1
|
Liu L, Jiang Q, Du C, Yang T, Zhou L, Chen J, Gu L, Wang Q, Wang Z, Wang H, Wang L. Ankrd1 regulates endogenous cardiac regeneration in mice by modulating cyclin D1. Eur J Pharmacol 2024; 983:177005. [PMID: 39299480 DOI: 10.1016/j.ejphar.2024.177005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Restoration of the expression of factors regulating neonatal heart regeneration in the adult heart can promote myocardial repair. Therefore, investigations of the regulatory factors that play key roles in neonatal heart regeneration are urgently needed for the development of cardiac regenerative therapies. In our previous study, we identified ankyrin repeat domain 1 (Ankrd1) through multiomics analysis in a neonatal mouse model of cardiac regeneration and hypothesized that Ankrd1 plays a regulatory role in neonatal heart regeneration. In the present study, we aimed to determine the role of Ankrd1 in neonatal heart regeneration and adult myocardial repair. Our findings confirmed that Ankrd1 could mediate cardiomyocyte proliferation and that Ankrd1 knockdown in cardiomyocytes inhibited myocardial regeneration after apical resection in neonatal mice. Furthermore, we found that cardiomyocyte-specific Ankrd1 overexpression promoted cardiac repair and cardiac function recovery after adult myocardial infarction (MI). Mechanistically, Ankrd1 could regulate the cell cycle of cardiomyocytes and significantly mediate cardiac regeneration, at least in part, through cyclin D1. Overall, our study demonstrates that Ankrd1 is an effective target for achieving cardiac repair after MI, providing new ideas for the treatment of ischemic heart disease in the future.
Collapse
Affiliation(s)
- Liu Liu
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Qiqi Jiang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chong Du
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tongtong Yang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Liuhua Zhou
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jiawen Chen
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Lingfeng Gu
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Qiming Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zemu Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hao Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Liansheng Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
2
|
Peng Z, Wei G, Huang P, Matta H, Gao W, An P, Zhao S, Lin Y, Tan L, Vaid K, Skelton-Badlani D, Nasser I, Budas G, Lopez D, Li L, Breckenridge D, Myers R, McHutchison J, Kuang M, Popov YV. ASK1/ p38 axis inhibition blocks the release of mitochondrial "danger signals" from hepatocytes and suppresses progression to cirrhosis and liver cancer. Hepatology 2024; 80:346-362. [PMID: 38377458 PMCID: PMC11477174 DOI: 10.1097/hep.0000000000000801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/14/2023] [Indexed: 02/22/2024]
Abstract
BACKGROUND AND AIMS Apoptosis Signal-regulating Kinase 1 (ASK1) is activated by various pathological stimuli and induces cell apoptosis through downstream p38 activation. We studied the effect of pharmacological ASK1 inhibition on cirrhosis and its sequelae using comprehensive preclinical in vivo and in vitro systems. APPROACH AND RESULTS Short-term (4-6 wk) and long-term (24-44 wk) ASK1 inhibition using small molecule GS-444217 was tested in thioacetamide-induced and BALB/c. Mdr2-/- murine models of cirrhosis and HCC, and in vitro using primary hepatocyte cell death assays. Short-term GS-444217 therapy in both models strongly reduced phosphorylated p38, hepatocyte death, and fibrosis by up to 50%. Profibrogenic release of mitochondrial DAMP mitochondrial deoxyribonucleic acid from dying hepatocytes was blocked by ASK1 or p38 inhibition. Long-term (24 wk) therapy in BALBc.Mdr2 - / - model resulted in a moderate 25% reduction in bridging fibrosis, but not in net collagen deposition. Despite this, the development of cirrhosis was effectively prevented, with strongly reduced p21 + hepatocyte staining (by 72%), serum ammonia levels (by 46%), and portal pressure (average 6.07 vs. 8.53 mm Hg in controls). Extended ASK1 inhibition for 44 wk in aged BALB/c. Mdr2-/- mice resulted in markedly reduced tumor number and size by ~50% compared to the control group. CONCLUSIONS ASK1 inhibition suppresses the profibrogenic release of mitochondrial deoxyribonucleic acid from dying hepatocytes in a p38-dependent manner and protects from liver fibrosis. Long-term ASK1 targeting resulted in diminished net antifibrotic effect, but the progression to liver cirrhosis and cancer in BALBc/ Mdr2- / - mice was effectively inhibited. These data support the clinical evaluation of ASK1 inhibitors in fibrotic liver diseases.
Collapse
Affiliation(s)
- Zhenwei Peng
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Guangyan Wei
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Pinzhu Huang
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Heansika Matta
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Wen Gao
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ping An
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Shuangshuang Zhao
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Yi Lin
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Li Tan
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Center of Hepatopbiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kahini Vaid
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Disha Skelton-Badlani
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Imad Nasser
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Grant Budas
- Gilead Sciences, Inc., Foster City, California, USA
| | - David Lopez
- Gilead Sciences, Inc., Foster City, California, USA
| | - Li Li
- Gilead Sciences, Inc., Foster City, California, USA
| | | | - Rob Myers
- Gilead Sciences, Inc., Foster City, California, USA
| | | | - Ming Kuang
- Center of Hepatopbiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Division of Interventional Ultrasound, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yury V Popov
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Gholizadeh M, Łapczuk-Romańska J, Post M, Komaniecka N, Mazlooman SR, Kaderali L, Droździk M. A Mixture Method for Robust Detection HCV Early Diagnosis Biomarker with ML Approach and Molecular Docking. Int J Mol Sci 2023; 24:ijms24087207. [PMID: 37108370 PMCID: PMC10138470 DOI: 10.3390/ijms24087207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Given the substantial correlation between early diagnosis and prolonged patient survival in HCV patients, it is vital to identify a reliable and accessible biomarker. The purpose of this research was to identify accurate miRNA biomarkers to aid in the early diagnosis of HCV and to identify key target genes for anti-hepatic fibrosis therapeutics. The expression of 188 miRNAs in 42 HCV liver patients with different functional states and 23 normal livers were determined using RT-qPCR. After screening out differentially expressed miRNA (DEmiRNAs), the target genes were predicted. To validate target genes, an HCV microarray dataset was subjected to five machine learning algorithms (Random Forest, Adaboost, Bagging, Boosting, XGBoost) and then, based on the best model, importance features were selected. After identification of hub target genes, to evaluate the potency of compounds that might hit key hub target genes, molecular docking was performed. According to our data, eight DEmiRNAs are associated with early stage and eight DEmiRNAs are linked to a deterioration in liver function and an increase in HCV severity. In the validation phase of target genes, model evaluation revealed that XGBoost (AUC = 0.978) outperformed the other machine learning algorithms. The results of the maximal clique centrality algorithm determined that CDK1 is a hub target gene, which can be hinted at by hsa-miR-335, hsa-miR-140, hsa-miR-152, and hsa-miR-195. Because viral proteins boost CDK1 activation for cell mitosis, pharmacological inhibition may have anti-HCV therapeutic promise. The strong affinity binding of paeoniflorin (-6.32 kcal/mol) and diosmin (-6.01 kcal/mol) with CDK1 was demonstrated by molecular docking, which may result in attractive anti-HCV compounds. The findings of this study may provide significant evidence, in the context of the miRNA biomarkers, for early-stage HCV diagnosis. In addition, recognized hub target genes and small molecules with high binding affinity may constitute a novel set of therapeutic targets for HCV.
Collapse
Affiliation(s)
- Maryam Gholizadeh
- Institute for Bioinformatics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Joanna Łapczuk-Romańska
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Mariola Post
- Department of General and Transplantation Surgery, County Hospital, 71-455 Szczecin, Poland
| | - Nina Komaniecka
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Seyed Reza Mazlooman
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Lars Kaderali
- Institute for Bioinformatics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Marek Droździk
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, 70-111 Szczecin, Poland
| |
Collapse
|
4
|
Exploring the Multicomponent Synergy Mechanism of Yinzhihuang Granule in Inhibiting Inflammation-Cancer Transformation of Hepar Based on Integrated Bioinformatics and Network Pharmacology. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6213865. [PMID: 35342754 PMCID: PMC8956385 DOI: 10.1155/2022/6213865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 02/12/2022] [Accepted: 02/28/2022] [Indexed: 12/21/2022]
Abstract
Background The Chinese patent drug Yinzhihuang granule (YZHG) is used to treat hepatitis B. This research is aimed at exploring the multicomponent synergistic mechanism of YZHG in the treatment of inflammation-cancer transformation of hepar and at providing new evidence and insights for its clinical application. Methods To retrieve the components and targets of Yinzhihuang granules. The differentially expressed genes (DEGs) of hepar inflammation-cancer transformation were obtained from TTD, PharmGKB, and GEO databases. Construct the compound-prediction target network and the key module network using Cytoscape 3.7.1. Results The results show that hepatitis B and hepatitis C shared a common target, MMP2. CDK1 and TOP2A may play an important role in the treatment with YZHG in hepatitis B inflammatory cancer transformation. KEGG pathway enrichment showed that key genes of modules 1, 2, and 4 were mainly enriched in the progesterone-mediated oocyte maturation signaling pathway and oocyte meiosis signaling pathway. Conclusion The multicomponent, multitarget, and multichannel pharmacological benefits of YZHG in the therapy of inflammation-cancer transition of hepar are directly demonstrated by network pharmacology, providing a scientific basis for its mechanism.
Collapse
|
5
|
Yan Y, Tang YD, Zheng C. When cyclin-dependent kinases meet viral infections, including SARS-CoV-2. J Med Virol 2022; 94:2962-2968. [PMID: 35288942 PMCID: PMC9088476 DOI: 10.1002/jmv.27719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/18/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022]
Abstract
Cyclin‐dependent kinases (CDKs) are protein kinases that play a key role in cell division and transcriptional regulation. Recent studies have demonstrated the critical roles of CDKs in various viral infections. However, the molecular processes underpinning CDKs' roles in viral infection and host antiviral defense are unknown. This minireview briefly overviews CDKs' functions and highlights the most recent discoveries of CDKs' emerging roles during viral infections, thereby providing a scientific and theoretical foundation for antiviral regulation and shedding light on developing novel drug targets and therapeutic strategies against viral infection.
Collapse
Affiliation(s)
- Yan Yan
- Center of Clinical Laboratory, The Fifth People's Hospital of Wuxi, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yan-Dong Tang
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
6
|
Zolfaghari Emameh R, Nosrati H, Eftekhari M, Falak R, Khoshmirsafa M. Expansion of Single Cell Transcriptomics Data of SARS-CoV Infection in Human Bronchial Epithelial Cells to COVID-19. Biol Proced Online 2020; 22:16. [PMID: 32754004 PMCID: PMC7377208 DOI: 10.1186/s12575-020-00127-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/21/2020] [Indexed: 02/07/2023] Open
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 19 (COVID-19) that was emerged as a new member of coronaviruses since December 2019 in Wuhan, China and then after was spread in all continentals. Since SARS-CoV-2 has shown about 77.5% similarity to SARS-CoV, the transcriptome and immunological regulations of SARS-CoV-2 was expected to have high percentage of overlap with SARS-CoV. Results In this study, we applied the single cell transcriptomics data of human bronchial epithelial cells (2B4 cell line) infected with SARS-CoV, which was annotated in the Expression Atlas database to expand this data to COVID-19. In addition, we employed system biology methods including gene ontology (GO) and Reactome pathway analyses to define functional genes and pathways in the infected cells with SARS-CoV. The transcriptomics analysis on the Expression Atlas database revealed that most genes from infected 2B4 cell line with SARS-CoV were downregulated leading to immune system hyperactivation, induction of signaling pathways, and consequently a cytokine storm. In addition, GO:0016192 (vesicle-mediated transport), GO:0006886 (intracellular protein transport), and GO:0006888 (ER to Golgi vesicle-mediated transport) were shown as top three GOs in the ontology network of infected cells with SARS-CoV. Meanwhile, R-HAS-6807070 (phosphatase and tensin homolog or PTEN regulation) showed the highest association with other Reactome pathways in the network of infected cells with SARS-CoV. PTEN plays a critical role in the activation of dendritic cells, B- and T-cells, and secretion of proinflammatory cytokines, which cooperates with downregulated genes in the promotion of cytokine storm in the COVID-19 patients. Conclusions Based on the high similarity percentage of the transcriptome of SARS-CoV with SARS-CoV-2, the data of immunological regulations, signaling pathways, and proinflammatory cytokines in SARS-CoV infection can be expanded to COVID-19 to have a valid platform for future pharmaceutical and vaccine studies.
Collapse
Affiliation(s)
- Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran
| | - Hassan Nosrati
- Department of Materials Engineering, Tarbiat Modares University, Tehran, Iran
| | - Mahyar Eftekhari
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran
| | - Reza Falak
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Immunology Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Khoshmirsafa
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Immunology Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
He F, Xiao Z, Yao H, Li S, Feng M, Wang W, Liu Z, Liu Z, Wu J. The protective role of microRNA-21 against coxsackievirus B3 infection through targeting the MAP2K3/P38 MAPK signaling pathway. J Transl Med 2019; 17:335. [PMID: 31585536 PMCID: PMC6778380 DOI: 10.1186/s12967-019-2077-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 09/21/2019] [Indexed: 12/15/2022] Open
Abstract
Background The P38 mitogen-activated protein kinase (MAPK) pathway plays an essential role in CVB3-induced diseases. We previously demonstrated microRNA-21 has potential inhibitory effect on the MAP2K3 which locates upstream of P38 MAPK and was upregulated in mouse hearts upon CVB3 infection. However, the effect and underlying mechanism of miRNA-21 on CVB3 infection remain unclear. Methods We detected continuous changes of cellular miRNA-21 and P38 MAPK proteins expression profiling post CVB3 infection in vitro within 12 h. P38 MAPK signaling was inhibited by the specific inhibitor, small interfering RNA and miRNA-21 mimic in vitro, CVB3 replication, cell apoptosis rate and proliferation were detected. Viral load in the mice heart, cardiomyocyte apoptosis rate and histological of the heart were also detected in the mice model of viral myocarditis pretreated with miRNA-21-lentivirus. Results We observed significant upregulation of miRNA-21 expression followed by suppression of the MAP2K3/P38 MAPK signaling in CVB3-infected Hela cells. The inactivation of the MAP2K3/P38 MAPK signaling by P38 MAPK specific inhibitor, small interfering RNA against MAP2K3, or miRNA-21 overexpression significantly inhibited viral progeny release from CVB3-infected cells. Mechanistically, when compared with control miRNA, miRNA-21 showed no effect on capsid protein VP1 expression and viral load within host cells, while significantly reversing CVB3-induced caspase-3 activation and cell apoptosis rate, further promoting proliferation of infected cells, which indicates the inhibitory effect of miRNA-21 on CVB3 progeny release. In the in vivo study, when compared with control miRNA, miRNA-21 pretreatment remarkably inactivated the MAP2K3/P38 MAPK signaling in mice and protected them against CVB3 infection as evidenced by significantly alleviated cell apoptosis rate, reduced viral titers, necrosis in the heart as well as by remarkably prolonged survival time. Conclusions miRNA-21 were reverse correlated with P38 MAPK activation post CVB3 infection, miRNA-21 overexpression significantly inhibited viral progeny release and decreased myocytes apoptosis rate in vitro and in vivo, suggesting that miRNA-21 may serve as a potential therapeutic agent against CVB3 infection through targeting the MAP2K3/P38 MAPK signaling.
Collapse
Affiliation(s)
- Feng He
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics-Peking University Teaching Hospital, YaBao Road 2, Beijing, 100020, China
| | - Zonghui Xiao
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, YaBao Road 2, Beijing, 100020, China
| | - Hailan Yao
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, YaBao Road 2, Beijing, 100020, China
| | - Sen Li
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, YaBao Road 2, Beijing, 100020, China
| | - Miao Feng
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, YaBao Road 2, Beijing, 100020, China
| | - Wei Wang
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, YaBao Road 2, Beijing, 100020, China
| | - Zhewei Liu
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, YaBao Road 2, Beijing, 100020, China
| | - Zhuo Liu
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, YaBao Road 2, Beijing, 100020, China.
| | - Jianxin Wu
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics-Peking University Teaching Hospital, YaBao Road 2, Beijing, 100020, China. .,Department of Biochemistry & Immunology, Capital Institute of Pediatrics, YaBao Road 2, Beijing, 100020, China.
| |
Collapse
|
8
|
Wu Y, Yao N, Feng Y, Tian Z, Yang Y, Zhao Y. Identification and characterization of sexual dimorphism‑linked gene expression profile in hepatocellular carcinoma. Oncol Rep 2019; 42:937-952. [PMID: 31322260 PMCID: PMC6667920 DOI: 10.3892/or.2019.7217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 06/26/2019] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is sexually disparate in humans, with a significantly increased prevalence in males. The molecular mechanisms by which the inhibition or development of liver cancer are facilitated require further investigation with regard to sex factors affecting disease progression. In the present study, functional signatures of differentially expressed genes (DEGs) were screened in female and male tumors via bioinformatics analysis. The following gene chip expression profiles were downloaded from the Gene Expression Omnibus: GSE19665, GSE23342 and GSE9843. They comprised cancerous and non-cancerous tissue from patients with HCC and included critical sex features. Further evaluation of selected DEGs in the two sexual groups was performed via hierarchical clustering analysis. Venn diagram and functional protein-protein interaction (PPI) network analyses were performed. Survival analysis of patients with differences in gene expression levels was subsequently performed using the Kaplan-Meier Plotter database. Certain identified DEGs were common in female and male tumor samples, whereas others exhibited a sexually-biased expression profile. Gene Ontology revealed that the cell cycle module ‘biological process’ was enriched in tumors derived from both sexes, whereas the metabolic pathways and drug metabolism modules were only significantly enriched in cancer tissues from male subjects. A number of hub DEGs in the cell cycle and p53 signaling pathways were involved in significant protein-protein interaction (PPI) modules, including CDK1 and CCNB1. These DEGs were upregulated in tumors derived from female subjects compared with those derived from male subjects, and could be used as markers of poor prognosis in male patients. Other genes, such as CYP3A4 and SERPINA4, were identified in metabolic pathways, and were downregulated in male compared with female subjects. These genes were associated with a decreased survival rate. The data demonstrated that sex differences in physiology may regulate the levels of gene expression and/or activity, including gene function associated with oncogenesis and the outcomes of liver cancer. Additional surveys are required to explore in detail the molecular mechanisms underlying the differences in gene expression between the two sexes during the development of liver cancer.
Collapse
Affiliation(s)
- Yuchao Wu
- Department of Infectious Diseases, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Naijuan Yao
- Department of Infectious Diseases, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yali Feng
- Department of Infectious Diseases, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Zhen Tian
- Department of Infectious Diseases, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yuan Yang
- Department of Infectious Diseases, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yingren Zhao
- Department of Infectious Diseases, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
9
|
Hepatocarcinogenesis associated with hepatitis B, delta and C viruses. Curr Opin Virol 2016; 20:1-10. [PMID: 27504999 DOI: 10.1016/j.coviro.2016.07.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 07/20/2016] [Accepted: 07/20/2016] [Indexed: 12/13/2022]
Abstract
Globally, over half a billion people are persistently infected with hepatitis B (HBV) and/or hepatitis C viruses. Chronic HBV and HCV infection frequently lead to fibrosis, cirrhosis and hepatocellular carcinoma (HCC). Co-infections with hepatitis delta virus (HDV), a subviral satellite requiring HBV for its propagation, accelerates the progression of liver disease toward HCC. The mechanisms by which these viruses cause malignant transformation, culminating in HCC, remain incompletely understood, partially due to the lack of adequate experimental models for dissecting these complex disease processes in vivo.
Collapse
|
10
|
Moon J, Kaowinn S, Cho IR, Min DS, Myung H, Oh S, Kaewpiboon C, Kraemer OH, Chung YH. Hepatitis C virus core protein enhances hepatocellular carcinoma cells to be susceptible to oncolytic vesicular stomatitis virus through down-regulation of HDAC4. Biochem Biophys Res Commun 2016; 474:428-434. [PMID: 27150631 DOI: 10.1016/j.bbrc.2016.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 05/01/2016] [Indexed: 11/18/2022]
Abstract
Since hepatitis C virus (HCV) core protein is known to possess potential oncogenic activity, we explored whether oncolytic vesicular stomatitis virus (VSV) could efficiently induce cytolysis in hepatocellular carcinoma cells stably expressing HCV core protein (Hep3B-Core). We found that Hep3B-Core cells were more susceptible to VSV as compared to control (Hep3B-Vec) cells owing to core-mediated inactivation of STAT1 and STAT2 proteins. Core expression induced lower phosphorylation levels of type I IFN signaling proteins such as Tyk2 and Jak1, and a reduced response to exogenous IFN-α, which resulted in susceptibility to VSV. Furthermore, as STAT1 acetylation by switching phosphorylation regulated its activity, the role of STAT1 acetylation in susceptibility of Hep3B-Core cells to VSV was investigated. Treatment with trichostatin A, an inhibitor of histone deacetylase (HDAC), increased STAT1 acetylation but blocked IFN-α-induced phosphorylation of STAT1, leading to increase of susceptibility to VSV. Interestingly, the core protein decreased HDCA4 transcript levels, leading to down-regulation of HDAC4 protein. However, ectopic expression of HDAC4 conversely enforced phosphorylation of STAT1 and hindered VSV replication, indicating that core-mediated reduction of HDAC4 provides a suitable intracellular circumstance for VSV replication. Collectively, we suggest that VSV treatment will be a useful therapeutic strategy for HCV-infected hepatocellular carcinoma cells because HCV core protein suppresses the anti-viral threshold by down-regulation of the STAT1-HDAC4 signaling axis.
Collapse
Affiliation(s)
- Jeong Moon
- BK21+, Department of Cogno-Mechatronics Engineering, Republic of Korea
| | - Sirichat Kaowinn
- BK21+, Department of Cogno-Mechatronics Engineering, Republic of Korea
| | - Il-Rae Cho
- BK21+, Department of Cogno-Mechatronics Engineering, Republic of Korea
| | - Do Sik Min
- Department of Molecular Biology, Pusan National University, Busan, 609-735, Republic of Korea
| | - Heejoon Myung
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Yong-In, 449-791, Republic of Korea
| | - Sangtaek Oh
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, 136-702, Republic of Korea
| | - Chutima Kaewpiboon
- Department of Biology, Faculty of Science, Thakshin University, Phatthalung, 93210, Thailand
| | - Olive H Kraemer
- Center for Molecular Biomedicine, Department of Biochemistry, University of Jena, Jena, 07745, Germany
| | - Young-Hwa Chung
- BK21+, Department of Cogno-Mechatronics Engineering, Republic of Korea.
| |
Collapse
|
11
|
Dynamical Regulation Analysis Identifies Molecular Mechanisms of Fuzheng-Huayu Formula against Hepatitis B-Caused Liver Cirrhosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015. [PMID: 26221171 PMCID: PMC4499400 DOI: 10.1155/2015/238495] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fuzheng-Huayu (FZHY) tablet was formulated based on Chinese medicine theory in treating liver fibrosis. A clinical trial has indicated that FZHY can against hepatitis B-caused liver cirrhosis (HBC), but the underlying mechanism of FZHY efficacy is unclear. Here, we report that miRNA expression levels are remarkably changed when FZHY formula was used in HBC patient's treatment as a paradigm of trials. Then, we functionally characterize the significant impact of potential kernel miRNAs by miRNA-target network analysis. Enrichment analysis show that the FZHY formula dramatically effecting the molecular regulated module in HBC. Thus, we infer that FZHY plays a critical function in HBC treatment process and directly regulated many important pathways, including but not limited to cell cycle, p53 signaling pathway, and TGF-β signaling pathway, suggesting a new strategy for investigating the molecular mechanism of FZHY treatment.
Collapse
|
12
|
Xun M, Ma CF, Du QL, Ji YH, Xu JR. Differential expression of miRNAs in enterovirus 71-infected cells. Virol J 2015; 12:56. [PMID: 25889836 PMCID: PMC4416288 DOI: 10.1186/s12985-015-0288-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 03/24/2015] [Indexed: 12/17/2022] Open
Abstract
Background Enterovirus 71 (EV71) is one of the major etiological pathogens of hand, foot and mouth disease (HFMD) and can cause severe cerebral and pulmonary complications and even fatality. MicroRNAs (miRNAs), a class of small non-coding RNA molecules, play an important role in post-transcriptional regulation of gene expression and thereby influencing various physiological and pathological processes. Increasing evidence suggests that miRNAs act as key effector molecules in the complicated pathogen-host interactions. However, the roles of miRNAs in EV71 infection and pathogenesis are not well understood. Methods To identify special miRNAs involved in EV71 infection, a microarray assay was performed to study the expression pattern of miRNAs in EV71-infected human rhabdomyosarcoma cells (RD cells) and uninfected RD cells. We further predicted the putative target genes for the dysregulated miRNAs using the online bioinformatic algorithms (TargetScan, miRanda and PicTar) and carried out functional annotation including GO enrichment and KEGG pathway analysis for miRNA predicted targets. Then, the results of microarray were further confirmed by quantitative RT-PCR. Results Totally, 45 differentially expressed miRNAs ware identified by microarray, among which 36 miRNAs were up-regulated and 9 were down-regulated. 7166 predicted target genes for the dysregulated miRNAs were revealed by using TargetScan in conjunction with miRanda and PicTar. The GO annotation suggested that predicted targets of miRNAs were enriched into the category of signal transduction, regulation of transcription, metabolic process, protein phosphorylation, apoptotic process and immune response. KEGG pathway analysis suggested that these predicted target genes were involved in many important pathways, mainly including endocytosis and focal adhesion, MAPK signaling pathway, hypertrophic cardiomyopathy, melanogenesis and ErbB signaling pathway. The expression levels of 8 most differentially up-regulated miRNAs and 3 most differentially down-regulated miRNAs were confirmed by qRT-PCR. The expressions of hsa-miR-4530, hsa-miR-4492, hsa-miR-6125, hsa-miR-494-3p, hsa-miR-638, hsa-miR-6743-5p, hsa-miR-4459 and hsa-miR-4443 detected by qRT-PCR were consistent with the microarray data. Conclusion These results might extend our understanding to the regulatory mechanism of miRNAs underlying the pathogenesis of EV71 infection, thus strengthening the preventative and therapeutic strategies of HFMD caused by EV71.
Collapse
Affiliation(s)
- Meng Xun
- Department of Immunology and Microbiology, Medical School of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Chao-Feng Ma
- Department of Viral Diseases Laboratory, Xi'an Center for Disease Control and Prevention, Xi'an, 710054, Shaanxi, China.
| | - Quan-Li Du
- Department of Viral Diseases Laboratory, Xi'an Center for Disease Control and Prevention, Xi'an, 710054, Shaanxi, China.
| | - Yan-Hong Ji
- Department of Immunology and Microbiology, Medical School of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Ji-Ru Xu
- Department of Immunology and Microbiology, Medical School of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
13
|
Wang Y, Chen X, Chen X, Chen Q, Huo K. Transcriptional profiling and dynamical regulation analysis identify potential kernel target genes of SCYL1-BP1 in HEK293T cells. Mol Cells 2014; 37:691-8. [PMID: 25234469 PMCID: PMC4179138 DOI: 10.14348/molcells.2014.0184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/11/2014] [Accepted: 08/13/2014] [Indexed: 01/24/2023] Open
Abstract
SCYL1-BP1 is thought to function in the p53 pathway through Mdm2 and hPirh2, and mutations in SCYL1-BP1 are associated with premature aging syndromes such as Geroderma Osteodysplasticum; however, these mechanisms are unclear. Here, we report significant alterations in miRNA expression levels when SCYL1-BP1 expression was inhibited by RNA interference in HEK293T cells. We functionally characterized the effects of potential kernel miRNA-target genes by miRNA-target network and protein-protein interaction network analysis. Importantly, we showed the diminished SCYL1-BP1 dramatically reduced the expression levels of EEA1, BMPR2 and BRCA2 in HEK293T cells. Thus, we infer that SCYL1-BP1 plays a critical function in HEK293T cell development and directly regulates miRNA-target genes, including, but not limited to, EEA1, BMPR2, and BRCA2, suggesting a new strategy for investigating the molecular mechanism of SCYL1-BP1.
Collapse
Affiliation(s)
- Yang Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Xiaomei Chen
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Xiaojing Chen
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Qilong Chen
- Research Center for TCM Complexity System, Shanghai University of TCM, Shanghai 201203, China
| | - Keke Huo
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
14
|
Peng H, Shi M, Zhang L, Li Y, Sun J, Zhang L, Wang X, Xu X, Zhang X, Mao Y, Ji Y, Jiang J, Shi W. Activation of JNK1/2 and p38 MAPK signaling pathways promotes enterovirus 71 infection in immature dendritic cells. BMC Microbiol 2014; 14:147. [PMID: 24906853 PMCID: PMC4057572 DOI: 10.1186/1471-2180-14-147] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/30/2014] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND c-Jun NH2-terminal kinase/stress-activated kinase (JNK/SAPK) and the p38 mitogen-activated protein kinase (p38 MAPK) are important components of cellular signal transduction pathways, which have been reported to be involved in viral replication. However, little is known about JNK1/2 and p38 MAPK signaling pathways in enterovirus 71 (EV71)-infected immature dendritic cells (iDCs). Thus, iDCs were induced from peripheral blood mononuclear cells (PBMC) and performed to explore the expressions and phosphorylation of molecules in the two signaling pathways as well as secretions of inflammatory cytokines and interferons during EV71 replication. RESULTS We showed that EV71 infection could activate both JNK1/2 and p38 MAPK in iDCs and phosphorylate their downstream transcription factors c-Fos and c-Jun, which further promoted the production of IL-2, IL-6, IL-10, and TNF-α. Moreover, EV71 infection also increased the release of IFN-β and IL-12 p40. Pretreatment of iDCs with SP600125 and SB203580 (20 μM) could severely impair viral replication and its induced phosphorylation of JNK1/2,p38 MAPK, c-Fos and c-Jun. In addition, treatment of EV71-infected iDCs with SP600125 and SB203580 could inhibit secretions of IL-6, IL-10 and TNF-α. CONCLUSION JNK1/2 and p38 MAPK signaling pathways are beneficial to EV71 infection and positively regulate secretions of inflammatory cytokines in iDCs.
Collapse
Affiliation(s)
- Hongjun Peng
- Department of Clinical Laboratory, the Third Affiliated Hospital of Suzhou University, No. 185 Juqian street, Changzhou, Jiangsu 213003, P. R. China
| | - Mei Shi
- Department of Clinical Laboratory, the Third Affiliated Hospital of Suzhou University, No. 185 Juqian street, Changzhou, Jiangsu 213003, P. R. China
| | - Li Zhang
- Department of Clinical Laboratory, the Third Affiliated Hospital of Suzhou University, No. 185 Juqian street, Changzhou, Jiangsu 213003, P. R. China
| | - Yuanyuan Li
- Department of Clinical Laboratory, the Third Affiliated Hospital of Suzhou University, No. 185 Juqian street, Changzhou, Jiangsu 213003, P. R. China
| | - Jing Sun
- Department of Clinical Laboratory, the Third Affiliated Hospital of Suzhou University, No. 185 Juqian street, Changzhou, Jiangsu 213003, P. R. China
| | - Lirong Zhang
- Department of Clinical Laboratory, the Third Affiliated Hospital of Suzhou University, No. 185 Juqian street, Changzhou, Jiangsu 213003, P. R. China
| | - Xiaohui Wang
- Department of Clinical Laboratory, the Third Affiliated Hospital of Suzhou University, No. 185 Juqian street, Changzhou, Jiangsu 213003, P. R. China
| | - Xiaopeng Xu
- Department of Clinical Laboratory, the Third Affiliated Hospital of Suzhou University, No. 185 Juqian street, Changzhou, Jiangsu 213003, P. R. China
| | - Xiaolei Zhang
- Department of Clinical Laboratory, the Third Affiliated Hospital of Suzhou University, No. 185 Juqian street, Changzhou, Jiangsu 213003, P. R. China
| | - Yijie Mao
- Department of Clinical Laboratory, the Third Affiliated Hospital of Suzhou University, No. 185 Juqian street, Changzhou, Jiangsu 213003, P. R. China
| | - Yun Ji
- Department of Clinical Laboratory, the Third Affiliated Hospital of Suzhou University, No. 185 Juqian street, Changzhou, Jiangsu 213003, P. R. China
| | - Jingting Jiang
- Department of Oncology Laboratory, the Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu 213003, China
| | - Weifeng Shi
- Department of Clinical Laboratory, the Third Affiliated Hospital of Suzhou University, No. 185 Juqian street, Changzhou, Jiangsu 213003, P. R. China
| |
Collapse
|
15
|
Hepatitis C virus triggers mitochondrial fission and attenuates apoptosis to promote viral persistence. Proc Natl Acad Sci U S A 2014; 111:6413-8. [PMID: 24733894 DOI: 10.1073/pnas.1321114111] [Citation(s) in RCA: 227] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial dynamics is crucial for the regulation of cell homeostasis. Our recent findings suggest that hepatitis C virus (HCV) promotes Parkin-mediated elimination of damaged mitochondria (mitophagy). Here we show that HCV perturbs mitochondrial dynamics by promoting mitochondrial fission followed by mitophagy, which attenuates HCV-induced apoptosis. HCV infection stimulated expression of dynamin-related protein 1 (Drp1) and its mitochondrial receptor, mitochondrial fission factor. HCV further induced the phosphorylation of Drp1 (Ser616) and caused its subsequent translocation to the mitochondria, followed by mitophagy. Interference of HCV-induced mitochondrial fission and mitophagy by Drp1 silencing suppressed HCV secretion, with a concomitant decrease in cellular glycolysis and ATP levels, as well as enhanced innate immune signaling. More importantly, silencing Drp1 or Parkin caused significant increase in apoptotic signaling, evidenced by increased cytochrome C release from mitochondria, caspase 3 activity, and cleavage of poly(ADP-ribose) polymerase. These results suggest that HCV-induced mitochondrial fission and mitophagy serve to attenuate apoptosis and may contribute to persistent HCV infection.
Collapse
|
16
|
Characteristic Analysis from Excessive to Deficient Syndromes in Hepatocarcinoma Underlying miRNA Array Data. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:324636. [PMID: 24382976 PMCID: PMC3870617 DOI: 10.1155/2013/324636] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Accepted: 11/12/2013] [Indexed: 01/07/2023]
Abstract
Traditional Chinese medicine (TCM) treatment is regarded as a safe and effective method for many diseases. In this study, the characteristics among excessive, excessive-deficient, and deficient syndromes of Hepatocellular carcinoma (HCC) were studied using miRNA array data. We first calculated the differentially expressed miRNAs based on random module t-test and classified three TCM syndromes of HCC using SVM method. Then, the weighted miRNA-target networks were constructed for different TCM syndromes using predicted miRNA targets. Subsequently, the prioritized target genes of upexpression network of TCM syndromes were analyzed using DAVID online analysis. The results showed that there are distinctly different hierarchical cluster and network structure of TCM syndromes in HCC, but the excessive-deficient combination syndrome is extrinsically close to deficient syndrome. GO and pathway analysis revealed that the molecular mechanisms of excessive-deficient and deficient syndromes of HCC are more complex than excessive syndrome. Furthermore, although excessive-deficient and deficient syndromes have similar complex mechanisms, excessive-deficient syndrome is more involved than deficient syndrome in development of cancer process. This study suggested that miRNAs might be important mediators involved in the changing process from excessive to deficient syndromes and could be potential molecular markers for the diagnosis of TCM syndromes in HCC.
Collapse
|
17
|
Lyn RK, Hope G, Sherratt AR, McLauchlan J, Pezacki JP. Bidirectional lipid droplet velocities are controlled by differential binding strengths of HCV core DII protein. PLoS One 2013; 8:e78065. [PMID: 24223760 PMCID: PMC3815211 DOI: 10.1371/journal.pone.0078065] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 09/09/2013] [Indexed: 12/16/2022] Open
Abstract
Host cell lipid droplets (LD) are essential in the hepatitis C virus (HCV) life cycle and are targeted by the viral capsid core protein. Core-coated LDs accumulate in the perinuclear region and facilitate viral particle assembly, but it is unclear how mobility of these LDs is directed by core. Herein we used two-photon fluorescence, differential interference contrast imaging, and coherent anti-Stokes Raman scattering microscopies, to reveal novel core-mediated changes to LD dynamics. Expression of core protein’s lipid binding domain II (DII-core) induced slower LD speeds, but did not affect directionality of movement on microtubules. Modulating the LD binding strength of DII-core further impacted LD mobility, revealing the temporal effects of LD-bound DII-core. These results for DII-core coated LDs support a model for core-mediated LD localization that involves core slowing down the rate of movement of LDs until localization at the perinuclear region is accomplished where LD movement ceases. The guided localization of LDs by HCV core protein not only is essential to the viral life cycle but also poses an interesting target for the development of antiviral strategies against HCV.
Collapse
Affiliation(s)
- Rodney K. Lyn
- National Research Council of Canada, Ottawa, Ontario, Canada
- Department of Chemistry, University of Ottawa, Ottawa, Ontario, Canada
| | - Graham Hope
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | | | - John McLauchlan
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
- * E-mail: (JPP); (JM)
| | - John Paul Pezacki
- National Research Council of Canada, Ottawa, Ontario, Canada
- Department of Chemistry, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail: (JPP); (JM)
| |
Collapse
|
18
|
Progression from Excessive to Deficient Syndromes in Chronic Hepatitis B: A Dynamical Network Analysis of miRNA Array Data. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:945245. [PMID: 23690867 PMCID: PMC3652179 DOI: 10.1155/2013/945245] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 03/16/2013] [Indexed: 01/01/2023]
Abstract
Traditional Chinese medicine (TCM) treatment is regarded as a safe and effective method for chronic hepatitis B (CHB), which requires a traditional diagnosis method to distinguish the TCM syndrome. In this study, we study the differences and similarities among excessive, excessive-deficient, and deficient syndromes, by an integrative and comparative analysis of weighted miRNA expression or miRNA-target network in CHB patients. We first calculated the differential expressed miRNAs based on random module t-test and classified three CHB TCM syndromes using SVM method. Then, miRNA target genes were obtained by validated database and predicted programs subsequently, the weighted miRNA-target networks were constructed for different TCM syndromes. Furthermore, prioritize target genes of networks of CHB TCM syndromes progression analyzed using DAVID online analysis. The results have shown that the difference between TCM syndromes is distinctly based on hierarchical cluster and network structure. GO and pathway analysis implicated that three CHB syndromes more likely have different molecular mechanisms, while the excessive-deficient and deficient syndromes are more dangerous than excessive syndrome in the process of tumorigenesis. This study suggested that miRNAs are important mediators for TCM syndromes classification as well as CHB development progression and therefore could be potential diagnosis and therapeutic molecular markers.
Collapse
|
19
|
Wu R, Duan L, Ye L, Wang H, Yang X, Zhang Y, Chen X, Zhang Y, Weng Y, Luo J, Tang M, Shi Q, He T, Zhou L. S100A9 promotes the proliferation and invasion of HepG2 hepatocellular carcinoma cells via the activation of the MAPK signaling pathway. Int J Oncol 2013; 42:1001-10. [PMID: 23354417 DOI: 10.3892/ijo.2013.1796] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/04/2013] [Indexed: 11/06/2022] Open
Abstract
The S100A9 protein, a member of the S100 protein family, is often upregulated in various types of cancer, including hepatocellular carcinoma (HCC). S100A9 acts as a danger signal when secreted to the extracellular space and is thought to play an important role during tumorigenesis. Despite this fact, little is known about the effects of S100A9 in the tumor microenvironment on HCC. Therefore, in this study, we investigated the effects of exogenous S100A9 on the proliferation and invasion of HepG2 HCC cells, as well as the molecular mechanisms underlying these effects. Our results demonstrated that exogenous S100A9 promoted the proliferation, clone formation and invasion of HepG2 cells in vitro, as shown by 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltrazolium bromide (MTT), clone formation and transwell invasion assays, respectively, and also promoted tumor growth in vivo by tumorigenicity assays in nude mice. Furthermore, S100A9 increased the phosphorylation of p38 and ERK1/2 mitogen-activated protein kinases (MAPKs) in HepG2 cells. When the phosphorylation of p38 was inhibited by SB203580 (a p38 inhibitor), the S100A9-induced cell invasion was reversed; when the phosphorylation of ERK1/2 was inhibited by PD98059 (an ERK1/2 inhibitor), the S100A9-induced cell proliferation was reversed. These data suggest that the S100A9-induced proliferation and invasion of HepG2 cells are partly mediated by the activation of the MAPK signaling pathway.
Collapse
Affiliation(s)
- Rui Wu
- Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Hepatitis C virus and hepatocellular carcinoma. BIOLOGY 2013; 2:304-16. [PMID: 24832662 PMCID: PMC4009856 DOI: 10.3390/biology2010304] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 01/18/2013] [Accepted: 01/23/2013] [Indexed: 12/28/2022]
Abstract
Hepatitis C virus (HCV), a hepatotropic virus, is a single stranded-positive RNA virus of ~9,600 nt. length belonging to the Flaviviridae family. HCV infection causes acute hepatitis, chronic hepatitis, cirrhosis and hepatocellular carcinoma (HCC). It has been reported that HCV-coding proteins interact with host-cell factors that are involved in cell cycle regulation, transcriptional regulation, cell proliferation and apoptosis. Severe inflammation and advanced liver fibrosis in the liver background are also associated with the incidence of HCV-related HCC. In this review, we discuss the mechanism of hepatocarcinogenesis in HCV-related liver diseases.
Collapse
|
21
|
Selimovic D, El-Khattouti A, Ghozlan H, Haikel Y, Abdelkader O, Hassan M. Hepatitis C virus-related hepatocellular carcinoma: An insight into molecular mechanisms and therapeutic strategies. World J Hepatol 2012; 4:342-55. [PMID: 23355912 PMCID: PMC3554798 DOI: 10.4254/wjh.v4.i12.342] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 11/17/2012] [Accepted: 11/24/2012] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infects more than 170 million people worldwide, and thereby becomes a series global health challenge. Chronic infection with HCV is considered one of the major causes of end-stage liver disease including cirrhosis and hepatocellular carcinoma. Although the multiple functions of the HCV proteins and their impacts on the modulation of the intracellular signaling transduction processes, the drive of carcinogenesis during the infection with HCV, is thought to result from the interactions of viral proteins with host cell proteins. Thus, the induction of mutator phenotype, in liver, by the expression of HCV proteins provides a key mechanism for the development of HCV-associated hepatocellular carcinoma (HCC). HCC is considered one of the most common malignancies worldwide with increasing incidence during the past decades. In many countries, the trend of HCC is attributed to several liver diseases including HCV infection. However, the development of HCC is very complicated and results mainly from the imbalance between tumor suppressor genes and oncogenes, as well as from the alteration of cellular factors leading to a genomic instability. Besides the poor prognosis of HCC patients, this type of tumor is quite resistance to the available therapies. Thus, understanding the molecular mechanisms, which are implicated in the development of HCC during the course of HCV infection, may help to design a general therapeutic protocol for the treatment and/or the prevention of this malignancy. This review summarizes the current knowledge of the molecular mechanisms, which are involved in the development of HCV-associated HCC and the possible therapeutic strategies.
Collapse
Affiliation(s)
- Denis Selimovic
- Denis Selimovic, Youssef Haikel, Mohamed Hassan, Institut National de la Santé et de la Recherche Médicale, U 977, 67000 Strasbourg, France
| | | | | | | | | | | |
Collapse
|
22
|
Murayama A, Sugiyama N, Yoshimura S, Ishihara-Sugano M, Masaki T, Kim S, Wakita T, Mishiro S, Kato T. A subclone of HuH-7 with enhanced intracellular hepatitis C virus production and evasion of virus related-cell cycle arrest. PLoS One 2012; 7:e52697. [PMID: 23285155 PMCID: PMC3527576 DOI: 10.1371/journal.pone.0052697] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 11/19/2012] [Indexed: 11/19/2022] Open
Abstract
Hepatitis C virus (HCV) cell culture system with JFH-1 strain and HuH-7 cells enabled us to produce infectious HCV particles in vitro, and such system is useful to explore the anti-HCV compounds and to develop the vaccine against HCV. In the present study, we describe the derivation of a cell line that permits improved production of HCV particles. Specifically, we characterized several subclones that were isolated from the original HuH-7 cell line by limiting dilution. These HuH-7 subclones displayed a notable range of HCV production levels following transfection by full-genome JFH-1 RNA. Among these subclones, HuH-7T1 produced HCV more efficiently than other subclones and Huh-7.5.1 that is known to be highly permissive for HCV replication. Upon transfection with full-genome RNA, HCV production was increased ten-fold in HuH-7T1 compared to Huh-7.5.1. This increase in viral production correlated with increased efficiency of intracellular infectious virus production. Furthermore, HCV replication did not induce cell cycle arrest in HuH-7T1, whereas it did in Huh-7.5.1. Consequently, the use of HuH-7T1 as host cells could provide increased population of HCV-positive cells and elevated viral titer. In conclusion, we isolated a HuH-7 subclone, HuH-7T1, that supports efficient HCV production. High efficiency of intracellular infectious virus production and evasion of cell cycle arrest were important for this phenotype. We expect that the use of this cell line will facilitate analysis of the underlying mechanisms for HCV particle assembly and the cell cycle arrest caused by HCV.
Collapse
Affiliation(s)
- Asako Murayama
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Nao Sugiyama
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Seiko Yoshimura
- Corporate Research and Development Center, Toshiba Corporation, Kanagawa, Japan
| | | | - Takahiro Masaki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sulyi Kim
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shunji Mishiro
- Department of Medical Sciences, Toshiba General Hospital, Tokyo, Japan
| | - Takanobu Kato
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- * E-mail:
| |
Collapse
|
23
|
Wang SN, Lee KT, Tsai CJ, Chen YJ, Yeh YT. Phosphorylated p38 and JNK MAPK proteins in hepatocellular carcinoma. Eur J Clin Invest 2012; 42:1295-301. [PMID: 23033928 DOI: 10.1111/eci.12003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND The p38 and JNK MAPK proteins function as key mediators in cellular responses to extracellular stimuli. Deregulated p38 and JNK expressions have been associated with cancer development. This study aimed to investigate the association of p-p38 and p-JNK levels of the cancerous tissues with hepatocellular carcinoma (HCC) development. MATERIALS AND METHODS One hundred and four liver cancer tissues of patients with HCC who underwent curative resection were prospectively collected. The levels of activated/p-p38 and p-JNK were determined by the enzyme-linked immunosorbent assay. The associations of results with clinicopathological characteristics and overall survival were further statically analysed using chi-squared test, two-tailed Student's t-test and Kaplan-Meier survival curve. RESULTS The p-p38 levels were significantly higher in the HCC patients with a larger tumour (≥ 3 cm) and satellite tumour, and significantly correlated with the p-JNK levels. High p-p38 and low p-JNK expressions were associated with a poor survival in the patients with HCC (odds ratio, 4·24 and 0·20; P = 0·03 and 0·03, respectively). The Kaplan-Meier survival analysis showed that the HCC patients with high p-p38 expressions had a poor overall survival than those with low p-p38 expressions (P = 0·04), and a coexistent and high p-JNK expression remarkably improved this trend. CONCLUSIONS Increasing p-p38 levels in HCC tissues were associated with tumour size and the formation of satellite tumours. High p-p38 expression could serve as a predictor for a poor survival for the patients with HCC. Simultaneous expression of p-JNK in HCC tissues might antagonize the promoting effect of p-p38 in human liver cancer.
Collapse
Affiliation(s)
- Shen-Nien Wang
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | |
Collapse
|
24
|
Abstract
The double-stranded RNA-dependent protein kinase PKR plays multiple roles in cells, in response to different stress situations. As a member of the interferon (IFN)‑Stimulated Genes, PKR was initially recognized as an actor in the antiviral action of IFN, due to its ability to control translation, through phosphorylation, of the alpha subunit of eukaryotic initiation factor 2 (eIF2α). As such, PKR participates in the generation of stress granules, or autophagy and a number of viruses have designed strategies to inhibit its action. However, PKR deficient mice resist most viral infections, indicating that PKR may play other roles in the cell other than just acting as an antiviral agent. Indeed, PKR regulates several signaling pathways, either as an adapter protein and/or using its kinase activity. Here we review the role of PKR as an eIF2α kinase, its participation in the regulation of the NF-κB, p38MAPK and insulin pathways, and we focus on its role during infection with the hepatitis C virus (HCV). PKR binds the HCV IRES RNA, cooperates with some functions of the HCV core protein and may represent a target for NS5A or E2. Novel data points out for a role of PKR as a pro-HCV agent, both as an adapter protein and as an eIF2α-kinase, and in cooperation with the di-ubiquitin-like protein ISG15. Developing pharmaceutical inhibitors of PKR may help in resolving some viral infections as well as stress-related damages.
Collapse
Affiliation(s)
- Stéphanie Dabo
- Unit Hepacivirus and Innate Immunity, Department Virology, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.
| | | |
Collapse
|
25
|
Xu M, Chen G, Wang S, Liao M, Frank JA, Bower KA, Zhang Z, Shi X, Luo J. Double-stranded RNA-dependent protein kinase regulates the motility of breast cancer cells. PLoS One 2012; 7:e47721. [PMID: 23112838 PMCID: PMC3480402 DOI: 10.1371/journal.pone.0047721] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 09/14/2012] [Indexed: 11/18/2022] Open
Abstract
Double-stranded RNA (dsRNA)-dependent protein kinase (PKR) is an interferon-induced protein kinase that plays a central role in the anti-viral process. Due to its pro-apoptotic and anti-proliferative action, there is an increased interest in PKR modulation as an anti-tumor strategy. PKR is overexpressed in breast cancer cells; however, the role of PKR in breast cancer cells is unclear. The expression/activity of PKR appears inversely related to the aggressiveness of breast cancer cells. The current study investigated the role of PKR in the motility/migration of breast cancer cells. The activation of PKR by a synthesized dsRNA (PIC) significantly decreased the motility of several breast cancer cell lines (BT474, MDA-MB231 and SKBR3). PIC inhibited cell migration and blocked cell membrane ruffling without affecting cell viability. PIC also induced the reorganization of the actin cytoskeleton and impaired the formation of lamellipodia. These effects of PIC were reversed by the pretreatment of a selective PKR inhibitor. PIC also activated p38 mitogen-activated protein kinase (MAPK) and its downstream MAPK-activated protein kinase 2 (MK2). PIC-induced activation of p38 MAPK and MK2 was attenuated by the PKR inhibitor and the PKR siRNA, but a selective p38 MAPK inhibitor (SB203580) or other MAPK inhibitors did not affect PKR activity, indicating that PKR is upstream of p38 MAPK/MK2. Cofilin is an actin severing protein and regulates membrane ruffling, lamellipodia formation and cell migration. PIC inhibited cofilin activity by enhancing its phosphorylation at Ser3. PIC activated LIM kinase 1 (LIMK1), an upstream kinase of cofilin in a p38 MAPK-dependent manner. We concluded that the activation of PKR suppressed cell motility by regulating the p38 MAPK/MK2/LIMK/cofilin pathway.
Collapse
Affiliation(s)
- Mei Xu
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Gang Chen
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Siying Wang
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
- Pathophysiological Department, School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Mingjun Liao
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Jacqueline A. Frank
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Kimberly A. Bower
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Zhuo Zhang
- Graduate Center for Toxicology, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Xianglin Shi
- Graduate Center for Toxicology, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Jia Luo
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
26
|
Hassan M, Selimovic D, El-Khattouti A, Ghozlan H, Haikel Y, Abdelkader O. Hepatitis C virus-host interactions: Etiopathogenesis and therapeutic strategies. World J Exp Med 2012; 2:7-25. [PMID: 24520529 PMCID: PMC3905577 DOI: 10.5493/wjem.v2.i2.7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 04/16/2012] [Accepted: 04/18/2012] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is a significant health problem facing the world. This virus infects more than 170 million people worldwide and is considered the major cause of both acute and chronic hepatitis. Persons become infected mainly through parenteral exposure to infected material by blood transfusions or injections with nonsterile needles. Although the sexual behavior is considered as a high risk factor for HCV infection, the transmission of HCV infection through sexual means, is less frequently. Currently, the available treatment for patients with chronic HCV infection is interferon based therapies alone or in combination with ribavirin and protease inhibitors. Although a sustained virological response of patients to the applied therapy, a great portion of patients did not show any response. HCV infection is mostly associated with progressive liver diseases including fibrosis, cirrhosis and hepatocellular carcinoma. Although the focus of many patients and clinicians is sometimes limited to that problem, the natural history of HCV infection (HCV) is also associated with the development of several extrahepatic manifestations including dermatologic, rheumatologic, neurologic, and nephrologic complications, diabetes, arterial hypertension, autoantibodies and cryglobulins. Despite the notion that HCV-mediated extrahepatic manifestations are credible, the mechanism of their modulation is not fully described in detail. Therefore, the understanding of the molecular mechanisms of HCV-induced alteration of intracellular signal transduction pathways, during the course of HCV infection, may offer novel therapeutic targets for HCV-associated both hepatic and extrahepatic manifestations. This review will elaborate the etiopathogenesis of HCV-host interactions and summarize the current knowledge of HCV-associated diseases and their possible therapeutic strategies.
Collapse
Affiliation(s)
- Mohamed Hassan
- Mohamed Hassan, Denis Selimovic, Youssef Haikel, National Institute of Health and Medical Research, U 977, Faculty of Medicine, and Dental Faculty, 11 Rue Humann, 67085 Strasbourg Cedex, France
| | - Denis Selimovic
- Mohamed Hassan, Denis Selimovic, Youssef Haikel, National Institute of Health and Medical Research, U 977, Faculty of Medicine, and Dental Faculty, 11 Rue Humann, 67085 Strasbourg Cedex, France
| | - Abdelouahid El-Khattouti
- Mohamed Hassan, Denis Selimovic, Youssef Haikel, National Institute of Health and Medical Research, U 977, Faculty of Medicine, and Dental Faculty, 11 Rue Humann, 67085 Strasbourg Cedex, France
| | - Hanan Ghozlan
- Mohamed Hassan, Denis Selimovic, Youssef Haikel, National Institute of Health and Medical Research, U 977, Faculty of Medicine, and Dental Faculty, 11 Rue Humann, 67085 Strasbourg Cedex, France
| | - Youssef Haikel
- Mohamed Hassan, Denis Selimovic, Youssef Haikel, National Institute of Health and Medical Research, U 977, Faculty of Medicine, and Dental Faculty, 11 Rue Humann, 67085 Strasbourg Cedex, France
| | - Ola Abdelkader
- Mohamed Hassan, Denis Selimovic, Youssef Haikel, National Institute of Health and Medical Research, U 977, Faculty of Medicine, and Dental Faculty, 11 Rue Humann, 67085 Strasbourg Cedex, France
| |
Collapse
|
27
|
Integrative network analysis identifies key genes and pathways in the progression of hepatitis C virus induced hepatocellular carcinoma. BMC Med Genomics 2011; 4:62. [PMID: 21824427 PMCID: PMC3212927 DOI: 10.1186/1755-8794-4-62] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 08/08/2011] [Indexed: 02/08/2023] Open
Abstract
Background Incidence of hepatitis C virus (HCV) induced hepatocellular carcinoma (HCC) has been increasing in the United States and Europe during recent years. Although HCV-associated HCC shares many pathological characteristics with other types of HCC, its molecular mechanisms of progression remain elusive. Methods To investigate the underlying pathology, we developed a systematic approach to identify deregulated biological networks in HCC by integrating gene expression profiles with high-throughput protein-protein interaction data. We examined five stages including normal (control) liver, cirrhotic liver, dysplasia, early HCC and advanced HCC. Results Among the five consecutive pathological stages, we identified four networks including precancerous networks (Normal-Cirrhosis and Cirrhosis-Dysplasia) and cancerous networks (Dysplasia-Early HCC, Early-Advanced HCC). We found little overlap between precancerous and cancerous networks, opposite to a substantial overlap within precancerous or cancerous networks. We further found that the hub proteins interacted with HCV proteins, suggesting direct interventions of these networks by the virus. The functional annotation of each network demonstrates a high degree of consistency with current knowledge in HCC. By assembling these functions into a module map, we could depict the stepwise biological functions that are deregulated in HCV-induced hepatocarcinogenesis. Additionally, these networks enable us to identify important genes and pathways by developmental stage, such as LCK signalling pathways in cirrhosis, MMP genes and TIMP genes in dysplastic liver, and CDC2-mediated cell cycle signalling in early and advanced HCC. CDC2 (alternative symbol CDK1), a cell cycle regulatory gene, is particularly interesting due to its topological position in temporally deregulated networks. Conclusions Our study uncovers a temporal spectrum of functional deregulation and prioritizes key genes and pathways in the progression of HCV induced HCC. These findings present a wealth of information for further investigation.
Collapse
|
28
|
Hepatitis C virus infection causes cell cycle arrest at the level of initiation of mitosis. J Virol 2011; 85:7989-8001. [PMID: 21680513 DOI: 10.1128/jvi.00280-11] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Chronic infection with the hepatitis C virus (HCV) is associated with increased risk for hepatocellular carcinoma (HCC). Chronic immune-mediated inflammation is likely to be an important factor in the development of HCV-associated HCC, but direct effects of HCV infection on the host cell cycle may also play a role. Although overexpression studies have revealed multiple interactions between HCV-encoded proteins and host cell cycle regulators and tumor suppressor proteins, the relevance of these observations to HCV-associated liver disease is not clear. We determined the net effect of these interactions on regulation of the cell cycle in the context of virus infection. Flow cytometry of HCV-infected carboxyfluorescein succinimidyl ester-labeled hepatoma cells indicated a slowdown in proliferation that correlated with abundance of viral antigen. A decrease in the proportions of infected cells in G(1) and S phases with an accumulation of cells in G(2)/M phase was observed, compared to mock-infected controls. Dramatic decreases in markers of mitosis, such as phospho-histone H3, in infected cells suggested a block to mitotic entry. In common with findings described in the published literature, we observed caspase 3 activation, suggesting that cell cycle arrest is associated with apoptosis. Differences were observed in patterns of cell cycle disturbance and levels of apoptosis with different strains of HCV. However, the data suggest that cell cycle arrest at the interface of G(2) and mitosis is a common feature of HCV infection.
Collapse
|
29
|
Hepatitis C virus and alcohol: same mitotic targets but different signaling pathways. J Hepatol 2011; 54:956-63. [PMID: 21145809 DOI: 10.1016/j.jhep.2010.08.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 07/28/2010] [Accepted: 08/15/2010] [Indexed: 12/27/2022]
Abstract
BACKGROUND & AIMS Chromosomal aberrations are frequently observed in hepatitis C virus (HCV)- and alcohol-related hepatocellular carcinomas (HCCs). The mechanisms by which chromosomal aberrations occur during hepatocarcinogenesis are still unknown. However, these aberrations are considered to be the result of deregulation of some mitotic proteins, including the alteration of Cyclin B1 and Aurora kinase A expression, and the phosphorylation of gamma-tubulin. Our study aims at investigating changes in expression of the above mentioned proteins and related intracellular pathways, in in vitro and in vivo models of both HCV- and alcohol- dependent HCCs. METHODS In this study, the molecular defects and the mechanisms involved in deregulation of the mitotic machinery were analyzed in human hepatoma cells, expressing HCV proteins treated or not with ethanol, and in liver tissues from control subjects (n=10) and patients with HCV- (n=10) or alcohol-related (n=10) HCCs. RESULTS Expression of Cyclin B1, Aurora kinase A, and tyrosine-phosphorylated gamma-tubulin was analyzed in models reproducing HCV infection and ethanol treatment in HCC cells. Interestingly, HCV and alcohol increased the expression of Cyclin B, Aurora kinase A, and tyrosine-phosphorylated gamma-tubulin also in tissues from patients with HCV- or alcohol-related HCCs. In vitro models suggest that HCV requires the expression of PKR (RNA-activated protein kinase), as well as JNK (c-Jun N-terminal kinase) and p38MAPK (p38 mitogen-activated protein kinase) proteins; while, ethanol bypasses all these pathways. CONCLUSIONS Our results support the idea that HCV and alcohol may promote oncogenesis by acting through the same mitotic proteins, but via different signaling pathways.
Collapse
|
30
|
Mitogen-activated protein kinases in hepatocellular carcinoma development. Semin Cancer Biol 2011; 21:10-20. [DOI: 10.1016/j.semcancer.2010.10.011] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Revised: 10/05/2010] [Accepted: 10/13/2010] [Indexed: 12/22/2022]
|
31
|
An H, Lu X, Liu D, Yarbrough WG. LZAP inhibits p38 MAPK (p38) phosphorylation and activity by facilitating p38 association with the wild-type p53 induced phosphatase 1 (WIP1). PLoS One 2011; 6:e16427. [PMID: 21283629 PMCID: PMC3026010 DOI: 10.1371/journal.pone.0016427] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 12/16/2010] [Indexed: 01/15/2023] Open
Abstract
LZAP (Cdk5rap3, C53) is a putative tumor suppressor that inhibits RelA, Chk1 and Chk2 and activates p53. LZAP is lost in a portion of human head and neck squamous cell carcinoma and experimental loss of LZAP expression is associated with enhanced invasion, xenograft tumor growth and angiogenesis. p38 MAPK can increase or decrease proliferation and cell death depending on cellular context. LZAP has no known enzymatic activity, implying that its biological functions are likely mediated by its protein-protein interactions. To gain further insight into LZAP activities, we searched for LZAP-associated proteins (LAPs). Here we show that the LZAP binds p38, alters p38 cellular localization, and inhibits basal and cytokine-stimulated p38 activity. Expression of LZAP inhibits p38 phosphorylation in a dose-dependent fashion while loss of LZAP enhances phosphorylation and activation with resultant phosphorylation of p38 downstream targets. Mechanistically, the ability of LZAP to alter p38 phosphorylation depended, at least partially, on the p38 phosphatase, Wip1. Expression of LZAP increased both LZAP and Wip1 binding to p38. Taken together, these data suggest that LZAP activity includes inhibition of p38 phosphorylation and activation.
Collapse
Affiliation(s)
- Hanbing An
- Department of Otolaryngology, Vanderbilt University, Nashville, Tennessee, United States of America
- Barry Baker Laboratory for Head and Neck Oncology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Xinyuan Lu
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Barry Baker Laboratory for Head and Neck Oncology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Dan Liu
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Barry Baker Laboratory for Head and Neck Oncology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Wendell G. Yarbrough
- Department of Otolaryngology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Barry Baker Laboratory for Head and Neck Oncology, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
32
|
Carvajal-Yepes M, Himmelsbach K, Schaedler S, Ploen D, Krause J, Ludwig L, Weiss T, Klingel K, Hildt E. Hepatitis C virus impairs the induction of cytoprotective Nrf2 target genes by delocalization of small Maf proteins. J Biol Chem 2011; 286:8941-51. [PMID: 21216956 DOI: 10.1074/jbc.m110.186684] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The expression of a variety of cytoprotective genes is regulated by short cis-acting elements in their promoters, called antioxidant response elements (AREs). A central regulator of ARE-mediated gene expression is the NF-E2-related factor 2 (Nrf2). Nrf2/ARE-regulated genes are crucial for the maintenance of cellular integrity. Hepatitis C virus inhibits the induction of ARE-regulated genes, but neither induction nor inhibition of ARE-regulated gene expression affects HCV replication directly. In HCV-replicating cells the core protein triggers the delocalization of sMaf proteins from the nucleus to the replicon complex. Here sMafs bind to NS3. The extranuclear sMaf proteins prevent Nrf2 from entry in the nucleus and thereby inhibit the induction of Nrf2/ARE-regulated genes. This results in the decreased expression of cytoprotective genes. Consistent with this finding, the elimination of ROI is impaired in HCV-replicating cells as demonstrated by elevated protein oxidation or 8-OH-dG formation, reflecting DNA damage. In conclusion, these data identified a novel mechanism of Nrf2 regulation and suggest that the HCV-dependent inhibition of Nrf2/ARE-regulated genes confers to the HCV-associated pathogenesis by elevation of intracellular ROI that affect integrity of the host genome and regenerative processes.
Collapse
Affiliation(s)
- Monica Carvajal-Yepes
- Institute of Infection Medicine, Molecular Medical Virology, University of Kiel, D-24105 Kiel, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Li ZH, Tang QB, Wang J, Zhou L, Huang WL, Liu RY, Chen RF. Hepatitis C virus core protein induces malignant transformation of biliary epithelial cells by activating nuclear factor-kappaB pathway. J Gastroenterol Hepatol 2010; 25:1315-20. [PMID: 20594262 DOI: 10.1111/j.1440-1746.2009.06201.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
UNLABELLED In an earlier study, we found that hepatitis C virus core protein, HCV-C, participated in the malignant transformation of HCV-C transfected normal human biliary epithelial (hBE) cells by activating telomerase. Here we further investigated the signaling of the malignant transformation. METHODS Reverse transcription-polymerase chain reaction (RT-PCR), western blotting and immunoprecipitation were used to analyze the expression of HCV-C, human telomerase reverse transcriptase (hTERT), nuclear factor-kappaB (NF-kappaB) and NF-kappaB inhibitor alpha (IkappaBalpha) genes and the phosphorylation level of IkappaBalpha protein. Electrophoretic mobility shift assays (EMSA) and NF-kappaB-linked luciferase reporter assays were carried out to measure NF-kappaB activity. RESULTS The expression of HCV-C and hTERT was detected only in HCV-C-transfected hBE (hBE-HCV-C) cells but not in vector-transfected or parental hBE cells. More NF-kappaB protein accumulated in nuclear extracts of hBE-HCV-C cells rather than in those of control cells, though total NF-kappaB protein level showed no difference among these cells. DNA binding activity of NF-kappaB and the NF-kappaB-linked luciferase activity were much higher in HCV-C-transfected hBE cells than those in vector- or non-transfected hBE cells. In addition, the IkappaBalpha phosphorylation level, but not the IkappaBalpha mRNA or protein levels, was increased after HCV-C transfection. CONCLUSIONS Hepatitis C virus core protein activates NF-kappaB pathway in hBE cells by increasing the phosphorylation of IkappaBalpha. The pathway may be responsible for HCV-C-induced malignant transformation of hBE cells.
Collapse
Affiliation(s)
- Zhi-Hua Li
- Department of Oncology, Affiliated Second Hospital, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Severe acute respiratory syndrome (SARS) is a respiratory illness with variable symptoms that was recognized as the first near-pandemic infectious disease of the twenty-first century. A novel human coronavirus, named SARS coronavirus (SARS-CoV), derived from SARS patients was reported as the etiologic agent of SARS. Studying the signaling pathways of SARS-infected cells is key to understanding the molecular mechanism of SARS viral infection. Cell death is observed in cultured Vero E6 cells after SARS-CoV infection. From SARS-CoV infection to cell death, p38 mitogen-activated protein kinase (MAPK) is a key participant in the determination of cell death and survival. Two signaling pathways comprising signal transducer and activator of transcription 3 (STAT3) and p90 ribosomal S6 kinase (p90RSK) are downstream of p38 MAPK. AKT and JNK (Jun NH2-terminal kinase) signaling pathways are important to establish persistent infection of SARS-CoV in Vero E6 cells. Expression studies of SARS-CoV proteins indicate that the viral proteins are able to activate signaling pathways of host cells. The study of signaling pathways in SARS-CoV patients is difficult to perform compared with in vitro studies due to the effects of the human immune system. This review highlights recent progress in characterizing signal transduction pathways in SARS-CoV-infected cells in vitro and in vivo.
Collapse
|
35
|
Protein kinase PKR-dependent activation of mitogen-activated protein kinases occurs through mitochondrial adapter IPS-1 and is antagonized by vaccinia virus E3L. J Virol 2009; 83:5718-25. [PMID: 19321614 DOI: 10.1128/jvi.00224-09] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The p38 and c-Jun N-terminal kinase (JNK) mitogen-activated protein kinases (MAPKs) play important roles in the host innate immune response. The protein kinase regulated by RNA (PKR) is implicated in p38 MAPK activation in response to proinflammatory signals in mouse embryonic fibroblasts. To test the role of PKR in the activation of p38 and JNK MAPKs in human cells following viral infection, HeLa cells made stably deficient in PKR by using an RNA interference strategy were compared to cells with sufficient PKR. The phosphorylation of both p38 and JNK in cells with sufficient PKR was activated following either infection with an E3L deletion (DeltaE3L) mutant of vaccinia virus or transfection with double-stranded RNA (dsRNA) in the absence of infection with wild-type vaccinia virus. The depletion of PKR by stable knockdown impaired the phosphorylation of both p38 and JNK induced by either the DeltaE3L mutant virus or dsRNA but not that induced by tumor necrosis factor alpha. The PKR-dependent activation of MAPKs in DeltaE3L mutant-infected cells was abolished by treatment with cytosine beta-d-arabinoside. The complementation of PKR-deficient cells with the human PKR wild-type protein, but not with the PKR catalytic mutant (K296R) protein, restored p38 and JNK phosphorylation following DeltaE3L mutant virus infection. Transient small interfering RNA knockdown established that the p38 and JNK kinase activation following DeltaE3L infection was dependent upon RIG-I-like receptor signal transduction pathway components, including the mitochondrial adapter IPS-1 protein.
Collapse
|
36
|
Karthe J, Tessmann K, Li J, Machida R, Daleman M, Häussinger D, Heintges T. Specific targeting of hepatitis C virus core protein by an intracellular single-chain antibody of human origin. Hepatology 2008; 48:702-12. [PMID: 18697213 PMCID: PMC3080105 DOI: 10.1002/hep.22366] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The hepatitis C virus (HCV) core protein is essential for viral genome encapsidation and plays an important role in steatosis, immune evasion, and hepatocellular carcinoma. It may thus represent a promising therapeutic target to interfere with the HCV life-cycle and related pathogenesis. In this study, we used phage display to generate single-chain variable domain antibody fragments (scFv) to the core protein from bone marrow plasma cells of patients with chronic hepatitis C. An antibody with high-affinity binding (scFv42C) was thus identified, and the binding site was mapped to the PLXG motif (residues 84-87) of the core protein conserved among different genotypes. Whereas scFv42C displayed diffuse cytoplasmic fluorescence when expressed alone in the Huh7 human hepatoma cell line, cotransfection with the core gene shifted its subcellular distribution into that of core protein. The intracellular association of scFv42C with its target core protein was independently demonstrated by the fluorescence resonance energy transfer technique. Interestingly, expression of the single-chain antibody reduced core protein levels intracellularly, particularly in the context of full HCV replication. Moreover, cell proliferation as induced by the core protein could be reversed by scFv4C coexpression. Therefore, scFv42C may represent a novel anti-HCV agent, which acts by sequestering core protein and attenuating core protein-mediated pathogenesis.
Collapse
Affiliation(s)
- Juliane Karthe
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Düsseldorf, Germany
| | - Kathi Tessmann
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jisu Li
- The Liver Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI
| | - Raiki Machida
- The Liver Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI
| | - Maaike Daleman
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Düsseldorf, Germany
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Düsseldorf, Germany
| | - Tobias Heintges
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
37
|
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers in the world. Studies indicate that the development of HCC is related to signal transduction of Ras-MAPK.P38MAPK, an important member of the family of mitogen-activated protein kinases. P38MAPK participates in cell proliferation, apoptosis and differentiation and plays a key role in cell apoptosis. P38MAPK is closely related with carcinogenesis, rapid generation and infinite growth of liver cancer and plays a role in the occurrence and development of liver cancer induced by organics, HBV and HCV. Drugs exert their anti-tumor effects through p38MAPK which also takes part in the formation of drug resistance to HCC. This paper reviews the advances in studies on p38MAPK-related HCC.
Collapse
|
38
|
Tanaka N, Moriya K, Kiyosawa K, Koike K, Gonzalez FJ, Aoyama T. PPARalpha activation is essential for HCV core protein-induced hepatic steatosis and hepatocellular carcinoma in mice. J Clin Invest 2008; 118:683-694. [PMID: 18188449 PMCID: PMC2176192 DOI: 10.1172/jci33594] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Accepted: 11/07/2007] [Indexed: 02/06/2023] Open
Abstract
Transgenic mice expressing HCV core protein develop hepatic steatosis and hepatocellular carcinoma (HCC), but the mechanism underlying this process remains unclear. Because PPARalpha is a central regulator of triglyceride homeostasis and mediates hepatocarcinogenesis in rodents, we determined whether PPARalpha contributes to HCV core protein-induced diseases. We generated PPARalpha-homozygous, -heterozygous, and -null mice with liver-specific transgenic expression of the core protein gene (Ppara(+/+):HCVcpTg, Ppara(+/-):HCVcpTg, and Ppara(-/-):HCVcpTg mice. Severe steatosis was unexpectedly observed only in Ppara(+/+):HCVcpTg mice, which resulted from enhanced fatty acid uptake and decreased mitochondrial beta-oxidation due to breakdown of mitochondrial outer membranes. Interestingly, HCC developed in approximately 35% of 24-month-old Ppara(+/+):HCVcpTg mice, but tumors were not observed in the other genotypes. These phenomena were found to be closely associated with sustained PPARalpha activation. In Ppara(+/-):HCVcpTg mice, PPARalpha activation and the related changes did not occur despite the presence of a functional Ppara allele. However, long-term treatment of these mice with clofibrate, a PPARalpha activator, induced HCC with mitochondrial abnormalities and hepatic steatosis. Thus, our results indicate that persistent activation of PPARalpha is essential for the pathogenesis of hepatic steatosis and HCC induced by HCV infection.
Collapse
Affiliation(s)
- Naoki Tanaka
- Department of Metabolic Regulation, Institute on Aging and Adaptation, Shinshu University Graduate School of Medicine, Matsumoto, Nagano, Japan.
| | | | | | | | | | | |
Collapse
|
39
|
Alisi A, Spaziani A, Anticoli S, Ghidinelli M, Balsano C. PKR is a novel functional direct player that coordinates skeletal muscle differentiation via p38MAPK/AKT pathways. Cell Signal 2007; 20:534-42. [PMID: 18164587 DOI: 10.1016/j.cellsig.2007.11.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 11/12/2007] [Accepted: 11/18/2007] [Indexed: 12/24/2022]
Abstract
Myogenic differentiation is a highly orchestrated multistep process controlled by extracellular growth factors that modulate largely unknown signals into the cell affecting the muscle-transcription program. P38MAPK-dependent signalling, as well as PI3K/Akt pathway, has a key role in the control of muscle gene expression at different stages during the myogenic process. P38MAPK affects the activities of transcription factors, such as MyoD and myogenin, and contributes, together with PI3K/Akt pathway, to control the early and late steps of myogenic differentiation. The aim of our work was to better define the role of PKR, a dsRNA-activated protein kinase, as potential component in the differentiation program of C2C12 murine myogenic cells and to correlate its activity with p38MAPK and PI3K/Akt myogenic regulatory pathways. Here, we demonstrate that PKR is an essential component of the muscle development machinery and forms a functional complex with p38MAPK and/or Akt, contributing to muscle differentiation of committed myogenic cells in vitro. Inhibition of endogenous PKR activity by a specific (si)RNA and a PKR dominant-negative interferes with the myogenic program of C2C12 cells, causing a delay in activation of myogenic specific genes and inducing the formation of thinner myofibers. In addition, the construction of three PKR mutants allowed us to demonstrate that both N and C-terminal regions of PKR are critical for the interaction with p38MAPK and Akt. The novel discovered complex permits PKR to timely regulate the inhibition/activation of p38MAPK and Akt, controlling in this way the different steps characterizing skeletal muscle differentiation.
Collapse
Affiliation(s)
- A Alisi
- Laboratory of Molecular Virology and Oncology, Fondazione A. Cesalpino, University of Rome La Sapienza, Policlinico Umberti I, Viale del Policlinico no. 155, Rome, Italy
| | | | | | | | | |
Collapse
|
40
|
Affiliation(s)
- Clara Balsano
- Dipartimento di Medicina Interna e Sanità Pubblica (MISP), University of L'Aquila, L'Aquila, Italy.
| | | |
Collapse
|
41
|
Schäfer R, Hartig R, Sedehizade F, Welte T, Reiser G. Adenine nucleotides inhibit proliferation of the human lung adenocarcinoma cell line LXF-289 by activation of nuclear factor kappaB1 and mitogen-activated protein kinase pathways. FEBS J 2006; 273:3756-67. [PMID: 16911524 DOI: 10.1111/j.1742-4658.2006.05384.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Extracellular nucleotides have a profound role in the regulation of the proliferation of diseased tissue. We studied how extracellular nucleotides regulate the proliferation of LXF-289 cells, the adenocarcinoma-derived cell line from human lung bronchial tumor. ATP and ADP strongly inhibited LXF-289 cell proliferation. The nucleotide potency profile was ATP = ADP = ATPgammaS > > UTP, UDP, whereas alpha,beta-methylene-ATP, beta,gamma-methylene-ATP, 2',3'-O-(4-benzoylbenzoyl)-ATP, AMP and UMP were inactive. The nucleotide potency profile and the total blockade of the ATP-mediated inhibitory effect by the phospholipase C inhibitor U-73122 clearly show that P2Y receptors, but not P2X receptors, control LXF-289 cell proliferation. Treatment of proliferating LXF-289 cells with 100 microm ATP or ADP induced significant reduction of cell number and massive accumulation of cells in the S phase. Arrest in S phase is also indicated by the enhancement of the antiproliferative effect of ATP by coapplication of the cytostatic drugs cisplatin, paclitaxel and etoposide. Inhibition of LXF-289 cell proliferation by ATP was completely reversed by inhibitors of extracellular signal related kinase-activating kinase/extracellular signal related kinase 1/2 (PD98059, U0126), p38 mitogen-activated protein kinase (SB203508), phosphatidylinositol-3-kinase (wortmannin), and nuclear factor kappaB1 (SN50). Western blot analysis revealed transient activation of p38 mitogen-activated protein kinase, extracellular signal-related kinase 1/2, and nuclear factor kappaB1 and possibly new formation of p50 from its precursor p105. ATP-induced attenuation of LXF-289 cell proliferation was accompanied by transient translocation of p50 nuclear factor kappaB1 and extracellular signal-related kinase 1/2 to the nucleus in a similar time period. In summary, inhibition of LXF-289 cell proliferation is mediated via P2Y receptors by activation of multiple mitogen-activated protein kinase pathways and nuclear factor kappaB1, arresting the cells in the S phase.
Collapse
Affiliation(s)
- Rainer Schäfer
- Institut für Neurobiochemie, Otto-von-Guericke-Universität, Medizinische Fakultät, Magdeburg, Germany
| | | | | | | | | |
Collapse
|