1
|
Sun M, Angelillo J, Hugues S. Lymphatic transport in anti-tumor immunity and metastasis. J Exp Med 2025; 222:e20231954. [PMID: 39969537 PMCID: PMC11837853 DOI: 10.1084/jem.20231954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/18/2024] [Accepted: 02/06/2025] [Indexed: 02/20/2025] Open
Abstract
Although lymphatic vessels (LVs) are present in many tumors, their importance in cancer has long been underestimated. In contrast to the well-studied tumor-associated blood vessels, LVs were previously considered to function as passive conduits for tumor metastasis. However, emerging evidence over the last two decades has shed light on their critical role in locally shaping the tumor microenvironment (TME). Here we review the involvement of LVs in tumor progression, metastasis, and modulation of anti-tumor immune response.
Collapse
Affiliation(s)
- Mengzhu Sun
- Department of Pathology and Immunology, Geneva Medical School, Geneva, Switzerland
| | - Julien Angelillo
- Department of Pathology and Immunology, Geneva Medical School, Geneva, Switzerland
| | - Stéphanie Hugues
- Department of Pathology and Immunology, Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
2
|
Jain V, Sakhuja P, Agarwal AK, Sirdeshmukh R, Siraj F, Gautam P. Lymph Node Metastasis in Gastrointestinal Carcinomas: A View from a Proteomics Perspective. Curr Oncol 2024; 31:4455-4475. [PMID: 39195316 PMCID: PMC11352871 DOI: 10.3390/curroncol31080333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 08/29/2024] Open
Abstract
Lymph node metastasis (LNM) is one of the major prognostic factors in human gastrointestinal carcinomas (GICs). The lymph node-positive patients have poorer survival than node-negative patients. LNM is directly associated with the recurrence and poor survival of patients with GICs. The early detection of LNM in patients and designing effective therapies to suppress LNM may significantly impact the survival of these patients. The rapid progress made in proteomic technologies could be successfully applied to identify molecular targets for cancers at high-throughput levels. LC-MS/MS analysis enables the identification of proteins involved in LN metastasis, which can be utilized for diagnostic and therapeutic applications. This review summarizes the studies on LN metastasis in GICs using proteomic approaches to date.
Collapse
Affiliation(s)
- Vaishali Jain
- Indian Council of Medical Research, National Institute of Pathology, New Delhi 110029, India
- Faculty of Health Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Puja Sakhuja
- Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi 110002, India
| | - Anil Kumar Agarwal
- Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi 110002, India
| | - Ravi Sirdeshmukh
- Faculty of Health Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India
| | - Fouzia Siraj
- Indian Council of Medical Research, National Institute of Pathology, New Delhi 110029, India
| | - Poonam Gautam
- Indian Council of Medical Research, National Institute of Pathology, New Delhi 110029, India
| |
Collapse
|
3
|
Göhrig A, Hilfenhaus G, Rosseck F, Welzel M, Moser B, Barbone G, Kunze CA, Rein J, Wilken G, Böhmig M, Malinka T, Tacke F, Bahra M, Detjen KM, Fischer C. Placental growth factor promotes neural invasion and predicts disease prognosis in resectable pancreatic cancer. J Exp Clin Cancer Res 2024; 43:153. [PMID: 38816706 PMCID: PMC11138065 DOI: 10.1186/s13046-024-03066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Surgery represents the only curative treatment option for pancreatic ductal adenocarcinoma (PDAC), but recurrence in more than 85% of patients limits the success of curative-intent tumor resection. Neural invasion (NI), particularly the spread of tumor cells along nerves into extratumoral regions of the pancreas, constitutes a well-recognized risk factor for recurrence. Hence, monitoring and therapeutic targeting of NI offer the potential to stratify recurrence risk and improve recurrence-free survival. Based on the evolutionary conserved dual function of axon and vessel guidance molecules, we hypothesize that the proangiogenic vessel guidance factor placental growth factor (PlGF) fosters NI. To test this hypothesis, we correlated PlGF with NI in PDAC patient samples and functionally assessed its role for the interaction of tumor cells with nerves. METHODS Serum levels of PlGF and its soluble receptor sFlt1, and expression of PlGF mRNA transcripts in tumor tissues were determined by ELISA or qPCR in a retrospective discovery and a prospective validation cohort. Free circulating PlGF was calculated from the ratio PlGF/sFlt1. Incidence and extent of NI were quantified based on histomorphometric measurements and separately assessed for intratumoral and extratumoral nerves. PlGF function on reciprocal chemoattraction and directed neurite outgrowth was evaluated in co-cultures of PDAC cells with primary dorsal-root-ganglia neurons or Schwann cells using blocking anti-PlGF antibodies. RESULTS Elevated circulating levels of free PlGF correlated with NI and shorter overall survival in patients with PDAC qualifying for curative-intent surgery. Furthermore, high tissue PlGF mRNA transcript levels in patients undergoing curative-intent surgery correlated with a higher incidence and greater extent of NI spreading to tumor-distant extratumoral nerves. In turn, more abundant extratumoral NI predicted shorter disease-free and overall survival. Experimentally, PlGF facilitated directional and dynamic changes in neurite outgrowth of primary dorsal-root-ganglia neurons upon exposure to PDAC derived guidance and growth factors and supported mutual chemoattraction of tumor cells with neurons and Schwann cells. CONCLUSION Our translational results highlight PlGF as an axon guidance factor, which fosters neurite outgrowth and attracts tumor cells towards nerves. Hence, PlGF represents a promising circulating biomarker of NI and potential therapeutic target to improve the clinical outcome for patients with resectable PDAC.
Collapse
Affiliation(s)
- Andreas Göhrig
- Department of Hepatology & Gastroenterology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
- ECRC Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Georg Hilfenhaus
- Department of Hematology, Oncology & Cancer Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Charité Mitte, Berlin, Germany
| | - Friederike Rosseck
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Charité Mitte, Berlin, Germany
| | - Martina Welzel
- Department of Hepatology & Gastroenterology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
- ECRC Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Benjamin Moser
- Department of Hepatology & Gastroenterology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Gianluca Barbone
- Department of Hepatology & Gastroenterology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Catarina Alisa Kunze
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Charité Mitte, Berlin, Germany
| | - Johannes Rein
- Department of Pulmonology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Charité Mitte, Berlin, Germany
| | - Gregor Wilken
- Department of Hepatology & Gastroenterology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Michael Böhmig
- Department of Hepatology & Gastroenterology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
- Gastroenterologie an der Krummen Lanke, Fischerhüttenstraße 109, Berlin, 14163, Germany
| | - Thomas Malinka
- Department of Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Marcus Bahra
- Department of Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow-Klinikum, Berlin, Germany
- Department of Oncological Surgery and Robotics, Waldfriede Hospital, Berlin, Germany
| | - Katharina M Detjen
- Department of Hepatology & Gastroenterology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Christian Fischer
- Department of Hepatology & Gastroenterology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany.
- ECRC Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
4
|
Li JJ, Mao JX, Zhong HX, Zhao YY, Teng F, Lu XY, Zhu LY, Gao Y, Fu H, Guo WY. Multifaceted roles of lymphatic and blood endothelial cells in the tumor microenvironment of hepatocellular carcinoma: A comprehensive review. World J Hepatol 2024; 16:537-549. [PMID: 38689749 PMCID: PMC11056903 DOI: 10.4254/wjh.v16.i4.537] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/11/2024] [Accepted: 03/18/2024] [Indexed: 04/24/2024] Open
Abstract
The tumor microenvironment is a complex network of cells, extracellular matrix, and signaling molecules that plays a critical role in tumor progression and metastasis. Lymphatic and blood vessels are major routes for solid tumor metastasis and essential parts of tumor drainage conduits. However, recent studies have shown that lymphatic endothelial cells (LECs) and blood endothelial cells (BECs) also play multifaceted roles in the tumor microenvironment beyond their structural functions, particularly in hepatocellular carcinoma (HCC). This comprehensive review summarizes the diverse roles played by LECs and BECs in HCC, including their involvement in angiogenesis, immune modulation, lymphangiogenesis, and metastasis. By providing a detailed account of the complex interplay between LECs, BECs, and tumor cells, this review aims to shed light on future research directions regarding the immune regulatory function of LECs and potential therapeutic targets for HCC.
Collapse
Affiliation(s)
- Jing-Jing Li
- Department of Liver Surgery and Organ Transplantation, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Jia-Xi Mao
- Department of Liver Surgery and Organ Transplantation, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Han-Xiang Zhong
- Department of Liver Surgery and Organ Transplantation, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Yuan-Yu Zhao
- Department of Liver Surgery and Organ Transplantation, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Fei Teng
- Department of Liver Surgery and Organ Transplantation, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Xin-Yi Lu
- Department of Liver Surgery and Organ Transplantation, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Li-Ye Zhu
- Department of Liver Surgery and Organ Transplantation, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Yang Gao
- Department of Liver Surgery and Organ Transplantation, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Hong Fu
- Department of Liver Surgery and Organ Transplantation, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Wen-Yuan Guo
- Department of Liver Surgery and Organ Transplantation, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China.
| |
Collapse
|
5
|
Roos-Mattila M, Kaprio T, Mustonen H, Hagström J, Saharinen P, Haglund C, Seppänen H. The possible dual role of Ang-2 in the prognosis of pancreatic cancer. Sci Rep 2023; 13:18725. [PMID: 37907568 PMCID: PMC10618172 DOI: 10.1038/s41598-023-45194-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/17/2023] [Indexed: 11/02/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) features a dense desmoplastic stroma, which raises the intratumoral interstitial pressure leading to vascular collapse and hypoxia, inducing angiogenesis. Vascular growth factors, such as vascular endothelial growth factor (VEGF) and angiopoietin-2 (Ang-2), increase in PDAC. A high VEGF and a high circulating Ang-2 associate with shorter survival in PDAC. In addition to the circulatory Ang-2, PDAC endothelial and epithelial cells express Ang-2. No correlation between tumor epithelial nor endothelial cell Ang-2 expression and survival has been published. We aimed to examine Ang-2 expression and survival. This study comprised PDAC surgical patients at Helsinki University Hospital in 2000-2013. Ang-2 immunohistochemistry staining was completed on 168 PDAC patient samples. Circulating Ang-2 levels were measured using ELISA in the sera of 196 patients. Ang-2 levels were assessed against clinical data and patient outcomes. A low tumor epithelial Ang-2 expression predicted shorter disease-specific survival (DSS) compared with a high expression (p = 0.003). A high serum Ang-2 associated with shorter DSS compared with a low circulating Ang-2 (p = 0.016). Ang-2 seemingly plays a dual role in PDAC survival. Further studies are needed to determine the mechanisms causing tumor cell Ang-2 expression and its positive association with survival.
Collapse
Affiliation(s)
- Matilda Roos-Mattila
- Department of Surgery, Helsinki University Hospital, Helsinki, Finland
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN, Digital Cancer Precision Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tuomas Kaprio
- Department of Surgery, Helsinki University Hospital, Helsinki, Finland.
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- iCAN, Digital Cancer Precision Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
- Department of Pathology, Haartmaninkatu 3 (PB 21), University of Helsinki, 00014, Helsinki, Finland.
| | - Harri Mustonen
- Department of Surgery, Helsinki University Hospital, Helsinki, Finland
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN, Digital Cancer Precision Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jaana Hagström
- Department of Surgery, Helsinki University Hospital, Helsinki, Finland
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN, Digital Cancer Precision Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Oral Pathology and Radiology, University of Turku, Turku, Finland
| | - Pipsa Saharinen
- Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN, Digital Cancer Precision Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Caj Haglund
- Department of Surgery, Helsinki University Hospital, Helsinki, Finland
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN, Digital Cancer Precision Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Hanna Seppänen
- Department of Surgery, Helsinki University Hospital, Helsinki, Finland
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN, Digital Cancer Precision Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
6
|
Fard D, Giraudo E, Tamagnone L. Mind the (guidance) signals! Translational relevance of semaphorins, plexins, and neuropilins in pancreatic cancer. Trends Mol Med 2023; 29:817-829. [PMID: 37598000 DOI: 10.1016/j.molmed.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/21/2023]
Abstract
Pancreatic cancer is a major cause of demise worldwide. Although key associated genetic changes have been discovered, disease progression is sustained by pathogenic mechanisms that are poorly understood at the molecular level. In particular, the tissue microenvironment of pancreatic adenocarcinoma (PDAC) is usually characterized by high stromal content, scarce recruitment of immune cells, and the presence of neuronal fibers. Semaphorins and their receptors, plexins and neuropilins, comprise a wide family of regulatory signals that control neurons, endothelial and immune cells, embryo development, and normal tissue homeostasis, as well as the microenvironment of human tumors. We focus on the role of these molecular signals in pancreatic cancer progression, as revealed by experimental research and clinical studies, including novel approaches for cancer treatment.
Collapse
Affiliation(s)
- Damon Fard
- Università Cattolica del Sacro Cuore, Department of Life Sciences and Public Health, Rome, Italy
| | - Enrico Giraudo
- Department of Science and Drug Technology, University of Turin, Turin, Italy; Candiolo Cancer Institute, FPO IRCCS, Candiolo, Turin, Italy
| | - Luca Tamagnone
- Università Cattolica del Sacro Cuore, Department of Life Sciences and Public Health, Rome, Italy; Fondazione Policlinico Gemelli, IRCCS, Rome, Italy.
| |
Collapse
|
7
|
Gutierrez AH, Mazariegos MS, Alemany S, Nevzorova YA, Cubero FJ, Sanz-García C. Tumor progression locus 2 (TPL2): A Cot-plicated progression from inflammation to chronic liver disease. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166660. [PMID: 36764206 DOI: 10.1016/j.bbadis.2023.166660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/10/2023]
Abstract
The cytoplasmic protein tumor progression locus 2 (TPL2), also known as cancer Osaka thyroid (Cot), or MAP3K8, is thought to have a significant role in a variety of cancers and illnesses and it is a key component in the activation pathway for the expression of inflammatory mediators. Despite the tight connection between inflammation and TPL2, its function has not been extensively studied in chronic liver disease (CLD), a major cause of morbidity and mortality worldwide. Here, we analyze more in detail the significance of TPL2 in CLD to shed light on the pathological and molecular transduction pattern of TPL2 during the progression of CLD. This might result in important advancements and enable progress in the diagnosis and treatment of CLD.
Collapse
Affiliation(s)
- Alejandro H Gutierrez
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain
| | - Marina S Mazariegos
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain
| | - Susana Alemany
- Department of Metabolism and Cell Signaling, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Biomedicine Unit (Unidad Asociada al CSIC), Universidad de Las Palmas de Gran Canaria, 35001 Las Palmas, Spain
| | - Yulia A Nevzorova
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007 Madrid, Spain
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007 Madrid, Spain
| | - Carlos Sanz-García
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain.
| |
Collapse
|
8
|
Varricchi G, Poto R, Ferrara AL, Gambino G, Marone G, Rengo G, Loffredo S, Bencivenga L. Angiopoietins, vascular endothelial growth factors and secretory phospholipase A 2 in heart failure patients with preserved ejection fraction. Eur J Intern Med 2022; 106:111-119. [PMID: 36280524 DOI: 10.1016/j.ejim.2022.10.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/27/2022] [Accepted: 10/17/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND Heart failure (HF) is a growing public health burden, with high prevalence and mortality rates. A proportion of patients with HF have a normal ventricular ejection fraction (EF), referred to as HF with preserved EF (HFpEF), as opposed to patients with HF with reduced ejection fraction (HFrEF). HFpEF currently accounts for about 50% of all HF patients, and its prevalence is rising. Angiopoietins (ANGPTs), vascular endothelial growth factors (VEGFs) and secretory phospholipases A2 (sPLA2s) are proinflammatory mediators and key regulators of endothelial cells. METHODS The aim of this study was to analyze the plasma concentrations of angiogenic (ANGPT1, ANGPT2, VEGF-A) and lymphangiogenic (VEGF-C, VEGF-D) factors and the plasma activity of sPLA2 in patients with HFpEF and HFrEF compared to healthy controls. RESULTS The concentration of ANGPT1 was reduced in HFrEF compared to HFpEF patients and healthy controls. ANGPT2 levels were increased in both HFrEF and HFpEF subjects compared to controls. The ANGPT2/ANGPT1 ratio was increased in HFrEF patients compared to controls. The concentrations of both VEGF-A and VEGF-C did not differ among the three groups examined. VEGF-D was increased in both HFrEF and HFpEF patients compared to controls. Plasma activity of sPLA2 was increased in HFrEF but not in HFpEF patients compared to controls. CONCLUSIONS Our results indicate that three different classes of proinflammatory regulators of vascular permeability and smoldering inflammation are selectively altered in HFrEF or HFpEF patients. Studies involving larger cohorts of these patients will be necessary to demonstrate the clinical implications of our findings.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy; World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy; Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), 80131, Naples, Italy.
| | - Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy; World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy; Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy; World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy; Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), 80131, Naples, Italy
| | - Giuseppina Gambino
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy; World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy; Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), 80131, Naples, Italy
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy; Istituti Clinici Scientifici Maugeri SpA Società Benefit, 82037, Telese, (BN), Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy; World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy; Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), 80131, Naples, Italy
| | - Leonardo Bencivenga
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131, Naples, Italy; Gèrontopole de Toulouse, Institut du Vieillissement, CHU de Toulouse, 31000, Toulouse, France
| |
Collapse
|
9
|
Yang S, Zou X, Li J, Yang H, Zhang A, Zhu Y, Zhu L, Zhang L. Immunoregulation and clinical significance of neutrophils/NETs-ANGPT2 in tumor microenvironment of gastric cancer. Front Immunol 2022; 13:1010434. [PMID: 36172371 PMCID: PMC9512293 DOI: 10.3389/fimmu.2022.1010434] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Although significant progress has been made in the study of gastric cancer (GC), clinicians lack reliable protein markers for accurate diagnosis and tumor stratification. Neutrophil extracellular traps (NETs) are networks of extracellular fibers composed of DNA from neutrophils. We have previously reported that abundant NETs are deposited in GC, damaging human umbilical vein endothelial cells (HUVECs) and triggering the release of tissue factors, leading to a hypercoagulable state in GC. However, the specific effects of NETs on HUVECs are unclear. We aimed to explore the functional changes caused by NETs on HUVECs, providing evidence that NETs may fuel GC progression. Through quantitative proteomics, we identified 6182 differentially expressed proteins in NET-stimulated HUVECs by TMT. The reliability of the TMT technique was confirmed by parallel reaction monitoring (PRM) analysis of 17 differentially expressed proteins. Through bioinformatics analysis, we found that NETs upregulate ANGPT2 in HUVECs. We comprehensively analyzed the prognosis, biological function, immune response, and therapeutic value of ANGPT2 in GC. We found that overexpression of ANGPT2 in GC is associated with poor prognosis and potentially regulates multiple biological functions. At the same time, ANGPT2 also predicted immunotherapeutic and chemotherapeutic responses in GC. In conclusion, NETs promoted ANGPT2 overexpression in the GC microenvironment. In the future, the neutrophil/NETs-ANGPT2 axis may provide a new target for the treatment of GC.
Collapse
Affiliation(s)
- Shifeng Yang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, China
| | - Xiaoming Zou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Xiaoming Zou, ; Jiacheng Li,
| | - Jiacheng Li
- Department of General Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
- *Correspondence: Xiaoming Zou, ; Jiacheng Li,
| | - Hao Yang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ange Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, China
| | - Yanli Zhu
- Key laboratory of Microecology-immune Regulatory Network and Related Diseases School of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Lei Zhu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lisha Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
10
|
Abstract
The lymphatic system, composed of initial and collecting lymphatic vessels as well as lymph nodes that are present in almost every tissue of the human body, acts as an essential transport system for fluids, biomolecules and cells between peripheral tissues and the central circulation. Consequently, it is required for normal body physiology but is also involved in the pathogenesis of various diseases, most notably cancer. The important role of tumor-associated lymphatic vessels and lymphangiogenesis in the formation of lymph node metastasis has been elucidated during the last two decades, whereas the underlying mechanisms and the relation between lymphatic and peripheral organ dissemination of cancer cells are incompletely understood. Lymphatic vessels are also important for tumor-host communication, relaying molecular information from a primary or metastatic tumor to regional lymph nodes and the circulatory system. Beyond antigen transport, lymphatic endothelial cells, particularly those residing in lymph node sinuses, have recently been recognized as direct regulators of tumor immunity and immunotherapy responsiveness, presenting tumor antigens and expressing several immune-modulatory signals including PD-L1. In this review, we summarize recent discoveries in this rapidly evolving field and highlight strategies and challenges of therapeutic targeting of lymphatic vessels or specific lymphatic functions in cancer patients.
Collapse
Affiliation(s)
- Lothar C Dieterich
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Carlotta Tacconi
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Department of Biosciences, University of Milan, Milan, Italy
| | - Luca Ducoli
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Wang X, Xu W, Hu X, Yang X, Zhang M. The Prognostic Role of Glycemia in Patients With Pancreatic Carcinoma: A Systematic Review and Meta-Analysis. Front Oncol 2022; 12:780909. [PMID: 35223469 PMCID: PMC8866248 DOI: 10.3389/fonc.2022.780909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/03/2022] [Indexed: 12/14/2022] Open
Abstract
Background Fasting blood glucose and glycated hemoglobin (HbA1c) levels are associated with the risk of pancreatic cancer. Aim To examine the relationship between perioperative glucose and HbA1c levels and prognosis in patients with pancreatic cancer. Methods PubMed, Embase, and the Cochrane Library were queried for potentially eligible studies published up to May 2021. The exposures were perioperative fasting glucose and HbA1c levels. The primary outcome was survival. The secondary outcome was complications. All analyses were performed using the random-effects model. Results Ten studies (48,424 patients) were included. The pre-operative (HR=1.10, 95%CI: 0.89-1.35; I2 = 45.1%, Pheterogeneity=0.078) and postoperative (HR=1.19, 95%CI: 0.92-1.54; I2 = 67.9%, Pheterogeneity=0.001) blood glucose levels were not associated with the survival to pancreatic cancer. Similar results were observed for HbA1c (HR=1.09, 95%CI: 0.75-1.58; I2 = 64.2%, Pheterogeneity=0.039), fasting blood glucose (FBG)/HbA1c (HR=1.16, 95%CI: 0.67-1.68; I2 = 0.0%, Pheterogeneity=0.928), and FBG (HR=1.75, 95%CI: 0.81-3.75; I2 = 79.4%, Pheterogeneity=0.008). Pre-operative blood glucose levels were not associated with postoperative complications (OR=0.90, 95%CI: 0.52-1.56), but postoperative glucose levels were associated with postoperative complications (OR=3.06, 95%CI: 1.88-4.97; I2 = 0.0%, Pheterogeneity=0.619). Conclusion Blood glucose, FBG, and HbA1c levels are not associated with the survival of patients with pancreatic cancer. Postoperative blood glucose levels could predict postoperative complications.
Collapse
Affiliation(s)
- Xiaofang Wang
- Department of Clinical Oncology and Department of Hospice Care, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wanfeng Xu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoru Hu
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xianghong Yang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mingming Zhang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
12
|
Yang L, Lu P, Yang X, Li K, Qu S. Annexin A3, a Calcium-Dependent Phospholipid-Binding Protein: Implication in Cancer. Front Mol Biosci 2021; 8:716415. [PMID: 34355022 PMCID: PMC8329414 DOI: 10.3389/fmolb.2021.716415] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/08/2021] [Indexed: 12/20/2022] Open
Abstract
Annexin A3 (ANXA3), also known as lipocortin III and placental anticoagulant protein III, has been reported to be dysregulated in tumor tissues and cancer cell lines, and harbors pronounced diagnostic and prognostic value for certain malignancies, such as breast, prostate, colorectal, lung and liver cancer. Aberrant expression of ANXA3 promotes tumor cell proliferation, invasion, metastasis, angiogenesis, and therapy resistance to multiple chemotherapeutic drugs including platinum-based agents, fluoropyrimidines, cyclophosphamide, doxorubicin, and docetaxel. Genetic alterations on the ANXA3 gene have also been reported to be associated with the propensity to form certain inherited, familial tumors. These diverse functions of ANXA3 in tumors collectively indicate that ANXA3 may serve as an attractive target for novel anticancer therapies and a powerful diagnostic and prognostic biomarker for early tumor detection and population risk screening. In this review, we dissect the role of ANXA3 in cancer in detail.
Collapse
Affiliation(s)
- Liu Yang
- Key Laboratory of High-Incidence Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Pingan Lu
- Faculty of Medicine, Amsterdam Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Xiaohui Yang
- Key Laboratory of High-Incidence Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Kaiguo Li
- Key Laboratory of High-Incidence Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Song Qu
- Key Laboratory of High-Incidence Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
13
|
Marcella S, Petraroli A, Braile M, Parente R, Ferrara AL, Galdiero MR, Modestino L, Cristinziano L, Rossi FW, Varricchi G, Triggiani M, de Paulis A, Spadaro G, Loffredo S. Vascular endothelial growth factors and angiopoietins as new players in mastocytosis. Clin Exp Med 2021; 21:415-427. [PMID: 33687603 PMCID: PMC8266723 DOI: 10.1007/s10238-021-00693-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/08/2021] [Indexed: 12/27/2022]
Abstract
Mastocytosis is a disorder characterized by the abnormal proliferation and/or accumulation of mast cells in different organs. More than 90% of patients with systemic mastocytosis have a gain-of-function mutation in codon 816 of the KIT receptor on mast cells (MCs). The symptoms of mastocytosis patients are related to the MC-derived mediators that exert local and distant effects. MCs produce angiogenic and lymphangiogenic factors, including vascular endothelial growth factors (VEGFs) and angiopoietins (ANGPTs). Serum concentrations of VEGF-A, VEGF-C, VEGF-D, ANGPT1 and ANGPT2 were determined in 64 mastocytosis patients and 64 healthy controls. Intracellular concentrations and spontaneous release of these mediators were evaluated in the mast cell lines ROSAKIT WT and ROSA KIT D816V and in human lung mast cells (HLMCs). VEGF-A, ANGPT1, ANGPT2 and VEGF-C concentrations were higher in mastocytosis patients compared to controls. The VEGF-A, ANGPT2 and VEGF-C concentrations were correlated with the symptom severity. ANGPT1 concentrations were increased in all patients compared to controls. ANGPT2 levels were correlated with severity of clinical variants and with tryptase levels. VEGF-A, ANGPT1 and VEGF-C did not differ between indolent and advanced mastocytosis. ROSAKIT WT, ROSAKIT D816V and HLMCs contained and spontaneously released VEGFs and ANGPTs. Serum concentrations of VEGFs and ANGPTs are altered in mastocytosis patients.
Collapse
Affiliation(s)
- Simone Marcella
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
| | - Angelica Petraroli
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
| | - Mariantonia Braile
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
| | - Roberta Parente
- Division of Allergy and Clinical Immunology, University of Salerno, 84084, Fisciano, SA, Italy
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy.,Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131, Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy.,Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131, Naples, Italy
| | - Luca Modestino
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
| | - Leonardo Cristinziano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
| | - Francesca Wanda Rossi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy. .,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy. .,World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy. .,Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131, Naples, Italy.
| | - Massimo Triggiani
- Division of Allergy and Clinical Immunology, University of Salerno, 84084, Fisciano, SA, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy. .,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy. .,World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy. .,Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131, Naples, Italy.
| |
Collapse
|
14
|
Md Yusof K, Rosli R, Abdullah M, Avery-Kiejda KA. The Roles of Non-Coding RNAs in Tumor-Associated Lymphangiogenesis. Cancers (Basel) 2020; 12:cancers12113290. [PMID: 33172072 PMCID: PMC7694641 DOI: 10.3390/cancers12113290] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary The lymphatic system plays key roles in the bodies’ defence against disease, including cancer. The expansion of this system is termed lymphangiogenesis and it is orchestrated by factors and conditions within the microenvironment. One approach to prevent cancer progression is by interfering with these microenvironment factors that promote this process and that facilitate the spread of cancer cells to distant organs. One of these factors are non-coding RNAs. This review will summarize recent findings of the distinct roles played by non-coding RNAs in the lymphatic system within normal tissues and tumours. Understanding the mechanisms involved in this process can provide new avenues for therapeutic intervention for inhibiting the spread of cancer. Abstract Lymphatic vessels are regarded as the ”forgotten” circulation. Despite this, growing evidence has shown significant roles for the lymphatic circulation in normal and pathological conditions in humans, including cancers. The dissemination of tumor cells to other organs is often mediated by lymphatic vessels that serve as a conduit and is often referred to as tumor-associated lymphangiogenesis. Some of the most well-studied lymphangiogenic factors that govern tumor lymphangiogenesis are the vascular endothelial growth factor (VEGF-C/D and VEGFR-2/3), neuroplilin-2 (NRP2), fibroblast growth factor (FGF), and hepatocyte growth factor (HGF), to name a few. However, recent findings have illustrated that non-coding RNAs are significantly involved in regulating gene expression in most biological processes, including lymphangiogenesis. In this review, we focus on the regulation of growth factors and non-coding RNAs (ncRNAs) in the lymphatic development in normal and cancer physiology. Then, we discuss the lymphangiogenic factors that necessitate tumor-associated lymphangiogenesis, with regards to ncRNAs in various types of cancer. Understanding the different roles of ncRNAs in regulating lymphatic vasculature in normal and cancer conditions may pave the way towards the development of ncRNA-based anti-lymphangiogenic therapy.
Collapse
Affiliation(s)
- Khairunnisa’ Md Yusof
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia; (K.M.Y.); (R.R.)
- Priority Research Centre for Cancer Research, Innovation and Translation, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW 2308, Australia
- Medical Genetics, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Rozita Rosli
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia; (K.M.Y.); (R.R.)
| | - Maha Abdullah
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia;
| | - Kelly A. Avery-Kiejda
- Priority Research Centre for Cancer Research, Innovation and Translation, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW 2308, Australia
- Medical Genetics, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- Correspondence:
| |
Collapse
|
15
|
Gengenbacher N, Singhal M, Mogler C, Hai L, Milde L, Pari AAA, Besemfelder E, Fricke C, Baumann D, Gehrs S, Utikal J, Felcht M, Hu J, Schlesner M, Offringa R, Chintharlapalli SR, Augustin HG. Timed Ang2-Targeted Therapy Identifies the Angiopoietin-Tie Pathway as Key Regulator of Fatal Lymphogenous Metastasis. Cancer Discov 2020; 11:424-445. [PMID: 33106316 DOI: 10.1158/2159-8290.cd-20-0122] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 08/13/2020] [Accepted: 10/09/2020] [Indexed: 11/16/2022]
Abstract
Recent clinical and preclinical advances have highlighted the existence of a previously hypothesized lymphogenous route of metastasis. However, due to a lack of suitable preclinical modeling tools, its contribution to long-term disease outcome and relevance for therapy remain controversial. Here, we established a genetically engineered mouse model (GEMM) fragment-based tumor model uniquely sustaining a functional network of intratumoral lymphatics that facilitates seeding of fatal peripheral metastases. Multiregimen survival studies and correlative patient data identified primary tumor-derived Angiopoietin-2 (Ang2) as a potent therapeutic target to restrict lymphogenous tumor cell dissemination. Mechanistically, tumor-associated lymphatic endothelial cells (EC), in contrast to blood vascular EC, were found to be critically addicted to the Angiopoietin-Tie pathway. Genetic manipulation experiments in combination with single-cell mapping revealed agonistically acting Ang2-Tie2 signaling as key regulator of lymphatic maintenance. Correspondingly, acute presurgical Ang2 neutralization was sufficient to prolong survival by regressing established intratumoral lymphatics, hence identifying a therapeutic regimen that warrants further clinical evaluation. SIGNIFICANCE: Exploiting multiple mouse tumor models including a unique GEMM-derived allograft system in combination with preclinical therapy designs closely matching the human situation, this study provides fundamental insight into the biology of tumor-associated lymphatic EC and defines an innovative presurgical therapeutic window of migrastatic Ang2 neutralization to restrict lymphogenous metastasis.This article is highlighted in the In This Issue feature, p. 211.
Collapse
Affiliation(s)
- Nicolas Gengenbacher
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany.,Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Faculty of Biosciences, Heidelberg University, Mannheim, Germany
| | - Mahak Singhal
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany.,Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Faculty of Biosciences, Heidelberg University, Mannheim, Germany
| | - Carolin Mogler
- Institute of Pathology, TUM School of Medicine, Munich, Germany
| | - Ling Hai
- Junior Group Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Laura Milde
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany.,Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Faculty of Biosciences, Heidelberg University, Mannheim, Germany
| | - Ashik Ahmed Abdul Pari
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany.,Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Faculty of Biosciences, Heidelberg University, Mannheim, Germany
| | - Eva Besemfelder
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Claudine Fricke
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Daniel Baumann
- Faculty of Biosciences, Heidelberg University, Mannheim, Germany.,Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephanie Gehrs
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany.,Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Faculty of Biosciences, Heidelberg University, Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Moritz Felcht
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Junhao Hu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Matthias Schlesner
- Junior Group Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rienk Offringa
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Hellmut G Augustin
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany. .,Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,German Cancer Consortium, Heidelberg, Germany
| |
Collapse
|
16
|
Wan X, Guo D, Zhu Q, Qu R. microRNA-382 suppresses the progression of pancreatic cancer through the PI3K/Akt signaling pathway by inhibition of Anxa3. Am J Physiol Gastrointest Liver Physiol 2020; 319:G309-G322. [PMID: 32463333 DOI: 10.1152/ajpgi.00322.2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pancreatic cancer (PC) is a lethal cancer in the digestive system. microRNAs (miRNAs) have been demonstrated to participate in PC progression. In this context, we, thus, aimed to explore the mechanism of miR-382 in epithelial mesenchymal transition (EMT) and lymph node metastasis in PC in relation to Anxa3 and the PI3K/Akt signaling pathway. Gene expression data sets GSE16515, GSE71989, and GSE32676 were screened out, with the findings showing the significance of miR-382 and annexin A3 (Anxa3) in PC. A total of 115 PC patients were selected for determination of miR-382 and Anxa3 expression with lowly expressed miR-382 and highly expressed Anxa3 found via RT-quantitative PCR and Western blot analysis. Additionally, negative correlation was found between miR-382 and Anxa3 in PC. Dual-luciferase reporter gene assay and in situ hybridization results confirmed that miR-382 negatively regulated Anxa3. miR-382 targeted Anxa3 and suppressed PC progression by blocking the PI3K/Akt signaling pathway. After a series of gain- and loss-of function approaches, upregulation of miR-382 or silencing of Anxa3 inhibited the EMT and lymph node metastasis, as evidenced by increased level of E-cadherin and decreased level of N-cadherin, vimentin, vascular endothelial growth factor(VEGFR)-3, VEGF-C, and VEGF-D. Overexpression of miR-382 or downregulation of Anxa3 was shown to inhibit colony formation, migration, and invasion abilities of PC cells. Further, tumor xenograft in nude mice in vivo also confirmed the inhibitory role of miR-382 and silenced Anxa3 in lymph node metastasis in PC. Thus, this study provides promising therapeutic targets for PC treatment.NEW & NOTEWORTHY This study focused on the mechanism of miR-382 in epithelial mesenchymal transition and lymph node metastasis in PC in relation to Anxa3 and the PI3K/Akt signaling pathway. We found the inhibitory role of miR-382 in PC in vitro and in vivo.
Collapse
Affiliation(s)
- Xiaohui Wan
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Dongrui Guo
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Qi Zhu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Rongfeng Qu
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
17
|
Varricchi G, Loffredo S, Bencivenga L, Ferrara AL, Gambino G, Ferrara N, de Paulis A, Marone G, Rengo G. Angiopoietins, Vascular Endothelial Growth Factors and Secretory Phospholipase A 2 in Ischemic and Non-Ischemic Heart Failure. J Clin Med 2020; 9:jcm9061928. [PMID: 32575548 PMCID: PMC7356305 DOI: 10.3390/jcm9061928] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
Heart failure (HF) is a growing public health burden, with high prevalence and mortality rates. In contrast to ischemic heart failure (IHF), the diagnosis of non-ischemic heart failure (NIHF) is established in the absence of coronary artery disease. Angiopoietins (ANGPTs), vascular endothelial growth factors (VEGFs) and secretory phospholipases A2 (sPLA2s) are proinflammatory mediators and key regulators of endothelial cells. In the present manuscript, we analyze the plasma concentrations of angiogenic (ANGPT1, ANGPT2, VEGF-A) and lymphangiogenic (VEGF-C, VEGF-D) factors and the plasma activity of sPLA2 in patients with IHF and NIHF compared to healthy controls. The concentrations of ANGPT1, ANGPT2 and their ratio significantly differed between HF patients and healthy controls. Similarly, plasma levels of VEGF-D and sPLA2 activity were higher in HF as compared to controls. Concentrations of ANGPT2 and the ANGPT2/ANGPT1 ratio (an index of vascular permeability) were increased in NIHF patients. VEGF-A and VEGF-C concentrations did not differ among the three examined groups. Interestingly, VEGF-D was selectively increased in IFH patients compared to controls. Plasma activity of sPLA2 was increased in IHF and NIHF patients compared to controls. Our results indicate that several regulators of vascular permeability and smoldering inflammation are specifically altered in IHF and NIHF patients. Studies involving larger cohorts of these patients will be necessary to demonstrate the clinical implications of our findings.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80100 Naples, Italy; (L.B.); (A.L.F.); (G.G.); (N.F.); (A.d.P.); (G.M.); (G.R.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80100 Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80100 Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80100 Naples, Italy
- Correspondence: (G.V.); (S.L.)
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, 80100 Naples, Italy; (L.B.); (A.L.F.); (G.G.); (N.F.); (A.d.P.); (G.M.); (G.R.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80100 Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80100 Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80100 Naples, Italy
- Correspondence: (G.V.); (S.L.)
| | - Leonardo Bencivenga
- Department of Translational Medical Sciences, University of Naples Federico II, 80100 Naples, Italy; (L.B.); (A.L.F.); (G.G.); (N.F.); (A.d.P.); (G.M.); (G.R.)
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80100 Naples, Italy
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences, University of Naples Federico II, 80100 Naples, Italy; (L.B.); (A.L.F.); (G.G.); (N.F.); (A.d.P.); (G.M.); (G.R.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80100 Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80100 Naples, Italy
| | - Giuseppina Gambino
- Department of Translational Medical Sciences, University of Naples Federico II, 80100 Naples, Italy; (L.B.); (A.L.F.); (G.G.); (N.F.); (A.d.P.); (G.M.); (G.R.)
| | - Nicola Ferrara
- Department of Translational Medical Sciences, University of Naples Federico II, 80100 Naples, Italy; (L.B.); (A.L.F.); (G.G.); (N.F.); (A.d.P.); (G.M.); (G.R.)
| | - Amato de Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, 80100 Naples, Italy; (L.B.); (A.L.F.); (G.G.); (N.F.); (A.d.P.); (G.M.); (G.R.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80100 Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80100 Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, 80100 Naples, Italy; (L.B.); (A.L.F.); (G.G.); (N.F.); (A.d.P.); (G.M.); (G.R.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80100 Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80100 Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80100 Naples, Italy
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, University of Naples Federico II, 80100 Naples, Italy; (L.B.); (A.L.F.); (G.G.); (N.F.); (A.d.P.); (G.M.); (G.R.)
- Istituti Clinici Scientifici Maugeri SpA Società Benefit, Via Bagni Vecchi, 1, 82037 Telese BN, Italy
| |
Collapse
|
18
|
Fang YZ, Liu ZH, Zhang R. Correlation between perfusion state and angiogenesis indexes in gastric cancer. Shijie Huaren Xiaohua Zazhi 2020; 28:347-351. [DOI: 10.11569/wcjd.v28.i9.347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Accurate evaluation of microcirculation perfusion in tumor tissue is of great significance for clinical treatment and prognosis evaluation. Contrast-enhanced ultrasonography (CEUS) is a highly sensitive means of monitoring microcirculation perfusion, which can objectively reflect the microcirculation perfusion state of tumor tissue and provide reliable hemodynamic information for clinical diagnosis and treatment.
AIM To evaluate the perfusion status of gastric cancer (GC) by CEUS, and to explore the correlation between the perfusion status and the indexes of angiogenesis.
METHODS Sixty-six patients with GC were selected as study subjects (GC group). All patients were examined by CEUS 3 d before operation. The enhanced intensity (EI) and time to peak (TTP) of GC and tumor-adjacent normal tissues were measured by time-intensity curve analysis. The levels of vascular endothelial growth factor (VEGF) and angiopoietin-2 (Ang-2) were measured by enzyme-linked immunosorbent assay (ELISA), and the microvessel density (MVD) was measured after operation. Seventy-two healthy volunteers were selected as a control group for comparative analysis.
RESULTS The EI and MVD were significantly higher and the TTP was significantly shorter in GC tissue than in normal tissue (P < 0.05). VEGF and Ang-2 levels were significantly higher in the GC group than in the control group (P < 0.05). EI had a positive correlation with VEGF, Ang-2, and MVD (r = 0.85, 0.81, and 0.88, respectively; P < 0.05), and TTP had a negative correlation with VEGF, Ang-2, and MVD (r = -0.72, -0.73, and -0.86, respectively; P < 0.05).
CONCLUSION CEUS can dynamically evaluate the perfusion status of GC, and CEUS blood flow parameters have a good correlation with VEGF, Ang-2, and MVD. CEUS can provide a noninvasive imaging method for clinical evaluation of the angiogenesis status of GC.
Collapse
Affiliation(s)
- Yuan-Zhong Fang
- Department of Laboratory Medicine, Hangzhou Yuhang Maternal and Child Health Hospital, Hangzhou 311100, Zhejiang Province, China
| | - Zhi-Hong Liu
- Department of Medicine, Deqing People's Hospital, Huzhou 313200, Zhejiang Province, China
| | - Rong Zhang
- Department of Ultrasonography, Zhejiang Hospital, Hangzhou 310013, Zhejiang Province, China
| |
Collapse
|
19
|
Abdul Pari AA, Singhal M, Hübers C, Mogler C, Schieb B, Gampp A, Gengenbacher N, Reynolds LE, Terhardt D, Géraud C, Utikal J, Thomas M, Goerdt S, Hodivala-Dilke KM, Augustin HG, Felcht M. Tumor Cell-Derived Angiopoietin-2 Promotes Metastasis in Melanoma. Cancer Res 2020; 80:2586-2598. [PMID: 32303578 DOI: 10.1158/0008-5472.can-19-2660] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 03/16/2020] [Accepted: 04/14/2020] [Indexed: 01/12/2023]
Abstract
The angiopoietin (Angpt)-TIE signaling pathway controls vascular maturation and maintains the quiescent phenotype of resting vasculature. The contextual agonistic and antagonistic Tie2 ligand ANGPT2 is believed to be exclusively produced by endothelial cells, disrupting constitutive ANGPT1-TIE2 signaling to destabilize the microvasculature during pathologic disorders like inflammation and cancer. However, scattered reports have also portrayed tumor cells as a source of ANGPT2. Employing ISH-based detection of ANGPT2, we found strong tumor cell expression of ANGPT2 in a subset of patients with melanoma. Comparative analysis of biopsies revealed a higher fraction of ANGPT2-expressing tumor cells in metastatic versus primary sites. Tumor cell-expressed Angpt2 was dispensable for primary tumor growth, yet in-depth analysis of primary tumors revealed enhanced intratumoral necrosis upon silencing of tumor cell Angpt2 expression in the absence of significant immune and vascular alterations. Global transcriptional profiling of Angpt2-deficient tumor cells identified perturbations in redox homeostasis and an increased response to cellular oxidative stress. Ultrastructural analyses illustrated a significant increase of dysfunctional mitochondria in Angpt2-silenced tumor cells, thereby resulting in enhanced reactive oxygen species (ROS) production and downstream MAPK stress signaling. Functionally, enhanced ROS in Angpt2-silenced tumor cells reduced colonization potential in vitro and in vivo. Taken together, these findings uncover the hitherto unappreciated role of tumor cell-expressed ANGPT2 as an autocrine-positive regulator of metastatic colonization and validate ANGPT2 as a therapeutic target for a well-defined subset of patients with melanoma. SIGNIFICANCE: This study reveals that tumor cells can be a source of ANGPT2 in the tumor microenvironment and that tumor cell-derived ANGPT2 augments metastatic colonization by protecting tumor cells from oxidative stress.
Collapse
Affiliation(s)
- Ashik Ahmed Abdul Pari
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Vascular Oncology and Metastasis, German Cancer Research Center, Heidelberg (DKFZ-ZMBH Alliance), Germany
| | - Mahak Singhal
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Vascular Oncology and Metastasis, German Cancer Research Center, Heidelberg (DKFZ-ZMBH Alliance), Germany
| | - Corinne Hübers
- Vascular Oncology and Metastasis, German Cancer Research Center, Heidelberg (DKFZ-ZMBH Alliance), Germany.,Department of Dermatology, Venerology und Allergology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carolin Mogler
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Benjamin Schieb
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Vascular Oncology and Metastasis, German Cancer Research Center, Heidelberg (DKFZ-ZMBH Alliance), Germany
| | - Anja Gampp
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Vascular Oncology and Metastasis, German Cancer Research Center, Heidelberg (DKFZ-ZMBH Alliance), Germany
| | - Nicolas Gengenbacher
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Vascular Oncology and Metastasis, German Cancer Research Center, Heidelberg (DKFZ-ZMBH Alliance), Germany
| | - Louise E Reynolds
- Center for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Center, London, United Kingdom
| | - Dorothee Terhardt
- Vascular Oncology and Metastasis, German Cancer Research Center, Heidelberg (DKFZ-ZMBH Alliance), Germany
| | - Cyrill Géraud
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Dermatology, Venerology und Allergology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Section of Clinical and Molecular Dermatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jochen Utikal
- Department of Dermatology, Venerology und Allergology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Markus Thomas
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| | - Sergij Goerdt
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Dermatology, Venerology und Allergology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Kairbaan M Hodivala-Dilke
- Center for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Center, London, United Kingdom
| | - Hellmut G Augustin
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany. .,Vascular Oncology and Metastasis, German Cancer Research Center, Heidelberg (DKFZ-ZMBH Alliance), Germany.,German Cancer consortium, Heidelberg, Germany
| | - Moritz Felcht
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany. .,Department of Dermatology, Venerology und Allergology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
20
|
Li S, Zhang Q, Hong Y. Tumor Vessel Normalization: A Window to Enhancing Cancer Immunotherapy. Technol Cancer Res Treat 2020; 19:1533033820980116. [PMID: 33287656 PMCID: PMC7727091 DOI: 10.1177/1533033820980116] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/13/2020] [Accepted: 10/30/2020] [Indexed: 01/05/2023] Open
Abstract
Hostile microenvironment produced by abnormal blood vessels, which is characterized by hypoxia, low pH value and increasing interstitial fluid pressure, would facilitate tumor progression, metastasis, immunosuppression and anticancer treatments resistance. These abnormalities are the result of the imbalance of pro-angiogenic and anti-angiogenic factors (such as VEGF and angiopoietin 2, ANG2). Prudent use of anti-angiogenesis drugs would normalize these aberrant tumor vessels, resulting in a transient window of vessel normalization. In addition, use of cancer immunotherapy including immune checkpoint blockers when vessel normalization is achieved brings better outcomes. In this review, we sum up the advances in the field of understanding and application of the concept of tumor vessels normalization window to treat cancer. Moreover, we also outline some challenges and opportunities ahead to optimize the combination of anti-angiogenic agents and immunotherapy, leading to improve patients' outcomes.
Collapse
Affiliation(s)
- Sai Li
- Department of gynecologic oncology, Women’s hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yupeng Hong
- Department of Oncology, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
21
|
Atanasov G, Dino K, Schierle K, Dietel C, Aust G, Pratschke J, Seehofer D, Schmelzle M, Hau HM. Angiogenic inflammation and formation of necrosis in the tumor microenvironment influence patient survival after radical surgery for de novo hepatocellular carcinoma in non-cirrhosis. World J Surg Oncol 2019; 17:217. [PMID: 31830991 PMCID: PMC6909650 DOI: 10.1186/s12957-019-1756-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022] Open
Abstract
Background Tumor escape mechanisms mediated in the tumor microenvironment can significantly reduce the capacity of the anti-tumor function of the immune system. TIE2-expressing monocytes (TEMs), related angiopoietins, and tumor necrosis are considered to have a key role in this process. We aimed to investigate the abundance and clinical significance of these biomarkers in hepatocellular carcinoma (HCC). Methods In this retrospective study, 58 HCC patients received surgery with a curative intent. The abundance of TEMs, angiopoietin-1 and -2 were detected in tumor specimens of the HCC patients (n = 58), and together with the occurrence of histologic tumor necrosis, were associated with established clinicopathological characteristics and survival. Results Patients with HCC characterized by necrosis and TEMs revealed reduced both overall survival and recurrence-free survival (all p < 0.05). Angiopoietins and TEMs were associated with metastatic and recurrent HCC. Furthermore, the formation of histologic tumor necrosis was associated with advanced tumor stage and density of TEMs (all p < 0.05). Conclusions Histologic tumor necrosis, TEMs, and related angiopoietins were associated with multiple HCC parameters and patient survival. The tumor necrosis–TEM–angiopoietin axis may offer a novel diagnostic modality to predict patient outcome after surgery for HCC.
Collapse
Affiliation(s)
- Georgi Atanasov
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, Leipzig, Germany. .,Department of Surgery, Campus Charité Mitte und Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany. .,Berlin Institute of Health, Berlin, Germany.
| | - Karoline Dino
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Katrin Schierle
- Institute of Pathology, University Hospital Leipzig, Leipzig, Germany
| | - Corinna Dietel
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Gabriela Aust
- Department of Surgery, Research Laboratories, University of Leipzig, Leipzig, Germany
| | - Johann Pratschke
- Department of Surgery, Campus Charité Mitte und Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Daniel Seehofer
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Moritz Schmelzle
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, Leipzig, Germany.,Department of Surgery, Campus Charité Mitte und Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Hans-Michael Hau
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
22
|
Abstract
Tumor blood vessel formation (angiogenesis) is essential for tumor growth and metastasis. Two main endothelial ligand–receptor pathways regulating angiogenesis are vascular endothelial growth factor (VEGF) receptor and angiopoietin-TIE receptor pathways. The angiopoietin-TIE pathway is required for the remodeling and maturation of the blood and lymphatic vessels during embryonic development after VEGF and VEGF-C mediated development of the primary vascular plexus. Angiopoietin-1 (ANGPT1) stabilizes the vasculature after angiogenic processes, via tyrosine kinase with immunoglobulin-like and EGF-like domains 2 (TIE2) activation. In contrast, ANGPT2 is upregulated at sites of vascular remodeling. ANGPT2 is secreted by activated endothelial cells in inflammation, promoting vascular destabilization. ANGPT2 has been found to be expressed in many human cancers. Intriguingly, in preclinical models inhibition of ANGPT2 has provided promising results in preventing tumor angiogenesis, tumor growth, and metastasis, making it an attractive candidate to target in tumors. However, until now the first ANGPT2 targeting therapies have been less effective in clinical trials than in experimental models. Additionally, in preclinical models combined therapy against ANGPT2 and VEGF or immune checkpoint inhibitors has been superior to monotherapies, and these pathways are also targeted in early clinical trials. In order to improve current anti-angiogenic therapies and successfully exploit ANGPT2 as a target for cancer treatment, the biology of the angiopoietin-TIE pathway needs to be profoundly clarified.
Collapse
Affiliation(s)
- Dieter Marmé
- Tumor Biology Center, Freiburg, Baden-Württemberg Germany
| |
Collapse
|
23
|
Atanasov G, Dietel C, Feldbrügge L, Benzing C, Krenzien F, Brandl A, Katou S, Schierle K, Robson SC, Splith K, Wiltberger G, Reutzel-Selke A, Jonas S, Pascher A, Bahra M, Pratschke J, Schmelzle M. Angiogenic miRNAs, the angiopoietin axis and related TIE2-expressing monocytes affect outcomes in cholangiocarcinoma. Oncotarget 2018; 9:29921-29933. [PMID: 30042823 PMCID: PMC6057457 DOI: 10.18632/oncotarget.25699] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/12/2018] [Indexed: 12/13/2022] Open
Abstract
Background Tumour angiogenesis is modulated on both an epigenetic and protein level and has potential implications for immune cell responses. However, the importance of related angiogenic biomarkers in cholangiocarcinoma (CCA) is unknown. This study assessed human CCA samples for the expression of angiogenesis-associated microRNAs, angiopoietins (Angs) and monocytes expressing the Ang-receptor, TIE2, with regards to prognostic significance after liver resection. Methods Angiogenic miRNAs were analysed in frozen samples of intrahepatic CCA (iCC; n = 43) and hilar CCA (HC; n = 45). Ang-1 and Ang-2, as well as TIE2-expressing monocytes (TEMs), were detected in paraffin-embedded iCC sections (n = 88). MiRNA expression and the abundance of TEMs and Angs were correlated with clinicopathological characteristics and survival. Results MiR-126 was downregulated in 76.7% of all CCA samples, with high relative expression associated with smaller tumours and reduced lymph node metastasis. High Ang-1 expression was associated with less lymphangiosis carcinomatosa and better histological grading (all p < 0.05). The absence of TEMs in iCC correlated with elevated CA19-9 levels. High relative miR-126 and low miR-128 levels were associated with improved survival in iCC and HC, respectively (all p < 0.05). High miR-126, low miR-128 and TEMs were independent prognostic factors for recurrence-free and overall survival (all p < 0.05). Conclusions These results suggest that angiogenic miRNAs, Angs and TEMs are of prognostic value in CCA. In addition to the possible functional links between angiogenic miRNA expression profiles, Angs and immune-cell responses by TEMs, these data have clinical implications as novel diagnostic tools.
Collapse
Affiliation(s)
- Georgi Atanasov
- Department of Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Corinna Dietel
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Linda Feldbrügge
- Department of Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Christian Benzing
- Department of Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Felix Krenzien
- Department of Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Andreas Brandl
- Department of Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Shadi Katou
- Department of Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Katrin Schierle
- Institute of Pathology, University Hospital Leipzig, Leipzig, Germany
| | - Simon C Robson
- The Transplant Institute and Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA, USA
| | - Katrin Splith
- Department of Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Georg Wiltberger
- Department of General, Visceral and Transplantation Surgery, University Hospital of RWTH Aachen, Aachen, Germany
| | - Anja Reutzel-Selke
- Department of Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sven Jonas
- Department of General and Visceral Surgery, 310Klinik Nürnberg, Nürnberg, Germany
| | - Andreas Pascher
- Department of Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Marcus Bahra
- Department of Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Johann Pratschke
- Department of Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Moritz Schmelzle
- Department of Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
24
|
TIE2-expressing monocytes and M2-polarized macrophages impact survival and correlate with angiogenesis in adenocarcinoma of the pancreas. Oncotarget 2018; 9:29715-29726. [PMID: 30038715 PMCID: PMC6049857 DOI: 10.18632/oncotarget.25690] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 06/12/2018] [Indexed: 01/16/2023] Open
Abstract
Introduction M2-polarized tumor-associated macrophages (TAMs) and TIE2-expressing monocytes (TEMs) are associated with angiogenesis and have been identified as a potential prognostic marker in several solid tumors, including hepatobiliary malignancies. However, little is known regarding their influence on tumor progression and patient survival in pancreatic ductal adenocarcinoma (PDAC). Results Patients with tumors characterized by the presence of CD163+ TAMs or TEMs in TCA or TIF, respectively, showed a significantly decreased 1-, 3- and 5-year overall and recurrence-free survival compared to patients without CD163+ TAMs or TEMs (all ρ < 0.05). Patients with TEMs in TCA showed a higher incidence of tumor recurrence (ρ < 0.05). Furthermore, the presence of CD163+ TAMs was associated with a higher tumor MVD (ρ < 0.05). Conclusions Presence of M2-polarized TAMs and TEMs is associated with a decreased overall and recurrence-free survival of patients with PDAC. Materials and methods The localization and density of CD163+ M2-polarized TAMs and TEMs were quantified in the tumor central area (TCA) and tumor-infiltrating front (TIF) in human PDAC tissue (n = 106) and correlated to clinicopathological characteristics, tumor recurrence rates and patient survival. In parallel, tumor microvascular density (MVD) and the density of angiopoietin-positive tumor cells were quantified. Statistical analysis was performed using SPSS software.
Collapse
|
25
|
Simultaneous blockade of IL-6 and CCL5 signaling for synergistic inhibition of triple-negative breast cancer growth and metastasis. Breast Cancer Res 2018; 20:54. [PMID: 29898755 PMCID: PMC6000947 DOI: 10.1186/s13058-018-0981-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 05/10/2018] [Indexed: 01/01/2023] Open
Abstract
Background Metastatic triple-negative breast cancer (TNBC) is a heterogeneous and incurable disease. Numerous studies have been conducted to seek molecular targets to treat TNBC effectively, but chemotherapy is still the main choice for patients with TNBC. We have previously presented evidence of the important roles of interleukin-6 (IL-6) and chemokine (C-C motif) ligand 5 (CCL5) in TNBC tumor growth and metastasis. These experiments highlighted the importance of the crosstalk between cancer cells and stromal lymphatic endothelial cells (LECs) in tumor growth and metastasis. Methods We examined the viability and migration of MDA-MB-231-LN, SUM149, and SUM159 cells co-cultured with LECs when treated with maraviroc (CCR5 inhibitor) and tocilizumab (anti-IL-6 receptor antibody). To assess the anti-tumor effects of the combination of these two drugs in an athymic nude mouse model, MDA-MB-231-LN cells were implanted in the mammary fat pad and maraviroc (8 mg/kg, orally daily) and cMR16-1 (murine surrogate of the anti-IL-6R antibody, 10 mg/kg, IP, 3 days a week) were administrated for 5 weeks and effects on tumor growth and thoracic metastasis were measured. Results In this study, we used maraviroc and tocilizumab to confirm that IL-6 and CCL5 signaling are key pathways promoting TNBC cell proliferation and migration. Further, in a xenograft mouse model, we showed that tumor growth was dramatically inhibited by cMR16-1, the mouse version of the anti-IL6R antibody. The combination of maraviroc and cMR16-1 caused significant reduction of TNBC tumor growth compared to the single agents. Significantly, the combination of maraviroc and cMR16-1 abrogated thoracic metastasis. Conclusion Taken together, these findings show that IL-6 and CCL5 signaling, which promote crosstalk between TNBC and lymphatic vessels, are key enhancers of TNBC tumor growth and metastasis. Furthermore, these results demonstrate that a drug combination inhibiting these pathways may be a promising therapy for TNBC patients. Electronic supplementary material The online version of this article (10.1186/s13058-018-0981-3) contains supplementary material, which is available to authorized users.
Collapse
|
26
|
Rárová L, Sedlák D, Oklestkova J, Steigerová J, Liebl J, Zahler S, Bartůněk P, Kolář Z, Kohout L, Kvasnica M, Strnad M. The novel brassinosteroid analog BR4848 inhibits angiogenesis in human endothelial cells and induces apoptosis in human cancer cells in vitro. J Steroid Biochem Mol Biol 2018; 178:263-271. [PMID: 29307714 DOI: 10.1016/j.jsbmb.2018.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 11/29/2017] [Accepted: 01/04/2018] [Indexed: 01/31/2023]
Abstract
We report the synthesis and detailed biological study of the synthetic brassinosteroid analog 2α,3α-dihydroxy-6-oxo-5α-androstan-17β-yl N-(tert-butoxycarbonyl)-D,L-valinate (BR4848). The panel of cancer cell lines was used for characterization of its antiproliferative activity, yet had no adverse effects in normal human fibroblasts. In HeLa cells, BR4848-induced apoptosis was accompanied by increase of apoptotic subG1 cells, PARP-1 and caspase-7 fragmentation, downregulation of Bcl-2 and Mcl-1, an increase in caspase activity and G2/M phase cell cycle arrest. Antiproliferative properties of BR4848 were exhibited by inhibition of phosphorylation of Akt, Erk1/2 and FAK. Furthermore, the developed analog exhibited in vitro antiangiogenic activity in human umbilical vein endothelial cells (HUVECs). BR4848-induced apoptosis accompanied with G2/M arrest was detected in endothelial cells. BR4848 also inhibited adhesion, tube formation and migration of endothelial cells by inhibition of FAK, Erk 1/2, CDK5, VEGFR2, TNFα-stimulated production of IL-6, angiopoietin-2 and Jagged1. Finally, BR4848 did not modulate the activity nor nuclear translocation of any of the steroid receptors (ERα, ERβ, AR, MR and PR) included in reporter cell-based assays, which excludes the genomic activity of steroid receptors as a contributing factor to the observed biological activities of BR4848.
Collapse
Affiliation(s)
- Lucie Rárová
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| | - David Sedlák
- CZ-OPENSCREEN: National Infrastructure for Chemical Biology, Institute of Molecular Genetics Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Praha 4, Czech Republic.
| | - Jana Oklestkova
- Laboratory of Growth Regulators, Institute of Experimental Botany ASCR & Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Jana Steigerová
- Laboratory of Molecular Pathology, Department of Clinical and Molecular Pathology, Faculty of Medicine, Palacký University, Hněvotínská 5, 77900, Olomouc, Czech Republic; Institute of Molecular and Translation Medicine, Faculty of Medicine and Dentistry, Palacký University and Faculty Hospital in Olomouc, Hněvotínská 5, 77900, Olomouc, Czech Republic
| | - Johanna Liebl
- Department of Pharmacy, LMU Munich - Center for Drug Research - Pharmaceutical Biology, Butenandtstr. 5-13, Munich, 81377, Germany
| | - Stefan Zahler
- Department of Pharmacy, LMU Munich - Center for Drug Research - Pharmaceutical Biology, Butenandtstr. 5-13, Munich, 81377, Germany
| | - Petr Bartůněk
- CZ-OPENSCREEN: National Infrastructure for Chemical Biology, Institute of Molecular Genetics Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Praha 4, Czech Republic
| | - Zdeněk Kolář
- Laboratory of Molecular Pathology, Department of Clinical and Molecular Pathology, Faculty of Medicine, Palacký University, Hněvotínská 5, 77900, Olomouc, Czech Republic; Institute of Molecular and Translation Medicine, Faculty of Medicine and Dentistry, Palacký University and Faculty Hospital in Olomouc, Hněvotínská 5, 77900, Olomouc, Czech Republic
| | - Ladislav Kohout
- Laboratory of Growth Regulators, Institute of Experimental Botany ASCR & Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Miroslav Kvasnica
- Laboratory of Growth Regulators, Institute of Experimental Botany ASCR & Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany ASCR & Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| |
Collapse
|
27
|
Abstract
Immunotherapy has emerged as a major therapeutic modality in oncology. Currently, however, the majority of patients with cancer do not derive benefit from these treatments. Vascular abnormalities are a hallmark of most solid tumours and facilitate immune evasion. These abnormalities stem from elevated levels of proangiogenic factors, such as VEGF and angiopoietin 2 (ANG2); judicious use of drugs targeting these molecules can improve therapeutic responsiveness, partially owing to normalization of the abnormal tumour vasculature that can, in turn, increase the infiltration of immune effector cells into tumours and convert the intrinsically immunosuppressive tumour microenvironment (TME) to an immunosupportive one. Immunotherapy relies on the accumulation and activity of immune effector cells within the TME, and immune responses and vascular normalization seem to be reciprocally regulated. Thus, combining antiangiogenic therapies and immunotherapies might increase the effectiveness of immunotherapy and diminish the risk of immune-related adverse effects. In this Perspective, we outline the roles of VEGF and ANG2 in tumour immune evasion and progression, and discuss the evidence indicating that antiangiogenic agents can normalize the TME. We also suggest ways that antiangiogenic agents can be combined with immune-checkpoint inhibitors to potentially improve patient outcomes, and highlight avenues of future research.
Collapse
|
28
|
Yang P, Chen N, Yang D, Crane J, Yang S, Wang H, Dong R, Yi X, Xie L, Jing G, Cai J, Wang Z. The ratio of serum Angiopoietin-1 to Angiopoietin-2 in patients with cervical cancer is a valuable diagnostic and prognostic biomarker. PeerJ 2017; 5:e3387. [PMID: 28584715 PMCID: PMC5452943 DOI: 10.7717/peerj.3387] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/07/2017] [Indexed: 01/15/2023] Open
Abstract
Objectives Angiopoietins have been found to play essential roles in tumor angiogenesis. The present study was aimed at investigating the diagnostic and prognostic values of serum angiopoietin 1 and 2 (sAng-1 and sAng-2) in cervical cancer. Methods The sAng-1 and sAng-2 concentrations were analyzed in 77 women with cervical cancer, 44 women with cervical intraepithelial neoplasia (CIN) and 43 women without cervical lesions by enzyme-linked immunosorbent assay. The diagnostic values of sAng-1, sAng-2 and sAng-1/sAng-2 were evaluated by receiver operating characteristic (ROC) curves. The Ang-1 and Ang-2 expression in cervical cancer tissues as well as microvessel density (MVD), were assessed by immunohistochemistry. Results The concentration of sAng-2 gradually increased and the sAng-1/Ang-2 ratio was gradually decreased from normal control to CIN, then to squamous cell cancer, and the sAng-1/sAng-2 ratio was also significantly decreased in adenocarcinoma. The area under ROC curves of sAng-2 and sAng-1/sAng-2 ratio for discriminating cervical cancer from normal were 0.744 and 0.705, respectively. Decreased sAng-1/sAng-2 was significantly associated with advanced tumor stage, poor differentiation, lymph-vascular space invasion and high MVD. sAng-2 was positively correlated with the Ang-2 expression in cervix epithelia. A high sAng-1/sAng-2 ratio was associated with a longer progression-free survival and a longer overall survival in cervical cancer patients. Conclusions These findings suggest that sAng-2 and the sAng-1/sAng-2 ratio may be valuable diagnostic and prognostic biomarkers for cervical cancer.
Collapse
Affiliation(s)
- Ping Yang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Obstetrics and Gynecology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Na Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongyun Yang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Janet Crane
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America.,Department of Pediatrics, Johns Hopkins University, Baltimore, MD, United States of America
| | - Shouhua Yang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hangyu Wang
- School of Pharmacy, Shihezi University, Shihezi, Xinjiang, China
| | - Ruiqing Dong
- Department of Obstetrics and Gynecology, Tianyou Hospital attended to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoqing Yi
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lisha Xie
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guo Jing
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zehua Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
29
|
Disrupting Tumor Angiogenesis and "the Hunger Games" for Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1026:171-195. [PMID: 29282684 DOI: 10.1007/978-981-10-6020-5_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Angiogenesis, one of the hallmarks of cancers, has become an attractive target for cancer therapy since decades ago. It is broadly thought that upregulation of angiogenesis is involved in tumor progression and metastasis. Though tumor vessels are tortuous, disorganized, and leaky, they deliver oxygen and nutrients for tumor development. Based on this knowledge, many kinds of drugs targeting angiogenesis pathways have been developed, such as bevacizumab. However, the clinical outcomes of anti-angiogenesis therapies are moderate in metastatic breast cancer as well as in metastatic colorectal cancer and non-small cell lung cancer, even combined with traditional chemotherapy. In this chapter, the morphologic angiogenesis patterns and the key molecular pathways regulating angiogenesis are elaborated. The FDA-approved anti-angiogenesis drugs and current challenges of anti-angiogenesis therapy are described. The strategies to overcome the barriers will also be elucidated.
Collapse
|
30
|
Gilles ME, Maione F, Cossutta M, Carpentier G, Caruana L, Di Maria S, Houppe C, Destouches D, Shchors K, Prochasson C, Mongelard F, Lamba S, Bardelli A, Bouvet P, Couvelard A, Courty J, Giraudo E, Cascone I. Nucleolin Targeting Impairs the Progression of Pancreatic Cancer and Promotes the Normalization of Tumor Vasculature. Cancer Res 2016; 76:7181-7193. [PMID: 27754848 DOI: 10.1158/0008-5472.can-16-0300] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 10/05/2016] [Accepted: 10/12/2016] [Indexed: 11/16/2022]
Abstract
Pancreatic cancer is a highly aggressive tumor, mostly resistant to the standard treatments. Nucleolin is overexpressed in cancers and its inhibition impairs tumor growth. Herein, we showed that nucleolin was overexpressed in human specimens of pancreatic ductal adenocarcinoma (PDAC) and that the overall survival significantly increased in patients with low levels of nucleolin. The nucleolin antagonist N6L strongly impaired the growth of primary tumors and liver metastasis in an orthotopic mouse model of PDAC (mPDAC). Similar antitumor effect of N6L has been observed in a highly angiogenic mouse model of pancreatic neuroendocrine tumor RIP-Tag2. N6L significantly inhibited both human and mouse pancreatic cell proliferation and invasion. Notably, the analysis of tumor vasculature revealed a strong increase of pericyte coverage and vessel perfusion both in mPDAC and RIP-Tag2 tumors, in parallel to an inhibition of tumor hypoxia. Nucleolin inhibition directly affected endothelial cell (EC) activation and changed a proangiogenic signature. Among the vascular activators, nucleolin inhibition significantly decreased angiopoietin-2 (Ang-2) secretion and expression in ECs, in the tumor and in the plasma of mPDAC mice. As a consequence of the observed N6L-induced tumor vessel normalization, pre-treatment with N6L efficiently improved chemotherapeutic drug delivery and increased the antitumor properties of gemcitabine in PDAC mice. In conclusion, nucleolin inhibition is a new anti-pancreatic cancer therapeutic strategy that dually blocks tumor progression and normalizes tumor vasculature, improving the delivery and efficacy of chemotherapeutic drugs. Moreover, we unveiled Ang-2 as a potential target and suitable response biomarker for N6L treatment in pancreatic cancer. Cancer Res; 76(24); 7181-93. ©2016 AACR.
Collapse
Affiliation(s)
- Maud-Emmanuelle Gilles
- University of Paris Est (UPEC), ERL-CNRS 9215, Laboratory of Growth, Reparation and Tissue Regeneration (CRRET), UPEC, Créteil, France
| | - Federica Maione
- Laboratory of Transgenic Mouse Models, Candiolo Cancer Institute - FPO, IRCCS, Candiolo (TO), Italy
- Department of Science and Drug Technology, University of Torino, Torino, Italy
| | - Mélissande Cossutta
- University of Paris Est (UPEC), ERL-CNRS 9215, Laboratory of Growth, Reparation and Tissue Regeneration (CRRET), UPEC, Créteil, France
| | - Gilles Carpentier
- University of Paris Est (UPEC), ERL-CNRS 9215, Laboratory of Growth, Reparation and Tissue Regeneration (CRRET), UPEC, Créteil, France
| | - Laure Caruana
- University of Paris Est (UPEC), ERL-CNRS 9215, Laboratory of Growth, Reparation and Tissue Regeneration (CRRET), UPEC, Créteil, France
| | - Silvia Di Maria
- University of Paris Est (UPEC), ERL-CNRS 9215, Laboratory of Growth, Reparation and Tissue Regeneration (CRRET), UPEC, Créteil, France
| | - Claire Houppe
- University of Paris Est (UPEC), ERL-CNRS 9215, Laboratory of Growth, Reparation and Tissue Regeneration (CRRET), UPEC, Créteil, France
| | - Damien Destouches
- University of Paris Est (UPEC), ERL-CNRS 9215, Laboratory of Growth, Reparation and Tissue Regeneration (CRRET), UPEC, Créteil, France
| | - Ksenya Shchors
- Swiss Institute for Experimental Cancer Research (ISREC), EPFL SV ISREC, Station 19, Lausanne, Switzerland
| | - Christopher Prochasson
- Department of Pathology, Bichat Hospital APHP DHU UNITY and University of Paris Diderot, Paris, France
| | - Fabien Mongelard
- University of Lyon, Ecole normale Supérieure de Lyon, Cancer Research Center of Lyon, Cancer Cell Plasticity Department, UMR INSERM 1052 CNRS 5286, Centre Léon Bérard, Lyon, France
| | - Simona Lamba
- Department of Oncology, University of Torino, Candiolo (TO), Italy
| | - Alberto Bardelli
- Department of Oncology, University of Torino, Candiolo (TO), Italy
- Candiolo Cancer Institute-FPO, IRCCS, Candiolo (TO), Italy
| | - Philippe Bouvet
- University of Lyon, Ecole normale Supérieure de Lyon, Cancer Research Center of Lyon, Cancer Cell Plasticity Department, UMR INSERM 1052 CNRS 5286, Centre Léon Bérard, Lyon, France
| | - Anne Couvelard
- Department of Pathology, Bichat Hospital APHP DHU UNITY and University of Paris Diderot, Paris, France
| | - José Courty
- University of Paris Est (UPEC), ERL-CNRS 9215, Laboratory of Growth, Reparation and Tissue Regeneration (CRRET), UPEC, Créteil, France
| | - Enrico Giraudo
- Laboratory of Transgenic Mouse Models, Candiolo Cancer Institute - FPO, IRCCS, Candiolo (TO), Italy.
- Department of Science and Drug Technology, University of Torino, Torino, Italy
| | - Ilaria Cascone
- University of Paris Est (UPEC), ERL-CNRS 9215, Laboratory of Growth, Reparation and Tissue Regeneration (CRRET), UPEC, Créteil, France.
| |
Collapse
|
31
|
Han HH, Kim BG, Lee JH, Kang S, Kim JE, Cho NH. Angiopoietin-2 promotes ER+ breast cancer cell survival in bone marrow niche. Endocr Relat Cancer 2016; 23:609-23. [PMID: 27353038 PMCID: PMC5064757 DOI: 10.1530/erc-16-0086] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 06/27/2016] [Indexed: 12/11/2022]
Abstract
In estrogen receptor-positive (ER+) breast cancer, it is recognized that metastases may develop after a long period of dormancy. Bone marrow (BM) vascular niche is where the dormant tumor cells are most likely to reside. So far, it is not fully understood why the dormant tumor cells become proliferative and eventually generate tumor. We hypothesized that therapeutic or menopause-related estrogen depletion may be the switch behind dormant ER+ tumor cell awakening in BM. We utilized an existing experimental model of BM endothelial niche that can simulate ER+ tumor cell dormancy to test our hypothesis. In results, estrogen depletion paradoxically promoted ER+ tumor cell proliferation in the BM endothelial niche, and their molecular phenotype shifted from dormant to awaken. Following estrogen depletion, the BM niche cells produced angiopoietin-2 (ANGPT2), which destabilized niche endothelium by interfering ANGPT1/Tie2 signaling, and promoted ER+ tumor cell survival under estrogen deficiency via cell surface integrin &1. Knockdown of ANGPT2 completely negated ER+ tumor cell awakening in the niche. Furthermore, ANGPT2 expression in ER+ tumor human samples was associated with increased risk of distant metastasis only in those who underwent adjuvant estrogen depletion therapy, not in those who did not undergo adjuvant therapy. In conclusion, we demonstrate that ANGPT2 signaling activated after estrogen depletion paradoxically triggers ER+ tumor cell awakening from dormancy in their BM niche, partly indirectly via endothelial Tie2 receptor and partly directly via tumor cell surface integrin &1.
Collapse
Affiliation(s)
- Hyun Ho Han
- Brain Korea 21 Plus Project for Medical ScienceYonsei University College of Medicine, Seoul, South Korea Department of PathologyYonsei University College of Medicine, Seoul, South Korea
| | - Baek Gil Kim
- Department of PathologyYonsei University College of Medicine, Seoul, South Korea
| | - Joo Hyun Lee
- Brain Korea 21 Plus Project for Medical ScienceYonsei University College of Medicine, Seoul, South Korea
| | - Suki Kang
- Department of PathologyYonsei University College of Medicine, Seoul, South Korea
| | - Ji Eun Kim
- Brain Korea 21 Plus Project for Medical ScienceYonsei University College of Medicine, Seoul, South Korea
| | - Nam Hoon Cho
- Brain Korea 21 Plus Project for Medical ScienceYonsei University College of Medicine, Seoul, South Korea Department of PathologyYonsei University College of Medicine, Seoul, South Korea Severance Biomedical Science Institute (SBSI)Yonsei University College of Medicine, Seoul, South Korea Global 5-5-10 System BiologyYonsei University, Seoul, South Korea
| |
Collapse
|
32
|
Atanasov G, Hau HM, Dietel C, Benzing C, Krenzien F, Brandl A, Englisch JP, Wiltberger G, Schierle K, Robson SC, Reutzel-Selke A, Jonas S, Pascher A, Pratschke J, Schmelzle M. Prognostic significance of TIE2-expressing monocytes in hilar cholangiocarcinoma. J Surg Oncol 2016; 114:91-8. [DOI: 10.1002/jso.24249] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 12/02/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Georgi Atanasov
- Department of General, Visceral and Transplantation Surgery and Department of General, Visceral, Vascular and Thoracic Surgery; Charité-Universitätsmedizin Berlin; Berlin Germany
| | - Hans-Michael Hau
- Department of Visceral-; Transplantation-; Thoracic- and Vascular Surgery; University Hospital Leipzig; Leipzig Germany
| | - Corinna Dietel
- Department of Visceral-; Transplantation-; Thoracic- and Vascular Surgery; University Hospital Leipzig; Leipzig Germany
| | - Christian Benzing
- Department of General, Visceral and Transplantation Surgery and Department of General, Visceral, Vascular and Thoracic Surgery; Charité-Universitätsmedizin Berlin; Berlin Germany
| | - Felix Krenzien
- Department of General, Visceral and Transplantation Surgery and Department of General, Visceral, Vascular and Thoracic Surgery; Charité-Universitätsmedizin Berlin; Berlin Germany
| | - Andreas Brandl
- Department of General, Visceral and Transplantation Surgery and Department of General, Visceral, Vascular and Thoracic Surgery; Charité-Universitätsmedizin Berlin; Berlin Germany
| | - Julianna P. Englisch
- Department of General, Visceral and Transplantation Surgery and Department of General, Visceral, Vascular and Thoracic Surgery; Charité-Universitätsmedizin Berlin; Berlin Germany
| | - Georg Wiltberger
- Department of Visceral-; Transplantation-; Thoracic- and Vascular Surgery; University Hospital Leipzig; Leipzig Germany
| | - Katrin Schierle
- Institute of Pathology; University Hospital Leipzig; Leipzig Germany
| | - Simon C. Robson
- Transplant Institute and Division of Gastroenterology; Beth Israel Deaconess Medical Center; Harvard University; Boston Massachusetts
| | - Anja Reutzel-Selke
- Department of General, Visceral and Transplantation Surgery and Department of General, Visceral, Vascular and Thoracic Surgery; Charité-Universitätsmedizin Berlin; Berlin Germany
| | - Sven Jonas
- Department of Hepato-Pancreato-Biliary Surgery; Nurnberg Germany
| | - Andreas Pascher
- Department of General, Visceral and Transplantation Surgery and Department of General, Visceral, Vascular and Thoracic Surgery; Charité-Universitätsmedizin Berlin; Berlin Germany
| | - Johann Pratschke
- Department of General, Visceral and Transplantation Surgery and Department of General, Visceral, Vascular and Thoracic Surgery; Charité-Universitätsmedizin Berlin; Berlin Germany
| | - Moritz Schmelzle
- Department of General, Visceral and Transplantation Surgery and Department of General, Visceral, Vascular and Thoracic Surgery; Charité-Universitätsmedizin Berlin; Berlin Germany
| |
Collapse
|
33
|
Dieterich LC, Detmar M. Tumor lymphangiogenesis and new drug development. Adv Drug Deliv Rev 2016; 99:148-160. [PMID: 26705849 DOI: 10.1016/j.addr.2015.12.011] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 10/12/2015] [Accepted: 12/09/2015] [Indexed: 02/07/2023]
Abstract
Traditionally, tumor-associated lymphatic vessels have been regarded as passive by-standers, serving simply as a drainage system for interstitial fluid generated within the tumor. However, with growing evidence that tumors actively induce lymphangiogenesis, and that the number of lymphatic vessels closely correlates with metastasis and clinical outcome in various types of cancer, this picture has changed dramatically in recent years. Tumor-associated lymphatic vessels have now emerged as a valid therapeutic target to control metastatic disease, and the first specific anti-lymphangiogenic drugs have recently entered clinical testing. Furthermore, we are just beginning to understand the whole functional spectrum of tumor-associated lymphatic vessels, which not only concerns transport of fluid and metastatic cells, but also includes the regulation of cancer stemness and specific inhibition of immune responses, opening new venues for therapeutic applications. Therefore, we predict that specific targeting of lymphatic vessels and their function will become an important tool for future cancer treatment.
Collapse
|
34
|
Evaluation of Angiopoietin-2 as a biomarker in gastric cancer: results from the randomised phase III AVAGAST trial. Br J Cancer 2016; 114:855-62. [PMID: 27031850 PMCID: PMC4984795 DOI: 10.1038/bjc.2016.30] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/29/2015] [Accepted: 01/20/2016] [Indexed: 01/01/2023] Open
Abstract
Background: In the phase III AVAGAST trial, the addition of bevacizumab to chemotherapy improved progression-free survival (PFS) but not overall survival (OS) in patients with advanced gastric cancer. We studied the role of Angiopoietin-2 (Ang-2), a key driver of tumour angiogenesis, metastasis and resistance to antiangiogenic treatment, as a biomarker. Methods: Previously untreated, advanced gastric cancer patients were randomly assigned to receive bevacizumab (n=387) or placebo (n=387) in combination with chemotherapy. Plasma collected at baseline and at progression was analysed by ELISA. The role of Ang-2 as a prognostic and a predictive biomarker of bevacizumab efficacy was studied using a Cox proportional hazards model. Logistic regression analysis was applied for correlations with metastasis. Results: Median baseline plasma Ang-2 levels were lower in Asian (2143 pg ml−1) vs non-Asian patients (3193 pg ml−1), P<0.0001. Baseline plasma Ang-2 was identified as an independent prognostic marker for OS but did not predict bevacizumab efficacy alone or in combination with baseline VEGF. Baseline plasma Ang-2 correlated with the frequency of liver metastasis (LM) at any time: Odds ratio per 1000 pg ml−1 increase: 1.19; 95% CI 1.10–1.29; P<0.0001 (non-Asians) and 1.37; 95% CI 1.13–1.64; P=0.0010 (Asians). Conclusions: Baseline plasma Ang-2 is a novel prognostic biomarker for OS in advanced gastric cancer strongly associated with LM. Differences in Ang-2 mediated vascular response may, in part, account for outcome differences between Asian and non-Asian patients; however, data have to be further validated. Ang-2 is a promising drug target in gastric cancer.
Collapse
|
35
|
Wu FTH, Lee CR, Bogdanovic E, Prodeus A, Gariépy J, Kerbel RS. Vasculotide reduces endothelial permeability and tumor cell extravasation in the absence of binding to or agonistic activation of Tie2. EMBO Mol Med 2016; 7:770-87. [PMID: 25851538 PMCID: PMC4459817 DOI: 10.15252/emmm.201404193] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Angiopoietin-1 (Ang1) activation of Tie2 receptors on endothelial cells (ECs) reduces adhesion by tumor cells (TCs) and limits junctional permeability to TC diapedesis. We hypothesized that systemic therapy with Vasculotide (VT)—a purported Ang1 mimetic, Tie2 agonist—can reduce the extravasation of potentially metastatic circulating TCs by similarly stabilizing the host vasculature. In vitro, VT and Ang1 treatments impeded endothelial hypermeability and the transendothelial migration of MDA-MB-231•LM2-4 (breast), HT29 (colon), or SN12 (renal) cancer cells to varying degrees. In mice, VT treatment inhibited the transit of TCs through the pulmonary endothelium, but not the hepatic or lymphatic endothelium. In the in vivo LM2-4 model, VT monotherapy had no effect on primary tumors, but significantly delayed distant metastatic dissemination to the lungs. In the post-surgical adjuvant treatment setting, VT therapeutically complemented sunitinib therapy, an anti-angiogenic tyrosine kinase inhibitor which limited the local growth of residual disease. Unexpectedly, detailed investigations into the putative mechanism of action of VT revealed no evidence of Tie2 agonism or Tie2 binding; alternative mechanisms have yet to be determined.
Collapse
Affiliation(s)
- Florence T H Wu
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Christina R Lee
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Elena Bogdanovic
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Aaron Prodeus
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Jean Gariépy
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Robert S Kerbel
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
36
|
Fink DM, Steele MM, Hollingsworth MA. The lymphatic system and pancreatic cancer. Cancer Lett 2015; 381:217-36. [PMID: 26742462 DOI: 10.1016/j.canlet.2015.11.048] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/16/2015] [Accepted: 11/30/2015] [Indexed: 02/06/2023]
Abstract
This review summarizes current knowledge of the biology, pathology and clinical understanding of lymphatic invasion and metastasis in pancreatic cancer. We discuss the clinical and biological consequences of lymphatic invasion and metastasis, including paraneoplastic effects on immune responses and consider the possible benefit of therapies to treat tumors that are localized to lymphatics. A review of current techniques and methods to study interactions between tumors and lymphatics is presented.
Collapse
Affiliation(s)
- Darci M Fink
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Maria M Steele
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | | |
Collapse
|
37
|
Smith BD, Kaufman MD, Leary CB, Turner BA, Wise SC, Ahn YM, Booth RJ, Caldwell TM, Ensinger CL, Hood MM, Lu WP, Patt TW, Patt WC, Rutkoski TJ, Samarakoon T, Telikepalli H, Vogeti L, Vogeti S, Yates KM, Chun L, Stewart LJ, Clare M, Flynn DL. Altiratinib Inhibits Tumor Growth, Invasion, Angiogenesis, and Microenvironment-Mediated Drug Resistance via Balanced Inhibition of MET, TIE2, and VEGFR2. Mol Cancer Ther 2015; 14:2023-34. [PMID: 26285778 DOI: 10.1158/1535-7163.mct-14-1105] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 06/13/2015] [Indexed: 11/16/2022]
Abstract
Altiratinib (DCC-2701) was designed based on the rationale of engineering a single therapeutic agent able to address multiple hallmarks of cancer (1). Specifically, altiratinib inhibits not only mechanisms of tumor initiation and progression, but also drug resistance mechanisms in the tumor and microenvironment through balanced inhibition of MET, TIE2 (TEK), and VEGFR2 (KDR) kinases. This profile was achieved by optimizing binding into the switch control pocket of all three kinases, inducing type II inactive conformations. Altiratinib durably inhibits MET, both wild-type and mutated forms, in vitro and in vivo. Through its balanced inhibitory potency versus MET, TIE2, and VEGFR2, altiratinib provides an agent that inhibits three major evasive (re)vascularization and resistance pathways (HGF, ANG, and VEGF) and blocks tumor invasion and metastasis. Altiratinib exhibits properties amenable to oral administration and exhibits substantial blood-brain barrier penetration, an attribute of significance for eventual treatment of brain cancers and brain metastases.
Collapse
Affiliation(s)
| | | | | | | | | | - Yu Mi Ahn
- Deciphera Pharmaceuticals, Lawrence, Kansas
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Daniel L Flynn
- Deciphera Pharmaceuticals, Lawrence, Kansas. Deciphera Pharmaceuticals, Waltham, Massachusetts.
| |
Collapse
|
38
|
Gopinathan G, Milagre C, Pearce OMT, Reynolds LE, Hodivala-Dilke K, Leinster DA, Zhong H, Hollingsworth RE, Thompson R, Whiteford JR, Balkwill F. Interleukin-6 Stimulates Defective Angiogenesis. Cancer Res 2015; 75:3098-107. [PMID: 26081809 PMCID: PMC4527186 DOI: 10.1158/0008-5472.can-15-1227] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 05/13/2015] [Indexed: 12/19/2022]
Abstract
The cytokine IL6 has a number of tumor-promoting activities in human and experimental cancers, but its potential as an angiogenic agent has not been fully investigated. Here, we show that IL6 can directly induce vessel sprouting in the ex vivo aortic ring model, as well as endothelial cell proliferation and migration, with similar potency to VEGF. However, IL6-stimulated aortic ring vessel sprouts had defective pericyte coverage compared with VEGF-stimulated vessels. The mechanism of IL6 action on pericytes involved stimulation of the Notch ligand Jagged1 as well as angiopoietin2 (Ang2). When peritoneal xenografts of ovarian cancer were treated with an anti-IL6 antibody, pericyte coverage of vessels was restored. In addition, in human ovarian cancer biopsies, there was an association between levels of IL6 mRNA, Jagged1, and Ang2. Our findings have implications for the use of cancer therapies that target VEGF or IL6 and for understanding abnormal angiogenesis in cancers, chronic inflammatory disease, and stroke.
Collapse
Affiliation(s)
- Ganga Gopinathan
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Carla Milagre
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Oliver M T Pearce
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Louise E Reynolds
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Kairbaan Hodivala-Dilke
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - David A Leinster
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Haihong Zhong
- MedImmune, One MedImmune Way, Gaithersburg, Maryland
| | | | - Richard Thompson
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - James R Whiteford
- William Harvey Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Frances Balkwill
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom.
| |
Collapse
|
39
|
Lee HW, Choi HY, Joo KM, Nam DH. Tumor progression locus 2 (Tpl2) kinase as a novel therapeutic target for cancer: double-sided effects of Tpl2 on cancer. Int J Mol Sci 2015; 16:4471-91. [PMID: 25723737 PMCID: PMC4394431 DOI: 10.3390/ijms16034471] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/15/2015] [Accepted: 02/15/2015] [Indexed: 12/14/2022] Open
Abstract
Tumor progression locus 2 (Tpl2) is a mitogen-activated protein kinase (MAPK) kinase kinase (MAP3K) that conveys various intra- and extra-cellular stimuli to effector proteins of cells provoking adequate adoptive responses. Recent studies have elucidated that Tpl2 is an indispensable signal transducer as an MAP3K family member in diverse signaling pathways that regulate cell proliferation, survival, and death. Since tumorigenesis results from dysregulation of cellular proliferation, differentiation, and apoptosis, Tpl2 participates in many decisive molecular processes of tumor development and progression. Moreover, Tpl2 is closely associated with cytokine release of inflammatory cells, which has crucial effects on not only tumor cells but also tumor microenvironments. These critical roles of Tpl2 in human cancers make it an attractive anti-cancer therapeutic target. However, Tpl2 contradictorily works as a tumor suppressor in some cancers. The double-sided effects of Tpl2 originate from the specific upstream and downstream signaling environment of each tumor, since Tpl2 interacts with various signaling components. This review summarizes recent studies concerning the possible roles of Tpl2 in human cancers and considers its possibility as a therapeutic target, against which novel anti-cancer agents could be developed.
Collapse
Affiliation(s)
- Hye Won Lee
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 135-710 Seoul, Korea.
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 135-710 Seoul, Korea.
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 135-710 Seoul, Korea.
| | - Han Yong Choi
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 135-710 Seoul, Korea.
| | - Kyeung Min Joo
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 135-710 Seoul, Korea.
- Department of Anatomy and Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 135-710 Seoul, Korea.
| | - Do-Hyun Nam
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 135-710 Seoul, Korea.
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 135-710 Seoul, Korea.
| |
Collapse
|
40
|
Interplay of miR-21 and FoxO1 modulates growth of pancreatic ductal adenocarcinoma. Tumour Biol 2015; 36:4741-5. [PMID: 25623117 DOI: 10.1007/s13277-015-3123-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 11/12/2014] [Indexed: 12/20/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant primary tumors in humans, with extremely high lethality. Although great efforts have been made to understand the molecular regulation of the tumorigenesis of PDAC, our current knowledge remains very limited. Previous work has shown a possible involvement of miR-21 in the growth of PDAC, whereas the underlying mechanism has not been clarified. Here, we show significant higher levels of miR-21 in PDAC, compared to the adjacent normal pancreatic tissue. Moreover, overexpression of miR-21 in PDAC cells increased cell growth, whereas inhibition of miR-21 decreased cell growth. Furthermore, miR-21 was found to inhibit nuclear retention of FoxO1 to augment the growth of PDAC cells. Thus, miR-21/FoxO1 axis appears to be a novel therapeutic target for inhibiting the growth of PDAC.
Collapse
|
41
|
Jary M, Vernerey D, Lecomte T, Dobi E, Ghiringhelli F, Monnien F, Godet Y, Kim S, Bouché O, Fratte S, Gonçalves A, Leger J, Queiroz L, Adotevi O, Bonnetain F, Borg C. Prognostic value of angiopoietin-2 for death risk stratification in patients with metastatic colorectal carcinoma. Cancer Epidemiol Biomarkers Prev 2015; 24:603-12. [PMID: 25583947 DOI: 10.1158/1055-9965.epi-14-1059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Baseline prognostic biomarkers stratifying treatment strategies in first-line metastatic colorectal cancer (mCRC) are lacking. Angiopoietin-2 (Ang-2) is proposed as a potential biomarker in several cancers. We therefore decided to establish the additional prognostic value of Ang-2 for overall survival (OS) in patients with first-line mCRC. METHODS We enrolled 177 patients treated with a bevacizumab containing chemotherapy in two prospective phase II clinical trials. Patient plasma samples were collected at baseline. ELISAs were used to measure Ang-2. RESULTS The multivariable Cox model identified increased lactate dehydrogenase [HR, 1.60; 95% confidence interval (CI), 1.04-2.45; P = 0.03] and Ang-2 log-transformation level (HR, 1.59; 95% CI, 1.14-2.21; P = 0.0065) as two significant independent OS prognostic factors. It exhibited good calibration (P = 0.8) and discrimination (C-index: 0.64; 95% CI, 0.58-0.68). Ang-2 parameter inclusion in the GERCOR reference model significantly and strongly improved its discriminative ability because the C-statistic increased significantly from 0.61 to 0.63 (bootstrap mean difference = 0.07; 95% CI, 0.069-0.077). Interestingly, the addition of Ang-2 binary information with a 5 ng/mL cutoff value to the GERCOR model allowed the reclassification of intermediate-risk profile patients (41%) into two subsets of low and high risks. CONCLUSIONS Our study provides robust evidence in favor of baseline Ang-2 prognostic value for OS adding to the conventional factors. Its assessment appears to be useful for the improvement in risk stratification for patients with intermediate-risk profile. IMPACT Ang-2 ability to predict OS at diagnosis could be of interest in the selection of patients eligible for intermittent or sequential therapeutic strategies dedicated to the optimization of patients' quality of life and chemotherapy cost-effectiveness. Cancer Epidemiol Biomarkers Prev; 24(3); 603-12. ©2015 AACR.
Collapse
Affiliation(s)
- Marine Jary
- Department of Medical Oncology, University Hospital, Besançon, France. INSERM, Unit 1098, University of Franche-Comté, Besançon, France.
| | - Dewi Vernerey
- Methodological and Quality of Life in Oncology Unit, University Hospital of Besançon, Besançon, France
| | - Thierry Lecomte
- INSERM, Unit 7292, University François-Rabelais, CNRS, Tours, France. Department of Hepatogastroenterology and Digestive Oncology, University Hospital, Tours, France
| | - Erion Dobi
- Department of Medical Oncology, University Hospital, Besançon, France
| | | | - Franck Monnien
- Department of Medical Oncology, University Hospital, Besançon, France
| | - Yann Godet
- INSERM, Unit 1098, University of Franche-Comté, Besançon, France
| | - Stefano Kim
- Department of Medical Oncology, University Hospital, Besançon, France. Department of Oncology and Radiotherapy, Hospital of Belfort-Montbeliard, Montbeliard, France
| | - Olivier Bouché
- Department of Hepatogastroenterology and Digestive Oncology, University Hospital Robert Debré, Reims, France
| | - Serge Fratte
- Department of Gastroenterology, Hospital of Belfort-Montbeliard, Montbeliard, France
| | - Anthony Gonçalves
- Department of Medical Oncology, Paoli-Calmettes Institute, Marseille, France
| | - Julie Leger
- INSERM, Clinical Investigational Center CIC 1415, Tours, France
| | - Lise Queiroz
- INSERM, Unit 1098, University of Franche-Comté, Besançon, France. Clinical Investigational Center, CIC-Biotherapy-506, University Hospital of Besançon, Besançon, France
| | - Olivier Adotevi
- Department of Medical Oncology, University Hospital, Besançon, France. INSERM, Unit 1098, University of Franche-Comté, Besançon, France
| | - Franck Bonnetain
- Methodological and Quality of Life in Oncology Unit, University Hospital of Besançon, Besançon, France
| | - Christophe Borg
- Department of Medical Oncology, University Hospital, Besançon, France. INSERM, Unit 1098, University of Franche-Comté, Besançon, France
| |
Collapse
|
42
|
Lee HS, Oh SJ, Lee KH, Lee YS, Ko E, Kim KE, Kim HC, Kim S, Song PH, Kim YI, Kim C, Han S. Gln-362 of angiopoietin-2 mediates migration of tumor and endothelial cells through association with α5β1 integrin. J Biol Chem 2014; 289:31330-40. [PMID: 25237190 DOI: 10.1074/jbc.m114.572594] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Angiopoietin-2 (Ang-2) not only regulates angiogenesis by binding to its well known receptor Tie2 on endothelial cells but also controls sprouting of Tie2-negative angiogenic endothelial cells and invasion of Tie2-negative non-endothelial cells by binding to integrins. However, the molecular mechanism of the Ang-2/integrin association has been unclear. In this study, we found that the Gln-362 residue of Ang-2 was essential for binding to α5β1 integrin. A Q362E Ang-2 mutant, which still bound to Tie2, failed to associate with α5β1 integrin and was unable to activate the integrin downstream signaling of focal adhesion kinase. In addition, unlike wild-type Ang-2, the Q362E Ang-2 mutant was defective in mediating invasion of Tie2-negative glioma or Tie2-positive endothelial cells. Furthermore, the tailpiece domain of the α5 subunit in α5β1 integrin was critical for binding to Ang-2. Taken together, these results provide a novel insight into the mechanism of integrin regulation by Ang-2, which contributes to tumor invasion and endothelial cell migration in a Tie2-independent manner.
Collapse
Affiliation(s)
- Hyo Seon Lee
- From the Bio Therapeutics Lab, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-803, South Korea
| | - Seung Ja Oh
- From the Bio Therapeutics Lab, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-803, South Korea
| | - Kwang-Hoon Lee
- From the Bio Therapeutics Lab, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-803, South Korea
| | - Yoon-Sook Lee
- From the Bio Therapeutics Lab, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-803, South Korea
| | - Eun Ko
- From the Bio Therapeutics Lab, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-803, South Korea
| | - Kyung Eun Kim
- From the Bio Therapeutics Lab, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-803, South Korea
| | - Hyung-chan Kim
- From the Bio Therapeutics Lab, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-803, South Korea
| | - Seokkyun Kim
- From the Bio Therapeutics Lab, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-803, South Korea
| | - Paul H Song
- From the Bio Therapeutics Lab, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-803, South Korea
| | - Yong-In Kim
- the Well Aging Center, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon-Si 443-803, South Korea, and
| | - Chungho Kim
- From the Bio Therapeutics Lab, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-803, South Korea, the School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, South Korea
| | - Sangyeul Han
- From the Bio Therapeutics Lab, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-803, South Korea,
| |
Collapse
|
43
|
Schlereth SL, Refaian N, Iden S, Cursiefen C, Heindl LM. Impact of the prolymphangiogenic crosstalk in the tumor microenvironment on lymphatic cancer metastasis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:639058. [PMID: 25254213 PMCID: PMC4165560 DOI: 10.1155/2014/639058] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 08/14/2014] [Indexed: 02/08/2023]
Abstract
Lymphangiogenesis is a very early step in lymphatic metastasis. It is regulated and promoted not only by the tumor cells themselves, but also by cells of the tumor microenvironment, including cancer associated fibroblasts, mesenchymal stem cells, dendritic cells, or macrophages. Even the extracellular matrix as well as cytokines and growth factors are involved in the process of lymphangiogenesis and metastasis. The cellular and noncellular components influence each other and can be influenced by the tumor cells. The knowledge about mechanisms behind lymphangiogenesis in the tumor microenvironmental crosstalk is growing and offers starting points for new therapeutic approaches.
Collapse
Affiliation(s)
- Simona L. Schlereth
- Department of Ophthalmology, University of Cologne, Kerpener Straße 62, 50937 Cologne, Germany
| | - Nasrin Refaian
- Department of Ophthalmology, University of Cologne, Kerpener Straße 62, 50937 Cologne, Germany
| | - Sandra Iden
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, University of Cologne, Kerpener Straße 62, 50937 Cologne, Germany
| | - Ludwig M. Heindl
- Department of Ophthalmology, University of Cologne, Kerpener Straße 62, 50937 Cologne, Germany
| |
Collapse
|
44
|
Gacche RN, Meshram RJ. Angiogenic factors as potential drug target: Efficacy and limitations of anti-angiogenic therapy. Biochim Biophys Acta Rev Cancer 2014; 1846:161-79. [DOI: 10.1016/j.bbcan.2014.05.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/05/2014] [Accepted: 05/07/2014] [Indexed: 12/17/2022]
|
45
|
Tpl2 inhibitors thwart endothelial cell function in angiogenesis and peritoneal dissemination. Neoplasia 2014; 15:1036-48. [PMID: 24027429 DOI: 10.1593/neo.121914] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 02/05/2013] [Accepted: 05/13/2013] [Indexed: 12/14/2022] Open
Abstract
Angiogenesis is critical in the development of cancer, which involves several angiogenic factors in its peritoneal dissemination. The role of protein tumor progression locus 2 (Tpl2) in angiogenic factor-related endothelial cell angiogenesis is still unclear. To understand the precise mechanism(s) of Tpl2 inhibition in endothelial cells, this study investigated the role of Tpl2 in mediating angiogenic signals using in vitro, in vivo, and ex vivo models. Results showed that inhibition of Tpl2 inhibitor significantly reduced peritoneal dissemination in a mouse model by positron emission tomography/computed tomography imaging. Simultaneously, inhibiting Tpl2 blocked angiogenesis in tumor nodules and prevented angiogenic factor-induced proliferating cell nuclear antigen (PCNA) in endothelial cells. Vascular endothelial growth factor (VEGF) or chemokine (C-X-C motif) ligand 1 (CXCL1) increased Tpl2 kinase activity and phosphorylation in a dose- and time-dependent manner. Furthermore, Tpl2 inhibition or ablation by siRNA prevented the angiogenic signal-induced tube formation in Matrigel plug assay or aortic ring assay. Inhibiting Tpl2 also prevented the angiogenic factor-induced chemotactic motility and migration of endothelial cells. Tpl2 inhibition by CXCL1 or epidermal growth factor in endothelial cells was associated with inactivation of CCAAT/enhancer binding protein β, nuclear factor κ light-chain enhancer of activated B cells, and activating protein 1 and suppression of VEGF expression. Thus, Tpl2 inhibitors thwart Tpl2-regulated VEGF by inactivating transcription factors involved in angiogenic factor-triggered endothelial cell angiogenesis. These results suggest that the therapeutic inhibition of Tpl2 may extend beyond cancer and include the treatment of other diseases involving pathologic angiogenesis.
Collapse
|
46
|
Göhrig A, Detjen KM, Hilfenhaus G, Körner JL, Welzel M, Arsenic R, Schmuck R, Bahra M, Wu JY, Wiedenmann B, Fischer C. Axon guidance factor SLIT2 inhibits neural invasion and metastasis in pancreatic cancer. Cancer Res 2014; 74:1529-40. [PMID: 24448236 DOI: 10.1158/0008-5472.can-13-1012] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) metastasizes by neural, vascular, and local invasion routes, which limit patient survival. In nerves and vessels, SLIT2 and its ROBO receptors constitute repellent guidance cues that also direct epithelial branching. Thus, the SLIT2-ROBO system may represent a key pinch point to regulate PDAC spread. In this study, we examined the hypothesis that escaping from repellent SLIT2-ROBO signaling is essential to enable PDAC cells to appropriate their local stromal infrastructure for dissemination. Through immunohistochemical analysis, we detected SLIT2 receptors ROBO1 and ROBO4 on epithelia, nerves, and vessels in healthy pancreas and PDAC specimens, respectively. SLIT2 mRNA expression was reduced in PDAC compared with nontransformed pancreatic tissues and cell lines, suggesting a reduction in SLIT2-ROBO pathway activity in PDAC. In support of this interpretation, restoring the SLIT2 expression in SLIT2-deficient PDAC cells inhibited their bidirectional chemoattraction with neural cells, and more specifically, impaired unidirectional PDAC cell navigation along outgrowing neurites in models of neural invasion. Restoring autocrine/paracrine SLIT2 signaling was also sufficient to inhibit the directed motility of PDAC cells, but not their random movement. Conversely, RNA interference-mediated silencing of ROBO1 stimulated the motility of SLIT2-competent PDAC cells. Furthermore, culture supernatants from SLIT2-competent PDAC cells impaired migration of endothelial cells (human umbilical vein endothelial cells), whereas an N-terminal SLIT2 cleavage fragment stimulated such migration. In vivo investigations of pancreatic tumors with restored SLIT2 expression demonstrated reduced invasion, metastasis, and vascularization, with opposing effects produced by ROBO1 silencing in tumor cells or sequestration of endogenous SLIT2. Analysis of clinical specimens of PDAC showed that those with low SLIT2 mRNA expression exhibited a higher incidence and a higher fraction of tumor-infiltrated lymph nodes. Taken together, our findings argue that disrupting SLIT2-ROBO signaling in PDAC may enhance metastasis and predispose PDAC cells to neural invasion.
Collapse
Affiliation(s)
- Andreas Göhrig
- Authors' Affiliations: Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany; Medizinische Klinik mit Schwerpunkt Hepatologie und Gastroenterologie; Klinik für Viszeral-, Allgemein-, und Transplantationschirurgie; Institut für Pathologie, Charité-Universitätsmedizin Berlin, Germany; and Department of Neurology, Lurie Cancer Center, Center for Genetic Medicine, Northwestern University Feinberg School of Medicine
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
D'Amico G, Korhonen EA, Anisimov A, Zarkada G, Holopainen T, Hägerling R, Kiefer F, Eklund L, Sormunen R, Elamaa H, Brekken RA, Adams RH, Koh GY, Saharinen P, Alitalo K. Tie1 deletion inhibits tumor growth and improves angiopoietin antagonist therapy. J Clin Invest 2014; 124:824-34. [PMID: 24430181 DOI: 10.1172/jci68897] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 11/08/2013] [Indexed: 12/25/2022] Open
Abstract
The endothelial Tie1 receptor is ligand-less, but interacts with the Tie2 receptor for angiopoietins (Angpt). Angpt2 is expressed in tumor blood vessels, and its blockade inhibits tumor angiogenesis. Here we found that Tie1 deletion from the endothelium of adult mice inhibits tumor angiogenesis and growth by decreasing endothelial cell survival in tumor vessels, without affecting normal vasculature. Treatment with VEGF or VEGFR-2 blocking antibodies similarly reduced tumor angiogenesis and growth; however, no additive inhibition was obtained by targeting both Tie1 and VEGF/VEGFR-2. In contrast, treatment of Tie1-deficient mice with a soluble form of the extracellular domain of Tie2, which blocks Angpt activity, resulted in additive inhibition of tumor growth. Notably, Tie1 deletion decreased sprouting angiogenesis and increased Notch pathway activity in the postnatal retinal vasculature, while pharmacological Notch suppression in the absence of Tie1 promoted retinal hypervasularization. Moreover, substantial additive inhibition of the retinal vascular front migration was observed when Angpt2 blocking antibodies were administered to Tie1-deficient pups. Thus, Tie1 regulates tumor angiogenesis, postnatal sprouting angiogenesis, and endothelial cell survival, which are controlled by VEGF, Angpt, and Notch signals. Our results suggest that targeting Tie1 in combination with Angpt/Tie2 has the potential to improve antiangiogenic therapy.
Collapse
|
48
|
Avraham HK, Jiang S, Fu Y, Nakshatri H, Ovadia H, Avraham S. Angiopoietin-2 mediates blood-brain barrier impairment and colonization of triple-negative breast cancer cells in brain. J Pathol 2014; 232:369-81. [DOI: 10.1002/path.4304] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/06/2013] [Accepted: 11/11/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Hava Karsenty Avraham
- Division of Experimental Medicine; Beth Israel Deaconess Medical Center and Harvard Medical School; Boston MA USA
| | - Shuxian Jiang
- Division of Experimental Medicine; Beth Israel Deaconess Medical Center and Harvard Medical School; Boston MA USA
| | - Yigong Fu
- Division of Experimental Medicine; Beth Israel Deaconess Medical Center and Harvard Medical School; Boston MA USA
| | - Harikrishna Nakshatri
- Departments of Surgery, and Biochemistry and Molecular Biology; Indiana University School of Medicine; Indianapolis IN USA
| | - Haim Ovadia
- Department of Neurology; Hadassah University Hospital; Jerusalem Israel
| | - Shalom Avraham
- Division of Experimental Medicine; Beth Israel Deaconess Medical Center and Harvard Medical School; Boston MA USA
| |
Collapse
|
49
|
Kienast Y, Klein C, Scheuer W, Raemsch R, Lorenzon E, Bernicke D, Herting F, Yu S, The HH, Martarello L, Gassner C, Stubenrauch KG, Munro K, Augustin HG, Thomas M. Ang-2-VEGF-A CrossMab, a Novel Bispecific Human IgG1 Antibody Blocking VEGF-A and Ang-2 Functions Simultaneously, Mediates Potent Antitumor, Antiangiogenic, and Antimetastatic Efficacy. Clin Cancer Res 2013; 19:6730-40. [DOI: 10.1158/1078-0432.ccr-13-0081] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Li T, Liu Z, Jiang K, Ruan Q. Angiopoietin2 enhances doxorubin resistance in HepG2 cells by upregulating survivin and Ref-1 via MSK1 activation. Cancer Lett 2013; 337:276-84. [DOI: 10.1016/j.canlet.2013.04.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/23/2013] [Accepted: 04/26/2013] [Indexed: 10/26/2022]
|