1
|
Wang J, Jian A, Sun D, Cui M, Piao C, Wang J, Mu B, Li T, Li G, Li H. Acer tegmeutosum Maxim extract alleviates acute alcohol-induced liver disease and regulates gut microbiota dysbiosis in mice. Arch Biochem Biophys 2025; 765:110314. [PMID: 39832610 DOI: 10.1016/j.abb.2025.110314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/29/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Acer tegmentosum Maxim (AT) has a variety of pharmacological activities, however, the effects of AT on liver injury and gut microbiota in alcoholic liver disease (ALD) mice is still unclear. This study aimed to evaluate the preventive effect of AT extract on acute alcoholic liver disease. Six-week-old male C57BL/6J mice were randomly divided into 6 groups. Each group was intragastrically treated saline or different concentration of AT extract solution for 5 weeks continuously. After the last gavage, except for the NC group, all the other groups were gavaged twice with 56 % alcohol to establish the acute ALD model and biochemical indexes, histopathological, and gut microbiota were analyzed. Established an acute ALD mouse model and detected serum, liver oxidation levels, and alcohol metabolism-related gene expressions. Through 16S rRNA sequencing, analyzed gut microbiota, explored the relationship between gut microbiota and liver indicators. AT extract significantly decreased lipid levels, promoted ADH, ALDH, and increased the antioxidant activities. Meanwhile, AT extract significantly downregulated the expression of lipid oxidation and inflammatory factors, upregulated alcohol metabolism genes. In addition, 16S rRNA sequencing and analysis showed that AT extract effectively regulated the gut microbiota diversity of ALD mice, significantly improved the structural disturbance of intestinal microflora. AT extract regulated gut microbiota and had a strong correlation with serum, liver-related indexes, and gene expression levels. All these results showed that AT can alleviate alcohol induced liver injury by regulating oxidative stress, inflammatory response, alcohol metabolism, and gut microbiota disorder.
Collapse
Affiliation(s)
- Jianan Wang
- College of Agricultural, Yanbian University, Yanji, Jilin, 133002, China; Food Research Center, Yanbian University, Yanji, Jilin, 133002, China
| | - Aqing Jian
- College of Agricultural, Yanbian University, Yanji, Jilin, 133002, China; Food Research Center, Yanbian University, Yanji, Jilin, 133002, China
| | - Depeng Sun
- College of Agricultural, Yanbian University, Yanji, Jilin, 133002, China; Food Research Center, Yanbian University, Yanji, Jilin, 133002, China
| | - Mingxun Cui
- College of Agricultural, Yanbian University, Yanji, Jilin, 133002, China; Food Research Center, Yanbian University, Yanji, Jilin, 133002, China
| | - Chunxiang Piao
- College of Agricultural, Yanbian University, Yanji, Jilin, 133002, China; Food Research Center, Yanbian University, Yanji, Jilin, 133002, China
| | - Juan Wang
- College of Agricultural, Yanbian University, Yanji, Jilin, 133002, China; Food Research Center, Yanbian University, Yanji, Jilin, 133002, China
| | - Baide Mu
- College of Agricultural, Yanbian University, Yanji, Jilin, 133002, China; Food Research Center, Yanbian University, Yanji, Jilin, 133002, China
| | - Tingyu Li
- College of Agricultural, Yanbian University, Yanji, Jilin, 133002, China; Food Research Center, Yanbian University, Yanji, Jilin, 133002, China
| | - Guanhao Li
- College of Agricultural, Yanbian University, Yanji, Jilin, 133002, China; Food Research Center, Yanbian University, Yanji, Jilin, 133002, China.
| | - Hongmei Li
- College of Agricultural, Yanbian University, Yanji, Jilin, 133002, China; Food Research Center, Yanbian University, Yanji, Jilin, 133002, China.
| |
Collapse
|
2
|
Yang F, Lan Z, Chen H, He R. Causal associations between human gut microbiota and hemorrhoidal disease: A two-sample Mendelian randomization study. Medicine (Baltimore) 2024; 103:e37599. [PMID: 38552035 PMCID: PMC10977532 DOI: 10.1097/md.0000000000037599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/22/2024] [Indexed: 04/02/2024] Open
Abstract
Hemorrhoidal disease (HEM) is a common condition affecting a significant proportion of the population. However, the causal relationship between the gut microbiota and hemorrhoids remains unclear. In this study, we employed a Mendelian randomization (MR) approach to investigate the potential associations between them. In this study, the exposure factor was determined by selecting summary statistics data from a large-scale gut microbiome whole-genome association study conducted by the MiBioGen Consortium, which involved a sample size of 18,340 individuals. The disease outcome data consisted of 218,920 cases of HEM and 725,213 controls of European ancestry obtained from the European Bioinformatics Institute dataset. Two-sample MR analyses were performed to assess the causalities between gut microbiota and hemorrhoids using various methods, including inverse-variance weighting, MR-Egger regression, MR Pleiotropy Residual Sum and Outlier (MR-PRESSO), simple mode, and weighted median. Reverse MR analyses were performed to examine reverse causal association. Our findings suggest phylum Cyanobacteria (OR = 0.947, 95% CI: 0.915-0.980, P = 2.10 × 10 - 3), genus Phascolarctobacterium (OR = 0.960, 95% CI: 0.924-0.997, P = .034) and family FamilyXI (OR = 0.974, 95% CI: 0.952-0.997, P = .027) have potentially protective causal effects on the risk of HEM, while genus Ruminococcaceae_UCG_002 (OR = 1.036, 95% CI: 1.001-1.071, P = .042), family Peptostreptococcaceae (OR = 1.042, 95% CI: 1.004-1.082, P = .029), genus Oscillospira (OR = 1.048, 95% CI: 1.005-1.091, P = .026), family Alcaligenaceae (OR = 1.048, 95% CI: 1.005-1.091, P = .036) and order Burkholderiales (OR = 1.074, 95% CI: 1.020-1.130, P = 6.50 × 10-3) have opposite effect. However, there was a reverse causal relationship between HEM and genus Oscillospira (OR = 1.140, 95% CI: 1.002-1.295, P = .046) This is the first MR study to explore the causalities between specific gut microbiota taxa and hemorrhoidal disease, which may offer valuable insights for future clinical interventions for hemorrhoidal disease.
Collapse
Affiliation(s)
- Fang Yang
- Anorectal Department of Traditional Chinese Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhihua Lan
- Department of Pathology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Huabing Chen
- Anorectal Department of Traditional Chinese Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Rongfang He
- Department of Pathology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
3
|
Shah YR, Ali H, Tiwari A, Guevara-Lazo D, Nombera-Aznaran N, Pinnam BSM, Gangwani MK, Gopakumar H, Sohail AH, Kanumilli S, Calderon-Martinez E, Krishnamoorthy G, Thakral N, Dahiya DS. Role of fecal microbiota transplant in management of hepatic encephalopathy: Current trends and future directions. World J Hepatol 2024; 16:17-32. [PMID: 38313244 PMCID: PMC10835490 DOI: 10.4254/wjh.v16.i1.17] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/02/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
Fecal microbiota transplantation (FMT) offers a potential treatment avenue for hepatic encephalopathy (HE) by leveraging beneficial bacterial displacement to restore a balanced gut microbiome. The prevalence of HE varies with liver disease severity and comorbidities. HE pathogenesis involves ammonia toxicity, gut-brain communication disruption, and inflammation. FMT aims to restore gut microbiota balance, addressing these factors. FMT's efficacy has been explored in various conditions, including HE. Studies suggest that FMT can modulate gut microbiota, reduce ammonia levels, and alleviate inflammation. FMT has shown promise in alcohol-associated, hepatitis B and C-associated, and non-alcoholic fatty liver disease. Benefits include improved liver function, cognitive function, and the slowing of disease progression. However, larger, controlled studies are needed to validate its effectiveness in these contexts. Studies have shown cognitive improvements through FMT, with potential benefits in cirrhotic patients. Notably, trials have demonstrated reduced serious adverse events and cognitive enhancements in FMT arms compared to the standard of care. Although evidence is promising, challenges remain: Limited patient numbers, varied dosages, administration routes, and donor profiles. Further large-scale, controlled trials are essential to establish standardized guidelines and ensure FMT's clinical applications and efficacy. While FMT holds potential for HE management, ongoing research is needed to address these challenges, optimize protocols, and expand its availability as a therapeutic option for diverse hepatic conditions.
Collapse
Affiliation(s)
- Yash R Shah
- Department of Internal Medicine, Trinity Health Oakland/Wayne State University, Pontiac, MI 48341, United States
| | - Hassam Ali
- Division of Gastroenterology and Hepatology, East Carolina University/Brody School of Medicine, Greenville, NC 27858, United States
| | - Angad Tiwari
- Department of Internal Medicine, Maharani Laxmi Bai Medical College, Jhansi 284001, India
| | - David Guevara-Lazo
- Faculty of Medicine, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| | | | - Bhanu Siva Mohan Pinnam
- Department of Internal Medicine, John H. Stroger Hospital of Cook County, Chicago, IL 60612, United States
| | - Manesh Kumar Gangwani
- Department of Internal Medicine, The University of Toledo, Toledo, OH 43606, United States
| | - Harishankar Gopakumar
- Department of Gastroenterology and Hepatology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, United States
| | - Amir H Sohail
- Department of Surgery, University of New Mexico, Albuquerque, NM 87106, United States
| | | | - Ernesto Calderon-Martinez
- Department of Internal Medicine, Universidad Nacional Autonoma de Mexico, Ciudad De Mexico 04510, Mexico
| | - Geetha Krishnamoorthy
- Department of Internal Medicine, Trinity Health Oakland/Wayne State University, Pontiac, MI 48341, United States
| | - Nimish Thakral
- Department of Digestive Diseases and Nutrition, University of Kentucky, Lexington, KY 40536, United States
| | - Dushyant Singh Dahiya
- Division of Gastroenterology, Hepatology & Motility, The University of Kansas School of Medicine, Kansas City, KS 66160, United States.
| |
Collapse
|