1
|
Li CM, Sun T, Yang MJ, Yang Z, Li Q, Shi JL, Zhang C, Jin JF. Complement activation targeted inhibitor C2-FH ameliorates acetaminophen-induced liver injury in mice. World J Hepatol 2024; 16:1188-1198. [PMID: 39474574 PMCID: PMC11514617 DOI: 10.4254/wjh.v16.i10.1188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Complement activation is recognized as an important factor in the progression of liver damage caused by acetaminophen (APAP). However, the role of the complement inhibitor C2-FH in APAP-induced liver injury remains unclear.
AIM To explore C2-FH in protecting against APAP-induced liver injury by inhibiting complement activation.
METHODS A model of APAP-induced liver injury was used to study the protective effect of C2-FH on liver injury. C2-FH was administered through intraperitoneal injection 30 minutes after APAP treatment. We detected the effects of C2-FH on liver function, inflammatory response and complement activation. Additionally, RNA-sequencing (RNA-Seq) analysis was conducted to understand the mechanism through which C2-FH provides protection against APAP-induced liver injury.
RESULTS C2-FH inhibited the increase in serum alanine aminotransferase activity, aspartate aminotransferase activity and lactate dehydrogenase, and reduced liver tissue necrosis caused by APAP. Moreover, it attenuated the inflammatory response and inhibited complement activation in APAP-induced liver injury. RNA-Seq analysis provided additional explanations for the protective role of C2-FH against APAP-induced liver injury.
CONCLUSION C2-FH attenuates APAP-induced liver injury by inhibiting complement activation.
Collapse
Affiliation(s)
- Chun-Mei Li
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- China-United States Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Tian Sun
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- China-United States Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Mou-Jie Yang
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Zhi Yang
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- China-United States Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Qing Li
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- China-United States Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Jia-Lin Shi
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Chong Zhang
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- China-United States Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Jun-Fei Jin
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- China-United States Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
2
|
Li CM, Sun T, Yang MJ, Yang Z, Li Q, Shi JL, Zhang C, Jin JF. Complement activation targeted inhibitor C2-FH ameliorates acetaminophen-induced liver injury in mice. World J Hepatol 2024; 16:1368-1378. [DOI: 10.4254/wjh.v16.i10.1368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Complement activation is recognized as an important factor in the progression of liver damage caused by acetaminophen (APAP). However, the role of the complement inhibitor C2-FH in APAP-induced liver injury remains unclear.
AIM To explore C2-FH in protecting against APAP-induced liver injury by inhibiting complement activation.
METHODS A model of APAP-induced liver injury was used to study the protective effect of C2-FH on liver injury. C2-FH was administered through intraperitoneal injection 30 minutes after APAP treatment. We detected the effects of C2-FH on liver function, inflammatory response and complement activation. Additionally, RNA-sequencing (RNA-Seq) analysis was conducted to understand the mechanism through which C2-FH provides protection against APAP-induced liver injury.
RESULTS C2-FH inhibited the increase in serum alanine aminotransferase activity, aspartate aminotransferase activity and lactate dehydrogenase, and reduced liver tissue necrosis caused by APAP. Moreover, it attenuated the inflammatory response and inhibited complement activation in APAP-induced liver injury. RNA-Seq analysis provided additional explanations for the protective role of C2-FH against APAP-induced liver injury.
CONCLUSION C2-FH attenuates APAP-induced liver injury by inhibiting complement activation.
Collapse
Affiliation(s)
- Chun-Mei Li
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- China-United States Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Tian Sun
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- China-United States Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Mou-Jie Yang
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Zhi Yang
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- China-United States Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Qing Li
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- China-United States Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Jia-Lin Shi
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Chong Zhang
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- China-United States Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Jun-Fei Jin
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- China-United States Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
3
|
Shughoury A, Sevgi DD, Ciulla TA. The complement system: a novel therapeutic target for age-related macular degeneration. Expert Opin Pharmacother 2023; 24:1887-1899. [PMID: 37691588 DOI: 10.1080/14656566.2023.2257604] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/31/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
INTRODUCTION With the recent FDA approvals of pegcetacoplan (SYFOVRE, Apellis Pharmaceuticals) and avacincaptad pegol (IZERVAY, Astellas Pharmaceuticals), modulation of the complement system has emerged as a promising therapeutic approach for slowing progression of geographic atrophy (GA) in AMD. AREAS COVERED This article reviews the current understanding of the complement system, its role in AMD, and the various complement-targeting therapies in development for the treatment of GA, including monoclonal antibodies, aptamers, protein analogs, and gene therapies. Approved and investigational agents have largely focused on interfering with the activity of complement components 3 and 5, owing to their central roles in the classical, lectin, and alternative complement pathways. Other investigational therapies have targeted formation of membrane attack complex (a terminal step in the complement cascade which leads to cell lysis), complement factors H and I (which serve regulatory functions in the alternative pathway), complement factors B and D (within the alternative pathway), and complement component 1 (within the classical pathway). Clinical trials investigating these agents are summarized, and the potential benefits and limitations of these therapies are discussed. EXPERT OPINION Targeting the complement system is a promising therapeutic approach for slowing the progression of GA in AMD, potentially improving visual outcomes. However, increased risk of exudative conversion must be considered, and further research is required to identify clinical criteria and best practices for initiating complement inhibitor therapy for GA.
Collapse
Affiliation(s)
- Aumer Shughoury
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Duriye D Sevgi
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Thomas A Ciulla
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
- Clearside Biomedical, Inc, Alpharetta, GA, USA
- Midwest Eye Institute, Carmel, IN, USA
| |
Collapse
|
4
|
Parsons NB, Annamalai B, Rohrer B. Regulatable Complement Inhibition of the Alternative Pathway Mitigates Wet Age-Related Macular Degeneration Pathology in a Mouse Model. Transl Vis Sci Technol 2023; 12:17. [PMID: 37462980 PMCID: PMC10362922 DOI: 10.1167/tvst.12.7.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023] Open
Abstract
Purpose Risk for developing age-related macular degeneration (AMD) is linked to an overactive complement system. In the mouse model of laser-induced choroidal neovascularization (CNV), elevated levels of complement effector molecules, including complement C3, have been identified, and the alternative pathway (AP) is required for pathology. The main soluble AP regular is complement factor H (fH). We have previously shown that AP inhibition via subretinal AAV-mediated delivery of CR2-fH using a constitutive promoter is efficacious in reducing CNV. Here we ask whether the C3 promoter (pC3) effectively drives CR2-fH bioavailability for gene therapy. Methods Truncated pC3 was used to generate plasmids pC3-mCherry/CR2-fH followed by production of corresponding AAV5 vectors. pC3 activation was determined in transiently transfected ARPE-19 cells stimulated with H2O2 or normal human serum (+/- antioxidant or humanized CR2-fH, respectively). CNV was analyzed in C57BL/6J mice treated subretinally with AAV5-pC3-mCherry/CR2-fH using imaging (optical coherence tomography [OCT] and fundus imaging), functional (electroretinography [ERG]), and molecular (protein expression) readouts. Results Modulation of pC3 in vitro is complement and oxidative stress dependent, as shown by mCherry fluorescence. AAV5-pC3-CR2-fH were identified as safe and effective using OCT and ERG. CR2-fH expression significantly reduced CNV compared to mCherry and was correlated with reduced levels of C3dg/C3d in the retinal pigment epithelium/choroid fraction. Conclusions We conclude that complement-dependent regulation of AP inhibition ameliorates AMD pathology as effectively as using a constitutive promoter. Translational Relevance The goal of anticomplement therapy is to restore homeostatic levels of complement activation, which might be more easily achievable using a self-regulating system.
Collapse
Affiliation(s)
- Nathaniel B. Parsons
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA
| | | | - Bärbel Rohrer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
- Ralph H. Johnson VA Medical Center, Division of Research, Charleston, SC, USA
| |
Collapse
|
5
|
Gibson BG, Cox TE, Marchbank KJ. Contribution of animal models to the mechanistic understanding of Alternative Pathway and Amplification Loop (AP/AL)-driven Complement-mediated Diseases. Immunol Rev 2023; 313:194-216. [PMID: 36203396 PMCID: PMC10092198 DOI: 10.1111/imr.13141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This review aimed to capture the key findings that animal models have provided around the role of the alternative pathway and amplification loop (AP/AL) in disease. Animal models, particularly mouse models, have been incredibly useful to define the role of complement and the alternative pathway in health and disease; for instance, the use of cobra venom factor and depletion of C3 provided the initial insight that complement was essential to generate an appropriate adaptive immune response. The development of knockout mice have further underlined the importance of the AP/AL in disease, with the FH knockout mouse paving the way for the first anti-complement drugs. The impact from the development of FB, properdin, and C3 knockout mice closely follows this in terms of mechanistic understanding in disease. Indeed, our current understanding that complement plays a role in most conditions at one level or another is rooted in many of these in vivo studies. That C3, in particular, has roles beyond the obvious in innate and adaptive immunity, normal physiology, and cellular functions, with or without other recognized AP components, we would argue, only extends the reach of this arm of the complement system. Humanized mouse models also continue to play their part. Here, we argue that the animal models developed over the last few decades have truly helped define the role of the AP/AL in disease.
Collapse
Affiliation(s)
- Beth G. Gibson
- Complement Therapeutics Research Group and Newcastle University Translational and Clinical Research InstituteFaculty of Medical ScienceNewcastle‐upon‐TyneUK
- National Renal Complement Therapeutics CentreaHUS ServiceNewcastle upon TyneUK
| | - Thomas E. Cox
- Complement Therapeutics Research Group and Newcastle University Translational and Clinical Research InstituteFaculty of Medical ScienceNewcastle‐upon‐TyneUK
- National Renal Complement Therapeutics CentreaHUS ServiceNewcastle upon TyneUK
| | - Kevin J. Marchbank
- Complement Therapeutics Research Group and Newcastle University Translational and Clinical Research InstituteFaculty of Medical ScienceNewcastle‐upon‐TyneUK
- National Renal Complement Therapeutics CentreaHUS ServiceNewcastle upon TyneUK
| |
Collapse
|
6
|
Yang S, Li T, Jia H, Gao M, Li Y, Wan X, Huang Z, Li M, Zhai Y, Li X, Yang X, Wang T, Liang J, Gu Q, Luo X, Qian L, Lu S, Liu J, Song Y, Wang F, Sun X, Yu D. Targeting C3b/C4b and VEGF with a bispecific fusion protein optimized for neovascular age-related macular degeneration therapy. Sci Transl Med 2022; 14:eabj2177. [PMID: 35648811 DOI: 10.1126/scitranslmed.abj2177] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antiangiogenesis therapies targeting vascular endothelial growth factor (VEGF) have revolutionized the treatment of neovascular ocular diseases, including neovascular age-related macular degeneration (nAMD). Compelling evidence has implicated the vital role of complement system dysregulation in AMD pathogenesis, implying it as a potential therapeutic strategy for geographic atrophy in dry AMD and to enhance the efficacy of anti-VEGF monotherapies in nAMD. This study reports the preclinical assessment and phase 1 clinical outcomes of a bispecific fusion protein, efdamrofusp alfa (code: IBI302), which is capable of neutralizing both VEGF isoforms and C3b/C4b. Efdamrofusp alfa showed superior efficacy over anti-VEGF monotherapy in a mouse laser-induced choroidal neovascularization (CNV) model after intravitreal delivery. Dual inhibition of VEGF and the complement activation was found to further inhibit macrophage infiltration and M2 macrophage polarization. Intravitreal efdamrofusp alfa demonstrated favorable safety profiles and exhibited antiangiogenetic efficacy in a nonhuman primate laser-induced CNV model. A phase 1 dose-escalating clinical trial (NCT03814291) was thus conducted on the basis of the preclinical data. Preliminary results showed that efdamrofusp alfa was well tolerated in patients with nAMD. These data suggest that efdamrofusp alfa might be effective for treating nAMD and possibly other complement-related ocular conditions.
Collapse
Affiliation(s)
- Shiqi Yang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,National Clinical Research Center for Ophthalmic Diseases, Shanghai 200080, China
| | - Tong Li
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,National Clinical Research Center for Ophthalmic Diseases, Shanghai 200080, China
| | - Huixun Jia
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,National Clinical Research Center for Ophthalmic Diseases, Shanghai 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| | - Min Gao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yiming Li
- Innovent Biologics Inc., Suzhou 215000, China
| | - Xiaoling Wan
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China
| | - Zhen Huang
- Department of Ophthalmology, Wuhan General Hospital of Guangzhou Military Region, Wuhan 430070, China
| | - Min Li
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China
| | - Yuanqi Zhai
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China
| | - Xiaomeng Li
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,National Clinical Research Center for Ophthalmic Diseases, Shanghai 200080, China
| | - Xiaotong Yang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,National Clinical Research Center for Ophthalmic Diseases, Shanghai 200080, China
| | - Tao Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China
| | - Jian Liang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China
| | - Qing Gu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China
| | - Xueting Luo
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China
| | - Lei Qian
- Innovent Biologics Inc., Suzhou 215000, China
| | - Shujie Lu
- Innovent Biologics Inc., Suzhou 215000, China
| | - Junjian Liu
- Innovent Biologics Inc., Suzhou 215000, China
| | - Yanping Song
- Department of Ophthalmology, Wuhan General Hospital of Guangzhou Military Region, Wuhan 430070, China
| | - Fenghua Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,National Clinical Research Center for Ophthalmic Diseases, Shanghai 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,National Clinical Research Center for Ophthalmic Diseases, Shanghai 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China
| | - Dechao Yu
- Innovent Biologics Inc., Suzhou 215000, China
| |
Collapse
|
7
|
Samelska K, Kupis M, Izdebska J, Kaminska A, Skopiński P. Novel approach to antiangiogenic factors in age-related macular degeneration therapy. Cent Eur J Immunol 2022; 47:117-123. [PMID: 35600160 PMCID: PMC9115594 DOI: 10.5114/ceji.2022.113103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/13/2022] [Indexed: 11/21/2022] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of irreversible vision loss among the population above 85 worldwide. There are two main types of AMD: neovascular and dry AMD. Neovascular AMD leads to macular changes resulting from abnormal choroidal neovascularization. Untreated neovascular AMD leads to scar formation and irreversible sight deterioration. Dry AMD in consequence leads to atrophic changes of the macula. The last decades brought a breakthrough in the therapy of neovascular age-related macular degeneration by introduction of, firstly, photodynamic therapy and, later, anti-VEGF agents administered intravitreally in order to stop neoangiogenesis. However, the treatment of dry AMD is still challenging. Among the directions in dry AMD treatment, the most promising are complement cascade inhibitors and complement cascade targeted gene therapy. In the article we outline the main directions in up-to-date experimental and practical approaches to wet and dry AMD therapy with the emphasis on antiangiogenic factors and gene therapy focused on the inhibition of pathological angiogenesis.
Collapse
Affiliation(s)
- Katarzyna Samelska
- Department of Ophthalmology, Medical University of Warsaw, Warsaw, Poland
- SPKSO Ophthalmic University Hospital, Warsaw, Poland
| | - Magdalena Kupis
- Department of Ophthalmology, Medical University of Warsaw, Warsaw, Poland
- SPKSO Ophthalmic University Hospital, Warsaw, Poland
| | - Justyna Izdebska
- Department of Ophthalmology, Medical University of Warsaw, Warsaw, Poland
- SPKSO Ophthalmic University Hospital, Warsaw, Poland
| | - Anna Kaminska
- Department of Ophthalmology, Medical University of Warsaw, Warsaw, Poland
- SPKSO Ophthalmic University Hospital, Warsaw, Poland
| | - Piotr Skopiński
- SPKSO Ophthalmic University Hospital, Warsaw, Poland
- Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
8
|
Annamalai B, Parsons N, Nicholson C, Joseph K, Coughlin B, Yang X, Jones BW, Tomlinson S, Rohrer B. Natural immunoglobulin M-based delivery of a complement alternative pathway inhibitor in mouse models of retinal degeneration. Exp Eye Res 2021; 207:108583. [PMID: 33878326 PMCID: PMC8504679 DOI: 10.1016/j.exer.2021.108583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 03/31/2021] [Accepted: 04/13/2021] [Indexed: 11/23/2022]
Abstract
PURPOSE Age-related macular degeneration is a slowly progressing disease. Studies have tied disease risk to an overactive complement system. We have previously demonstrated that pathology in two mouse models, the choroidal neovascularization (CNV) model and the smoke-induced ocular pathology (SIOP) model, can be reduced by specifically inhibiting the alternative complement pathway (AP). Here we report on the development of a novel injury-site targeted inhibitor of the alternative pathway, and its characterization in models of retinal degeneration. METHODS Expression of the danger associated molecular pattern, a modified annexin IV, in injured ARPE-19 cells was confirmed by immunohistochemistry and complementation assays using B4 IgM mAb. Subsequently, a construct was prepared consisting of B4 single chain antibody (scFv) linked to a fragment of the alternative pathway inhibitor, fH (B4-scFv-fH). ARPE-19 cells stably expressing B4-scFv-fH were microencapsulated and administered intravitreally or subcutaneously into C57BL/6 J mice, followed by CNV induction or smoke exposure. Progression of CNV was analyzed using optical coherence tomography, and SIOP using structure-function analyses. B4-scFv-fH targeting and AP specificity was assessed by Western blot and binding experiments. RESULTS B4-scFv-fH was secreted from encapsulated RPE and inhibited complement in RPE monolayers. B4-scFv-fH capsules reduced CNV and SIOP, and western blotting for breakdown products of C3α, IgM and IgG confirmed a reduction in complement activation and antibody binding in RPE/choroid. CONCLUSIONS Data supports a role for natural antibodies and neoepitope expression in ocular disease, and describes a novel strategy to target AP-specific complement inhibition to diseased tissue in the eye. PRECIS AMD risk is tied to an overactive complement system, and ocular injury is reduced by alternative pathway (AP) inhibition in experimental models. We developed a novel inhibitor of the AP that targets an injury-specific danger associated molecular pattern, and characterized it in disease models.
Collapse
Affiliation(s)
| | - Nathaniel Parsons
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA
| | - Crystal Nicholson
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA
| | - Kusumam Joseph
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA
| | - Beth Coughlin
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA
| | - Xiaofeng Yang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Bryan W Jones
- Department of Ophthalmology, University of Utah, Salt Lake City, UT, USA
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Division of Research, Charleston, SC, USA
| | - Bärbel Rohrer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Division of Research, Charleston, SC, USA; Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
9
|
Cheng X, He D, Liao C, Lin S, Tang L, Wang YL, Hu J, Li W, Liu Z, Wu Y, Liao Y. IL-1/IL-1R signaling induced by all-trans-retinal contributes to complement alternative pathway activation in retinal pigment epithelium. J Cell Physiol 2020; 236:3660-3674. [PMID: 33034385 DOI: 10.1002/jcp.30103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 12/23/2022]
Abstract
The underlying mechanisms of complement activation in Stargardt disease type 1 (STGD1) and age-related macular degeneration (AMD) are not fully understood. Overaccumulation of all-trans-retinal (atRAL) has been proposed as the pathogenic factor in both diseases. By incubating retinal pigment epithelium (RPE) cells with atRAL, we showed that C5b-9 membrane attack complexes (MACs) were generated mainly through complement alternative pathway. An increase in complement factor B (CFB) expression as well as downregulation of complement regulatory proteins CD46, CD55, CD59, and CFH were observed in RPE cells after atRAL treatment. Furthermore, interleukin-1β production was provoked in both atRAL-treated RPE cells and microglia/macrophages. Coincubation of RPE cells with interleukin-1 receptor antagonist (IL1Ra) and atRAL ameliorated complement activation and downregulated CFB expression by attenuating both p38 and c-Jun N-terminal kinase (JNK) signaling pathways. Our findings demonstrate that atRAL induces an autocrine/paracrine IL-1/IL-1R signaling to promote complement alternative pathway activation in RPE cells and provide a novel perspective on the pathomechanism of macular degeneration.
Collapse
Affiliation(s)
- Xinxuan Cheng
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Eye Institute of Xiamen University, Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiamen University Affiliated Xiamen Eye Center, Xiamen, China
| | - Danxue He
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Eye Institute of Xiamen University, Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiamen University Affiliated Xiamen Eye Center, Xiamen, China
| | - Chunyan Liao
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Eye Institute of Xiamen University, Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiamen University Affiliated Xiamen Eye Center, Xiamen, China
| | - Sijie Lin
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Eye Institute of Xiamen University, Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiamen University Affiliated Xiamen Eye Center, Xiamen, China
| | - Liying Tang
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Eye Institute of Xiamen University, Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiamen University Affiliated Xiamen Eye Center, Xiamen, China
| | - Yuan-Liang Wang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China.,Section of Molecular Biology, University of California, San Diego, La Jolla, California, USA
| | - Jiaoyue Hu
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Eye Institute of Xiamen University, Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiamen University Affiliated Xiamen Eye Center, Xiamen, China
| | - Wei Li
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Eye Institute of Xiamen University, Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiamen University Affiliated Xiamen Eye Center, Xiamen, China
| | - Zuguo Liu
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Eye Institute of Xiamen University, Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiamen University Affiliated Xiamen Eye Center, Xiamen, China
| | - Yalin Wu
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Eye Institute of Xiamen University, Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiamen University Affiliated Xiamen Eye Center, Xiamen, China
| | - Yi Liao
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Eye Institute of Xiamen University, Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiamen University Affiliated Xiamen Eye Center, Xiamen, China
| |
Collapse
|
10
|
Annamalai B, Parsons N, Brandon C, Rohrer B. The use of Matrigel combined with encapsulated cell technology to deliver a complement inhibitor in a mouse model of choroidal neovascularization. Mol Vis 2020; 26:370-377. [PMID: 32476817 PMCID: PMC7245607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/13/2020] [Indexed: 11/03/2022] Open
Abstract
Purpose Risk for age-related macular degeneration (AMD), a slowly progressing, complex disease, is tied to an overactive complement system. Efforts are under way to develop an anticomplement-based treatment to be delivered locally or systemically. We developed an alternative pathway (AP) inhibitor fusion protein consisting of a complement receptor-2 fragment linked to the inhibitory domain of factor H (CR2-fH), which reduces the size of mouse choroidal neovascularization (CNV) when delivered locally or systemically. Specifically, we confirmed that ARPE-19 cells genetically engineered to produce CR2-fH reduce CNV lesion size when encapsulated and placed intravitreally. We extend this observation by delivering the encapsulated cells systemically in Matrigel. Methods ARPE-19 cells were generated to stably express CR2 or CR2-fH, microencapsulated using sodium alginate, and injected subcutaneously in Matrigel into 2-month-old C57BL/6J mice. Four weeks after implantation, CNV was induced using argon laser photocoagulation. Progression of CNV was analyzed using optical coherence tomography. Bioavailability of CR2-fH was evaluated in Matrigel plugs with immunohistochemistry, as well as in ocular tissue with dot blots. Efficacy as an AP inhibitor was confirmed with protein chemistry. Results An efficacious number of implanted capsules to reduce CNV was identified. Expression of the fusion protein systemically did not elicit an immune response. Bioavailability studies showed that CR2-fH was present in the RPE/choroid fractions of the treated mice, and reduced CNV-associated ocular complement activation. Conclusions These findings indicate that systemic production of the AP inhibitor CR2-fH can reduce CNV in the mouse model.
Collapse
Affiliation(s)
| | - Nathaniel Parsons
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC
| | - Carlene Brandon
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC
| | - Bärbel Rohrer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC,Department of Neuroscience; Medical University of South Carolina, Charleston, SC,Ralph H. Johnson VA Medical Center, Division of Research, Charleston, SC
| |
Collapse
|
11
|
Borras C, Delaunay K, Slaoui Y, Abache T, Jorieux S, Naud MC, Sanharawi ME, Gelize E, Lassiaz P, An N, Kowalczuk L, Ayassami C, Moulin A, Behar-Cohen F, Mascarelli F, Dinet V. Mechanisms of FH Protection Against Neovascular AMD. Front Immunol 2020; 11:443. [PMID: 32318056 PMCID: PMC7146894 DOI: 10.3389/fimmu.2020.00443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/26/2020] [Indexed: 12/11/2022] Open
Abstract
A common allele (402H) of the complement factor H (FH) gene is the major risk factor for age-related macular degeneration (AMD), the leading cause of blindness in the elderly population. Development and progression of AMD involves vascular and inflammatory components partly by deregulation of the alternative pathway of the complement system (AP). The loss of central vision results from atrophy and/or from abnormal neovascularization arising from the choroid. The functional link between FH, the main inhibitor of AP, and choroidal neovascularization (CNV) in AMD remains unclear. In a murine model of CNV used as a model for neovascular AMD (nAMD), intraocular human recombinant FH (recFH) reduced CNV as efficiently as currently used anti-VEGF (vascular endothelial growth factor) antibody, decreasing deposition of C3 cleavage fragments, membrane attack complex (MAC), and microglia/macrophage recruitment markers in the CNV lesion site. In sharp contrast, recFH carrying the H402 risk variant had no effect on CNV indicating a causal link to disease etiology. Only the recFH NTal region (recFH1-7), containing the CCPs1-4 C3-convertase inhibition domains and the CCP7 binding domain, exerted all differential biological effects. The CTal region (recFH7-20) containing the CCP7 and CCPs19-20 binding domains was antiangiogenic but did not reduce the microglia/macrophage recruitment. The antiangiogenic effect of both recFH1-20 and recFH-CCP7-20 resulted from thrombospondin-1 (TSP-1) upregulation independently of the C3 cleavage fragments generation. This study provides insight on the mechanistic role of FH in nAMD and invites to reconsider its therapeutic potential.
Collapse
Affiliation(s)
- Céline Borras
- Centre de Recherche des Cordeliers, Inserm UMR1138, Université de Paris, Sorbonne Université, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Kimberley Delaunay
- Centre de Recherche des Cordeliers, Inserm UMR1138, Université de Paris, Sorbonne Université, Paris, France
- INSERM, U1138, Paris, France
- Université Pierre et Marie Curie - Paris6, UMRS1138, Paris, France
| | - Yousri Slaoui
- Laboratoire de Mathématiques et Applications UMR 7348, CNRS, Poitiers, France
| | - Toufik Abache
- Laboratoire Français du Fractionnement et des Biotechnologies (LFB), Lille, France
| | - Sylvie Jorieux
- Laboratoire Français du Fractionnement et des Biotechnologies (LFB), Lille, France
| | - Marie-Christine Naud
- Centre de Recherche des Cordeliers, Inserm UMR1138, Université de Paris, Sorbonne Université, Paris, France
- INSERM, U1138, Paris, France
- Université Pierre et Marie Curie - Paris6, UMRS1138, Paris, France
| | - Mohamed El Sanharawi
- Centre de Recherche des Cordeliers, Inserm UMR1138, Université de Paris, Sorbonne Université, Paris, France
- INSERM, U1138, Paris, France
- Université Pierre et Marie Curie - Paris6, UMRS1138, Paris, France
| | - Emmanuelle Gelize
- Centre de Recherche des Cordeliers, Inserm UMR1138, Université de Paris, Sorbonne Université, Paris, France
- INSERM, U1138, Paris, France
- Université Pierre et Marie Curie - Paris6, UMRS1138, Paris, France
| | - Patricia Lassiaz
- Centre de Recherche des Cordeliers, Inserm UMR1138, Université de Paris, Sorbonne Université, Paris, France
- INSERM, U1138, Paris, France
- Université Pierre et Marie Curie - Paris6, UMRS1138, Paris, France
| | - Na An
- Centre de Recherche des Cordeliers, Inserm UMR1138, Université de Paris, Sorbonne Université, Paris, France
- INSERM, U1138, Paris, France
- Université Pierre et Marie Curie - Paris6, UMRS1138, Paris, France
| | - Laura Kowalczuk
- INSERM, U1138, Paris, France
- Department of Ophthalmology of Lausanne, University Jules Gonin Eye Hospital, Lausanne, Switzerland
| | - Cédric Ayassami
- Centre de Recherche des Cordeliers, Inserm UMR1138, Université de Paris, Sorbonne Université, Paris, France
- INSERM, U1138, Paris, France
| | - Alexandre Moulin
- INSERM, U1138, Paris, France
- Department of Ophthalmology of Lausanne, University Jules Gonin Eye Hospital, Lausanne, Switzerland
| | - Francine Behar-Cohen
- Ophtalmopole, Hôpital Cochin Assistance Publique Hôpitaux de Paris, Paris, France
| | - Frédéric Mascarelli
- Centre de Recherche des Cordeliers, Inserm UMR1138, Université de Paris, Sorbonne Université, Paris, France
- INSERM, U1138, Paris, France
- Université Pierre et Marie Curie - Paris6, UMRS1138, Paris, France
| | - Virginie Dinet
- Centre de Recherche des Cordeliers, Inserm UMR1138, Université de Paris, Sorbonne Université, Paris, France
- INSERM, U1138, Paris, France
- Université Pierre et Marie Curie - Paris6, UMRS1138, Paris, France
| |
Collapse
|
12
|
Takasumi M, Omori T, Machida T, Ishida Y, Hayashi M, Suzuki T, Homma Y, Endo Y, Takahashi M, Ohira H, Fujita T, Sekine H. A novel complement inhibitor sMAP-FH targeting both the lectin and alternative complement pathways. FASEB J 2020; 34:6598-6612. [PMID: 32219899 DOI: 10.1096/fj.201902475r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/24/2019] [Accepted: 03/08/2020] [Indexed: 02/02/2023]
Abstract
Inhibition of the complement activation has emerged as an option for treatment of a range of diseases. Activation of the lectin and alternative pathways (LP and AP, respectively) contribute to the deterioration of conditions in certain diseases such as ischemia-reperfusion injuries and age-related macular degeneration (AMD). In the current study, we generated dual complement inhibitors of the pathways MAp44-FH and sMAP-FH by fusing full-length MAp44 or small mannose-binding lectin-associated protein (sMAP), LP regulators, with the N-terminal five short consensus repeat (SCR) domains of complement factor H (SCR1/5-FH), an AP regulator. The murine forms of both fusion proteins formed a complex with endogenous mannose-binding lectin (MBL) or ficolin A in the circulation when administered in mice intraperitoneally. Multiple complement activation assays revealed that sMAP-FH had significantly higher inhibitory effects on activation of the LP and AP in vivo as well as in vitro compared to MAp44-FH. Human form of sMAP-FH also showed dual inhibitory effects on LP and AP activation in human sera. Our results indicate that the novel fusion protein sMAP-FH inhibits both the LP and AP activation in mice and in human sera, and could be an effective therapeutic agent for diseases in which both the LP and AP activation are significantly involved.
Collapse
Affiliation(s)
- Mika Takasumi
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima-City, Japan.,Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima-City, Japan
| | - Tomoko Omori
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima-City, Japan
| | - Takeshi Machida
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima-City, Japan
| | - Yumi Ishida
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima-City, Japan
| | - Manabu Hayashi
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima-City, Japan.,Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima-City, Japan
| | - Toshiyuki Suzuki
- Department of Biomolecular Science, Fukushima Medical University School of Medicine, Fukushima-City, Japan
| | - Yoshimi Homma
- Department of Biomolecular Science, Fukushima Medical University School of Medicine, Fukushima-City, Japan
| | - Yuichi Endo
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima-City, Japan
| | - Minoru Takahashi
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima-City, Japan
| | - Hiromasa Ohira
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima-City, Japan
| | - Teizo Fujita
- Fukushima Prefectural General Hygiene Institute, Fukushima-City, Japan
| | - Hideharu Sekine
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima-City, Japan
| |
Collapse
|
13
|
Annamalai B, Parsons N, Belhaj M, Brandon C, Potts J, Rohrer B. Encapsulated Cell Technology-Based Delivery of a Complement Inhibitor Reduces Choroidal Neovascularization in a Mouse Model. Transl Vis Sci Technol 2018; 7:3. [PMID: 29576927 PMCID: PMC5846441 DOI: 10.1167/tvst.7.2.3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/19/2017] [Indexed: 12/28/2022] Open
Abstract
Purpose Age-related macular degeneration (AMD) is a slowly progressing disease, and risk appears to be tied to an overactive complement system. We have previously demonstrated that mouse choroidal neovascularization (CNV) and smoke-induced ocular pathology can be reduced with an alternative pathway (AP) inhibitor fusion protein consisting of a complement receptor-2 fragment linked to the inhibitory domain of factor H (CR2-fH) when delivered systemically. Here we developed an experimental approach with genetically engineered encapsulated ARPE-19 cells to produce CR2-fH intravitreally. Methods ARPE-19 cells were generated to stably express CR2 or CR2-fH, microencapsulated using sodium alginate, and injected intravitreally into 2-month-old C57BL/6J mice. CNV was induced using argon laser photocoagulation 4 weeks postinjection. Presence of capsules and progression of CNV was analyzed using optical coherence tomography. Bioavailability of CR2-fH was evaluated in retina sections by immunohistochemistry, and efficacy as an AP inhibitor by C3a ELISA. Results Secretion of CR2-fH or CR2 from encapsulated ARPE-19 cells was confirmed. An efficacious concentration of CR2-fH capsules to reduce CNV was identified. Bioavailability studies showed that CR2-fH was present in capsules and retinas of injected mice, and reduced CNV-associated ocular C3a production. Conclusions These findings indicate that the AP inhibitor CR2-fH, when generated intravitreally, can reduce CNV in mouse. Translational Relevance Encapsulated ARPE-19 cells secreting CR2-fH or perhaps other antiangiogenic or prosurvival factors might be useful as a potential therapeutic tool to treat age-related macular degeneration.
Collapse
Affiliation(s)
| | - Nathaniel Parsons
- Departments of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA
| | - Marwa Belhaj
- Department of Cell Biology, University of South Carolina, Columbia, SC, USA
| | - Carlene Brandon
- Departments of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA
| | - Jay Potts
- Department of Cell Biology, University of South Carolina, Columbia, SC, USA
| | - Bärbel Rohrer
- Departments of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA.,Neurosciences, Division of Research, Medical University of South Carolina, Charleston, SC, USA.,Ralph H. Johnson VA Medical Center, Division of Research, Charleston, SC, USA
| |
Collapse
|
14
|
Yan Z, Shi H, Zhu R, Li L, Qin B, Kang L, Chen H, Guan H. Inhibition of YAP ameliorates choroidal neovascularization via inhibiting endothelial cell proliferation. Mol Vis 2018; 24:83-93. [PMID: 29422766 PMCID: PMC5800432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 01/29/2018] [Indexed: 10/25/2022] Open
Abstract
Purpose Age-related macular degeneration (AMD) is the leading cause of central visual loss among patients over the age of 55 years worldwide. Neovascular-type AMD (nAMD) accounts for approximately 10% of patients with AMD and is characterized by choroidal neovascularization (CNV). The proliferation of choroidal endothelial cells (CECs) is one important step in the formation of new vessels. Transcriptional coactivator Yes-associated protein (YAP) can promote the proliferation of multiple cancer cells, corneal endothelial cells, and vascular smooth muscle cells, which participate in angiogenesis. This study intends to reveal the expression and functions of YAP during the CNV process. Methods In the study, a mouse CNV model was generated by laser photocoagulation. YAP expression was detected with western blotting and immunohistochemistry. YAP siRNA and ranibizumab, a VEGF monoclonal antibody, were injected intravitreally in CNV mice. The YAP and VEGF expression levels after injection were detected with western blotting. The incidence and leakage area of CNV were measured with fundus fluorescein angiography, choroidal flat mounting, and hematoxylin and eosin (HE) staining. Immunofluorescent double staining was used to detect YAP cellular localization with CD31 (an endothelial cell marker) antibody. Proliferating cell nuclear antigen (PCNA) expression in CNV mice without or with YAP siRNA intravitreal injection and the colocalization of PCNA and CD31 were measured with western blotting and immunofluorescent double staining, respectively. Results YAP expression increased following laser exposure, in accordance with vascular endothelial growth factor (VEGF) expression. YAP siRNA and ranibizumab decreased VEGF expression and the incidence and leakage area of CNV. YAP was localized in the vascular endothelium within the CNV site. Additionally, after laser exposure, YAP siRNA inhibited the increased expression of PCNA, which was colocalized with endothelial cells. Conclusions This study showed that YAP upregulation promoted CNV formation by upregulating the proliferation of endothelial cells, providing evidence for the molecular mechanisms of CNV and suggesting a novel molecular target for nAMD treatment.
Collapse
Affiliation(s)
- Zhenzhen Yan
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Haihong Shi
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Rongrong Zhu
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Lele Li
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Bai Qin
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Lihua Kang
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Hui Chen
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Huaijin Guan
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| |
Collapse
|
15
|
Schnabolk G, Parsons N, Obert E, Annamalai B, Nasarre C, Tomlinson S, Lewin AS, Rohrer B. Delivery of CR2-fH Using AAV Vector Therapy as Treatment Strategy in the Mouse Model of Choroidal Neovascularization. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 9:1-11. [PMID: 29234687 PMCID: PMC5723362 DOI: 10.1016/j.omtm.2017.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/06/2017] [Indexed: 12/12/2022]
Abstract
Complement activation plays a significant role in age-related macular degeneration (AMD) pathogenesis, and polymorphisms interfering with factor H (fH) function, a complement alternative pathway (AP) inhibitor, are associated with increased AMD risk. We have previously validated an AP inhibitor, a fusion protein consisting of a complement receptor 2 fragment linked to the inhibitory domain of fH (CR2-fH) as an efficacious treatment for choroidal neovascularization (CNV) when delivered intravenously. Here we tested an alternative approach of AAV-mediated delivery (AAV5-VMD2-CR2-fH or AAV5-VMD2-mCherry) using subretinal delivery in C57BL/6J mice. Secretion of CR2-fH was confirmed in polarized retinal pigment epithelium (RPE) cells. A safe concentration of AAV5-VMD2-CR2-fH was identified using electroretinography, optical coherence tomography (OCT), RPE morphology, and antibody profiling. One month after gene delivery, CNV was induced using argon laser photocoagulation. OCT assessment demonstrated reduced CNV with AAV5-VMD2-CR2-fH administration. Bioavailability studies revealed that gene-therapy delivered similar levels of CR2-fH to the RPE/choroid as treatment by intravenous injections, and C3a ELISA verified reduced CNV-associated ocular C3a production. These results contribute to existing data illustrating the importance of the AP of complement in CNV development and its potential role in AMD treatment. Demonstration of AAV-vector efficacy opens new avenues for the development of treatment strategies.
Collapse
Affiliation(s)
- Gloriane Schnabolk
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Nathaniel Parsons
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Elisabeth Obert
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | - Cecile Nasarre
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA.,Ralph H. Johnson VA Medical Center, Division of Research, Charleston, SC 29401, USA
| | - Alfred S Lewin
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville FL 32611, USA
| | - Bärbel Rohrer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA.,Ralph H. Johnson VA Medical Center, Division of Research, Charleston, SC 29401, USA
| |
Collapse
|
16
|
Complement factor H in AMD: Bridging genetic associations and pathobiology. Prog Retin Eye Res 2017; 62:38-57. [PMID: 28928087 DOI: 10.1016/j.preteyeres.2017.09.001] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 09/08/2017] [Accepted: 09/13/2017] [Indexed: 01/28/2023]
Abstract
Age-Related Macular Degeneration (AMD) is a complex multifactorial disease characterized in its early stages by lipoprotein accumulations in Bruch's Membrane (BrM), seen on fundoscopic exam as drusen, and in its late forms by neovascularization ("wet") or geographic atrophy of the Retinal Pigmented Epithelial (RPE) cell layer ("dry"). Genetic studies have strongly supported a relationship between the alternative complement cascade, in particular the common H402 variant in Complement Factor H (CFH) and development of AMD. However, the functional significance of the CFH Y402H polymorphism remains elusive. In this article, we critically review the literature surrounding the functional significance of this polymorphism. Furthermore, based on our group's studies we propose a model in which CFH H402 affects CFH binding to heparan sulfate proteoglycans leading to accelerated lipoprotein accumulation in BrM and drusen progression. We also review the literature on the role of other complement components in AMD pathobiologies, including C3a, C5a and the membrane attack complex (MAC), and on transgenic mouse models developed to interrogate in vivo the effects of the CFH Y402H polymorphism.
Collapse
|
17
|
Riddell N, Crewther SG. Novel evidence for complement system activation in chick myopia and hyperopia models: a meta-analysis of transcriptome datasets. Sci Rep 2017; 7:9719. [PMID: 28852117 PMCID: PMC5574905 DOI: 10.1038/s41598-017-10277-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/21/2017] [Indexed: 12/27/2022] Open
Abstract
Myopia (short-sightedness) and hyperopia (long-sightedness) occur when the eye grows too long or short, respectively, for its refractive power. There are currently approximately 1.45 billion myopes worldwide and prevalence is rising dramatically. Although high myopia significantly increases the risk of developing a range of sight-threatening disorders, the molecular mechanisms underlying ocular growth regulation and its relationship to these secondary complications remain poorly understood. Thus, this study meta-analyzed transcriptome datasets collected in the commonly used chick model of optically-induced refractive error. Fifteen datasets (collected across five previous studies) were obtained from GEO, preprocessed in Bioconductor, and divided into 4 conditions representing early (≤1 day) and late (>1 day) myopia and hyperopia induction. Differentially expressed genes in each condition were then identified using Rank Product meta-analysis. The results provide novel evidence for transcriptional activation of the complement system during both myopia and hyperopia induction, and confirm existing literature implicating cell signaling, mitochondrial, and structural processes in refractive error. Further comparisons demonstrated that the meta-analysis results also significantly improve concordance with broader omics data types (i.e., human genetic association and animal proteomics studies) relative to previous transcriptome studies, and show extensive similarities with the genes linked to age-related macular degeneration, choroidal neovascularization, and cataract.
Collapse
Affiliation(s)
- Nina Riddell
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Sheila G Crewther
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, 3086, Australia.
| |
Collapse
|
18
|
Li W, Dong L, Ma M, Hu B, Lu Z, Liu X, Liu J, Li X. Preliminary in vitro and in vivo assessment of a new targeted inhibitor for choroidal neovascularization in age-related macular degeneration. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:3415-3423. [PMID: 27799741 PMCID: PMC5076800 DOI: 10.2147/dddt.s115801] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Choroidal neovascularization (CNV) in age-related macular degeneration usually causes blindness. We established a novel targeted inhibitor for CNV in age-related macular degeneration. The inhibitor CR2-sFlt 1 comprises a CR2-targeting fragment and an anti-vascular endothelial growth factor (VEGF) domain (sFlt 1). The targeting of CR2-sFlt 1 was studied using the transwell assay in vitro and frozen sections in vivo using green fluorescent labeling. Transwell assay results showed that CR2-sFlt 1 migrated to the interface of complement activation products and was present in the retinal tissue of the CR2-sFlt 1-treated CNV mice. Treatment effects were assessed by investigating the VEGF concentration in retinal pigmented epithelial cell medium and the thickness of the CNV complex in the mice treated with CR2-sFlt 1. CR2-sFlt 1 significantly reduced the VEGF secretion from retinal pigmented epithelial cells in vitro and retarded CNV progress in a mouse model. Expression analysis of VEGF and VEGFRs after CR2-sFlt 1 intervention indicated the existence of feedback mechanisms in exogenous CR2-sFlt 1, endogenous VEGF, and VEGFR interaction. In summary, we demonstrated for the first time that using CR2-sFlt 1 could inhibit CNV with clear targeting and high selectivity.
Collapse
Affiliation(s)
- Wenbo Li
- Tianjin Medical University Eye Hospital, Tianjin, People's Republic of China
| | - Lijie Dong
- Tianjin Medical University Eye Hospital, Tianjin, People's Republic of China
| | - Minwang Ma
- Affiliated Hospital of Medical College of Chinese People's Armed Police Forces (CapF), Tianjin, People's Republic of China
| | - Bojie Hu
- Tianjin Medical University Eye Hospital, Tianjin, People's Republic of China
| | - Zhenyu Lu
- Tianjin Precision Cell Biotechnology Co. Ltd., Tianjin, People's Republic of China
| | - Xun Liu
- Tianjin Medical University Eye Hospital, Tianjin, People's Republic of China
| | - Juping Liu
- Tianjin Medical University Eye Hospital, Tianjin, People's Republic of China
| | - Xiaorong Li
- Tianjin Medical University Eye Hospital, Tianjin, People's Republic of China
| |
Collapse
|
19
|
C3a Increases VEGF and Decreases PEDF mRNA Levels in Human Retinal Pigment Epithelial Cells. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6958752. [PMID: 27747237 PMCID: PMC5055919 DOI: 10.1155/2016/6958752] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/03/2016] [Accepted: 09/01/2016] [Indexed: 12/21/2022]
Abstract
Complement activation, specifically complement 3 (C3) activation and C3a generation, contributes to an imbalance between angiogenic stimulation by vascular endothelial growth factor (VEGF) and angiogenic inhibition by pigment epithelial derived factor (PEDF), leading to pathological angiogenesis. This study aimed to investigate the effects of C3a and small interfering RNA (siRNA) targeting C3 on the levels of VEGF and PEDF mRNAs in human retinal pigment epithelial (RPE) cells. ARPE-19 cells were cultured in the presence of exogenous C3a at 0.1 μM and 0.3 μM C3a for 24, 48, and 72 hours. 0.1 pmol/μL duplexes of siRNA targeting C3 were applied for C3a inhibition by transfecting ARPE-19 cells for 48 hours. RT-PCR was performed to examine the level of VEGF and PEDF mRNA. A random siRNA duplex was set for control siRNA. Results demonstrated that exogenous C3a significantly upregulated VEGF and downregulated PEDF mRNA levels in cultured ARPE-19 cells, and siRNA targeting C3 transfection reversed the above changes, significantly reducing VEGF and enhancing PEDF mRNAs level in ARPE-19 cells compared to the control. The present data provided evidence that reducing C3 activation can decreases VEGF and increase PEDF mRNA level in RPE and may serve as a potential therapy in pathological angiogenesis.
Collapse
|
20
|
Holers VM, Tomlinson S, Kulik L, Atkinson C, Rohrer B, Banda N, Thurman JM. New therapeutic and diagnostic opportunities for injured tissue-specific targeting of complement inhibitors and imaging modalities. Semin Immunol 2016; 28:260-7. [PMID: 27282113 DOI: 10.1016/j.smim.2016.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/15/2016] [Accepted: 05/17/2016] [Indexed: 01/27/2023]
Abstract
Despite substantial opportunity and commercial interest in developing drugs that modulate the complement system in a broad range of non-orphan indications, several obstacles remain to be overcome. Among these issues is the biophysical nature of complement proteins, whose circulating levels are typically very high and whose turnover rates are relatively rapid, especially in the setting of chronic inflammatory conditions. This situation necessitates the use of very high levels of therapeutic compounds in order to achieve both multi-pathway and multiple effector mechanism inhibition. In addition, one must avoid infectious complications or the systemic impairment of the other important physiological functions of complement. Herein we focus on the development of a novel therapeutic strategy based on injured tissue-specific targeting of complement inhibitors using the antigen-combining domains of a small subset of natural IgM antibodies, which as endogenous antibodies specifically recognize sites of local damage across a broad range of tissues and locally activate complement C3, resulting in C3 fragment covalent fixation. Because the use of such recombinant tissue-targeting inhibitors precludes the utility of measuring systemic levels of complement biomarkers or function, since a goal of this targeting strategy is to leave those processes intact and unimpeded, we also briefly describe a new method designed to quantitatively measure using imaging modalities the inhibition of generation of fixed C3 fragments at sites of inflammation/injury. In addition to the ability to determine whether complement activation is locally constrained with the use of inhibitors, there is also a broader application of this imaging approach to inflammatory and autoimmune diseases characterized by local complement activation.
Collapse
Affiliation(s)
- V Michael Holers
- Departments of Medicine and Immunology, University of Colorado School of Medicine, Aurora, CO, United States.
| | - Stephen Tomlinson
- Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, United States; Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Liudmila Kulik
- Departments of Medicine and Immunology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Carl Atkinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States; Department of Surgery, Transplant Immunobiology Laboratory, Medical University of South Carolina, Charleston, SC, United States
| | - Bärbel Rohrer
- Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, United States; Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, United States
| | - Nirmal Banda
- Departments of Medicine and Immunology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Joshua M Thurman
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
21
|
Alkylglycerols reduce serum complement and plasma vascular endothelial growth factor in obese individuals. Inflammopharmacology 2016; 24:127-31. [DOI: 10.1007/s10787-016-0265-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 04/23/2016] [Indexed: 10/21/2022]
|
22
|
Li T, Aredo B, Zhang K, Zhong X, Pulido JS, Wang S, He YG, Huang X, Brekken RA, Ufret-Vincenty RL. Phosphatidylserine (PS) Is Exposed in Choroidal Neovascular Endothelium: PS-Targeting Antibodies Inhibit Choroidal Angiogenesis In Vivo and Ex Vivo. Invest Ophthalmol Vis Sci 2016; 56:7137-45. [PMID: 26529048 DOI: 10.1167/iovs.15-17302] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
PURPOSE Choroidal neovascularization (CNV) accounts for 90% of cases of severe vision loss in patients with advanced age-related macular degeneration. Identifying new therapeutic targets for CNV may lead to novel combination therapies to improve outcomes and reduce treatment burden. Our goal was to test whether phosphatidylserine (PS) becomes exposed in the outer membrane of choroidal neovascular endothelium, and whether this could provide a new therapeutic target for CNV. METHODS Choroidal neovascularization was induced in C57BL/6J mice using laser photocoagulation. Choroidal neovascularization lesions costained for exposed PS and for intercellular adhesion molecule 2 (or isolectin B4) were imaged in flat mounts and in cross sections. The laser CNV model and a choroidal sprouting assay were used to test the effect of PS-targeting antibodies on choroidal angiogenesis. Choroidal neovascularization lesion size was determined by intercellular adhesion molecule 2 (ICAM-2) staining of flat mounts. RESULTS We found that PS was exposed in CNV lesions and colocalized with vascular endothelial staining. Treatment with PS-targeting antibodies led to a 40% to 80% reduction in CNV lesion area when compared to treatment with a control antibody. The effect was the same as that seen using an equal dose of an anti-VEGF antibody. Results were confirmed using the choroid sprouting assay, an ex vivo model of choroidal angiogenesis. CONCLUSIONS We demonstrated that PS is exposed in choroidal neovascular endothelium. Furthermore, targeting this exposed PS with antibodies may be of therapeutic value in CNV.
Collapse
Affiliation(s)
- Tao Li
- Department of Ophthalmology University of Texas Southwestern Medical Center, Dallas, Texas, United States 2Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of Chi
| | - Bogale Aredo
- Department of Ophthalmology University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Kaiyan Zhang
- Department of Ophthalmology University of Texas Southwestern Medical Center, Dallas, Texas, United States 3Department of Ophthalmology, Hainan Provincial People's Hospital, Haikou, Hainan, People's Republic of China
| | - Xin Zhong
- Department of Ophthalmology University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Jose S Pulido
- Departments of Ophthalmology and Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Shusheng Wang
- Departments of Cell and Molecular Biology and Ophthalmology, Tulane University, New Orleans, Louisiana, United States
| | - Yu-Guang He
- Department of Ophthalmology University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Xianming Huang
- Department of Pharmacology and the Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Rolf A Brekken
- Department of Pharmacology and the Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States 7Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, United
| | - Rafael L Ufret-Vincenty
- Department of Ophthalmology University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
23
|
Ruseva MM, Peng T, Lasaro MA, Bouchard K, Liu-Chen S, Sun F, Yu ZX, Marozsan A, Wang Y, Pickering MC. Efficacy of Targeted Complement Inhibition in Experimental C3 Glomerulopathy. J Am Soc Nephrol 2015; 27:405-16. [PMID: 26047789 DOI: 10.1681/asn.2014121195] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/01/2015] [Indexed: 12/19/2022] Open
Abstract
C3 glomerulopathy refers to renal disorders characterized by abnormal accumulation of C3 within the kidney, commonly along the glomerular basement membrane (GBM). C3 glomerulopathy is associated with complement alternative pathway dysregulation, which includes functional defects in complement regulator factor H (FH). There is no effective treatment for C3 glomerulopathy. We investigated the efficacy of a recombinant mouse protein composed of domains from complement receptor 2 (CR2) and FH (CR2-FH) in two models of C3 glomerulopathy with either preexisting or triggered C3 deposition along the GBM. FH-deficient mice spontaneously develop renal pathology associated with abnormal C3 accumulation along the GBM and secondary plasma C3 deficiency. CR2-FH partially restored plasma C3 levels in FH-deficient mice 2 hours after intravenous injection. CR2-FH specifically targeted glomerular C3 deposits, reduced the linear C3 reactivity assessed with anti-C3 and anti-C3b/iC3b/C3c antibodies, and prevented further spontaneous accumulation of C3 fragments along the GBM. Reduction in glomerular C3d and C9/C5b-9 reactivity was observed after daily administration of CR2-FH for 1 week. In a second mouse model with combined deficiency of FH and complement factor I, CR2-FH prevented de novo C3 deposition along the GBM. These data show that CR2-FH protects the GBM from both spontaneous and triggered C3 deposition in vivo and indicate that this approach should be tested in C3 glomerulopathy.
Collapse
Affiliation(s)
- Marieta M Ruseva
- Centre for Complement and Inflammation Research, Imperial College, London, United Kingdom; and
| | - Tao Peng
- Alexion Pharmaceuticals, Cheshire, Connecticut
| | | | | | | | - Fang Sun
- Alexion Pharmaceuticals, Cheshire, Connecticut
| | - Zhao-Xue Yu
- Alexion Pharmaceuticals, Cheshire, Connecticut
| | | | - Yi Wang
- Alexion Pharmaceuticals, Cheshire, Connecticut
| | - Matthew C Pickering
- Centre for Complement and Inflammation Research, Imperial College, London, United Kingdom; and
| |
Collapse
|
24
|
Brockmann C, Brockmann T, Dege S, Busch C, Kociok N, Vater A, Klussmann S, Strauß O, Joussen AM. Intravitreal inhibition of complement C5a reduces choroidal neovascularization in mice. Graefes Arch Clin Exp Ophthalmol 2015; 253:1695-704. [PMID: 25981118 DOI: 10.1007/s00417-015-3041-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 02/20/2015] [Accepted: 04/29/2015] [Indexed: 12/12/2022] Open
Abstract
PURPOSE To investigate the influence of complement component C5a inhibition on laser-induced choroidal neovascularization (CNV) in mice using a C5a specific L-aptamer. METHODS In C57BL/6 J mice CNV was induced by argon-laser, C5a-inhibitor (NOX-D20) was intravitreally injected in three concentrations: 0.3, 3.0, and 30 mg/ml. The unPEGylated derivate (NOX-D20001) was applied at 3.0 mg/ml; the vehicle (5 % glucose) was injected in controls. Vascular leakage was evaluated using fluorescence angiography, CNV area was examined immunohistochemically. Activated immune cells surrounding the CNV lesion and potential cytotoxicity were analyzed. RESULTS Compared to controls, CNV areas were significantly reduced after NOX-D20 injection at a concentration of 0.3 and 3.0 mg/ml (p = 0.042; p = 0.016). NOX-D20001 significantly decreased CNV leakage but not the area (p = 0.007; p = 0.276). At a concentration of 30 mg/ml, NOX-D20 did not reveal significant effects on vascular leakage or CNV area (p = 0.624; p = 0.121). The amount of CD11b positive cells was significantly reduced after treatment with 0.3 and 3.0 mg/ml NOX-D20 (p = 0.027; p = 0.002). No adverse glial cell proliferation or increased apoptosis were observed at effective dosages. CONCLUSIONS Our findings demonstrate that the targeted inhibition of complement component C5a reduces vascular leakage and neovascular area in laser-induced CNV in mice. NOX-D20 was proven to be an effective and safe agent that might be considered as a therapeutic candidate for CNV treatment. The deficiency of activated immune cells highlights promising new aspects in the pathology of choroidal neovascularization, and warrants further investigations.
Collapse
Affiliation(s)
- Claudia Brockmann
- Department of Ophthalmology, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Tobias Brockmann
- Department of Ophthalmology, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Sabrina Dege
- Department of Ophthalmology, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Catharina Busch
- Department of Ophthalmology, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Norbert Kociok
- Department of Ophthalmology, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Axel Vater
- NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Sven Klussmann
- NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Olaf Strauß
- Department of Ophthalmology, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Antonia M Joussen
- Department of Ophthalmology, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| |
Collapse
|
25
|
Pouw RB, Vredevoogd DW, Kuijpers TW, Wouters D. Of mice and men: The factor H protein family and complement regulation. Mol Immunol 2015; 67:12-20. [PMID: 25824240 DOI: 10.1016/j.molimm.2015.03.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 10/23/2022]
Abstract
For decades immunological research has relied, with variable success, on mouse models to investigate diseases and possible therapeutic interventions. With the approval of the first therapeutic antibody targeting complement, called eculizumab, as therapy in paroxysmal nocturnal hemoglobinuria (PNH) and more recently atypical hemolytic uremic syndrome (aHUS), the viability of targeting the complement system was demonstrated. The potent, endogenous complement regulators have become of increasing interest as templates for designing and developing new therapeutics. Recently, complement inhibitors based on (parts of) the human complement regulator factor H (FH) are being examined for therapeutic intervention in inflammatory conditions. The first step to evaluate the potency of a new drug is often testing it in a mouse model for the target disease. However, translating results to human conditions requires a good understanding of similarities and, more importantly, differences between the human and mouse complement system and particularly regulation. This review will provide a comprehensive overview of the complement regulator FH and its closely related proteins and current views on their role in mice and men.
Collapse
Affiliation(s)
- R B Pouw
- Department of Immunopathology, Sanquin Blood Supply, Division Research and Landsteiner laboratory of the Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands; Department of Pediatric Hematology, Immunology & Infectious Diseases, Emma Children's Hospital, Academic Medical Centre, Amsterdam, the Netherlands.
| | - D W Vredevoogd
- Department of Immunopathology, Sanquin Blood Supply, Division Research and Landsteiner laboratory of the Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - T W Kuijpers
- Department of Pediatric Hematology, Immunology & Infectious Diseases, Emma Children's Hospital, Academic Medical Centre, Amsterdam, the Netherlands; Department of Blood Cell Research, Sanquin Blood Supply, Division Research and Landsteiner laboratory of the Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - D Wouters
- Department of Immunopathology, Sanquin Blood Supply, Division Research and Landsteiner laboratory of the Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
26
|
Whitmore SS, Sohn EH, Chirco KR, Drack AV, Stone EM, Tucker BA, Mullins RF. Complement activation and choriocapillaris loss in early AMD: implications for pathophysiology and therapy. Prog Retin Eye Res 2015; 45:1-29. [PMID: 25486088 PMCID: PMC4339497 DOI: 10.1016/j.preteyeres.2014.11.005] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 11/19/2014] [Accepted: 11/25/2014] [Indexed: 12/24/2022]
Abstract
Age-related macular degeneration (AMD) is a common and devastating disease that can result in severe visual dysfunction. Over the last decade, great progress has been made in identifying genetic variants that contribute to AMD, many of which lie in genes involved in the complement cascade. In this review we discuss the significance of complement activation in AMD, particularly with respect to the formation of the membrane attack complex in the aging choriocapillaris. We review the clinical, histological and biochemical data that indicate that vascular loss in the choroid occurs very early in the pathogenesis of AMD, and discuss the potential impact of vascular dropout on the retinal pigment epithelium, Bruch's membrane and the photoreceptor cells. Finally, we present a hypothesis for the pathogenesis of early AMD and consider the implications of this model on the development of new therapies.
Collapse
Affiliation(s)
- S Scott Whitmore
- The Stephen A. Wynn Institute for Vision Research, The University of Iowa, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa, United States
| | - Elliott H Sohn
- The Stephen A. Wynn Institute for Vision Research, The University of Iowa, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa, United States
| | - Kathleen R Chirco
- The Stephen A. Wynn Institute for Vision Research, The University of Iowa, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa, United States
| | - Arlene V Drack
- The Stephen A. Wynn Institute for Vision Research, The University of Iowa, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa, United States
| | - Edwin M Stone
- The Stephen A. Wynn Institute for Vision Research, The University of Iowa, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa, United States
| | - Budd A Tucker
- The Stephen A. Wynn Institute for Vision Research, The University of Iowa, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa, United States
| | - Robert F Mullins
- The Stephen A. Wynn Institute for Vision Research, The University of Iowa, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa, United States
| |
Collapse
|
27
|
Complement-Targeted Therapies in Lupus. CURRENT TREATMENT OPTIONS IN RHEUMATOLOGY 2015. [DOI: 10.1007/s40674-014-0009-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
Warwick A, Khandhadia S, Ennis S, Lotery A. Age-Related Macular Degeneration: A Disease of Systemic or Local Complement Dysregulation? J Clin Med 2014; 3:1234-57. [PMID: 26237601 PMCID: PMC4470180 DOI: 10.3390/jcm3041234] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/20/2014] [Accepted: 10/22/2014] [Indexed: 01/25/2023] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of irreversible blindness in developed countries. The role of complement in the development of AMD is now well-established. While some studies show evidence of complement dysregulation within the eye, others have demonstrated elevated systemic complement activation in association with AMD. It is unclear which one is the primary driver of disease. This has important implications for designing novel complement-based AMD therapies. We present a summary of the current literature and suggest that intraocular rather than systemic modulation of complement may prove more effective.
Collapse
Affiliation(s)
- Alasdair Warwick
- Clinical Neurosciences Research Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK.
| | - Samir Khandhadia
- Eye Unit, University Southampton NHS Trust, Southampton SO16 6YD, UK.
| | - Sarah Ennis
- Genomic Informatics, Human Genetics & Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK.
| | - Andrew Lotery
- Clinical Neurosciences Research Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK.
- Eye Unit, University Southampton NHS Trust, Southampton SO16 6YD, UK.
| |
Collapse
|
29
|
Schnabolk G, Tomlinson S, Rohrer B. The complement regulatory protein CD59: insights into attenuation of choroidal neovascularization. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 801:435-40. [PMID: 24664728 DOI: 10.1007/978-1-4614-3209-8_55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Complement activation is associated with age-related macular degeneration (AMD), with the retinal pigment epithelium (RPE) being one of the main target tissues. In AMD, disease severity is correlated with the formation of the membrane attack complex (MAC), the terminal step in the complement cascade, as well as diminished RPE expression of CD59, a membrane-bound regulatory protein of MAC formation. This has prompted the search for therapeutic strategies based on MAC inhibition, and soluble forms of CD59 (sCD59) have been investigated in mouse laser-induced choroidal neovascularization, a model for "wet" AMD. Unlike membrane-bound CD59, sCD59 provides relatively poor cell protection from complement, and different strategies to increase sCD59 activity at the cell membrane level have been investigated. These include increasing the circulatory half-life of sCD59 by the addition of an Fc moiety; increasing the half-life of sCD59 in target tissues by modifying CD59 with a (non-specific) membrane-targeting domain; and by locally overexpressing sCD59 via adenoviral vectors. Finally, a different strategy currently under investigation employs complement receptor (CR)2-mediated targeting of CD59 exclusively to membranes under complement attack. CR2 recognizes long-lasting membrane-bound breakdown activation fragments of complement C3. CR2-CD59 may have greater therapeutic potential than other complement inhibitory approaches, since it can be administered either systemically or locally, it will bind specifically to membranes containing activated complement activation fragments, and dosing can be regulated. Hence, this strategy might offer opportunities for site-specific inhibition of complement in diseases with restricted sites of inflammation such as AMD.
Collapse
Affiliation(s)
- Gloriane Schnabolk
- Ralph H. Johnson VA Medical Center, Division of Research, 29401, Charleston, SC, USA,
| | | | | |
Collapse
|
30
|
Ardeljan D, Chan CC. Aging is not a disease: distinguishing age-related macular degeneration from aging. Prog Retin Eye Res 2013; 37:68-89. [PMID: 23933169 PMCID: PMC3830684 DOI: 10.1016/j.preteyeres.2013.07.003] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 07/29/2013] [Accepted: 07/30/2013] [Indexed: 12/18/2022]
Abstract
Age-related macular degeneration (AMD) is a disease of the outer retina, characterized most significantly by atrophy of photoreceptors and retinal pigment epithelium accompanied with or without choroidal neovascularization. Development of AMD has been recognized as contingent on environmental and genetic risk factors, the strongest being advanced age. In this review, we highlight pathogenic changes that destabilize ocular homeostasis and promote AMD development. With normal aging, photoreceptors are steadily lost, Bruch's membrane thickens, the choroid thins, and hard drusen may form in the periphery. In AMD, many of these changes are exacerbated in addition to the development of disease-specific factors such as soft macular drusen. Para-inflammation, which can be thought of as an intermediate between basal and robust levels of inflammation, develops within the retina in an attempt to maintain ocular homeostasis, reflected by increased expression of the anti-inflammatory cytokine IL-10 coupled with shifts in macrophage plasticity from the pro-inflammatory M1 to the anti-inflammatory M2 polarization. In AMD, imbalances in the M1 and M2 populations together with activation of retinal microglia are observed and potentially contribute to tissue degeneration. Nonetheless, the retina persists in a state of chronic inflammation and increased expression of certain cytokines and inflammasomes is observed. Since not everyone develops AMD, the vital question to ask is how the body establishes a balance between normal age-related changes and the pathological phenotypes in AMD.
Collapse
Affiliation(s)
- Daniel Ardeljan
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
31
|
Schmidt CQ, Bai H, Lin Z, Risitano AM, Barlow PN, Ricklin D, Lambris JD. Rational engineering of a minimized immune inhibitor with unique triple-targeting properties. THE JOURNAL OF IMMUNOLOGY 2013; 190:5712-21. [PMID: 23616575 DOI: 10.4049/jimmunol.1203548] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Inadequate control of the complement system is the underlying or aggravating factor in many human diseases. Whereas treatment options that specifically target the alternative pathway (AP) of complement activation are considered highly desirable, no such option is available in the clinic. In this study, we present a successful example of protein engineering, guided by structural insight on the complement regulator factor H (FH), yielding a novel complement-targeted therapeutic (mini-FH) with clinical potential. Despite a 70% reduction in size, mini-FH retained and in some respects exceeded the regulatory activity and cell surface-recognition properties of its parent protein FH, including the recently described recognition of sites of oxidative stress. Importantly, the chosen design extended the functional spectrum of the inhibitor, as mini-FH showed increased binding to the surface-bound opsonins iC3b and C3dg when compared with FH. Thus, mini-FH is equipped with a unique and clinically valuable triple-targeting profile toward diseased host cells, through its binding to sites of ongoing complement activation, markers of oxidative damage, and host surface-specific polyanions. When assessed in a clinically relevant AP-mediated disease model of paroxysmal nocturnal hemoglobinuria, mini-FH largely outperformed FH and indicated advantages over clinically evaluated AP inhibitors. Thus, the rational engineering of a streamlined FH construct not only provided insight into the function of a key complement regulator, but also yielded a novel inhibitor that combines a triple-targeting approach with high AP-specific inhibitory activity (IC50 ~ 40 nM), which may pave the way toward new options for the treatment of complement-mediated diseases.
Collapse
Affiliation(s)
- Christoph Q Schmidt
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Thurman JM, Kulik L, Orth H, Wong M, Renner B, Sargsyan SA, Mitchell LM, Hourcade DE, Hannan JP, Kovacs JM, Coughlin B, Woodell AS, Pickering MC, Rohrer B, Holers VM. Detection of complement activation using monoclonal antibodies against C3d. J Clin Invest 2013; 123:2218-30. [PMID: 23619360 DOI: 10.1172/jci65861] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 02/21/2013] [Indexed: 12/21/2022] Open
Abstract
During complement activation the C3 protein is cleaved, and C3 activation fragments are covalently fixed to tissues. Tissue-bound C3 fragments are a durable biomarker of tissue inflammation, and these fragments have been exploited as addressable binding ligands for targeted therapeutics and diagnostic agents. We have generated cross-reactive murine monoclonal antibodies against human and mouse C3d, the final C3 degradation fragment generated during complement activation. We developed 3 monoclonal antibodies (3d8b, 3d9a, and 3d29) that preferentially bind to the iC3b, C3dg, and C3d fragments in solution, but do not bind to intact C3 or C3b. The same 3 clones also bind to tissue-bound C3 activation fragments when injected systemically. Using mouse models of renal and ocular disease, we confirmed that, following systemic injection, the antibodies accumulated at sites of C3 fragment deposition within the glomerulus, the renal tubulointerstitium, and the posterior pole of the eye. To detect antibodies bound within the eye, we used optical imaging and observed accumulation of the antibodies within retinal lesions in a model of choroidal neovascularization (CNV). Our results demonstrate that imaging methods that use these antibodies may provide a sensitive means of detecting and monitoring complement activation-associated tissue inflammation.
Collapse
Affiliation(s)
- Joshua M Thurman
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado 80045, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ricklin D, Lambris JD. Complement in immune and inflammatory disorders: therapeutic interventions. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:3839-47. [PMID: 23564578 PMCID: PMC3623010 DOI: 10.4049/jimmunol.1203200] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
With the awareness that immune-inflammatory cross-talk is at the heart of many disorders, the desire for novel immunomodulatory strategies in the therapy of such diseases has grown dramatically. As a prime initiator and important modulator of immunological and inflammatory processes, the complement system has emerged as an attractive target for early and upstream intervention in inflammatory diseases and has moved into the spotlight of drug discovery. Although prevalent conditions such as age-related macular degeneration have attracted the most attention, the diverse array of complement-mediated pathologies, with distinct underlying mechanisms, demands a multifaceted arsenal of therapeutic strategies. Fortunately, efforts in recent years have not only introduced the first complement inhibitors to the clinic but also filled the pipelines with promising candidates. With a focus on immunomodulatory strategies, in this review we discuss complement-directed therapeutic concepts and highlight promising candidate molecules.
Collapse
Affiliation(s)
- Daniel Ricklin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, USA
| | - John D. Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
34
|
Progress and Trends in Complement Therapeutics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 735:1-22. [PMID: 22990692 DOI: 10.1007/978-1-4614-4118-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The past few years have proven to be a highly successful and exciting period for the field of complement-directed drug discovery and development. Driven by promising experiences with the first marketed complement drugs, increased knowledge about the involvement of complement in health and disease, and improvements in structural and analytical techniques as well as animal models of disease, the field has seen a surge in creative approaches to therapeutically intervene at various stages of the cascade. An impressive panel of compounds that show promise in clinical trials is meanwhile being lined up in the pipelines of both small biotechnology and big pharmaceutical companies. Yet with this new focus on complement-targeted therapeutics, important questions concerning target selection, point and length of intervention, safety, and drug delivery emerge. In view of the diversity of the clinical disorders involving abnormal complement activity or regulation, which include both acute and chronic diseases and affect a wide range of organs, diverse yet specifically tailored therapeutic approaches may be needed to shift complement back into balance. This chapter highlights the key changes in the field that shape our current perception of complement-targeted drugs and provides a brief overview of recent strategies and emerging trends. Selected examples of complement-related diseases and inhibitor classes are highlighted to illustrate the diversity and creativity in field.
Collapse
|
35
|
CR2-mediated targeting of complement inhibitors: bench-to-bedside using a novel strategy for site-specific complement modulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 735:137-54. [PMID: 23402024 DOI: 10.1007/978-1-4614-4118-2_9] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent approval of the first human complement pathway-directed therapeutics, along with high-profile genetic association studies, has catalyzed renewed biopharmaceutical interest in developing drugs that modulate the complement system. Substantial challenges remain, however, that must be overcome before widespread application of complement inhibitors in inflammatory and autoimmune diseases becomes possible. Among these challenges are the following: (1) defining the complement pathways and effector mechanisms that cause tissue injury in humans and determining whether the relative importance of each varies by disease, (2) blocking or modulating, using traditional small molecule or biologic approaches, the function of complement proteins whose circulating levels are very high and whose turnover rates are relatively rapid, especially in the setting of acute and chronic autoimmune diseases, and (3) avoiding infectious complications or impairment of other important physiological functions of complement when using systemically active complement-blocking agents. This chapter will review data that address these challenges to therapeutic development, with a focus on the development of a novel strategy of blocking specific complement pathways by targeting inhibitors using a recombinant portion of the human complement receptor type 2 (CR2/CD21) which specifically targets to sites of local complement C3 activation where C3 fragments are covalently fixed. Recently, the first of these CR2-targeted proteins has entered human phase I studies in the human disease paroxysmal nocturnal hemoglobinuria. The results of murine translational studies using CR2-targeted inhibitors strongly suggest that a guiding principle going forward in complement therapeutic development may well be to focus on developing strategies to modulate the pathway as precisely as possible by physically localizing therapeutic inhibitory effects.
Collapse
|
36
|
Elvington A, Atkinson C, Zhu H, Yu J, Takahashi K, Stahl GL, Kindy MS, Tomlinson S. The alternative complement pathway propagates inflammation and injury in murine ischemic stroke. THE JOURNAL OF IMMUNOLOGY 2012; 189:4640-7. [PMID: 23028050 DOI: 10.4049/jimmunol.1201904] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
There is mounting evidence indicating an important role for complement in the pathogenesis of cerebral ischemia-reperfusion injury, or ischemic stroke. The role of the alternative complement pathway in ischemic stroke has not been investigated, and there is conflicting data on the role of the terminal pathway. In this study, we show that compared with wild-type mice, mice deficient in the alternative pathway protein factor B or mice treated with the alternative pathway inhibitor CR2-fH have improved outcomes after 60-min middle cerebral artery occlusion and 24-h reperfusion. Factor B-deficient or CR2-fH-treated mice were protected in terms of improved neurologic function and reduced cerebral infarct, demyelination, P-selectin expression, neutrophil infiltration, and microthrombi formation. Mice deficient in both the classical and lectin pathways (C1q/MBL deficient) were also protected from cerebral ischemia-reperfusion injury, and there was no detectable C3d deposition in the ipsilateral brain of these mice. These data demonstrate that the alternative pathway is not alone sufficient to initiate complement activation and indicate that the alternative pathway propagates cerebral injury via amplification of the cascade. Deficiency of C6, a component of the terminal cytolytic membrane attack complex, had no effect on outcome after ischemic stroke, indicating that the membrane attack complex is not involved in mediating injury in this model. We additionally show that the protective effect of factor B deficiency and CR2-fH treatment is sustained in the subacute stage of infarct development, adding to the clinical relevance of these findings.
Collapse
Affiliation(s)
- Andrew Elvington
- Department of Microbiology and Immunology, Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Girmens JF, Sahel JA, Marazova K. Dry age-related macular degeneration: A currently unmet clinical need. Intractable Rare Dis Res 2012; 1:103-14. [PMID: 25343081 PMCID: PMC4204600 DOI: 10.5582/irdr.2012.v1.3.103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 07/25/2012] [Indexed: 01/08/2023] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of severe visual impairment and disability in older people worldwide. Although considerable advances in the management of the neovascular form of AMD have been made in the last decade, no therapy is yet available for the advanced dry form of AMD (geographic atrophy). This review focuses on current trends in the development of new therapies targeting specific pathophysiological pathways of dry AMD. Increased understanding of the complex mechanisms that underlie dry AMD will help to address this largely unmet clinical need.
Collapse
Affiliation(s)
- Jean-François Girmens
- French National Institute of Health and Medical Research, Paris, France
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Paris, France
- Address correspondence to: Dr. Jean-François Girmens, Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, 28 rue de Charenton, 75571 Paris Cedex 12, France. E-mail:
| | - José-Alain Sahel
- French National Institute of Health and Medical Research, Paris, France
- French Academy of Sciences, Paris, France
| | - Katia Marazova
- French National Institute of Health and Medical Research, Paris, France
- National Center for Scientific Research, Paris, France
- Dr. Katia Marazova, Institut de la Vision, 17 rue Moreau, 75012 Paris, France. E-mail:
| |
Collapse
|