has a huge potential for industrial applications, and can overcome more effectively the aqueous solubility, stability and bioavailability issues related to PCs by changing pH to induce the encapsulation of PCs. This review aims to shed light on the use of pH-driven method for encapsulating PCs. The preparation steps and principles governing pH-driven method using various carriers and delivery systems are provided. A comparison of pH-driven with other methods is also presented. To circumvent the drawbacks of pH-driven method, improvement strategies are proposed. The essence of pH-driven method relies simultaneously on alkalization and acidification to bind PCs and carriers. It is used for the development of nanoemulsions, liposomes, edible films, nanoparticles, nanogels and functional foods. As a result of pH-driven method, PCs-loaded carriers may have smaller size, high encapsulation efficiency, more sustained-release and good bioavailability, due mainly to effects of pH change on the structure and properties of PCs as well as carriers. Finally, modification of wall materials and type of acidifier are considered as efficient approaches to improve the pH-driven method.
Collapse
Affiliation(s)
- Jiyao Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | | | - Chao Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
36
|
Ahmad AA, Sarbon NM. A comparative study: Physical, mechanical and antibacterial properties of bio-composite gelatin films as influenced by chitosan and zinc oxide nanoparticles incorporation. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101250] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
37
|
Yu J, Jeon YR, Kim YH, Jung EB, Choi SJ. Characterization and Determination of Nanoparticles in Commercial Processed Foods. Foods 2021; 10:2020. [PMID: 34574130 PMCID: PMC8465140 DOI: 10.3390/foods10092020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022] Open
Abstract
A wide variety of foods manufactured by nanotechnology are commercially available on the market and labeled as nanoproducts. However, it is challenging to determine the presence of nanoparticles (NPs) in complex food matrices and processed foods. In this study, top-down-approach-produced (TD)-NP products and nanobubble waters (NBWs) were chosen as representative powdered and liquid nanoproducts, respectively. The characterization and determination of NPs in TD-NP products and NBWs were carried out by measuring constituent particle sizes, hydrodynamic diameters, zeta potentials, and surface chemistry. The results show that most NBWs had different characteristics compared with those of conventional sparkling waters, but nanobubbles were unstable during storage. On the other hand, powdered TD-NP products were found to be highly aggregated, and the constituent particle sizes less than 100 nm were remarkably observed after dispersion compared with counterpart conventional bulk-sized products by scanning electron microscopy at low acceleration voltage and cryogenic transmission electron microscopy. The differences in chemical composition and chemical state between TD-NPs and their counterpart conventional bulk products were also found by X-ray photoelectron spectroscopy. These findings will provide basic information about the presence of NPs in nano-labeled products and be useful to understand and predict the potential toxicity of NPs applied to the food industry.
Collapse
Affiliation(s)
| | | | | | | | - Soo-Jin Choi
- Division of Applied Food System, Major of Food Science & Technology, Seoul Women’s University, Seoul 01797, Korea; (J.Y.); (Y.-R.J.); (Y.-H.K.); (E.-B.J.)
| |
Collapse
|
38
|
Wei Y, Guo A, Liu Z, Zhang L, Liao W, Liu J, Mao L, Yuan F, Gao Y. Development of curcumin loaded core-shell zein microparticles stabilized by cellulose nanocrystals and whey protein microgels through interparticle interactions. Food Funct 2021; 12:6936-6949. [PMID: 34132729 DOI: 10.1039/d1fo00959a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Novel multilayered core-shell microparticles were developed to deliver curcumin using positively charged zein microparticles coated with negatively charged cellulose nanocrystals (CNCs) and positively charged whey protein microgels (WPMs) at pH 4. Different levels of WPMs (0.10%-1.50%, w/v) were utilized to regulate the structure, stability, and in vitro digestion of curcumin loaded zein-CNC core-shell microparticles. The size of zein-CNC-WPM core-shell microparticles ranged from 2087.7 to 2928.2 nm. The electrostatic attraction and hydrogen bonding were mainly involved in the assembly of the core-shell microparticles through particle-particle interactions. The microstructure of the core-shell microparticles was dependent on the level of the WPM. When its appropriate level was adopted (0.50%-1.00%, w/v), the WPM formed a protective shell for zein-CNC-WPM core-shell microparticles. The retention rate of curcumin in the core-shell microparticles increased by 47.56% and 32.79% during light and thermal treatment, respectively. Excess microgels facilitated the bridging aggregation and formation of a network structure on the particle surface, which further reduced their stability and greatly restricted the curcumin release. The potential of nanosized protein microgels was explored to stabilize and modulate the physicochemical properties of multilayered core-shell microparticles through interparticle interactions.
Collapse
Affiliation(s)
- Yang Wei
- Key Laboratory of Healthy Beverages, China National Light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Liu Q, Chang X, Shan Y, Fu F, Ding S. Fabrication and characterization of Pickering emulsion gels stabilized by zein/pullulan complex colloidal particles. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3630-3643. [PMID: 33275778 DOI: 10.1002/jsfa.10992] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/25/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Zein particles are unsuitable as stabilizers of Pickering emulsions because of their high hydrophobicity. However, few studies have reported on the use of a strong hydrophilic neutral polysaccharide to regulate its wettability. In this work, zein/pullulan complex particles (ZPPs) were formulated by an anti-solvent method to fabricate Pickering emulsions. RESULTS The presence of pullulan increased the size, decreased the zeta, and provided excellent resistance to the gravitational separation of zein. Scanning electron microscopy (SEM) revealed that the shape of zein particles changed from spherical as they became aggregated ZPP nanoparticles. Fourier transform infrared (FTIR) spectroscopy indicated that the flocculation phenomenon of ZPPs was related to the hydrogen bond between zein and pullulan. Moreover, the hydrophobicity of zein was modified by hydrophilic pullulan to endow the ZPPs with nearly neutral wettability when the mass ratio was 15:1, allowing for the preparation of stable Pickering emulsions. In contrast to zein, the ZPPs contributed to building a compact interface layer around the droplets and smaller emulsion droplets. Under a certain ZPP concentration, the size and viscosity of emulsion increased with an increase in the oil volume fraction, indicating that the Pickering emulsions stabilized by ZPPs showed better stability against coalescence. Confocal laser scanning microscopy (CLSM) revealed that the ZPPs constructed a dense filling layer on the surface of oil droplets, thus further emphasizing that ZPPs can potentially be used in fabricating Pickering emulsion gels. CONCLUSION Zein/pullulan complex particles are an excellent Pickering emulsion gel stabilizer that can be used in the delivery system of bioactive substances in food formulations. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qian Liu
- Longping Branch Graduate School, Hunan University, Changsha, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China
- Hunan Province International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Changsha, China
| | - Xia Chang
- Longping Branch Graduate School, Hunan University, Changsha, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China
- Hunan Province International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Changsha, China
| | - Yang Shan
- Longping Branch Graduate School, Hunan University, Changsha, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China
- Hunan Province International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Changsha, China
| | - Fuhua Fu
- Longping Branch Graduate School, Hunan University, Changsha, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China
- Hunan Province International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Changsha, China
| | - Shenghua Ding
- Longping Branch Graduate School, Hunan University, Changsha, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China
- Hunan Province International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Changsha, China
| |
Collapse
|
40
|
Baek SJ, Hammock BD, Hwang IK, Li Q, Moustaid-Moussa N, Park Y, Safe S, Suh N, Yi SS, Zeldin DC, Zhong Q, Bradbury JA, Edin ML, Graves JP, Jung HY, Jung YH, Kim MB, Kim W, Lee J, Li H, Moon JS, Yoo ID, Yue Y, Lee JY, Han HJ. Natural Products in the Prevention of Metabolic Diseases: Lessons Learned from the 20th KAST Frontier Scientists Workshop. Nutrients 2021; 13:1881. [PMID: 34072678 PMCID: PMC8227583 DOI: 10.3390/nu13061881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/29/2022] Open
Abstract
The incidence of metabolic and chronic diseases including cancer, obesity, inflammation-related diseases sharply increased in the 21st century. Major underlying causes for these diseases are inflammation and oxidative stress. Accordingly, natural products and their bioactive components are obvious therapeutic agents for these diseases, given their antioxidant and anti-inflammatory properties. Research in this area has been significantly expanded to include chemical identification of these compounds using advanced analytical techniques, determining their mechanism of action, food fortification and supplement development, and enhancing their bioavailability and bioactivity using nanotechnology. These timely topics were discussed at the 20th Frontier Scientists Workshop sponsored by the Korean Academy of Science and Technology, held at the University of Hawaii at Manoa on 23 November 2019. Scientists from South Korea and the U.S. shared their recent research under the overarching theme of Bioactive Compounds, Nanoparticles, and Disease Prevention. This review summarizes presentations at the workshop to provide current knowledge of the role of natural products in the prevention and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Seung J. Baek
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Bruce D. Hammock
- Department of Entomology, University of California, Davis, CA 95616, USA;
| | - In-Koo Hwang
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Qingxiao Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA;
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences & Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA;
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (Y.P.); (Y.Y.)
| | - Stephen Safe
- Department of Biochemistry & Biophysics, Texas A & M University, College Station, TX 77843, USA;
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA;
| | - Sun-Shin Yi
- Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea; (S.-S.Y.); (J.-S.M.); (I.-D.Y.)
| | - Darryl C. Zeldin
- National Institutes of Environmental Health, National Institutes of Health, Research Triangle Park, NC 27709, USA; (D.C.Z.); (J.A.B.); (M.L.E.); (J.P.G.); (H.L.)
| | - Qixin Zhong
- Department of Food Sciences, University of Tennessee, Knoxville, TN 37996, USA;
| | - Jennifer Alyce Bradbury
- National Institutes of Environmental Health, National Institutes of Health, Research Triangle Park, NC 27709, USA; (D.C.Z.); (J.A.B.); (M.L.E.); (J.P.G.); (H.L.)
| | - Matthew L. Edin
- National Institutes of Environmental Health, National Institutes of Health, Research Triangle Park, NC 27709, USA; (D.C.Z.); (J.A.B.); (M.L.E.); (J.P.G.); (H.L.)
| | - Joan P. Graves
- National Institutes of Environmental Health, National Institutes of Health, Research Triangle Park, NC 27709, USA; (D.C.Z.); (J.A.B.); (M.L.E.); (J.P.G.); (H.L.)
| | - Hyo-Young Jung
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Young-Hyun Jung
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Mi-Bo Kim
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA;
| | - Woosuk Kim
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Jaehak Lee
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Hong Li
- National Institutes of Environmental Health, National Institutes of Health, Research Triangle Park, NC 27709, USA; (D.C.Z.); (J.A.B.); (M.L.E.); (J.P.G.); (H.L.)
| | - Jong-Seok Moon
- Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea; (S.-S.Y.); (J.-S.M.); (I.-D.Y.)
| | - Ik-Dong Yoo
- Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea; (S.-S.Y.); (J.-S.M.); (I.-D.Y.)
| | - Yiren Yue
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (Y.P.); (Y.Y.)
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA;
| | - Ho-Jae Han
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| |
Collapse
|
41
|
Zhou H, Dai T, Liu J, Tan Y, Bai L, Rojas OJ, McClements DJ. Chitin nanocrystals reduce lipid digestion and β-carotene bioaccessibility: An in-vitro INFOGEST gastrointestinal study. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106494] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
42
|
Biomolecule-based pickering food emulsions: Intrinsic components of food matrix, recent trends and prospects. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106303] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
43
|
Abdelsattar AS, Dawoud A, Helal MA. Interaction of nanoparticles with biological macromolecules: a review of molecular docking studies. Nanotoxicology 2020; 15:66-95. [PMID: 33283572 DOI: 10.1080/17435390.2020.1842537] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The high frequency of using engineered nanoparticles in various medical applications entails a deep understanding of their interaction with biological macromolecules. Molecular docking simulation is now widely used to study the binding of different types of nanoparticles with proteins and nucleic acids. This helps not only in understanding the mechanism of their biological action but also in predicting any potential toxicity. In this review, the computational techniques used in studying the nanoparticles interaction with biological macromolecules are covered. Then, a comprehensive overview of the docking studies performed on various types of nanoparticles will be offered. The implication of these predicted interactions in the biological activity and/or toxicity is also discussed for each type of nanoparticles.
Collapse
Affiliation(s)
- Abdallah S Abdelsattar
- Center for X-Ray and Determination of Structure of Matter, Zewail City of Science and Technology, Giza, Egypt
| | - Alyaa Dawoud
- Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Mohamed A Helal
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt.,Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
44
|
García-Rodríguez A, Moreno-Olivas F, Marcos R, Tako E, Marques CNH, Mahler GJ. The Role of Metal Oxide Nanoparticles, Escherichia coli, and Lactobacillus rhamnosus on Small Intestinal Enzyme Activity. ENVIRONMENTAL SCIENCE. NANO 2020; 7:3940-3964. [PMID: 33815806 PMCID: PMC8011031 DOI: 10.1039/d0en01001d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Engineered nanomaterials (ENMs) have become common in the food industry, which motivates the need to evaluate ENM effects on human health. Gastrointestinal (GI) in vitro models (e.g. Caco-2, Caco-2/HT29-MTX) have been used in nanotoxicology research. However, the human gut environment is composed of both human cells and the gut microbiota. The goal of this study is to increase the complexity of the Caco-2/HT29-MTX in vitro model by co-culturing human cells with the Gram-positive, commensal Lactobacillus rhamnosus or the Gram-negative, opportunistic Escherichia coli; with the hypothesis that the presence of bacteria would ameliorate the effects of exposure to metal oxide nanoparticles (NPs) such as iron oxide (Fe2O3), silicone dioxide (SiO2), titanium dioxide (TiO2), or zinc oxide (ZnO). To understand this relationship, Caco-2/HT29-MTX cell barriers were acutely co-exposed (4 hours) to bacteria and/or NPs (pristine or in vitro digested). The activity of the brush border membrane (BBM) enzymes intestinal alkaline phosphatase (IAP), aminopeptidase-N (APN), sucrase isomaltase (SI) and the basolateral membrane enzyme (BLM) Na+/K+ ATPase were assessed. Findings show that (i) the human digestion process alters the physicochemical properties of NPs, (ii) large agglomerates of NPs remain entrapped on the apical side of the intestinal barrier, which (iii) affects the activity of BBM enzymes. Interestingly, some NPs effects were attenuated in the presence of either bacterial strains. Confocal microscopy detected bacteria-NPs interactions, which may impede the NP-intestinal cell contact. These results highlight the importance of improving in vitro models to closely mimic the complexities of the human body.
Collapse
Affiliation(s)
- Alba García-Rodríguez
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, 13902, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, 13902, USA
- Department of Biological Sciences, Binghamton University, Binghamton, NY, 1302, USA
- Department of Genetics and Microbiology, Faculty of Bioscience, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain
| | - Fabiola Moreno-Olivas
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, 13902, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, 13902, USA
| | - Ricard Marcos
- Department of Genetics and Microbiology, Faculty of Bioscience, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain
| | - Elad Tako
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY, 14853-7201, USA
| | - Cláudia N. H. Marques
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, 13902, USA
- Department of Biological Sciences, Binghamton University, Binghamton, NY, 1302, USA
| | - Gretchen J. Mahler
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, 13902, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, 13902, USA
| |
Collapse
|
45
|
Shi X, Monaco MH, Donovan SM, Lee Y. Encapsulation of tributyrin by gamma-cyclodextrin: Complexation, spray drying, and in vitro fermentation. J Food Sci 2020; 85:2986-2993. [PMID: 32935856 DOI: 10.1111/1750-3841.15440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/30/2020] [Accepted: 08/10/2020] [Indexed: 11/29/2022]
Abstract
Butyrate is a short-chain fatty acid (SCFA) known for support in gastrointestinal (GI) health. Tributyrin (TB) could be used as an alternate source of butyrate. The objectives of this study were to encapsulate TB using gamma-cyclodextrin (CD) by spray-drying and to investigate the physicochemical and the fermentation properties of TB/CD complex. The TB/CD complex precipitated in water with an average stoichiometry of 1:1.3 of TB:CD. At a 1:2 molar ratio of TB:CD, TB was fully retained in the spray-dried TB/CD complex. The spray-dried TB/CD complex showed crystalline structure, supported by both X-ray diffraction spectra and scanning electron microscopy images. The TB/CD complex at 1:2 molar ratio was fermented and several SCFAs, including butyrate, were produced in an in vitro test using piglets' ileal and colonic contents. A dose-dependent increase in the butyrate concentration in both ileum and ascending colon was observed. Approximately, 426 and 1189 μmole butyrate was produced per gram of TB/CD powder at 9 mM treatment in ileum and ascending colon, respectively. Thus, the production of the TB/CD complex using spray drying is feasible and the complex has the potential for food applications to improve intestinal health. PRACTICAL APPLICATION: The findings in this study can be applied to produce encapsulated tributyrin with gamma-cyclodextrin efficiently using spray-drying. The TB/CD complex was highly fermentable and caused an increase in the butyrate concentration in both ileum and ascending colon, which can be incorporated in foods to enhance butyrate delivery to the GI tract to assist gut health.
Collapse
Affiliation(s)
- Xueqian Shi
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Marcia H Monaco
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Sharon M Donovan
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Youngsoo Lee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
46
|
Fan C, Joshi J, Li F, Xu B, Khan M, Yang J, Zhu W. Nanoparticle-Mediated Drug Delivery for Treatment of Ischemic Heart Disease. Front Bioeng Biotechnol 2020; 8:687. [PMID: 32671049 PMCID: PMC7326780 DOI: 10.3389/fbioe.2020.00687] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/02/2020] [Indexed: 12/26/2022] Open
Abstract
The regenerative capacity of an adult cardiac tissue is insufficient to repair the massive loss of heart tissue, particularly cardiomyocytes (CMs), following ischemia or other catastrophic myocardial injuries. The delivery methods of therapeutics agents, such as small molecules, growth factors, exosomes, cells, and engineered tissues have significantly advanced in medical science. Furthermore, with the controlled release characteristics, nanoparticle (NP) systems carrying drugs are promising in enhancing the cardioprotective potential of drugs in patients with cardiac ischemic events. NPs can provide sustained exposure precisely to the infarcted heart via direct intramyocardial injection or intravenous injection with active targets. In this review, we present the recent advances and challenges of different types of NPs loaded with agents for the repair of myocardial infarcted heart tissue.
Collapse
Affiliation(s)
- Chengming Fan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jyotsna Joshi
- Department of Cardiovascular Diseases, Mayo Clinic, Scottsdale, AZ, United States
| | - Fan Li
- Department of Cardiovascular Diseases, Mayo Clinic, Scottsdale, AZ, United States
| | - Bing Xu
- Department of Cardiovascular Diseases, Mayo Clinic, Scottsdale, AZ, United States
| | - Mahmood Khan
- Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Jinfu Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wuqiang Zhu
- Department of Cardiovascular Diseases, Mayo Clinic, Scottsdale, AZ, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
47
|
Naseer M, Aslam U, Khalid B, Chen B. Green route to synthesize Zinc Oxide Nanoparticles using leaf extracts of Cassia fistula and Melia azadarach and their antibacterial potential. Sci Rep 2020; 10:9055. [PMID: 32493935 PMCID: PMC7270115 DOI: 10.1038/s41598-020-65949-3] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/22/2020] [Indexed: 01/09/2023] Open
Abstract
Development of plant based nanoparticles has many advantages over conventional physico-chemical methods and has various applications in medicine and biology. In present study, zinc oxide (ZnO) nanoparticles (NPs) were synthesized using leaf extracts of two medicinal plants Cassia fistula and Melia azadarach. 0.01 M zinc acetate dihydrate was used as a precursor in leaf extracts of respective plants for NPs synthesis. The structural and optical properties of NPs were investigated by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscope (SEM), ultraviolet-visible spectrophotometer (UV-Vis) and dynamic light scattering (DLS). The antibacterial potential of ZnO NPs was examined by paper disc diffusion method against two clinical strains of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) based on the zone of inhibition and minimal inhibitory indices (MIC). Change in color of the reaction mixture from brown to white indicated the formation of ZnO NPs. UV peaks at 320 nm and 324 nm, and XRD pattern matching that of JCPDS card for ZnO confirmed the presence of pure ZnO NPs. FTIR further confirmed the presence of bioactive functional groups involved in the reduction of bulk zinc acetate to ZnO NPs. SEM analysis displayed the shape of NPs to be spherical whereas DLS showed their size range from 3 to 68 nm. The C. fistula and M. azadarach mediated ZnO NPs showed strong antimicrobial activity against clinical pathogens compared to standard drugs, suggesting that plant based synthesis of NPs can be an excellent strategy to develop versatile and eco-friendly biomedical products.
Collapse
Affiliation(s)
- Minha Naseer
- Department of Environmental Science, International Islamic University Islamabad, Islamabad, Pakistan
| | - Usman Aslam
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, Pakistan.
| | - Bushra Khalid
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A Datun Road, Chaoyang District, Beijing, 100101, P.R. China
- The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
| | - Bin Chen
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China.
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| |
Collapse
|
48
|
Snigdha S, Kalarikkal N, Thomas S, Radhakrishnan EK. Engineered Phyllosilicate Clay-Based Antimicrobial Surfaces. MATERIALS HORIZONS: FROM NATURE TO NANOMATERIALS 2020:95-108. [DOI: 10.1007/978-981-15-4630-3_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
49
|
Calderón-Garcidueñas L, Reynoso-Robles R, González-Maciel A. Combustion and friction-derived nanoparticles and industrial-sourced nanoparticles: The culprit of Alzheimer and Parkinson's diseases. ENVIRONMENTAL RESEARCH 2019; 176:108574. [PMID: 31299618 DOI: 10.1016/j.envres.2019.108574] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/11/2019] [Accepted: 07/02/2019] [Indexed: 05/20/2023]
Abstract
Redox-active, strongly magnetic, combustion and friction-derived nanoparticles (CFDNPs) are abundant in particulate matter air pollution. Urban children and young adults with Alzheimer disease Continuum have higher numbers of brain CFDNPs versus clean air controls. CFDNPs surface charge, dynamic magnetic susceptibility, iron content and redox activity contribute to ROS generation, neurovascular unit (NVU), mitochondria, and endoplasmic reticulum (ER) damage, and are catalysts for protein misfolding, aggregation and fibrillation. CFDNPs respond to external magnetic fields and are involved in cell damage by agglomeration/clustering, magnetic rotation and/or hyperthermia. This review focus in the interaction of CFDNPs, nanomedicine and industrial NPs with biological systems and the impact of portals of entry, particle sizes, surface charge, biomolecular corona, biodistribution, mitochondrial dysfunction, cellular toxicity, anterograde and retrograde axonal transport, brain dysfunction and pathology. NPs toxicity information come from researchers synthetizing particles and improving their performance for drug delivery, drug targeting, magnetic resonance imaging and heat mediators for cancer therapy. Critical information includes how these NPs overcome all barriers, the NPs protein corona changes as they cross the NVU and the complexity of NPs interaction with soluble proteins and key organelles. Oxidative, ER and mitochondrial stress, and a faulty complex protein quality control are at the core of Alzheimer and Parkinson's diseases and NPs mechanisms of action and toxicity are strong candidates for early development and progression of both fatal diseases. Nanoparticle exposure regardless of sources carries a high risk for the developing brain homeostasis and ought to be included in the AD and PD research framework.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- The University of Montana, Missoula, MT, 59812, USA; Universidad Del Valle de México, 04850, Mexico City, Mexico.
| | | | | |
Collapse
|
50
|
Chen X, Chen Y, Zou L, Zhang X, Dong Y, Tang J, McClements DJ, Liu W. Plant-Based Nanoparticles Prepared from Proteins and Phospholipids Consisting of a Core-Multilayer-Shell Structure: Fabrication, Stability, and Foamability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6574-6584. [PMID: 31117503 DOI: 10.1021/acs.jafc.9b02028] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gliadin-phospholipid hybrid nanoparticles with a core-multilayered-shell internal structure were fabricated using a coassembly approach based on antisolvent coprecipitation. The mean particle diameters of the nanoparticles depended on their composition, increasing from 78 to 145 nm as the mass ratio of gliadin to phospholipid (G/P) increased from 7:3 to 3:7. The hybrid nanoparticles had better pH, salt, and thermal stabilities than simple gliadin nanoparticles. Hybrid nanoparticles with the highest phospholipid fraction (G/P 3:7) had the best pH, salt, and thermal stabilities, remaining stable from pH 3 to 8, from 0 to 300 mmol/L NaCl, and when boiled at pH 4 or 5 for 90 min. Hybrid nanoparticles also had better foam-formation and stability characteristics than gliadin nanoparticles, particularly at the highest phospholipid level. The structured nanoparticles developed in this study may therefore be useful for application in commercial products, for example, as delivery systems, emulsifiers, or foaming agents.
Collapse
Affiliation(s)
- Xing Chen
- State Key Laboratory of Food Science and Technology , Nanchang University , No. 235 Nanjing East Road , Nanchang 330047 , Jiangxi , China
- John A. Paulson School of Engineering and Applied Sciences and Department of Physics , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Yan Chen
- State Key Laboratory of Food Science and Technology , Nanchang University , No. 235 Nanjing East Road , Nanchang 330047 , Jiangxi , China
| | - Liqiang Zou
- State Key Laboratory of Food Science and Technology , Nanchang University , No. 235 Nanjing East Road , Nanchang 330047 , Jiangxi , China
| | - Xingcai Zhang
- John A. Paulson School of Engineering and Applied Sciences and Department of Physics , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Yuqing Dong
- John A. Paulson School of Engineering and Applied Sciences and Department of Physics , Harvard University , Cambridge , Massachusetts 02138 , United States
- State Key Laboratory for Mechanical Behavior of Materials , Xi'an Jiaotong University , Xi'an 710049 , China
| | - Jizhou Tang
- John A. Paulson School of Engineering and Applied Sciences and Department of Physics , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - David Julian McClements
- Biopolymers & Colloids Research Laboratory, Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Wei Liu
- State Key Laboratory of Food Science and Technology , Nanchang University , No. 235 Nanjing East Road , Nanchang 330047 , Jiangxi , China
| |
Collapse
|