1
|
Hart M, Diener C, Rheinheimer S, Kehl T, Keller A, Lenhof HP, Meese E. Expanding the immune-related targetome of miR-155-5p by integrating time-resolved RNA patterns into miRNA target prediction. RNA Biol 2025; 22:1-9. [PMID: 39760255 PMCID: PMC11730359 DOI: 10.1080/15476286.2025.2449775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/14/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025] Open
Abstract
The lack of a sufficient number of validated miRNA targets severely hampers the understanding of their biological function. Even for the well-studied miR-155-5p, there are only 239 experimentally validated targets out of 42,554 predicted targets. For a more complete assessment of the immune-related miR-155 targetome, we used an inverse correlation of time-resolved mRNA profiles and miR-155-5p expression of early CD4+ T cell activation to predict immune-related target genes. Using a high-throughput miRNA interaction reporter (HiTmIR) assay we examined 90 target genes and confirmed 80 genes as direct targets of miR-155-5p. Our study increases the current number of verified miR-155-5p targets approximately threefold and exemplifies a method for verifying miRNA targetomes as a prerequisite for the analysis of miRNA-regulated cellular networks.
Collapse
Affiliation(s)
- Martin Hart
- Institute of Human Genetics, Saarland University (USAAR), Homburg, Germany
- Center of Human and Molecular Biology (ZHMB), Saarland University (USAAR), Saarbrücken, Germany
| | - Caroline Diener
- Institute of Human Genetics, Saarland University (USAAR), Homburg, Germany
| | | | - Tim Kehl
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University (USAAR), Saarbrücken, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University (USAAR), Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)–Helmholtz Centre for Infection Research (HZI), Saarland University Campus, Saarbrücken, Germany
| | - Hans-Peter Lenhof
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University (USAAR), Saarbrücken, Germany
| | - Eckart Meese
- Institute of Human Genetics, Saarland University (USAAR), Homburg, Germany
| |
Collapse
|
2
|
Tang S, Long X, Li F, Jiang S, Fu Y, Liu J. Identification of RUVBL2 as a novel biomarker to predict the prognosis and drug sensitivity in multiple myeloma based on ferroptosis genes. Hematology 2025; 30:2467499. [PMID: 39985176 DOI: 10.1080/16078454.2025.2467499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/06/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Multiple myeloma (MM) is a hematological malignancy with the proliferation of malignant plasma cells. Numerous studies have highlighted the critical role of ferroptosis in MM. However, how to use ferroptosis-related genes (FRGs) for prognostic prediction and treatment guidance in MM remains unknown. METHODS By analysis of GEO databases, the prognostic gene was identified and a therapeutic strategy for MM patients based on FRGs was explored. A total of 12 FRGs were identified, utilizing the STRING database and Cytoscape software, and the PPI networks were constructed to identify hub genes and further functional enrichment analyses. Based on the aforementioned data, this study analyzed the expression of RUVBL2 in MM patients by qRT-PCR and Western blotting. To validate the functional role of RUVBL2 in the MM cells, cellular experiments were ultimately conducted. RESULTS The analysis highlighted six hub genes, including TP53, MCM5, TLR4, RUVBL2, GCLM and ITGA6, and functional enrichment analyses indicating enrichment in DNA replication, regulation of apoptotic signaling pathway and PI3K/AKT signaling pathway. Prognostic analysis indicated that TP53, RUVBL2, and MCM5 are associated with MM prognosis, with RUVBL2 displaying a notable area under the curve (AUC) of 0.823 in ROC analysis. The study first determined that RUVBL2 is highly expressed in MM, siRUVBL2-mediated deletion of RUVBL2 inhibited proliferation, promoted apoptosis and increased the sensitivity of BTZ in MM cells, and also overcame BTZ resistance in CD138+ primary cells from MM patients. CONCLUSIONS Our study first suggested that RUVBL2 may be regarded as potential therapeutic targets and prognostic value in MM.
Collapse
Affiliation(s)
- Sishi Tang
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Xinyi Long
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Fangfang Li
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Siyi Jiang
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Yunfeng Fu
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Jing Liu
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|
3
|
Yang C, Camargo Tavares L, Lee HC, Steele JR, Ribeiro RV, Beale AL, Yiallourou S, Carrington MJ, Kaye DM, Head GA, Schittenhelm RB, Marques FZ. Faecal metaproteomics analysis reveals a high cardiovascular risk profile across healthy individuals and heart failure patients. Gut Microbes 2025; 17:2441356. [PMID: 39709554 DOI: 10.1080/19490976.2024.2441356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024] Open
Abstract
The gut microbiota is a crucial link between diet and cardiovascular disease (CVD). Using fecal metaproteomics, a method that concurrently captures human gut and microbiome proteins, we determined the crosstalk between gut microbiome, diet, gut health, and CVD. Traditional CVD risk factors (age, BMI, sex, blood pressure) explained < 10% of the proteome variance. However, unsupervised human protein-based clustering analysis revealed two distinct CVD risk clusters (low-risk and high-risk) with different blood pressure (by 9 mmHg) and sex-dependent dietary potassium and fiber intake. In the human proteome, the low-risk group had lower angiotensin-converting enzymes, inflammatory proteins associated with neutrophil extracellular trap formation and auto-immune diseases. In the microbial proteome, the low-risk group had higher expression of phosphate acetyltransferase that produces SCFAs, particularly in fiber-fermenting bacteria. This model identified severity across phenotypes in heart failure patients and long-term risk of cardiovascular events in a large population-based cohort. These findings underscore multifactorial gut-to-host mechanisms that may underlie risk factors for CVD.
Collapse
Affiliation(s)
- Chaoran Yang
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash, Clayton, Australia
| | - Leticia Camargo Tavares
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash, Clayton, Australia
| | - Han-Chung Lee
- Monash Proteomics & Metabolomics Platform, Monash Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Joel R Steele
- Monash Proteomics & Metabolomics Platform, Monash Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | | | - Anna L Beale
- Heart Failure Research Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
- Department of Cardiology, Alfred Hospital, Melbourne, Australia
| | - Stephanie Yiallourou
- Preclinical Disease and Prevention Unit, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Melinda J Carrington
- Preclinical Disease and Prevention Unit, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - David M Kaye
- Heart Failure Research Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
- Department of Cardiology, Alfred Hospital, Melbourne, Australia
- School of Translational Medicine, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Geoffrey A Head
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
- Department of Pharmacology, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics & Metabolomics Platform, Monash Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash, Clayton, Australia
- Heart Failure Research Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
- Victorian Heart Institute, Monash University, Clayton, Australia
| |
Collapse
|
4
|
Dong Z, Wang X, Hu G, Huang Q, Zhang Y, Jia Y, Du S, Zhu C, Wei F, Zhang D, Wang Y, Cai Q. A KSHV-targeted small molecule efficiently blocks SARS-CoV-2 infection via inhibiting expression of EGFR and Cyclin A2. Emerg Microbes Infect 2025; 14:2440490. [PMID: 39655540 DOI: 10.1080/22221751.2024.2440490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024]
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic has led to numerous cases of co-infection with SARS-CoV-2 and other viruses, including Kaposi's sarcoma-associated herpesvirus (KSHV), worldwide. This co-infection has increased patient mortality due to the lack of efficient bi-targeted drugs. Cambogin, a bioactive natural product, has been shown to effectively induce regression of KSHV-latently infected tumours in xenograft mice models; however, its impact on SARS-CoV-2 infection remains unclear. Here, we report that Cambogin targets 46 host genes commonly affected by both SARS-CoV-2 and KSHV infections, as identified through bioinformatics analysis. These genes are related with 14 key upstream signalling pathways, particularly those involved in inflammation regulation, protein phosphorylation, metabolic processes, and cellular stress response. Within the transcriptional factor (TF)-miRNA co-regulatory network, ten out of 46 hub-target genes are closely linked to Cambogin and KSHV/SARS-CoV-2. Importantly, Cambogin not only efficiently blocks the replication and virion production of SARS-CoV-2 in vitro and in vivo by reducing the expression of EGFR and Cyclin A2, but also simultaneously inhibits both SARS-CoV-2 infection and the growth of KSHV-induced tumours in vivo using a murine xenograft model. These findings provide an alternative strategy for the potential use of Cambogin in the treatment of SARS-CoV-2 patients, particularly those with KSHV co-infection.
Collapse
Affiliation(s)
- Zhongwei Dong
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Xinyu Wang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Gaowei Hu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Qingye Huang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yulin Zhang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yuping Jia
- Shandong Academy of Pharmaceutical Sciences, Jinan, People's Republic of China
| | - Shujuan Du
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Caixia Zhu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Fang Wei
- ShengYushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Daizhou Zhang
- Shandong Academy of Pharmaceutical Sciences, Jinan, People's Republic of China
| | - Yuyan Wang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Qiliang Cai
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Expert Workstation, Baoji Central Hospital, Baoji, People's Republic of China
- Qidong-Fudan Innovative Institute of Medical Science, Qidong, People's Republic of China
| |
Collapse
|
5
|
Yin J, Hu Y, Yan K, Xu Y, Li D. Uncovering the bioactive constituents and their mechanisms of the Forsythiae Fructus against hyperpigmentation using a combined strategy integrating cell-specific extraction, plasma pharmaceutical chemistry and network pharmacology. J Pharm Biomed Anal 2025; 262:116865. [PMID: 40194472 DOI: 10.1016/j.jpba.2025.116865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/27/2025] [Accepted: 04/02/2025] [Indexed: 04/09/2025]
Abstract
Skin hyperpigmentation is a type of difficult-to-treat disease that frequently results from the improper metabolism of facial pigment. The herb Forsythiae Fructus (FF) possesses whitening and freckle-removal properties. Its probable active components and anti-hyperpigmentation mechanism, however, are still unknown. In the current investigation, the active components were initially identified and screened by UHPLC-Q-Orbitrap HRMS/MS employing B16 cell-specific extraction and plasma pharmaceutical chemistry, respectively. Subsequently, the component-target-disease network and protein-protein interaction (PPI) network of FF were built by using a network pharmacology approach. The probable targets and pathways were found using gene ontology (GO) and KEGG enrichment analysis. The essential elements and core genes causing illnesses were identified through molecular docking. Lastly, based on network analysis, cell experiments were carried out to further explore the efficacy of the main active ingredients in the treatment of abnormal melanosis. As a result, 37 ingredients were identified in FF extract, 22 compounds in the decoction had a specific affinity with B16 mouse melanoma cells, and a total of 10 prototype compounds and 11 metabolites were detected in rat plasma. Through in vitro and in vivo screening methods, 16 potential active ingredients were obtained, and 229 biological targets and 1515 disease-related targets were predicted by network pharmacology. In addition, in vitro cell experiments revealed that kaempferol, luteolin, and wogonin all exhibited inhibition of melanin production and tyrosinase activity. The proposed combination method of rapid screening of active ingredients in vivo and integrated network pharmacology in vitro could explore the therapeutic mechanism of FF against hyper-pigmentation, and provide a theoretical evidence for the development and utilization of FF.
Collapse
Affiliation(s)
- Jintuo Yin
- Department of Pharmacy, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Yalin Hu
- Department of Pharmacy, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Kai Yan
- Hebei Institute for Drug and Medical Device Control, Shijiazhuang 050299, China
| | - Yanmei Xu
- Hebei Institute for Drug and Medical Device Control, Shijiazhuang 050299, China
| | - Deqiang Li
- Department of Pharmacy, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China.
| |
Collapse
|
6
|
Mo Y, Ge Y, Wang D, Wang J, Zhang R, Hu Y, Qin X, Hu Y, Lu S, Liu Y, Zhang WS. Comprehensive analysis of single-cell and bulk transcriptome unravels immune landscape of atherosclerosis and develops a S100 family based-diagnostic model. Comput Biol Chem 2025; 117:108436. [PMID: 40163962 DOI: 10.1016/j.compbiolchem.2025.108436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/05/2025] [Accepted: 03/17/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND The S100 family of calcium-binding proteins (S100s) had been tightly related to the biological processes of various cardiovascular diseases. This study aims to investigate the expression of S100s in Atherosclerosis (AS) and explore their potential as diagnostic biomarkers and therapeutic targets. METHODS We analyzed multiple sequencing datasets from the GEO database to compare the expression profiles of S100s in AS tissues versus normal samples. Employing unsupervised clustering techniques, AS subtypes were discerned based on the intricate variations in S100-related gene expression profiles. Subsequent analyses delved into immune cell infiltration and GSVA pathway enrichment, shedding light on the nuanced immune landscape characterizing diverse AS subtypes. Machine learning techniques were employed to develop a diagnostic model for AS. Single-cell RNA analysis was utilized to investigate the cellular distribution of S100 hub genes in AS. RESULTS Unsupervised clustering analysis identified two distinct AS subtypes (C1 and C2), characterized by specific S100 gene expression patterns. The RF-based diagnostic model exhibited the highest efficacy (AUC=0.881), and the top five genes (S100A4, S100A10, S100A11, S100A13, S100Z) were used to construct a diagnostic nomogram. CONCLUSION This study systematically elucidates the roles of S100s in AS, offering insights into molecular subtyping, immune characteristics, and diagnostic model construction. The findings provide valuable implications for the precise treatment and prognosis assessment of AS and pave the way for further research into related mechanisms.
Collapse
Affiliation(s)
- Yanfei Mo
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Department of Cardiology, Pukou Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, China; Jiangsu Medical College, Yancheng, Jiangsu, China
| | - Yaoqi Ge
- Department of General Practice, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Dan Wang
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jizheng Wang
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rihua Zhang
- Department of the Core Facility, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yifang Hu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoxuan Qin
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yanyan Hu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shan Lu
- Maternity and Child Dept, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Yun Liu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Wen-Song Zhang
- Department of the Core Facility, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
7
|
Loomis S, Silva DG, Savopoulos R, Cilia J, Li J, Davis MD, Virley D, Foley A, Loro E, McCreary AC. Behavioral and transcriptomic effects of a novel cannabinoid on a rat valproic acid model of autism. Neuropharmacology 2025; 273:110450. [PMID: 40187640 DOI: 10.1016/j.neuropharm.2025.110450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/28/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by impaired social communication, restricted interests, repetitive behavior and irritability. Exposure to valproic acid (VPA) during pregnancy has been shown to increase the risk of autism in children and has led to the development of the in-utero VPA rat model that elicits neurodevelopmental autistic-like features. Offspring exhibit behavioral and neurobiological alterations modelling ASD symptoms. We performed a behavioral and molecular assessment in a rat in-utero VPA model treated with a novel botanical cannabinoid, JZP541. Male offspring from dams treated with VPA were tested acutely and sub-chronically with JZP541 (10, 30, or 100 mg/kg, intraperitoneally). A behavioral testing battery was performed, and brain frontal cortex and hippocampus used for RNA sequencing. In utero exposure to VPA resulted in progeny showing behavioral phenotypes characteristic of ASD. JZP541 attenuated these deficits in social, stereotypic, hyperactivity and irritability behavior in a dose-dependent fashion. VPA exposure was associated with a substantial transcriptional dysregulation impacting multiple key biological processes in a tissue-dependent manner. The expression profiles were integrated with publicly available datasets of autism-associated genes to support the validity of the model used and to focus on the effects of treatment on known autism-relevant transcriptional targets. This approach indicated a strong and dose-dependent reduction of the autism-associated gene expression signature in brain samples from animals dosed with JZP541. Our findings demonstrate JZP541 was able to ameliorate ASD associated behavioral deficits, and this was supported by improvements in putative transcriptional biomarkers of ASD.
Collapse
Affiliation(s)
- Sally Loomis
- Jazz Pharmaceuticals Research UK Ltd., Cambridge, UK.
| | - Diogo G Silva
- Jazz Pharmaceuticals Research UK Ltd., Cambridge, UK
| | | | - Jackie Cilia
- Jazz Pharmaceuticals Research UK Ltd., Cambridge, UK
| | - Jennifer Li
- Jazz Pharmaceuticals Research UK Ltd., Cambridge, UK
| | - Mat D Davis
- Jazz Pharmaceuticals Inc., Palo Alto, CA, USA
| | - David Virley
- Jazz Pharmaceuticals Research UK Ltd., Cambridge, UK
| | | | - Emanuele Loro
- Jazz Pharmaceuticals Research UK Ltd., Cambridge, UK
| | | |
Collapse
|
8
|
Kim Y, Ki MS, Shin MH, Choi JS, Park MS, Kim Y, Oh CM, Lee SH. Thrombospondin-1 modulation by Bifidobacterium spp. mitigates lung damage in an acute lung injury mouse model. Microbiol Res 2025; 297:128173. [PMID: 40267843 DOI: 10.1016/j.micres.2025.128173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/18/2025] [Accepted: 04/03/2025] [Indexed: 04/25/2025]
Abstract
Our study shows that Bifidobacterium spp. supplementation reduces lung damage in acute lung injury by enhancing immune cell activity and restoring thrombospondin-1 levels, offering a promising therapeutic approach for the treatment of ALI/ARDS. BACKGROUND Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are critical conditions characterized by severe lung inflammation and damage, often exacerbated by mechanical ventilation. Probiotics, particularly those containing Bifidobacterium spp. (Bifidus) have shown promise in modulating immune responses and reducing inflammation. METHODS In this study, we investigated the effects of Bifidus supplementation in a mouse model of lipopolysaccharide induced ALI and ventilator-induced lung injury. RESULTS Our results demonstrate that Bifidus significantly ameliorates lung injury by enhancing efferocytosis and reducing pro-inflammatory cytokine levels. Single-cell RNA sequencing revealed significant changes in lung immune cell populations, particularly macrophages and monocytes, which showed increased efferocytosis activity and modulation of key signaling pathways such as TNF, MAPK and TLR. Notably, Bifidus feeding restored thrombospondin-1 levels in lung tissue, facilitating clearance of apoptotic cells and promoting resolution of inflammation. CONCLUSIONS Overall, our study highlights the potential of Bifidus as a therapeutic strategy to mitigate lung injury in ALI/ARDS.
Collapse
Affiliation(s)
- Yumin Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Min Seo Ki
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea; Division of Pulmonology and Allergy, Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang-si, Republic of Korea
| | - Mi Hwa Shin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea; Division of Pulmonology and Allergy, Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang-si, Republic of Korea
| | - Ji Soo Choi
- Division of Pulmonology and Allergy, Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang-si, Republic of Korea; Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Republic of Korea
| | - Moo Suk Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea; Division of Pulmonology and Allergy, Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang-si, Republic of Korea
| | - Yeongmin Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea.
| | - Sang Hoon Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea; Division of Pulmonology and Allergy, Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang-si, Republic of Korea.
| |
Collapse
|
9
|
Eisa NM, Elshaer SS, Bakry S, Abdelzaher OF, Eldesoky NAR. Placental extract augments mesenchymal stem cells in pancreatic tissue regeneration: A new insight into diabetes treatment. Tissue Cell 2025; 95:102883. [PMID: 40157219 DOI: 10.1016/j.tice.2025.102883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND Although a wide variety of medicinal interventions and lifestyles have been endeavored so far for the treatment of diabetes mellitus, it is still intractable. The current study aimed to examine the effect of mesenchymal stem cells (MSCs) and/or placental extract (PE) on streptozotocin (STZ) induced diabetic rats. METHODS Fifty male albino rats were used. Ten of them as negative control (group I) and the remaining forty rats were subjected to diabetes induction using 50 mg/kg STZ then divided into; group II (positive controls), group III (MSCs treated), group IV (PE treated), and group V (MSCs/PE combination treated). After 4 weeks of treatment, animals were sacrificed; blood samples were collected for determination of glycated hemoglobin by HPLC, and serum was separated for determination of glucose spectrophotometrically and insulin by ELISA. Pancreatic tissues were harvested for histopathological examination and pancreatic duodenal homeobox 1 (Pdx1) gene expression by PCR. RESULTS The three treated groups showed significant enhancement in glycemic parameters and Pdx1 gene expression compared with positive control group (P < 0.05). Histopathological examination revealed great improvement in the three treated groups where group V showed the best picture and the best glycemic control. CONCLUSIONS This study points to the possible role of PE in DM treatment. The MSCs/PE combination had the ability to return all parameters and Pdx1 gene expression to their normal levels. This action could be attributed to MSCs homing into the pancreas and the pancreatic rejuvenation provided by PE contents of growth factors; EGF, HGF, IGF-1 and IGF-II.
Collapse
Affiliation(s)
- Nehal Mohamed Eisa
- Clinical Research Department at Giza health affairs Directorate, MOHP, Giza, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr city, Cairo 11823, Egypt.
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr city, Cairo 11823, Egypt
| | - Sayed Bakry
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | | | - Noha Abdel-Rahman Eldesoky
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr city, Cairo 11823, Egypt
| |
Collapse
|
10
|
Zhou S, Li T, Zhang W, Wu J, Hong H, Quan W, Qiao X, Cui C, Qiao C, Zhao W, Shen Y. The cGAS-STING-interferon regulatory factor 7 pathway regulates neuroinflammation in Parkinson's disease. Neural Regen Res 2025; 20:2361-2372. [PMID: 39359093 PMCID: PMC11759022 DOI: 10.4103/nrr.nrr-d-23-01684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/05/2024] [Accepted: 02/06/2024] [Indexed: 10/04/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202508000-00026/figure1/v/2024-09-30T120553Z/r/image-tiff Interferon regulatory factor 7 plays a crucial role in the innate immune response. However, whether interferon regulatory factor 7-mediated signaling contributes to Parkinson's disease remains unknown. Here we report that interferon regulatory factor 7 is markedly up-regulated in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson's disease and co-localizes with microglial cells. Both the selective cyclic guanosine monophosphate adenosine monophosphate synthase inhibitor RU.521 and the stimulator of interferon genes inhibitor H151 effectively suppressed interferon regulatory factor 7 activation in BV2 microglia exposed to 1-methyl-4-phenylpyridinium and inhibited transformation of mouse BV2 microglia into the neurotoxic M1 phenotype. In addition, siRNA-mediated knockdown of interferon regulatory factor 7 expression in BV2 microglia reduced the expression of inducible nitric oxide synthase, tumor necrosis factor α, CD16, CD32, and CD86 and increased the expression of the anti-inflammatory markers ARG1 and YM1. Taken together, our findings indicate that the cyclic guanosine monophosphate adenosine monophosphate synthase-stimulator of interferon genes-interferon regulatory factor 7 pathway plays a crucial role in the pathogenesis of Parkinson's disease.
Collapse
Affiliation(s)
- Shengyang Zhou
- Laboratory of Neurodegenerative and Neuroinjury Diseases, Wuxi Medicine School, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Ting Li
- Laboratory of Neurodegenerative and Neuroinjury Diseases, Wuxi Medicine School, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Wei Zhang
- Laboratory of Neurodegenerative and Neuroinjury Diseases, Wuxi Medicine School, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Jian Wu
- Laboratory of Neurodegenerative and Neuroinjury Diseases, Wuxi Medicine School, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Hui Hong
- Laboratory of Neurodegenerative and Neuroinjury Diseases, Wuxi Medicine School, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Wei Quan
- Laboratory of Neurodegenerative and Neuroinjury Diseases, Wuxi Medicine School, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Xinyu Qiao
- Laboratory of Neurodegenerative and Neuroinjury Diseases, Wuxi Medicine School, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Chun Cui
- Laboratory of Neurodegenerative and Neuroinjury Diseases, Wuxi Medicine School, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Chenmeng Qiao
- Laboratory of Neurodegenerative and Neuroinjury Diseases, Wuxi Medicine School, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Weijiang Zhao
- Laboratory of Neurodegenerative and Neuroinjury Diseases, Wuxi Medicine School, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Yanqin Shen
- Laboratory of Neurodegenerative and Neuroinjury Diseases, Wuxi Medicine School, Jiangnan University, Wuxi, Jiangsu Province, China
| |
Collapse
|
11
|
Ojha A, Zhao SJ, Akpunonu B, Zhang JT, Simo KA, Liu JY. Gap-App: A sex-distinct AI-based predictor for pancreatic ductal adenocarcinoma survival as a web application open to patients and physicians. Cancer Lett 2025; 622:217689. [PMID: 40189015 DOI: 10.1016/j.canlet.2025.217689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/20/2025]
Abstract
In this study, using RNA-Seq gene expression data and advanced machine learning techniques, we identified distinct gene expression profiles between male and female pancreatic ductal adenocarcinoma (PDAC) patients. Building on this insight, we developed sex-specific 3-year survival predictive models alongside a single comprehensive model. Despite smaller sample sizes, the sex-specific models outperformed the general model. We further refined our models by selecting the most important features from the initial models. The refined sex-specific predictive models achieved higher accuracy and consistently outperformed the refined comprehensive model, highlighting the value of sex-specific analysis. To ensure robustness, all refined sex-specific models were calibrated and then evaluated using an independent dataset. Random Forest models emerged as the most effective predictors, achieving accuracies of 90.33 % for males and 90.40 % for females on the training dataset, and 81.25 % for males and 89.47 % for females on the independent test dataset. These top-performing models were integrated into Gap-App, a web application that leverages individual gene expression profiles and sex information for personalized survival predictions. As the first online tool bridging complex genomic data with clinical application, Gap-App facilitates more precise, individualized cancer care, marking a significant step in personalized prognosis prediction. This study underscores the importance of incorporating sex differences in predictive modeling and sets the stage for the shift from traditional one-size-fits-all to more personalized and targeted medicine. The Gap-App service is freely available for patients and clinicians at www.gap-app.org.
Collapse
Affiliation(s)
- Anuj Ojha
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA; Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH, USA
| | - Shu-Jun Zhao
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA; Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH, USA
| | - Basil Akpunonu
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Jian-Ting Zhang
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Kerri A Simo
- Department of Surgery, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA; ProMedica Health System, ProMedica Cancer Institute, Toledo, OH, USA
| | - Jing-Yuan Liu
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA; Department of Cell and Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA; Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH, USA.
| |
Collapse
|
12
|
Frolov A, Huang H, Schütz D, Köhne M, Blank-Stein N, Osei-Sarpong C, Büttner M, Elmzzahi T, Khundadze M, Zahid M, Reuter M, Becker M, De Domenico E, Bonaguro L, Kallies A, Morrison H, Hübner CA, Händler K, Stumm R, Mass E, Beyer MD. Microglia and CD8+ T cell activation precede neuronal loss in a murine model of spastic paraplegia 15. J Exp Med 2025; 222:e20232357. [PMID: 40266307 PMCID: PMC12017274 DOI: 10.1084/jem.20232357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/15/2025] [Accepted: 03/19/2025] [Indexed: 04/24/2025] Open
Abstract
In central nervous system (CNS) diseases characterized by late-onset neurodegeneration, the interplay between innate and adaptive immune responses remains poorly understood. This knowledge gap is exacerbated by the prolonged protracted disease course as it complicates the delineation of brain-resident and infiltrating cells. Here, we conducted comprehensive profiling of innate and adaptive immune cells in a murine model of spastic paraplegia 15 (SPG15), a complicated form of hereditary spastic paraplegia. Using fate-mapping of bone marrow-derived cells, we identified microgliosis accompanied by infiltration and local expansion of T cells in the CNS of Spg15-/- mice. Single-cell analysis revealed an expansion of disease-associated microglia (DAM) and effector CD8+ T cells prior to neuronal loss. Analysis of potential cell-cell communication pathways suggested bidirectional interactions between DAM and effector CD8+ T cells, potentially contributing to disease progression in Spg15-/- mice. In summary, we identified a shift in microglial phenotypes associated with the recruitment and expansion of T cells as a new characteristic of Spg15-driven neuropathology.
Collapse
Affiliation(s)
- Aleksej Frolov
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Hao Huang
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Dagmar Schütz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Maren Köhne
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Nelli Blank-Stein
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Collins Osei-Sarpong
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Institute of Experimental Pathology, Centre of Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Maren Büttner
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Tarek Elmzzahi
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Mukhran Khundadze
- Institute of Human Genetics, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
- Center for Rare Diseases, University Hospital Jena, Friedrich-Schiller-University, Jena, Germany
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marina Zahid
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Michael Reuter
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Matthias Becker
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Modular High-Performance Computing and Artificial Intelligence, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Elena De Domenico
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE and University of Bonn and West German Genome Center, Bonn, Germany
| | - Lorenzo Bonaguro
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Axel Kallies
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Helen Morrison
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich-Schiller University, Jena, Germany
| | - Christian A. Hübner
- Institute of Human Genetics, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
- Center for Rare Diseases, University Hospital Jena, Friedrich-Schiller-University, Jena, Germany
| | - Kristian Händler
- PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE and University of Bonn and West German Genome Center, Bonn, Germany
- Institute of Human Genetics, Universitätsklinikum Schleswig-Holstein, University of Lübeck and University of Kiel, Lübeck, Germany
| | - Ralf Stumm
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Elvira Mass
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Marc D. Beyer
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE and University of Bonn and West German Genome Center, Bonn, Germany
| |
Collapse
|
13
|
Zare MS, Abedpoor N, Hajibabaie F, Walker AK. Gene co-expression patterns shared between chemobrain and neurodegenerative disease models in rodents. Neurobiol Dis 2025; 211:106944. [PMID: 40339619 DOI: 10.1016/j.nbd.2025.106944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 05/04/2025] [Accepted: 05/04/2025] [Indexed: 05/10/2025] Open
Abstract
Chemotherapy-related cognitive impairment (CRCI), is a well-recognized phenomenon in cancer patients who have undergone chemotherapy but the exact molecular mechanisms underpinning CRCI remain elusive. Symptoms reported by people with CRCI resemble those experienced by people with age-related neurodegenerative disorders (ARNDDs), yet no clear connection between CRCI and ARNDDs has been reported to date. The existence of shared mechanisms between these conditions offers opportunities for repurposing drugs already approved for the treatment of ARNDDs to improve symptoms of CRCI. Given that there is no available microarray or RNA-Seq data from the brains of people who have experienced CRCI, we investigated to what extent brain gene expression perturbations from validated rodent models of CRCI induced by chemotherapy compared with validated rodent models of Alzheimer's disease and Parkinson's disease. We utilized multiple bioinformatic analyses, including functional enrichment, protein-protein interaction network analyses, gene ontology analyses and identification of hub genes to reveal connections between comparable gene expression perturbations observed in these conditions. Collectively 165 genes overlapped between CRCI and Parkinson's disease and/or Alzheimer's disease, and 15 overlapped between all three conditions. The joint genes between Alzheimer's disease, Parkinson's disease and CRCI demonstrate an average of 83.65% nucleotide sequence similarity to human orthologues. Gene ontology and pathway enrichment analyses suggest mechanisms involved in neural activity and inflammatory response as the key components of the studied neuropathological conditions. Accordingly, genes in which expression was comparably affected in all three condition models could be attributed to neuroinflammation, cell cycle arrest, and changes in physiological neural activity.
Collapse
Affiliation(s)
- Mohammad-Sajad Zare
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA; Iranian Cancer Control Center (MACSA), Isfahan, Iran.
| | - Navid Abedpoor
- Department of Sports Physiology, Isf.C., Islamic Azad University, Isfahan, Iran
| | - Fatemeh Hajibabaie
- Department of Biology, ShK.C., Islamic Azad University, Shahrekord, Iran
| | - Adam K Walker
- Discipline of Psychiatry and Mental Health, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.; Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick 2031, NSW, Australia..
| |
Collapse
|
14
|
Yang J, Wu J, Xie X, Xia P, Lu J, Liu J, Bai L, Li X, Yu Z, Li H. Perilipin-2 mediates ferroptosis in oligodendrocyte progenitor cells and myelin injury after ischemic stroke. Neural Regen Res 2025; 20:2015-2028. [PMID: 39254564 PMCID: PMC11691472 DOI: 10.4103/nrr.nrr-d-23-01540] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/17/2024] [Accepted: 02/27/2024] [Indexed: 09/11/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202507000-00024/figure1/v/2024-09-09T124005Z/r/image-tiff Differentiation of oligodendrocyte progenitor cells into mature myelin-forming oligodendrocytes contributes to remyelination. Failure of remyelination due to oligodendrocyte progenitor cell death can result in severe nerve damage. Ferroptosis is an iron-dependent form of regulated cell death caused by membrane rupture induced by lipid peroxidation, and plays an important role in the pathological process of ischemic stroke. However, there are few studies on oligodendrocyte progenitor cell ferroptosis. We analyzed transcriptome sequencing data from GEO databases and identified a role of ferroptosis in oligodendrocyte progenitor cell death and myelin injury after cerebral ischemia. Bioinformatics analysis suggested that perilipin-2 (PLIN2) was involved in oligodendrocyte progenitor cell ferroptosis. PLIN2 is a lipid storage protein and a marker of hypoxia-sensitive lipid droplet accumulation. For further investigation, we established a mouse model of cerebral ischemia/reperfusion. We found significant myelin damage after cerebral ischemia, as well as oligodendrocyte progenitor cell death and increased lipid peroxidation levels around the infarct area. The ferroptosis inhibitor, ferrostatin-1, rescued oligodendrocyte progenitor cell death and subsequent myelin injury. We also found increased PLIN2 levels in the peri-infarct area that co-localized with oligodendrocyte progenitor cells. Plin2 knockdown rescued demyelination and improved neurological deficits. Our findings suggest that targeting PLIN2 to regulate oligodendrocyte progenitor cell ferroptosis may be a potential therapeutic strategy for rescuing myelin damage after cerebral ischemia.
Collapse
Affiliation(s)
- Jian Yang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Jiang Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Xueshun Xie
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Pengfei Xia
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Jinxin Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Jiale Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Lei Bai
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Zhengquan Yu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
15
|
Gu L, Li S, Zhou L, Yuan F, Zhang T, Wang Y, Liu T, Li M, Zhang Z, Guo X. Ecophysiological and transcriptional landscapes of arbuscular mycorrhiza fungi enhancing yield, quality, and stalk rot resistance in Anoectochilus roxburghii. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109885. [PMID: 40220671 DOI: 10.1016/j.plaphy.2025.109885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 03/23/2025] [Accepted: 04/03/2025] [Indexed: 04/14/2025]
Abstract
Anoectochilus roxburghii (Wall.) Lindl. (A. roxburghii) is an increasingly popular medicinal herb. Arbuscular mycorrhiza (AM) fungi, known for their symbiotic relationships with plant roots, enhance nutrient uptake and disease resistance in host plants. However, their specific regulatory mechanisms in A. roxburghii are not fully understood. In this study, Fujian A. roxburghii was inoculated with the AM fungus Glomus intraradices, and successful root colonization was observed. Following AM fungal colonization, there was a significant upregulation of photosynthesis-related genes in the stems, accompanied by improved canopy phenotypes and root architecture. Consequently, AM-inoculated plants exhibited increased fresh and dry biomass, as well as elevated levels of polysaccharides and flavonoids. Additionally, the incidence of Fusarium oxysporum-induced stalk rot was reduced in AM-inoculated plants. Analysis of defense-related enzymes indicated that AM-inoculated plants exhibited a rapid and robust response to pathogen infection, mitigating oxidative stress. Transcriptomic analysis revealed significant upregulation of genes associated "Fatty acid degradation", "MAPK signaling pathway-plant", and "Plant-pathogen interaction", suggesting their involvement in enhanced disease resistance. A regulatory network centered on ACX1 and calmodulin, involving multiple transcription factors such as WRKY, bHLH, ERF, NAC, and HSF, was implicated in defense responses. These findings demonstrated the beneficial effects of AM fungi on yield, quality, and disease resistance in A. roxburghii, providing a theoretical foundation for its cultivation and genetic improvement.
Collapse
Affiliation(s)
- Li Gu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shurong Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lichun Zhou
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Feiyue Yuan
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tingting Zhang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yankun Wang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tiedong Liu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mingjie Li
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhongyi Zhang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaolei Guo
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
16
|
Sun H, Liu X, Lu J, Fan H, Lu D, Sun H, Zhou Z, Li Y, Yin X, Song Y, Wang S, Xin T. A multi-omics target study for glioblastoma multiforme (GBM) based on Mendelian randomization analysis. IBRO Neurosci Rep 2025; 18:400-408. [PMID: 40124114 PMCID: PMC11928806 DOI: 10.1016/j.ibneur.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 02/23/2025] [Indexed: 03/25/2025] Open
Abstract
Background Glioblastoma multiforme (GBM) is the most frequent type of primary malignant brain tumor. This study utilized Mendelian randomization (MR) analysis to explore the causal link between proteins in plasma and cerebrospinal fluid and GBM. Aims This study aimed to identify proteins in both plasma and cerebrospinal fluid (CSF) that could serve as potential therapeutic targets for GBM. Methods We employed previously published protein quantitative trait loci (pQTL) data from CSF and plasma as the exposure data, alongside aggregated Genome-Wide Association Study (GWAS) data on GBM for our MR analysis. Furthermore, we conducted Bayesian co-localization analysis and examined the protein-protein interaction (PPI) networks of CSF and plasma proteins related to GBM risk. Results MR identified three key proteins linked to GBM risk: ribophorin I (RPN1) in plasma, von Willebrand factor (vWF) and macrophage-stimulating protein (MSP). in CSF. Elevated RPN1 and MSP were associated with decreased GBM risk, while increased vWF was linked to higher risk. External validation confirmed that RPN1 served as a key protein in GBM development. Bayesian co-localization showed a 10.35 % probability of a shared causal variant between RPN1 and GBM. Protein-protein interaction analysis further highlighted related proteins for RPN1. Conclusions In summary, the plasma protein RPN1 and the CSF proteins vWF and MSP are causally associated with the risk of GBM. Further research is needed to clarify the roles of these candidate proteins in GBM. Notably, RPN1 may serve as a potential therapeutic target for GBM. Future clinical studies on GBM treatment could explore drugs targeting RPN1.
Collapse
Affiliation(s)
- Hao Sun
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, China
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
- Shandong Engineering Research Center of Precision Diagnosis and Treatment Technology for Neuro-oncology, Jinan 250014, China
- Laboratory of Basic and Translational Neuromedicine, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China
- Shandong Institute of Brain Science and Brain-inspired Research, Jinan 250117, China
| | - Xiangyin Liu
- Department of Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan 250000, China
| | - Jiaze Lu
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, China
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
- Shandong Engineering Research Center of Precision Diagnosis and Treatment Technology for Neuro-oncology, Jinan 250014, China
- Laboratory of Basic and Translational Neuromedicine, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China
- Shandong Institute of Brain Science and Brain-inspired Research, Jinan 250117, China
| | - Hao Fan
- Shandong Engineering Research Center of Precision Diagnosis and Treatment Technology for Neuro-oncology, Jinan 250014, China
- Laboratory of Basic and Translational Neuromedicine, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China
- Shandong Institute of Brain Science and Brain-inspired Research, Jinan 250117, China
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, China
| | - Dongxiao Lu
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
- Shandong Engineering Research Center of Precision Diagnosis and Treatment Technology for Neuro-oncology, Jinan 250014, China
- Laboratory of Basic and Translational Neuromedicine, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China
- Shandong Institute of Brain Science and Brain-inspired Research, Jinan 250117, China
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, China
| | - Haohan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
- Shandong Engineering Research Center of Precision Diagnosis and Treatment Technology for Neuro-oncology, Jinan 250014, China
- Laboratory of Basic and Translational Neuromedicine, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China
- Shandong Institute of Brain Science and Brain-inspired Research, Jinan 250117, China
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, China
| | - Zijian Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
- Shandong Engineering Research Center of Precision Diagnosis and Treatment Technology for Neuro-oncology, Jinan 250014, China
- Laboratory of Basic and Translational Neuromedicine, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China
- Shandong Institute of Brain Science and Brain-inspired Research, Jinan 250117, China
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, China
| | - Yuming Li
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
- Shandong Engineering Research Center of Precision Diagnosis and Treatment Technology for Neuro-oncology, Jinan 250014, China
- Laboratory of Basic and Translational Neuromedicine, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China
- Shandong Institute of Brain Science and Brain-inspired Research, Jinan 250117, China
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, China
| | - Xianyong Yin
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
- Shandong Engineering Research Center of Precision Diagnosis and Treatment Technology for Neuro-oncology, Jinan 250014, China
- Laboratory of Basic and Translational Neuromedicine, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China
- Shandong Institute of Brain Science and Brain-inspired Research, Jinan 250117, China
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, China
| | - Yuwen Song
- Department of Opthalmology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Shan Wang
- Shandong Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Tao Xin
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, China
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
- Shandong Engineering Research Center of Precision Diagnosis and Treatment Technology for Neuro-oncology, Jinan 250014, China
- Laboratory of Basic and Translational Neuromedicine, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China
- Shandong Institute of Brain Science and Brain-inspired Research, Jinan 250117, China
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| |
Collapse
|
17
|
Roney M, Uddin MN, Khan AA, Fatima S, Mohd Aluwi MFF, Hamim SMI, Ahmad A. Repurposing of dipeptidyl peptidase FDA-approved drugs in Alzheimer's disease using network pharmacology and in-silico approaches. Comput Biol Chem 2025; 116:108378. [PMID: 39938415 DOI: 10.1016/j.compbiolchem.2025.108378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/01/2025] [Accepted: 02/05/2025] [Indexed: 02/14/2025]
Abstract
Type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) have similar clinical characteristics in the brain and islet, as well as an increased incidence with ageing and familial susceptibility. Therefore, in recent years there has been a great desire for research that elucidates how anti-diabetic drugs affect AD. This work attempts to first elucidate the possible mechanism of action of DPP-IV inhibitors in the treatment of AD by employing techniques from network pharmacology, molecular docking, molecular dynamic simulation, principal component analysis, and MM/PBSA. A total of 463 targets were identified from the SwissTargetPrediction and 784 targets were identified from the SuperPred databases. 79 common targets were screened using the PPI network. The GO and KEGG analyses indicated that the activity of DPP-IV against AD potentially involves the hsa04080 neuroactive ligand-receptor interaction signalling pathway, which contains 17 proteins, including CHRM2, CHRM3, CHRNB1, CHRNB4, CHRM1, PTGER2, CHRM4, CHRM5, TACR2, HTR2C, TACR1, F2, GABRG2, MC4R, HTR7, CHRNG, and DRD3. Molecular docking demonstrated that sitagliptin had the greatest binding affinity of -10.7 kcal/mol and established hydrogen bonds with the Asp103, Ser107, and Asn404 residues in the active site of the CHRM2 protein. Molecular dynamic simulation, PCA, and MM/PBSA were performed for the complex of sitagliptin with the above-mentioned proteins, which revealed a stable complex throughout the simulation. The work identifies the active component and possible molecular mechanism of sitagliptin in the treatment of AD and provides a theoretical foundation for future fundamental research and practical implementation.
Collapse
Affiliation(s)
- Miah Roney
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang 26300, Kuantan, Pahang, Malaysia; Centre for Bio-aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang 26300, Kuantan, Pahang, Malaysia
| | - Md Nazim Uddin
- Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research, Dhaka 1205, Bangladesh
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Sabiha Fatima
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, Riyadh 12371, Saudi Arabia
| | - Mohd Fadhlizil Fasihi Mohd Aluwi
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang 26300, Kuantan, Pahang, Malaysia; Centre for Bio-aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang 26300, Kuantan, Pahang, Malaysia
| | - S M Istiaque Hamim
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang 26300, Kuantan, Pahang, Malaysia
| | - Asrar Ahmad
- Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, DC, USA
| |
Collapse
|
18
|
Akçay S, Gurkok-Tan T, Ekici S. Identification of key genes in immune-response post-endurance run in horses. J Equine Vet Sci 2025; 149:105418. [PMID: 40174711 DOI: 10.1016/j.jevs.2025.105418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 04/04/2025]
Abstract
Intense physical activity in endurance horses triggers complex immune and inflammatory responses, yet the molecular mechanisms underlying these adaptations remain unclear. This study investigated immune-related transcriptomic changes following a 160 km endurance ride, focusing on sex-based differences. Using a bioinformatics approach, differentially expressed genes (DEGs), pathways, microRNAs (miRNAs), and transcription factors (TFs) were analyzed before (T0) and after (T1) the ride. A protein-protein interaction (PPI) analysis was conducted to identify key regulatory genes. Pathway enrichment analysis revealed significant activation of immune-regulatory and ribosomal pathways. Notably, TLR4, CXCL8, and CCL5 were identified as key hub genes involved in immune modulation post-exercise. Comparisons between female (FT1 vs FT0) and gelding (GT1 vs GT0) horses revealed distinct molecular responses. Female horses exhibited upregulation of ribosomal protein genes, suggesting enhanced protein synthesis and muscle recovery. In contrast, geldings showed increased expression of inflammatory and stress-related genes, indicating a heightened immune response. Notably, sex-based differences were observed, with FT1 vs FT0 and GT1 vs GT0 comparisons revealing distinct KEGG pathway enrichments. Additionally, miRNA and TF analyses revealed regulatory elements influencing endurance-related immune responses. Our findings demonstrated sex-specific molecular mechanisms underlying endurance exercise adaptation, with females prioritizing protein synthesis and recovery, while geldings exhibit stronger inflammatory responses and stress-related pathways. This study provides critical insights into how sex influences exercise physiology at the transcriptomic level, with potential applications in training and recovery strategies for endurance horses.
Collapse
Affiliation(s)
- S Akçay
- Department of Molecular Biology of Genetics, Kırşehir Ahi Evran University, Bagbaşı, 40100, Kırşehir Turkey
| | - T Gurkok-Tan
- Department of Field Crops, Food and Agriculture Vocational School, Cankiri Karatekin University, Merkez, 18100, Çankırı, Turkey
| | - S Ekici
- Veterinary Control Central Research Institute, Keçiören, 06100, Ankara, Turkey.
| |
Collapse
|
19
|
Wu X, Wang K, Li Q, Zhang Y, Wei P, Shan Y, Zhao G. Combining Single-Cell RNA Sequencing and Mendelian Randomization to Explore Novel Drug Targets for Parkinson's Disease. Mol Neurobiol 2025; 62:7380-7392. [PMID: 39890696 DOI: 10.1007/s12035-025-04700-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 01/11/2025] [Indexed: 02/03/2025]
Abstract
Neuroinflammation is a key pathological factor of PD, and T cells play a central role in neuroinflammatory progression. However, the causal effect of T cell-related genes on the risk of PD is still unclear. We explored single-cell RNA sequencing (scRNA-Seq) datasets of the peripheral blood T cells of PD patients and healthy controls, and screened the differentially expressed genes (DEGs) in the cytotoxic CD4 + T cells relative to the other T cell subsets. Pseudo-time series analysis, cell-cell communication analysis, and metabolic pathway analysis was performed for the cytotoxic CD4 + T cells. The DEGs were also functionally annotated through GO and KEGG pathway enrichment analyses. The MR approach was used to establish causal effects of the DEGs (exposure) on PD risk (outcome), and explore new drug targets for PD. The findings of MR analysis were further validated by Steiger filtering, bidirectional MR, Bayesian colocalization analysis, and phenotype scanning, and the GWAS data from an independent PD case-control cohort was used for external validation of the results. Finally, differences in gene expression between PD patients and healthy controls were further validated in scRNA-Seq and bulk transcriptome sequencing data. We found that increased expression of IL-32, GNLY, MT2A, and ARPC2 was significantly associated with a higher risk of PD. In contrast, the increase in ARRB2 was closely related to a lower risk of PD. IL32, GNLY, MT2A, ARRB2, and ARPC2 are the causal genes and potential drug targets of PD. Cytotoxic CD4 + T cells are likely the key effectors of PD-related neuroinflammation. These findings provide new insights into the pathogenesis and treatment options for PD, and further research and clinical trials based on the five potential drug targets and neuroinflammation are necessary.
Collapse
Affiliation(s)
- Xiaolong Wu
- Department of Neurosurgery, Xuanwu Hospital of the Capital Medical University, Beijing, 100053, China
- International Neuroscience Institute (China-INI), Beijing, 100053, China
| | - Kailiang Wang
- Department of Neurosurgery, Xuanwu Hospital of the Capital Medical University, Beijing, 100053, China.
- International Neuroscience Institute (China-INI), Beijing, 100053, China.
| | - Qinghua Li
- Department of Neurosurgery, Xuanwu Hospital of the Capital Medical University, Beijing, 100053, China
- International Neuroscience Institute (China-INI), Beijing, 100053, China
| | - Yuqing Zhang
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Penghu Wei
- Department of Neurosurgery, Xuanwu Hospital of the Capital Medical University, Beijing, 100053, China
- International Neuroscience Institute (China-INI), Beijing, 100053, China
| | - Yongzhi Shan
- Department of Neurosurgery, Xuanwu Hospital of the Capital Medical University, Beijing, 100053, China
- International Neuroscience Institute (China-INI), Beijing, 100053, China
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital of the Capital Medical University, Beijing, 100053, China.
- International Neuroscience Institute (China-INI), Beijing, 100053, China.
- Beijing Municipal Geriatric Medical Research Center, Beijing, 100053, China.
| |
Collapse
|
20
|
Tasneem M, Gupta SD, Ahmed Jony MJ, Minkara M, Dey RK, Ferdoush J. Identification of key biomarker genes in liver hepatocellular carcinoma and kidney renal clear cell carcinoma progression: A shared high-throughput screening and molecular docking method with potentials for targeted therapeutic interventions. J Genet Eng Biotechnol 2025; 23:100497. [PMID: 40390492 PMCID: PMC12049835 DOI: 10.1016/j.jgeb.2025.100497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 04/14/2025] [Indexed: 05/21/2025]
Abstract
BACKGROUND AND OBJECTIVES Liver Hepatocellular Carcinoma (LIHC) and Kidney Renal Clear Cell Carcinoma (KIRC) are leading causes of cancer death worldwide, but their early detections remain hindered by a lack of genetic markers. Our study aims to find prospective biomarkers that could serve as prognostic indicators for efficient drug candidates for KIRC and LIHC treatment. METHODS To detect differentially expressed genes (DEGs), four datasets were used: GSE66271 and GSE213324 for KIRC, and GSE135631 and GSE202853 for LIHC. Visualization of DEGs was done using heatmaps, volcano plots, and Venn diagrams. Hub genes were identified via PPI analysis and the cytoHubba plugin in Cytoscape. Their expression was evaluated using box plots, stage plots, and survival plots for prognostic assessment via GEPIA2. Molecular docking with PyRx's AutoDock Vina identified optimal binding interactions between compounds and proteins. Pharmacokinetic and toxicity analyses reinforced the drug-likeness and safety of these compounds. RESULTS In this study, 47 DEGs were identified, with the top 10 hub genes being TOP2A, BUB1, PTTG1, CCNB2, NUSAP1, KIF20A, BIRC5, RRM2, NDC80 and CDC45, chosen for their high MCC scores. Data mining revealed a correlation between TOP2A expression and clinical survival outcomes in KIRC and LIHC patients. Docking studies of the TOP2A structure identified a promising compound from Andrographis paniculata with high binding energy and interactions with TOP2A. Pharmacokinetic and toxicity assessments support its potential as a drug candidate. CONCLUSION Our study emphasizes TOP2A's prognostic significance in KIRC and LIHC and recognizes Andrographis paniculata compound as potential therapeutics, offering prospective for enhanced treatment and patient outcomes in these cancers.
Collapse
Affiliation(s)
- Maisha Tasneem
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Shipan Das Gupta
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Jubair Ahmed Jony
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Maya Minkara
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA
| | | | - Jannatul Ferdoush
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA.
| |
Collapse
|
21
|
Jia Z, Jiang N, Lin L, Li B, Liang X. Integrative proteomic analysis reveals the potential diagnostic marker and drug target for the Type-2 diabetes mellitus. J Diabetes Metab Disord 2025; 24:55. [PMID: 39850446 PMCID: PMC11754769 DOI: 10.1007/s40200-025-01562-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 01/05/2025] [Indexed: 01/25/2025]
Abstract
Objective The escalating prevalence of Type-2 diabetes mellitus (T2DM) poses a significant global health challenge. Utilizing integrative proteomic analysis, this study aimed to identify a panel of potential protein markers for T2DM, enhancing diagnostic accuracy and paving the way for personalized treatment strategies. Methods Proteome profiles from two independent cohorts were integrated: cohort 1 composed of 10 T2DM patients and 10 healthy controls (HC), and cohort 2 comprising 87 T2DM patients and 60 healthy controls. Differential expression analysis, functional enrichment analysis, receiver operating characteristic (ROC) analysis, and classification error matrix analysis were employed. Results Comparative proteomic analysis identified the differential expressed proteins (DEPs) and changes in biological pathways associated with T2DM. Further combined analysis refined a group of protein panel (including CA1, S100A6, and DDT), which were significantly increased in T2DM in both two cohorts. ROC analysis revealed the area under curve (AUC) values of 0.94 for CA1, 0.87 for S100A6, and 0.97 for DDT; the combined model achieved an AUC reaching 1. Classification error matrix analysis demonstrated the combined model could reach an accuracy of 1 and 0.875 in the 60% training set and 40% testing set. Conclusions This study incorporates different cohorts of T2DM, and refines the potential markers for T2DM with high accuracy, offering more reliable markers for clinical translation. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-025-01562-3.
Collapse
Affiliation(s)
- Zhen Jia
- Department of Peripheral Vascular Diseases, First Affiliated Hospital, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Ning Jiang
- Department of Cardiovascular Medicine, First Affiliated Hospital, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Lin Lin
- Department of Radiology, First Affiliated Hospital, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Bing Li
- Department of Peripheral Vascular Diseases, First Affiliated Hospital, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Xuewei Liang
- Department of Peripheral Vascular Diseases, First Affiliated Hospital, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
22
|
Liu T, Nie H, Huo Z, Yan X. Genome-wide identification of aquaporin and their potential role in osmotic pressure regulation in Ruditapes philippinarum. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 54:101436. [PMID: 39929021 DOI: 10.1016/j.cbd.2025.101436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 02/12/2025]
Abstract
Aquaporins (AQPs) are specialized membrane proteins that create selective water channels, facilitating the transport of water across cell membranes and playing a vital role in maintaining water balance and regulating osmotic pressure in aquatic animals. This study identified 9 aquaporin genes from the genome of R. philippinarum, and a comprehensive analysis was conducted on their gene structure, phylogenetic relationships, protein structure, and chromosome localization. RNA-seq data analysis revealed that aquaporin genes were differentially expressed at different developmental stages, in tissue distribution, and in response to salinity stress. In addition, qPCR results revealed that the expression levels of aquaporin genes (AQP1, AQP4d, and AQP3) were significantly elevated in response to both acute low and high salinity stress, suggesting their important role in osmotic pressure regulation in R. philippinarum. This study's results offer an important reference for further investigations into the regulation of osmotic pressure and salinity adaptation of aquaporin in R. philippinarum.
Collapse
Affiliation(s)
- Tao Liu
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Hongtao Nie
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China.
| | - Zhongming Huo
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Xiwu Yan
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| |
Collapse
|
23
|
Liu X, Wang W, Zhao H, Wang Y, Jiang L, Zhang E, Feng Y, Wang X, Qu J, Yang J, Li Z. Transcriptome profiling of triploid Crassostrea gigas gills indicates the host immune mechanism against bacterial infection. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 54:101392. [PMID: 39647257 DOI: 10.1016/j.cbd.2024.101392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
As an important member of global aquaculture, oysters (Crassostrea gigas) have significant economic value. With the development of commercial aquaculture, the frequent occurrence of diseases caused by Vibrio alginolyticus has become a hindrance to high-density aquaculture. Gill tissue, as an important component of immune system of the oysters, plays the key point in the face of invasion by foreign substances. Compared to the diploid oyster, the triploid oyster presents a higher growth rate and lower growth investment, making it a more ideal model for studying oyster immune defense. In this study, triploid oysters were as the research subject, and gill tissues attacked by V. alginolyticus were sequenced. By analyzing samples from different time points, 1746 DEGs were obtained. The KEGG and GO functional enrichment analysis showed that gill tissues mainly participate in immune function through the PIK3-Akt signaling pathway and the MAPK signaling pathway. The protein interaction network revealed three genes (CASP8, CASP9 and PIK3CA) that play core roles in immune defense by analyzing the interaction relationship between genes. Finally, qRT-PCR verified the expression of key genes. This study provides a more effective scientific basis for disease prevention and control of oysters and other bivalve shellfish, and helps to promote the sustainable development of aquaculture.
Collapse
Affiliation(s)
- Xiumei Liu
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Weijun Wang
- Shandong Engineering Research Center of Oyster Germplasm Creation and Efficient Culture, Yantai 264025, China; School of Fisheries, Ludong University, Yantai 264025, China
| | - Haitao Zhao
- Dongying Marine Development Research Institute, Dongying 257091, China
| | - Yongjie Wang
- School of Fisheries, Ludong University, Yantai 264025, China
| | - Liming Jiang
- Yantai Marine Economic Research Institute, Yantai 264003, China
| | - Enshuo Zhang
- School of Fisheries, Ludong University, Yantai 264025, China
| | - Yanwei Feng
- Shandong Engineering Research Center of Oyster Germplasm Creation and Efficient Culture, Yantai 264025, China; School of Fisheries, Ludong University, Yantai 264025, China
| | - Xumin Wang
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Jiangyong Qu
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Jianmin Yang
- Shandong Engineering Research Center of Oyster Germplasm Creation and Efficient Culture, Yantai 264025, China; School of Fisheries, Ludong University, Yantai 264025, China
| | - Zan Li
- Shandong Engineering Research Center of Oyster Germplasm Creation and Efficient Culture, Yantai 264025, China; School of Fisheries, Ludong University, Yantai 264025, China.
| |
Collapse
|
24
|
Zhao Z, Ito A, Kuroki H, Aoyama T. Analysis of Molecular Changes and Features in Rat Knee Osteoarthritis Cartilage: Progress From Cellular Changes to Structural Damage. Cartilage 2025; 16:232-249. [PMID: 37978830 PMCID: PMC12066847 DOI: 10.1177/19476035231213174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023] Open
Abstract
ObjectiveAlthough knee osteoarthritis (KOA) is a common disease, there is a lack of specific prevention and early treatment methods. Hence, this study aimed to examine the molecular changes occurring at different stages of KOA to elucidate the dynamic nature of the disease.DesignUsing a low-force compression model and analyzing RNA sequencing data, we identified molecular changes in the transcriptome of knee joint cartilage, including gene expression and molecular pathways, between the cellular changes and structural damage stages of KOA progression. In addition, we validated hub genes using an external dataset.ResultsGene set enrichment analysis (GSEA) identified the following pathways to be associated with KOA: "B-cell receptor signaling pathway," "cytokine-cytokine receptor interaction," and "hematopoietic cell lineage." Expression analysis revealed 585 differentially expressed genes, with 579 downregulated and 6 upregulated genes. Enrichment and clustering analyses revealed that the main molecular clusters were involved in cell cycle regulation and immune responses. Furthermore, the hub genes Csf1r, Cxcr4, Cxcl12, and Ptprc were related to immune responses.ConclusionsOur study provides insights into the dynamic nature of early-stage KOA and offers valuable information to support the development of effective intervention strategies to prevent the irreversible damage associated with KOA, thereby addressing a major clinical challenge.
Collapse
Affiliation(s)
- Zixi Zhao
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Ito
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Kuroki
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoki Aoyama
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
25
|
Elsharkawy ER, Alqahtani A, Uddin MN, Khan F, He Y, Li X, Gouda MM. The antidiabetic, haematological, and antioxidant implications of Schimpera arabica natural plant on Streptozotocin-diabetic rats. JOURNAL OF AGRICULTURE AND FOOD RESEARCH 2025; 21:101891. [DOI: 10.1016/j.jafr.2025.101891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
|
26
|
Kopietz F, Neuhaus M, Borreguero‐Muñoz A, Kryvokhyzha D, Stenkula KG. Focal Adhesion Kinase Orchestrates GLUT4 Translocation and Glucose Uptake via Cytoskeletal Turnover in Primary Adipocytes. FASEB J 2025; 39:e70660. [PMID: 40396386 PMCID: PMC12093284 DOI: 10.1096/fj.202402764rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/18/2025] [Accepted: 05/12/2025] [Indexed: 05/22/2025]
Abstract
Intact insulin signaling and glucose transport in adipocytes are crucial to maintaining whole-body energy metabolism. Focal adhesion kinase stands as a central intracellular protein facilitating signaling between the extracellular matrix and the cytoplasm, thereby regulating cellular metabolism. Here, we have investigated the role of focal adhesion kinase in adipocyte glucose transport using an array of methods, including affinity purification combined with quantitative mass spectrometry, glucose tracer assays, western blotting, and confocal imaging. Pharmacological inhibition (PF-573228) of focal adhesion kinase suppressed the interaction of focal adhesion kinase with numerous actin-associated proteins, reduced Rac1 activity, as well as phosphorylation of the Rac1 downstream target PAK1/2, and further led to impaired GLUT4 translocation and glucose uptake. In summary, we demonstrate that focal adhesion kinase plays a key role in controlling actin remodeling, subsequent GLUT4 translocation, and ultimately glucose transport in adipocytes.
Collapse
Affiliation(s)
- Franziska Kopietz
- Department of Experimental Medical Science, Medical FacultyLund UniversityLundSweden
| | - Mathis Neuhaus
- Department of Experimental Medical Science, Medical FacultyLund UniversityLundSweden
| | | | - Dmytro Kryvokhyzha
- Department of Clinical SciencesLund University Diabetes CentreMalmöSweden
| | - Karin G. Stenkula
- Department of Experimental Medical Science, Medical FacultyLund UniversityLundSweden
| |
Collapse
|
27
|
Zhilin L, Haobo F, Juan W, AiRui X, XiaoDong L, Yuan Y, Junguo D. Investigating the therapeutic potential of Ganoderma lucidum in treating optic nerve atrophy through network pharmacology and experimental validation. Biochem Biophys Res Commun 2025; 760:151702. [PMID: 40158404 DOI: 10.1016/j.bbrc.2025.151702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/04/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025]
Abstract
OBJECTIVE The aim of this study is to employ network pharmacology to identify potential therapeutic targets for Ganoderma lucidum in the treatment of optic atrophy, and elucidate the underlying pharmacological mechanism. METHODS This study is mainly divided into two parts. In the first part, the chemical composition and Target of Ganoderma lucidum compound were predicted by TCMSP and Swiss Target Prediction, and the crossover gene between OA and Ganoderma lucidum target gene was screened based on GeneCards and OMIM database. Then, the target genes were enriched and the main pathways of action were analyzed to discover the possible mechanism of action for the treatment of optic atrophy. Finally, the selected core compounds and core targets were interfaced to understand the main binding patterns and affinity. The second part mainly verifies whether Ganoderma lucidum polysaccharide has protective effect on RGC. Firstly, CCK8 method was used to detect the proliferation and virulence analysis of RGC-5 cells with different concentrations of Ganoderma lucidum polysaccharide, and then RGC-5 cells were cultured in subgroups for 12 h, and then put into anaerobic encapsulation to make molds. After 24 h of continuous culture, cells were removed and collected for subsequent RT-PCR and WB detection. RESULTS Through screening target genes of Ganoderma lucidum and OA, 85 potential therapeutic targets were obtained by intersection. Through PPI network analysis of 85 potential targets, it was found that the degree values of TP53, TNF, CASP3, IL6, EGFR, MTOR, ESR1 and other targets were higher. (+)-Ganoderic acid Mf, (+)-Methyl ganolucidate A, epoxyganoderiol A, Ergosta-4,7, 22-Trien-3, 6-Dione and other compounds play a key role in the whole network. It may be the key compound of ganoderma lucidum in treating OA. Through enrichment pathway analysis, it was found that the number of genes was enriched in AGE-RAGE signaling pathway, cAMP signaling pathway, inflammation and cancer pathways, and the structure of TP53, TNF, CASP3, and IL6 binding to the above compounds was stable and the binding activity was high. CONCLUSIONS The findings suggest that Ganoderma lucidum may exert its therapeutic effects on optic atrophy by targeting TP53, TNF, CASP3, and IL6. Additionally, it may also be involved in the AGE-RAGE signaling pathway and cAMP signaling pathway. These results provide reference for the clinical application of ganoderma lucidum in the treatment of OA.
Collapse
Affiliation(s)
- Li Zhilin
- Eye School of Chengdu University of TCM, China; Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, China; Retinal Image Technology and Chronic Vascular Disease Prevention&Control and Collaborative Innovation Center, China
| | - Fan Haobo
- Eye School of Chengdu University of TCM, China
| | - Wen Juan
- Ineye Hospital of Chengdu University of TCM, China
| | - Xie AiRui
- Ineye Hospital of Chengdu University of TCM, China
| | - Li XiaoDong
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, China
| | - Ying Yuan
- Chengdu Coma Ren Far Technology Co., LTD, China
| | - Duan Junguo
- Eye School of Chengdu University of TCM, China; Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, China; Retinal Image Technology and Chronic Vascular Disease Prevention&Control and Collaborative Innovation Center, China; Ineye Hospital of Chengdu University of TCM, China.
| |
Collapse
|
28
|
Sanchez-Munoz R, Depaepe T, Samalova M, Hejatko J, Zaplana I, Van Der Straeten D. Machine-learning meta-analysis reveals ethylene as a central component of the molecular core in abiotic stress responses in Arabidopsis. Nat Commun 2025; 16:4778. [PMID: 40404615 DOI: 10.1038/s41467-025-59542-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/22/2025] [Indexed: 05/24/2025] Open
Abstract
Understanding how plants adapt their physiology to overcome severe and often multifactorial stress conditions in nature is vital in light of the climate crisis. This remains a challenge given the complex nature of the underlying molecular mechanisms. To provide a comprehensive picture of stress-mitigation mechanisms, an exhaustive analysis of publicly available stress-related transcriptomic data has been conducted. We combine a meta-analysis with an unsupervised machine-learning algorithm to identify a core of stress-related genes active at 1-6 h and 12-24 h of exposure in Arabidopsis thaliana shoots and roots. To ensure robustness and biological significance of the output, often lacking in meta-analyses, a triple validation is incorporated. We present a 'stress gene core': a set of key genes involved in plant tolerance to ten adverse environmental conditions and ethylene-precursor supplementation rather than individual conditions. Notably, ethylene plays a key regulatory role in this core, influencing gene expression and acting as a critical factor in stress tolerance. Additionally, the analysis provides insights into previously uncharacterized genes, key genes within large families, and gene expression dynamics, which are used to create biologically validated databases that can guide further abiotic stress research. These findings establish a strong framework for advancing multi-stress-resilient crops, paving the way for sustainable agriculture in the face of climate challenges.
Collapse
Affiliation(s)
- Raul Sanchez-Munoz
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, Gent, B-9000, Belgium
- Department of Agri-Food Engineering and Biotechnology (DEAB), Universitat Politècnica de Catalunya - BarcelonaTech (UPC), Castelldefels, 08860, Barcelona, Spain
| | - Thomas Depaepe
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, Gent, B-9000, Belgium
| | - Marketa Samalova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jan Hejatko
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biotechnological Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Isiah Zaplana
- Institute of Industrial and Control Engineering (IOC), Universitat Politècnica de Catalunya - BarcelonaTech (UPC), Barcelona, 08028, Spain.
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, Gent, B-9000, Belgium.
| |
Collapse
|
29
|
Teng T, Wu Q, Yin B, Zhang J, Li X, Zhang L, Zhou X, Xie P. Single-Nucleus Transcriptomics of the Nucleus Accumbens Reveals Cell-Type-Specific Dysregulation in Adolescent Macaques with Depressive-Like Behaviors. Neurosci Bull 2025:10.1007/s12264-025-01412-5. [PMID: 40399551 DOI: 10.1007/s12264-025-01412-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/08/2025] [Indexed: 05/23/2025] Open
Abstract
Adolescent depression is increasingly recognized as a serious mental health disorder with distinct clinical and molecular features. Using single-nucleus RNA sequencing, we identified cell-specific transcriptomic changes in the nucleus accumbens (NAc), particularly in astrocytes, of adolescent macaques exhibiting depressive-like behaviors. The level of diacylglycerol kinase beta was significantly reduced in neurons and glial cells of depressed macaques, while FKBP5 levels increased in glial cells. Disruption of GABAergic synapses and disruption of D-glutamine and D-glutamate metabolism were linked to depressive phenotypes in medium spiny neurons (MSNs) and subtypes of astrocytes. Communication pathways between astrocytes and D1/D2-MSNs were also disrupted, involving factors like bone morphogenetic protein-6 and Erb-B2 receptor tyrosine kinase-4. Bulk transcriptomic and proteomic analyses corroborated these findings, and FKBP5 upregulation was confirmed by qRT-PCR, western blotting, and immunofluorescence in the NAc of rats and macaques with chronic unpredictable mild stress. Our results highlight the specific roles of different cell types in adolescent depression in the NAc, offering potential targets for new antidepressant therapies.
Collapse
Affiliation(s)
- Teng Teng
- Department of Neurology, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400014, China
- Department of Psychiatry, Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Qingyuan Wu
- Department of Neurology, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400014, China
- Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou, 404000, China
| | - Bangmin Yin
- Department of Neurology, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400014, China
- Department of Psychiatry, Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Jushuang Zhang
- Department of Psychiatry, Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Xuemei Li
- Department of Neurology, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400014, China
- Department of Psychiatry, Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Lige Zhang
- Department of Psychiatry, Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Xinyu Zhou
- Department of Neurology, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400014, China.
- Department of Psychiatry, Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China.
| | - Peng Xie
- Department of Neurology, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
30
|
Zhang J, Lin L, Li W, Guo J. Role of the "inflammation-immunity-metabolism" network in non-small cell lung cancer: a multi-omics analysis. Discov Oncol 2025; 16:847. [PMID: 40397292 DOI: 10.1007/s12672-025-02692-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Accepted: 05/12/2025] [Indexed: 05/22/2025] Open
Abstract
Lung cancer remains one of the leading causes of cancer-related mortality, with non-small cell lung cancer (NSCLC) accounting for 85% of cases worldwide. NSCLC pathogenesis and progression are intricately linked to inflammatory stimuli, immune evasion, and metabolic reprogramming. In this study, the impact of inflammation, immunity, and metabolism on NSCLC was investigated by a Mendelian randomization analysis taking 91 inflammatory factors, 731 immune cells, and 1400 metabolites as exposures, and the FinnGen database NSCLC cohort (ncases = 5315, ncontrol = 314,193) was the outcome. A number of metabolites, inflammatory proteins, and immune cells were identified as potentially associated with NSCLC based on mendelian randomization analysis. Validation in the UK Biobank database lung cancer cohort (ncases = 2671, ncontrols = 372,016) further confirmed the inhibitory role of the metabolite N-acetyl-aspartyl-glutamate (NAAG) on lung cancer. Subsequently, single-cell and protein-protein interaction analyses identified inflammatory protein expression patterns in NSCLC, distribution ratios of immune cells in NSCLC. Subsequent multi-omics network analysis showed key interaction nodes between NAAG and inflammatory proteins. These findings enhance the understanding of the roles of inflammation, immunity, and metabolism in NSCLC occurrence and progression, offering potential targets and strategies for further research on its treatment and management.
Collapse
Affiliation(s)
- Jingqi Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liping Lin
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenyuan Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
31
|
Sun H, Yang Q, Zhang Y, Cui S, Zhou Z, Zhang P, Jia L, Zhang M, Wang Y, Chen X, Pei R. Syntaxin-6 restricts SARS-CoV-2 infection by facilitating virus trafficking to autophagosomes. J Virol 2025; 99:e0000225. [PMID: 40277356 PMCID: PMC12090716 DOI: 10.1128/jvi.00002-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025] Open
Abstract
Despite the diminishing global impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus continues to circulate and undergo mutations, posing ongoing challenges for public health. A comprehensive understanding of virus entry mechanisms is crucial for managing new epidemic strains. However, the cellular processes post-endocytosis remain largely unexplored. This study employs proximity labeling to examine proteins near ACE2 post-viral infection and identified syntaxin-6 (STX6) as a factor that inhibits SARS-CoV-2 infection by impeding the endocytic release of the virus. SARS-CoV-2 infection enhances early endosome recruitment of STX6. STX6 appears to hinder the maturation of viral particles-laden early endosomes into late endosomes, from which the virus could escape. Instead, it promotes the trafficking of the virus toward the autophagy-lysosomal degradation pathway. STX6 exhibits a broad-spectrum effect against various SARS-CoV-2 variants and several other viruses that enter via endocytosis. We report for the first time the function of STX6 as a restrictive factor in viral infection.IMPORTANCEVirus entry is the first step of the virus life cycle, and the exploitation of the endo-lysosome pathway for cellular entry by viruses has been well documented. Meanwhile, the intrinsic defense present within cells interferes with virus entry. We identified STX6 as a host restriction factor for viral entry by facilitating the virus trafficking to the autophagy-lysosomal degradation pathway. Notably, STX6 exhibits broad-spectrum antiviral activity against diverse severe acute respiratory syndrome coronavirus 2 variants and other viruses employing endocytosis for entry.
Collapse
Affiliation(s)
- Hao Sun
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qi Yang
- Guangzhou Laboratory, Guangzhou, China
| | - Yecheng Zhang
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Saisai Cui
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhe Zhou
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Peilu Zhang
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lijia Jia
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Mingxia Zhang
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yun Wang
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xinwen Chen
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Guangzhou Laboratory, Guangzhou, China
| | - Rongjuan Pei
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
32
|
Sun S, Lai C, Huang C, Wang R, Fu G, Shang M. Harnessing integrated bioinformatics to identify new diagnostic and therapeutic strategies for heart failure. Biochim Biophys Acta Mol Basis Dis 2025:167909. [PMID: 40398828 DOI: 10.1016/j.bbadis.2025.167909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 05/05/2025] [Accepted: 05/13/2025] [Indexed: 05/23/2025]
Abstract
Heart failure (HF) is a life-threatening condition that poses a significant challenge on public health, particularly among the elder populations. To develop new diagnostic and therapeutic strategies for HF, we analyzed large-scale transcriptome sequencing data from HF patients as an exploratory approach. We identified 18 HF-related genes and developed a robust scoring model for HF diagnosis, by applying two machine learning algorithms for data analysis. Meanwhile, we evaluated and compared the predictive abilities of three bioinformatics methods in identifying potential HF treatment drugs. Significantly, an unconventional network-based proximity analysis, integrating multidimensional drug target information, outperformed other methods in the assessment of predictive ability. To validate these findings, we tested several candidate drugs in a mouse model transitioning from acute myocardial infarction (MI) to chronic HF. Among the candidates, mirtazapine exhibited cardioprotective effects in both early (1-week) post-MI and chronic HF (4-week post-MI) settings, while cabergoline showed potential efficacy primarily in the early post-MI phase. Additionally, the screened triamterene, used as a positive control, exhibited protective effects in both early post-MI and chronic HF stages. Mechanistic studies revealed that growth factor receptor-bound protein 14 and Ras-related protein Rab-3 A were critical to the observed cardioprotection. These findings provide valuable evidence and insights for exploring potential therapeutic agents for HF treatment.
Collapse
Affiliation(s)
- Shuo Sun
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Jining Medical University, Jining 272067, China; School of Life sciences, Jining Medical University, Rizhao 276826, China
| | - Chaojie Lai
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Chengchen Huang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Ruilin Wang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Guosheng Fu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Min Shang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
33
|
Chumappumkal Joseph B, Whisenant TC, Cooke EJ, Zhou JY, Falah N, De-Pablo Moreno JA, von Drygalski A. Synovial Gene expression after Hemarthrosis differs between FVIII-deficient mice treated with recombinant FVIII or FVIII-Fc Fusion Protein. PLoS One 2025; 20:e0320322. [PMID: 40388523 PMCID: PMC12088034 DOI: 10.1371/journal.pone.0320322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/18/2025] [Indexed: 05/21/2025] Open
Abstract
To investigate if FVIII-Fc Fusion protein (FcFVIII) may modulate inflammation and immune stimulation in hemophilic synovium via the Fc-portion of immunoglobulin used for half-life extension we performed gene expression profiling in FVIII-deficient mice. Hemarthrosis was induced by sub-patellar puncture in FVIII-KO mice, + /- periprocedural recombinant human (rh)FVIII,murine (m)FcFVIII, or mIgG2a. Synovium was harvested at baseline and on days (D) 3 and 14, followed by RNA extraction and sequencing, and histological analysis. RNASeq data were processed using standard protocols followed by differential gene expression (DGE) analysis. Functional enrichment analysis generated molecular pathways (KEGG and Reactome). To distinguish between on-target and off-target (related and unrelated to injury/bleed) effects the following groups were compared: i) Baseline vs. injured-saline, ii) injured-saline vs. injured-rhFVIII, iii) injured-saline vs. injured-mFcFVIII. Knee injury in FVIII-KO mice resulted in hemarthrosis, which was prevented by peri-procedural rhFVIII and mFcFVIII treatments. Only a small proportion of genes was affected by FVIII treatment, exhibiting overlap but also distinct differences between both FVIII-preparations. Acutely (D3), mFcFVIII had unique on-target effects related to immune and inflammatory regulation, whereas rhFVIII mostly affected mRNA and protein processing. On day 14, macrophage profiling indicated a transition from M1 to M2, and only mFcFVIII uniquely influenced pathways and genes associated with tissue remodeling and repair. Some mFcFVIII DGE patterns resembled mIgG2a patterns. Synovial vascular remodeling and cartilage health were better with mFcFVIII than rhFVIII. Interestingly, both FVIII-preparations exerted off-target effects on immune system pathways, albeit with temporal differences. These observations provide proof-of-principle that the type of FVIII preparation can influence synovial processes beyond acute hemostasis control, deserving exploration in the setting of joint bleed control in hemophilia.
Collapse
Affiliation(s)
- Bilgimol Chumappumkal Joseph
- Department of Medicine, Division of Hematology/Oncology, University of California San Diego, La Jolla, California, United States of America
| | - Thomas C. Whisenant
- University of California San Diego, Center for Computational Biology and Bioinformatics, La Jolla, California, United States of America
| | - Esther J. Cooke
- Department of Medicine, Division of Hematology/Oncology, University of California San Diego, La Jolla, California, United States of America
| | - Jenny Y. Zhou
- Department of Medicine, Division of Hematology/Oncology, University of California San Diego, La Jolla, California, United States of America
| | - Nicca Falah
- Department of Medicine, Division of Hematology/Oncology, University of California San Diego, La Jolla, California, United States of America
| | - Juan Andres De-Pablo Moreno
- Department of Genetic, Physiology and Microbiology, Biology School, Complutense University of Madrid, Madrid, Spain
| | - Annette von Drygalski
- Department of Medicine, Division of Hematology/Oncology, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
34
|
Gaouzi Z, Belkhayat A, Takki ZC, Lachraf H, Diawara I, Kriouile Y. Unraveling genetic etiologies in complex pediatric neurological diseases: A genetic investigation using whole exome sequencing. PLoS One 2025; 20:e0324177. [PMID: 40388540 PMCID: PMC12088513 DOI: 10.1371/journal.pone.0324177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/21/2025] [Indexed: 05/21/2025] Open
Abstract
Pediatric neurological disorders are a diverse group of conditions affecting the nervous system in children, often challenging to diagnose due to their nonspecific and overlapping clinical features. Advances in molecular diagnostics, particularly whole exome sequencing (WES), have significantly improved the identification of genetic causes, enabling precise diagnoses and personalized treatments. This study explores the application of WES in diagnosing pediatric neurological disorders within Moroccan childrens with undiagnosed or challenging pediatric neurological conditions to uncover genetic causes of complex pediatric neurological conditions unresolvable by traditional diagnostic methods. The study included 188 pediatric patients with complex neurological conditions from the Children's Hospital of Rabat who underwent exome sequencing to investigate suspected genetic causes. WES revealed a diagnostic yield of 45%, identifying conditions such as intellectual disabilities, hereditary metabolic disorders and epilepsies. It also uncovered neurodevelopmental and neurodegenerative disorders, neuromuscular diseases, and genetic syndromes. A total of 157 variants were detected: 34% were classified as pathogenic, 28.5% as likely pathogenic, and 37.5% as variants of uncertain significance (VUS). These findings underscore the utility of WES as a robust diagnostic tool, providing insights into genetic causes and enabling tailored treatment strategies. They also highlight the importance of expanding genetic research to improve diagnostic accuracy and clinical management of pediatric neurological disorders.
Collapse
Affiliation(s)
- Zainab Gaouzi
- Mohammed VI University of Sciences and Health, Mohammed VI Higher Institute of Biosciences and Biotechnologies (UM6SS), Casablanca, Morocco
- Mohammed VI Center for Research and Innovation (CM6RI), Rabat Morocco
| | | | - Zahra Chebihi Takki
- BIOLAB Laboratory, Rabat, Morocco
- Laoratory of Microbiology and Molecular Biology/ Mohammed V University of Rabat, Rabat, Morocco
| | - Hind Lachraf
- Unit of Neuropediatric and Neurometabolic Diseases, Pediatrics 2, Children’s Hospital of Rabat Morocco, Faculty of Medicine and Pharmacy Rabat, University of Mohammed V Rabat, Rabat, Morocco
| | - Idrissa Diawara
- Mohammed VI University of Sciences and Health, Mohammed VI Higher Institute of Biosciences and Biotechnologies (UM6SS), Casablanca, Morocco
- Mohammed VI Center for Research and Innovation (CM6RI), Rabat Morocco
| | - Yamna Kriouile
- Unit of Neuropediatric and Neurometabolic Diseases, Pediatrics 2, Children’s Hospital of Rabat Morocco, Faculty of Medicine and Pharmacy Rabat, University of Mohammed V Rabat, Rabat, Morocco
| |
Collapse
|
35
|
Shamnewadi A, Unger BS, Palit P, Mallapur SP, Patil VS, Darasaguppe Ramachandra H, Ikbal AMA, Jalalpure SS. In Silico and In Vivo Pharmacological Study of Acmella paniculata Flowers for Anti-Inflammatory and Antiarthritic Potential. Chem Biodivers 2025:e00428. [PMID: 40387128 DOI: 10.1002/cbdv.202500428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/23/2025] [Accepted: 05/02/2025] [Indexed: 05/20/2025]
Abstract
Acmella paniculata has been traditionally used in folklore medicine to alleviate pain and manage articular rheumatism. This study explores its potential anti-inflammatory and antiarthritic effects through in silico and in vivo approaches. A. paniculata bioactives' antiarthritic mechanisms were elucidated using computational techniques, namely, gene set enrichment analysis, network pharmacology, molecular docking, and molecular dynamics (MD) simulations using KEGG pathway analysis, PyRx, Discovery Studio, and GROMACS tools. A. paniculata hydroalcoholic extract (APE) and the ethyl acetate fraction (APF) were analyzed via LC‒MS for phytochemical profiling. In vivo studies assessed anti-inflammatory and antiarthritic potential in carrageenan-induced paw edema and complete Freund's adjuvant (CFA)-induced arthritis models in Wistar rats. Ferulic acid, isoferulic acid, and acetyl aleuritolic acid were identified as bioactives that targeted RELA, a key NF-κB component. Stable interactions were confirmed through docking and MD simulations. LC‒MS verified these compounds in APE and APF. In vivo study revealed significant reductions in paw volume, arthritis scores, and inflammatory markers (CRP, RF, IL-6, and TNF-α) and improved histopathological outcomes in the APE and APF-treated groups compared to the CFA. These findings highlight the anti-inflammatory and antiarthritic potential of A. paniculata via multi-protein modulation, particularly NF-κB signaling, and it can be utilized as a promising therapeutic for rheumatoid arthritis.
Collapse
Affiliation(s)
- Akshay Shamnewadi
- ICMR-National Institute of Traditional Medicine, Belagavi, India
- KLE College of Pharmacy, KLE Academy of Higher Education and Research, Belagavi, India
| | - Banappa S Unger
- ICMR-National Institute of Traditional Medicine, Belagavi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Partha Palit
- Department of Pharmaceutical Sciences, Assam University (A Central University), Silchar, India
| | - Shamanand P Mallapur
- ICMR-National Institute of Traditional Medicine, Belagavi, India
- KLE College of Pharmacy, KLE Academy of Higher Education and Research, Belagavi, India
| | - Vishal S Patil
- ICMR-National Institute of Traditional Medicine, Belagavi, India
- KLE College of Pharmacy, KLE Academy of Higher Education and Research, Belagavi, India
| | - Harish Darasaguppe Ramachandra
- ICMR-National Institute of Traditional Medicine, Belagavi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Abu Md Ashif Ikbal
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar, India
| | - Sunil S Jalalpure
- KLE College of Pharmacy, KLE Academy of Higher Education and Research, Belagavi, India
| |
Collapse
|
36
|
Wang MX, Luo KK, Tian MY, Gao WY, Jiang S, Zhang Y, Yang J, Si N, Ding SL, Wei XL, Liu YY, Bian BL, Zhou YY, Wang HJ. Study on the mechanism of acteoside in treating purinomycin aminonucleoside-induced chronic glomerulonephritis in childhood rats based on Cxcr4-PI3K-Akt-eNOS axis. Int J Biol Macromol 2025:144180. [PMID: 40389008 DOI: 10.1016/j.ijbiomac.2025.144180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 04/13/2025] [Accepted: 05/11/2025] [Indexed: 05/21/2025]
Abstract
The diagnosis and treatment of chronic glomerulonephritis (CGN) during childhood pose distinct challenges. Acteoside (ACT) is the primary active ingredient extracted from the leaves of Rehmannia glutinosa by our research group, accounting for 2.15 %, which possess multiple biological activities, especially for nephropathy treatment. However, its mechanism intervention on CGN in children remains obscure. In this study, we established a model of purinomycin aminonucleoside (PAN)-induced CGN in childhood rats to assess the potential therapeutic effect and underlying mechanisms of ACT. Leveraging network pharmacology and multi-omics technology, we delved into the effects and mechanisms of ACT intervention on CGN. And these findings were further corroborated through qRT-PCR, western blot and targeted metabolomics. Our results demonstrated that ACT had significantly efficient in the treatment of CGN in childhood rats by improving the key indicators and pathological changes. Further, ACT could significantly regulate differences in endogenous small molecules and genes based on non-target metabolomics and transcriptomics. Meanwhile, target capture analysis found the crucial targets of ACT treatment in CGN. Integrated analysis of multi-omics study indicated that PI3K/Akt signaling pathway and its downstream amino acid metabolism were significantly enriched, hinting at the essential regulatory pathway for ACT in treating of CGN. Finally, through qRT-PCR, western blot and targeted metabolomics, it was verified that ACT could ameliorate CGN through Cxcr4-PI3K-Akt-eNOS signaling pathway, thereby regulating amino acid metabolism. The collective results were consistent with those of multi-omics analysis. Our study illuminated that ACT had notable curative effect on CGN rats, and preliminarily elucidated its mechanism of action. Our research will provide solid basis for the treatment of chronic glomerulonephritis in children with ACT and developing it into innovative traditional Chinese medicine.
Collapse
Affiliation(s)
- Meng-Xiao Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ke-Ke Luo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Meng-Yao Tian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wen-Ya Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shan Jiang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yan Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jian Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Nan Si
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shi-Lan Ding
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiao-Lu Wei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yu-Yang Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Bao-Lin Bian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Yan-Yan Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Hong-Jie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
37
|
Quan W, Wang L, Xu J, Song J, Qin Y, Zeng H, Li J, Chen J. Identifying Key Plasma Proteins in the Onset of Parkinson's Disease: Proteome-Wide Mendelian Randomization and Single-Cell RNA Sequencing Analysis. Mol Neurobiol 2025:10.1007/s12035-025-05041-x. [PMID: 40380075 DOI: 10.1007/s12035-025-05041-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 05/05/2025] [Indexed: 05/19/2025]
Abstract
Currently, the pathogenesis of Parkinson's disease (PD) remains enigmatic, primarily due to the scarcity of definitive diagnostic markers, thereby hampering both diagnosis and treatment. The urgent need for accessible plasma markers and targeted therapeutic agents has prompted us to employ various methodologies. We leveraged Mendelian randomization analysis, colocalization analysis, SMR analysis, and the HEIDI test to delve into the causal relationships between 2923 plasma proteins in the UK Biobank and PD. Our findings revealed that 21 plasma proteins, including CTF1 and STX4, may demonstrate causal relationships with PD. Further single-cell and bioinformatics analyses have shed light on the fact that 18 of these proteins exhibit differential expression across various brain cell types in patients with PD. These proteins are involved in crucial biological processes, including peptide binding, amide binding, amyloid-beta binding, endocytic vesicle formation, and the functioning of early endosomes. Notably, the PPI network exhibited interactions between ITGAM and HLA-DRA, as well as APOE, while APOE displayed interactions with APOA1, and SERPINE2 interacted with VNN2. Furthermore, our study demonstrates that plasma proteins, including CTF1, STX4, HPGDS, and APOA1, exhibit therapeutic potential for drug development based on gene-drug interaction predictions. While these findings provide a theoretical basis for the exploration of diagnostic markers and potential therapeutic targets for PD, extensive experimental validation is essential to confirm their potential in the future.
Collapse
Affiliation(s)
- Wei Quan
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, 130021, Jilin, China
| | - Lin Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, 130021, Jilin, China
| | - Jing Xu
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, 130021, Jilin, China
| | - Jia Song
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, 130021, Jilin, China
| | - Yidan Qin
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, 130021, Jilin, China
| | - Huibin Zeng
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, 130021, Jilin, China
| | - Jia Li
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, 130021, Jilin, China.
| | - Jiajun Chen
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, 130021, Jilin, China.
| |
Collapse
|
38
|
Wang H, Mei Q, Mei P. Comprehensive analysis of the role of Caspases in glioma. Brain Res 2025; 1855:149529. [PMID: 40032044 DOI: 10.1016/j.brainres.2025.149529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/05/2025]
Abstract
Caspases (CASPs) are attractive targets for cancer therapy. Many prognostic models based on gene signatures include genes from the CASPs family in diffuse glioma. CASP3, CASP4 and CASP6 in glioma have been studied individually. However, specialized comprehensive analysis of the roles of CASPs family in glioma is lacking. Therefore, this study utilized bioinformatics methods to investigate this issue. CASP1-10 expressionlevels were significantly up-regulated in LGG and GBM and glioma, and varied significantly across different clinical subgroups of glioma and LGG and various cell types, and most of CASP1-10 members showed significant differences in recurrence status of LGG. 10 signatures (CASP1-10) were associated with poor overall survival (OS) in glioma and LGG and GBM. However, pan-cancer survival analysis showed that CASP1-10 were associated with the prognosis of LGG, but not GBM. CASP1-10 were related to poor prognosis of glioma and LGG, except for CASP9, which was the opposite of a protective factor. CASP1-10 were independent prognostic factors for OS in glioma and LGG, except for CASP5, and also for recurrence-free survival (RFS) in LGG. Most of CASP1-10 were also independent prognostic factors for disease-specific survival (DSS) and progression-free interval (PFI) and had diagnostic value in glioma and LGG. Genetic alterations of CASP1-10 genes set were associated with poor prognosis in LGG. CASP1-10 were involved in immune infiltration and programmed cell death in glioma and LGG and GBM, and might promote the apoptosis of immune cells. Compared to GBM, CASP1-10 had a more significant impact on the prognosis, cancer-related pathways, and immune infiltration in LGG, indicating that CASP1-10 might play important roles in the recurrence and progression of LGG, and might be promising therapeutic targets for LGG. Therefore, it is speculated that natural caspase inhibitor p35 may be a promising drug for the treatment of glioma, especially for LGG.
Collapse
Affiliation(s)
- Heming Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Hainan University, Haikou 570228, China
| | - Qunfang Mei
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Pengying Mei
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
39
|
Bussin B, MacDuff MGG, Ngo W, Wu JLY, Lin ZP, Granda Farias A, Stordy B, Sepahi Z, Ahmed S, Moffat J, Chan WCW. Discovering nanoparticle corona ligands for liver macrophage capture. NATURE NANOTECHNOLOGY 2025:10.1038/s41565-025-01903-6. [PMID: 40374797 DOI: 10.1038/s41565-025-01903-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 03/12/2025] [Indexed: 05/18/2025]
Abstract
Liver macrophages capture circulating nanoparticles and reduce their delivery to target organs. Serum proteins adsorb to the nanoparticle surface after administration. However, the adsorbed serum proteins and their cognate cell receptors for removing nanoparticles from the bloodstream have not been linked. Here we use a multi-omics strategy to identify the adsorbed serum proteins binding to specific liver macrophage receptors. We discovered six absorbed serum proteins that bind to two liver macrophage receptors. Nanoparticle physicochemical properties can affect the degree of the six serum proteins adsorbing to the surface, the probability of binding to cell receptors and whether the liver removes the nanoparticle from circulation. Identifying the six adsorbed proteins allowed us to engineer decoy nanoparticles that prime the liver to take up fewer therapeutic nanoparticles, enabling more nanoparticles for targeting extrahepatic tissues. Elucidating the molecular interactions governing the nanoparticle journey in vivo will enable us to control nanoparticle delivery to diseased tissues.
Collapse
Affiliation(s)
- Bram Bussin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Marshall G G MacDuff
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Wayne Ngo
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Gladstone Institutes, San Francisco, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Jamie L Y Wu
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Zachary P Lin
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Adrian Granda Farias
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin Stordy
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Zahra Sepahi
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Sara Ahmed
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- MD/PhD Program, University of Toronto, Toronto, Ontario, Canada
| | - Jason Moffat
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Warren C W Chan
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada.
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
40
|
Liang X, Tan S, Chen Y, Wei C, Qin Z. Bioinformatics exploration of SPHKAP's role in IDH-mutant glioma involving energy metabolism, prognosis, and immune modulation. J Neuroimmunol 2025; 402:578570. [PMID: 40058165 DOI: 10.1016/j.jneuroim.2025.578570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/14/2024] [Accepted: 02/22/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND The current understanding of glioma pathogenesis is limited by the lack of comprehensive insights into the metabolic reprogramming associated with isocitrate dehydrogenase (IDH) mutations. This study aims to contribute a step to this gap by investigating the role of energy metabolism-related genes in glioma. Our objective is to identify key molecular markers that could serve as prognostic markers and potential therapeutic targets for more effective treatment strategies in IDH-mutant glioma patients. METHODS We conducted an in-depth analysis of gene expression data from TCGA, CGGA, and GEO databases, employing Weighted Gene Co-expression Network Analysis (WGCNA) and differential gene expression analysis to pinpoint candidate genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to elucidate the biological pathways implicated by these genes. Protein-Protein Interaction (PPI) and Gene Multiple Association Network Integration Algorithm (GeneMANIA) networks were constructed to map gene interactions, and survival analysis and Cox regression models were utilized to assess the prognostic value of the identified genes. Additionally, CIBERSORT was used to evaluate immune cell infiltration in the tumor microenvironment. RESULTS Our findings identified SPHKAP as a gene significantly downregulated in glioma tissues compared to control samples. Specifically, low SPHKAP expression was associated with a poorer prognosis of patients with IDH-mutant glioma and linked to the expression of key enzymes involved in energy metabolism. Meanwhile, in IDH-mutant gliomas, reduced SPHKAP expression was correlated with increased macrophage infiltration, enhanced T cell response, and upregulation of immune checkpoint genes, highlighting its role as an independent prognostic marker. CONCLUSION This study reveals the differential expression of SPHKAP in glioma, suggesting its potential as a prognostic marker for IDH-mutant gliomas, providing information for future studies aimed at developing targeted therapies for glioma patients.
Collapse
Affiliation(s)
- Xi Liang
- Department of Neurosurgery, Guangxi Hospital, the First Affiliated Hospital of Sun Yat-sen University, Qingxiu District, Nanning 530022, PR China.
| | - Shi Tan
- Department of Neurosurgery, Guigang City People's Hospital, Gangbei District, Guigang 537100, PR China
| | - Yuecheng Chen
- Department of Neurosurgery, Guigang City People's Hospital, Gangbei District, Guigang 537100, PR China
| | - Cuirong Wei
- Department of Pathology, Guigang City People's Hospital, Gangbei District, Guigang 537100, PR China
| | - Zhongqiao Qin
- Department of Neurosurgery, Guigang City People's Hospital, Gangbei District, Guigang 537100, PR China.
| |
Collapse
|
41
|
Yao L, Liu B, Wang Y. Prediction model of mitochondrial energy metabolism related genes in idiopathic pulmonary fibrosis and its correlation with immune microenvironment. Sci Rep 2025; 15:16801. [PMID: 40369105 PMCID: PMC12078704 DOI: 10.1038/s41598-025-01759-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 05/08/2025] [Indexed: 05/16/2025] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease. Recent evidence suggests that the pathogenesis of IPF may involve abnormalities in mitochondrial energy metabolism. This study aimed to identify mitochondrial energy metabolism related differentially expressed genes (MEMRDEGs) and to elucidate their potential mechanistic involvement in IPF. We employed a multistep bioinformatics approach, including data extraction from the Gene Expression Omnibus database, removal of batch effects, and normalization and differential gene expression analyses. We then conducted Gene Ontology, Kyoto Encyclopedia of Genes and Genomes enrichment, and gene set enrichment analyses. A protein-protein interaction network was constructed from the STRING database, and hub genes were identified. Receiver operating characteristic curve analysis was performed to evaluate immune infiltration. Our integrated analysis of IPF datasets identified 25 MEMRDEGs. Nine hub genes emerged as central to mitochondrial energy metabolism in IPF. COX5A, EHHADH, and SDHB are potential biomarkers for diagnosing IPF with high accuracy. Single-sample gene set enrichment analysis revealed significant differences in the abundances of specertainfic immune cell types between IPF samples and controls. In conclusion, COX5A, EHHADH, and SDHB are potential biomarkers for the high-accuracy diagnosis of IPF. These findings pave the way for further investigations into the molecular mechanisms underlying IPF.
Collapse
Affiliation(s)
- Linlin Yao
- Shandong First Medical University affiliated occupational disease Hospital (Shandong Occupational Disease Hospital), Jinan, 250062, Shandong Province, China
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Baoyan Liu
- Shandong First Medical University affiliated occupational disease Hospital (Shandong Occupational Disease Hospital), Jinan, 250062, Shandong Province, China
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yong Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China.
| |
Collapse
|
42
|
Geng Y, Yang L, Shao R, Xu T, Zhang L. RNA-binding protein gene NOP58 exhibits crucial prognostic and therapeutic value in Ewing sarcoma. Hereditas 2025; 162:76. [PMID: 40369667 PMCID: PMC12076867 DOI: 10.1186/s41065-025-00440-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 04/26/2025] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND Our aim was to identify crucial RNA-binding proteins (RBP) genes associated with Ewing sarcoma (EwS) in order to provide valuable insights into its mechanisms of tumorigenesis and to enhance therapeutic intervention. RESULTS Differential gene expression analysis identified candidate genes. Next, hub genes were generated by the results of protein-protein interaction (PPI) network, and univariate COX regression analysis. CIBERSORT was applied to analyze immune landscape. Furthermore, both in vitro and in vivo experiments were conducted to investigate the function of NOP58 in EwS. RESULTS A total of 179 RBP-related genes were significantly different in EwS tissues and normal controls. Among these, NOP58 ribonucleoprotein (NOP58) was considered as the hub gene, demonstrating significant prognostic value. Significantly, high NOP58 expression correlated with poor prognosis of EwS patients. Additionally, the levels of NOP58 were significantly up-regulated in EwS cells compared with human mesenchymal stem cells. Furthermore, knockdown of NOP58 notably inhibited the proliferation and migration of EwS cells. Moreover, NOP58 deficiency remarkably induced apoptosis and cell cycle arrest in EwS cells. In vivo studies on tumor-bearing mice demonstrated that NOP58 downregulation significantly inhibited tumor growth in EwS. CONCLUSION Collectively, downregulation of NOP58 could inhibit the proliferation and migration of EwS cells in vitro and reduce murine xenograft tumor growth in vivo. These findings identified NOP58 as a promising regulator of EwS tumorigenesis, suggesting it may serve as a potential therapeutic target for EwS treatment.
Collapse
Affiliation(s)
- Yannan Geng
- Department of the Sixth Spinal Surgery, Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, No. 190 Jieyuan Road, Hongqiao District, Tianjin, 300121, China
| | - Lu Yang
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Rui Shao
- Department of the Sixth Spinal Surgery, Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, No. 190 Jieyuan Road, Hongqiao District, Tianjin, 300121, China
| | - Tiantong Xu
- Department of the Sixth Spinal Surgery, Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, No. 190 Jieyuan Road, Hongqiao District, Tianjin, 300121, China.
| | - Lilong Zhang
- Department of the Sixth Spinal Surgery, Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, No. 190 Jieyuan Road, Hongqiao District, Tianjin, 300121, China.
| |
Collapse
|
43
|
Zhang X, Zhu W, Liu Z, Ren X, Li Y, Li G, Wang J, Zhu X, Shi Y, Wang C, Li D, Sun H. Transcriptomic analysis of melatonin-mediated drought stress response genes in alfalfa during germination period. BMC PLANT BIOLOGY 2025; 25:637. [PMID: 40369428 PMCID: PMC12076827 DOI: 10.1186/s12870-025-06665-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 05/02/2025] [Indexed: 05/16/2025]
Abstract
BACKGROUND Drought stress is a predominant abiotic factor contributing to reduced crop yields globally. Therefore, exploring the molecular mechanism of drought control is of great significance to improve drought resistance and ultimately achieve crop yield increase. As a plant endogenous hormone, melatonin plays a key role in the regulation of abiotic stress, but the key genes and metabolic pathways of melatonin mediated drought resistance regulation in alfalfa have not been fully revealed. Based on transcriptomics and physiological index detection, this study aimed to explore the regulatory mechanism of melatonin in alleviating drought stress during alfalfa germination. RESULTS The findings revealed that alfalfa seedlings treated with melatonin exhibited higher germination rates, increased shoot length, and greater fresh weight compared to those exposed solely to drought stress. Additionally, there was a reduction in the levels of malondialdehyde (MDA) and superoxide anion (O2-), while the activity and concentration of superoxide dismutase (SOD), peroxidase (POD), and glutathione (GSH) were enhanced to varying extents. To investigate the molecular mechanism underlying melatonin-mediated drought resistance in alfalfa, we performed a transcriptomic analysis on the seedlings. In the drought treatment group, we identified a total of 1,991 differentially expressed genes (DEGs), comprising 778 up-regulated and 1,213 down-regulated genes. Conversely, in the melatonin-treated group, we discovered 2,336 DEGs, including 882 up-regulated and 1,454 down-regulated genes. CONCLUSIONS Through the application of GO functional annotation and KEGG pathway enrichment analysis, we discovered that DEGs were predominantly enriched in pathways related to flavonoid and isoflavone biosynthesis, plant hormone biosynthesis and signal transduction, glutathione metabolism, and MAPK signaling, and the ABC transporter signaling. Notably, the DEGs added to the MT group showed greater enrichment in these pathways. This suggests that MT mitigates drought stress by modulating the expression of genes associated with energy supply and antioxidant capacity. These findings hold significant reference value for breeding drought-tolerant alfalfa and other crops.
Collapse
Affiliation(s)
- Xiaoxia Zhang
- Key Laboratory of Forage Processing, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Animal Husbandry Technology Extension Station, Zhengzhou, 450046, China
| | - Wenxuan Zhu
- Key Laboratory of Forage Processing, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zirui Liu
- Key Laboratory of Forage Processing, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiangling Ren
- School of Environmental Engineering, Yellow River Conservancy Technical Institute, Zhengzhou, 450046, China
| | - Yingao Li
- Key Laboratory of Forage Processing, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Guomin Li
- Key Laboratory of Forage Processing, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jingzhuo Wang
- Key Laboratory of Forage Processing, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiaoyan Zhu
- Key Laboratory of Forage Processing, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Key Laboratory of Grassland Resources Innovation and Utilization, Zhengzhou, 450046, China
- Herbage Engineering Research Center of Henan Province, Zhengzhou, 450046, China
| | - Yinghua Shi
- Key Laboratory of Forage Processing, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Key Laboratory of Grassland Resources Innovation and Utilization, Zhengzhou, 450046, China
- Herbage Engineering Research Center of Henan Province, Zhengzhou, 450046, China
| | - Chengzhang Wang
- Key Laboratory of Forage Processing, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Key Laboratory of Grassland Resources Innovation and Utilization, Zhengzhou, 450046, China
- Herbage Engineering Research Center of Henan Province, Zhengzhou, 450046, China
| | - Defeng Li
- Key Laboratory of Forage Processing, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.
- Henan Key Laboratory of Grassland Resources Innovation and Utilization, Zhengzhou, 450046, China.
- Herbage Engineering Research Center of Henan Province, Zhengzhou, 450046, China.
| | - Hao Sun
- Key Laboratory of Forage Processing, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.
- Henan Key Laboratory of Grassland Resources Innovation and Utilization, Zhengzhou, 450046, China.
- Herbage Engineering Research Center of Henan Province, Zhengzhou, 450046, China.
| |
Collapse
|
44
|
Zou L, Chen K, Hong X, Ye B. Single-cell RNA sequencing reveals immunological link between house dust mite allergy and childhood asthma. Sci Rep 2025; 15:16812. [PMID: 40368964 PMCID: PMC12078649 DOI: 10.1038/s41598-025-01538-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 05/06/2025] [Indexed: 05/16/2025] Open
Abstract
Allergic asthma in children is typically associated with house dust mites (HDM) as the key allergen. Nevertheless, the diagnostic rate remains below 60% due to the absence of specific symptoms and diagnostic markers, which hinders the implementation of targeted personalized therapies. This study investigates immunological features of asthma with house dust mite (HDM) sensitisation in children, aiming to uncover diagnostic markers at single-cell resolution. The cohort comprised 8 children with physician-diagnosed asthma (age range: 4-11 years), stratified into groups based on HDM sensitization status. Single-cell RNA sequencing of peripheral blood mononuclear cells (PBMCs) was conducted, employing Seurat for cell identification and differential gene expression analysis. Enrichment analyses and LASSO regression identified signature genes related to cellular origin, with protein-protein interaction networks elucidating cellular communication differences between groups. A total of 11 distinct cell types were identified, with classical monocytes and monocytes being the predominant cell types that differentiated the two groups. Among these, 12 genes were up-regulated, and 40 down-regulated, mainly involving MHC-II complex and antigen presentation pathways, as validated by Gene Ontology and Gene Set Enrichment Analysis. The machine learning model accurately predicted cellular groupings, evidenced by an area under the curve of 0.83. Enhanced communication signals in HDM allergy cases involved monocytes, contrasting with reduced interactions in naive CD8 + cells. HLA-DR and HLA-DP were identified as the primary hallmark receptors, and the innate immunity differences with non-dust mite allergic asthma were characterized by 18 genes including top candidates MT-ND4 and RPS3A. Individuals with HDM-sensitized asthma exhibited altered expression of MHC-II complex genes in their PBMCs and distinct gene expression patterns in antigen-presenting cells, highlighting the critical role of HLA-DR and HLA-DP in the HDM allergen presentation.
Collapse
Affiliation(s)
- Lingyun Zou
- Department of Clinical Data Research, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, Chongqing University Central Hospital, Chongqing University, Chongqing, China.
| | - Kang Chen
- Department of Nuclear Medicine, First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xianou Hong
- Shenzhen Baoan Women's and Children's Hospital, Jinan University, Guangdong, China
| | - Bo Ye
- Department of Clinical Data Research, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, Chongqing University Central Hospital, Chongqing University, Chongqing, China.
| |
Collapse
|
45
|
Kalidass B, Nazeer AA, Mahalingam M, Raja RK, Lakshmanan DK. Exploring the pharmacokinetic, toxicity and anti-arthritic activity of bioactive polyphenols to mitigate the HIF-regulated angiogenic-pannus growth in rheumatoid arthritis. Int Immunopharmacol 2025; 158:114851. [PMID: 40373592 DOI: 10.1016/j.intimp.2025.114851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/22/2025] [Accepted: 05/08/2025] [Indexed: 05/17/2025]
Abstract
Current therapies for rheumatoid arthritis, including anti-inflammatory agents and immunomodulators, primarily target common inflammatory mechanisms. However, the efficacy of most bioactive compounds claimed to possess anti-arthritic properties remains mechanistically unproven, particularly against progressive conditions like pannus development. This study investigates the pharmacokinetics, toxicity, and impact of reported anti-arthritic polyphenols on HIF-regulated pannus development in rheumatoid arthritis through in silico and in vitro approaches. Eighty bioactive compounds with documented anti-arthritic properties were selected from the literature and subjected to sequential evaluation of pharmacodynamic and pharmacokinetic activity. The study identified five promising candidates qualified to perform in vivo toxicity and in vitro biochemical assays. Toxicity testing using Galleria mellonella larvae indicated dose-dependent effects on the midgut, with no mortality observed at doses up to 2000 mg/kg body weight. In vitro assays, including antioxidant and anti-inflammatory evaluations, further validated the therapeutic potential of these compounds. Compounds that satisfied all predictive criteria were subjected to molecular interaction analysis against hub-gene targets implicated in HIF-regulated angiogenesis in rheumatoid arthritis. RA-associated proteins were identified from NCBI-GEO and DisGeNET (GWAS) databases. Functional annotation and protein-protein interaction analysis identified IL-6, IL-1β, HIF-1α, PPARG, and TIMP1 as key hub targets. Molecular docking using PyRx revealed the binding affinities of the selected bioactive compounds against these targets. These findings suggest that the screened bioactive polyphenols exhibit low toxicity and hold potential as regulators of HIF-mediated angiogenesis in rheumatoid arthritis, offering a novel therapeutic approach for progressive disease management.
Collapse
Affiliation(s)
- Bharathi Kalidass
- Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu 638401, India
| | - Abdul Azeez Nazeer
- Laboratory of Pharmaceutical Sciences, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon State 24341, Republic of Korea
| | - Malathi Mahalingam
- Department of Chemistry, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu 638401, India
| | - Ramalingam Karthik Raja
- Center for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu 602105, India
| | - Dinesh Kumar Lakshmanan
- Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu 638401, India; Department of Pharmaceutical Engineering, Center for Research and Development, Vinayaka Mission's Kirupananda Variyar Engineering College, Vinayaka Mission's Research Foundation (Deemed to be University), Salem, Tamil Nadu 636308, India.
| |
Collapse
|
46
|
Baragetti A, Alieva AS, Grigore L, Pellegatta F, Lupi A, Scrimali C, Cefalù AB, Hutten BA, Wiegman A, Knaapen P, Bom MJ, Nurmohamed NS, Reutova O, Konradi A, Shlyakhto E, Stroes ESG, Averna M, Catapano AL. Fibroblast growth factor 5: a novel biomarker for familial hypercholesterolaemia. Eur Heart J 2025; 46:1819-1834. [PMID: 39928422 DOI: 10.1093/eurheartj/ehaf045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/25/2024] [Accepted: 01/21/2025] [Indexed: 02/12/2025] Open
Abstract
BACKGROUND AND AIMS Identification of individuals affected by familial hypercholesterolaemia (FH) is suboptimal when genetic tests are unavailable. Relying only on low-density lipoprotein cholesterol (LDL-C) is challenging as it may not allow distinguishing individuals with FH from hypercholesterolaemic (HC) individuals from the general population. The aim of this study was to determine whether biomarkers associated with cardiovascular disease and/or inflammation identify FH individuals and distinguish them from HC individuals. METHODS A panel of 264 proteins in plasma was measured and machine learning was used to search for those that can distinguish FH individuals, either genetically proven (genFH) or clinically diagnosed (clinFH) from HC and control individuals. RESULTS Both genFH and clinFH had elevated plasma levels of fibroblast growth factor 5 (FGF-5) compared with controls (mean area under the curve [AUC] > .990 for both, P < .001) or HC individuals (mean AUC >.990, P < .001), even after matching for LDL-C levels. An immunoenzymatic assay confirmed that FGF-5 was elevated in genFH and clinFH in all cohorts analysed. CONCLUSIONS This analysis suggests that FGF-5 could be a biomarker to discriminate individuals living with FH from HC individuals.
Collapse
Affiliation(s)
- Andrea Baragetti
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzarett 9, 20133 Milan, Italy
- Center for the Study of Atherosclerosis, IRCCS MultiMedica, Via Milanese 300, 20099 Sesto San Giovanni, Milan, Italy
| | - Asiiat S Alieva
- Research Laboratory of Lipid Metabolism Disorders and Atherosclerosis, Almazov National Medical Research Centre, St. Petersburg, The Russian Federation
| | - Liliana Grigore
- Center for the Study of Atherosclerosis, IRCCS MultiMedica, Via Milanese 300, 20099 Sesto San Giovanni, Milan, Italy
| | - Fabio Pellegatta
- Center for the Study of Atherosclerosis, IRCCS MultiMedica, Via Milanese 300, 20099 Sesto San Giovanni, Milan, Italy
| | - Andrea Lupi
- S.I.S.A. Centre for the Study of Atherosclerosis, E. Bassini Hospital, Cinisello Balsamo, Milan, Italy
| | - Chiara Scrimali
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo-School of Medicine, Palermo, Italy
| | - Angelo B Cefalù
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo-School of Medicine, Palermo, Italy
| | - Barbara A Hutten
- Department of Epidemiology and Data Science, Amsterdam University Medical Center, Location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences Research Institute, Diabetes and Metabolism, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Albert Wiegman
- Department of Pediatrics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Paul Knaapen
- Department of Cardiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Michiel J Bom
- Department of Cardiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Nick S Nurmohamed
- Department of Cardiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Olga Reutova
- Research Laboratory of Lipid Metabolism Disorders and Atherosclerosis, Almazov National Medical Research Centre, St. Petersburg, The Russian Federation
| | - Alexandra Konradi
- Research Laboratory of Lipid Metabolism Disorders and Atherosclerosis, Almazov National Medical Research Centre, St. Petersburg, The Russian Federation
| | - Evgeny Shlyakhto
- Research Laboratory of Lipid Metabolism Disorders and Atherosclerosis, Almazov National Medical Research Centre, St. Petersburg, The Russian Federation
| | - Erik S G Stroes
- Department of Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Maurizio Averna
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo-School of Medicine, Palermo, Italy
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzarett 9, 20133 Milan, Italy
- Center for the Study of Atherosclerosis, IRCCS MultiMedica, Via Milanese 300, 20099 Sesto San Giovanni, Milan, Italy
| |
Collapse
|
47
|
Davenport KM, Lowke MT, Ortega MS, Kelleher AM, Warren WC, Spencer TE. Single cell multiome analysis of the bovine placenta identifies gene regulatory networks in trophoblast differentiation†. Biol Reprod 2025; 112:955-968. [PMID: 39987557 DOI: 10.1093/biolre/ioaf036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/23/2025] [Accepted: 02/21/2025] [Indexed: 02/25/2025] Open
Abstract
A central determinant of successful reproduction is pregnancy establishment and maintenance that relies on proper development of the conceptus (embryo/fetus and associated extraembryonic membranes including the placenta). Pregnancy loss in cattle can be caused by inadequate development and differentiation of the placenta. However, the cellular and molecular mechanisms regulating bovine placenta development and, particularly, trophoblast differentiation are not well understood. Recent single-cell RNA-seq analyses revealed dynamic changes in cell populations and gene expression patterns during bovine placental development. Here, the chromatin accessibility landscape across diverse cell populations was determined in the developing (Day 40) and mature (Day 170) bovine placenta using the 10X Genomics multiome (snRNA-seq and snATAC-seq) platform. Analyses revealed distinct trophoblast, mesenchyme, endothelial, immune, and epithelial cell populations characterized by unique gene expression and chromatin accessibility signatures. ATAC-seq peaks defined open chromatin regions, facilitating the identification of transcription factor binding sites and candidate gene regulatory networks involved with trophoblast differentiation. Several transcription factors, known for their involvement in trophoblast differentiation in other mammalian species, were identified as candidate regulators of uninucleate to binucleate trophoblast differentiation. This study adds to our foundational understanding of gene regulation and expression in the placenta, offering insights into the mechanisms governing pregnancy loss in cattle.
Collapse
Affiliation(s)
- Kimberly M Davenport
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
- Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | - Makenzie T Lowke
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - M Sofia Ortega
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Andrew M Kelleher
- Department of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, MO, United States
| | - Wesley C Warren
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO, United States
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
- Department of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, MO, United States
| |
Collapse
|
48
|
Chen Z, Shi H, Hu W, Yang J, Xing Y, Lv X, Wu C, Ding C, Zhao J. DRP2 promotes EMT and serves as a potential therapeutic target for LUAD treatment. Sci Rep 2025; 15:16590. [PMID: 40360616 PMCID: PMC12075839 DOI: 10.1038/s41598-025-01611-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 05/07/2025] [Indexed: 05/15/2025] Open
Abstract
LUAD, a prevalent lung cancer with high mortality, has seen increased focus on molecular targeted therapies due to patient heterogeneity. Among these prospects, dystrophin-associated protein 2 (DRP2), a critical component of the dystrophin complex, underpins membrane-associated structures vital for intercellular interactions in vertebrates. Aberrations in DRP2 function have been linked to the occurrence and development of multiple diseases, prompting an inquiry into its potential link with LUAD progression. To delve into the potential roles of DRP2 in LUAD, we initiated a comprehensive investigation. First, we analyzed DRP2 expression patterns in LUAD using bioinformatics tools. This was subsequently validated through immunohistochemical staining, quantitative PCR, and Western blot analyses. Furthermore, we assessed the functional implications of DRP2 in LUAD cells, both in vitro and in vivo, utilizing assays such as cell cycle analysis, CCK-8 proliferation assay, Colony formation assay EdU incorporation, Transwell migration test, scratch wound healing assay, flow cytometry, and mouse models for tumor xenograft and metastasis. Results showed a strong correlation between high DRP2 expression in LUAD and poorer survival. Notably, DRP2 knockdown accelerated LUAD progression via the EMT pathway. These findings highlight DRP2's crucial role in LUAD and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Zhimeng Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, 899 Ping Hai Road, Suzhou, 215000, Jiangsu, China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hao Shi
- Laboratory of Cancer Molecular Genetics, Soochow University, Medical College of Soochow University, Suzhou, China
| | - Wenxuan Hu
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, 899 Ping Hai Road, Suzhou, 215000, Jiangsu, China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, 899 Ping Hai Road, Suzhou, 215000, Jiangsu, China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuxuan Xing
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, 899 Ping Hai Road, Suzhou, 215000, Jiangsu, China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Lv
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, 899 Ping Hai Road, Suzhou, 215000, Jiangsu, China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chenzhuo Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, 899 Ping Hai Road, Suzhou, 215000, Jiangsu, China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Cheng Ding
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, 899 Ping Hai Road, Suzhou, 215000, Jiangsu, China.
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Jun Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, 899 Ping Hai Road, Suzhou, 215000, Jiangsu, China.
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
49
|
Gao Y, Chen J, Du W. Identification of novel potential biomarkers using bulk RNA and single cells to build a neural network model for diagnosis of liver cancer. Discov Oncol 2025; 16:728. [PMID: 40353917 PMCID: PMC12069198 DOI: 10.1007/s12672-025-02420-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 04/17/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND As a common cancer, liver cancer imposes an unacceptable burden on patients, but its underlying molecular mechanisms are still not fully understood. Therefore, there is an urgent need to potential biomarkers and diagnostic models for liver cancer. METHODS In this study, transcriptome and single-cell datasets related to liver cancer were downloaded from the UCSC Xena database and the Mendeley database, and differential analysis and weighted gene co-expression network analysis were used to find differentially expressed genes related to liver cancer. We used multiple machine algorithms to find hub genes related to liver cancer, and constructed new artificial neural network models based on their transcriptome expression patterns to assist in the diagnosis of liver cancer. Subsequently, we conducted survival analysis and immune infiltration analysis to explore the correlation between hub genes and immune cells, and used single-cell data to verify hub genes related to liver cancer. RESULTS This study identified MARCO, KCNN2, NTS, TERT and SFRP4 as central genes associated with liver cancer, and constructed a new artificial neural network model for molecular diagnosis of liver cancer. The diagnostic performance of the training cohort and the validation cohort was good, with the areas under the ROC curves of 1.000 and 0.986, respectively. Immune infiltration analysis determined that these central genes were closely associated with different types of immune cells. The results of immunohistochemistry and the results at the single cell level were consistent with those at the transcriptome level, and also showed obvious differences between different cell types in liver cancer and healthy states. CONCLUSION This study identified MARCO, KCNN2, NTS, TERT, and SFRP4 from multiple dimensions and highlighted their key roles in the diagnosis and treatment of liver cancer from multiple dimensions, providing promising biomarkers for the diagnosis of liver cancer.
Collapse
Affiliation(s)
- Yingzheng Gao
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Jiahao Chen
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Weidong Du
- The First Affiliated Hospital of Zhejiang, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Chinese Medical University, Hangzhou, 310006, China.
| |
Collapse
|
50
|
Liu C, Liao C, Sun B, Guo Z, Chen S, Liu S, Yuan X, Huang Z, Liu J, Deng M, Wang K, Wu R, Zhao J, Dong X. Tumour-infiltrating immune cells as a novel prognostic model for bladder cancer. Discov Oncol 2025; 16:725. [PMID: 40350535 PMCID: PMC12066389 DOI: 10.1007/s12672-025-02292-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 04/02/2025] [Indexed: 05/14/2025] Open
Abstract
Bladder cancer (BLCA) is the tenth most commonly diagnosed cancer and poses a significant challenge due to its complexity and associated high morbidity and mortality rates in the absence of optimal treatment. The tumor microenvironment (TME) is recognized as a critical factor in tumor initiation, progression and therapeutic response, and offers numerous potential targets for intervention. A comprehensive understanding of immune infiltration patterns in BLCA is essential for the development of effective prevention and treatment strategies. In this study, bioinformatics analysis was used to identify differentially expressed genes (DEGs) and tumor-infiltrating immune cells (TIICs) between BLCA tissues and adjacent normal tissues. Weighted gene co-expression network analysis (WGCNA) and protein-protein interaction (PPI) analysis were used to identify the top 10 hub genes with the most significant co-expression effects, and their potential relationship with patient prognosis was then predicted. The random survival forest (RSF) model was used to further identify six variables among the hub genes and establish a novel scoring system, defined as the tumor-infiltrating immune score (TIIS) to predict the prognosis of BLCA patients. In addition, the correlation analysis between TIIS and drug sensitivity was investigated using the Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer Therapeutics Response Portal (CTRP) databases. Patients with high TIIS were found to have a poor prognosis but may be more sensitive to Cisplatin and certain novel agents. This study provided a systematic analysis of immune cell infiltration in BLCA and established TIIS to predict patient prognosis and the efficacy of specific drugs in the treatment of BLCA.
Collapse
Affiliation(s)
- Can Liu
- Department of Urology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Chaoyu Liao
- Department of Urology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Bishao Sun
- Department of Urology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Zhen Guo
- Urology Department, Chongqing Shapingba Hospital, School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Sihao Chen
- Department of Immunology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400010, China
- Chongqing Key Laboratory of Tumor Immune Regulation and Immune Intervention, Chongqing, 400010, China
| | - Shixue Liu
- Urology Department, Chongqing Shapingba Hospital, School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Xiaoyu Yuan
- Urology Department, Chongqing Shapingba Hospital, School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Zeyu Huang
- Department of Urology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Jingui Liu
- Department of Urology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Min Deng
- Department of Urology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Kui Wang
- Department of Urology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Ruixin Wu
- Department of Immunology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400010, China.
- Chongqing Key Laboratory of Tumor Immune Regulation and Immune Intervention, Chongqing, 400010, China.
| | - Jiang Zhao
- Department of Urology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China.
| | - Xingyou Dong
- Urology Department, Chongqing Shapingba Hospital, School of Medicine, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|