1
|
Elizalde MM, Monzani MC, Favale NO, Bouzas B, Mammana L, Campos R, Flichman D. Unraveling the Role of Mutations Outside the Basal Promoter and Precore Regions in the HBeAg-Negative Stage of Chronic Hepatitis B. J Med Virol 2025; 97:e70398. [PMID: 40400367 DOI: 10.1002/jmv.70398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/15/2025] [Accepted: 05/04/2025] [Indexed: 05/23/2025]
Abstract
Hepatitis B e antigen (HBeAg) seroconversion is a crucial event in the natural history of chronic hepatitis B virus (HBV) infection, marked by a significant decrease in viral load and the emergence of mutations that suppress HBeAg expression. However, these mutations alone do not fully account for the reduction in viral load. This study investigated the biological features and pathogenic roles of mutations outside the basal core promoter (BCP) and precore regions during the HBeAg-negative stage of chronic infection. Full-length HBV genomes from HBeAg-positive (n = 180) and HBeAg-negative (n = 328) genotype D datasets were analyzed, revealing significantly higher genomic heterogeneity in HBeAg-negative sequences compared with HBeAg-positive genomes (50.4 ± 16.0 vs. 26.6 ± 10.5 nucleotide changes per genome). Twenty-six hotspot amino acid mutations associated with the HBeAg-negative stage were identified, with over half located in the Core region. Subsequently, full-length HBV genomes from six HBeAg-negative patient-derived serum samples were obtained by PCR amplification followed by Sanger sequencing. Infectious clones generated from these genomes, each carrying between 21 and 66 amino acid substitutions, were characterized, showing that mutations in this stage differentially affected viral fitness in vitro by up- or downregulating HBV-DNA levels (ranging from 0.2 to 5 times those of the wild-type isolate), modulating capsid assembly, and altering the expression, secretion, and subcellular localization of viral proteins. In conclusion, while mutations in the BCP and precore regions are the primary drivers of HBeAg seroconversion, mutations outside these regions significantly influence HBV biology and potentially contribute to viral pathogenicity, underscoring the complex interplay between host and virus during the HBeAg-negative stage of chronic infection.
Collapse
Affiliation(s)
- María Mercedes Elizalde
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), CONICET, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Cecilia Monzani
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), CONICET, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Nicolás Octavio Favale
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biología Celular y Molecular, CONICET, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológicas "Profesor Dr. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina
| | - Belén Bouzas
- Unidad de Virología, Hospital de Infecciosas "Francisco J. Muñiz", Buenos Aires, Argentina
| | - Lilia Mammana
- Unidad de Virología, Hospital de Infecciosas "Francisco J. Muñiz", Buenos Aires, Argentina
| | - Rodolfo Campos
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), CONICET, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Virología, Buenos Aires, Argentina
| | - Diego Flichman
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), CONICET, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
2
|
Liu H, Wang G, Li Z, Zhang X, Zhang W, Zhang X, Liu F, Gao J. Exosome-based immunotherapy in hepatocellular carcinoma. Clin Exp Med 2025; 25:127. [PMID: 40274634 PMCID: PMC12021721 DOI: 10.1007/s10238-025-01659-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 03/29/2025] [Indexed: 04/26/2025]
Abstract
Hepatocellular carcinoma (HCC) is a significant global health concern and ranks as the third leading cause of cancer-associated mortality. Systemic therapy faces the emergence of resistance, which hinders the clinical benefits. Recent evidence suggests that exosomes, measuring between 30 and 150 nm in size, which impact the antitumor immune responses, making them a promising candidate for cancer immunotherapy. Owing to their unique physical and chemical characteristics, exosomes can be tailored and engineered for a range of therapeutic objectives. In the present review, we outline the immunomodulatory functions of exosomes in the tumor microenvironment (TME) of HCC, aiming to decipher the underlying mechanisms of exosomes in remodeling suppressive TME. Moreover, we provide detailed and intuitive resource for leveraging the potential of exosomes in immunotherapy, presenting valuable strategies to improve and optimize HCC treatment. Despite the huge therapeutic potential of exosomes, significant challenges persist, including the need for standardization in exosome production, optimization of cargo loading techniques, and the assurance of safety and effectiveness in clinical applications. Addressing these challenges may pave the way for exosome-based immunotherapy for HCC patients.
Collapse
Affiliation(s)
- Hong Liu
- Department of Pathology, Xixi Hospital of Hangzhou, Hangzhou, 310023, Zhejiang Province, China
| | - GuoWei Wang
- Department of Radiology, Xixi Hospital of Hangzhou, Hangzhou, 310023, Zhejiang Province, China
| | - ZhaoYi Li
- Department of Scientific Research and Education, Xixi Hospital of Hangzhou, Hangzhou, 310023, Zhejiang Province, China
| | - XianTu Zhang
- Department of Pathology, Xixi Hospital of Hangzhou, Hangzhou, 310023, Zhejiang Province, China
| | - WeiDong Zhang
- Department of General Surgery I, Xixi Hospital of Hangzhou, Hangzhou, 310023, Zhejiang Province, China
| | - Xia Zhang
- Medical Laboratory, Xixi Hospital of Hangzhou, Hangzhou, 310023, Zhejiang Province, China.
| | - Fang Liu
- Xixi Hospital Biobank, Xixi Hospital of Hangzhou, Zhejiang Province, Hangzhou, 310023, China.
| | - Jing Gao
- Department of Pathology, Xixi Hospital of Hangzhou, Hangzhou, 310023, Zhejiang Province, China.
| |
Collapse
|
3
|
Hao B, Liu Y, Wang B, Wu H, Chen Y, Zhang L. Hepatitis B surface antigen: carcinogenesis mechanisms and clinical implications in hepatocellular carcinoma. Exp Hematol Oncol 2025; 14:44. [PMID: 40141002 PMCID: PMC11938626 DOI: 10.1186/s40164-025-00642-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Liver cancer is the third leading cause of death globally, with hepatitis B virus (HBV) infection being identified as the primary risk factor for its development. The occurrence of HBV-related hepatocellular carcinoma (HCC) is attributed to various mechanisms, such as chronic inflammation and liver cell regeneration induced by the cytotoxic immune response triggered by the virus, abnormal activation of oncogenes arising from HBV DNA insertion mutations, and epigenetic alterations mediated by viral oncoproteins. The envelope protein of the HBV virus, known as hepatitis B surface antigen (HBsAg), is a key indicator of increased risk for developing HCC in HBsAg-positive individuals. The HBsAg seroclearance status is found to be associated with recurrence in HCC patients undergoing hepatectomy. Additional evidence indicates that HBsAg is essential to the entire process of tumor development, from initiation to advancement, and acts as an oncoprotein involved in accelerating tumor progression. This review comprehensively analyzes the extensive effects and internal mechanisms of HBsAg during the various stages of the initiation and progression of HCC. Furthermore, it highlights the importance and potential applications of HBsAg in the realms of HCC early diagnosis and personalized therapeutic interventions. An in-depth understanding of the molecular mechanism of HBsAg in the occurrence and development of HCC is provided, which is expected to develop more precise and efficient strategies for the prevention and management of HCC in the future.
Collapse
Affiliation(s)
- Bingyan Hao
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yachong Liu
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bohan Wang
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haofeng Wu
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yan Chen
- Department of Paediatrics, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Lei Zhang
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Shanxi Tongji Hospital, Tongji Medical College, Shanxi Medical University, Huazhong University of Science and Technology, Taiyuan, 030032, China.
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
4
|
Choi YM, Jang J, Kim DH, Kim Z, Kim E, Choe WH, Kim BJ. PreS1 deletions in genotype C HBV leads to severe hepatic inflammation and hepatocarcinogenesis via the IRE1-JNK axis. JHEP Rep 2025; 7:101274. [PMID: 39980750 PMCID: PMC11840487 DOI: 10.1016/j.jhepr.2024.101274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/23/2024] [Accepted: 11/08/2024] [Indexed: 02/22/2025] Open
Abstract
Background & Aims Deletion of 15-21 nucleotides covering the preS1 start codon frequently occurs in patients with chronic HBV (CHB) with HBV genotype C and has been reported to be related to progression to hepatocellular carcinoma (HCC). However, the underlying mechanism causing the distinct phenotype of this HBV variant remains largely unknown. We investigated the mechanism by which preS1Del is related to liver disease progression and enhanced HBV replication, focusing on endoplasmic reticulum (ER) stress. Methods The effects of HBV replicative capacity, ER stress signaling, inflammation, cell death, and tumorigenesis resulting from PreS1 deletions were investigated through in vitro and in vivo experiments. Inhibitors of the IRE1-JNK pathway and IL6 blockade were used to examine HCC tumor load induced by preS1 deletions. Results The PreS1Del variant selectively activates the IRE1 pathway, mainly via enhanced colocalization between the ER and HBsAg in infected hepatocytes. This leads to enhanced HBV replication and production of tumor-promoting inflammatory cytokines and IL6 and COX2 via the IRE1-JNK signaling pathway. Furthermore, in vivo data showed that the activation of IRE1-JNK signaling consequently leads to lipid accumulation and apoptosis within 21Del-HBV-infected hepatocytes, collectively driving severe tumorigenesis in the liver. Notably, several inhibitors of the IRE1-JNK pathway dramatically inhibited HBV replication and inflammation induced by 21Del-HBV but not by the wild-type HBV in infected hepatocytes. Furthermore, IL6 blockade significantly reduced HCC tumor load induced by 21Del-HBV. Conclusions PreS1Del leads to enhanced HBV replication and HCC development through IRE1-JNK-IL6/COX2-mediated hepatocyte proliferation and liver inflammation. Inhibitors interfering with the IRE1-JNK-IL6 pathway could selectively inhibit HBV replication and inflammation in preS1Dels, suggesting their potential for the treatment of patients with CHB with preS1-deleted HBV variants. Impact and implications Deletion of 15-21 nucleotides at the preS1 start codon is common in patients with CHB with HBV genotype C and is linked to HCC progression. However, the mechanisms underlying the distinct phenotype of this variant remain largely unknown. We found that the preS1Del variant selectively activates the IRE1 pathway, primarily through enhanced IRE1-JNK-IL6 signaling. Inhibition of either the IRE1-JNK pathway or IL6 reduced HBV replication and tumor load in in vivo HCC models. This study enhances our understanding of the mechanisms of liver disease progression caused by 5' preS1Del variants and provides new insights into treatment strategies for patients with these variants. We believe our findings will resonate with a diverse audience, including patients and their physicians, the medical community, academia, the life sciences sector, and the general public.
Collapse
Affiliation(s)
- Yu-Min Choi
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea
- Institute of Endemic Disease, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Junghwa Jang
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea
| | - Dong Hyun Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea
| | - Ziyun Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea
| | - Eunseo Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea
| | - Won Hyeok Choe
- Department of Internal Medicine, Konkuk University School of Medicine, Seoul 05030, Republic of Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea
- Institute of Endemic Disease, Seoul National University Medical Research Center, Seoul, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Liver Research Institute, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Seoul National University Medical Research Center (SNUMRC), Seoul 03080, Republic of Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
5
|
Choi YM, Kim DH, Cho EJ, Kim Z, Jang J, Kim H, Yu SJ, Kim BJ. The sV184A Variant in HBsAg Specific to HBV Subgenotype C2 Leads to Enhanced Viral Replication and Apoptotic Cell Death Induced by PERK-eIF2α-CHOP-Mediated ER Stress. J Med Virol 2025; 97:e70253. [PMID: 39977392 DOI: 10.1002/jmv.70253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/15/2025] [Accepted: 02/05/2025] [Indexed: 02/22/2025]
Abstract
HBV genotype C, particularly subgenotype C2, is associated with an elevated risk of HCC and aggressive disease activity. We previously identified a nonsynonymous sV184A variant in the HBsAg region, predominantly in HBV subgenotype C2. This study investigates the mechanistic role of the sV184A variant in promoting liver disease progression. Analysis of 109 chronically HBV-infected patients revealed that the sV184A variant correlates with significantly elevated HBV DNA. Both patient data and public database indicated that sV184A is associated with high frequency of BCP mutations, however, the high HBV DNA in the sV184A group are independent of the presence of BCP mutations. In vitro and in vivo studies demonstrated that the sV184A variant enhances HBV replication and induces ER stress via the PERK-eIF2α-CHOP pathway, leading to apoptosis. HBV large surface (LHB)(LHB) protein was found to be a key factor, responsible for the strong ER stress, as the sV184A variant increases LHB protein stability. Pharmacological inhibition of PERK signaling or mutation of the LHB mitigated HBV proliferation and apoptosis induced by the sV184A variant. The sV184A variant specific to HBV subgenotype C2 significantly promotes HBV replication and apoptosis, serving as a driver of advanced liver disease and potentially increasing mutation rates in affected patients.
Collapse
Affiliation(s)
- Yu-Min Choi
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Seoul National University Medical Research Center (SNUMRC), Seoul, Republic of Korea
| | - Dong Hyun Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Eun Ju Cho
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ziyun Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Junghwa Jang
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hyunsoo Kim
- Department of Convergent Bioscience and Informatics, Chungnam National University, Daejeon, Republic of Korea
| | - Su Jong Yu
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Seoul National University Medical Research Center (SNUMRC), Seoul, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Liver Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Institute of Endemic Disease, Seoul National University Medical Research Center, Seoul, Republic of Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
6
|
Yang X, Wang H, Yu C. The Mechanism of APOBEC3B in Hepatitis B Virus Infection and HBV Related Hepatocellular Carcinoma Progression, Therapeutic and Prognostic Potential. Infect Drug Resist 2024; 17:4477-4486. [PMID: 39435460 PMCID: PMC11492903 DOI: 10.2147/idr.s484265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors globally. Prominent factors include chronic hepatitis B (CHB) and chronic hepatitis C (CHC) virus infections, exposure to aflatoxin, alcohol abuse, diabetes, and obesity. The prevalence of hepatitis B (HBV) is substantial, and the significant proportion of asymptomatic carriers heightens the challenge in diagnosing and treating hepatocellular carcinoma (HCC), necessitating further and more comprehensive research. Apolipoprotein B mRNA editing catalytic polypeptide (APOBEC) family members are single-stranded DNA cytidine deaminases that can restrict viral replication. The APOBEC-related mutation pattern constitutes a primary characteristic of somatic mutations in various cancer types such as lung, breast, bladder, head and neck, cervix, and ovary. Symptoms in the early stages of HCC are often subtle and nonspecific, posing challenges in treatment and monitoring. Furthermore, this article primarily focuses on the established specific mechanism of action of the APOBEC3B (A3B) gene in the onset and progression of HBV-related HCC (HBV-HCC) through stimulating mutations in HBV, activating Interleukin-6 (IL-6) and promoting reactive oxygen species(ROS) production, while also exploring the potential for A3B to serve as a therapeutic target and prognostic indicator in HBV-HCC.
Collapse
Affiliation(s)
- Xiaochen Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Huanqiu Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Chengbo Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
7
|
Hossain MG, Ueda K. Regulation of Hepatitis B Virus Replication by Modulating Endoplasmic Reticulum Stress (ER-Stress). Int J Microbiol 2024; 2024:9117453. [PMID: 39246409 PMCID: PMC11379510 DOI: 10.1155/2024/9117453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/21/2024] [Indexed: 09/10/2024] Open
Abstract
Hepatitis B virus (HBV), resistant to several antiviral drugs due to viral genomic mutations, has been reported, which aggravates chronic infection and leads to hepatocellular carcinoma. Therefore, host cellular factors/signaling modulation might be an alternative way of treatment for drug-resistant HBV. Here, we investigated the viral protein expression, replication, and virion production using endoplasmic reticulum (ER) stress-modulating chemicals, tunicamycin (an ER-stress inducer), and salubrinal (an ER-stress inhibitor). We found that ER-stress could be induced by HBV replication in transfected HepG2 cells as well as by tunicamycin as demonstrated by dual luciferase assay. HBV intracellular core-associated DNA quantified by qPCR has been significantly increased by tunicamycin in transfected HepG2 cells. Inversely, intracellular core associated and extracellular particle DNA has been significantly decreased in a dose-dependent manner in salubrinal-treated HepG2 cells transfected with HBV-replicating plasmid pHBI. Similar results were found in stably HBV-expressing hepatoblastoma (HB611) cells treated with salubrinal. However, increased or decreased ER-stress by tunicamycin or salubrinal treatment, respectively, has been confirmed by expression analysis of grp78 using Western blot. In addition, Western blot results demonstrated that the expression of HBV core protein and large HBsAg is increased and decreased by tunicamycin and salubrinal, respectively. In conclusion, the sal-mediated inhibition of the HBV replication and virion production might be due to the simultaneous reduction of core and large HBsAg expression and maintaining the ER homeostasis. These results of HBV replication regulation by modulation of ER-stress dynamics would be useful for designing/identifying anti-HBV drugs targeting cellular signaling pathways.
Collapse
Affiliation(s)
- Md Golzar Hossain
- Department of Microbiology and Hygiene Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Keiji Ueda
- Division of Virology Department of Microbiology and Immunology Graduate School of Medicine Osaka University, Osaka, Japan
| |
Collapse
|
8
|
Bucio-Ortiz L, Enriquez-Navarro K, Maldonado-Rodríguez A, Torres-Flores JM, Cevallos AM, Salcedo M, Lira R. Occult Hepatitis B Virus Infection in Hepatic Diseases and Its Significance for the WHO's Elimination Plan of Viral Hepatitis. Pathogens 2024; 13:662. [PMID: 39204261 PMCID: PMC11357063 DOI: 10.3390/pathogens13080662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
Liver damage can progress through different stages, resulting in cirrhosis or hepatocellular carcinoma (HCC), conditions that are often associated with viral infections. Globally, 42% and 21% of cirrhosis cases correlate with HBV and HCV, respectively. In the Americas, the prevalence ranges from 1% to 44%. The WHO has the goal to eliminate viral hepatitis, but it is important to consider occult HBV infection (OBI), a clinical condition characterized by the presence of HBV genomes despite negative surface antigen tests. This review aims to provide an overview of recent data on OBI, focusing on its role in the development of hepatic diseases and its significance in the WHO Viral Hepatitis Elimination Plan. Specific HBV gene mutations have been linked to HCC and other liver diseases. Factors related to the interactions between OBI and mutated viral proteins, which induce endoplasmic reticulum stress and oxidative DNA damage, and the potential role of HBV integration sites (such as the TERT promoter) have been identified in HCC/OBI patients. Health initiatives for OBI research in Latin American countries are crucial to achieving the WHO's goal of eradicating viral hepatitis by 2030, given the difficulty in diagnosing OBI and its unclear association with hepatic diseases.
Collapse
Affiliation(s)
- Leticia Bucio-Ortiz
- Medicina y Carcinogénesis Experimental, Universidad Autónoma Metropolitana Iztapalapa, Ciudad de Mexico 09340, Mexico; (L.B.-O.); (K.E.-N.)
| | - Karina Enriquez-Navarro
- Medicina y Carcinogénesis Experimental, Universidad Autónoma Metropolitana Iztapalapa, Ciudad de Mexico 09340, Mexico; (L.B.-O.); (K.E.-N.)
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, UMAE Hospital de Pediatría, CMN Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Ciudad de Mexico 06720, Mexico;
| | - Angélica Maldonado-Rodríguez
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, UMAE Hospital de Pediatría, CMN Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Ciudad de Mexico 06720, Mexico;
| | - Jesús Miguel Torres-Flores
- Laboratorio Nacional de Vacunología y Virus Tropicales, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de Mexico 11350, Mexico;
| | - Ana María Cevallos
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de Mexico, Ciudad de Mexico 04510, Mexico;
| | - Mauricio Salcedo
- Unidad de Investigación Biomédica Oncológica Genómica, Hospital de Gineco Pediatría 3-A, Instituto Mexicano del Seguro Social, Órgano de Operación Administrativa Desconcentrada (OOAD) Cd Mx Norte, Ciudad de Mexico 07760, Mexico;
| | - Rosalia Lira
- Unidad de Investigación Biomédica Oncológica Genómica, Hospital de Gineco Pediatría 3-A, Instituto Mexicano del Seguro Social, Órgano de Operación Administrativa Desconcentrada (OOAD) Cd Mx Norte, Ciudad de Mexico 07760, Mexico;
| |
Collapse
|
9
|
Wu Z, Dong Z, Luo J, Hu W, Tong Y, Gao X, Yao W, Tian H, Wang X. A comprehensive comparison of molecular and phenotypic profiles between hepatitis B virus (HBV)-infected and non-HBV-infected hepatocellular carcinoma by multi-omics analysis. Genomics 2024; 116:110831. [PMID: 38513875 DOI: 10.1016/j.ygeno.2024.110831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/22/2023] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
Hepatitis B virus (HBV) infection is a major etiology of hepatocellular carcinoma (HCC). An interesting question is how different are the molecular and phenotypic profiles between HBV-infected (HBV+) and non-HBV-infected (HBV-) HCCs? Based on the publicly available multi-omics data for HCC, including bulk and single-cell data, and the data we collected and sequenced, we performed a comprehensive comparison of molecular and phenotypic features between HBV+ and HBV- HCCs. Our analysis showed that compared to HBV- HCCs, HBV+ HCCs had significantly better clinical outcomes, higher degree of genomic instability, higher enrichment of DNA repair and immune-related pathways, lower enrichment of stromal and oncogenic signaling pathways, and better response to immunotherapy. Furthermore, in vitro experiments confirmed that HBV+ HCCs had higher immunity, PD-L1 expression and activation of DNA damage response pathways. This study may provide insights into the profiles of HBV+ and HBV- HCCs, and guide rational therapeutic interventions for HCC patients.
Collapse
Affiliation(s)
- Zijie Wu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Zehua Dong
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China; Big Data Research Institute, China Pharmaceutical University, Nanjing 211198, China
| | - Jiangti Luo
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China; Big Data Research Institute, China Pharmaceutical University, Nanjing 211198, China
| | - Weiwei Hu
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Yue Tong
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Wenbing Yao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China.
| | - Hong Tian
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China.
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China; Big Data Research Institute, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
10
|
Liang Y, Luo X, Schefczyk S, Muungani LT, Deng H, Wang B, Baba HA, Lu M, Wedemeyer H, Schmidt HH, Broering R. Hepatitis B surface antigen expression impairs endoplasmic reticulum stress-related autophagic flux by decreasing LAMP2. JHEP Rep 2024; 6:101012. [PMID: 38425451 PMCID: PMC10899050 DOI: 10.1016/j.jhepr.2024.101012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/13/2023] [Accepted: 12/30/2023] [Indexed: 03/02/2024] Open
Abstract
Background & Aims Hepatitis B surface antigen (HBsAg) drives hepatocarcinogenesis. Factors and mechanisms involved in this progression remain poorly defined, hindering the development of effective therapeutic strategies. Therefore, the mechanisms involved in the HBsAg-induced transformation of normal liver into hepatocellular carcinoma (HCC) were investigated. Methods Hemizygous Tg(Alb1HBV)44Bri/J mice were examined for HBsAg-induced carcinogenic events. Gene set-enrichment analysis identified significant signatures in HBsAg-transgenic mice that correlated with endoplasmic reticulum (ER) stress, unfolded protein response, autophagy and proliferation. These events were investigated by western blotting, immunohistochemical and immunocytochemical staining in 2-, 8- and 12-month-old HBsAg-transgenic mice. The results were verified in HBsAg-overexpressing Hepa1-6 cells and validated in human HBV-related HCC samples. Results Increased BiP expression in HBsAg-transgenic mice indicated induction of the unfolded protein response. In addition, early-phase autophagy was enhanced (increased BECN1 and LC3B) and late-phase autophagy blocked (increased p62) in HBsAg-transgenic mice. Finally, HBsAg altered lysosomal acidification via ATF4- and ATF6-mediated downregulation of lysosome-associated membrane protein 2 (LAMP2) expression. In patients, HBV-related HCC and adjacent tissues showed increased BiP, p62 and downregulated LAMP2 compared to uninfected controls. In vitro, the use of ER stress inhibitors reversed the HBsAg-related suppression of LAMP2. Furthermore, HBsAg promoted hepatocellular proliferation as indicated by Ki67, cleaved caspase-3 and AFP staining in paraffin-embedded liver sections from HBsAg-transgenic mice. These results were further verified by colony formation assays in HBsAg-expressing Hepa1-6 cells. Interestingly, inhibition of ER stress in HBsAg-overexpressing Hepa1-6 cells suppressed HBsAg-mediated cell proliferation. Conclusions These data showed that HBsAg directly induces ER stress, impairs autophagy and promotes proliferation, thereby driving hepatocarcinogenesis. In addition, this study expanded the understanding of HBsAg-mediated intracellular events in carcinogenesis. Impact and implications Factors and mechanisms involved in hepatocarcinogenesis driven by hepatitis B surface antigen (HBsAg) are poorly defined, hindering the development of effective therapeutic strategies. This study showed that HBsAg-induced endoplasmic reticulum stress suppressed LAMP2, thereby mediating autophagic injury. The present data suggest that restoring LAMP2 function in chronic HBV infection may have both antiviral and anti-cancer effects. This study has provided insights into the role of HBsAg-mediated intracellular events in carcinogenesis and thereby has relevance for future drug development.
Collapse
Affiliation(s)
- Yaojie Liang
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Xufeng Luo
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Essen, Germany
- Institute for Lymphoma Research, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Stefan Schefczyk
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Lorraine T. Muungani
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Hui Deng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Baoju Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hideo A. Baba
- Institute of Pathology, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Mengji Lu
- Institute for Virology, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Essen, Germany
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Hartmut H. Schmidt
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Ruth Broering
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
11
|
Ioniuc I, Lupu A, Tarnita I, Mastaleru A, Trandafir LM, Lupu VV, Starcea IM, Alecsa M, Morariu ID, Salaru DL, Azoicai A. Insights into the Management of Chronic Hepatitis in Children-From Oxidative Stress to Antioxidant Therapy. Int J Mol Sci 2024; 25:3908. [PMID: 38612717 PMCID: PMC11011982 DOI: 10.3390/ijms25073908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Recent research has generated awareness of the existence of various pathophysiological pathways that contribute to the development of chronic diseases; thus, pro-oxidative factors have been accepted as significant contributors to the emergence of a wide range of diseases, from inflammatory to malignant. Redox homeostasis is especially crucial in liver pathology, as disturbances at this level have been linked to a variety of chronic diseases. Hepatitis is an umbrella term used to describe liver inflammation, which is the foundation of this disease regardless of its cause. Chronic hepatitis produces both oxidative stress generated by hepatocyte inflammation and viral inoculation. The majority of hepatitis in children is caused by a virus, and current studies reveal that 60-80% of cases become chronic, with many young patients still at risk of advancing liver damage. This review intends to emphasize the relevance of understanding these pathological redox pathways, as well as the need to update therapeutic strategies in chronic liver pathology, considering the beneficial effects of antioxidants.
Collapse
Affiliation(s)
- Ileana Ioniuc
- Department of Mother and Child, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.I.); (I.T.); (L.M.T.); (I.M.S.); (M.A.); (A.A.)
| | - Ancuta Lupu
- Department of Mother and Child, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.I.); (I.T.); (L.M.T.); (I.M.S.); (M.A.); (A.A.)
| | - Irina Tarnita
- Department of Mother and Child, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.I.); (I.T.); (L.M.T.); (I.M.S.); (M.A.); (A.A.)
| | - Alexandra Mastaleru
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.M.); (D.L.S.)
| | - Laura Mihaela Trandafir
- Department of Mother and Child, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.I.); (I.T.); (L.M.T.); (I.M.S.); (M.A.); (A.A.)
| | - Vasile Valeriu Lupu
- Department of Mother and Child, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.I.); (I.T.); (L.M.T.); (I.M.S.); (M.A.); (A.A.)
| | - Iuliana Magdalena Starcea
- Department of Mother and Child, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.I.); (I.T.); (L.M.T.); (I.M.S.); (M.A.); (A.A.)
| | - Mirabela Alecsa
- Department of Mother and Child, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.I.); (I.T.); (L.M.T.); (I.M.S.); (M.A.); (A.A.)
| | - Ionela Daniela Morariu
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Delia Lidia Salaru
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.M.); (D.L.S.)
| | - Alice Azoicai
- Department of Mother and Child, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.I.); (I.T.); (L.M.T.); (I.M.S.); (M.A.); (A.A.)
| |
Collapse
|
12
|
Lazarevic I, Banko A, Miljanovic D, Cupic M. Hepatitis B Surface Antigen Isoforms: Their Clinical Implications, Utilisation in Diagnosis, Prevention and New Antiviral Strategies. Pathogens 2024; 13:46. [PMID: 38251353 PMCID: PMC10818932 DOI: 10.3390/pathogens13010046] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
The hepatitis B surface antigen (HBsAg) is a multifunctional glycoprotein composed of large (LHB), middle (MHB), and small (SHB) subunits. HBsAg isoforms have numerous biological functions during HBV infection-from initial and specific viral attachment to the hepatocytes to initiating chronic infection with their immunomodulatory properties. The genetic variability of HBsAg isoforms may play a role in several HBV-related liver phases and clinical manifestations, from occult hepatitis and viral reactivation upon immunosuppression to fulminant hepatitis and hepatocellular carcinoma (HCC). Their immunogenic properties make them a major target for developing HBV vaccines, and in recent years they have been recognised as valuable targets for new therapeutic approaches. Initial research has already shown promising results in utilising HBsAg isoforms instead of quantitative HBsAg for correctly evaluating chronic infection phases and predicting functional cures. The ratio between surface components was shown to indicate specific outcomes of HBV and HDV infections. Thus, besides traditional HBsAg detection and quantitation, HBsAg isoform quantitation can become a useful non-invasive biomarker for assessing chronically infected patients. This review summarises the current knowledge of HBsAg isoforms, their potential usefulness and aspects deserving further research.
Collapse
Affiliation(s)
- Ivana Lazarevic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (A.B.); (D.M.); (M.C.)
| | | | | | | |
Collapse
|
13
|
Su YP, Lin SY, Su IJ, Kao YL, Shen SC, Earl JP, Ehrlich GD, Chen CY, Huang W, Su YH, Tsai HW. Characterization of integrated hepatitis B virus DNA harboring pre-S mutations in hepatocellular carcinoma patients with ground glass hepatocytes. J Med Virol 2024; 96:e29348. [PMID: 38180275 PMCID: PMC10802935 DOI: 10.1002/jmv.29348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 01/06/2024]
Abstract
Ground glass hepatocytes (GGHs) have been associated with hepatocellular carcinoma (HCC) recurrence and poor prognosis. We previously demonstrated that pre-S expression in some GGHs is resistant to current hepatitis B virus (HBV) antiviral therapies. This study aimed to investigate whether integrated HBV DNA (iDNA) is the primary HBV DNA species responsible for sustained pre-S expression in GGH after effective antiviral therapy. We characterized 10 sets of micro-dissected, formalin-fixed-paraffin-embedded, and frozen GGH, HCC, and adjacent hepatitis B surface antigen-negative stained tissues for iDNA, pre-S deletions, and the quantity of covalently closed circular DNA. Eight patients had detectable pre-S deletions, and nine had detectable iDNA. Interestingly, eight patients had integrations within the TERT and CCNE1 genes, which are known recurrent integration sites associated with HCC. Furthermore, we observed a recurrent integration in the ABCC13 gene. Additionally, we identified variations in the type and quantity of pre-S deletions within individual sets of tissues by junction-specific PacBio long-read sequencing. The data from long-read sequencing indicate that some pre-S deletions were acquired following the integration events. Our findings demonstrate that iDNA exists in GGH and can be responsible for sustained pre-S expression in GGH after effective antiviral therapy.
Collapse
Affiliation(s)
- Yih-Ping Su
- Department of Microbiology and Immunology, Drexel University, College of Medicine, Philadelphia, PA, U.S.A
| | | | - Ih-Jen Su
- Department of Biotechnology, Southern Taiwan University of Science Technology, Tainan, Taiwan
| | - Yu-Lan Kao
- The Baruch S. Blumberg Institute, Doylestown, PA, U.S.A
| | | | - Joshua P. Earl
- Department of Microbiology and Immunology, Drexel University, College of Medicine, Philadelphia, PA, U.S.A
| | - Garth D. Ehrlich
- Department of Microbiology and Immunology, Department of Otolaryngology – Head and Neck Surgery, Drexel University, College of Medicine, Philadelphia, PA, U.S.A
| | - Cheng-Yi Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wenya Huang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ying-Hsiu Su
- Department of Microbiology and Immunology, Drexel University, College of Medicine, Philadelphia, PA, U.S.A. and The Baruch S. Blumberg Institute, Doylestown, PA, U.S.A
| | - Hung-Wen Tsai
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
14
|
Liang YJ, Chiou YW, Chiu APT, Shiao MS, Teng W, Lin CW, Cheng ML, Huang YH, Liang KH, Su CW, Lai CY, Chen CL, Wu JC. Antiviral therapy reduces hepatocellular carcinoma through suppressing hepatitis B virus replication may improve ER stress, mitochondrial and metabolic dysfunctions and decrease p62 in hybridized mice with single HBV transgene and miR-122. J Med Virol 2023; 95:e29325. [PMID: 38108211 DOI: 10.1002/jmv.29325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Hepatitis B virus (HBV) hijacks autophagy for its replication. Nucleos(t)ide analogs (NUCs) treatment suppressed HBV replication and reduced hepatocellular carcinoma (HCC) incidence. However, the use of NUCs in chronic hepatitis B (CHB) patients with normal or minimally elevated serum alanine aminotransferase (ALT) levels is still debated. Animal models are crucial for studying the unanswered issue and evaluating new therapies. MicroRNA-122 (miR-122), which regulates fatty acid and cholesterol metabolism, is downregulated during hepatitis and HCC progression. The reciprocal inhibition of miR-122 with HBV highlights its role in HCC development as a tumor suppressor. By crossbreeding HBV-transgenic mice with miR-122 knockout mice, we generated a hybrid mouse model with a high incidence of HCC up to 89% and normal ALT levels before HCC. The model exhibited early-onset hepatic steatosis, progressive liver fibrosis, and impaired late-phase autophagy. Metabolomics and microarray analysis identified metabolic signatures, including dysregulation of lipid metabolism, inflammation, genomic instability, the Warburg effect, reduced TCA cycle flux, energy deficiency, and impaired free radical scavenging. Antiviral treatment reduced HCC incidence in hybrid mice by approximately 30-35% compared to untreated mice. This effect was linked to the activation of ER stress-responsive transcription factor ATF4, clearance of autophagosome cargo p62, and suppression of the CHOP-mediated apoptosis pathway. In summary, this study suggests that despite minimal ALT elevation, HBV replication can lead to liver injury. Endoplasmic reticulum stress, reduced miR-122 levels, mitochondrial and metabolic dysfunctions, blocking protective autophagy resulting in p62 accumulation, apoptosis, fibrosis, and HCC. Antiviral may improve the above-mentioned pathogenesis through HBV suppression.
Collapse
Affiliation(s)
- Yuh-Jin Liang
- Translational Research Division, Medical Research Department, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taiwan, ROC
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yu-Wei Chiou
- Translational Research Division, Medical Research Department, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Abby Pei-Ting Chiu
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, Washington, USA
- Department of Biology, University of Washington, Seattle, Washington, USA
| | - Ming-Shi Shiao
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan, ROC
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Wei Teng
- Department of Gastroenterology & Hepatology, Chang Gung Memorial Hospital, Linkou, Taiwan, ROC
| | - Chin-Wei Lin
- Translational Research Division, Medical Research Department, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Mei-Ling Cheng
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan, ROC
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan, ROC
| | - Yen-Hua Huang
- Center for Systems and Synthetic Biology and Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Kung-Hao Liang
- Translational Research Division, Medical Research Department, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chien-Wei Su
- Department of Medicine, Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Medicine, Division of General Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Medicine, Division of Holistic and Multidisciplinary Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Internal Medicine, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Chi-Yu Lai
- Translational Research Division, Medical Research Department, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chih-Li Chen
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan, ROC
| | - Jaw-Ching Wu
- Translational Research Division, Medical Research Department, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taiwan, ROC
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| |
Collapse
|
15
|
Langat BK, Ochwedo KO, Borlang J, Osiowy C, Mutai A, Okoth F, Muge E, Andonov A, Maritim ES. Genetic diversity, haplotype analysis, and prevalence of Hepatitis B virus MHR mutations among isolates from Kenyan blood donors. PLoS One 2023; 18:e0291378. [PMID: 37963165 PMCID: PMC10645356 DOI: 10.1371/journal.pone.0291378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/28/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND The rapid spread of HBV has resulted in the emergence of new variants. These viral genotypes and variants, in addition to carcinogenic risk, can be key predictors of therapy response and outcomes. As a result, a better knowledge of these emerging HBV traits will aid in the development of a treatment for HBV infection. However, many Sub-Saharan African nations, including Kenya, have insufficient molecular data on HBV strains circulating locally. This study conducted a population-genetics analysis to evaluate the genetic diversity of HBV among Kenyan blood donors. In addition, within the same cohort, the incidence and features of immune-associated escape mutations and stop-codons in Hepatitis B surface antigen (HBsAg) were determined. METHODS In September 2015 to October 2016, 194 serum samples were obtained from HBsAg-positive blood donors residing in eleven different Kenyan counties: Kisumu, Machakos, Uasin Gishu, Nairobi, Nakuru, Embu, Garissa, Kisii, Mombasa, Nyeri, and Turkana. For the HBV surface (S) gene, HBV DNA was isolated, amplified, and sequenced. The sequences obtained were utilized to investigate the genetic and haplotype diversity within the S genes. RESULTS Among the blood donors, 74.74% were male, and the overall mean age was 25.36 years. HBV genotype A1 (88.14%) was the most common, followed by genotype D (10.82%), genotype C (0.52%), and HBV genotype E (0.52%). The phylogenetic analysis revealed twelve major clades, with cluster III comprising solely of 68 blood donor isolates (68/194-35.05%). A high haplotype diversity (Hd = 0.94) and low nucleotide diversity (π = 0.02) were observed. Kisumu county had high number of haplotypes (22), but low haplotype (gene) diversity (Hd = 0.90). Generally, a total of 90 haplotypes with some consisting of more than one sequence were observed. The gene exhibited negative values for Tajima's D (-2.04, p<0.05) and Fu's Fs (-88.84). Several mutations were found in 139 isolates, either within or outside the Major Hydrophilic Area (MHR). There were 29 mutations found, with 37.9% of them situated inside the "a" determinant. The most common mutations in this research were T143M and K122R. Escape mutations linked to diagnostic failure, vaccination and immunoglobulin treatment evasion were also discovered. Also, one stop-codon, W163STP, inside the MHR, was found in one sample from genotype A. CONCLUSION In Kenya, HBV/A1 is still the most common genotype. Despite limited genetic and nucleotide diversity, haplotype network analysis revealed haplotype variance among HBV genotypes from Kenyan blood donors. The virological properties of immune escape, which may be the source of viral replication endurance, were discovered in the viral strains studied and included immune-escape mutations and stop-codon. The discovery of HBsAg mutations in MHR in all isolates highlighted the need of monitoring MHR mutations in Kenya.
Collapse
Affiliation(s)
| | - Kevin Omondi Ochwedo
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
| | | | - Carla Osiowy
- National Microbiology Laboratory, Winnipeg, Canada
| | - Alex Mutai
- Kenya National Blood Transfusion Services, Nairobi, Kenya
| | - Fredrick Okoth
- Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Edward Muge
- Department of Medical Biochemistry, University of Nairobi, Nairobi, Kenya
| | | | | |
Collapse
|
16
|
Jin J, Kouznetsova VL, Kesari S, Tsigelny IF. Synergism in actions of HBV with aflatoxin in cancer development. Toxicology 2023; 499:153652. [PMID: 37858775 DOI: 10.1016/j.tox.2023.153652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/30/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Aflatoxin B1 (AFB1) is a fungal metabolite found in animal feeds and human foods. It is one of the most toxic and carcinogenic of aflatoxins and is classified as a Group 1 carcinogen. Dietary exposure to AFB1 and infection with chronic Hepatitis B Virus (HBV) make up two of the major risk factors for hepatocellular carcinoma (HCC). These two major risk factors raise the probability of synergism between the two agents. This review proposes some collaborative molecular mechanisms underlying the interaction between AFB1 and HBV in accelerating or magnifying the effects of HCC. The HBx viral protein is one of the main viral proteins of HBV and has many carcinogenic qualities that are involved with HCC. AFB1, when metabolized by CYP450, becomes AFB1-exo-8,9-epoxide (AFBO), an extremely toxic compound that can form adducts in DNA sequences and induce mutations. With possible synergisms that exist between HBV and AFB1 in mind, it is best to treat both agents simultaneously to reduce the risk by HCC.
Collapse
Affiliation(s)
- Joshua Jin
- IUL Scientific Program, San Diego, CA, USA
| | - Valentina L Kouznetsova
- San Diego Supercomputer Center, University of California at San Diego, La Jolla, CA, USA; BiAna, La Jolla, CA, USA; Curescience Institute, San Diego, CA, USA
| | | | - Igor F Tsigelny
- San Diego Supercomputer Center, University of California at San Diego, La Jolla, CA, USA; BiAna, La Jolla, CA, USA; Curescience Institute, San Diego, CA, USA; Department of Neurosciences, University of California at San Diego, La Jolla, CA, USA.
| |
Collapse
|
17
|
Guo Y, Shao J, Zhang R, Han M, Kong L, Liu Z, Li H, Wei D, Lu M, Zhang S, Zhang C, Wei H, Chen Z, Bian H. Large HBV Surface Protein-Induced Unfolded Protein Response Dynamically Regulates p27 Degradation in Hepatocellular Carcinoma Progression. Int J Mol Sci 2023; 24:13825. [PMID: 37762128 PMCID: PMC10530851 DOI: 10.3390/ijms241813825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Up to 50% of hepatocellular carcinoma (HCC) is caused by hepatitis B virus (HBV) infection, and the surface protein of HBV is essential for the progression of HBV-related HCC. The expression of large HBV surface antigen (LHB) is presented in HBV-associated HCC tissues and is significantly associated with the development of HCC. Gene set enrichment analysis revealed that LHB overexpression regulates the cell cycle process. Excess LHB in HCC cells induced chronic endoplasmic reticulum (ER) stress and was significantly correlated with tumor growth in vivo. Cell cycle analysis showed that cell cycle progression from G1 to S phase was greatly enhanced in vitro. We identified intensive crosstalk between ER stress and cell cycle progression in HCC. As an important regulator of the G1/S checkpoint, p27 was transcriptionally upregulated by transcription factors ATF4 and XBP1s, downstream of the unfolded protein response pathway. Moreover, LHB-induced ER stress promoted internal ribosome-entry-site-mediated selective translation of p27, and E3 ubiquitin ligase HRD1-mediated p27 ubiquitination and degradation. Ultimately, the decrease in p27 protein levels reduced G1/S arrest and promoted the progress of HCC by regulating the cell cycle.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Zhinan Chen
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi’an 710032, China; (Y.G.)
| | - Huijie Bian
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi’an 710032, China; (Y.G.)
| |
Collapse
|
18
|
Shoraka S, Hosseinian SM, Hasibi A, Ghaemi A, Mohebbi SR. The role of hepatitis B virus genome variations in HBV-related HCC: effects on host signaling pathways. Front Microbiol 2023; 14:1213145. [PMID: 37588887 PMCID: PMC10426804 DOI: 10.3389/fmicb.2023.1213145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/12/2023] [Indexed: 08/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a significant global health issue, with a high prevalence in many regions. There are variations in the etiology of HCC in different regions, but most cases are due to long-term infection with viral hepatitis. Hepatitis B virus (HBV) is responsible for more than 50% of virus-related HCC, which highlights the importance of HBV in pathogenesis of the disease. The development and progression of HBV-related HCC is a complex multistep process that can involve host, viral, and environmental factors. Several studies have suggested that some HBV genome mutations as well as HBV proteins can dysregulate cell signaling pathways involved in the development of HCC. Furthermore, it seems that the pathogenicity, progression of liver diseases, response to treatment and also viral replication are different among HBV mutants. Understanding the relationship between HBV genome variations and host signaling pathway alteration will improve our understanding of the molecular pathogenesis of HBV-related HCC. Furthermore, investigating commonly dysregulated pathways in HBV-related HCC is necessary to discover more specific therapeutic targets and develop more effective strategies for HCC treatment. The objective of this review is to address the role of HBV in the HCC progression and primarily focus on the impacts of HBV genome variations on HCC-related signaling pathways.
Collapse
Affiliation(s)
- Shahrzad Shoraka
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Seyed Mahdi Hosseinian
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ayda Hasibi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Ghaemi
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Ebrahimi N, Far NP, Fakhr SS, Faghihkhorasani F, Miraghel SA, Chaleshtori SR, Rezaei-Tazangi F, Beiranvand S, Baziyar P, Manavi MS, Zarrabi A, Nabavi N, Ren J, Aref AR. The endocannabinoid system, a new gatekeeper in the pharmacology of human hepatocellular carcinoma. ENVIRONMENTAL RESEARCH 2023; 228:115914. [PMID: 37062475 DOI: 10.1016/j.envres.2023.115914] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/01/2023] [Accepted: 04/13/2023] [Indexed: 05/06/2023]
Abstract
Despite numerous prevention methodologies and treatment options, hepatocellular carcinoma (HCC) still remains as the third leading life-threatening cancer. It is thus pertinent to develop new treatment modality to fight this devastating carcinoma. Ample recent studies have shown the anti-inflammatory and antitumor roles of the endocannabinoid system in various forms of cancers. Preclinical studies have also confirmed that cannabinoid therapy can be an optimal regimen for cancer treatments. The endocannabinoid system is involved in many cancer-related processes, including induction of endoplasmic reticulum (ER) stress-dependent apoptosis, autophagy, PITRK and ERK signaling pathways, cell invasion, epithelial-mesenchymal transition (EMT), and cancer stem cell (CSC) phenotypes. Moreover, changes in signaling transduction of the endocannabinoid system can be a potential diagnostic and prognostic biomarker for HCC. Due to its pivotal role in lipid metabolism, the endocannabinoid system affects metabolic reprogramming as well as lipid content of exosomes. In addition, due to the importance of non-coding RNAs (ncRNAs), several studies have examined the relationship between microRNAs and the endocannabinoid system in HCC. However, HCC is a pathological condition with high heterogeneity, and therefore using the endocannabinoid system for treatment has faced many controversies. While some studies favored a role of the endocannabinoid system in carcinogenesis and tumor induction, others exhibited the anticancer potential of endocannabinoids in HCC. In this review, specific studies delineating the relationship between endocannabinoids and HCC are examined. Based on collected findings, detailed studies of the molecular mechanism of endocannabinoids as well as preclinical studies for investigating therapeutic or carcinogenic impacts in HCC cancer are strongly suggested.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Iran
| | - Nazanin Pazhouhesh Far
- Department of Microbiology,Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Siavash Seifollahy Fakhr
- Division of Biotechnology, Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Campus, Hamar, Norway
| | | | - Seyed Ali Miraghel
- Nocivelli Institute for Molecular Medicine, Department of Molecular and Translational Medicine, University of Brescia, Italy
| | | | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Sheida Beiranvand
- Department of Biotechnology, School of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Payam Baziyar
- Department of Molecular and Cell Biology, Faculty of Basic Science, Uinversity of Mazandaran, Babolsar, Iran
| | | | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai, 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, WA, 98195, USA
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA; Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA, 02210, USA.
| |
Collapse
|
20
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Pathogenesis of Hepatocellular Carcinoma: The Interplay of Apoptosis and Autophagy. Biomedicines 2023; 11:1166. [PMID: 37189787 PMCID: PMC10135776 DOI: 10.3390/biomedicines11041166] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
The pathogenesis of hepatocellular carcinoma (HCC) is a multifactorial process that has not yet been fully investigated. Autophagy and apoptosis are two important cellular pathways that are critical for cell survival or death. The balance between apoptosis and autophagy regulates liver cell turnover and maintains intracellular homeostasis. However, the balance is often dysregulated in many cancers, including HCC. Autophagy and apoptosis pathways may be either independent or parallel or one may influence the other. Autophagy may either inhibit or promote apoptosis, thus regulating the fate of the liver cancer cells. In this review, a concise overview of the pathogenesis of HCC is presented, with emphasis on new developments, including the role of endoplasmic reticulum stress, the implication of microRNAs and the role of gut microbiota. The characteristics of HCC associated with a specific liver disease are also described and a brief description of autophagy and apoptosis is provided. The role of autophagy and apoptosis in the initiation, progress and metastatic potential is reviewed and the experimental evidence indicating an interplay between the two is extensively analyzed. The role of ferroptosis, a recently described specific pathway of regulated cell death, is presented. Finally, the potential therapeutic implications of autophagy and apoptosis in drug resistance are examined.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Department of Gastroenterology, PAGNI University Hospital, University of Crete School of Medicine, 71500 Heraklion, Crete, Greece
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
| | - Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Central Macedonia, Greece
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Central Macedonia, Greece
| |
Collapse
|
21
|
Endoplasmic Reticulum Stress in Hepatitis B Virus and Hepatitis C Virus Infection. Viruses 2022; 14:v14122630. [PMID: 36560634 PMCID: PMC9780809 DOI: 10.3390/v14122630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Endoplasmic reticulum (ER) stress, a type of cellular stress, always occurs when unfolded or misfolded proteins accumulating in the ER exceed the protein folding capacity. Because of the demand for rapid viral protein synthesis after viral infection, viral infections become a risk factor for ER stress. The hepatocyte is a cell with large and well-developed ER, and hepatitis virus infection is widespread in the population, indicating the interaction between hepatitis viruses and ER stress may have significance for managing liver diseases. In this paper, we review the process that is initiated by the hepatocyte through ER stress against HBV and HCV infection and explain how this information can be helpful in the treatment of HBV/HCV-related diseases.
Collapse
|
22
|
Yang JY, Wu YH, Pan MYC, Chiou YT, Lee RKL, Li TN, Wang LHC. Chemical-induced degradation of PreS2 mutant surface antigen via the induction of microautophagy. Antiviral Res 2022; 207:105417. [PMID: 36122619 DOI: 10.1016/j.antiviral.2022.105417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 08/29/2022] [Accepted: 09/09/2022] [Indexed: 11/02/2022]
Abstract
Naturally evolved immune-escape PreS2 mutant is an oncogenic caveat of liver cirrhosis and hepatocellular carcinoma (HCC) during chronic hepatitis B virus (HBV) infection. PreS2 mutant is prevalent in above 50% of patients with HCC. In addition, intrahepatic expression of PreS2 mutant large surface antigen (PreS2-LHBS) induces endoplasmic reticulum stress, mitochondria dysfunction, cytokinesis failure, and subsequent chromosome hyperploidy. As PreS2-LHBS has no enzymatic activity, the development of PreS2-specific inhibitors can be challenging. In this study, we aim to identify inhibitors of PreS2-LHBS via the induction of protein-specific degradation. We set up a large-scale protein stability reporter platform and applied an FDA-approved drug library for the screening. We identified ABT199 as a negative modulator of PreS2-LHBS, which induced the degradation of PreS2-LHBS without affecting the general cell viability in both hepatoma and immortalized hepatocytes. Next, by affinity purification screening, we found that PreS2-LHBS interacted with HSC70, a microautophagy mediating chaperone. Simultaneously, inhibitions of lysosomal degradation or microautophagy restored the expression of PreS2-LHBS, suggesting microautophagy is involved in ABT199-induced PreS2-LHBS degradation. Notably, a 24-hr treatment of ABT199 was sufficient for the reduction of DNA damage and cytokinesis failure in PreS2-LHBS expressing hepatocytes. In addition, a persistent treatment of ABT199 for 3 weeks reversed chromosome hyperploidy in PreS2-LHBS cells and suppressed anchorage-independent growth of HBV-positive hepatoma cells. Together, this study identified ABT-199 as a negative modulator of PreS2-LHBS via mediating microautophagy. Our results indicated that long-term inhibition of PreS2-LHBS may serve as a novel strategy for the therapeutic prevention of HBV-mediated HCC.
Collapse
Affiliation(s)
- Joey Yi Yang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Hsuan Wu
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Max Yu-Chen Pan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Ting Chiou
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Richard Kuan-Lin Lee
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Tian-Neng Li
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Lily Hui-Ching Wang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
23
|
Tian Z, Xu C, Yang P, Lin Z, Wu W, Zhang W, Ding J, Ding R, Zhang X, Dou K. Molecular pathogenesis: Connections between viral hepatitis-induced and non-alcoholic steatohepatitis-induced hepatocellular carcinoma. Front Immunol 2022; 13:984728. [PMID: 36189208 PMCID: PMC9520190 DOI: 10.3389/fimmu.2022.984728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/31/2022] [Indexed: 12/02/2022] Open
Abstract
Hepatocellular carcinoma(HCC) is the sixth most common cancer in the world and is usually caused by viral hepatitis (HBV and HCV), alcoholic, and non-alcoholic fatty liver disease(NAFLD). Viral hepatitis accounts for 80% of HCC cases worldwide. In addition, With the increasing incidence of metabolic diseases, NAFLD is now the most common liver disease and a major risk factor for HCC in most developed countries. This review mainly described the specificity and similarity between the pathogenesis of viral hepatitis(HBV and HCV)-induced HCC and NAFLD-induced HCC. In general, viral hepatitis promotes HCC development mainly through specific encoded viral proteins. HBV can also exert its tumor-promoting mechanism by integrating into the host chromosome, while HCV cannot. Viral hepatitis-related HCC and NASH-related HCC differ in terms of genetic factors, and epigenetic modifications (DNA methylation, histone modifications, and microRNA effects). In addition, both of them can lead to HCC progression through abnormal lipid metabolism, persistent inflammatory response, immune and intestinal microbiome dysregulation.
Collapse
Affiliation(s)
- Zelin Tian
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Chen Xu
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Peijun Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Zhibin Lin
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Wenlong Wu
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Wenjie Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Jian Ding
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Rui Ding
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Xuan Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Xuan Zhang, ; Kefeng Dou,
| | - Kefeng Dou
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Xuan Zhang, ; Kefeng Dou,
| |
Collapse
|
24
|
Pley C, Lourenço J, McNaughton AL, Matthews PC. Spacer Domain in Hepatitis B Virus Polymerase: Plugging a Hole or Performing a Role? J Virol 2022; 96:e0005122. [PMID: 35412348 PMCID: PMC9093120 DOI: 10.1128/jvi.00051-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/14/2022] [Indexed: 11/25/2022] Open
Abstract
Hepatitis B virus (HBV) polymerase is divided into terminal protein, spacer, reverse transcriptase, and RNase domains. Spacer has previously been considered dispensable, merely acting as a tether between other domains or providing plasticity to accommodate deletions and mutations. We explore evidence for the role of spacer sequence, structure, and function in HBV evolution and lineage, consider its associations with escape from drugs, vaccines, and immune responses, and review its potential impacts on disease outcomes.
Collapse
Affiliation(s)
- Caitlin Pley
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - José Lourenço
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- Biosystems and Integrative Sciences Institute, University of Lisbon, Lisbon, Portugal
| | - Anna L. McNaughton
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Nuffield Department of Medicine, University of Oxford Medawar Building, Oxford, United Kingdom
| | - Philippa C. Matthews
- Nuffield Department of Medicine, University of Oxford Medawar Building, Oxford, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
25
|
Hepatitis B Virus-Associated Hepatocellular Carcinoma. Viruses 2022; 14:v14050986. [PMID: 35632728 PMCID: PMC9146458 DOI: 10.3390/v14050986] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) is DNA-based virus, member of the Hepadnaviridae family, which can cause liver disease and increased risk of hepatocellular carcinoma (HCC) in infected individuals, replicating within the hepatocytes and interacting with several cellular proteins. Chronic hepatitis B can progressively lead to liver cirrhosis, which is an independent risk factor for HCC. Complications as liver decompensation or HCC impact the survival of HBV patients and concurrent HDV infection worsens the disease. The available data provide evidence that HBV infection is associated with the risk of developing HCC with or without an underlying liver cirrhosis, due to various direct and indirect mechanisms promoting hepatocarcinogenesis. The molecular profile of HBV-HCC is extensively and continuously under study, and it is the result of altered molecular pathways, which modify the microenvironment and lead to DNA damage. HBV produces the protein HBx, which has a central role in the oncogenetic process. Furthermore, the molecular profile of HBV-HCC was recently discerned from that of HDV-HCC, despite the obligatory dependence of HDV on HBV. Proper management of the underlying HBV-related liver disease is fundamental, including HCC surveillance, viral suppression, and application of adequate predictive models. When HBV-HCC occurs, liver function and HCC characteristics guide the physician among treatment strategies but always considering the viral etiology in the treatment choice.
Collapse
|
26
|
Thi Cam Huong N, Trung NQ, Luong BA, Tram DB, Vu HA, Bui HH, Pham Thi Le H. Mutations in the HBV PreS/S gene related to hepatocellular carcinoma in Vietnamese chronic HBV-infected patients. PLoS One 2022; 17:e0266134. [PMID: 35390033 PMCID: PMC8989215 DOI: 10.1371/journal.pone.0266134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 03/15/2022] [Indexed: 12/23/2022] Open
Abstract
Background Chronic hepatitis B virus (CHB) infection is a major health problem and leading cause of hepatocellular carcinoma (HCC) worldwide. Several point and deletion mutations on the PreS/S gene have been intensively considered associated with HCC. This study aimed to describe the characteristics of HBV PreS/S mutations in Vietnamese CHB-infected patients and their association with HCC. Methods This cross-sectional study was conducted from 02/2020 to 03/2021, recruited Vietnamese CHB-infected patients with HBV-DNA >3 log10-copies/mL and successful PreS/S gene sequencing. Mutations were detected by direct Sanger sequencing. Results 247 CHB-infected patients were recruited, characterized by 68.8% males, 54.7% HBV genotype B, 57.5% HBeAg positive, 23.1% fibrosis score ≥F3 and 19.8% HCC. 61.8% amino acid replacements were detected throughout the PreS1/PreS2/S genes. The most common point-mutations included N/H51Y/T/S/Q/P (30.4%), V68T/S/I (44.9%), T/N87S/T/P (46.2%) on PreS1 gene; T125S/N/P (30.8%), I150T (42.5%) on PreS2 gene; S53L (37.7%), A184V/G (39.3%), S210K/N/R/S (39.3%) on S gene. The rates of case(s) with any point-mutation on the Major Hydrophylic Region (MHR) and the "a" determinant region were 63.6% and 39.7%, respectively. Most of S point-mutations were presented with low rates such as T47A/E/V/K (9.3%), P120S/T (8.5%), G145R (2%). On multivariable analysis, males (OR = 4.51, 95%CI 1.78–11.4, p = 0.001), age≥40 (OR = 5.5, 95%CI 2.06–14.68, p = 0.001), W4P/R/Y on PreS1 (OR = 11.56, 95%CI 1.99–67.05, p = 0.006) and 4 S point-mutations as: T47A/E/V/K (OR = 3.67, 95%CI 1.19–11.29, p = 0.023), P120S/T (OR = 3.38, 95%CI 1.09–10.49, p = 0.035), S174N (OR = 29.73, 95%CI 2.12–417.07, p = 0.012), P203R (OR = 8.45, 95%CI 1.43–50.06, p = 0.019) were associated with HCC. Conclusions We detected 61% amino acid changes on PreS/S regions in Vietnamese CHB patients. One point-mutation at amino acid 4 on PreS1 gene and 4 point-mutations at amino acids 47, 120, 174, and 203 on S gene were associated with HCC. Further investigations are recommended to further clarify the relationship and interaction between mutations in HBV genome and HCC progression.
Collapse
Affiliation(s)
- Nguyen Thi Cam Huong
- Department of Infectious Diseases, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
- Department of Gastroenterology, University Medical Center, Ho Chi Minh City, Vietnam
- * E-mail:
| | - Nguyen Quang Trung
- Department of Infectious Diseases, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
- Department of Gastroenterology, University Medical Center, Ho Chi Minh City, Vietnam
| | - Bac An Luong
- Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Duong Bich Tram
- Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Hoang Anh Vu
- Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Hoang Huu Bui
- Department of Gastroenterology, University Medical Center, Ho Chi Minh City, Vietnam
| | - Hoa Pham Thi Le
- Department of Infectious Diseases, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
- Department of Gastroenterology, University Medical Center, Ho Chi Minh City, Vietnam
| |
Collapse
|
27
|
Proulx J, Ghaly M, Park IW, Borgmann K. HIV-1-Mediated Acceleration of Oncovirus-Related Non-AIDS-Defining Cancers. Biomedicines 2022; 10:biomedicines10040768. [PMID: 35453518 PMCID: PMC9024568 DOI: 10.3390/biomedicines10040768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 11/25/2022] Open
Abstract
With the advent of combination antiretroviral therapy (cART), overall survival has been improved, and the incidence of acquired immunodeficiency syndrome (AIDS)-defining cancers has also been remarkably reduced. However, non-AIDS-defining cancers among human immunodeficiency virus-1 (HIV-1)-associated malignancies have increased significantly so that cancer is the leading cause of death in people living with HIV in certain highly developed countries, such as France. However, it is currently unknown how HIV-1 infection raises oncogenic virus-mediated cancer risks in the HIV-1 and oncogenic virus co-infected patients, and thus elucidation of the molecular mechanisms for how HIV-1 expedites the oncogenic viruses-triggered tumorigenesis in the co-infected hosts is imperative for developing therapeutics to cure or impede the carcinogenesis. Hence, this review is focused on HIV-1 and oncogenic virus co-infection-mediated molecular processes in the acceleration of non-AIDS-defining cancers.
Collapse
|
28
|
Anti-rheumatic drug-induced hepatitis B virus reactivation and preventive strategies for hepatocellular carcinoma. Pharmacol Res 2022; 178:106181. [PMID: 35301112 DOI: 10.1016/j.phrs.2022.106181] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/13/2022]
Abstract
To date, an estimated 3 million people worldwide have been infected with chronic hepatitis B virus (HBV). Although anti-HBV therapies have improved the long-term survival profile of chronic carriers, viral reactivation still poses a significant challenge for preventing HBV-related hepatitis, hepatocellular carcinoma (HCC), and death. Immuno-modulating drugs, which are widely applied in managing rheumatic conditions, are commonly associated with HBV reactivation (HBVr) as a result of drug-induced immune suppression. However, there are few reports on the risk of HBVr and the medication management plan for HBV carriers, especially rheumatic patients. In this review, we summarize immuno-modulating drug-induced HBVr during rheumatoid therapy and its preventive strategies for HBVr-induced liver diseases, especially cirrhosis and HCC. These findings will assist with developing treatments for rheumatic patients, and prevent HBV-related cirrhosis and HCC.
Collapse
|
29
|
Wang X, Wei Z, Cheng B, Li J, He Y, Lan T, Kemper T, Lin Y, Jiang B, Jiang Y, Meng Z, Lu M. Endoplasmic reticulum stress promotes HBV production by enhancing use of the autophagosome/multivesicular body axis. Hepatology 2022; 75:438-454. [PMID: 34580902 DOI: 10.1002/hep.32178] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/06/2021] [Accepted: 09/24/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND AIMS HBV infection has been reported to trigger endoplasmic reticulum (ER) stress and initiate autophagy. However, how ER stress and autophagy influence HBV production remains elusive. Here, we studied the effect of tunicamycin (TM), an N-glycosylation inhibitor and ER stress inducer, on HBV replication and secretion and examined the underlying mechanisms. APPROACH AND RESULTS Protein disulfide isomerase (an ER marker), microtubule-associated protein 1 light chain 3 beta (an autophagosome [AP] marker), and sequestosome-1 (a typical cargo for autophagic degradation) expression were tested in liver tissues of patients with chronic HBV infection and hepatoma cell lines. The role of TM treatment in HBV production and trafficking was examined in hepatoma cell lines. TM treatment that mimics HBV infection triggered ER stress and increased AP formation, resulting in enhanced HBV replication and secretion of subviral particles (SVPs) and naked capsids. Additionally, TM reduced the number of early endosomes and HBsAg localization in this compartment, causing HBsAg/SVPs to accumulate in the ER. Thus, TM-induced AP formation serves as an alternative pathway for HBsAg/SVP trafficking. Importantly, TM inhibited AP-lysosome fusion, accompanied by enhanced AP/late endosome (LE)/multivesicular body fusion, to release HBsAg/SVPs through, or along with, exosome release. Notably, TM treatment inhibited HBsAg glycosylation, resulting in impairment of HBV virions' envelopment and secretion, but it was not critical for HBsAg/SVP trafficking in our cell systems. CONCLUSIONS TM-induced ER stress and autophagic flux promoted HBV replication and the release of SVPs and naked capsids through the AP-LE/MVB axis.
Collapse
Affiliation(s)
- Xueyu Wang
- Department of Infectious DiseasesThe Second Xiangya HospitalCentral South UniversityChangshaHunan ProvinceChina
- Institute of VirologyUniversity Hospital EssenUniversity of Duisburg-EssenEssenGermany
| | - Zhiqiang Wei
- Institute of VirologyUniversity Hospital EssenUniversity of Duisburg-EssenEssenGermany
- Institute of Biomedical ResearchHubei Clinical Research Center for Precise Diagnosis and Treatment of Liver CancerTaihe HospitalHubei University of MedicineShiyanChina
| | - Bin Cheng
- Institute of Biomedical ResearchHubei Clinical Research Center for Precise Diagnosis and Treatment of Liver CancerTaihe HospitalHubei University of MedicineShiyanChina
| | - Jia Li
- Institute of VirologyUniversity Hospital EssenUniversity of Duisburg-EssenEssenGermany
| | - Yulin He
- Institute of Biomedical ResearchHubei Clinical Research Center for Precise Diagnosis and Treatment of Liver CancerTaihe HospitalHubei University of MedicineShiyanChina
| | - Tingyu Lan
- Institute of Biomedical ResearchHubei Clinical Research Center for Precise Diagnosis and Treatment of Liver CancerTaihe HospitalHubei University of MedicineShiyanChina
| | - Thekla Kemper
- Institute of VirologyUniversity Hospital EssenUniversity of Duisburg-EssenEssenGermany
| | - Yong Lin
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of EducationChongqing Medical UniversityChongqingChina
| | - Bin Jiang
- Institute of Biomedical ResearchHubei Clinical Research Center for Precise Diagnosis and Treatment of Liver CancerTaihe HospitalHubei University of MedicineShiyanChina
- Department of Hepatobiliary Pancreatic SurgeryTaihe HospitalHubei University of MedicineShiyanChina
| | - Yongfang Jiang
- Department of Infectious DiseasesThe Second Xiangya HospitalCentral South UniversityChangshaHunan ProvinceChina
| | - Zhongji Meng
- Institute of Biomedical ResearchHubei Clinical Research Center for Precise Diagnosis and Treatment of Liver CancerTaihe HospitalHubei University of MedicineShiyanChina
- Department of Infectious DiseasesTaihe HospitalHubei University of MedicineShiyanChina
| | - Mengji Lu
- Institute of VirologyUniversity Hospital EssenUniversity of Duisburg-EssenEssenGermany
| |
Collapse
|
30
|
Abstract
Hepatitis B virus (HBV) is a hepatotropic virus and an important human pathogen. There are an estimated 296 million people in the world that are chronically infected by this virus, and many of them will develop severe liver diseases including hepatitis, cirrhosis and hepatocellular carcinoma (HCC). HBV is a small DNA virus that replicates via the reverse transcription pathway. In this review, we summarize the molecular pathways that govern the replication of HBV and its interactions with host cells. We also discuss viral and non-viral factors that are associated with HBV-induced carcinogenesis and pathogenesis, as well as the role of host immune responses in HBV persistence and liver pathogenesis.
Collapse
Affiliation(s)
- Yu-Chen Chuang
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Kuen-Nan Tsai
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Jing-Hsiung James Ou
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| |
Collapse
|
31
|
Gionda PO, Gomes-Gouvea M, Malta FDM, Sebe P, Salles APM, Francisco RDS, José-Abrego A, Roman S, Panduro A, Pinho JRR. Analysis of the complete genome of HBV genotypes F and H found in Brazil and Mexico using the next generation sequencing method. Ann Hepatol 2022; 27 Suppl 1:100569. [PMID: 34757035 DOI: 10.1016/j.aohep.2021.100569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES Hepatitis B Virus is classified into ten different genotypes (A- J). Genotypes F and H cluster apart from others in phylogenetic trees and is particularly frequent in the Americas. The aim of this study was to sequence complete genomes of samples of HBV genotypes F and H from Brazil and Mexico using next generation sequencing (NGS) and to study relevant characteristics for the disease associated with this virus. MATERIALS AND METHODS Ninety plasma samples with detectable HBV DNA belonging to the F (n=59) and H (n=31) genotypes were submitted to amplification of the complete HBV genome by three different methologies. Data analysis was developed using bioinformatics tools for quality assurance and comprehensive coverage of the genome. Sequences were aligned with reference sequences for subgenotyping and detecting variants in relevant positions. A phylogenetical tree was constructed using Bayesian methods. RESULTS HBV genome of 31 samples were amplified and 18 of them were sequenced (HBV/F=16 and HBV/H=2). One genotype F sample was co-infected with the F1b and F3 subgenotypes, while the other samples were all F2a subgenotype. Two genotype H samples clustered with other Mexican sequences. The main variants observed were found in preS and S genes (7/18) and mutations in the precore/core region (11/18). CONCLUSIONS A NGS methodology was applied to F and H genotypes samples from Mexico and Brazil to fully characterize their sequences. This methodology will be relevant for clinical and epidemiological studies of hepatitis B in Latin America.
Collapse
Affiliation(s)
- Patrícia Oliveira Gionda
- LIM-07, Institute of Tropical Medicine, Department of Gastroenterology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Michele Gomes-Gouvea
- LIM-07, Institute of Tropical Medicine, Department of Gastroenterology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Fernanda de Mello Malta
- LIM-07, Institute of Tropical Medicine, Department of Gastroenterology, University of São Paulo School of Medicine, São Paulo, Brazil; Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Pedro Sebe
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Ana Paula Moreira Salles
- LIM-07, Institute of Tropical Medicine, Department of Gastroenterology, University of São Paulo School of Medicine, São Paulo, Brazil; Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Alexis José-Abrego
- Department of Molecular Biology in Medicine, Civil Hospital of Guadalajara, "Fray Antonio Alcalde," Guadalajara, Mexico; Health Sciences Center, University of Guadalajara, Guadalajara, Mexico
| | - Sonia Roman
- Department of Molecular Biology in Medicine, Civil Hospital of Guadalajara, "Fray Antonio Alcalde," Guadalajara, Mexico; Health Sciences Center, University of Guadalajara, Guadalajara, Mexico
| | - Arturo Panduro
- Department of Molecular Biology in Medicine, Civil Hospital of Guadalajara, "Fray Antonio Alcalde," Guadalajara, Mexico; Health Sciences Center, University of Guadalajara, Guadalajara, Mexico
| | - João Renato Rebello Pinho
- LIM-07, Institute of Tropical Medicine, Department of Gastroenterology, University of São Paulo School of Medicine, São Paulo, Brazil; Hospital Israelita Albert Einstein, São Paulo, Brazil; LIM-03, Central Laboratories Division, Clinics Hospital, SãoPaulo School of Medicine, University of SãoPaulo, SãoPaulo, Brazil.
| |
Collapse
|
32
|
Salpini R, D’Anna S, Benedetti L, Piermatteo L, Gill U, Svicher V, Kennedy PTF. Hepatitis B virus DNA integration as a novel biomarker of hepatitis B virus-mediated pathogenetic properties and a barrier to the current strategies for hepatitis B virus cure. Front Microbiol 2022; 13:972687. [PMID: 36118192 PMCID: PMC9478028 DOI: 10.3389/fmicb.2022.972687] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic infection with Hepatitis B Virus (HBV) is a major cause of liver-related morbidity and mortality worldwide. HBV-DNA integration into the human genome is recognized as a frequent event occurring during the early phases of HBV infection and characterizing the entire course of HBV natural history. The development of refined molecular biology technologies sheds new light on the functional implications of HBV-DNA integration into the human genome, including its role in the progression of HBV-related pathogenesis and in triggering the establishment of pro-oncogenic mechanisms, promoting the development of hepatocellular carcinoma. The present review provides an updated and comprehensive overview of the current body of knowledge on HBV-DNA integration, focusing on the molecular mechanisms underlying HBV-DNA integration and its occurrence throughout the different phases characterizing the natural history of HBV infection. Furthermore, here we discuss the main clinical implications of HBV integration as a biomarker of HBV-related pathogenesis, particularly in reference to hepatocarcinogenesis, and how integration may act as a barrier to the achievement of HBV cure with current and novel antiviral therapies. Overall, a more refined insight into the mechanisms and functionality of HBV integration is paramount, since it can potentially inform the design of ad hoc diagnostic tools with the ability to reveal HBV integration events perturbating relevant intracellular pathways and for identifying novel therapeutic strategies targeting alterations directly related to HBV integration.
Collapse
Affiliation(s)
- Romina Salpini
- Department of Experimental Medicine, University of Rome Tor Vergata, Roma, Italy
| | - Stefano D’Anna
- Department of Experimental Medicine, University of Rome Tor Vergata, Roma, Italy
| | - Livia Benedetti
- Department of Experimental Medicine, University of Rome Tor Vergata, Roma, Italy
| | - Lorenzo Piermatteo
- Department of Experimental Medicine, University of Rome Tor Vergata, Roma, Italy
| | - Upkar Gill
- Barts Liver Centre, Barts and The London School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Valentina Svicher
- Department of Biology, University of Rome Tor Vergata, Roma, Italy
- *Correspondence: Valentina Svicher,
| | - Patrick T. F. Kennedy
- Barts Liver Centre, Barts and The London School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, United Kingdom
- Patrick T. F. Kennedy,
| |
Collapse
|
33
|
Satilmis B, Sahin TT, Cicek E, Akbulut S, Yilmaz S. Hepatocellular Carcinoma Tumor Microenvironment and Its Implications in Terms of Anti-tumor Immunity: Future Perspectives for New Therapeutics. J Gastrointest Cancer 2021; 52:1198-1205. [PMID: 34625923 DOI: 10.1007/s12029-021-00725-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Hepatocellular cancer is an insidious tumor that is often diagnosed in a later stage of life. The tumor microenvironment is the key to tumorigenesis and progression. Many cellular and non-cellular components orchestrate the intricate process of hepatocarcinogenesis. The most important feature of hepatocellular cancer is the immune evasion process. The present review aims to summarize the key components of the tumor microenvironment in the immune evasion process. METHODS Google Scholar and PubMed databases have been searched for the mesh terms "Hepatocellular carcinoma" or "Liver Cancer" and "microenvironment." The articles were reviewed and the components of the tumor microenvironment were summarized. RESULTS The tumor microenvironment is composed of tumor cells and non-tumoral stromal and immune cells. HCC tumor microenvironment supports aggressive tumor behavior, provides immune evasion, and is an obstacle for current immunotherapeutic strategies. The components of the tumor microenvironment are intratumoral macrophages (tumor-associated macrophages (TAM)), bone marrow-derived suppressor cells, tumor-associated neutrophils (TAN), fibroblasts in the tumor microenvironment, and the activated hepatic stellate cells. CONCLUSION There are intricate mechanisms that drive hepatocarcinogenesis. The tumor microenvironment is at the center of all the complex and diverse mechanisms. Effective and multistep immunotherapies should be developed to target different components of the tumor microenvironment.
Collapse
Affiliation(s)
- Basri Satilmis
- Liver Transplant Institute and Faculty of Medicine Department of Surgery, Inonu University, Battalgazi, 44000, Malatya, Turkey
| | - Tevfik Tolga Sahin
- Liver Transplant Institute and Faculty of Medicine Department of Surgery, Inonu University, Battalgazi, 44000, Malatya, Turkey.
| | - Egemen Cicek
- Liver Transplant Institute and Faculty of Medicine Department of Surgery, Inonu University, Battalgazi, 44000, Malatya, Turkey
| | - Sami Akbulut
- Liver Transplant Institute and Faculty of Medicine Department of Surgery, Inonu University, Battalgazi, 44000, Malatya, Turkey
| | - Sezai Yilmaz
- Liver Transplant Institute and Faculty of Medicine Department of Surgery, Inonu University, Battalgazi, 44000, Malatya, Turkey
| |
Collapse
|
34
|
Tsuge M. The association between hepatocarcinogenesis and intracellular alterations due to hepatitis B virus infection. Liver Int 2021; 41:2836-2848. [PMID: 34559952 DOI: 10.1111/liv.15065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/13/2021] [Accepted: 09/19/2021] [Indexed: 02/06/2023]
Abstract
Chronic hepatitis B virus (HBV) infection is a worldwide health problem leading to severe liver dysfunction, including liver cirrhosis and hepatocellular carcinoma. Although current antiviral therapies for chronic HBV infection have been improved and can lead to a strong suppression of viral replication, it is difficult to completely eliminate the virus with these therapies once chronic HBV infection is established in the host. Furthermore, chronic HBV infection alters intracellular metabolism and signalling pathways, resulting in the activation of carcinogenesis in the liver. HBV produces four viral proteins: hepatitis B surface-, hepatitis B core-, hepatitis B x protein, and polymerase; each plays an important role in HBV replication and the intracellular signalling pathways associated with hepatocarcinogenesis. In vitro and in vivo experimental models for analyzing HBV infection and replication have been established, and gene expression analyses using microarrays or next-generation sequencing have also been developed. Thus, it is possible to clarify the molecular mechanisms for intracellular alterations, such as endoplasmic reticulum stress, oxidative stress, and epigenetic modifications. In this review, the impact of HBV viral proteins and intracellular alterations in HBV-associated hepatocarcinogenesis are discussed.
Collapse
Affiliation(s)
- Masataka Tsuge
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan.,Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
35
|
Zafrullah M, Vazquez C, Mixson-Hayden T, Purdy MA. In vitro characterization of six hepatitis B virus genotypes from clinical isolates using transfecting linear HBV genomes. J Gen Virol 2021; 102. [PMID: 34723786 DOI: 10.1099/jgv.0.001675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a global public health problem with about 257 million chronically infected people and over 887000 deaths annually. In this study, 32 whole HBV genomes of various genotypes were amplified from clinical isolates to create transfection clones. The clones were sequenced, and their biological properties characterized by transfecting linear HBV clones into HepG2 cells. We analysed the SPI and SPII promotor regions, X-gene, BCP/PC sequences, core, preS/S and HBV polymerase sequences. HBV clones analysed in this study revealed differential replication kinetics of viral nucleic acids and expression of proteins. Sequence analysis of HBV clones revealed mutations in preS1, preS2 and S genes; deletion and insertion and point mutations in BCP/PC region; including novel and previously reported mutations. Among the patient samples tested, HBV genotype B clones were more likely to have higher frequencies of mutations, while sub-genotype A1 and A2 clones tended to have fewer mutations. No polymerase drug resistant mutations were seen. HBeAg mutations were primarily in the BCP/PC region in genotype B, but core truncations were found in genotype E. S gene mutations affecting HBsAg expression and detection were seen in all genotypes except A2. Using an HBV clone with repetitive terminal sequences and a SapI restriction site allowed us to analyse HBV analyte production in cell culture and characterize the genetics of viral phenotypes using complete HBV genomes isolated from serum/plasma samples of infected patients.
Collapse
Affiliation(s)
- Mohammad Zafrullah
- Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Carlos Vazquez
- Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA.,Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.,Present address: Thermo Fisher Scientific, Gainesville, FL 32601, USA
| | - Tonya Mixson-Hayden
- Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Michael A Purdy
- Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| |
Collapse
|
36
|
Olagbenro M, Anderson M, Gaseitsiwe S, Powell EA, Gededzha MP, Selabe SG, Blackard JT. In silico analysis of mutations associated with occult hepatitis B virus (HBV) infection in South Africa. Arch Virol 2021; 166:3075-3084. [PMID: 34468889 PMCID: PMC11930061 DOI: 10.1007/s00705-021-05196-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 06/09/2021] [Indexed: 01/02/2023]
Abstract
Occult hepatitis B virus (OBI) infection is defined by the presence of viral DNA in the liver and/or serum in absence of hepatitis B surface antigen (HBsAg). While multiple studies have identified mutations that are associated with OBI, only a small portion of these mutations have been functionally characterized in vitro. Using complementary in silico approaches, the effects of OBI-associated amino acid mutations on HBV protein function in HBV/HIV-positive ART-naïve South Africans were evaluated. Two OBI-associated mutations in the PreS1 region, one in the PreS2 region, and seven in the surface region of subgenotype A1 sequences were identified as deleterious. In subgenotype A2 sequences, 11 OBI-associated mutations in the PreS1 region, seven in the PreS2 region, and 31 in the surface region were identified as deleterious. In the polymerase region, 14 OBI-associated mutations in subgenotype A1 and 71 OBI-associated mutations in subgenotype A2 were identified as deleterious. This study utilized in silico approaches to characterize the likely impact of OBI-associated mutations on viral function, thereby identifying and prioritizing candidates and reducing the significant cost associated with functional studies that are essential for mechanistic studies of the OBI phenotype.
Collapse
Affiliation(s)
- Matthew Olagbenro
- Division of Digestive Diseases, University of Cincinnati College of Medicine, ML 0595, Albert Sabin Way, Cincinnati, OH, 45267-0595, USA
| | | | | | - Eleanor A Powell
- Division of Digestive Diseases, University of Cincinnati College of Medicine, ML 0595, Albert Sabin Way, Cincinnati, OH, 45267-0595, USA
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Maemu P Gededzha
- Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of Witwatersrand and National Health Laboratory Service, Johannesburg, South Africa
- HIV and Hepatitis Research Unit, Department of Virology, Sefako Makgatho Health Sciences University and National Health Laboratory Service, Pretoria, South Africa
| | - Selokela G Selabe
- HIV and Hepatitis Research Unit, Department of Virology, Sefako Makgatho Health Sciences University and National Health Laboratory Service, Pretoria, South Africa
| | - Jason T Blackard
- Division of Digestive Diseases, University of Cincinnati College of Medicine, ML 0595, Albert Sabin Way, Cincinnati, OH, 45267-0595, USA.
- HIV and Hepatitis Research Unit, Department of Virology, Sefako Makgatho Health Sciences University and National Health Laboratory Service, Pretoria, South Africa.
| |
Collapse
|
37
|
Tsuge M. Are Humanized Mouse Models Useful for Basic Research of Hepatocarcinogenesis through Chronic Hepatitis B Virus Infection? Viruses 2021; 13:v13101920. [PMID: 34696350 PMCID: PMC8541657 DOI: 10.3390/v13101920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 12/19/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection is a global health problem that can lead to liver dysfunction, including liver cirrhosis and hepatocellular carcinoma (HCC). Current antiviral therapies can control viral replication in patients with chronic HBV infection; however, there is a risk of HCC development. HBV-related proteins may be produced in hepatocytes regardless of antiviral therapies and influence intracellular metabolism and signaling pathways, resulting in liver carcinogenesis. To understand the mechanisms of liver carcinogenesis, the effect of HBV infection in human hepatocytes should be analyzed. HBV infects human hepatocytes through transfer to the sodium taurocholate co-transporting polypeptide (NTCP). Although the NTCP is expressed on the hepatocyte surface in several animals, including mice, HBV infection is limited to human primates. Due to this species-specific liver tropism, suitable animal models for analyzing HBV replication and developing antivirals have been lacking since the discovery of the virus. Recently, a humanized mouse model carrying human hepatocytes in the liver was developed based on several immunodeficient mice; this is useful for analyzing the HBV life cycle, antiviral effects of existing/novel antivirals, and intracellular signaling pathways under HBV infection. Herein, the usefulness of human hepatocyte chimeric mouse models in the analysis of HBV-associated hepatocarcinogenesis is discussed.
Collapse
Affiliation(s)
- Masataka Tsuge
- Natural Science Center for Basic Research and Development, Department of Biomedical Science, Research and Development Division, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan; ; Tel.: +81-82-257-1510
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
- Research Center for Hepatology and Gastroenterology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| |
Collapse
|
38
|
Chen X, Zhang M, Li N, Pu R, Wu T, Ding Y, Cai P, Zhang H, Zhao J, Yin J, Cao G. Nucleotide variants in hepatitis B virus preS region predict the recurrence of hepatocellular carcinoma. Aging (Albany NY) 2021; 13:22256-22275. [PMID: 34534105 PMCID: PMC8507287 DOI: 10.18632/aging.203531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/03/2021] [Indexed: 02/07/2023]
Abstract
Background: Hepatitis B virus (HBV) variants in the preS region have been associated with hepatocellular carcinoma (HCC). However, the effect of the preS variants on HCC prognosis remains largely unknown. We aimed to identify the preS variants that reliably predict postoperative prognosis in HCC. Methods: RNA-seq data of 203 HCC patients retrieved from public database were screened for the preS variants related to HCC prognosis. The variants in the sera and tumors were then validated in our prospective cohort enrolling 103 HBV-associated HCC patients. Results: By analyzing prognosis-related gene sets in the RNA-seq data, 12 HBV preS variants were associated with HCC recurrence. Of those, G40C and C147T in the sera predicted an unfavorable recurrence-free survival in our cohort (hazard ratio [HR]=2.18, 95% confidence interval [CI]=1.37-3.47, p=0.001 for G40C; HR=1.84, 95% CI=1.15-2.92, p=0.012 for C147T). G40C and C147T were significantly associated with microscopic vascular invasion, larger tumor size, and abnormal liver function. Multivariate Cox regression analysis showed that G40C significantly increased the risk of HCC recurrence in patients with postoperative antiviral treatment. The HCC prognosis-prediction model consisting of α-fetoprotein and G40C in the sera achieved the best performance (sensitivity=0.80, specificity=0.70, and area under the curve=0.79). Functional analysis indicated that these two variants were associated with cell proliferation, chromosome instability, carcinogenesis, metastasis, and anticancer drug resistance. Conclusions: G40C and C147T are serological biomarkers for HCC prognosis and the prognostic model consisting of serological α-fetoprotein and G40C achieved the best performance in predicting postoperative prognosis.
Collapse
Affiliation(s)
- Xi Chen
- Department of Epidemiology, Faculty of Navy Medicine, Second Military Medical University, Shanghai, China
| | - Minfeng Zhang
- Department of Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Nan Li
- Department of Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Rui Pu
- Department of Epidemiology, Faculty of Navy Medicine, Second Military Medical University, Shanghai, China
| | - Ting Wu
- Department of Epidemiology, Faculty of Navy Medicine, Second Military Medical University, Shanghai, China
| | - Yibo Ding
- Department of Epidemiology, Faculty of Navy Medicine, Second Military Medical University, Shanghai, China
| | - Peng Cai
- Department of Epidemiology, Faculty of Navy Medicine, Second Military Medical University, Shanghai, China
| | - Hongwei Zhang
- Department of Epidemiology, Faculty of Navy Medicine, Second Military Medical University, Shanghai, China
| | - Jun Zhao
- Department of Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Jianhua Yin
- Department of Epidemiology, Faculty of Navy Medicine, Second Military Medical University, Shanghai, China
| | - Guangwen Cao
- Department of Epidemiology, Faculty of Navy Medicine, Second Military Medical University, Shanghai, China
| |
Collapse
|
39
|
Lok J, Agarwal K. Screening for Hepatocellular Carcinoma in Chronic Hepatitis B: An Update. Viruses 2021; 13:v13071333. [PMID: 34372539 PMCID: PMC8309969 DOI: 10.3390/v13071333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/27/2021] [Accepted: 07/06/2021] [Indexed: 11/24/2022] Open
Abstract
(1) Background: Hepatocellular carcinoma (HCC) is an important cause of mortality in individuals with chronic hepatitis B infection, with screening of high-risk groups recommended in all major international guidelines. Our understanding of the risk factors involved has improved over time, encouraging researchers to develop models that predict future risk of HCC development. (2) Methods: A literature search of the PubMed database was carried out to identify studies that derive or validate models predicting HCC development in patients with chronic hepatitis B. Subsequently, a second literature search was carried out to explore the potential role of novel viral biomarkers in this field. (3) Results: To date, a total of 23 models have been developed predicting future HCC risk, of which 12 have been derived from cohorts of treatment-naïve individuals. Most models have been developed in Asian populations (n = 20), with a smaller number in Caucasian cohorts (n = 3). All of the models demonstrate satisfactory performance in their original derivation cohorts, but many lack external validation. In recent studies, novel viral biomarkers have demonstrated utility in predicting HCC risk in patients with chronic hepatitis B, amongst both treated and treatment-naïve patients. (4) Conclusion: Several models have been developed to predict the risk of HCC development in individuals with chronic hepatitis B infection, but many have not been externally validated outside of the Asian population. Further research is needed to refine these models and facilitate a more tailored HCC surveillance programme in the future.
Collapse
Affiliation(s)
- James Lok
- Department of Gastroenterology, St. George’s Hospital, London SW17 0QT, UK
- Correspondence:
| | - Kosh Agarwal
- Institute of Liver Studies, King’s College Hospital, London SE5 9RS, UK;
| |
Collapse
|
40
|
Elpek GO. Molecular pathways in viral hepatitis-associated liver carcinogenesis: An update. World J Clin Cases 2021; 9:4890-4917. [PMID: 34307543 PMCID: PMC8283590 DOI: 10.12998/wjcc.v9.i19.4890] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/14/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of cancer among primary malignant tumors of the liver and is a consequential cause of cancer-related deaths worldwide. In recent years, uncovering the molecular mechanisms involved in the development and behavior of this tumor has led to the identification of multiple potential treatment targets. Despite the vast amount of data on this topic, HCC remains a challenging tumor to treat due to its aggressive behavior and complex molecular profile. Therefore, the number of studies aiming to elucidate the mechanisms involved in both carcinogenesis and tumor progression in HCC continues to increase. In this context, the close association of HCC with viral hepatitis has led to numerous studies focusing on the direct or indirect involvement of viruses in the mechanisms contributing to tumor development and behavior. In line with these efforts, this review was undertaken to highlight the current understanding of the molecular mechanisms by which hepatitis B virus (HBV) and hepatitis C virus (HCV) participate in oncogenesis and tumor progression in HCC and summarize new findings. Cumulative evidence indicates that HBV DNA integration promotes genomic instability, resulting in the overexpression of genes related to cancer development, metastasis, and angiogenesis or inactivation of tumor suppressor genes. In addition, genetic variations in HBV itself, especially preS2 deletions, may play a role in malignant transformation. Epigenetic dysregulation caused by both viruses might also contribute to tumor formation and metastasis by modifying the methylation of DNA and histones or altering the expression of microRNAs. Similarly, viral proteins of both HBV and HCV can affect pathways that are important anticancer targets. The effects of these two viruses on the Hippo-Yap-Taz pathway in HCC development and behavior need to be investigated. Additional, comprehensive studies are also needed to determine these viruses' interaction with integrins, farnesoid X, and the apelin system in malignant transformation and tumor progression. Although the relationship of persistent inflammation caused by HBV and HCV hepatitis with carcinogenesis is well defined, further studies are warranted to decipher the relationship among inflammasomes and viruses in carcinogenesis and elucidate the role of virus-microbiota interactions in HCC development and progression.
Collapse
Affiliation(s)
- Gulsum Ozlem Elpek
- Department of Pathology, Akdeniz University Medical School, Antalya 07070, Turkey
| |
Collapse
|
41
|
Lost Small Envelope Protein Expression from Naturally Occurring PreS1 Deletion Mutants of Hepatitis B Virus Is Often Accompanied by Increased HBx and Core Protein Expression as Well as Genome Replication. J Virol 2021; 95:e0066021. [PMID: 33910956 PMCID: PMC8223946 DOI: 10.1128/jvi.00660-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatitis B virus (HBV) transcribes coterminal mRNAs of 0.7 to 3.5 kb from the 3.2-kb covalently closed circular DNA, with the 2.1-kb RNA being most abundant. The 0.7-kb RNA produces HBx protein, a transcriptional transactivator, while the 3.5-kb pregenomic RNA (pgRNA) drives core and P protein translation as well as genome replication. The large (L) and small (S) envelope proteins are translated from the 2.4-kb and 2.1-kb RNAs, respectively, with the majority of the S protein being secreted as noninfectious subviral particles and detected as hepatitis B surface antigen (HBsAg). pgRNA transcription could inhibit transcription of subgenomic RNAs. The present study characterized naturally occurring in-frame deletions in the 3' preS1 region, which not only codes for L protein but also serves as the promoter for 2.1-kb RNA. The human hepatoma cell line Huh7 was transiently transfected with subgenomic expression constructs for envelope (and HBx) proteins, dimeric constructs, or constructs mimicking covalently closed circular DNA. The results confirmed lost 2.1-kb RNA transcription and HBsAg production from many deletion mutants, accompanied by increases in other (especially 2.4-kb) RNAs, intracellular HBx and core proteins, and replicative DNA but impaired virion and L protein secretion. The highest intracellular L protein levels were achieved by mutants that had residual S protein expression or retained the matrix domain in L protein. Site-directed mutagenesis of a high replicating deletion mutant suggested that increased HBx protein expression and blocked virion secretion both contributed to the high replication phenotype. Our findings could help explain why such deletions are selected at a late stage of chronic HBV infection and how they contribute to viral pathogenesis. IMPORTANCE Expression of hepatitis B e antigen (HBeAg) and overproduction of HBsAg by wild-type HBV are implicated in the induction of immune tolerance to achieve chronic infection. How HBV survives the subsequent immune clearance phase remains incompletely understood. Our previous characterization of core promoter mutations to reduce HBeAg production revealed the ability of the 3.5-kb pgRNA to diminish transcription of coterminal RNAs of 2.4 kb, 2.1 kb, and 0.7 kb. The later stage of chronic HBV infection often selects for in-frame deletions in the preS region. Here, we found that many 3' preS1 deletions prevented transcription of the 2.1-kb RNA for HBsAg production, which was often accompanied by increases in intracellular 3.5-, 0.7-, and especially 2.4-kb RNAs, HBx and core proteins, and replicative DNA but lost virion secretion. These findings established the biological consequences of preS1 deletions, thus shedding light on why they are selected and how they contribute to hepatocarcinogenesis.
Collapse
|
42
|
Bao CY, Hung HC, Chen YW, Fan CY, Huang CJ, Huang W. Requirement of cyclin-dependent kinase function for hepatitis B virus cccDNA synthesis as measured by digital PCR. Ann Hepatol 2021; 19:280-286. [PMID: 31964596 DOI: 10.1016/j.aohep.2019.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES HBV covalently closed circular (ccc) DNA is the key player in viral persistence and an important predictive biomarker for hepatitis relapse. Precise quantification of intracellular cccDNA is challenging because cccDNA is present in very low levels in hepatocytes, where it also co-exists with a large excess amount of relaxed circular (rc) DNA. We aimed to develop a highly sensitive cccDNA detection method for cccDNA quantification by digital PCR (dPCR). PATIENTS OR MATERIALS AND METHODS A standard plasmid containing the whole HBV genome in the closed circular conformation was employed to characterize the performance of dPCR. rcDNA in the growth medium of HBV-producing HepAD38 cells was used as a matrix for cccDNA detection. Intrahepatic cccDNA measurement by dPCR and qPCR was performed to determine the correlation of the analysis results for the two methods. RESULTS The limit of detection (LOD) of the cccDNA dPCR was 1.05copy/μl, and the linear range of detection was 1.02×104copies/μl, achieving a dynamic detection range of 104-fold. cccDNA measurement using excess rcDNA as the matrix did not reveal false-positive detection, indicating that dPCR was highly specific. In the HepAD38 cells, the cccDNA levels measured by dPCR were highly correlated with those measured by qPCR but had a higher sensitivity. The CDK inhibitor AZD-5438 was found to block intracellular cccDNA synthesis. CONCLUSIONS Dpcr greatly improved the sensitivity and specificity of cccDNA detection. Host CDK activities are likely required for cccDNA synthesis. dPCR can potentially be applied for drug screening for effective cccDNA inhibitors.
Collapse
Affiliation(s)
- Ching-Yu Bao
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsu-Chin Hung
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Wen Chen
- Cold Spring Biotech Corp, New Taipei City, Taiwan
| | | | - Chien-Jung Huang
- Department of Internal Medicine, Taipei City Hospital, Taipei, Taiwan
| | - Wenya Huang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan.
| |
Collapse
|
43
|
Campos-Valdez M, Monroy-Ramírez HC, Armendáriz-Borunda J, Sánchez-Orozco LV. Molecular Mechanisms during Hepatitis B Infection and the Effects of the Virus Variability. Viruses 2021; 13:v13061167. [PMID: 34207116 PMCID: PMC8235420 DOI: 10.3390/v13061167] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/16/2022] Open
Abstract
The immunopathogenesis and molecular mechanisms involved during a hepatitis B virus (HBV) infection have made the approaches for research complex, especially concerning the patients’ responses in the course of the early acute stage. The study of molecular bases involved in the viral clearance or persistence of the infection is complicated due to the difficulty to detect patients at the most adequate points of the disease, especially in the time lapse between the onset of the infection and the viral emergence. Despite this, there is valuable data obtained from animal and in vitro models, which have helped to clarify some aspects of the early immune response against HBV infection. The diversity of the HBV (genotypes and variants) has been proven to be associated not only with the development and outcome of the disease but also with the response to treatments. That is why factors involved in the virus evolution need to be considered while studying hepatitis B infection. This review brings together some of the published data to try to explain the immunological and molecular mechanisms involved in the different stages of the infection, clinical outcomes, viral persistence, and the impact of the variants of HBV in these processes.
Collapse
Affiliation(s)
- Marina Campos-Valdez
- Centro Universitario de Ciencias de la Salud, Departamento de Biología Molecular y Genómica, Instituto de Biología Molecular en Medicina, Universidad de Guadalajara, Guadalajara 44340, Jalisco, México; (M.C.-V.); (H.C.M.-R.); (J.A.-B.)
| | - Hugo C. Monroy-Ramírez
- Centro Universitario de Ciencias de la Salud, Departamento de Biología Molecular y Genómica, Instituto de Biología Molecular en Medicina, Universidad de Guadalajara, Guadalajara 44340, Jalisco, México; (M.C.-V.); (H.C.M.-R.); (J.A.-B.)
| | - Juan Armendáriz-Borunda
- Centro Universitario de Ciencias de la Salud, Departamento de Biología Molecular y Genómica, Instituto de Biología Molecular en Medicina, Universidad de Guadalajara, Guadalajara 44340, Jalisco, México; (M.C.-V.); (H.C.M.-R.); (J.A.-B.)
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Campus Guadalajara, Zapopan 45201, Jalisco, México
| | - Laura V. Sánchez-Orozco
- Centro Universitario de Ciencias de la Salud, Departamento de Biología Molecular y Genómica, Instituto de Biología Molecular en Medicina, Universidad de Guadalajara, Guadalajara 44340, Jalisco, México; (M.C.-V.); (H.C.M.-R.); (J.A.-B.)
- Correspondence: ; Tel.: +52-33-3954-5677
| |
Collapse
|
44
|
Liu Y, Veeraraghavan V, Pinkerton M, Fu J, Douglas MW, George J, Tu T. Viral Biomarkers for Hepatitis B Virus-Related Hepatocellular Carcinoma Occurrence and Recurrence. Front Microbiol 2021; 12:665201. [PMID: 34194408 PMCID: PMC8236856 DOI: 10.3389/fmicb.2021.665201] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/06/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide and the fourth leading cause of cancer-related death. The most common risk factor for developing HCC is chronic infection with hepatitis B virus (HBV). Early stages of HBV-related HCC (HBV-HCC) are generally asymptomatic. Moreover, while serum alpha-fetoprotein (AFP) and abdominal ultrasound are widely used to screen for HCC, they have poor sensitivity. Thus, HBV-HCC is frequently diagnosed at an advanced stage, in which there are limited treatment options and high mortality rates. Serum biomarkers with high sensitivity and specificity are crucial for earlier diagnosis of HCC and improving survival rates. As viral-host interactions are key determinants of pathogenesis, viral biomarkers may add greater diagnostic power for HCC than host biomarkers alone. In this review, we summarize recent research on using virus-derived biomarkers for predicting HCC occurrence and recurrence; including circulating viral DNA, RNA transcripts, and viral proteins. Combining these viral biomarkers with AFP and abdominal ultrasound could improve sensitivity and specificity of early diagnosis, increasing the survival of patients with HBV-HCC. In the future, as the mechanisms that drive HBV-HCC to become clearer, new biomarkers may be identified which can further improve early diagnosis of HBV-HCC.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Infectious Diseases, The Affiliated Xi'an Central Hospital of Xi'an Jiaotong University, Xi'an, China.,Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Sydney, NSW, Australia
| | - Vaishnavi Veeraraghavan
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Sydney, NSW, Australia.,School of Medical Science, The University of Sydney, Camperdown, NSW, Australia
| | - Monica Pinkerton
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Sydney, NSW, Australia.,School of Medical Science, The University of Sydney, Camperdown, NSW, Australia
| | - Jianjun Fu
- Department of Infectious Diseases, The Affiliated Xi'an Central Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mark W Douglas
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Sydney, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia.,Centre for Infectious Diseases and Microbiology, Westmead Hospital, Sydney, NSW, Australia
| | - Jacob George
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Sydney, NSW, Australia
| | - Thomas Tu
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Sydney, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
45
|
Inoue J, Sato K, Ninomiya M, Masamune A. Envelope Proteins of Hepatitis B Virus: Molecular Biology and Involvement in Carcinogenesis. Viruses 2021; 13:1124. [PMID: 34208172 PMCID: PMC8230773 DOI: 10.3390/v13061124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/15/2022] Open
Abstract
The envelope of hepatitis B virus (HBV), which is required for the entry to hepatocytes, consists of a lipid bilayer derived from hepatocyte and HBV envelope proteins, large/middle/small hepatitis B surface antigen (L/M/SHBs). The mechanisms and host factors for the envelope formation in the hepatocytes are being revealed. HBV-infected hepatocytes release a large amount of subviral particles (SVPs) containing L/M/SHBs that facilitate escape from the immune system. Recently, novel drugs inhibiting the functions of the viral envelope and those inhibiting the release of SVPs have been reported. LHBs that accumulate in ER is considered to promote carcinogenesis and, especially, deletion mutants in the preS1/S2 domain have been reported to be associated with the development of hepatocellular carcinoma (HCC). In this review, we summarize recent reports on the findings regarding the biological characteristics of HBV envelope proteins, their involvement in HCC development and new agents targeting the envelope.
Collapse
Affiliation(s)
- Jun Inoue
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (K.S.); (M.N.); (A.M.)
| | | | | | | |
Collapse
|
46
|
Unique Features of Hepatitis B Virus-Related Hepatocellular Carcinoma in Pathogenesis and Clinical Significance. Cancers (Basel) 2021; 13:cancers13102454. [PMID: 34070067 PMCID: PMC8158142 DOI: 10.3390/cancers13102454] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hepatitis B virus (HBV) infection is the major risk factor for hepatocellular carcinoma (HCC). Understanding the unique features for HBV-induced HCC can shed new light on the unmet needs in its early diagnosis and effective therapy. During decades of chronic hepatitis B, hepatocytes undergoing repeated damage and regeneration accumulate genetic changes predisposing to HCC development. In addition to traditional mutations in viral and cellular oncogenes, HBV integration into the cell chromosomes is an alternative genetic change contributing to hepatocarcinogenesis. A striking male dominance in HBV-related HCC further highlights an interaction between androgen sex hormone and viral factors, which contributes to the gender difference via stimulating viral replication and activation of oncogenes preferentially in male patients. Meanwhile, a novel circulating tumor biomarker generated by HBV integration shows great potential for the early diagnosis of HCC. These unique HBV-induced hepatocarcinogenic mechanisms provide new insights for the future development of superior diagnosis and treatment strategies. Abstract Hepatitis B virus (HBV) infection is one of the important risk factors for hepatocellular carcinoma (HCC) worldwide, accounting for around 50% of cases. Chronic hepatitis B infection generates an inflammatory microenvironment, in which hepatocytes undergoing repeated cycles of damage and regeneration accumulate genetic mutations predisposing them to cancer. A striking male dominance in HBV-related HCC highlights the influence of sex hormones which interact with viral factors to influence carcinogenesis. HBV is also considered an oncogenic virus since its X and surface mutant proteins showed tumorigenic activity in mouse models. The other unique mechanism is the insertional mutagenesis by integration of HBV genome into hepatocyte chromosomes to activate oncogenes. HCC survival largely depends on tumor stages at diagnosis and effective treatment. However, early diagnosis by the conventional protein biomarkers achieves limited success. A new biomarker, the circulating virus–host chimera DNA from HBV integration sites in HCC, provides a liquid biopsy approach for monitoring the tumor load in the majority of HBV–HCC patients. To maximize the efficacy of new immunotherapies or molecular target therapies, it requires better classification of HCC based on the tumor microenvironment and specific carcinogenic pathways. An in-depth study may benefit both the diagnosis and treatment of HBV-related HCC.
Collapse
|
47
|
Yin J, Quan W, Kong X, Liu C, Lu B, Lin W. Utilizing a Solvatochromic Optical Agent to Monitor the Polarity Changes in Dynamic Liver Injury Progression. ACS APPLIED BIO MATERIALS 2021; 4:3630-3638. [PMID: 35014449 DOI: 10.1021/acsabm.1c00130] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Unraveling the changing rule of endoplasmic reticulum (ER) polarity is of significance for liver injury. However, the rule of the ER polarity changes during the occurrence and progression of liver injury remains a mystery. Toward that, a unique fluorescent probe, ERNT, capable of imaging ER polarity in multiple liver injury models with high accuracy and fidelity was designed herein. In light of its excellent solvatochromism, the ER polarity was determined to be higher in the case of endoplasmic reticulum stress (ERS) induced by tunicamycin and dithiothreitol than that of the normal state at the cell level. Importantly, with the assistance of the PerkinElmer IVIS Spectrum imaging system and the powerful tool of ERNT, our work first revealed that the ER polarity increases with the evolution of liver injuries. Moreover, as a demonstration, ERNT achieved evaluating hepatoprotective drug efficacy by detecting ER polarity, confirming its high clinical application prospect. Thus, our work not only first unravels the rule of ER polarity in dynamic liver injury progression but may also inspire more diagnostic and therapeutic programs for liver diseases shortly.
Collapse
Affiliation(s)
- Junling Yin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, People's Republic of China
| | - Wei Quan
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Xiuqi Kong
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, People's Republic of China
| | - Cong Liu
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, People's Republic of China
| | - Bingli Lu
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, People's Republic of China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, People's Republic of China.,Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| |
Collapse
|
48
|
Churin Y, Irungbam K, Imiela CS, Schwarz D, Mollenkopf HJ, Drebber U, Odenthal M, Pak O, Huber M, Glebe D, Roderfeld M, Roeb E. Lipid Storage and Interferon Response Determine the Phenotype of Ground Glass Hepatocytes in Mice and Humans. Cell Mol Gastroenterol Hepatol 2021; 12:383-394. [PMID: 33766783 PMCID: PMC8255940 DOI: 10.1016/j.jcmgh.2021.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/10/2022]
Abstract
BACKGROUND AND AIMS A histopathological hallmark of chronic hepatitis B virus (HBV) infection is the presence of ground glass hepatocytes (GGHs). GGHs are liver cells that exhibit eosinophilic, granular, glassy cytoplasm in light microscopy and are characterized by accumulation of HBV surface (HBs) proteins in the endoplasmic reticulum (ER). More important, GGHs have been accepted as a precursor of HCC and may represent preneoplastic lesions of the liver. METHODS Here we show that the reason for ground glass phenotype of hepatocytes in patients with chronic hepatitis B (CHB) and in HBs transgenic mice is a complex formation between HBs proteins and lipid droplets (LDs) within the ER. RESULTS As fat is a main component of LDs their presence reduces the protein density of HBs aggregates. Therefore, they adsorb less amount of eosin during hematoxylin-eosin staining and appear dull in light microscopy. However, after induction of interferon response in the liver LDs were not only co-localized with HBs but also distributed throughout the cytoplasm of hepatocytes. The uniform distribution of LDs weakens the contrast between HBs aggregates and the rest of the cytoplasm and complicates the identification of GGHs. Suppression of interferon response restored the ground glass phenotype of hepatocytes. CONCLUSIONS Complex formation between HBs and LDs represents a very important feature of CHB that could affect LDs functions in hepatocytes. The strain specific activation of the interferon response in the liver of HBs/c mice prevented the development of GGHs. Thus, manipulation of LDs could provide a new treatment strategy in the prevention of liver cancer.
Collapse
Affiliation(s)
- Yuri Churin
- Department of Gastroenterology, Justus Liebig University, Giessen, Germany; Institute for Veterinary Food Science, Faculty of Veterinary Medicine, Justus Liebig University, Giessen, Germany
| | - Karuna Irungbam
- Department of Gastroenterology, Justus Liebig University, Giessen, Germany
| | - Christoph S Imiela
- Department of Gastroenterology, Justus Liebig University, Giessen, Germany
| | - David Schwarz
- Department of Gastroenterology, Justus Liebig University, Giessen, Germany
| | | | - Uta Drebber
- Institute for Pathology, University Hospital of Cologne, Cologne, Germany; Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Margarete Odenthal
- Institute for Pathology, University Hospital of Cologne, Cologne, Germany; Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Oleg Pak
- Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center, Justus Liebig University, Giessen, Germany
| | - Magdalena Huber
- Institute for Medical Microbiology and Hospital Hygiene, University of Marburg, Marburg, Germany
| | - Dieter Glebe
- Institute of Medical Virology, National Reference Centre for Hepatitis B and D Viruses, Justus Liebig University Giessen, Giessen, Germany
| | - Martin Roderfeld
- Department of Gastroenterology, Justus Liebig University, Giessen, Germany
| | - Elke Roeb
- Department of Gastroenterology, Justus Liebig University, Giessen, Germany.
| |
Collapse
|
49
|
Zhang S, Li N, Sheng Y, Chen W, Ma Q, Yu X, Lian J, Zeng J, Yang Y, Yan J. Hepatitis B virus induces sorafenib resistance in liver cancer via upregulation of cIAP2 expression. Infect Agent Cancer 2021; 16:20. [PMID: 33757557 PMCID: PMC7988944 DOI: 10.1186/s13027-021-00359-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/16/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND HBV promotes cell survival by upregulating the expression of the cellular inhibitor of apoptosis protein 2 (cIAP2), however whether it is involved in HBV-induced sorafenib resistance in liver cancer remains unclear. METHODS cIAP2 overexpression and knockdown was adopted to assess the involvement of cIAP2 in HBV-induced sorafenib resistance. Anti-HBV drug lamivudine and Akt inhibitor were used to investigate the impact of HBV replication on cIAP2 expression and sorafenib resistance. Xenotransplantation mouse model was used to confirm the data on cell lines in vitro. RESULTS Liver cancer cell line HepG2.215 showed increased cIAP2 expression and enhanced resistance to sorafenib. Upon sorafenib treatment, overexpression of cIAP2 in HepG2 lead to decreased cleaved caspase 3 level and increased cell viability, while knockdown of cIAP2 in HepG2.215 resulted in increased level of cleaved caspase 3 and decreased cell viability, suggesting the involvement of cIAP2 in HBV-induced sorafenib resistance. Furthermore, anti-HBV treatment reduced cIAP2 expression and partially restored sorafenib sensitivity in HepG2.215 cells. Xenotransplantation mouse model further confirmed that co-treatment with lamivudine and sorafenib could reduce sorafenib-resistant HepG2.215 tumor cell growth. CONCLUSION cIAP2 is involved in HBV-induced sorafenib resistance in liver cancer and anti-HBV treatments reduce cIAP2 expression and partially restore sorafenib sensibility.
Collapse
Affiliation(s)
- Shouhua Zhang
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, Jiangxi, China
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang, China
| | - Nuoya Li
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, Jiangxi, China
| | - Yanling Sheng
- Department of Ultrasound, The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Wen Chen
- Department of Surgery, Jiangxi Provincial Cancer Hospital, Nanchang, China
| | - Qiangliang Ma
- Department of dermatology, Ili Kazakh Autonomous State Chinese Medicine Hospital, Xinjiang, Uygur Autonomous Region, China
| | - Xin Yu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, Jiangxi, China
| | - Jianping Lian
- Department of Oncology, The Affiliated Hospital of Jinggangshan University, Ji'an, China
| | - Junquan Zeng
- Department of Oncology, The Affiliated Hospital of Jinggangshan University, Ji'an, China
| | - Yipeng Yang
- Department of General Surgery, Xinhua Hospital of Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Rd, Shanghai, China.
| | - Jinlong Yan
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, Jiangxi, China.
| |
Collapse
|
50
|
Jiang X, Chang L, Yan Y, Wang L. Paradoxical HBsAg and anti-HBs coexistence among Chronic HBV Infections: Causes and Consequences. Int J Biol Sci 2021; 17:1125-1137. [PMID: 33867835 PMCID: PMC8040313 DOI: 10.7150/ijbs.55724] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B surface antigen (HBsAg) and Hepatitis B surface antibody (anti-HBs) were reported simultaneously among Hepatitis B virus (HBV) infections. HBsAg is a specific indicator of acute or chronic HBV infections, while anti-HBs is a protective antibody reflecting the recovery and immunity of hosts. HBsAg and anti-HBs coexist during seroconversion and then form immune complex, which is rare detected in clinical cases. However, with the promotion of vaccination and the application of various antiviral drugs, along with the rapid development of medical technology, the coexistence of HBsAg and anti-HBs has become more prevalent. Mutations in the viral genomes, immune status and genetic factors of hosts may contribute to the coexistence. Novel HBsAg assays, with higher sensitivity and ability to detect mutations or immune complexes, can also yield HBsAg/anti-HBs coexistence. The discovery of coexistence has shattered the idea of traditional serological patterns and raised questions about the effectiveness of vaccines. Worth noting is that HBsAg/anti-HBs double positivity is strongly associated with progressive liver diseases, especially hepatocellular carcinoma. In conclusion, viral mutations, host factors, and methodology impacts can all lead to the coexistence of HBsAg and anti-HBs. This coexistence is not an indicator of improvement, as an increased risk of adverse clinical outcomes still exists.
Collapse
Affiliation(s)
- Xinyi Jiang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, P.R. China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Le Chang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, P.R. China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Ying Yan
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, P.R. China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Lunan Wang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, P.R. China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
| |
Collapse
|