1
|
Ogawa T, Goeyvaerts N, Kakuda TN, Vandenbossche JJ, Pérez-Ruixo JJ, Ackaert O, Njumbe Ediage E, Biermer M, Lenz O, Su H, T'jollyn H. Population Pharmacokinetics of siRNA JNJ-73763989 in Healthy Participants and Patients With Chronic Hepatitis B. Clin Pharmacol Ther 2025. [PMID: 40375057 DOI: 10.1002/cpt.3690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 04/14/2025] [Indexed: 05/18/2025]
Abstract
JNJ-73763989 is a combination product consisting of two N-acetylgalactosamine-conjugated short-interfering RNA triggers (JNJ-73763976 and JNJ-73763924) that are in development as a potential treatment for chronic hepatitis B virus infection. A population pharmacokinetic model for JNJ-73763989 was developed based on pooled data from seven clinical studies to characterize the plasma pharmacokinetics of the short-interfering RNAs following subcutaneous administration. Additionally, simulations of liver (target organ) exposure using the final population pharmacokinetic model in conjunction with preclinical information were performed. Disposition of JNJ-73763976 and JNJ-73763924 was governed by a linear two-compartment model describing the peripheral distribution of both short-interfering RNAs and a saturable component describing liver uptake via the asialoglycoprotein receptor. While the estimated first-order absorption rate constant was similar for both short-interfering RNAs, the corresponding absorption half-life values were 20- to 40-fold longer than the estimated plasma elimination half-life for both short-interfering RNAs, indicating absorption rate-limited or "flip-flop" kinetics. Plasma-to-liver transport of each short-interfering RNA was modeled by a saturable, receptor-mediated competitive process, and the affinity for the asialoglycoprotein receptor was 2.5-fold higher for JNJ-73763924 relative to JNJ-73763976. Predicted liver concentrations of both short-interfering RNA triggers approached steady state after 12 months of JNJ-73763989 treatment. The 2:1 dosing ratio of JNJ-73763976 to JNJ-73763924 was predicted to maintain an ~2:1 liver concentration ratio, irrespective of the identified plasma disposition differences between the triggers. Body weight, creatinine clearance, presence of chronic hepatitis B, and hepatic impairment were associated with plasma pharmacokinetic parameters and were included in the final population pharmacokinetic model.
Collapse
Affiliation(s)
- Tetsuro Ogawa
- Clinical Pharmacology and Pharmacometrics, Janssen Research & Development, LLC, Beerse, Belgium
| | - Nele Goeyvaerts
- Clinical Pharmacology and Pharmacometrics, Janssen Research & Development, LLC, Beerse, Belgium
| | - Thomas N Kakuda
- Clinical Pharmacology and Pharmacometrics, Janssen Research & Development, LLC, Beerse, Belgium
| | - Joris J Vandenbossche
- Clinical Pharmacology and Pharmacometrics, Janssen Research & Development, LLC, Beerse, Belgium
| | - Juan José Pérez-Ruixo
- Clinical Pharmacology and Pharmacometrics, Janssen Research & Development, LLC, Beerse, Belgium
| | - Oliver Ackaert
- Clinical Pharmacology and Pharmacometrics, Janssen Research & Development, LLC, Beerse, Belgium
| | | | | | - Oliver Lenz
- Janssen Research & Development, LLC, Beerse, Belgium
| | - Hong Su
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Huybrecht T'jollyn
- Clinical Pharmacology and Pharmacometrics, Janssen Research & Development, LLC, Beerse, Belgium
| |
Collapse
|
2
|
Iyaniwura SA, Cassidy T, Ribeiro RM, Perelson AS. A multiscale model of the action of a capsid assembly modulator for the treatment of chronic hepatitis B. PLoS Comput Biol 2025; 21:e1012322. [PMID: 40327725 DOI: 10.1371/journal.pcbi.1012322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
Chronic hepatitis B virus (HBV) infection is strongly associated with increased risk of liver cancer and cirrhosis. While existing treatments effectively inhibit the HBV life cycle, viral rebound frequently occurs following treatment interruption. Consequently, functional cure rates of chronic HBV infection remain low and there is increased interest in a novel treatment modality, capsid assembly modulators (CAMs). Here, we develop a multiscale mathematical model of CAM treatment in chronic HBV infection. By fitting the model to participant data from a phase I trial of the first-generation CAM vebicorvir, we estimate the drug's dose-dependent effectiveness and identify the physiological mechanisms that drive the observed biphasic decline in HBV DNA and RNA, and mechanistic differences between HBeAg-positive and negative infection. Finally, we demonstrate analytically and numerically that the relative change of HBV RNA more accurately reflects the antiviral effectiveness of a CAM than the relative change in HBV DNA.
Collapse
Affiliation(s)
- Sarafa A Iyaniwura
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Tyler Cassidy
- School of Mathematics, University of Leeds, Leeds, United Kingdom
| | - Ruy M Ribeiro
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Alan S Perelson
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| |
Collapse
|
3
|
Lok J, Harris JM, Carey I, Agarwal K, McKeating JA. Assessing the virological response to direct-acting antiviral therapies in the HBV cure programme. Virology 2025; 605:110458. [PMID: 40022943 DOI: 10.1016/j.virol.2025.110458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/16/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
Hepatitis B virus (HBV) is a global health problem with over 250 million people affected worldwide. Nucleos(t)ide analogues remain the standard of care and suppress production of progeny virions; however, they have limited effect on the viral transcriptome and long-term treatment is associated with off-target toxicities. Promising results are emerging from clinical trials and several drug classes have been evaluated, including capsid assembly modulators and RNA interfering agents. Whilst peripheral biomarkers are used to monitor responses and define treatment endpoints, they fail to reflect the full reservoir of infected hepatocytes. Given these limitations, consideration should be given to the merits of sampling liver tissue, especially in the context of clinical trials. In this review article, we will discuss methods for profiling HBV in liver tissue and their value to the HBV cure programme.
Collapse
Affiliation(s)
- James Lok
- Institute of Liver Studies, King's College Hospital, London, SE5 9RS, United Kingdom.
| | - James M Harris
- Nuffield Department of Medicine, University of Oxford, OX3 7FZ, United Kingdom
| | - Ivana Carey
- Institute of Liver Studies, King's College Hospital, London, SE5 9RS, United Kingdom
| | - Kosh Agarwal
- Institute of Liver Studies, King's College Hospital, London, SE5 9RS, United Kingdom
| | - Jane A McKeating
- Nuffield Department of Medicine, University of Oxford, OX3 7FZ, United Kingdom; Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Zhang M, Gao Y, Kong F, Gao H, Yi Y, Wu C, Xin Y, Zheng S, Lu J, Han T, Zhao Y, Hu P, Mao X, Xie Q, Zhang J, Hou J, Gao Z, Lian J, Chen L, Shang J, Xie W, Mu M, Jin Z, Wang M, Lin S, Rao H, Yang D, Gong H, Luo L, Chen Y, Zhuang Y, Zhang Y, Gish RG, Tan Y, Zhang J, Niu J. Efficacy and safety of GLS4 with entecavir vs entecavir alone in chronic hepatitis B patients: A multicenter clinical trial. J Infect 2025; 90:106446. [PMID: 39988055 DOI: 10.1016/j.jinf.2025.106446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/22/2025] [Accepted: 02/12/2025] [Indexed: 02/25/2025]
Abstract
OBJECTIVES GLS4 is a first-in-class hepatitis B virus (HBV) capsid assembly modulator that inhibits HBV replication by interfering with assembly and disassembly of the virus nucleocapsid, this prospective, open-label, comparative, phase 2b trial evaluated the antiviral activity and safety of GLS4/ritonavir (RTV) combined with entecavir in hepatitis B e antigen-positive patients. METHODS 250 CHB patients were enrolled, including treatment-naïve patients and those interrupted anti-HBV drugs for ≥ 6 months (Part A, n=125), and patients who had taken ETV for ≥1 year and had achieved viral suppression (Part B, n=125). Patients were randomly allocated to receive 120 mg GLS4/100 mg RTV plus 0.5 mg ETV or 0.5 mg ETV monotherapy for 96 weeks. RESULTS In the mid-term, in Part A (n=122), greater least-squares mean (LSM) changes from baseline were observed in the GLS4/RTV plus ETV cohort than in ETV monotherapy cohort in HBV DNA (-6.28 vs -5.72 log10 IU/ml, p=0.0005), HBsAg (-0.87 vs -0.65 log10 IU/ml, p=0.0653), HBV pgRNA (-3.83 vs -1.91 log10 copies/ml, p<0.0001); The proportions of both HBV DNA and pgRNA negative patients were 17.3% (13/75, GLS4/RTV plus ETV) and 0% (0/30, ETV monotherapy). In Part B (n=123), greater mean LSM reductions in HBsAg (-0.17 vs -0.06 log10 IU/ml, p=0.0013), HBV pgRNA (-1.61 vs -0.28 log10 copies/ml, p<0.0001) were also observed in the GLS4/RTV+ETV cohort. the proportions of both HBV DNA and pgRNA-negative patients were 71.6% (48/67, GLS4/RTV plus ETV) and 18.9% (7/37, ETV monotherapy), respectively. No patients achieved HBsAg loss at week 48. GLS4/RTV + ETV were well tolerated, the most common adverse events were elevated alanine aminotransferase levels and hypertriglyceridemia, which were reversed by temporary GLS4/RTV discontinuation. CONCLUSIONS The primary analysis at week 48 showed that the antiviral efficacy of GLS4/RTV with ETV was clearly superior to that of ETV monotherapy. GLS4/RTV with ETV was well tolerated; further studies evaluating its safety and efficacy are ongoing. (clinical trial identifier: NCT04147208).
Collapse
Affiliation(s)
- Mingyuan Zhang
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Metabolic Liver Diseases, Jilin University, Changchun 130021, China; China-Singapore Belt and Road Joint Laboratory on Liver Disease Research, Changchun 130021, China.
| | - Yanhang Gao
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Metabolic Liver Diseases, Jilin University, Changchun 130021, China; China-Singapore Belt and Road Joint Laboratory on Liver Disease Research, Changchun 130021, China.
| | - Fei Kong
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Metabolic Liver Diseases, Jilin University, Changchun 130021, China; China-Singapore Belt and Road Joint Laboratory on Liver Disease Research, Changchun 130021, China.
| | - Haibing Gao
- Infectious Disease Hospital, Mengchao Hepatobiliary Hospital, Fujian Medical University, Department of Infectious Diseases and Liver Diseases, 350028 Fuzhou, China.
| | - Yongxiang Yi
- The Second Hospital of Nanjing, Hepatology Department, 210003 Nanjing, China.
| | - Chao Wu
- Nanjing Drum Tower Hospital, 210003 Nanjing, China.
| | - Yongning Xin
- Qingdao Municipal Hospital, Department of Gastroenterology, 266000 Qingdao, China.
| | - Sujun Zheng
- Beijing YouAn Hospital, Capital Medical University, 100071 Beijing, China.
| | - Jiajie Lu
- West China hospital Sichuan University, 610041 Sichuan, China.
| | - Tao Han
- Tianjin Third Central Hospital, 300170 Tianjin, China.
| | - Yingren Zhao
- The First Affiliated Hospital of Xi'an Jiao Tong University, 710061 Xian, China.
| | - Peng Hu
- The Second Affiliated Hospital of Chongqing Medical University, 400010 Chongqing, China.
| | - Xiaorong Mao
- The First Hospital of Lanzhou University, 730030 Lanzhou, China.
| | - Qing Xie
- Ruijin Hospital Affiliated to The Shanghai Jiao Tong University Medical School, 200062 Shanghai, China.
| | - Jie Zhang
- Shanghai Putuo District Central Hospital, 200062 Shanghai, China.
| | - Jinlin Hou
- Nanfang Hospital, Southern Medical University, Department of Infectious Diseases, 510515 Guangzhou, China.
| | - Zhiliang Gao
- The Third Affiliated Hospital of Zhongshan University, 510405 Guangzhou, China.
| | - Jianqi Lian
- The Second Affiliated Hospital of Air Force Military Medical University, 710038 Xian, China.
| | - Liang Chen
- Shanghai Public Health Clinical Center, 201508 Shanghai, China.
| | - Jia Shang
- Henan Provincial People's Hospital, 450003 Henan, China.
| | - Wen Xie
- Beijing Ditan Hospital, 100015 Beijing, China.
| | - Mao Mu
- The Affiliated Hospital of Guizhou Medical University, 550004 Guizhou,China.
| | - Zhenjing Jin
- The Second Hospital of Jilin University, Hepatology Department, 130041 Changchun, China.
| | | | - Shide Lin
- Affiliated Hospital of Zunyi Medical University, 563099 Zunyi, China.
| | - Huiying Rao
- Peking University People's Hospital, 100044 Beijing, China.
| | - Dongliang Yang
- Union Hospital College Huazhong University of Science and Technology, 430023 Wuhan, China.
| | - Huanyu Gong
- The Third Xiangya Hospital of Central South University, 410000 Hunan, China.
| | - Lin Luo
- The State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357), Sunshine Lake Pharma Co, Ltd, 523871 Dongguan, Guangdong, China.
| | - Yunfu Chen
- The State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357), Sunshine Lake Pharma Co, Ltd, 523871 Dongguan, Guangdong, China.
| | - Yulei Zhuang
- The State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357), Sunshine Lake Pharma Co, Ltd, 523871 Dongguan, Guangdong, China.
| | - Yingjun Zhang
- The State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357), Sunshine Lake Pharma Co, Ltd, 523871 Dongguan, Guangdong, China.
| | - Robert G Gish
- Robert G. Gish Consultants, LLC, San Diego, CA, USA; Hepatitis B Foundation, Doylestown, PA, USA.
| | - Youwen Tan
- Zhenjiang Third People's Hospital, Hepatology Department, 212003 Zhenjiang, China.
| | - Jiming Zhang
- Huashan Hospital, Fudan University, Department of Infectious Diseases, 200040 Shanghai, China.
| | - Junqi Niu
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Metabolic Liver Diseases, Jilin University, Changchun 130021, China; China-Singapore Belt and Road Joint Laboratory on Liver Disease Research, Changchun 130021, China.
| |
Collapse
|
5
|
Yeo YH, Abdelmalek M, Khan S, Moylan CA, Rodriquez L, Villanueva A, Yang JD. Current and emerging strategies for the prevention of hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2025; 22:173-190. [PMID: 39653784 DOI: 10.1038/s41575-024-01021-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/07/2024] [Indexed: 01/05/2025]
Abstract
Liver cancer is the third leading cause of cancer-related deaths globally, with incident cases expected to rise from 905,700 in 2020 to 1.4 million by 2040. Hepatocellular carcinoma (HCC) accounts for about 80% of all primary liver cancers. Viral hepatitis and chronic excessive alcohol consumption are major risk factors for HCC, but metabolic dysfunction-associated steatotic liver disease is also becoming a dominant cause. The increasing numbers of cases of HCC and changes in risk factors highlight the urgent need for updated and targeted prevention strategies. Preventive interventions encompass strategies to decrease the burden of chronic liver diseases and their progression to HCC. These strategies include nutritional interventions and medications that have shown promise in preclinical models. Although prevailing approaches focus on treating chronic liver disease, leveraging a wider range of interventions represents a promising area to safeguard at-risk populations. In this Review, we explore existing evidence for preventive strategies by highlighting established and potential paths to reducing HCC risk effectively and safely, especially in individuals with chronic liver diseases. We categorize the preventive strategies by the mechanism of action, including anti-inflammatory, antihyperglycaemic, lipid-lowering, nutrition and dietary, antiviral, and antifibrotic pathways. For each category, we discuss the efficacy and safety information derived from mechanistic, translational, observational and clinical trial data, pinpointing knowledge gaps and directions for future research.
Collapse
Affiliation(s)
- Yee Hui Yeo
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Manal Abdelmalek
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Seema Khan
- Robert H. Lurie Comprehensive Cancer Center, Northwestern Memorial Hospital, Chicago, IL, USA
| | - Cynthia A Moylan
- Division of Gastroenterology, Duke University Health System, Durham, NC, USA
| | - Luz Rodriquez
- Gastrointestinal & Other Cancers Research Group, NCI, Rockville, MD, USA
| | - Augusto Villanueva
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ju Dong Yang
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Wu D, Kao JH, Piratvisuth T, Wang X, Kennedy PT, Otsuka M, Ahn SH, Tanaka Y, Wang G, Yuan Z, Li W, Lim YS, Niu J, Lu F, Zhang W, Gao Z, Kaewdech A, Han M, Yan W, Ren H, Hu P, Shu S, Kwo PY, Wang FS, Yuen MF, Ning Q. Update on the treatment navigation for functional cure of chronic hepatitis B: Expert consensus 2.0. Clin Mol Hepatol 2025; 31:S134-S164. [PMID: 39838828 PMCID: PMC11925436 DOI: 10.3350/cmh.2024.0780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 01/23/2025] Open
Abstract
As new evidence emerges, treatment strategies toward the functional cure of chronic hepatitis B are evolving. In 2019, a panel of national hepatologists published a Consensus Statement on the functional cure of chronic hepatitis B. Currently, an international group of hepatologists has been assembled to evaluate research since the publication of the original consensus, and to collaboratively develop the updated statements. The 2.0 Consensus was aimed to update the original consensus with the latest available studies, and provide a comprehensive overview of the current relevant scientific literatures regarding functional cure of hepatitis B, with a particular focus on issues that are not yet fully clarified. These cover the definition of functional cure of hepatitis B, its mechanisms and barriers, the effective strategies and treatment roadmap to achieve this endpoint, in particular new surrogate biomarkers used to measure efficacy or to predict response, and the appropriate approach to pursuing a functional cure in special populations, the development of emerging antivirals and immunomodulators with potential for curing hepatitis B. The statements are primarily intended to offer international guidance for clinicians in their practice to enhance the functional cure rate of chronic hepatitis B.
Collapse
Affiliation(s)
- Di Wu
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Horng Kao
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Teerha Piratvisuth
- NKC Institute of Gastroenterology and Hepatology, Songklanagarind Hospital, Prince of Songkla University, Hat Yai, Thailand
| | - Xiaojing Wang
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Patrick T.F. Kennedy
- Barts Liver Centre, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Motoyuki Otsuka
- Department of Gastroenterology and Hepatology, Academic Fields of Medicine, Dentistry, and Pharmaceutical Science, Okayama University, Okayama, Japan
| | - Sang Hoon Ahn
- Department of Internal Medicine, Yonsei University College of Medicine, Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Guiqiang Wang
- Department of Infectious Disease, Center for Liver Disease, Peking University First Hospital, Beijing, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Wenhui Li
- National Institute of Biological Sciences, Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Young-Suk Lim
- Department of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Junqi Niu
- Department of Hepatology, First Hospital of Jilin University, Jilin University, Jilin, China
| | - Fengmin Lu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhiliang Gao
- Department of Infectious Diseases, Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Apichat Kaewdech
- Gastroenterology and Hepatology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Meifang Han
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Weiming Yan
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Ren
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Peng Hu
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Sainan Shu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Paul Yien Kwo
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Fu-sheng Wang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Man-Fung Yuen
- Department of Medicine, School of Clinical Medicine & State Key Laboratory of Liver Research, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Qin Ning
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Kanda T, Sasaki-Tanaka R, Tsuchiya A, Terai S. Hepatitis B virus infection and its treatment in Eastern Ethiopia. World J Hepatol 2025; 17:99209. [PMID: 39871910 PMCID: PMC11736472 DOI: 10.4254/wjh.v17.i1.99209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/21/2024] [Accepted: 12/17/2024] [Indexed: 01/06/2025] Open
Abstract
Hepatitis B virus (HBV) infection causes acute and chronic hepatitis, compensated and decompensated cirrhosis, and hepatocellular carcinoma worldwide. The actual status of HBV infection and its treatment in certain regions of Asian and African countries, including Ethiopia, has not been well-documented thus far. Antiviral therapy for HBV infection can prevent the progression of HBV-related liver diseases and decrease the HBV-related symptoms, such as abdominal symptoms, fatigue, systemic symptoms and others. In Eastern Ethiopia, HBV-infected patients with cirrhosis were found to be positive for the HBV e antigen and to have a higher viral load than those without cirrhosis. Notably, 54.4% of patients practiced khat chewing and 18.1% consumed excessive amounts of alcohol. Tenofovir disoproxil fumarate effectively suppressed HBV DNA in those infected with HBV. It is important to elucidate the actual status of HBV infection in Eastern Ethiopia to eliminate HBV infection worldwide by 2030. HBV vaccination and the educational programs for Health Science students that provide practical strategies could help to reduce HBV infection in Eastern Ethiopia.
Collapse
Affiliation(s)
- Tatsuo Kanda
- Division of Gastroenterology and Hepatology, Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, Minamiuonuma 949-7302, Niigata, Japan
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8520, Japan.
| | - Reina Sasaki-Tanaka
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8520, Japan
| | - Atsunori Tsuchiya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8520, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8520, Japan
| |
Collapse
|
8
|
Baei B, Askari P, Askari FS, Kiani SJ, Mohebbi A. Pharmacophore modeling and QSAR analysis of anti-HBV flavonols. PLoS One 2025; 20:e0316765. [PMID: 39804828 PMCID: PMC11730388 DOI: 10.1371/journal.pone.0316765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 12/15/2024] [Indexed: 01/16/2025] Open
Abstract
Due to its global burden, Targeting Hepatitis B virus (HBV) infection in humans is crucial. Herbal medicine has long been significant, with flavonoids demonstrating promising results. Hence, the present study aimed to establish a way of identifying flavonoids with anti-HBV activities. Flavonoid structures with anti-HBV activities were retrieved. A flavonol-based pharmacophore model was established using LigandScout v4.4. Screening was performed using the PharmIt server. A QSAR equation was developed and validated with independent sets of compounds. The applicability domain (AD) was defined using Euclidean distance calculations for model validation. The best model, consisting of 57 features, was generated. High-throughput screening (HTS) using the flavonol-based model resulted in 509 unique hits. The model's accuracy was further validated using a set of FDA-approved chemicals, demonstrating a sensitivity of 71% and a specificity of 100%. Additionally, the QSAR model with two predictors, x4a and qed, exhibited predictive solid performance with an adjusted-R2 value of 0.85 and 0.90 of Q2. PCA showed essential patterns and relationships within the dataset, with the first two components explaining nearly 98% of the total variance. Current HBV therapies tend to fail to provide a complete cure, emphasizing the need for new therapies. This study's importance was to highlight flavonols as potential anti-HBV medicines, presenting a supplementary option for existing therapy. The QSAR model has been validated with two separate chemical sets, guaranteeing its reproducibility and usefulness for other flavonols by utilizing the predictive characteristics of X4A and qed. These results provide new possibilities for discovering future anti-HBV drugs by integrating modeling and experimental research.
Collapse
Affiliation(s)
- Basireh Baei
- Infectious Disease Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Parnia Askari
- Department of Life and Science, York University, Toronto, Ontario, Canada
| | | | - Seyed Jalal Kiani
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Mohebbi
- Vista Aria Rena Gene Inc., Gorgan, Golestan, Iran
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Peng B, Pan L, Li W. New Insights on Hepatitis B Virus Viral Transcription in Single Hepatocytes. Viruses 2024; 16:1828. [PMID: 39772138 PMCID: PMC11680359 DOI: 10.3390/v16121828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
The hepatitis B virus (HBV) infects approximately 290 million people globally, with chronic infection sustained by persistent viral gene expression. Recent single-cell analyses of HBV viral transcripts have uncovered novel features of HBV transcription and provided fresh insights into its regulation at the single-cell level. In this review, we summarize the latest advancements in understanding HBV viral transcription in individual hepatocytes and highlight emerging technologies that hold promise for future research.
Collapse
Affiliation(s)
- Bo Peng
- National Institute of Biological Sciences, Beijing 102206, China;
| | - Lixia Pan
- National Institute of Biological Sciences, Beijing 102206, China;
| | - Wenhui Li
- National Institute of Biological Sciences, Beijing 102206, China;
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Hasanpourghadi M, Novikov M, Ambrose R, Chekaoui A, Newman D, Xiang Z, Luber AD, Currie SL, Zhou X, Ertl HC. A therapeutic HBV vaccine containing a checkpoint modifier enhances CD8+ T cell and antiviral responses. JCI Insight 2024; 9:e181067. [PMID: 39226106 PMCID: PMC11601613 DOI: 10.1172/jci.insight.181067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024] Open
Abstract
In patients who progress from acute hepatitis B virus (HBV) infection to a chronic HBV (CHB) infection, CD8+ T cells fail to eliminate the virus and become impaired. A functional cure of CHB likely requires CD8+ T cell responses different from those induced by the infection. Here we report preclinical immunogenicity and efficacy of an HBV therapeutic vaccine that includes herpes simplex virus (HSV) glycoprotein D (gD), a checkpoint modifier of early T cell activation, that augments CD8+ T cell responses. The vaccine is based on a chimpanzee adenovirus serotype 6 (AdC6) vector, called AdC6-gDHBV2, which targets conserved and highly immunogenic regions of the viral polymerase and core antigens fused to HSV gD. The vaccine was tested with and without gD in mice for immunogenicity, and in an AAV8-1.3HBV vector model of antiviral efficacy. The vaccine encoding the HBV antigens within gD stimulates potent and broad CD8+ T cell responses. In a surrogate model of HBV infection, a single intramuscular injection achieved pronounced and sustained declines of circulating HBV DNA copies and HBV surface antigen; both inversely correlated with HBV-specific CD8+ T cell frequencies in spleen and liver.
Collapse
Affiliation(s)
| | | | | | | | - Dakota Newman
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - ZhiQuan Xiang
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
11
|
Xie C, Lu D. Evolution and diversity of the hepatitis B virus genome: Clinical implications. Virology 2024; 598:110197. [PMID: 39098184 DOI: 10.1016/j.virol.2024.110197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/14/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Hepatitis B virus (HBV) infection remains a significant global health burden. The genetic variation of HBV is complex. HBV can be divided into nine genotypes, which show significant differences in geographical distribution, clinical manifestations, transmission routes and treatment response. In recent years, substantial progress has been made through various research methods in understanding the development, pathogenesis, and antiviral treatment response of clinical disease associated with HBV genetic variants. This progress provides important theoretical support for a deeper understanding of the natural history of HBV infection, virus detection, drug treatment, vaccine development, mother-to-child transmission, and surveillance management. This review summarizes the mechanisms of HBV diversity, discusses methods used to detect viral diversity in current studies, and the impact of viral genome variation during infection on the development of clinical disease.
Collapse
Affiliation(s)
- Chengzuo Xie
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Daiqiang Lu
- Institute of Molecular and Medical Virology, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, School of Medicine, Jinan University, Guangzhou, Guangdong Province, 510632, China.
| |
Collapse
|
12
|
Agarwal K, Buti M, van Bömmel F, Lampertico P, Janczewska E, Bourliere M, Vanwolleghem T, Lenz O, Verbinnen T, Kakuda TN, Mayer C, Jezorwski J, Muenz D, Beumont M, Kalmeijer R, Biermer M, Lonjon-Domanec I. JNJ-73763989 and bersacapavir treatment in nucleos(t)ide analogue-suppressed patients with chronic hepatitis B: REEF-2. J Hepatol 2024; 81:404-414. [PMID: 38583491 DOI: 10.1016/j.jhep.2024.03.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/06/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND & AIMS Functional cure for chronic hepatitis B (CHB) requires finite treatment. Two agents under investigation with the goal of achieving functional cure are the small-interfering RNA JNJ-73763989 (JNJ-3989) and the capsid assembly modulator JNJ-56136379 (JNJ-6379; bersacapavir). METHODS REEF-2, a phase IIb, double-blind, placebo-controlled, randomized study, enrolled 130 nucleos(t)ide analogue (NA)-suppressed hepatitis B e-antigen (HBeAg)-negative patients with CHB who received JNJ-3989 (200 mg subcutaneously every 4 weeks) + JNJ-6379 (250 mg oral daily) + NA (oral daily; active arm) or placebos for JNJ-3989 and JNJ-6379 +active NA (control arm) for 48 weeks followed by 48 weeks off-treatment follow-up. RESULTS At follow-up Week 24, no patients achieved the primary endpoint of functional cure (off-treatment hepatitis B surface antigen [HBsAg] seroclearance). No patients achieved functional cure at follow-up Week 48. There was a pronounced on-treatment reduction in mean HBsAg from baseline at Week 48 in the active arm vs. no decline in the control arm (1.89 vs. 0.06 log10 IU/ml; p = 0.001). At follow-up Week 48, reductions from baseline were >1 log10 IU/ml in 81.5% vs. 12.5% of patients in the active and control arms, respectively, and 38/81 (46.9%) patients in the active arm achieved HBsAg <100 IU/ml vs. 6/40 (15.0%) patients in the control arm. Off-treatment HBV DNA relapse and alanine aminotransferase increases were less frequent in the active arm, with 7/77 (9.1%) and 11/41 (26.8%) patients in the active and control arms, respectively, restarting NAs during follow-up. CONCLUSIONS Finite 48-week treatment with JNJ-3989 + JNJ-6379 + NA resulted in fewer and less severe post-treatment HBV DNA increases and alanine aminotransferase flares, and a higher proportion of patients with off-treatment HBV DNA suppression, with or without HBsAg suppression, but did not result in functional cure. IMPACT AND IMPLICATIONS Achieving a functional cure from chronic hepatitis B (CHB) with finite treatments is a major unmet medical need. The current study assessed the rate of functional cure and clinical outcome after controlled nucleos(t)ide analogue (NA) withdrawal in patients with low levels of HBsAg induced by 48 weeks of treatment with the small-interfering RNA JNJ-3989 and the capsid assembly modulator JNJ-6379 plus NA vs. patients who only received NA treatment. Though functional cure was not achieved by any patient in either arm, the 48-week treatment regimen of JNJ-3989, JNJ-6379, and NA did result in more patients achieving pronounced reductions in HBsAg, with clinically meaningful reductions maintained for up to 48 weeks off all treatments, as well as fewer off-treatment HBV DNA increases and alanine aminotransferase flares. These findings provide valuable insights for future studies investigating potential finite treatment options, while the reported efficacy and safety outcomes may be of interest to healthcare providers making treatment decisions for patients with NA-suppressed HBeAg-negative CHB. CLINICALTRIALS GOV IDENTIFIER NCT04129554.
Collapse
Affiliation(s)
- Kosh Agarwal
- Institute of Liver Studies, King's College Hospital, London, England.
| | - Maria Buti
- Hospital General Universitari Valle Hebron and CIBER-EHD del Instituto Carlos III, Barcelona, Spain
| | - Florian van Bömmel
- Leipzig University Medical Center, Department of Medicine II, Division of Hepatology, Leipzig, Germany
| | - Pietro Lampertico
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Division of Gastroenterology and Hepatology, Milan, Italy; CRC "A.M. and A. Migliavacca" Center for Liver Disease, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Ewa Janczewska
- Faculty of Health Sciences, Medical University of Silesia, Katowice, Poland
| | | | - Thomas Vanwolleghem
- Antwerp University Hospital, Edegem, Belgium; Viral Hepatitis Research Group, Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | - John Jezorwski
- Janssen Research & Development, LLC, Titusville, NJ, USA
| | | | | | | | | | | |
Collapse
|
13
|
Dunkoksung W, Udomnilobol U, Ruengsatra T, Chauypen N, Prueksaritanont T. Preclinical characterization of a novel potent core protein assembly modulator for the treatment of chronic hepatitis B viral infection. Eur J Pharm Sci 2024; 200:106834. [PMID: 38906232 DOI: 10.1016/j.ejps.2024.106834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/11/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
The hepatitis B virus (HBV) capsid or core protein is a promising drug target currently being investigated for potential curative therapies for chronic HBV infection. In this study, we performed extensive in vitro and in vivo characterization of a novel and potent HBV core protein assembly modulator (CpAM), CU15, for both anti-HBV activity and druggability properties. CU15 potently inhibited HBV DNA replication in in vitro HBV-infected HepG2.2.15 cells (EC50 of 8.6 nM), with a low serum shift. It was also effective in inhibiting HBV DNA and cccDNA formation in de novo HBV-infected primary human hepatocytes. Furthermore, CU15 was active across several HBV genotypes and across clinically relevant core protein variants. After oral administration to an in vivo HBV mouse model, CU15 significantly reduced plasma HBV DNA and RNA levels, at plasma exposure consistent with the estimated in vitro potency. In vitro, CU15 exhibited excellent passive permeability and relatively high metabolic stability in liver preparations across species (human > dog> rat). In vitro human liver microsomal studies suggest that the compound's major metabolic pathway is CYP3A-mediated oxidation. Consistent with the in vitro findings, CU15 is a compound with a low-to-moderate clearance and high oral bioavailability in rats and dogs. Based on the apparent in vitro-in vivo correlation observed, CU15 has the potential to exhibit low clearance and high oral bioavailability in humans. In addition, CU15 also showed low drug-drug interaction liability with an acceptable in vitro safety profile (IC50 > 10 µM).
Collapse
Affiliation(s)
- Wilasinee Dunkoksung
- Chulalongkorn University Drug Discovery and Drug Development Research Center (Chula4DR), Chulalongkorn University, Bangkok, Thailand
| | - Udomsak Udomnilobol
- Chulalongkorn University Drug Discovery and Drug Development Research Center (Chula4DR), Chulalongkorn University, Bangkok, Thailand
| | - Tanachote Ruengsatra
- Chulalongkorn University Drug Discovery and Drug Development Research Center (Chula4DR), Chulalongkorn University, Bangkok, Thailand
| | - Natthaya Chauypen
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thomayant Prueksaritanont
- Chulalongkorn University Drug Discovery and Drug Development Research Center (Chula4DR), Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
14
|
Iyaniwura SA, Cassidy T, Ribeiro RM, Perelson AS. A multiscale model of the action of a capsid assembly modulator for the treatment of chronic hepatitis B. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603658. [PMID: 39071423 PMCID: PMC11275877 DOI: 10.1101/2024.07.16.603658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Chronic hepatitis B virus (HBV) infection is strongly associated with increased risk of liver cancer and cirrhosis. While existing treatments effectively inhibit the HBV life cycle, viral rebound occurs rapidly following treatment interruption. Consequently, functional cure rates of chronic HBV infection remain low and there is increased interest in a novel treatment modality, capsid assembly modulators (CAMs). Here, we develop a multiscale mathematical model of CAM treatment in chronic HBV infection. By fitting the model to participant data from a phase I trial of the first-generation CAM vebicorvir, we estimate the drug's dose-dependent effectiveness and identify the physiological mechanisms that drive the observed biphasic decline in HBV DNA and RNA, and mechanistic differences between HBeAg-positive and negative infection. Finally, we demonstrate analytically and numerically that HBV RNA is more sensitive than HBV DNA to increases in CAM effectiveness.
Collapse
Affiliation(s)
- Sarafa A. Iyaniwura
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Tyler Cassidy
- School of Mathematics, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Ruy M. Ribeiro
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Alan S. Perelson
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| |
Collapse
|
15
|
Jiang S, Guo S, Huang Y, Yin Y, Feng J, Zhou H, Guo Q, Wang W, Xin H, Xie Q. Predictors of HBsAg seroclearance in patients with chronic HBV infection treated with pegylated interferon-α: a systematic review and meta-analysis. Hepatol Int 2024; 18:892-903. [PMID: 38461186 PMCID: PMC11126512 DOI: 10.1007/s12072-024-10648-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/22/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND AND AIMS The identification of reliable predictors for hepatitis B surface antigen (HBsAg) seroclearance remains controversial. We aimed to summarize potential predictors for HBsAg seroclearance by pegylated interferon-α (PegIFNα) in patients with chronic HBV infection. METHODS A systematic search of the Cochrane Library, Embase, PubMed, and Web of Science databases was conducted from their inception to 28 September 2022. Meta-analyses were performed following the PRISMA statement. Predictors of HBsAg seroclearance were evaluated based on baseline characteristics and on-treatment indicators. RESULTS This meta-analysis encompasses 27 studies, including a total of 7913 patients. The findings reveal several factors independently associated with HBsAg seroclearance induced by PegIFNα-based regimens. These factors include age (OR = 0.961), gender (male vs. female, OR = 0.537), genotype (A vs. B/D; OR = 7.472, OR = 10.738), treatment strategy (combination vs. monotherapy, OR = 2.126), baseline HBV DNA (OR = 0.414), baseline HBsAg (OR = 0.373), HBsAg levels at week 12 and 24 (OR = 0.384, OR = 0.294), HBsAg decline from baseline to week 12 and 24 (OR = 6.689, OR = 6.513), HBsAg decline from baseline ≥ 1 log10 IU/ml and ≥ 0.5 log10 IU/ml at week 12 (OR = 18.277; OR = 4.530), and ALT elevation at week 12 (OR = 3.622). Notably, subgroup analysis suggests no statistical association between HBsAg levels at week 12 and HBsAg seroclearance for treatment duration exceeding 48 weeks. The remaining results were consistent with the overall analysis. CONCLUSIONS This is the first meta-analysis to identify predictors of HBsAg seroclearance with PegIFNα-based regimens, including baseline and on-treatment factors, which is valuable in developing a better integrated predictive model for HBsAg seroclearance to guide individualized treatment and achieve the highest cost-effectiveness of PegIFNα.
Collapse
Affiliation(s)
- Shaowen Jiang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Simin Guo
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Huang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yalin Yin
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Jingwen Feng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huijuan Zhou
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Guo
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weijing Wang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Infectious Diseases, Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Haiguang Xin
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
16
|
Yu X, Gao Y, Zhang X, Ji L, Fang M, Li M, Gao Y. Hepatitis B: Model Systems and Therapeutic Approaches. J Immunol Res 2024; 2024:4722047. [PMID: 38745751 PMCID: PMC11093688 DOI: 10.1155/2024/4722047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 05/16/2024] Open
Abstract
Hepatitis B virus (HBV) infection is a major global health issue and ranks among the top causes of liver cirrhosis and hepatocellular carcinoma. Although current antiviral medications, including nucleot(s)ide analogs and interferons, could inhibit the replication of HBV and alleviate the disease, HBV cannot be fully eradicated. The development of cellular and animal models for HBV infection plays an important role in exploring effective anti-HBV medicine. During the past decades, advancements in several cell culture systems, such as HepG2.2.15, HepAD38, HepaRG, hepatocyte-like cells, and primary human hepatocytes, have propelled the research in inhibiting HBV replication and expression and thus enriched our comprehension of the viral life cycle and enhancing antiviral drug evaluation efficacy. Mouse models, in particular, have emerged as the most extensively studied HBV animal models. Additionally, the present landscape of HBV therapeutics research now encompasses a comprehensive assessment of the virus's life cycle, targeting numerous facets and employing a variety of immunomodulatory approaches, including entry inhibitors, strategies aimed at cccDNA, RNA interference technologies, toll-like receptor agonists, and, notably, traditional Chinese medicine (TCM). This review describes the attributes and limitations of existing HBV model systems and surveys novel advancements in HBV treatment modalities, which will offer deeper insights toward discovering potentially efficacious pharmaceutical interventions.
Collapse
Affiliation(s)
- Xiaoxiao Yu
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yating Gao
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Zhang
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Longshan Ji
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Miao Fang
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Man Li
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yueqiu Gao
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Hepatopathy, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| |
Collapse
|
17
|
Hou J, Gane E, Balabanska R, Zhang W, Zhang J, Lim TH, Xie Q, Yeh CT, Yang SS, Liang X, Komolmit P, Leerapun A, Xue Z, Chen E, Zhang Y, Xie Q, Chang TT, Hu TH, Lim SG, Chuang WL, Leggett B, Bo Q, Zhou X, Triyatni M, Zhang W, Yuen MF. Efficacy, safety, and pharmacokinetics of capsid assembly modulator linvencorvir plus standard of care in chronic hepatitis B patients. Clin Mol Hepatol 2024; 30:191-205. [PMID: 38190830 PMCID: PMC11016473 DOI: 10.3350/cmh.2023.0422] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/18/2023] [Accepted: 01/04/2024] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND/AIMS Four-week treatment of linvencorvir (RO7049389) was generally safe and well tolerated, and showed anti-viral activity in chronic hepatitis B (CHB) patients. This study evaluated the efficacy, safety, and pharmacokinetics of 48-week treatment with linvencorvir plus standard of care (SoC) in CHB patients. METHODS This was a multicentre, non-randomized, non-controlled, open-label phase 2 study enrolling three cohorts: nucleos(t)ide analogue (NUC)-suppressed patients received linvencorvir plus NUC (Cohort A, n=32); treatment-naïve patients received linvencorvir plus NUC without (Cohort B, n=10) or with (Cohort C, n=30) pegylated interferon-α (Peg-IFN-α). Treatment duration was 48 weeks, followed by NUC alone for 24 weeks. RESULTS 68 patients completed the study. No patient achieved functional cure (sustained HBsAg loss and unquantifiable HBV DNA). By Week 48, 89% of treatment-naïve patients (10/10 Cohort B; 24/28 Cohort C) reached unquantifiable HBV DNA. Unquantifiable HBV RNA was achieved in 92% of patients with quantifiable baseline HBV RNA (14/15 Cohort A, 8/8 Cohort B, 22/25 Cohort C) at Week 48 along with partially sustained HBV RNA responses in treatment-naïve patients during follow-up period. Pronounced reductions in HBeAg and HBcrAg were observed in treatment-naïve patients, while HBsAg decline was only observed in Cohort C. Most adverse events were grade 1-2, and no linvencorvir-related serious adverse events were reported. CONCLUSION 48-week linvencorvir plus SoC was generally safe and well tolerated, and resulted in potent HBV DNA and RNA suppression. However, 48-week linvencorvir plus NUC with or without Peg-IFN did not result in the achievement of functional cure in any patient.
Collapse
Affiliation(s)
- Jinlin Hou
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Edward Gane
- New Zealand Liver Transplant Unit, The University of Auckland, Auckland, New Zealand
| | | | | | - Jiming Zhang
- Huashan Hospital, Fudan University, Shanghai, China
| | | | - Qing Xie
- Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chau-Ting Yeh
- Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan
| | | | - Xieer Liang
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | | | | | | | - Yuchen Zhang
- China Innovation Center of Roche, Shanghai, China
| | - Qiaoqiao Xie
- China Innovation Center of Roche, Shanghai, China
| | | | - Tsung-Hui Hu
- Chang Gung Memorial Hospital, Kaohsiung Branch, Kaohsiung, Taiwan
| | | | - Wan-Long Chuang
- Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Barbara Leggett
- Royal Brisbane & Women’s Hospital, School of Medicine, University of Queensland, Queensland, Australia
| | | | - Xue Zhou
- China Innovation Center of Roche, Shanghai, China
| | | | - Wen Zhang
- China Innovation Center of Roche, Shanghai, China
| | - Man-Fung Yuen
- Department of Medicine, School of Clinical Medicine, State Key Laboratory of Liver Research, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
18
|
Hu JL, Huang AL. Classifying hepatitis B therapies with insights from covalently closed circular DNA dynamics. Virol Sin 2024; 39:9-23. [PMID: 38110037 PMCID: PMC10877440 DOI: 10.1016/j.virs.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023] Open
Abstract
The achievement of a functional cure for chronic hepatitis B (CHB) remains limited to a minority of patients treated with currently approved drugs. The primary objective in developing new anti-HBV drugs is to enhance the functional cure rates for CHB. A critical prerequisite for the functional cure of CHB is a substantial reduction, or even eradication of covalently closed circular DNA (cccDNA). Within this context, the changes in cccDNA levels during treatment become as a pivotal concern. We have previously analyzed the factors influencing cccDNA dynamics and introduced a preliminary classification of hepatitis B treatment strategies based on these dynamics. In this review, we employ a systems thinking perspective to elucidate the fundamental aspects of the HBV replication cycle and to rationalize the classification of treatment strategies according to their impact on the dynamic equilibrium of cccDNA. Building upon this foundation, we categorize current anti-HBV strategies into two distinct groups and advocate for their combined use to significantly reduce cccDNA levels within a well-defined timeframe.
Collapse
Affiliation(s)
- Jie-Li Hu
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
| | - Ai-Long Huang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
19
|
Zhao Q, Liu H, Tang L, Wang F, Tolufashe G, Chang J, Guo JT. Mechanism of interferon alpha therapy for chronic hepatitis B and potential approaches to improve its therapeutic efficacy. Antiviral Res 2024; 221:105782. [PMID: 38110058 DOI: 10.1016/j.antiviral.2023.105782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
Hepatitis B virus (HBV) chronically infects 296 million people worldwide and causes more than 820,000 deaths annually due to cirrhosis and hepatocellular carcinoma. Current standard-of-care medications for chronic hepatitis B (CHB) include nucleos(t)ide analogue (NA) viral DNA polymerase inhibitors and pegylated interferon alpha (PEG-IFN-α). NAs can efficiently suppress viral replication and improve liver pathology, but not eliminate or inactivate HBV covalently closed circular DNA (cccDNA). CCC DNA is the most stable HBV replication intermediate that exists as a minichromosome in the nucleus of infected hepatocyte to transcribe viral RNA and support viral protein translation and genome replication. Consequentially, a finite duration of NA therapy rarely achieves a sustained off-treatment suppression of viral replication and life-long NA treatment is most likely required. On the contrary, PEG-IFN-α has the benefit of finite treatment duration and achieves HBsAg seroclearance, the indication of durable immune control of HBV replication and functional cure of CHB, in approximately 5% of treated patients. However, the low antiviral efficacy and poor tolerability limit its use. Understanding how IFN-α suppresses HBV replication and regulates antiviral immune responses will help rational optimization of IFN therapy and development of novel immune modulators to improve the rate of functional cure. This review article highlights mechanistic insight on IFN control of HBV infection and recent progress in development of novel IFN regimens, small molecule IFN mimetics and combination therapy of PEG-IFN-α with new direct-acting antivirals and therapeutic vaccines to facilitate the functional cure of CHB.
Collapse
Affiliation(s)
- Qiong Zhao
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Hui Liu
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Liudi Tang
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Fuxuan Wang
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | | | - Jinhong Chang
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Doylestown, PA, United States.
| |
Collapse
|
20
|
Korkmaz P, Asan A, Karakeçili F, Tekin S, Demirtürk N. New Treatment Options in Chronic Hepatitis B: How Close Are We to Cure? INFECTIOUS DISEASES & CLINICAL MICROBIOLOGY 2023; 5:267-280. [PMID: 38633851 PMCID: PMC10986727 DOI: 10.36519/idcm.2023.265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/18/2023] [Indexed: 04/19/2024]
Abstract
Hepatitis B virus (HBV) infection is the leading cause of chronic liver disease worldwide. HBV-infected patients are at a lifetime risk of developing liver cirrhosis and hepatocellular carcinoma (HCC). Today, pegylated interferon (Peg-IFN) and nucleos(t)ide analogs (NAs) are used in the treatment of patients with chronic hepatitis B (CHB). Both treatment options have limitations. Despite effective viral suppression, NAs have little effect on covalently closed circular DNA (cccDNA), the stable episomal form of the HBV genome in hepatocytes. Therefore, the cure rate with NAs is low, and long-term treatment is required. Although the cure rate is better with Peg-IFN, it is difficult to tolerate due to drug side effects. Therefore, new treatment options are needed in the treatment of HBV infection. We can group new treatments under two headings: those that interfere with the viral life cycle and spread and those that modulate the immune response. Clinical studies show that combinations of treatments that directly target the viral life cycle and treatments that regulate the host immune system will be among the important treatment strategies in the future. As new direct-acting antiviral (DAA) and immunomodulatory therapies continue to emerge and evolve, functional cures in HBV treatment may be an achievable goal.
Collapse
Affiliation(s)
- Pınar Korkmaz
- Department of Infectious Diseases and Clinical Microbiology, Kütahya Health Sciences University School of Medicine, Kütahya, Türkiye
| | - Ali Asan
- Department of Infectious Diseases and Clinical Microbiology, Bursa Health Sciences University School of Medicine, Bursa, Türkiye
| | - Faruk Karakeçili
- Department of Infectious Diseases and Clinical Microbiology, Erzincan Binali Yıldırım University School of Medicine, Erzincan, Türkiye
| | - Süda Tekin
- Department of Infectious Diseases and Clinical Microbiology, Koç University School of Medicine, İstanbul, Türkiye
| | - Neşe Demirtürk
- Department of Infectious Diseases and Clinical Microbiology, Afyonkarahisar Health Sciences University, School of Medicine, Afyonkarahisar, Türkiye
| |
Collapse
|
21
|
Lok J, Guerra Veloz MF, Agarwal K. Overview of New Targets for Hepatitis B Virus: Immune Modulators, Interferons, Bifunctional Peptides, Therapeutic Vaccines and Beyond. Clin Liver Dis 2023; 27:857-876. [PMID: 37778774 DOI: 10.1016/j.cld.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Nucleos(t)ide analogs are the cornerstone of treatment against hepatitis B virus; however, they have no direct effect on its transcriptional template (ie, covalently closed circular DNA) and so functional cure is rarely achieved. Over recent years, there has been a significant improvement in our understanding of the viral life cycle and its mechanisms of immune evasion. In this review article, we will explore novel therapeutic targets, discuss the latest data from clinical trials, and highlight future research priorities.
Collapse
Affiliation(s)
- James Lok
- Institute of Liver Studies, King's College Hospital, London, SE5 9RS, UK
| | | | - Kosh Agarwal
- Institute of Liver Studies, King's College Hospital, London, SE5 9RS, UK.
| |
Collapse
|
22
|
Wang M, Zhang J, Dou Y, Liang M, Xie Y, Xue P, Liu L, Li C, Wang Y, Tao F, Zhang X, Hu H, Feng K, Zhang L, Wu Z, Chen Y, Zhan P, Jia H. Design, Synthesis, and Biological Evaluation of Novel Thioureidobenzamide (TBA) Derivatives as HBV Capsid Assembly Modulators. J Med Chem 2023; 66:13968-13990. [PMID: 37839070 DOI: 10.1021/acs.jmedchem.3c01022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Hepatitis B virus (HBV) capsid assembly modulators (CAMs) represent a promising therapeutic approach for the treatment of HBV infection. In this study, we designed and synthesized five series of benzamide derivatives based on a multisite-binding strategy at the tolerant region and diversity modification in the solvent-exposed region. Among them, thioureidobenzamide compound 17i exhibited significantly increased anti-HBV activity in HepAD38 (EC50 = 0.012 μM) and HBV-infected HLCZ01 cells (EC50 = 0.033 μM). Moreover, 17i displayed a better inhibitory effect on the assembly of HBV capsid protein compared with NVR 3-778 and a inhibitory effect similar to the clinical drug GLS4. In addition, 17i showed moderate metabolic stability in human microsomes, had excellent oral bioavailability in Sprague-Dawley (SD) rats, and inhibited HBV replication in the HBV carrier mice model, which could be considered as a promising candidate drug for further development.
Collapse
Affiliation(s)
- Mei Wang
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, P. R. China
| | - Jian Zhang
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, P. R. China
| | - Yutong Dou
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Dept. Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College, Shandong University, Jinan 250012, Shandong, P. R. China
| | - Minghui Liang
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, P. R. China
| | - Yong Xie
- State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357), Sunshine Lake Pharma Co., Ltd, Dongguan 523871, P. R. China
| | - Peng Xue
- School of Public Health, Weifang Medical University, Weifang 261053, Shandong, P. R. China
| | - Linyue Liu
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, P. R. China
| | - Chuanju Li
- Department of Pharmacy, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong, P. R. China
| | - Yuanze Wang
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou 510000, Guangdong, P. R. China
| | - Feiyan Tao
- School of Public Health, Weifang Medical University, Weifang 261053, Shandong, P. R. China
| | - Xiaohui Zhang
- Key Laboratory of Experimental Teratology, Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College, Shandong University, Jinan 250012, P. R. China
- The Research Center of Stem Cell and Regenerative Medicine, Department of Systems Biomedicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, P. R. China
| | - Huili Hu
- Key Laboratory of Experimental Teratology, Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College, Shandong University, Jinan 250012, P. R. China
- The Research Center of Stem Cell and Regenerative Medicine, Department of Systems Biomedicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, P. R. China
| | - Kairui Feng
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, P. R. China
| | - Lei Zhang
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, P. R. China
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Dept. Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College, Shandong University, Jinan 250012, Shandong, P. R. China
| | - Yunfu Chen
- State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357), Sunshine Lake Pharma Co., Ltd, Dongguan 523871, P. R. China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Haiyong Jia
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, P. R. China
| |
Collapse
|
23
|
Inoue T, Watanabe T, Tanaka Y. Hepatitis B core-related antigen: A novel and promising surrogate biomarker to guide anti-hepatitis B virus therapy. Clin Mol Hepatol 2023; 29:851-868. [PMID: 36891607 PMCID: PMC10577333 DOI: 10.3350/cmh.2022.0434] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/19/2023] [Accepted: 03/07/2023] [Indexed: 03/10/2023] Open
Abstract
The current requirement for biomarkers to detect hepatitis B virus (HBV) infection is polarized. One is a fully-automated and highly sensitive measurement system; the other is a simple system for point-of-care testing (POCT) in resource-limited areas. Hepatitis B core-related antigen (HBcrAg) reflects intrahepatic covalently closed circular DNA and serum HBV DNA. Even in patients with undetectable serum HBV DNA or HBsAg loss, HBcrAg may remain detectable. Decreased HBcrAg levels are associated with reduction of the occurrence of hepatocellular carcinoma (HCC) in chronic hepatitis B. Recently, a fully-automated, novel high-sensitivity HBcrAg assay (iTACT-HBcrAg, cut-off value: 2.1 logIU/mL) has been developed. This attractive assay has been released in Japan very recently. iTACT-HBcrAg can be useful for monitoring HBV reactivation and prediction of HCC occurrence, as an alternative to HBV DNA. Moreover, monitoring HBcrAg may be suitable for determining the therapeutic effectiveness of approved drugs and novel drugs under development. Presently, international guidelines recommend anti-HBV prophylaxis for pregnant women with high viral loads to prevent mother-to-child transmission of HBV. However, >95% of HBV-infected individuals live in countries where HBV DNA quantification is not available. Worldwide elimination of HBV needs the scaling-up of examination and medication services in resource-limited areas. Based on this situation, a rapid and easy HBcrAg assay as a POCT is valuable. This review provides the latest information regarding the clinical use of a new surrogate marker, HBcrAg, in HBV management, based on iTACT-HBcrAg or POCT, and introduces novel agents targeting HBV RNA/protein.
Collapse
Affiliation(s)
- Takako Inoue
- Department of Clinical Laboratory Medicine, Nagoya City University Hospital, Nagoya, Japan
| | - Takehisa Watanabe
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Department of Virology & Liver unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
24
|
Yuen MF, Asselah T, Jacobson IM, Brunetto MR, Janssen HLA, Takehara T, Hou JL, Kakuda TN, Lambrecht T, Beumont M, Kalmeijer R, Guinard-Azadian C, Mayer C, Jezorwski J, Verbinnen T, Lenz O, Shukla U, Biermer M. Efficacy and safety of the siRNA JNJ-73763989 and the capsid assembly modulator JNJ-56136379 (bersacapavir) with nucleos(t)ide analogues for the treatment of chronic hepatitis B virus infection (REEF-1): a multicentre, double-blind, active-controlled, randomised, phase 2b trial. Lancet Gastroenterol Hepatol 2023; 8:790-802. [PMID: 37442152 DOI: 10.1016/s2468-1253(23)00148-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND JNJ-73763989 (JNJ-3989), a small interfering RNA, targets all hepatitis B virus (HBV) RNAs, reducing all HBV proteins. JNJ-56136379 (JNJ-6379; also known as bersacapavir), a capsid assembly modulator, inhibits HBV replication. We aimed to evaluate the efficacy (ie, antiviral activity) and safety of these therapeutics in combination with nucleos(t)ide analogues in patients with chronic hepatitis B. METHODS The REEF-1 multicentre, double-blind, active-controlled, randomised, phase 2b study was done at 108 hospitals or outpatient centres across 19 countries in Asia, Europe, and North and South America. We included patients aged 18-65 years with chronic hepatitis B (defined as HBsAg positivity at screening and at least 6 months before screening or alternative markers of chronicity [eg, HBV DNA]), including those not currently treated, virologically suppressed, HBeAg positive, and HBeAg negative. Patients were randomly assigned (1:1:2:2:2:2) via permuted block randomisation according to a computer-generated schedule to receive oral nucleos(t)ide analogues once per day plus placebo (control group); oral JNJ-6379 250 mg daily plus nucleos(t)ide analogues (JNJ-6379 dual group); nucleos(t)ide analogues plus subcutaneously injected JNJ-3989 at doses of 40 mg (JNJ-3989 dual 40 mg group), 100 mg (JNJ-3989 dual 100 mg group), or 200 mg (JNJ-3989 dual 200 mg group) every 4 weeks; or JNJ-6379 250 mg plus JNJ-3989 100 mg every 4 weeks plus nucleos(t)ide analogues (triple group) for 48 weeks followed by a follow-up phase. An interactive web response system provided concealed treatment allocation, and investigators remained masked to the intervention groups until the primary analysis at week 48. The primary endpoint was the proportion of patients meeting predefined nucleos(t)ide analogue-stopping criteria (alanine aminotransferase <3 × upper limit of normal, HBV DNA below the lower limit of quantitation, HBeAg negative, and HBsAg <10 IU/mL) at week 48. All patients who received at least one dose of study drug were included in the analysis population used for primary efficacy assessment, excluding those who withdrew because of COVID-19-related reasons, withdrew before week 44, or had no efficacy data (ie, the modified intention-to-treat population). Safety was assessed in all participants who received at least one dose of study drugs. This trial is registered with ClinicalTrials.gov, NCT03982186. The study has been completed. FINDINGS Between Aug 1, 2019, and April 26, 2022, 470 patients (310 [66%] male and 244 [52%] White) were randomly assigned: 45 to the control group, 48 to the JNJ-6379 dual group, 93 to the JNJ-3989 dual 40 mg group, 93 to the JNJ-3989 dual 100 mg group, 96 to the JNJ-3989 dual 200 mg group, and 95 to the triple group. At week 48, five (5%; 90% CI 2-11) of 91 patients in the JNJ-3989 dual 40 mg group, 15 (16%; 10-24) of 92 in the JNJ-3989 dual 100 mg group, 18 (19%; 13-27) of 94 in the JNJ-3989 dual 200 mg group, eight (9%; 4-15) of 94 in the triple group, and one (2%; 0-10) of 45 in the control group met nucleos(t)ide analogue stopping criteria. No patients in the JNJ-6379 dual group met stopping criteria. 38 (81%) patients who met nucleos(t)ide analogue-stopping criteria at week 48 were virologically suppressed and HBeAg negative at baseline. Ten (2%) of 470 patients had serious adverse events during the treatment phase, and two patients (one each from the JNJ-3989 dual 200 mg group [exercise-related rhabdomyolysis] and the triple group [increase in ALT or AST]) had serious adverse events related to study treatment. During follow-up, 12 (3%) of 460 patients had a serious adverse event; one (<1%), a gastric ulcer, was considered to be related to nucleos(t)ide analogues and occurred in a patient from the JNJ-3989 dual 200 mg group. 29 (6%) of 460 patients in the treatment phase and in ten (2%) of 460 patients in the follow-up phase had grade 3 or 4 adverse events. Five (1%) of 470 patients discontinued treatment due to adverse events, and there were no deaths. INTERPRETATION Although treatment with JNJ-3989 led to a dose-dependent response for meeting nucleos(t)ide analogue-stopping criteria, it rarely led to HBsAg seroclearance. However, most patients treated with JNJ-3989 had clinically meaningful reductions in HBsAg that might contribute to a liver environment conducive to better immune control and, in turn, might improve the response to immune-modulating therapies. FUNDING Janssen Research and Development.
Collapse
Affiliation(s)
- Man-Fung Yuen
- Department of Medicine, Queen Mary Hospital, School of Clinical Medicine, and State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China.
| | - Tarik Asselah
- Université de Paris-Cité, Department of Hepatology, AP-HP Hôpital Beaujon, Clichy, INSERM UMR1148, France
| | - Ira M Jacobson
- Division of Gastroenterology and Hepatology, New York University Langone Health, New York, NY, USA
| | - Maurizia Rossana Brunetto
- Hepatology Unit and Laboratory of Molecular Genetics and Pathology of Hepatitis Viruses, University Hospital of Pisa, Pisa, Italy
| | - Harry L A Janssen
- Toronto Centre for Liver Disease, University Health Network, Toronto, ON, Canada; Erasmus Medical Center, Rotterdam, Netherlands
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Jin Lin Hou
- Department of Infectious Diseases, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | | | | | - Maria Beumont
- Janssen Research and Development, Titusville, NJ, USA
| | | | | | | | | | | | | | - Umesh Shukla
- Janssen Research and Development, Titusville, NJ, USA
| | | |
Collapse
|
25
|
McFadden WM, Sarafianos SG. Biology of the hepatitis B virus (HBV) core and capsid assembly modulators (CAMs) for chronic hepatitis B (CHB) cure. Glob Health Med 2023; 5:199-207. [PMID: 37655181 PMCID: PMC10461335 DOI: 10.35772/ghm.2023.01065] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/03/2023] [Accepted: 06/30/2023] [Indexed: 09/02/2023]
Abstract
Hepatitis B virus (HBV) is a hepadnavirus, a small DNA virus that infects liver tissue, with some unusual replication steps that share similarities to retroviruses. HBV infection can lead to chronic hepatitis B (CHB), a life-long infection associated with significant risks of liver disease, especially if untreated. HBV is a significant global health problem, with hundreds of millions currently living with CHB. Currently approved strategies to prevent or inhibit HBV are highly effective, however, a cure for CHB has remained elusive. To achieve a cure, elimination of the functionally integrated HBV covalently closed chromosomal DNA (cccDNA) genome is required. The capsid core is an essential component of HBV replication, serving roles when establishing infection and in creating new virions. Over the last two and a half decades, significant efforts have been made to find and characterize antivirals that target the capsid, specifically the HBV core protein (Cp). The antivirals that interfere with the kinetics and morphology of the capsid, termed capsid assembly modulators (CAMs), are extremely potent, and clinical investigations indicate they are well tolerated and highly effective. Several CAMs offer the potential to cure CHB by decreasing the cccDNA pools. Here, we review the biology of the HBV capsid, focused on Cp, and the development of inhibitors that target it.
Collapse
Affiliation(s)
- William M. McFadden
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Stefan G. Sarafianos
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Children's Healthcare of Atlanta, Atlanta, GA, USA
| |
Collapse
|
26
|
Basit L, Amblard F, Patel DJ, Biteau N, Chen Z, Kasthuri M, Zhou S, Schinazi RF. The premise of capsid assembly modulators towards eliminating HBV persistence. Expert Opin Drug Discov 2023; 18:1031-1041. [PMID: 37477111 PMCID: PMC10530454 DOI: 10.1080/17460441.2023.2239701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023]
Abstract
INTRODUCTION The burden of chronic hepatitis B virus (HBV) results in almost a million deaths per year. The most common treatment for chronic hepatitis B infection is long-term nucleoside analogs (NUC) or one-year interferon-alpha (pegylated or non-pegylated) therapy before or after NUC therapy. Unfortunately, these therapies rarely result in HBV functional cure because they do not eradicate HBV from the nucleus of the hepatocytes, where the covalently closed circular DNA (cccDNA) is formed and/or where the integrated HBV DNA persists in the host genome. Hence, the search continues for novel antiviral therapies that target different steps of the HBV replication cycle to cure chronically infected HBV individuals and eliminate HBV from the liver reservoirs. AREAS COVERED The authors focus on capsid assembly modulators (CAMs). These molecules are unique because they impact not only one but several steps of HBV viral replication, including capsid assembly, capsid trafficking into the nucleus, reverse transcription, pre-genomic RNA (pgRNA), and polymerase protein co-packaging. EXPERT OPINION Mono- or combination therapy, including CAMs with other HBV drugs, may potentially eliminate hepatitis B infections. Nevertheless, more data on their potential effect on HBV elimination is needed, especially when used daily for 6-12 months.
Collapse
Affiliation(s)
- Leda Basit
- Center for ViroScience and Cure, Laboratory of Biochemical
Pharmacology, Department of Pediatrics, Emory University School of Medicine and
Children’s Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA 30322,
USA
| | - Franck Amblard
- Center for ViroScience and Cure, Laboratory of Biochemical
Pharmacology, Department of Pediatrics, Emory University School of Medicine and
Children’s Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA 30322,
USA
| | - Dharmeshkumar J. Patel
- Center for ViroScience and Cure, Laboratory of Biochemical
Pharmacology, Department of Pediatrics, Emory University School of Medicine and
Children’s Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA 30322,
USA
| | - Nicolas Biteau
- Center for ViroScience and Cure, Laboratory of Biochemical
Pharmacology, Department of Pediatrics, Emory University School of Medicine and
Children’s Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA 30322,
USA
| | - Zhe Chen
- Center for ViroScience and Cure, Laboratory of Biochemical
Pharmacology, Department of Pediatrics, Emory University School of Medicine and
Children’s Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA 30322,
USA
| | - Mahesh Kasthuri
- Center for ViroScience and Cure, Laboratory of Biochemical
Pharmacology, Department of Pediatrics, Emory University School of Medicine and
Children’s Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA 30322,
USA
| | - Shaoman Zhou
- Center for ViroScience and Cure, Laboratory of Biochemical
Pharmacology, Department of Pediatrics, Emory University School of Medicine and
Children’s Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA 30322,
USA
| | - Raymond F. Schinazi
- Center for ViroScience and Cure, Laboratory of Biochemical
Pharmacology, Department of Pediatrics, Emory University School of Medicine and
Children’s Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA 30322,
USA
| |
Collapse
|
27
|
Verbinnen T, Talloen W, Janssen HLA, Zoulim F, Shukla U, Vandenbossche JJ, Biermer M, De Meyer S, Lenz O. Viral sequence analysis of chronic hepatitis B patients treated with the capsid assembly modulator JNJ-56136379 in the JADE phase 2a study. Antiviral Res 2023:105660. [PMID: 37385475 DOI: 10.1016/j.antiviral.2023.105660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/30/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND & AIMS In the monotherapy arms of the phase 2 JADE study (ClinicalTrials.gov Identifier: NCT03361956) evaluating the safety and efficacy of JNJ-56136379 (capsid assembly modulator-class E) with/without nucleos(t)ide analogue (NA), viral breakthroughs (VBT) were observed, leading to JNJ-56136379 monotherapy discontinuation. We present the viral sequencing analysis of JNJ-56136379±NA-treated hepatitis B virus (HBV)-infected patients. METHODS The HBV full genome was sequenced using next generation sequencing. Baseline amino acid (aa) polymorphisms were defined as changes versus the universal HBV reference sequence (sequence read frequency >15%). Emerging mutations were defined as aa changes versus baseline sequence (frequency <1% at baseline and ≥15% post-baseline). RESULTS 6/28 JNJ-56136379 75 mg monotherapy arm patients experienced VBT; all 6 had emerging JNJ-56136379-resistant variants T33N (n = 5; fold change [FC] = 85) or F23Y (n = 1; FC = 5.2). 1/32 JNJ-56136379 250 mg arm patients (genotype-E) had <1 log10 IU/mL decline in HBV DNA at Week 4, experienced VBT at Week 8, and carried the I105T baseline polymorphism (FC = 7.9), but had no emerging variants. Eight additional monotherapy-treated patients had shallow second phases of their HBV DNA profile and emerging T33N (n = 7) or F23Y (n = 1) variants. NA initiation (switch [75 mg arm]; add-on [250 mg arm]) in all monotherapy patients with VBT resulted in HBV DNA decline in all patients. No VBT was observed during JNJ-56136379+NA combination therapy. CONCLUSIONS JNJ-56136379 monotherapy resulted in VBT and was associated with the selection of JNJ-56136379-resistant variants. Efficacy of NA treatment (de novo combination or rescue therapy for VBT) was not impacted, confirming the lack of cross-resistance between these drug classes. CLINICAL TRIAL NUMBER NCT03361956.
Collapse
Affiliation(s)
| | - Willem Talloen
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Harry L A Janssen
- Toronto General Hospital, 200 Elizabeth St, Toronto, ON, M5G 2C4, Canada; Erasmus MC University Hospital Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Fabien Zoulim
- INSERM Unit 1052-Cancer Research Institute of Lyon, Hospices Civils de Lyon, Lyon University, 69008, Lyon, France
| | - Umesh Shukla
- Janssen Pharmaceuticals Research & Development, LLC 1125 Trenton Harbourton Rd, Titusville, NJ, 08560, USA
| | | | - Michael Biermer
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Sandra De Meyer
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Oliver Lenz
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| |
Collapse
|
28
|
Kakuda TN, Halabi A, Klein G, Sanga M, Guinard-Azadian C, Kowalik M, Nedoschinsky K, Nangosyah J, Ediage EN, Hillewaert V, Verboven P, Goris I, Snoeys J, Palmer M, Biermer M. Pharmacokinetics of JNJ-73763989 and JNJ-56136379 (Bersacapavir) in Participants With Moderate Hepatic Impairment. J Clin Pharmacol 2023; 63:732-741. [PMID: 36786053 DOI: 10.1002/jcph.2214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/06/2023] [Indexed: 02/15/2023]
Abstract
JNJ-73763989 is comprised of 2 short interfering RNAs (siRNAs), JNJ-73763976 and JNJ-73763924, that target hepatitis B virus (HBV) mRNAs for degradation, thereby inhibiting HBV replication. JNJ-56136379 is a capsid assembly modulator that inhibits HBV replication by inducing the formation of empty capsids (CAM-E). In 2 phase 1, open-label, non-randomized, single-center studies, the single-dose pharmacokinetics, safety, and tolerability of JNJ-73763989 or JNJ-56136379 were assessed in participants with moderate hepatic impairment (Child-Pugh Class B) versus participants with normal liver function. Participants in both studies received a single subcutaneous dose of JNJ-73763989 200 mg or oral JNJ-56136379 250 mg, followed by an evaluation of plasma pharmacokinetic parameters and safety assessments. Plasma exposure to JNJ-73763976, JNJ-73763924, and JNJ-56136379 was 1.3- to 1.4-, 1.8- to 2.2-, and 1.1- to 1.3-fold higher in participants with moderate hepatic impairment versus participants with normal liver function; however, these increases were not considered clinically relevant. Both drugs were well tolerated and safe, with 7 (21.9%) participants experiencing 1 or more treatment-emergent adverse events, 3 of which were related to JNJ-56136379. Overall, the plasma exposures of JNJ-73763989 and JNJ-56136379 were higher in participants with moderate hepatic impairment, but both were well tolerated. Further studies are needed to evaluate the effect of hepatic impairment under multiple-dose administration.
Collapse
Affiliation(s)
- Thomas N Kakuda
- Janssen Research & Development, LLC, Brisbane, California, USA
| | - Atef Halabi
- Clinical Research Services Kiel GmbH, Kiel, Germany
| | | | - Madhu Sanga
- Janssen Research & Development, LLC, Brisbane, California, USA
| | | | - Monika Kowalik
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | | | | | | | | | | | - Ivo Goris
- Janssen Pharmaceutica NV, Beerse, Belgium
| | - Jan Snoeys
- Janssen Pharmaceutica NV, Beerse, Belgium
| | - Martyn Palmer
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | | |
Collapse
|