1
|
Gálvez NMS, Bohmwald K, Pacheco GA, Andrade CA, Carreño LJ, Kalergis AM. Type I Natural Killer T Cells as Key Regulators of the Immune Response to Infectious Diseases. Clin Microbiol Rev 2021; 34:e00232-20. [PMID: 33361143 PMCID: PMC7950362 DOI: 10.1128/cmr.00232-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The immune system must work in an orchestrated way to achieve an optimal response upon detection of antigens. The cells comprising the immune response are traditionally divided into two major subsets, innate and adaptive, with particular characteristics for each type. Type I natural killer T (iNKT) cells are defined as innate-like T cells sharing features with both traditional adaptive and innate cells, such as the expression of an invariant T cell receptor (TCR) and several NK receptors. The invariant TCR in iNKT cells interacts with CD1d, a major histocompatibility complex class I (MHC-I)-like molecule. CD1d can bind and present antigens of lipid nature and induce the activation of iNKT cells, leading to the secretion of various cytokines, such as gamma interferon (IFN-γ) and interleukin 4 (IL-4). These cytokines will aid in the activation of other immune cells following stimulation of iNKT cells. Several molecules with the capacity to bind to CD1d have been discovered, including α-galactosylceramide. Likewise, several molecules have been synthesized that are capable of polarizing iNKT cells into different profiles, either pro- or anti-inflammatory. This versatility allows NKT cells to either aid or impair the clearance of pathogens or to even control or increase the symptoms associated with pathogenic infections. Such diverse contributions of NKT cells to infectious diseases are supported by several publications showing either a beneficial or detrimental role of these cells during diseases. In this article, we discuss current data relative to iNKT cells and their features, with an emphasis on their driving role in diseases produced by pathogenic agents in an organ-oriented fashion.
Collapse
Affiliation(s)
- Nicolás M S Gálvez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karen Bohmwald
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gaspar A Pacheco
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina A Andrade
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Leandro J Carreño
- Millennium Institute on Immunology and Immunotherapy, Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
2
|
Tan X, Ding Y, Zhu P, Dou R, Liang Z, Yang D, Huang Z, Wang W, Wu X, Weng X. Elevated Hepatic CD1d Levels Coincide with Invariant NKT Cell Defects in Chronic Hepatitis B Virus Infection. THE JOURNAL OF IMMUNOLOGY 2018; 200:3530-3538. [DOI: 10.4049/jimmunol.1701801] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/15/2018] [Indexed: 12/23/2022]
|
3
|
|
4
|
Cannizzo ES, Tincati C, Binda F, Ronzi P, Cazzaniga FA, Antinori S, d'Arminio Monforte A, Marchetti G, Milazzo L. Unconventional T cells in chronic hepatitis B patients on long-term suppressive therapy with tenofovir followed by a Peg-IFN add-on strategy: A randomized study. J Viral Hepat 2018; 25:381-390. [PMID: 29091327 DOI: 10.1111/jvh.12820] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/19/2017] [Indexed: 12/21/2022]
Abstract
HBV eradication in chronic hepatitis B (CHB) subjects is rarely achieved with either nucleos(t)ide analogues (NA) or pegylated interferon (Peg-IFN), which both have a limited effect in restoring immune responses. Thirty CHB subjects on long-term treatment with tenofovir (TDF) and HBV suppression were enrolled and randomized 1:2 to either receive Peg-IFN-α-2a add-on therapy or continue TDF alone. We studied γδ T and iNKT frequency and function (by flow cytometry) at baseline, at 12 weeks and 12 weeks after the end of treatment. A higher reduction in qHBsAg occurred in the add-on group compared with the NA group at W12 (P = .016) and at W24 (P = .012). A decline of qHBsAg ≥0.5 log10 at week 24 occurred in 4 of 10 patients in the add-on arm and 1 of 20 in the NA arm, respectively (P = .03). HBsAg loss was seen in 20% of subjects in the add-on group and in none of the NA group. Compared to HBV negative, CHB on TDF showed lower frequency of iNKT (P = .03) and γδ T cells (P = .03) as well as fewer γδ T cells expressing Vδ2 T-cell receptors (P = .005). No changes in unconventional T-cell frequency and function were shown in both add-on and NA patients nor were differences detected between the two treatment groups. We report persistent impairment of unconventional T cells in CHB. Despite a greater qHBsAg decline of add-on patients, our data failed to detect any effect of Peg-IFN treatment on unconventional T cells.
Collapse
Affiliation(s)
- E S Cannizzo
- Department of Health Sciences, Clinic of Infectious Diseases, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - C Tincati
- Department of Health Sciences, Clinic of Infectious Diseases, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - F Binda
- Department of Clinical and Biomedical Sciences Luigi Sacco, III Division of Infectious Diseases, University of Milan, Milan, Italy
| | - P Ronzi
- Department of Clinical and Biomedical Sciences Luigi Sacco, III Division of Infectious Diseases, University of Milan, Milan, Italy
| | - F A Cazzaniga
- Department of Health Sciences, Clinic of Infectious Diseases, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - S Antinori
- Department of Clinical and Biomedical Sciences Luigi Sacco, III Division of Infectious Diseases, University of Milan, Milan, Italy
| | - A d'Arminio Monforte
- Department of Health Sciences, Clinic of Infectious Diseases, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - G Marchetti
- Department of Health Sciences, Clinic of Infectious Diseases, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - L Milazzo
- Department of Clinical and Biomedical Sciences Luigi Sacco, III Division of Infectious Diseases, University of Milan, Milan, Italy
| |
Collapse
|
5
|
Zou ZQ, Wang L, Wang K, Yu JG. Innate immune targets of hepatitis B virus infection. World J Hepatol 2016; 8:716-725. [PMID: 27330680 PMCID: PMC4911505 DOI: 10.4254/wjh.v8.i17.716] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 04/29/2016] [Accepted: 06/03/2016] [Indexed: 02/06/2023] Open
Abstract
Approximately 400 million people are chronically infected with hepatitis B virus (HBV) globally despite the widespread immunization of HBV vaccine and the development of antiviral therapies. The immunopathogenesis of HBV infection is initiated and driven by complexed interactions between the host immune system and the virus. Host immune responses to viral particles and proteins are regarded as the main determinants of viral clearance or persistent infection and hepatocyte injury. Innate immune system is the first defending line of host preventing from virus invasion. It is acknowledged that HBV has developed active tactics to escape innate immune recognition or actively interfere with innate immune signaling pathways and induce immunosuppression, which favor their replication. HBV reduces the expression of pattern-recognition receptors in the innate immune cells in humans. Also, HBV may interrupt different parts of antiviral signaling pathways, leading to the reduced production of antiviral cytokines such as interferons that contribute to HBV immunopathogenesis. A full comprehension of the mechanisms as to how HBV inactivates various elements of the innate immune response to initiate and maintain a persistent infection can be helpful in designing new immunotherapeutic methods for preventing and eradicating the virus. In this review, we aimed to summarize different branches the innate immune targeted by HBV infection. The review paper provides evidence that multiple components of immune responses should be activated in combination with antiviral therapy to disrupt the tolerance to HBV for eliminating HBV infection.
Collapse
|
6
|
Wang L, Wang K, Zou ZQ. Crosstalk between innate and adaptive immunity in hepatitis B virus infection. World J Hepatol 2015; 7:2980-2991. [PMID: 26730277 PMCID: PMC4691701 DOI: 10.4254/wjh.v7.i30.2980] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/11/2015] [Accepted: 12/11/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a major public health problem worldwide. HBV is not directly cytotoxic to infected hepatocytes; the clinical outcome of infection results from complicated interactions between the virus and the host immune system. In acute HBV infection, initiation of a broad, vigorous immune response is responsible for viral clearance and self-limited inflammatory liver disease. Effective and coordinated innate and adaptive immune responses are critical for viral clearance and the development of long-lasting immunity. Chronic hepatitis B patients fail to mount efficient innate and adaptive immune responses to the virus. In particular, HBV-specific cytotoxic T cells, which are crucial for HBV clearance, are hyporesponsiveness to HBV infection. Accumulating experimental evidence obtained from the development of animal and cell line models has highlighted the importance of innate immunity in the early control of HBV spread. The virus has evolved immune escape strategies, with higher HBV loads and HBV protein concentrations associated with increasing impairment of immune function. Therefore, treatment of HBV infection requires inhibition of HBV replication and protein expression to restore the suppressed host immunity. Complicated interactions exist not only between innate and adaptive responses, but also among innate immune cells and different components of adaptive responses. Improved insight into these complex interactions are important in designing new therapeutic strategies for the treatment HBV infection. In this review, we summarize the current knowledge regarding the cross-talk between the innate and adaptive immune responses and among different immunocytes in HBV infection.
Collapse
|