1
|
Liu D, Yu H, Luo S, Liang X, Zhang Y, Li Y, Sun J. Aflatoxin contamination and health risk assessment in maize in Gansu Province in 2023. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2025; 42:798-806. [PMID: 40392799 DOI: 10.1080/19440049.2025.2506099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/22/2025] [Accepted: 05/05/2025] [Indexed: 05/22/2025]
Abstract
Aflatoxins (AFs) are one of the most toxic mycotoxins that can easily contaminate agricultural products and have adverse effects on both humans and animals. To understand the AF contamination in maize in Gansu Province and the risk of dietary exposure, LC-MS was used to determine the AFs in maize in Gansu Province in accordance with national standards. The results showed that the concentration range of AFs detected in maize was ND ∼15.9 μg/kg, and the detection rates of AFB1, AFB2, AFG1 and AFG2 were 13.3%, 5%, 6.7% and 4.2%, respectively. The estimated daily intake and margin of exposure (MOE) for infants, children, adolescents, and adults were 0.00575-0.0197 µg/kg bw/d, and 69.56-20.34, respectively. The consumption of maize may have adverse health effects in all age groups studied as all calculated MOEs were less than 10,000.
Collapse
Affiliation(s)
- Deng Liu
- School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Haiying Yu
- School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Shan Luo
- Gansu Provincial Center for Disease Prevention and Control, Lanzhou, China
| | - Xuexue Liang
- School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yani Zhang
- School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yongjun Li
- Gansu Provincial Center for Disease Prevention and Control, Lanzhou, China
| | - Jianyun Sun
- Gansu Provincial Center for Disease Prevention and Control, Lanzhou, China
| |
Collapse
|
2
|
Hamdy H, Aly WA, Elkord E. Investigating the functional role of BUB1B in aflatoxin B1-associated hepatocarcinogenesis. Toxicology 2025; 514:154127. [PMID: 40147685 DOI: 10.1016/j.tox.2025.154127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide, stemming from a complex interplay of genetic, environmental, and lifestyle factors. Aflatoxin B1 (AFB1), a prevalent food contaminant, is a known HCC risk factor, but its molecular mechanisms remain incompletely understood. This study investigated the contribution of BUB1B, a crucial spindle assembly checkpoint regulator, in AFB1-induced hepatocyte malignant transformation, we assessed AFB1's impact on cell proliferation, viability, cell cycle regulation, and BUB1B expression. BUB1B knockdown via siRNA revealed its role in epithelial-mesenchymal transition (EMT), cell motility, and proliferation. AFB1 exposure significantly altered cell proliferation and cell cycle dynamics, correlating with increased BUB1B expression. Furthermore, we identified a significant interaction between BUB1B and the IL12A-JAK2/STAT4 signaling pathway, suggesting a mechanism for immune evasion and tumor progression. These findings highlight BUB1B's critical role in AFB1-induced hepatocarcinogenesis and establish its potential target for HCC. Further research is needed to fully elucidate the underlying molecular mechanisms and explore the therapeutic implications of BUB1B inhibition in HCC treatment.
Collapse
Affiliation(s)
- Hayam Hamdy
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Medicine, Yunnan University, Kunming, China; Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, New Valley University, New Valley, Egypt
| | - Wafaa A Aly
- Department of Environmental Health, Institute of Environmental Studies, Arish University, Egypt
| | - Eyad Elkord
- Department of Biosciences and Bioinformatics & Suzhou Municipal Key Lab of Biomedical Sciences and Translational Immunology, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China; College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates; Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester, UK.
| |
Collapse
|
3
|
Ebokaiwe AP, Okoro N, Alilonu DO, Onu EN, Obimma JN, Eze C, Olasehinde O. Aflatoxin B 1 Instigated Redox Imbalance is Accompanied by Amplified Indoleamine 2,3-Dioxygenase/tryptophan Catabolism in the Spleen and Erythrocyte of Male Wistar Rats: Protective Influence of Dietary Rutin. Immunol Invest 2025:1-23. [PMID: 40421939 DOI: 10.1080/08820139.2025.2503171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
INTRODUCTION Rutin, a dietary flavonoid, exhibits anti-inflammatory, antioxidant, and immunomodulatory properties. The underlying mechanism of protection of rutin against Aflatoxin B1 (AFB1)-induced immunotoxicity is not completely elucidated. This study investigated the protective effect of rutin against Aflatoxin B1 (AFB1)-induced immunotoxicity in male Wistar rats, supported by molecular docking and dynamics simulations. METHODS Forty male Wistar rats were grouped into five: control (corn oil), AFB1 (0.75 mg/kg bwt), AFB1 (1.5 mg/kg bwt), rutin (50 mg/kg bwt), and AFB1 (1.5 mg/kg bwt) + Rutin (50 mg/kg bwt) orally for 30 days. RESULTS AFB1 exposure increased (p < 0.05) oxidative and inflammatory markers, altered hematological indices, and caused histological damage in the spleen and bone marrow. Elevated indoleamine 2,3-dioxygenase (IDO) activity, reduced CD4+ T cells, and unchanged tryptophan 2,3-dioxygenase (TDO) activity were also observed. Docking revealed strong binding affinities for AFB1 (-9.5 kcal/mol), rutin (-9.7 kcal/mol), and AFB1-rutin (-10.4 kcal/mol) with IDO. Rutin co-treatment restored oxidative, inflammatory, and hematological indices, mitigated histological damage, and normalized CD4+ T cells and IDO activity, as supported by computational studies. DISCUSSION The activities/expression of immunosuppressive indoleamine 2, 3-dioxygenase is mostly regulated by inflammation and oxidative stress. This study provides new insights into the mechanisms underlying the modulation of immunotoxicity of AFB1 by dietary rutin.
Collapse
Affiliation(s)
- Azubuike Peter Ebokaiwe
- Toxicology and Immunotherapy Research Unit, Department of Biochemistry, Alex Ekwueme Federal University, Ndufu Alike, Nigeria
| | - Nworie Okoro
- Department of Microbiology, Alex Ekwueme Federal University, Ndufu Alike, Nigeria
| | - Doris Olachi Alilonu
- Toxicology and Immunotherapy Research Unit, Department of Biochemistry, Alex Ekwueme Federal University, Ndufu Alike, Nigeria
| | - Euslar Nnenna Onu
- Department of Microbiology, Alex Ekwueme Federal University, Ndufu Alike, Nigeria
| | | | - ChinazomMartina Eze
- Department of Food Science and Technology, University of Nigeria, Nsukka, Nigeria
| | | |
Collapse
|
4
|
Dong PY, Yan YMC, Bai Y, Li YY, Dong Y, Chen Y, Liu J, Zhang XF, Feng YN. AFB1 exacerbates testicular and intestinal inflammation by increasing stearoyl ethanolamide and homocysteine levels. Int Immunopharmacol 2025; 159:114943. [PMID: 40424650 DOI: 10.1016/j.intimp.2025.114943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/17/2025] [Accepted: 05/20/2025] [Indexed: 05/29/2025]
Abstract
In environmental toxicology, aflatoxin B1 (AFB1) is recognized for its detrimental effects on reproductive and intestinal health. This study elucidates how AFB1-induced elevations in stearoyl ethanolamide (SEA) and homocysteine (HCY) impact male fertility and intestinal function in mice. AFB1 was found to markedly reduce sperm concentration and exacerbate sperm damage in mice, primarily by increasing serum SEA and HCY levels. These metabolites compromise testicular structure and function, disrupt the blood-testicular barrier, and downregulate critical testicular proteins including DAZL, SYCP1, SYCP2, StAR, and CYP17A1. Transcriptomic analysis revealed that SEA and HCY broadly alter testicular gene expression, activate NOD-like receptor signaling pathways, induce testicular inflammation, and promote apoptosis. Additionally, SEA and HCY impair intestinal barrier function by reducing the expression of tight junction proteins ZO-1 and Occludin. Functional network analysis indicated that SEA and HCY regulate intestinal immune responses by promoting M1 macrophage polarization and the upregulation of pro-inflammatory cytokines, while simultaneously inhibiting anti-inflammatory factors. This study underscores the multifaceted adverse effects of SEA and HCY on male reproductive health and gut integrity, and highlights the need for further research into mechanisms and potential interventions to mitigate these harmful outcomes.
Collapse
Affiliation(s)
- Pei-Yu Dong
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266100, China
| | - Yu-Mei Chen Yan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266100, China
| | - Yue Bai
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266100, China
| | - Yin-Yin Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266100, China
| | - Yang Dong
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266100, China
| | - Yu Chen
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266100, China
| | - Jing Liu
- Analytical & Testing Center of Qingdao Agricultural University, Qingdao 266100, China
| | - Xi-Feng Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266100, China; Qingdao Longming Cattle Industry Co., Ltd, Qingdao, 266000, China.
| | - Yan-Ni Feng
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266100, China; Qingdao Longming Cattle Industry Co., Ltd, Qingdao, 266000, China.
| |
Collapse
|
5
|
Xiu J, Yang H, Shen X, Xing Y, Li W, Han W. Exploring Hidden Dangers: Predicting Mycotoxin-like Toxicity and Mapping Toxicological Networks in Hepatocellular Carcinoma. J Chem Inf Model 2025. [PMID: 40393043 DOI: 10.1021/acs.jcim.5c00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Mycotoxins are potent triggers of hepatocellular carcinoma (HCC) due to their intricate interplay with cellular macromolecules and signaling pathways. This study integrates machine learning and biomolecular analyses to elucidate the mechanisms underlying mycotoxin-induced hepatocarcinogenesis. Using a data set of 1767 mycotoxins and 1706 non-mycotoxin fungal metabolites, we evaluated 51 machine learning models. The KPGT model achieved optimal performance with an ROC-AUC of 0.979 and balanced accuracy of 0.930. Clustering analysis identified six distinct mycotoxin clusters with unique structural features. Network toxicology analysis revealed distinct protein-protein interaction patterns across different mycotoxin clusters, identifying key regulatory proteins including EGFR, SRC, and ESR1. GO enrichment analysis uncovered cluster-specific effects on protein complexes and macromolecular assemblies, particularly in membrane organization and vesicular transport. KEGG pathway analysis demonstrated systematic perturbation of major signaling cascades, with each mycotoxin cluster distinctly modulating protein kinase networks and receptor tyrosine kinase pathways. Molecular docking analyses validated these interactions, with binding affinities ranging from -9.6 to -4.7 kcal/mol. Notably, cluster 5 showed strong binding to SRC (-9.6 kcal/mol), EGFR (-9.5 kcal/mol), and ESR1 (-7.8 kcal/mol), providing structural insights into toxin-macromolecule recognition. These findings enhance our understanding of mycotoxin-protein interactions in HCC development and suggest potential therapeutic strategies targeting these macromolecular interfaces.
Collapse
Affiliation(s)
- Jian Xiu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Hengzheng Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xiaoli Shen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yuenan Xing
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Wannan Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Weiwei Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
6
|
Mahmoud YAG, Elkaliny NE, Darwish OA, Ashraf Y, Ebrahim RA, Das SP, Yahya G. Comprehensive review for aflatoxin detoxification with special attention to cold plasma treatment. Mycotoxin Res 2025; 41:277-300. [PMID: 39891869 PMCID: PMC12037664 DOI: 10.1007/s12550-025-00582-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/26/2024] [Accepted: 01/06/2025] [Indexed: 02/03/2025]
Abstract
Aflatoxins are potent carcinogens and pose significant risks to food safety and public health worldwide. Aflatoxins include Aflatoxin B1 (AFB1), Aflatoxin B2 (AFB2), Aflatoxin G1 (AFG1), Aflatoxin G2 (AFG2), and Aflatoxin M1 (AFM1). AFB1 is particularly notorious for its carcinogenicity, classified as a Group 1 human carcinogen by the International Agency for Research on Cancer (IARC). Chronic exposure to aflatoxins through contaminated food and feed can lead to liver cancer, immunosuppression, growth impairment, and other systemic health issues. Efforts to mitigate aflatoxin contamination have traditionally relied on chemical treatments, physical separation methods, and biological degradation. However, these approaches often pose challenges related to safety, efficacy, and impact on food quality. Recently, cold plasma treatment has emerged as a promising alternative. Cold plasma generates reactive oxygen species, which effectively degrade aflatoxins on food surfaces without compromising nutritional integrity or safety. This review consolidates current research and advancements in aflatoxin detoxification, highlighting the potential of cold plasma technology to revolutionize food safety practices. By exploring the mechanisms of aflatoxin toxicity, evaluating existing detoxification methods, and discussing the principles and applications of cold plasma treatment.
Collapse
Affiliation(s)
- Yehia A-G Mahmoud
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Nehal E Elkaliny
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Omar A Darwish
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71515, Egypt
| | - Yara Ashraf
- Applied and Analytical Microbiology Department, Faculty of Science, Ain Shams University, Ain Shams, 11772, Egypt
| | - Rumaisa Ali Ebrahim
- Cell Biology & Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, Karnataka, India
| | - Shankar Prasad Das
- Cell Biology & Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, Karnataka, India
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, Al Sharqia, 44519, Egypt.
- Molecular Biology Institute of Barcelona (IBMB), CSIC, Barcelona, Spain.
| |
Collapse
|
7
|
Kabalı S, Ünlü Söğüt M, Öner N, Kara A. Protective Effects of Propolis Supplementation on Aflatoxin B1-Induced Oxidative Stress, Antioxidant Status, Intestinal Barrier Damage, and Gut Microbiota in Rats. Mol Nutr Food Res 2025; 69:e70052. [PMID: 40159764 PMCID: PMC12087736 DOI: 10.1002/mnfr.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/11/2025] [Accepted: 03/11/2025] [Indexed: 04/02/2025]
Abstract
Aflatoxin B1 (AFB1) is common in the diets of humans and animals and often leads to adverse health effects. Propolis, with its strong antioxidant activity, can reduce oxidative stress and modulate gut microbiota composition. However, the underlying mechanism by which propolis alleviates AFB1-induced intestinal barrier damage remains unclear. This study was designed to investigate the protective effects of oral propolis supplementation in AFB1-exposed rats. Thirty-two male Sprague-Dawley rats were divided into four groups: control, AFB1, propolis, and AFB1+propolis. After 4 weeks, serum oxidative stress markers were examined, and gut microbiota was analyzed by 16S rRNA sequencing. Intestinal sections were processed by Hematoxylin & Eosin staining, and the expression level of tight junction proteins was assessed by immunostaining. Propolis supplementation in AFB1-exposed rats tended to decrease oxidative stress, and it also restructured the gut microbiota by preventing a decrease in the relative abundances of Lactobacillus, Roseburia, and Phascolarctobacterium. Propolis restored intestinal permeability impaired by AFB1 by ameliorating intestinal morphological damage and increasing the expression levels of tight junction proteins. Propolis supplementation may contribute to the modulation of gut microbiota by alleviating oxidative stress and improving intestinal barrier damage in AFB1-exposed rats.
Collapse
Affiliation(s)
- Sevtap Kabalı
- Department of Nutrition and DieteticsFaculty of Health SciencesOndokuz Mayıs UniversitySamsunTürkiye
| | - Mehtap Ünlü Söğüt
- Department of Nutrition and DieteticsFaculty of Health SciencesOndokuz Mayıs UniversitySamsunTürkiye
| | - Neslihan Öner
- Department of Nutrition and DieteticsFaculty of Health SciencesErciyes UniversityKayseriTürkiye
| | - Ayça Kara
- Genome and Stem Cell Center (GENKOK)Erciyes UniversityKayseriTürkiye
| |
Collapse
|
8
|
Raz M, Bagherzadeh-Kasmani F, Karimi-Torshizi MA, Ghazaghi M, Mokhtarpour A, Mehri M. Boosting antioxidant defense and enhancing product quality by biochar and probiotics under chronic aflatoxicosis in quails. Poult Sci 2025; 104:105183. [PMID: 40273683 PMCID: PMC12051563 DOI: 10.1016/j.psj.2025.105183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 04/15/2025] [Accepted: 04/18/2025] [Indexed: 04/26/2025] Open
Abstract
Aflatoxins, particularly aflatoxin B1 (AFB1), are potent mycotoxins adversely affecting poultry performance, health, and product quality. Mitigation strategies are critical for poultry productivity. This study assessed the efficacy of Prosopis farcta biochar and Lactobacillus fermentum in mitigating AFB1-induced toxicity in quails, with a focus on performance, antioxidant status, and product quality. Two experiments were conducted with quails during growing (7-35 days) and laying (70-98 days) periods under five dietary treatments: Negative Control (basal diet), Positive Control (AFB1-contaminated diet), and AFB1 diets supplemented with Mycofix Plus, biochar, or biochar combined with L. fermentum. Growth performance, antioxidant status, meat and egg quality, and liver enzyme activity were evaluated. AFB1 significantly impaired performance, reduced meat and egg quality, and elevated oxidative stress and liver enzymes (P < 0.01). Supplementation with biochar, particularly in combination with L. fermentum, significantly alleviated these effects, improving body weight, glutathione peroxidase activity, and reducing malondialdehyde and liver enzyme levels (P < 0.01). Biochar and its combination with L. fermentum effectively mitigated aflatoxicosis in quails, enhancing health and productivity metrics. Integrating biochar and L. fermentum in poultry diets is a promising approach to managing mycotoxin challenges, improving economic and product quality outcomes in poultry systems.
Collapse
Affiliation(s)
- Majid Raz
- Department of Animal Science, College of Agriculture, University of Zabol, Zabol 98661-5538, Iran
| | | | | | - Mahmoud Ghazaghi
- Department of Animal Science, College of Agriculture, University of Zabol, Zabol 98661-5538, Iran
| | - Amir Mokhtarpour
- Special Domestic Animals Institute, Research Institute of Zabol, Zabol, Iran
| | - Mehran Mehri
- Department of Animal Science, College of Agriculture, University of Zabol, Zabol 98661-5538, Iran
| |
Collapse
|
9
|
Ranjbar S, Mohammadi P, Pashaei S, Sadeghi M, Mehrabi M, Shabani S, Ebrahimi A, Brühl AB, Khodarahmi R, Brand S. Effect of Aflatoxin B1 on the Nervous System: A Systematic Review and Network Analysis Highlighting Alzheimer's Disease. BIOLOGY 2025; 14:436. [PMID: 40282301 PMCID: PMC12024953 DOI: 10.3390/biology14040436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/13/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
Exposure to aflatoxin (AF) triggers the production of inflammatory molecules and free radicals, leading to chronic inflammation, cancer, and neurodegenerative diseases. This systematic review evaluated the effects of AFB1 on the nervous system, particularly focusing on Alzheimer's disease (AD). A comprehensive search was conducted in Scopus, Cochrane Library, PubMed, and Web of Science databases up to 1 June 2024, without restrictions. From 993 records retrieved, 16 articles were included in the systematic review. AFB1 participates in various biochemical processes and pathological conditions. The study highlights that AFB1 contributes to AD by inducing DNA damage, oxidative stress, and endoplasmic reticulum (ER) stress, impairing DNA repair mechanisms. This results in neuronal damage, cognitive decline, and neurodegeneration. AFB1 also affects key signaling pathways, reduces sodium-potassium pump activity, and disrupts cell cycle regulation involving p53, leading to neurotoxicity, inflammation, and the formation of amyloid-beta (Aβ) plaques and neurofibrillary tangles. Additionally, network analysis revealed 309 genes associated with AD, inflammation, angiopathy, and aflatoxin B1 (AFB1). Among these, ESR1 exhibited the highest number of direct connections to other nodes within the network. The gene TP53 played a pivotal role in mediating communication among genes, while the EP300 gene significantly influenced the overall network structure. Additionally, KEGG enrichment analysis demonstrated that these 309 genes are substantially involved in pathways related to cancer, the FoxO signaling pathway, apoptosis, and AD. In summary, the study highlights that AFB1 causes DNA damage and stress, leading to cognitive decline and neurodegeneration. It disrupts signaling pathways, damages neurons, and affects DNA repair, contributing to neurotoxicity and inflammation. PROSPERO registration number: CRD420250651007.
Collapse
Affiliation(s)
- Samira Ranjbar
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran; (S.R.); (P.M.); (S.P.); (M.S.); (M.M.); (S.S.)
| | - Pantea Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran; (S.R.); (P.M.); (S.P.); (M.S.); (M.M.); (S.S.)
| | - Somayeh Pashaei
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran; (S.R.); (P.M.); (S.P.); (M.S.); (M.M.); (S.S.)
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran
| | - Masoud Sadeghi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran; (S.R.); (P.M.); (S.P.); (M.S.); (M.M.); (S.S.)
| | - Masomeh Mehrabi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran; (S.R.); (P.M.); (S.P.); (M.S.); (M.M.); (S.S.)
| | - Sasan Shabani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran; (S.R.); (P.M.); (S.P.); (M.S.); (M.M.); (S.S.)
| | - Ali Ebrahimi
- Dermatology Department, Hajdaie Dermatology Clinic, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran
| | - Annette B. Brühl
- Center for Affective, Stress and Sleep Disorders, Psychiatric Clinics, University of Basel, 4002 Basel, Switzerland;
| | - Reza Khodarahmi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran; (S.R.); (P.M.); (S.P.); (M.S.); (M.M.); (S.S.)
- Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran
| | - Serge Brand
- Center for Affective, Stress and Sleep Disorders, Psychiatric Clinics, University of Basel, 4002 Basel, Switzerland;
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- Substance Abuse Prevention Research Center, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- Division of Sport Science and Psychosocial Health, Department of Sport, Exercise and Health, University of Basel, 4002 Basel, Switzerland
- School of Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran
- Center for Disaster Psychiatry and Disaster Psychology, Center of Competence for Disaster Medicine, Swiss Armed Forces, 4002 Basel, Switzerland
| |
Collapse
|
10
|
Shao Y, Tao Q, Shao L, Bi J, Wang Q, Wang Z, Sun X. Defective UIO66 metal-organic framework nanoparticles assisted by cascade isothermal amplification technology for the detection of aflatoxin B1. Talanta 2025; 285:127411. [PMID: 39706032 DOI: 10.1016/j.talanta.2024.127411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Aflatoxin B1 (AFB1) exhibits significant toxicity and pose a serious threat to food safety, environmental hygiene, and public health even in trace amounts. Hence, the development of a rapid, accurate, and sensitive detection technology has become a pivotal aspect of ensuring control standards. In this study, we introduce the UIO66 and two defective dichloroacetic acid@UIO66 (DCA@UIO66, DU) metal-organic framework nanoparticles, named DU1 and DU2, characterized by different defect levels. It is noteworthy that DU1 exhibits superior DNA sensing capability compared to UIO66 and DU2. With a fluorescence quenching efficiency of 92.66 % and a recovery efficiency of 1256.75 %, DU1 demonstrates the substantial potential in the detection field. Furthermore, we employ cascade isothermal amplification to assist DU1-mediated fluorescence sensors in detecting AFB1. AFB1 is efficiently identified through an aptamer competition process facilitated by magnetic nanoparticles, which initiates the exponential amplification triggered rolling circle amplification reaction, and converts trace amounts of toxin signal into a large number of long single-stranded DNA molecules. Upon recognition of the amplification product by the fluorescent probe on DU1, a more stable double-stranded DNA is formed and leaves the surface of DU1, leading to a significant change in fluorescence intensity. This method exhibits acceptable sensitivity, with a detection limit of 0.09 pg mL-1 and a wide detection range spanning from 0.2 pg mL-1 to 20 pg mL-1. Additionally, this assay exhibits satisfactory specificity and high accuracy in practical sample applications. Our proposed method offers a solid theoretical framework and technical backing, thereby facilitating the establishment of a new generation of mycotoxin detection standards.
Collapse
Affiliation(s)
- Yanyan Shao
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Qian Tao
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Luyao Shao
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430061, China
| | - Jing Bi
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430061, China
| | - Qian Wang
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430061, China
| | - Zhigang Wang
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430061, China
| | - Xuan Sun
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430061, China.
| |
Collapse
|
11
|
Gordi Z, Teilaghi S. Novel Ni/Fe-MIL-53@ZnO nanocomposite for efficient photodegradation of aflatoxins G1 and G2. Sci Rep 2025; 15:11163. [PMID: 40169676 PMCID: PMC11962079 DOI: 10.1038/s41598-025-94863-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/17/2025] [Indexed: 04/03/2025] Open
Abstract
The photodegradation of aflatoxins G1 and G2 (AFG1 and AFG2) is crucial for mitigating the health risks associated with these potent mycotoxins, as it enhances food safety and protects human health by reducing their persistence and bioavailability in contaminated environments. This study investigates the efficient photodegradation of AFG1 and AFG2 using a novel Bimetallic MIL-53 (Al, Ni)/ZnO nanoparticle composite as a photocatalyst. The catalyst was synthesized in two stages: Chemical synthesis of zinc oxide nanoparticles (ZnO NPs) and hydrothermal synthesis to form the composite. Optimization of a ZnO-based photocatalyst, synthesized by varying proportions of NiCl₂·6H₂O and Al(NO₃)₃·9H₂O, revealed that a 0.547 g:0.864 g ratio maximized photocatalytic degradation of AFG1 and AFG2. Through experimental design, the degradation process was optimized, identifying pH 4.1, 109 mg of photocatalyst, 35 mg L-1 of AF concentration, and 3 mM of H2O2 concentration as optimal conditions. The predicted removal efficiencies for AFG1 and AFG2 were 97.43% and 98.69%, respectively. Kinetic studies utilizing the pseudo-first-order rate equation revealed rate constants of 0.058 ± 0.002 and 0.060 ± 0.003 min-1 for AFG1 and AFG2, respectively. Additionally, the half-life times for AFG1 and AFG2 photodegradation were found to be 11.95 and 11.55 min, respectively. Catalyst reuse investigations demonstrated that the composite could be reused at least 5 times without significant loss of efficacy. These findings highlight the effectiveness of the Bimetallic MIL-53 (Al, Ni)/ZnO NPs composite as a stable and efficient photocatalyst for the removal of AFG1 and AFG2 under mild conditions, showcasing its potential for practical applications in environmental remediation processes.
Collapse
Affiliation(s)
- Zinat Gordi
- Department of Chemistry, Payame Noor University, Tehran, Iran.
| | - Shiva Teilaghi
- Department of Chemistry, Payame Noor University, Tehran, Iran
| |
Collapse
|
12
|
Owumi S, Chimezie J, Salami MO, Ishaya JA, Onyemuwa CV, Nnamdi M, Owoeye O. Lutein and Zeaxanthin abated neurobehavioral, neurochemical and oxido-inflammatory derangement in rats intoxicated with Aflatoxin B 1. Toxicon 2025; 258:108345. [PMID: 40194634 DOI: 10.1016/j.toxicon.2025.108345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 04/02/2025] [Accepted: 04/05/2025] [Indexed: 04/09/2025]
Abstract
Aflatoxin B1 (AFB1), a mycotoxin commonly present in feed, has several toxic effects. AFB1 seems to have a neurotoxic effect that leads to neurobehavioral impairment. On the other hand, Lutein and Zeaxanthin (LUT/ZEA) have antioxidant and anti-inflammatory effects. Here, we aimed to compare the effects of AFB1 and the co-treatment with LUT/ZEA on neurobehavioural and biochemical changes viz-a-viz oxido-inflammatory response in male rats' hippocampal and pre-frontal cortexes. Experimental rats of the Wistar strain (n = 40) were randomly grouped into treatment cohorts: Control (corn oil 2 mL/kg), AFB1 (75 μg/kg), LUT/ZEA only (100 mg/kg), AFB1 + LUT/ZEA (75 μg/kg + 100 mg/kg), and AFB1 + LUT/ZEA (75 μg/kg + 200 mg/kg). All groups were administered their respective treatment orally for 28 days, while behavioural tests were conducted using open field tests (OFT), Y-maze, novel object tests (NORT), and forced swim tests (FST) 1 h after treatment on day 26-28. The animals were euthanized on day 29. In the hippocampal and pre-frontal cortex, antioxidant indicators (SOD, CAT, GSH, GST, GPx, TSH), inflammatory mediators (XO, NO, MPO), and acetylcholinesterase activity were measured. Our finding presents the anti-oxidant effect of lutein/Zeaxanthin in the brains of AFB1-intoxicated rats, indicating better cognitive and spatial memory capacity in Y-maze and NORT, an improvement in locomotive and explorative behaviour in OFT and reduction in anxio-depressive-like behaviour in LUT/ZEA co-treated rats. Acetylcholinesterase activity was enhanced in LUT/ZEA co-treated rats. LUT/ZEA co-treatment dampened oxido-inflammatory mediators by decreasing XO, NO, and MPO levels and increasing antioxidant activities (SOD, CAT, GSH, GST, GPx, TSH) in the prefrontal and hippocampal cortices. We surmise that mechanistically, co-treatment with LUT/ZEA effectively lessened AFB1 neurotoxicity through anti-inflammatory and antioxidant pathways and essentially improved the experimental rats' neurobehavioural outcomes.
Collapse
Affiliation(s)
- Solomon Owumi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Nigeria.
| | - Joseph Chimezie
- Department of Physiology, Faculty of Basic Medical Sciences, University of Ibadan, Nigeria.
| | - Marvellous O Salami
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Nigeria.
| | - Japheth A Ishaya
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Nigeria.
| | - Chidindu Vine Onyemuwa
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Nigeria.
| | - Mark Nnamdi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Nigeria.
| | - Olatunde Owoeye
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ibadan, Nigeria.
| |
Collapse
|
13
|
Li T, Ji H, Sun J, Li Y, Xu Y, Ma W, Sun H. Analysis of fungal diversity in processed jujube products and the production of mycotoxins by typical toxigenic Aspergillus spp. Front Microbiol 2025; 16:1499686. [PMID: 40207152 PMCID: PMC11978838 DOI: 10.3389/fmicb.2025.1499686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/10/2025] [Indexed: 04/11/2025] Open
Abstract
Processed jujube products are susceptible to contamination by fungi such as Aspergillus spp., which produces mycotoxins that could lead to health problems in consumers. In this study, 58 samples of processed jujube products (including 5 types such as dried jujubes) were collected from different markets in Shihezi (Xinjiang, China). The fungal diversity and the fungi isolated from processed jujube products were systematically analyzed through high-throughput sequencing and molecular biological identification (based on the ITS and/or BenA and CaM regions). In total, the 105 strains of fungi were isolated and identified as belonging to the dominant genera were Aspergillus, Cladosporium, Alternaria, and Penicillium. High-throughput sequencing indicated that Alternaria, Didymella, Cladosporium, and Aspergillus were the dominant fungi in processed jujube products. ELISA showed that A. flavus produced about 19.3862-21.7583 μg/L, 6.5309-11.0411 μg/L, 0-15.4407 μg/L, 0-5.6354 μg/L, and 0-6.0545 μg/L of AFT, AFB1, AFB2, AFM1, and AFM2, respectively. In addition, concentrations of OTA produced by A. niger, A. tubingensis, and A. ochraceus were found to range from 5.2019 to 18.5207 μg/L. Therefore, the separation of Aspergillus with good mycotoxin-producing abilities from processed jujube products poses a latent threat to consumer health.
Collapse
Affiliation(s)
- Tianzhi Li
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Hua Ji
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Jingtao Sun
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Yinghao Li
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Yue Xu
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Wenyi Ma
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Han Sun
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
14
|
Chen P, Han W, Li Y, Gao G, Yang H. Distance-Readout Paper-Based Microfluidic Chip with a DNA Hydrogel Valve for AFB1 Detection. Anal Chem 2025; 97:5975-5981. [PMID: 40072267 DOI: 10.1021/acs.analchem.4c05083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Accurate and rapid aflatoxin B1 (AFB1) detection is essential for ensuring the safety of food supplies. In this paper, we introduce a distance-readout paper-based microfluidic chip (DPMC) that offers a sensitive and reliable method for the detection of AFB1. The DPMC comprises a DNA hydrogel sensitive valve and a paper-based capillary channel. Upon exposure to AFB1, the hydrogel valve regulates the flow speed of the tested liquid into the capillary channel. Quantitative detection of AFB1 can be achieved without the need for complex instrumentation for external equipment by visually observing the distance traveled by the tested liquid through the capillary channel over a specified period. Under optimal conditions, the DPMC allows for quantitative detection of AFB1 solution concentrations ranging from 100 to 1000 pM by the naked eye, with a detection limit of 17.64 pM. This method has been successfully employed for quantitative detection of AFB1 in lotus seed samples, yielding a recovery rate between 85.2% and 118.4%. This approach provides a rapid, portable, sensitive, and highly selective visualization platform for on-site AFB1 detection.
Collapse
Affiliation(s)
- Peng Chen
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Robot Intelligent Laboratory of Traditional Chinese Medicine, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
| | - Wenhao Han
- Beijing Key Laboratory for Sensors, Beijing Information Science & Technology University, Beijing 100192, P. R. China
| | - Yansheng Li
- Beijing Key Laboratory for Sensors, Beijing Information Science & Technology University, Beijing 100192, P. R. China
- Key Laboratory of Modern Measurement and Control Technology, Ministry of Education, Beijing Information Science and Technology University, Beijing 100192, P. R. China
| | - Guowei Gao
- Beijing Key Laboratory for Sensors, Beijing Information Science & Technology University, Beijing 100192, P. R. China
- Key Laboratory of Modern Measurement and Control Technology, Ministry of Education, Beijing Information Science and Technology University, Beijing 100192, P. R. China
| | - Hongjun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Robot Intelligent Laboratory of Traditional Chinese Medicine, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
| |
Collapse
|
15
|
Wang D, Tan M, Touch S, Kouy S, Sou S, Liu K, Zhu Y, Zhu H, Nov P. Burden of disease and risk factors for primary liver cancer by etiology in the United States, 1990-2021: Results from the Global Burden of Disease study, 2021. Ann Hepatol 2025; 30:101906. [PMID: 40122522 DOI: 10.1016/j.aohep.2025.101906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 03/25/2025]
Abstract
INTRODUCTION AND OBJECTIVES The distribution of major causes of liver cancer (LC) in the United States (US) has changed significantly over time. This study analyzes recent temporal trends in the causes of LC in the US from 1990 to 2021 and predicts future trends. MATERIALS AND METHODS We obtained detailed data on LC in the US from the Global Burden of Disease (GBD) 2021 study. Estimated annual percentage change (EAPC) values for LC in the US were then calculated using linear regression models. An exponential smoothing (ES) projection model and Bayesian Age-Period-Cohort (BAPC) projection model were then used to predict the future disease burden of LC. Risk factors for LC were also assessed. RESULTS In 2021, the disease burden of LC in the US was significantly higher than in 1990. Hepatitis C virus (HCV)-associated LC resulted in the greatest burden of disease. The fastest growing burden of disease was attributed to metabolic dysfunction-associated steatotic liver disease (MASLD)-associated LC. Higher burdens of disease were seen in older and male populations. CONCLUSIONS In the US, the disease burden of LC from different etiologies continues to rise. As such, targeted prevention and control strategies should be developed to address these unique disease characteristics.
Collapse
Affiliation(s)
- Duanyu Wang
- Department of Oncology, Xiangya Hospital of Central South University, Changsha, Hunan Province, 410119, China
| | - Minghao Tan
- Department of Gastrointestinal Surgery, Liuzhou Workers Hospital, Liuzhou, Guangxi Province, 545005, China
| | - Socheat Touch
- Department of Radiation Oncology and Oncology, LuangMe Hospital of University of Health Sciences, Phnom Penh 120110, Cambodia
| | - Samnang Kouy
- Department of Radiation Oncology and Oncology, LuangMe Hospital of University of Health Sciences, Phnom Penh 120110, Cambodia
| | - Syphanna Sou
- Department of Radiation Oncology and Oncology, LuangMe Hospital of University of Health Sciences, Phnom Penh 120110, Cambodia
| | - Kun Liu
- Department of Oncology, Xiangya Hospital of Central South University, Changsha, Hunan Province, 410119, China
| | - Youwen Zhu
- Department of Oncology, Xiangya Hospital of Central South University, Changsha, Hunan Province, 410119, China
| | - Hong Zhu
- Department of Oncology, Xiangya Hospital of Central South University, Changsha, Hunan Province, 410119, China.
| | - Pengkhun Nov
- Oncology Center, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong Province, 510282, China.
| |
Collapse
|
16
|
Beier JI, Luo J, Vanderpuye CM, Brizendine P, Muddasani P, Bolatimi O, Heinig SA, Ekuban FA, Siddiqui H, Ekuban A, Gripshover TC, Wahlang B, Watson WH, Cave MC. Environmental Pollutants, Occupational Exposures, and Liver Disease. Semin Liver Dis 2025. [PMID: 40118102 DOI: 10.1055/a-2540-2861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Environmental pollutants significantly impact liver disease development, progression, and outcomes. This review examines the complex relationship between environmental exposures and liver pathology, from malignant conditions like hepatocellular carcinoma to steatotic and cholestatic liver diseases. Key environmental factors include air pollutants, volatile organic compounds, persistent organic pollutants, heavy metals, and per- and polyfluoroalkyl substances. These compounds can act through multiple mechanisms, including endocrine disruption, metabolic perturbation, oxidative stress, and direct hepatotoxicity. The impact of these exposures is often modified by factors such as sex, diet, and genetic predisposition. Recent research has revealed that even low-level exposures to certain chemicals can significantly affect liver health, particularly when combined with other risk factors. The emergence of exposomics as a research tool promises to enhance our understanding of how environmental factors influence liver disease. Importantly, exposure effects can vary by demographic and socioeconomic factors, highlighting environmental justice concerns. Implementation of this knowledge in clinical practice requires new diagnostic approaches, healthcare system adaptations, and increased awareness among medical professionals. In conclusion, this review provides a comprehensive examination of current evidence linking environmental exposures to liver disease and discusses implications for clinical practice and public health policy.
Collapse
Affiliation(s)
- Juliane I Beier
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jianzhu Luo
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
| | | | - Paxton Brizendine
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Pooja Muddasani
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Oluwanifemiesther Bolatimi
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Shannon A Heinig
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Frederick A Ekuban
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
| | - Hamda Siddiqui
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Abigail Ekuban
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
| | - Tyler C Gripshover
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
| | - Banrida Wahlang
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Walter H Watson
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Matthew C Cave
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
17
|
Zhang C, Wang D, Wang C, Yu H, Zhong P, Dang W, Yang Y, Wang Y, Yan X. Developing a Ni-grafted magnetic nanoparticle for direct CotA capture in rapid detoxification of aflatoxin B1. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136829. [PMID: 39708604 DOI: 10.1016/j.jhazmat.2024.136829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/14/2024] [Accepted: 12/08/2024] [Indexed: 12/23/2024]
Abstract
Aflatoxin B1 (AFB1) exposure often causes serious food safety problems and illnesses in humans and animals, even at extremely low content. Therefore, effective degradation of AFB1 is vitally significant. Biodegradation by enzymes is an effective method to eliminate hazardous toxins, but the degradation efficiency and cost of the enzyme limit its wide application. In this work, we found that CotA derived from Bacillus subtilis can rapidly degrade AFB1 into small molecules with low toxicity. Molecular docking analysis was used to evaluate the feasibility of rapid degradation of AFB1 by CotA, and the UPLC-Q-TOF-MS was used to deduce the degradation products and pathways. Two biotransformation pathways were proposed based on the structures of these degradation products. Inspired by commercial Ni-NTA purification media, Ni-grafted magnetic nanoparticles (PNMP) were designed to capture CotA from cell-lysis buffer onto the PNMP surface, enabling direct immobilization of CotA to form PNMP@CotA. The PNMP@CotA exhibits higher activity, good tolerance to temperature and pH than free CotA. Furthermore, in vitro and in vivo experiments revealed a significant reduction in the toxicity of AFB1 degradation products.
Collapse
Affiliation(s)
- Chengyu Zhang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Danni Wang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Cong Wang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Huijuan Yu
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Peng Zhong
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Weifan Dang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yufan Yang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuefei Wang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Xiaohui Yan
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
18
|
Elabed S, Khaled R, Farhat N, Madkour M, Mohammad Zadeh SA, Shousha T, Taneera J, Semerjian L, Abass K. Assessing aflatoxin exposure in the United Arab Emirates (UAE): Biomonitoring AFM1 levels in urine samples and their association with dietary habits. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 114:104644. [PMID: 39870123 DOI: 10.1016/j.etap.2025.104644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 01/29/2025]
Abstract
BACKGROUND Aflatoxins, known for their carcinoginc properties and produced by Aspergillus fungi, pose a substantial threat to public health, particularly in regions with hot and humid climates, where individuals are exposed to these toxins through contaminated food. The primary objective of this study was to assess the extent of aflatoxin exposure in the Emirate of Sharjah employing Aflatoxin M1 (AFM1) as a biomarker in urine samples from adult participants. Furthermore, this study aimed to explore the relationship between dietary habits and AFM1 levels in order to establish a potential link. METHODS In a cross-sectional study design, a total of 144 adults (73 females and 71 males) were recruited for participation. The urine samples obtained from participants were subjected to analysis for AFM1 concentrations utilizing the enzyme-linked immunosorbent assay (ELISA) method. Additionally, structured questionnaires were administered to collect information on the dietary and lifestyle habits of the participants. To explore the relationship between dietary factors and AFM1 levels, various statistical analyses, including linear regression and the Mann-Whitney U test, were performed. RESULTS AFM1 was detected in 69 % of the samples under invstigation, wherein males exhibited a higher mean level (0.912 ng/mg creatinine) in comparison to females (0.676 ng/mg creatinine). The overall mean concentration of AFM1 was determined to be 0.792 ng/mg creatinine. It is worth noting that there was a significant correlation between rice consumption and heightened AFM1 exposure among males, while no such correlation was observed among females. CONCLUSION This study conducted in the UAE provides novel perspectives on aflatoxin exposure, shedding light on the gender-specific correlation between rice consumption and aflatoxin levels among males. These findings hold significant implications for guiding public health interventions and underscore the pivotal role of ongoing surveillance and stringent food safety regulations in mitigating the hazards associated with aflatoxin contamination.
Collapse
Affiliation(s)
- Shahd Elabed
- Environmental Health Sciences, College of Health Sciences, University of Sharjah, UAE
| | - Raghad Khaled
- Environmental Health Sciences, College of Health Sciences, University of Sharjah, UAE
| | - Nada Farhat
- Sharjah Institute for Medical Research, University of Sharjah, UAE
| | - Mohamed Madkour
- Sharjah Institute for Medical Research, University of Sharjah, UAE; Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, UAE
| | | | - Tamer Shousha
- Department of Physiotherapy, College of Health Sciences, University of Sharjah, UAE
| | - Jalal Taneera
- Sharjah Institute for Medical Research, University of Sharjah, UAE; Department of Basic Medical Sciences, College of Medicine, University of Sharjah, UAE
| | - Lucy Semerjian
- Environmental Health Sciences, College of Health Sciences, University of Sharjah, UAE; Research Institute of Sciences and Engineering, University of Sharjah, UAE
| | - Khaled Abass
- Environmental Health Sciences, College of Health Sciences, University of Sharjah, UAE; Sharjah Institute for Medical Research, University of Sharjah, UAE; Research Institute of Sciences and Engineering, University of Sharjah, UAE; Research Unit of Biomedicine and Internal Medicine, University of Oulu, Finland.
| |
Collapse
|
19
|
Cao X, Cheng J, Yang Y, Wang J, Wang Y. Arginine-derived carbon dots with antioxidant activity for treating aflatoxin B1-induced liver injury via Nrf2/Keap1 and NLRP3 pathways in mice. Life Sci 2025; 364:123430. [PMID: 39884343 DOI: 10.1016/j.lfs.2025.123430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/18/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Aflatoxin B1 (AFB1) is a prevalent contaminant in food and feed matrices, known for its hepatotoxic effects. Its metabolic breakdown generates reactive oxygen species (ROS), leading to oxidative stress and subsequent liver damage. Mitigating oxidative stress is, therefore, essential for ameliorating the hepatocellular damage and systemic toxicity caused by AFB1. Here, we synthesized arginine carbon dots (Arg-CDs) with robust antioxidant properties through a simple hydrothermal method using arginine and citric acid. Our investigation demonstrated that Arg-CDs effectively mitigate oxidative stress in nematodes. Furthermore, in murine models of AFB1-induced hepatic injury, Arg-CDs effectively restored liver function, as evidenced by the improvement in histopathological features and biochemical markers. Notably, Arg-CDs administration upregulated the transcriptional activity of nuclear factor erythroid 2-related factor 2 (Nrf2), along with its downstream antioxidant effectors and phase II detoxifying enzymes under AFB1 exposure. Moreover, Arg-CDs alleviated hepatic inflammatory injury by modulating the NLRP3/Caspase-1/GSDMD-mediated pyroptosis pathway. Arg-CDs also demonstrated therapeutic potential in enhancing intestinal barrier function in AFB1-exposed mice. Collectively, these findings highlight the potential of Arg-CDs as a novel and biocompatible therapeutic modality for alleviating AFB1-induced hepatic and intestinal damage.
Collapse
Affiliation(s)
- Xuejing Cao
- School of Life Sciences, Anhui University, Hefei, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China; Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei, China; Anhui Healcurer Heath Biotech Co., Ltd. - Anhui University Joint Postgraduate Training Base of Anhui Province, Hefei, China.
| | - Jiuxiang Cheng
- School of Life Sciences, Anhui University, Hefei, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Yongshou Yang
- School of Life Sciences, Anhui University, Hefei, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China; Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei, China; Anhui Healcurer Heath Biotech Co., Ltd. - Anhui University Joint Postgraduate Training Base of Anhui Province, Hefei, China.
| | - Jingmin Wang
- School of Life Sciences, Anhui University, Hefei, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China; Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei, China; Anhui Healcurer Heath Biotech Co., Ltd. - Anhui University Joint Postgraduate Training Base of Anhui Province, Hefei, China.
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China; Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei, China; Anhui Healcurer Heath Biotech Co., Ltd. - Anhui University Joint Postgraduate Training Base of Anhui Province, Hefei, China.
| |
Collapse
|
20
|
Zhao M, Zhao Y, Liu J, Chen H, Zhao R. Glucocorticoid receptor-targeting antagomirs alleviates AFB1-induced hepatotoxicity in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117935. [PMID: 39999627 DOI: 10.1016/j.ecoenv.2025.117935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/17/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
Aflatoxin B1 (AFB1) exhibits hepatotoxic properties in both humans and animals. Contradictory findings regarding corticosterone suggest that it may either aggravate AFB1 toxicity or reduce its Lethal Dose 50 % (LD50), potentially through the role of the glucocorticoid receptor (GR). Additionally, microRNAs (miRNAs) are known to modulate the toxic effects of AFB1. Nevertheless, whether the modulation of GR-targeting miRNAs can alleviate AFB1-induced hepatotoxicity has not been thoroughly investigated. This study examined the expression of GR and its associated microRNAs in AFB1-induced hepatotoxicity in mice, using GR-targeting antagomirs to mitigate AFB1 toxicity. AFB1 exposure elicited liver inflammation and oxidative stress in mice, while also reducing detoxification capacity. Notably, a decrease in GR protein expression was observed in liver tissue and hepatocytes. Additionally, miR141-3p, miR200a-3p, miR384-5p, miR183-5p, miR181a-5p, and miR181b-5p were upregulated and identified as regulators of GR expression. AFB1 induced cytotoxicity in AML12 cells, as evidenced by decreased GR protein levels and increased expression of miR141-3p, miR200a-3p, and miR495-3p. Inhibition of miR141/200a/495-3p reduced AFB1-induced cytotoxicity in AML12 cells. Furthermore, GR-targeting antagomirs (antagomir141/200a/495-3p) alleviated AFB1-induced hepatotoxicity in mice. This study highlights potential therapeutic targets for AFB1-induced liver diseases and offers new insights into strategies to mitigate the harmful effects of aflatoxin exposure.
Collapse
Affiliation(s)
- Mindie Zhao
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; National Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing 210095, PR China
| | - Yulan Zhao
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; National Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing 210095, PR China
| | - Jie Liu
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; National Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing 210095, PR China
| | - Huimin Chen
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; National Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing 210095, PR China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; National Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing 210095, PR China.
| |
Collapse
|
21
|
Ji Y, Zhang Y, Si W, Guo J, Liu G, Wang C, Khan MZ, Zhao X, Liu W. Aflatoxin B1-Induced Apoptosis in Donkey Kidney via EndoG-Mediated Endoplasmic Reticulum Stress. Vet Sci 2025; 12:130. [PMID: 40005890 PMCID: PMC11860441 DOI: 10.3390/vetsci12020130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/16/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Aflatoxin B1 (AFB1) is a prevalent environmental and forage contaminant that poses significant health risks to both humans and livestock due to its toxic effects on various organs and systems. Among its toxicological effects, nephrotoxicity is a hallmark of AFB1 exposure. However, the precise mechanisms underlying AFB1-induced kidney damage in donkeys remain poorly understood. To investigate this, we established a donkey model exposed to AFB1 by administering a diet supplemented with 1 mg AFB1/kg for 30 days. Kidney apoptosis was assessed using TUNEL staining, while gene expression and protein levels of Endonuclease G (EndoG), as well as genes related to endoplasmic reticulum (ER) stress and apoptosis, were quantified by RT-qPCR and Western blotting. Our findings indicate that AFB1 exposure resulted in significant kidney injury, apoptosis, and oxidative stress. Notably, AFB1 exposure upregulated the expression of EndoG and promoted its translocation to the ER, which subsequently induced ER stress and activated the mitochondrial apoptotic pathway. These results suggest that AFB1-induced kidney damage in donkeys is mediated through the oxidative stress and mitochondrial apoptosis pathways, primarily involving the EndoG-IRE1/ATF6-CHOP signaling axis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xia Zhao
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| | - Wenqiang Liu
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
22
|
Su D, Peng J, Hao J, Wang X, Yu P, Li S, Shi H. Integrated multiomics approach and pathological analyses provide new insights into hepatic injury and metabolic alterations in Saanen goats after dietary exposure to aflatoxin B 1. J Dairy Sci 2025; 108:1431-1450. [PMID: 39477065 DOI: 10.3168/jds.2024-25430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/04/2024] [Indexed: 01/25/2025]
Abstract
Exploring the toxicity and metabolic mechanisms of aflatoxin B1 (AFB1) in ruminants can help to develop strategies to prevent or reduce the transfer of the toxin and its metabolites to milk and meat. This study aimed to explore the effects of 3 concentrations of dietary AFB1 (0, 50, and 500 μg/kg) on hepatic injury and metabolism in Saanen goats via histological examination, western blot analysis, as well as integrated multiomics techniques. Eighteen Saanen goats were assigned to 1 of 3 treatments and the AFB1 challenge lasted for 14 d. Results showed that the liver tissue was enlarged and the relative organ index of the liver was linearly increased with elevated AFB1 levels. The hepatocyte apoptosis rate was significantly increased after AFB1 exposure, and the western blotting results revealed that both the external apoptotic pathway and mitochondrial-mediated intrinsic apoptotic pathway might be involved in AFB1-induced hepatocyte apoptosis. We identified 251, 269, and 154 significant differentially expressed genes (DEG) and 340, 596, and 127 significant differential metabolites in comparisons between the control (CON; 0 μg/kg) and low-dose (LO; 50 μg/kg) groups, the CON and high-dose (HI; 500 μg/kg) groups, and the LO and HI groups, respectively. The DEG annotated were mainly involved in the cell part, cell, single-organism process, cellular process, binding, and other functional categories. The identified metabolites primarily belonged to glycerophospholipids, prenol lipids, carboxylic acids, and derivatives. Integrative analysis of transcriptomics and metabolomics revealed that glycerophospholipids metabolism and choline metabolism in cancer were the most affected pathways related to AFB1 exposure. The identified differential metabolites, DEG, and pathways might have played a crucial role in the hepatic injury induced by AFB1 in goats.
Collapse
Affiliation(s)
- Donghua Su
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610041, China
| | - Jing Peng
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610041, China
| | - Jingjing Hao
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610041, China
| | - Xi Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610041, China
| | - Peiqiang Yu
- College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N5A8, Canada
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, China Agricultural University, Beijing 100193, China
| | - Haitao Shi
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
23
|
Wang T, Cui R, Yu HF, Yang D, Zhang S, Nie Y, Teng CB. The impact of aflatoxin B1 on animal health: Metabolic processes, detection methods, and preventive measures. Toxicon 2025; 255:108262. [PMID: 39855607 DOI: 10.1016/j.toxicon.2025.108262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Aflatoxin (AF) is a toxic metabolite produced by the fungus Aspergillus. The various subtypes of AFs include B1, B2, G1, G2, M1, and M2, with Aflatoxin B1 (AFB1) being the most toxic. These AFs are widespread in the environment, particularly in soil and food crops. The World Health Organization (WHO) has classified AFB1 as a highly potent natural Class 1A carcinogen. Excessive exposure to AFB1 can lead to poisoning in both humans and animals, posing substantial risks to food safety and livestock breeding industries. This review provides an overview of the metabolic processes, detection methods, and the detrimental impacts of AFB1 on animal reproduction, immunity, nerves, intestines, and metabolism. Furthermore, it explores the preventive and control capacities of natural active substances, trace elements, and microorganisms against AFB1. Ultimately, this paper serves as a reference for further research on the pathogenic mechanism of AFB1, the development of preventive drugs, and the selection of effective detoxification measures for AFB1 in animal feed.
Collapse
Affiliation(s)
- Tianyang Wang
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Runzi Cui
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Hai-Fan Yu
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Dian Yang
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Shuting Zhang
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yuzhe Nie
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China.
| | - Chun-Bo Teng
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
24
|
Shi J, Zhu X, Yang JB. Advances and challenges in molecular understanding, early detection, and targeted treatment of liver cancer. World J Hepatol 2025; 17:102273. [PMID: 39871899 PMCID: PMC11736488 DOI: 10.4254/wjh.v17.i1.102273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/12/2024] [Accepted: 11/27/2024] [Indexed: 01/06/2025] Open
Abstract
In this review, we explore the application of next-generation sequencing in liver cancer research, highlighting its potential in modern oncology. Liver cancer, particularly hepatocellular carcinoma, is driven by a complex interplay of genetic, epigenetic, and environmental factors. Key genetic alterations, such as mutations in TERT, TP53, and CTNNB1, alongside epigenetic modifications such as DNA methylation and histone remodeling, disrupt regulatory pathways and promote tumorigenesis. Environmental factors, including viral infections, alcohol consumption, and metabolic disorders such as nonalcoholic fatty liver disease, enhance hepatocarcinogenesis. The tumor microenvironment plays a pivotal role in liver cancer progression and therapy resistance, with immune cell infiltration, fibrosis, and angiogenesis supporting cancer cell survival. Advances in immune checkpoint inhibitors and chimeric antigen receptor T-cell therapies have shown potential, but the unique immunosuppressive milieu in liver cancer presents challenges. Dysregulation in pathways such as Wnt/β-catenin underscores the need for targeted therapeutic strategies. Next-generation sequencing is accelerating the identification of genetic and epigenetic alterations, enabling more precise diagnosis and personalized treatment plans. A deeper understanding of these molecular mechanisms is essential for advancing early detection and developing effective therapies against liver cancer.
Collapse
Affiliation(s)
- Ji Shi
- Department of Research and Development, Ruibiotech Company Limited, Beijing 100101, China
| | - Xu Zhu
- Department of Research and Development, Ruibiotech Company Limited, Beijing 100101, China
| | - Jun-Bo Yang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, Guangdong Province, China.
| |
Collapse
|
25
|
Eaton DL, Williams DE, Coulombe RA. Species Differences in the Biotransformation of Aflatoxin B1: Primary Determinants of Relative Carcinogenic Potency in Different Animal Species. Toxins (Basel) 2025; 17:30. [PMID: 39852983 PMCID: PMC11768628 DOI: 10.3390/toxins17010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/30/2024] [Accepted: 01/05/2025] [Indexed: 01/26/2025] Open
Abstract
It has been known since the early days of the discovery of aflatoxin B1 (AFB1) that there were large species differences in susceptibility to AFB1. It was also evident early on that AFB1 itself was not toxic but required bioactivation to a reactive form. Over the past 60 years there have been thousands of studies to delineate the role of ~10 specific biotransformation pathways of AFB1, both phase I (oxidation, reduction) and phase II (hydrolysis, conjugation, secondary oxidations, and reductions of phase I metabolites). This review provides a historical context and substantive analysis of each of these pathways as contributors to species differences in AFB1 hepatoxicity and carcinogenicity. Since the discovery of AFB1 as the toxic contaminant in groundnut meal that led to Turkey X diseases in 1960, there have been over 15,000 publications related to aflatoxins, of which nearly 8000 have addressed the significance of biotransformation (metabolism, in the older literature) of AFB1. While it is impossible to give justice to all of these studies, this review provides a historical perspective on the major discoveries related to species differences in the biotransformation of AFB1 and sets the stage for discussion of other papers in this Special Issue of the important role that AFB1 metabolites have played as biomarkers of exposure and effect in thousands of human studies on the toxic effects of aflatoxins. Dr. John Groopman has played a leading role in every step of the way-from initial laboratory studies on specific AFB1 metabolites to the application of molecular biomarkers in epidemiological studies associating dietary AFB1 exposure with liver cancer, and the design and conduct of chemoprevention clinical trials to reduce cancer risk from unavoidable aflatoxin exposures by alteration of specific AFB1 biotransformation pathways. This article is written in honor of Dr. Groopman's many contributions in this area.
Collapse
Affiliation(s)
- David L. Eaton
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA 98195, USA
| | - David E. Williams
- Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvalis, OR 97331, USA;
| | - Roger A. Coulombe
- Graduate Toxicology Program, Department of Veterinary Sciences, Utah State University, Logan, UT 84322, USA;
| |
Collapse
|
26
|
Sun Q, Feng S, Xu H, Yu R, Dai B, Guo J, Fang M, Cui D, Wang K. A smartphone-integrated deep learning strategy-assisted rapid detection system for monitoring dual-modal immunochromatographic assay. Talanta 2025; 282:127043. [PMID: 39406103 DOI: 10.1016/j.talanta.2024.127043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/20/2024] [Accepted: 10/11/2024] [Indexed: 11/20/2024]
Abstract
This study focuses on the integration of a custom-built and optimally trained YOLO v5 model into a smartphone app developed with Java language. A dual-modal immunochromatographic rapid detection system based on a deep learning strategy for smartphones was developed for grade determination and predicting the concentration of aflatoxin B1 (AFB1). Innovative distance-type quantum dot microsphere fluorescent immunochromatographic chips enable semi-quantitative analysis by naked eye, and conventional colloidal gold nanoparticle colorimetric strips were also prepared. The compact and versatile hardware device making it easily integrable into smartphones of varying dimensions. Moreover, the wireless charging functionality of smartphones was to tackle power supply challenges. After optimized training, the accuracy, mAP@0.5, precision, and recall metrics of the YOLO v5 model all soared to 98 %. For the dual-modal immunochromatographic chips, the R2 values for the standard curve fits were as high as 0.993, with a broad linear range of 0.05-40 ng/mL and a standard deviation lower than 0.03 at each concentration. Finally, this system determined the grade of the AFB1 concentration with an accuracy of up to 98 % and it exhibited an ultra-sensitive quantitative detection capability with a limit of detection as low as 2.2 pg/mL, showcasing the reliability of the deep learning strategy for practical applications in smartphones. This robust technological foundation paves the way for potentially community-based, family-oriented, and personalized applications.
Collapse
Affiliation(s)
- Qingwen Sun
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shaoqing Feng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China
| | - Hao Xu
- School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ruoyao Yu
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bin Dai
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jinhong Guo
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mengru Fang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Daxiang Cui
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kan Wang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
27
|
Niermans K, Salari SP, Carney J, Hoek-van den Hil EF, van der Fels-Klerx HJ, van Loon JJA. Bioconversion of aflatoxin-contaminated groundnut press cake by larvae of black soldier fly Hermetia illucens results in a complete mass balance for aflatoxin B 1. NPJ Sci Food 2024; 8:103. [PMID: 39702332 DOI: 10.1038/s41538-024-00351-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/06/2024] [Indexed: 12/21/2024] Open
Abstract
Groundnuts are considered as one of the most important cultivated food crops globally. Groundnuts are used for vegetable oil production, which generate a variety of by-products, such as peanut press cake (PPC). Groundnuts are sensitive to infection by aflatoxigenic fungi. Aflatoxins are highly toxic to both humans and livestock, and contaminated crops containing high aflatoxin concentrations are deemed unsafe for consumption and trade. Innovative aflatoxin management strategies are needed and the insect production sector could be such a solution. Larvae of the black soldier fly (BSFL) were exposed to a PPC diet naturally contaminated with aflatoxins. After an exposure lasting eleven days, data on larval survival and biomass were collected. The PPC, BSFL and the residual material were analysed by LC-MS/MS to determine the concentration of eight different aflatoxins. A bio-accumulation factor and a molar mass balance were calculated. BSFL survival and biomass were not affected by exposure to the aflatoxin-contaminated PPC diet. The aflatoxins did not accumulate in the insect body, providing a promising outlook for the safety of rearing insects on aflatoxin contaminated PPC with the purpose of using them as food- and/or feed. Aflatoxin B1 (AFB1) was the dominant compound found in PPC. Formation of aflatoxicol, aflatoxin P1, and aflatoxin M1 occurred and taking these metabolites into account, a complete molar mass balance, thus full recovery, for AFB1 was obtained. This differs from previous studies using artificially spiked substrates in which 17-38% was recovered. This calls for additional studies comparing naturally contaminated with artificially spiked feedstuff.
Collapse
Affiliation(s)
- K Niermans
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB, Wageningen, the Netherlands
| | - S P Salari
- InsectoCycle, Bronland 10, 6708 WH, Wageningen, the Netherlands
| | - J Carney
- Mars, Incorporated, McLean, VA, 22101, USA
- JMC Consulting, Portland, OR, 972229, USA
| | - E F Hoek-van den Hil
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB, Wageningen, the Netherlands
| | | | - J J A van Loon
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands.
| |
Collapse
|
28
|
Khalil HMA, Eid WAM, El-Nablaway M, El Nashar EM, Al-Tarish JS, El Henafy HMA. Date seeds powder alleviate the aflatoxin B1 provoked heart toxicity in male offspring rat. Sci Rep 2024; 14:30480. [PMID: 39681567 DOI: 10.1038/s41598-024-80197-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024] Open
Abstract
Date (Phoenix dactylifera L.) seeds (PDL) have recently evoked significant attention for their therapeutic potential against numerous diseases. Aflatoxin B1 (AFB1) is an inevitable environmental hazard that pollutes foods and may harm the heart. This study investigated the beneficial effect of PDL against cardiac toxicity induced by AFB1 in male offspring. Female albino rats received PDL (200 mg/kg) orally for 14 days before mating till weaning and AFB1 (50 μg/kg) intramuscularly throughout gestation and lactation. At postnatal day 60, male offspring hearts were collected. Compared to AFB1 intoxicated group, PDL-treated offspring displayed improved cardiac biomarkers, an increase in their antioxidant defense, and a decrease in the cardiac proinflammatory cytokines. Additionally, a reduction in the expression levels of Bcl2 and Nrf2 was observed, with genes linked to increased cardiac caspase-3, Bax, ACE1, P53, and cytochrome C levels. In conclusion, PDL acts as a potential adjuvant agent for ameliorating cardiac toxicity and apoptosis resulting from exposure to AFB1. This is attributed to its antioxidative and anti-inflammatory effects, as well as its capacity to sequester free radicals within cardiac tissue.
Collapse
Affiliation(s)
- Heba M A Khalil
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Walaa A M Eid
- Food Science and Technology Department, Faculty of Agriculture, New Valley University, El-Kharga City, Egypt
| | - Mohammad El-Nablaway
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, 11597, Riyadh, Saudi Arabia
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Eman Mohamad El Nashar
- Department of Anatomy, College Medicine, King Khalid University, 62529, Abha, Saudi Arabia
| | - Jaber Saad Al-Tarish
- Ministry of Health Saudi Arabia, Senior Pharmacist-Ministry of Health, Riyadh, Saudi Arabia
| | - Hanan M A El Henafy
- Technology of Medical Laboratory Department, Faculty of Technology of Applied Health Sciences, October 6 University, Giza, 3230911, Egypt
| |
Collapse
|
29
|
Dai C, Li D, Velkov T, Shen J, Hao Z. The Detoxification Effects of Melatonin on Aflatoxin-Caused Toxic Effects and Underlying Molecular Mechanisms. Antioxidants (Basel) 2024; 13:1528. [PMID: 39765856 PMCID: PMC11726890 DOI: 10.3390/antiox13121528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 01/15/2025] Open
Abstract
Aflatoxins (AFTs) are a form of mycotoxins mainly produced by Aspergillus flavus and Aspergillus parasiticus, which are common contaminants in various agricultural sources such as feed, milk, food, and grain crops. Aflatoxin B1 (AFB1) is the most toxic one among all AFTs. AFB1 undergoes bioactivation into AFB1-8,9-epoxide, then leads to diverse harmful effects such as neurotoxicity, carcinogenicity, hepatotoxicity, reproductive toxicity, nephrotoxicity, and immunotoxicity, with specific molecular mechanisms varying in different pathologies. The detoxification of AFB1 is of great importance for safeguarding the health of animals and humans and has increasingly attracted global attention. Recent research has shown that melatonin supplementation can effectively mitigate AFB1-induced multiple toxic effects. The protection mechanisms of melatonin involve the inhibition of oxidative stress, the upregulation of antioxidant enzyme activity, the reduction of mitochondrial dysfunction, the inactivation of the mitochondrial apoptotic pathway, the blockade of inflammatory responses, and the attenuation of cytochrome P450 enzymes' expression and activities. In summary, this review sheds new light on the potential role of melatonin as a potential detoxifying agent against AFB1. Further exploration of the precise molecular mechanisms and clinical efficacy of this promising treatment is urgently needed.
Collapse
Affiliation(s)
- Chongshan Dai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Daowen Li
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China
| | - Tony Velkov
- Department of Pharmacology, Biodiscovery Institute, Monash University, Parkville, VIC 3052, Australia
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Zhihui Hao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
| |
Collapse
|
30
|
Qin XY, Feng R, Zhou H, Pan HQ, Wang H, Huang XJ, Shen JY, Hu Q, Ji S. Detection of Total Aflatoxins in Herbal Medicines Based on Lateral Flow Assay with Contamination Ratio Model. Molecules 2024; 29:5827. [PMID: 39769917 PMCID: PMC11728669 DOI: 10.3390/molecules29245827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025] Open
Abstract
In this study, we developed a colloidal gold immunochromatographic strip (CGIS) method that used the matrix-matched calibration curves of contamination ratio models to quantitatively determine the total aflatoxin in five herbal medicines. This approach addresses issues related to false results and poor accuracy associated with conventional methods. The CGIS was analyzed using a Vertu touch reader, and the matrix-matched calibration was established based on the absorbance ratios of the T and C lines, as well as the logarithmic values of the total aflatoxin concentrations. The total aflatoxins could be accurately and digitally detected from 2.5 to 40 μg/kg, and the LOD of total aflatoxins was 1 μg/kg in the five herbal medicines. The recovery rates from the spiked samples ranged from 65.1% to 98.6%, and the RSD was less than 16.9%. A total of 229 samples were analyzed by both CGIS and HPLC-FLD, with agreement ranging from 78.4% to 132.6% (Arecae semen), 82.6% to 133.0% (Nelumbinis semen), 79.9% to 117.9% (Coicis semen), 78.1% to 119.0% (Platycladi semen), and 76.1% to 123.0% (Ziziphi spinosae semen). This process for the discrimination of the CGIS results was established to assess if samples met the requirement of aflatoxin limits, which could save approximately 75% in time and reduce the workload of retesting by a designated confirmatory reference method to less than 10%. This study demonstrated that the application of matrix-matched calibration curves based on contamination ratio models to CGIS can effectively enhance the rapid quantitative determination capability of total aflatoxins in herbal medicine matrices.
Collapse
Affiliation(s)
- Xiao-Ya Qin
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; (X.-Y.Q.); (H.W.)
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, 1500 Zhangheng Road, Shanghai 201203, China; (R.F.); (H.-Q.P.); (X.-J.H.); (J.-Y.S.); (Q.H.)
| | - Rui Feng
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, 1500 Zhangheng Road, Shanghai 201203, China; (R.F.); (H.-Q.P.); (X.-J.H.); (J.-Y.S.); (Q.H.)
| | - Heng Zhou
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, 1500 Zhangheng Road, Shanghai 201203, China; (R.F.); (H.-Q.P.); (X.-J.H.); (J.-Y.S.); (Q.H.)
| | - Hui-Qin Pan
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, 1500 Zhangheng Road, Shanghai 201203, China; (R.F.); (H.-Q.P.); (X.-J.H.); (J.-Y.S.); (Q.H.)
| | - Hao Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; (X.-Y.Q.); (H.W.)
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, 1500 Zhangheng Road, Shanghai 201203, China; (R.F.); (H.-Q.P.); (X.-J.H.); (J.-Y.S.); (Q.H.)
| | - Xiao-Jing Huang
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, 1500 Zhangheng Road, Shanghai 201203, China; (R.F.); (H.-Q.P.); (X.-J.H.); (J.-Y.S.); (Q.H.)
| | - Jian-Ying Shen
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, 1500 Zhangheng Road, Shanghai 201203, China; (R.F.); (H.-Q.P.); (X.-J.H.); (J.-Y.S.); (Q.H.)
| | - Qing Hu
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, 1500 Zhangheng Road, Shanghai 201203, China; (R.F.); (H.-Q.P.); (X.-J.H.); (J.-Y.S.); (Q.H.)
| | - Shen Ji
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; (X.-Y.Q.); (H.W.)
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, 1500 Zhangheng Road, Shanghai 201203, China; (R.F.); (H.-Q.P.); (X.-J.H.); (J.-Y.S.); (Q.H.)
| |
Collapse
|
31
|
Chen H, Buzdar JA, Riaz R, Fouad D, Ahmed N, Shah QA, Chen S. Bovine lactoferrin alleviates aflatoxin B1 induced hepatic and renal injury in broilers by mediating Nrf2 signaling pathway. Poult Sci 2024; 103:104316. [PMID: 39383667 PMCID: PMC11492589 DOI: 10.1016/j.psj.2024.104316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 10/11/2024] Open
Abstract
Aflatoxin B1 (AFB1) a mycotoxin found in chicken feed that possess a global hazard to poultry health. However different potent compounds like bovine lactoferrin (bLF) may prove to be protective effects against AFB1. This study aims to explore the protective effect of bLF against AFB1-induced injury in the liver and kidney in broiler. For this purpose, 600 broilers chicks were randomly alienated into 5 groups (n = 120 each): negative control; positive control (3 mg/kg AFB1), and bLF high, medium, and low dosage groups (600 mg/kg, 300 mg/kg, and 150 mg/kg, respectively). The results highlight that AFB1 toxicity in birds exhibited low feed intake, reduction in weight gain, and a decrease in FCR while, bLF regulated these adverse effects. Meanwhile, AFB1 group showed higher levels of alanine transaminase (ALT) and aspartate aminotransferase (AST) and lower levels of superoxide dismutase (SOD) and glutathione (GSHpx) in liver, while urea and creatinine were decline in kidney. Supplementation with bLF effectively controlled these biomarkers and control the negative effects of toxicity. Furthermore, hematoxylin and eosin (H&E) staining exhibited normal morphological structures within liver and kidney in the bLF treated groups, while degenerative changes were observed in AFB1 group. Similarly, bLF, decreased oxidative stress and thus prevented apoptosis in the liver and kidney cells of the birds. Whereas, mRNA level of mitochondrial apoptosis related gene including Bcl-2 (Bak and Bax), caspase-3 and caspase-9 was upregulated, while bcl2 gene were downregulated in AFB1 group. Dietary supplementation of bLF effectively normalizes the expression of these genes. AFB1 exposed birds shown to decrease gene expression level of the crucial component of Nrf2 pathway, responsible to regulate antioxidant defense. Interestingly, bLF reverse these detrimental effects of and restore the normal expression levels of Nrf2 pathway. Conclusively, our findings demonstrate that bLF mitigates the detrimental effects of AFB1, besides regulation of the apoptosis-related genes via mitochondrial pathways. These findings validate that the bLF (600 mg/kg) could be used as protective agent against AFB1-induced liver and kidney damage.
Collapse
Affiliation(s)
- Hong Chen
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Jameel Ahmed Buzdar
- Department of Basic Veterinary Science, Faculty of Veterinary & Animal Science, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 90150, Baluchistan, Pakistan
| | - Roshan Riaz
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Kafkas University, Kars, 36100, Türkiye
| | - Dalia Fouad
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Nisar Ahmed
- Department of Basic Veterinary Science, Faculty of Veterinary & Animal Science, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 90150, Baluchistan, Pakistan
| | - Qurban Ali Shah
- Department of Basic Veterinary Science, Faculty of Veterinary & Animal Science, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 90150, Baluchistan, Pakistan
| | - Shulin Chen
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| |
Collapse
|
32
|
Singai C, Pitchakarn P, Taya S, Wongpoomchai R, Wongnoppavich A. Genotoxic and Anti-Genotoxic Assessments of Fermented Houttuynia cordata Thunb. Leaf Ethanolic Extract and Its Anti-Cancer Effect in a Dual-Organ Carcinogenesis Model of Colon and Liver in Rats. Foods 2024; 13:3645. [PMID: 39594061 PMCID: PMC11594090 DOI: 10.3390/foods13223645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
The incidence of multiple-organ cancers has recently increased due to simultaneous exposure to various environmental carcinogens. Houttuynia cordata Thunb. (H. cordata) is recognized for its many health benefits, including its anti-cancer properties. The fermentation of its leaves has been shown to significantly enhance the bioflavonoid content and its bioactivities. This study aimed to evaluate the effectiveness of fermented H.cordata leaf (FHCL) extracts against combined carcinogens and investigate the underlying mechanisms. The crude ethanolic extract of FHCL was partitioned to obtain hexane- (HEX), dichloromethane- (DCM), ethyl acetate- (ETAC), butanol- (nBA), and residue fractions. The crude ethanolic extract (200-250 μg/mL) and the DCM fraction (50 μg/mL) significantly reduced NO production in RAW264.7 macrophages. In addition, the crude extract and the DCM and ETAC fractions showed anti-genotoxicity against aflatoxin B1 and 2-amino-3,4-dimethylimidazo [4,5-f]quinoline (MeIQ) in Salmonella typhimurium assays (S9+). Despite demonstrating genotoxicity in the Salmonella mutation assay (with and without S9 activation), oral administration of the crude extract at 500 mg/kg of body weight (bw) for 40 days in rats did not induce micronucleated hepatocytes, indicating that the extract is non-genotoxic in vivo. Moreover, the crude extract significantly decreased Phase I but increased Phase II xenobiotic-metabolizing enzyme activities in the rats. Next, the anti-cancer effects of FHCL were evaluated in a dual-organ carcinogenesis model of the colon and liver in rats induced by 1,2-dimethylhydrazine (DMH) and diethylnitrosamine (DEN), respectively. The crude extract significantly reduced not only the number and size of glutathione S-transferase placental form positive foci in the liver (at doses of 100 and 500 mg/kg bw) but also the number of aberrant crypt foci in rat colons (at 500 mg/kg bw). Furthermore, FHCL significantly reduced the expression of proliferating cell nuclear antigen (PCNA) in the colon (at 100 and 500 mg/kg bw) and liver (at 500 mg/kg bw) of the treated rats. In conclusion, FHCL exhibits significant preventive properties against colon and liver cancers in this dual-organ carcinogenesis model. Its mechanisms of action may involve anti-inflammatory effects, the prevention of genotoxicity, the modulation of xenobiotic-metabolizing enzymes, and the inhibition of cancer cell proliferation. These findings support the use of FHCL as a natural supplement for preventing cancer.
Collapse
Affiliation(s)
- Chonikarn Singai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (C.S.); (P.P.); (R.W.)
| | - Pornsiri Pitchakarn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (C.S.); (P.P.); (R.W.)
| | - Sirinya Taya
- Functional Food Research Unit, Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Rawiwan Wongpoomchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (C.S.); (P.P.); (R.W.)
| | - Ariyaphong Wongnoppavich
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (C.S.); (P.P.); (R.W.)
| |
Collapse
|
33
|
Liu N, Du J, Ge J, Liu SB. DNA damage-inducing endogenous and exogenous factors and research progress. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-33. [PMID: 39540885 DOI: 10.1080/15257770.2024.2428436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 10/20/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
The substances that cause abnormal DNA structures are known as DNA damage-inducing factors, and their resulting DNA damage has been extensively studied and proven to be closely related to cancer, neurodegenerative diseases, and aging. Prolonged exposure to DNA damage-inducing factors can lead to a variety of difficult-to-treat diseases, yet these factors have not been well summarized. It is crucial to use a combination of environmental science and life science to gain a deep understanding of the environmental sources and biological consequences of DNA damage-inducing factors for mechanistic research and prevention of diseases such as cancer. This article selected 14 representative carcinogenic exogenous DNA damage-inducing factors and summarized them through a literature search, including both exogenous and endogenous DNA damage factors, and explored the types of DNA damage caused by the relevant damage factors.
Collapse
Affiliation(s)
- Nian Liu
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China
| | - Jiahui Du
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
| | - Jiani Ge
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China
| | - Song-Bai Liu
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China
| |
Collapse
|
34
|
Nguyen T, Chen X, Ma L, Feng Y. Mycotoxin Biodegradation by Bacillus Bacteria-A Review. Toxins (Basel) 2024; 16:478. [PMID: 39591233 PMCID: PMC11598562 DOI: 10.3390/toxins16110478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Mycotoxins are toxic secondary metabolites produced by various types of fungi that are known to contaminate various food products; their presence in the food chain poses significant risks to human and animal health and leads to enormous economic losses in the food and feed industry worldwide. Ensuring food safety and quality by detoxifying mycotoxin is therefore of paramount importance. Several procedures to control fungal toxins have been extensively investigated, such as preventive measures, physical and chemical methods, and biological strategies. In recent years, microbial degradation of mycotoxins has attracted much attention due to its reliability, efficiency, and cost-effectiveness. Notably, bacterial species from the Bacillus genus have emerged as promising candidates for mycotoxin decontamination owing to their diverse metabolic capabilities and resilience in harsh environmental conditions. This review manuscript aims to provide a summary of recent studies on the biodegradation of fungal toxins by Bacillus bacteria, thereby illustrating their potential applications in the development of mycotoxin-degrading products.
Collapse
Affiliation(s)
- Thanh Nguyen
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (T.N.); (L.M.)
| | - Xiaojing Chen
- Bioproton Pty Ltd., Acacia Ridge, Brisbane, QLD 4110, Australia;
| | - Linlin Ma
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (T.N.); (L.M.)
- School of Environment and Science, Griffith University, Nathan, Brisbane, QLD 4111, Australia
| | - Yunjiang Feng
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (T.N.); (L.M.)
- School of Environment and Science, Griffith University, Nathan, Brisbane, QLD 4111, Australia
| |
Collapse
|
35
|
Lai X, Fan P, Deng H, Jia G, Zuo Z, Hu Y, Wang Y, Cai D, Gou L, Wen Y, Yu S, Cao S, Shen L, Deng J, Ren Z. Effects of isochlorogenic acid A on mitochondrial dynamics imbalance and RLR damage in PAM cells induced by combined mycotoxins. Toxicology 2024; 508:153920. [PMID: 39137830 DOI: 10.1016/j.tox.2024.153920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
Mycotoxins have strong immunotoxicity and can induce oxidative stress and mitochondrial dynamics imbalance. Mitochondrial antiviral signaling protein (MAVS) in the RIG-I like receptor (RLR) pathway of innate immunity is located on mitochondria, and whether it is affected by mycotoxins has not been reported yet. This experiment used porcine alveolar macrophages (PAM) to evaluate the antagonism of three isomers of chlorogenic acid (chlorogenic acid, isochlorogenic acid A, and neochlorogenic acid) against combined mycotoxins (Aflatoxin B1, Deoxynivalenol, and Ochratoxin A) induced mitochondrial damage and their effects on the RLR pathway, providing assistance for further elucidating the mechanism of mycotoxin immunotoxicity. Western blotting, enzyme linked immunosorbent assay (ELISA), and flow cytometry were used to detect relevant indicators. All three types of chlorogenic acid treatment can antagonize the cytotoxicity induced by combined mycotoxins, especially isochlorogenic acid A, which can protect cells from mycotoxins damage by maintaining mitochondrial dynamic homeostasis and improving innate immune function related to the RLR pathway.
Collapse
Affiliation(s)
- Xinuo Lai
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Peng Fan
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Huidan Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Guilin Jia
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhicai Zuo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanchun Hu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ya Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Dongjie Cai
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Liping Gou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yiping Wen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Shumin Yu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Suizhong Cao
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Liuhong Shen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Junliang Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Zhihua Ren
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
36
|
Yao L, Xu J, Zhang X, Tang Z, Chen Y, Liu X, Duan X. Bioinformatical analysis and experimental validation of endoplasmic reticulum stress-related biomarker genes in type 2 diabetes mellitus. Front Genet 2024; 15:1445033. [PMID: 39553470 PMCID: PMC11564187 DOI: 10.3389/fgene.2024.1445033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/18/2024] [Indexed: 11/19/2024] Open
Abstract
Introduction Endoplasmic reticulum stress (ERS) is a prominent etiological factor in the pathogenesis of diabetes. Nevertheless, the mechanisms through which ERS contributes to the development of diabetes remain elusive. Methods Transcriptional expression profiles from the Gene Expression Omnibus (GEO) datasets were analyzed and compared to obtain the differentially expressed genes (DEGs) in T2DM. Following the intersection with ERS associated genes, the ERS related T2DM DEGs were identified. Receiver operating characteristic (ROC) and Least Absolute Shrinkage and Selection Operator (LASSO) analysis were performed to screen out the ERS related biomarker genes and validate their diagnostic values. Gene expression level was detected by qPCR and Elisa assays in diabetic mice and patient serum samples. Results By analyzing the transcriptional expression profiles of the GEO datasets, 49 T2DM-related DEGs were screened out in diabetic islets. RTN1, CLGN, PCSK1, IAPP, ILF2, IMPA1, CCDC47, and PTGES3 were identified as ERS-related DEGs in T2DM, which were revealed to be involved in protein folding, membrane composition, and metabolism regulation. ROC and LASSO analysis further screened out CLGN, ILF2, and IMPA1 as biomarker genes with high value and reliability for diagnostic purposes. These three genes were then demonstrated to be targeted by the transcription factors and miRNAs, including CEBPA, CEBPB, miR-197-5p, miR-6133, and others. Among these miRNAs, the expression of miR-197-5p, miR-320c, miR-1296-3P and miR-6133 was down-regulated, while that of miR-4462, miR-4476-5P and miR-7851-3P was up-regulated in diabetic samples. Small molecular drugs, including D002994, D001564, and others, were predicted to target these genes potentially. qPCR and Elisa analysis both validated the same expression alteration trend of the ERS-related biomarker genes in diabetic mice and T2DM patients. Discussion These findings will offer innovative perspectives for clinical diagnosis and treatment strategies for T2DM.
Collapse
Affiliation(s)
- Lili Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong Laboratory of Development and Diseases, Department of Endocrine, Department of Pharmacy, School of Life Science, Co-innovation Center of Neuroregeneration, Medical School, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Jie Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong Laboratory of Development and Diseases, Department of Endocrine, Department of Pharmacy, School of Life Science, Co-innovation Center of Neuroregeneration, Medical School, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Xu Zhang
- Clinical Medical Research Center, Wuxi No. 2 People’s Hospital, Jiangnan University Medical Center, Wuxi, China
| | - Zhuqi Tang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong Laboratory of Development and Diseases, Department of Endocrine, Department of Pharmacy, School of Life Science, Co-innovation Center of Neuroregeneration, Medical School, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Yuqing Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong Laboratory of Development and Diseases, Department of Endocrine, Department of Pharmacy, School of Life Science, Co-innovation Center of Neuroregeneration, Medical School, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Xiaoyu Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong Laboratory of Development and Diseases, Department of Endocrine, Department of Pharmacy, School of Life Science, Co-innovation Center of Neuroregeneration, Medical School, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Xuchu Duan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong Laboratory of Development and Diseases, Department of Endocrine, Department of Pharmacy, School of Life Science, Co-innovation Center of Neuroregeneration, Medical School, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| |
Collapse
|
37
|
Zhang L, Li X, He Q, Chen M, Zhou M, Guo J, Li Y, Tu Z. Elastin-like polypeptide-functionalized nanobody for column-free immunoaffinity purification of aflatoxin B 1. Anal Bioanal Chem 2024; 416:6199-6208. [PMID: 39264463 DOI: 10.1007/s00216-024-05498-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/29/2024] [Accepted: 08/15/2024] [Indexed: 09/13/2024]
Abstract
A column-free immunoaffinity purification (CFIP) technique for sample preparation of aflatoxin B1 (AFB1) was developed using an AFB1-specific nanobody (named G8) and an elastin-like polypeptide (ELP). The reversible phase transition between liquid and solid in response to temperature changes was exhibited by the ELP which was derived from human elastin. The G8 was tagged with ELPs of various lengths (20, 40, 60, and 80 repeat units) at the C-terminus using recursive directional ligation (RDL). Coding sequences were then subcloned into pET30a at the multiple cloning sites. Bioactive recombinant proteins were produced by expressing them as inclusion bodies in Escherichia coli BL21 (DE3), then dissolved and refolded. Analysis by indirect competitive enzyme-linked immunosorbent assay (icELISA) and transition temperature (Tt) measurement confirmed that the refolded G8-ELPs preserved the ability to recognize AFB1 as well as phase transition when the temperature rose above Tt. To establish the optimal conditions for cleaning AFB1, the effects of various parameters on recovery were investigated. The recovery in ELISA tests was 95 ± 3.67% under the optimized CFIP workflow. Furthermore, the CFIP-prepared samples were applied for high-performance liquid chromatography (HPLC) detection. The recovery in the CFIP-HPLC test ranged from 54 ± 1.86% to 98 ± 3.58% for maize, rice, soy sauce, and vegetable oil samples. To the best of our knowledge, this is the first report combining the function of both nanobody and ELP to develop a cleanup technique for small molecules in a complex matrix. The CFIP for the sample pretreatment was easy to use and inexpensive. In contrast to conventional immunosensitivity materials, the reagent utilized in the CFIP was entirely biosynthesized without any chemical coupling reactions. This suggests that the nanobody-ELP may serve as a useful dual-functional reagent for the development of sample cleaning or purification methods.
Collapse
Affiliation(s)
- Leping Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
- College of Food Science, Nanchang University, Nanchang, 330031, China
- Jiangxi Province Key Laboratory of Modern Analytical Sciences, Nanchang University, Nanchang, 330031, China
| | - Xiaojiang Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
- College of Food Science, Nanchang University, Nanchang, 330031, China
- Jiangxi Province Key Laboratory of Modern Analytical Sciences, Nanchang University, Nanchang, 330031, China
| | - Qinghua He
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
- Jiangxi-OAI Joint Research Institution, Nanchang University, Nanchang, 330047, China
- Jiangxi Province Key Laboratory of Modern Analytical Sciences, Nanchang University, Nanchang, 330031, China
| | - Mengna Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
- College of Food Science, Nanchang University, Nanchang, 330031, China
- Jiangxi Province Key Laboratory of Modern Analytical Sciences, Nanchang University, Nanchang, 330031, China
| | - Mengmeng Zhou
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
- College of Food Science, Nanchang University, Nanchang, 330031, China
- Jiangxi Province Key Laboratory of Modern Analytical Sciences, Nanchang University, Nanchang, 330031, China
| | - Jiebiao Guo
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512005, China
| | - Yanping Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China.
- Jiangxi-OAI Joint Research Institution, Nanchang University, Nanchang, 330047, China.
| | - Zhui Tu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China.
- Jiangxi Province Key Laboratory of Modern Analytical Sciences, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
38
|
Gauthier T, Puel S, Rocher O, Oswald IP, Puel O. A precursor of Aflatoxin B1, Versicolorin A, impairs the mitochondrial function of human intestinal Caco-2 cells. ENVIRONMENT INTERNATIONAL 2024; 193:109107. [PMID: 39488999 DOI: 10.1016/j.envint.2024.109107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/27/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
Versicolorin A (VERA) is a mycotoxin produced by Aspergillus section Flavi species that is frequently detected in foodstuffs, particularly in corn. VERA is a precursor of aflatoxin B1 (AFB1), which is currently considered to be the most hazardous mycotoxin. While AFB1 has been shown to impair oxidative phosphorylation (OXPHOS), the impact of VERA on mitochondrial function has not been extensively documented until now. The aim of the present study was to investigate the effect of VERA on mitochondrial function in intestinal Caco-2 cells. To this end, OXPHOS was assessed by measuring the oxygen consumption rate using the Seahorse™ real-time analyzer. In contrast to AFB1, a low concentration of VERA (5 µM) was a strong uncoupler of OXPHOS and inhibited respiratory complexes I and III within a few minutes of exposure. After 24 h of exposure, VERA reduced the transcription of all mitochondrial genes encoding proteins involved in the electron transfer chain as well as decreasing the rate of OXPHOS. This effect was associated with the simultaneous down expression of two genes encoding proteins involved in the initiation phase of mitochondrial DNA transcription: POLRMT and TFB2M. Moreover, VERA induced down expression of genes coding for upstream key glycolytic enzymes, hexokinase and phosphofructokinase. These effects led to a reduced rate of ATP production associated with a cytotoxic effect. Given the significant implications of mitochondrial dysfunction for human health, it is crucial to consider the potential involvement of VERA in mitochondrial diseases.
Collapse
Affiliation(s)
- Thierry Gauthier
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Sylvie Puel
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Ophelie Rocher
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Isabelle P Oswald
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Olivier Puel
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
39
|
Liu S, Zhou Y, Feng Y, Peng Q, Li Y, He C, Fang Z, Xiao Y, Fang W. A cost-saving, safe, and highly efficient natural mediator for laccase application on aflatoxin detoxification. Food Chem 2024; 455:139862. [PMID: 38833866 DOI: 10.1016/j.foodchem.2024.139862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/14/2024] [Accepted: 05/26/2024] [Indexed: 06/06/2024]
Abstract
Laccase mediators possess advantage of oxidizing substrates with high redox potentials, such as aflatoxin B1 (AFB1). High costs of chemically synthesized mediators limit laccase industrial application. In this study, thin stillage extract (TSE), a byproduct of corn-based ethanol fermentation was investigated as the potential natural mediator of laccases. Ferulic acid, p-coumaric acid, and vanillic acid were identified as the predominant phenolic compounds of TSE. With the assistance of 0.05 mM TSE, AFB1 degradation activity of novel laccase Glac1 increased by 17 times. The promoting efficiency of TSE was similar to ferulic acid, but superior to vanillic acid and p-coumaric acid, with 1.2- and 1.3-fold increases, respectively. After Glac1-TSE treatment, two oxidation products were identified. Ames test showed AFB1 degradation products lost mutagenicity. Meanwhile, TSE also showed 1.3-3.0 times promoting effect on laccase degradation activity in cereal flours. Collectively, a safe and highly efficient natural mediator was obtained for aflatoxin detoxification.
Collapse
Affiliation(s)
- Shenglong Liu
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China
| | - Yu Zhou
- Key Laboratory of Jianghuai Agricultural product Fine processing and resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, 130 Changjiang Road West, Hefei 230036, China
| | - Yan Feng
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China
| | - Qixia Peng
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China
| | - Yurong Li
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China
| | - Cheng He
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China
| | - Zemin Fang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China
| | - Yazhong Xiao
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China.
| | - Wei Fang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China.
| |
Collapse
|
40
|
Xia S, He Y, Yang S, Zhang L, Yu X, Zhen L, Wang C, Lv H. Licochalcone A mitigates aflatoxin B1-induced immunotoxicity via ferroptosis in bursa of broilers and macrophages. Poult Sci 2024; 103:104080. [PMID: 39106705 PMCID: PMC11343056 DOI: 10.1016/j.psj.2024.104080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/19/2024] [Accepted: 07/05/2024] [Indexed: 08/09/2024] Open
Abstract
Aflatoxin B1 (AFB1) is a mycotoxin which is responsible for severe damage to the immune system of humans and livestock. Licochalcone A (Lico A), a polyphenol derived from turmeric, has attracted great attention due to its wonderful antioxidant properties. Ferroptosis, an iron-dependent cell death related to oxidative stress, which plays a crucial role in the resistance of phytochemical to immune-associated injury. Nevertheless, effects of Lico A on the bursa of broilers exposed to AFB1 remain unclear. In this work, broilers were fed diets supplemented with 2 mg/kg of AFB1 and 50 mg/kg of Lico A. Meanwhile, various concentrations of Lico A and AFB1 (15 μM) were used to stimulate macrophages. These results revealed that AFB1 resulted in more severe bursa atrophy and relative weight reduction; the expression of pro-ferroptosis protein ACSL4 and the content of malondialdehyde (MDA) were significantly elevated, while the expression of anti-ferroptosis proteins GPX4, xCT, FSP1 and the content of Glutathione (GSH) was obviously reduced. However, Lico A treatment effectively reversed these effects in the bursa of broilers. Meanwhile, in bursa and macrophages, Lico A mitigated the expression of AFB1-induced apoptosis-associated protein (Caspase-3, Bax, Bcl-2) as well as antioxidant protein (Nrf2, GCLM, HO-1). Importantly, ferroptosis was also observed in macrophages induced by AFB1. Lico A efficaciously alleviated AFB1-induced mitochondrial membrane potential decrease and reactive oxygen species (ROS) production in macrophages; in contrast, Lico A evidently inhibited AFB1-triggered ROS generation and cytotoxicity, which was disabled by the addition of Erastin. Moreover, Liproxstatin-1 significantly inhibited ROS generation induced by AFB1. In summary, the present study elucidates that the main mechanism by which Lico A attenuates AFB1-induced immunotoxicity is through the suppression of ferroptosis, apoptosis, mitochondrial damage and oxidative stress, which is promising for the improvement of immunotoxic effects of AFB1.
Collapse
Affiliation(s)
- Shijie Xia
- Key Laboratory of Bovine Disease Control in Northeast China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases; College of Animal Science and Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yuxi He
- Key Laboratory of Bovine Disease Control in Northeast China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases; College of Animal Science and Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Songya Yang
- Key Laboratory of Bovine Disease Control in Northeast China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases; College of Animal Science and Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Lihan Zhang
- Key Laboratory of Bovine Disease Control in Northeast China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases; College of Animal Science and Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Xiaoqing Yu
- Key Laboratory of Bovine Disease Control in Northeast China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases; College of Animal Science and Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Li Zhen
- Key Laboratory of Bovine Disease Control in Northeast China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases; College of Animal Science and Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Chunren Wang
- Key Laboratory of Bovine Disease Control in Northeast China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases; College of Animal Science and Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Hongming Lv
- Key Laboratory of Bovine Disease Control in Northeast China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases; College of Animal Science and Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| |
Collapse
|
41
|
Kale SR, Karande G, Gudur A, Garud A, Patil MS, Patil S. Recent Trends in Liver Cancer: Epidemiology, Risk Factors, and Diagnostic Techniques. Cureus 2024; 16:e72239. [PMID: 39583507 PMCID: PMC11584332 DOI: 10.7759/cureus.72239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024] Open
Abstract
Liver cancer, particularly hepatocellular carcinoma (HCC), poses a significant global health challenge due to its high mortality rate. Hepatocellular carcinoma and intrahepatic cholangiocarcinoma (ICC) are the two main types of primary liver cancer (PLC), each with its own set of complexities. Secondary or metastatic liver cancer is more common than PLC. It is frequently observed in malignancies such as colorectal, pancreatic, melanoma, lung, and breast cancer. Liver cancer is often diagnosed at an advanced stage, making it difficult to treat. This highlights the need for focused research on early detection and effective treatment strategies. This review explores the epidemiology, risk factors, and diagnostic techniques for HCC. The development of HCC involves various risk factors, including chronic liver diseases, hepatitis B and C infections, alcohol consumption, obesity, smoking, and genetic predispositions. Various invasive and non-invasive diagnostic techniques, such as biopsy, liquid biopsy, and imaging modalities like ultrasonography, computed tomography scans (CT scans), magnetic resonance imaging (MRI), and positron emission tomography (PET) scans, are utilized for HCC detection and monitoring. Advances in imaging technology and biomarker research have led to more accurate and sensitive methods for early HCC detection. We also reviewed advanced research on emerging techniques, including next-generation sequencing, metabolomics, epigenetic biomarkers, and microbiome analysis, which show great potential for advancing early diagnosis and personalized treatment strategies. This literature review provides insights into the current state of liver cancer diagnosis and promising future advancements. Ongoing research and innovation in these areas are essential for improving early diagnosis and reducing the global burden of liver cancer.
Collapse
Affiliation(s)
- Shivani R Kale
- Molecular Biology and Genetics, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Geeta Karande
- Microbiology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Anand Gudur
- Oncology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Aishwarya Garud
- Molecular Biology and Genetics, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Monika S Patil
- Molecular Biology and Genetics, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Satish Patil
- Microbiology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| |
Collapse
|
42
|
Feng T, Li S, Wang P, Zhu D, Xu Z, Wang L, Li A, Kulyar MF, Shen Y. Hepatoprotective effects of Radix Bupleuri extract on aflatoxin B1-induced liver injury in ducks. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116781. [PMID: 39067074 DOI: 10.1016/j.ecoenv.2024.116781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Aflatoxin B1 (AFB1) is recognized as the most toxic mycotoxin, widely present in nature and known to specifically target the liver, leading to severe consequences to animal and human health. The mechanisms underlying AFB1-induced hepatotoxicity involve oxidative stress and apoptosis. Radix Bupleuri (RB) and its extracts (RBE), traditional Chinese herbs with a rich history spanning over 2000 years, have been reported to possess hepatoprotective properties. Nevertheless, the impact of RBE on AFB1-induced liver injury remains to be fully elucidated. The current study utilized Pekin ducks as experimental models to explore the effects of RBE on AFB1-induced liver injury both in vitro and in vivo. In vitro findings indicated that RBE mitigated AFB1-induced cytotoxicity, improved primary duck hepatocytes (PDHs) morphology, and reduced intracellular reactive oxygen species (ROS) levels. In vivo experiments demonstrated that: I) RBE alleviated the growth inhibitory caused by AFB1, as evidenced by improved final body weight and weight gain. II) AFB1 led to significant alterations in serum biochemical parameters (AST, ALT, TP, and ALB) and liver lesions attenuated by RBE supplementation at 2.5 g/kg. III) RBE significantly mitigated oxidative stress induced by AFB1. IV) AFB1-induced changes in mRNA and protein levels associated with oxidative stress and apoptosis were counteracted by RBE. In conclusion, our results suggest that RBE offers protection against AFB1-induced liver injury in ducks, primarily through its antioxidative and anti-apoptotic properties. These findings indicate the potential of RBE in preventing and treating AFB1 poisoning.
Collapse
Affiliation(s)
- Tianyi Feng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Siyu Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Pengpeng Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Di Zhu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zhixiang Xu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Lidan Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Aoyun Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Md F Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yaoqin Shen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
43
|
Jia K, Jia Y, Zeng Q, Yan Z, Wang S. Regulation of Conidiation and Aflatoxin B1 Biosynthesis by a Blue Light Sensor LreA in Aspergillus flavus. J Fungi (Basel) 2024; 10:650. [PMID: 39330410 PMCID: PMC11433291 DOI: 10.3390/jof10090650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Conidia are important for the dispersal of Aspergillus flavus, which usually generates aflatoxin B1 (AFB1) and poses a threat to the safety of agricultural food. The development of conidia is usually susceptible to changes in environmental conditions, such as nutritional status and light. However, how the light signal is involved in the conidiation in A. flavus is still unknown. In this study, LreA was identified to respond to blue light and mediate the promotion of conidiation in A. flavus, which is related to the central development pathway. At the same time, blue light inhibited the biosynthesis of AFB1, which was mediated by LreA and attributed to the transcriptional regulation of aflR and aflS expression. Our findings disclosed the function and mechanism of the blue light sensor LreA in regulating conidiation and AFB1 biosynthesis, which is beneficial for the prevention and control of A. flavus and mycotoxins.
Collapse
Affiliation(s)
- Kunzhi Jia
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yipu Jia
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qianhua Zeng
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhaoqi Yan
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
44
|
Zuo TT, Liu J, Zan K, Liu LN, Wang Q, Wang Z, Xu WY, Liu YX, Guo YS, Kang S, Jin HY, Wei F, Ma SC. Bioaccessibility and bioavailability of exogenous and endogenous toxic substances in traditional Chinese medicine and their significance in risk assessment. Pharmacol Res 2024; 208:107388. [PMID: 39243915 DOI: 10.1016/j.phrs.2024.107388] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/17/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Scientific risk assessment of exogenous and endogenous toxic substances in traditional Chinese medicine (TCM) is of great significance. The present review comprises a comprehensive summary of progress in the health risk assessment of harmful exogenous substances in TCMs. Such substances include heavy metals, pesticide residues, biotoxins, and endogenous toxic components involving pyrrolizidine alkaloids. The review also discusses the strengths and weaknesses of various bioaccessibility and bioavailability models, and their applications in risk assessment. Future avenues of risk assessment research are highlighted, including further exploration of risk assessment parameters, innovation of bioaccessibility and bioavailability techniques, enhancement of probabilistic risk assessment combined with bioavailability, improvement of cumulative risk assessment strategies, and formulation of strategies for reducing relative bioavailability (RBA) values in TCMs. Such efforts represent an attempt to develop a risk assessment system that is capable of evaluating the exogenous and endogenous toxic substances in TCMs to ensure its safe use in clinics, and to promote the sustainable development of the TCM industry.
Collapse
Affiliation(s)
- Tian-Tian Zuo
- National Institutes for Food and Drug Control, Beijing 100050, China; National Key Laboratory of Medicine Regulatory Science, China.
| | - Jing Liu
- National Institutes for Food and Drug Control, Beijing 100050, China; National Key Laboratory of Medicine Regulatory Science, China.
| | - Ke Zan
- National Institutes for Food and Drug Control, Beijing 100050, China; National Key Laboratory of Medicine Regulatory Science, China.
| | - Li-Na Liu
- National Institutes for Food and Drug Control, Beijing 100050, China; National Key Laboratory of Medicine Regulatory Science, China.
| | - Qi Wang
- National Institutes for Food and Drug Control, Beijing 100050, China; National Key Laboratory of Medicine Regulatory Science, China.
| | - Zhao Wang
- National Institutes for Food and Drug Control, Beijing 100050, China; National Key Laboratory of Medicine Regulatory Science, China.
| | - Wei-Yi Xu
- National Institutes for Food and Drug Control, Beijing 100050, China; National Key Laboratory of Medicine Regulatory Science, China.
| | - Yuan-Xi Liu
- National Institutes for Food and Drug Control, Beijing 100050, China; National Key Laboratory of Medicine Regulatory Science, China.
| | - Yuan-Sheng Guo
- National Institutes for Food and Drug Control, Beijing 100050, China; National Key Laboratory of Medicine Regulatory Science, China.
| | - Shuai Kang
- National Institutes for Food and Drug Control, Beijing 100050, China; National Key Laboratory of Medicine Regulatory Science, China.
| | - Hong-Yu Jin
- National Institutes for Food and Drug Control, Beijing 100050, China; National Key Laboratory of Medicine Regulatory Science, China.
| | - Feng Wei
- National Institutes for Food and Drug Control, Beijing 100050, China; National Key Laboratory of Medicine Regulatory Science, China.
| | - Shuang-Cheng Ma
- Chinese Pharmacopeia Commission, Beijing 100061, China; National Key Laboratory of Medicine Regulatory Science, China.
| |
Collapse
|
45
|
Tsouloufi TK. An overview of mycotoxicoses in rabbits. J Vet Diagn Invest 2024; 36:638-654. [PMID: 38804173 PMCID: PMC11457744 DOI: 10.1177/10406387241255945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
Mycotoxicoses are usually a consideration in large animal species but can affect companion animals as well. Due to increasing interest and the ease of using rabbits as laboratory models, a growing number of published experimental studies discuss the effects of various mycotoxins on this species. However, the available evidence is fragmented and heterogeneous, and has not recently been collated in a review, to my knowledge. Although mycotoxicoses in rabbits are typically subclinical, clinical signs can include weight loss, anorexia, gastrointestinal disorders, stunted growth, reproductive abnormalities, and susceptibility to infections. An antemortem diagnosis typically relies on a comprehensive clinical history, and assessment of clinical signs and relevant laboratory findings, with confirmation of exposure achieved through the measurement of mycotoxin concentrations in feed or target organs. My review focuses on the clinicopathologic and histopathologic effects of the mycotoxins most important in rabbits, including fumonisins, ochratoxins, aflatoxins, trichothecenes, and zearalenone. This review offers a thorough overview of the effects of mycotoxins in rabbits, serving as a one-stop resource for veterinary practitioners, diagnosticians, and researchers.
Collapse
|
46
|
Cui Y, Wang Q, Shi Y, Dai Y, Liu Y. mtROS-mediated mitophagy is involved in aflatoxin-B 1 induced liver injury in ducks. Comp Biochem Physiol C Toxicol Pharmacol 2024; 283:109942. [PMID: 38810896 DOI: 10.1016/j.cbpc.2024.109942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/02/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Aflatoxin B1 (AFB1) is highly toxic to the liver and can cause excessive production of mitochondrial reactive oxygen species (mtROS) in hepatocytes, leading to oxidative stress, inflammation, fibrosis, cirrhosis, and even liver cancer. The overproduction of mtROS can induce mitophagy, but whether mtROS and mitophagy are involved in the liver injury induced by AFB1 in ducks remains unclear. In this study, we first demonstrated that overproduction of mtROS and mitophagy occurred during liver injury induced by AFB1 exposure in ducks. Then, by inhibiting mtROS and mitophagy, we found that the damage caused by AFB1 in ducks was significantly alleviated, and the overproduction of mtROS induced by AFB1 exposure could mediate the occurrence of mitophagy. These results suggested that mtROS-mediated mitophagy is involved in AFB1-induced duck liver injury, and they may be the prevention and treatment targets of AFB1 hepatotoxicity.
Collapse
Affiliation(s)
- Yilong Cui
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Qi Wang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yun Shi
- Tongliao City Animal Quarantine Technical Service Center, Tongliao 028000, China
| | - Yang Dai
- Tongliao Agriculture and Animal Husbandry Bureau, Tongliao 028000, China
| | - Yanfen Liu
- Institute of Animal Husbandry and Veterinary Medicine, Liaoning Agricultural Vocational and Technical College, Yingkou 115009, China.
| |
Collapse
|
47
|
Chen M, Wen J, Qiu Y, Gao X, Zhang J, Lin Y, Wu Z, Lin X, Zhu A. Combining Multiple Omics with Molecular Dynamics Reveals SCP2-Mediated Cytotoxicity Effects of Aflatoxin B1 in SW480 Cells. Toxins (Basel) 2024; 16:375. [PMID: 39330833 PMCID: PMC11435460 DOI: 10.3390/toxins16090375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/12/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
Aflatoxins belong to a class of mycotoxins, among which aflatoxin B1 (AFB1) has detrimental effects on the health of both animals and humans. It is associated with long-term exposure-induced carcinogenicity, hepatotoxicity, renal toxicity, neurotoxicity, and immunosuppressive properties, resulting in a variety of diseases. The intestine is the first barrier for human exposure to AFB1, but limited investigations have been conducted to clarify the underlying mechanisms of intestinal cytotoxicity. The mechanism of AFB1-induced cytotoxicity was investigated in this study using an integrated approach combining transcriptome, proteome, and metabolome analysis along with molecular dynamics simulation. After exposing SW480 cells to 50 μM AFB1 for 72 h, the transcriptome, proteome, and metabolome exhibited significant enrichment in pathways associated with oxidative stress, fatty acid and lipid metabolism, and glutathione metabolism. The experimental results demonstrated that AFB1 significantly reduces SW480 cells viability, and induces oxidative stress, calcium overload, mitochondrial damage, and lipid metabolism disorders.
Collapse
Affiliation(s)
- Mengting Chen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou 350108, China
| | - Jiaxin Wen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou 350108, China
| | - Yiyan Qiu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou 350108, China
- Jimei District Center for Disease Control and Prevention, Xiamen 361022, China
| | - Xinyue Gao
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou 350108, China
| | - Jian Zhang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou 350108, China
- School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Yifan Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou 350108, China
| | - Zekai Wu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou 350108, China
| | - Xiaohuang Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou 350108, China
| | - An Zhu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou 350108, China
- School of Public Health, Fujian Medical University, Fuzhou 350108, China
| |
Collapse
|
48
|
Pan M, Hu X, Gao R, Zhou B, Sun J, Zhang D, Liu X, Wang Y, Wang S. Fluorescent solid-state strips based on SiO 2 shell-stabilized perovskite nanocrystals applying for magnetic aptasensing detection of aflatoxin B 1 toxin in food. Food Chem 2024; 449:139316. [PMID: 38615633 DOI: 10.1016/j.foodchem.2024.139316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
In this work, the perovskite fluorescent nanocrystals (CsPbBr3) were successfully synthesized and wrapped with SiO2 shell, utilized for the assembly of solid-state detection strip capable of conveniently and specifically detection of aflatoxin B1 (AFB1). The SiO2 coating aimed to enhance the stability of CsPbBr3 nanocrystals. The resulting CsPbBr3@SiO2 material exhibited remarkable fluorescence properties, and further self-assembled onto solid-state plate, generating AFB1-specific quenched fluorescence at a specific wavelength of 515 nm. When combined with the capture of AFB1 by magnetic nanoparticles conjugated with aptamers (MNPs-Apt), it was achieved the good separation and specific detection of AFB1 toxin in food matrices. The constructed fluorescent solid-state detection strip based on CsPbBr3@SiO2 exhibited good response to AFB1 toxin within a linear range of 0.1-100 ng mL-1 and an impressive detection limit as low as 0.053 ng mL-1. This presents a new strategy for the rapid screening and convenient detection of highly toxic AFB1.
Collapse
Affiliation(s)
- Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xiaochun Hu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Rui Gao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Boxi Zhou
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jingming Sun
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Dan Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xuan Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yixin Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
49
|
Cao LQ, Xie Y, Fleishman JS, Liu X, Chen ZS. Hepatocellular carcinoma and lipid metabolism: Novel targets and therapeutic strategies. Cancer Lett 2024; 597:217061. [PMID: 38876384 DOI: 10.1016/j.canlet.2024.217061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/10/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Hepatocellular carcinoma (HCC) is an increasingly prevalent disease that is associated with high and continually rising mortality rates. Lipid metabolism holds a crucial role in the pathogenesis of HCC, in which abnormalities pertaining to the delicate balance of lipid synthesis, breakdown, and storage, predispose for the pathogenesis of the nonalcoholic fatty liver disease (NAFLD), a disease precursor to HCC. If caught early enough, HCC treatment may be curative. In later stages, treatment is only halting the inevitable outcome of death, boldly prompting for novel drug discovery to provide a fighting chance for this patient population. In this review, we begin by providing a summary of current local and systemic treatments against HCC. From such we discuss hepatic lipid metabolism and highlight novel targets that are ripe for anti-cancer drug discovery. Lastly, we provide a targeted summary of current known risk factors for HCC pathogenesis, providing key insights that will be essential for rationalizing future development of anti-HCC therapeutics.
Collapse
Affiliation(s)
- Lu-Qi Cao
- Institute for Biotechnology, St. John's University, New York, NY, 11439, USA; College of Pharmacy and Health Sciences, St. John's University, New York, NY, 11439, USA
| | - Yuhao Xie
- College of Pharmacy and Health Sciences, St. John's University, New York, NY, 11439, USA
| | - Joshua S Fleishman
- College of Pharmacy and Health Sciences, St. John's University, New York, NY, 11439, USA
| | - Xuan Liu
- Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518034, China.
| | - Zhe-Sheng Chen
- Institute for Biotechnology, St. John's University, New York, NY, 11439, USA; College of Pharmacy and Health Sciences, St. John's University, New York, NY, 11439, USA.
| |
Collapse
|
50
|
Penagos-Tabares F, Mahmood M, Sulyok M, Rafique K, Khan MR, Zebeli Q, Krska R, Metzler-Zebeli B. Outbreak of aflatoxicosis in a dairy herd induced depletion in milk yield and high abortion rate in Pakistan. Toxicon 2024; 246:107799. [PMID: 38866254 DOI: 10.1016/j.toxicon.2024.107799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/21/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
This case report investigated the outbreak of aflatoxicosis in a dairy herd in Pakistan, which resulted in 30 abortions of 40 confirmed (75%) pregnant cows in a period of 35 days and in 18.8% depression of farm average milk production for the entire herd. The analysis of the concentrate feed of the total mixed ration (TMR), using enzyme-linked immunosorbent assay (ELISA) procedures from two different local laboratories, indicated concentrations of 60 μg/kg dry matter (DM) of aflatoxin B1 (AFB1) and 100 μg/kg DM of total aflatoxins (AFs: sum of B1, B2, G1 and G2). Subsequently, a confirmatory analysis with a more sensitive and validated multi-metabolite liquid chromatography-tandem mass spectrometric (LC-MS/MS) method was performed. This analysis detected a concentration of total AFs in the TMR of 166 μg/kg DM ± 3.5 (AFB1:134, AFB2:17.4 and AFM1:14.9 μg/kg DM). The concentrate feed (55% of the TMR DM) was confirmed as a source of contamination, presenting a concentration >29 times higher than the EU-maximum limit value (5.68 μg/kg DM). Additionally, the multi-mycotoxin analysis evidenced the co-occurrence of 81 other toxic and potentially toxic fungal metabolites in the fed TMR. After replacing the contaminated concentrate feed with feedstuffs of the same formulation but from a new charge of ingredients, the abortion episodes ceased, and milk production increased significantly. In conclusion, the data of this case report suggest that AFs may be associated with pregnancy losses in dairy cattle and milk production depression. From the public health perspective, the data also indicate the need for a more careful examination of dairy animal feed in Pakistan. Since the high concentration of AFB1 detected in feed and considering the literature-reported transfer rates (1-6%) of this toxin to AFM1 (carcinogen for humans) in milk, the milk produced during the outbreak period is expected to be contaminated with AFM1, which raises public health concerns.
Collapse
Affiliation(s)
- Felipe Penagos-Tabares
- Unit Nutritional Physiology, Centre for Veterinary Systems Transformation and Sustainability, Clinical Department of Farm Animals and Food System Science, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria; CIBAV Research Group, Veterinary Medicine School, Faculty of Agrarian Sciences, Universidad de Antioquia, UdeA, Medellín, 050034, Colombia.
| | - Mubarik Mahmood
- Department of Animal Sciences, University of Veterinary and Animal Sciences Lahore, Subcampus Jhang, 12 km Chiniot Road, 35200, Jhang, Punjab, Pakistan
| | - Michael Sulyok
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, Konrad-Lorenz-Strasse 20, 3430, Tulln an der Donau, Austria
| | - Kanwal Rafique
- Department of Animal Sciences, University of Veterinary and Animal Sciences Lahore, Subcampus Jhang, 12 km Chiniot Road, 35200, Jhang, Punjab, Pakistan
| | - Muhammad Rizwan Khan
- Punjab Wildlife and Parks Department, Safari Zoo, Safari Road, Lahore, Punjab, Pakistan
| | - Qendrim Zebeli
- Center for Animal Nutrition and Welfare, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine, Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Rudolf Krska
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, Konrad-Lorenz-Strasse 20, 3430, Tulln an der Donau, Austria; Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT7 1NN, UK
| | - Barbara Metzler-Zebeli
- Unit Nutritional Physiology, Centre for Veterinary Systems Transformation and Sustainability, Clinical Department of Farm Animals and Food System Science, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| |
Collapse
|