1
|
Pini L, Giordani J, Levi G, Guerini M, Piva S, Peli E, Violini M, Piras S, El Masri Y, Pini A, Visca D, Assanelli D, Muiesan ML, Latronico N, Tantucci C, on behalf of the LOTO Investigators Working Group. Long-term alveolar-capillary diffusion impairments after severe SARS-CoV-2 pneumonia. Ann Med 2025; 57:2483383. [PMID: 40152750 PMCID: PMC11956098 DOI: 10.1080/07853890.2025.2483383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Persistent respiratory symptoms and impaired gas exchange are common in patients recovering from COVID-19 pneumonia. The Lung Diffusing Capacity for Carbon Monoxide (DLCO) and Carbon Monoxide Transfer Coefficient (KCO) do not adequately distinguish alveolar membrane dysfunction from vascular abnormalities. This study aimed to characterize persistent diffusion impairment in post-ICU patients with prior SARS-CoV-2 pneumonia and reduced DLCO. METHODS After hospital discharge, patients underwent spirometry, DLCO measurement, and a 6-minute walking test every six months. If DLCO remained impaired at 18-24 months, a combined Lung Diffusing Capacity for Nitric Oxide (DLNO) and DLCO assessment was performed to differentiate alveolar-capillary membrane (DmCO) and pulmonary capillary blood volume (Vc) alterations. RESULTS Among 20 patients with persistent DLCO reduction, 3 had an obstructive ventilatory pattern, 6 had restriction, and 12 had low KCO. In restrictive cases, KCO was reduced but remained within normal limits without compensation. The DLNO/DLCO ratio exceeded 113.5% predicted in all patients. DmCO was impaired in 7 patients, while Vc was reduced in 16. CONCLUSION Both DLCO determinants were affected, with vascular impairment predominating. Vc reduction was present in most patients, with mean values below the lower limit of normality, whereas DmCO was less affected and often normal. The elevated DLNO/DLCO ratio suggests that persistent DLCO reduction is primarily driven by prolonged pulmonary capillary circulation dysfunction rather than alveolar membrane alterations, highlighting the vascular component as the primary site of long-term impairment.
Collapse
Affiliation(s)
- Laura Pini
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Respiratory Physiopathology Unit, ASST – Spedali Civili di Brescia, Brescia, Italy
| | - Jordan Giordani
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Guido Levi
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Pulmonology Department, ASST – Spedali Civili di Brescia, Brescia, Italy
| | - Michele Guerini
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Simone Piva
- Department of Anesthesia, Critical Care and Emergency, ASST Spedali Civili University Hospital, Brescia, Italy
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Elena Peli
- Department of Anesthesia, Critical Care and Emergency, ASST Spedali Civili University Hospital, Brescia, Italy
| | - Manuela Violini
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Stefano Piras
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Yehia El Masri
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alessandro Pini
- Department of Emergency, Anaesthesiological and Resuscitation Sciences, University Cattolica Sacro Cuore, Rome, Italy
| | - Dina Visca
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
- Department of Medicine and Cardiopulmonary Rehabilitation, Istituti Clinici Scientifici Maugeri IRCCS, Tradate, Italy
| | - Deodato Assanelli
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Internal Medicine Unit, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Maria Lorenza Muiesan
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Internal Medicine Unit, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Nicola Latronico
- Department of Anesthesia, Critical Care and Emergency, ASST Spedali Civili University Hospital, Brescia, Italy
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Claudio Tantucci
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | | |
Collapse
|
2
|
Chen M, Qian Q, Pan X, Li T. An investigation into the impact of temporality on COVID-19 infection and mortality predictions: new perspective based on Shapley Values. BMC Med Res Methodol 2025; 25:111. [PMID: 40275181 PMCID: PMC12020040 DOI: 10.1186/s12874-025-02572-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 04/16/2025] [Indexed: 04/26/2025] Open
Abstract
INTRODUCTION Machine learning models have been employed to predict COVID-19 infections and mortality, but many models were built on training and testing sets from different periods. The purpose of this study is to investigate the impact of temporality, i.e., the temporal gap between training and testing sets, on model performances for predicting COVID-19 infections and mortality. Furthermore, this study seeks to understand the causes of the impact of temporality. METHODS This study used a COVID-19 surveillance dataset collected from Brazil in year 2020, 2021 and 2022, and built prediction models for COVID-19 infections and mortality using random forest and logistic regression, with 20 model features. Models were trained and tested based on data from different years and the same year as well, to examine the impact of temporality. To further explain the impact of temporality and its driving factors, Shapley values are employed to quantify individual contributions to model predictions. RESULTS For the infection model, we found that the temporal gap had a negative impact on prediction accuracy. On average, the loss in accuracy was 0.0256 for logistic regression and 0.0436 for random forest when there was a temporal gap between the training and testing sets. For the mortality model, the loss in accuracy was 0.0144 for logistic regression and 0.0098 for random forest, which means the impact of temporality was not as strong as in the infection model. Shapley values uncovered the reason behind such differences between the infection and mortality models. CONCLUSIONS Our study confirmed the negative impact of temporality on model performance for predicting COVID-19 infections, but it did not find such negative impact of temporality for predicting COVID-19 mortality. Shapley value revealed that there was a fixed set of four features that made predominant contributions for the mortality model across data in three years (2020-2022), while for the infection model there was no such fixed set of features across different years.
Collapse
Affiliation(s)
- Mingming Chen
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou, 215123, Jiangsu, P.R. China
- Institute of Population Health, Faculty of Health & Life Sciences Waterhouse Building, University of Liverpool, Liverpool, England
| | - Qihang Qian
- School of Computer Science and Technology, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, Zhejiang, 310014, P.R. China
| | - Xiang Pan
- School of Computer Science and Technology, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, Zhejiang, 310014, P.R. China
| | - Tenglong Li
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou, 215123, Jiangsu, P.R. China.
- Institute of Population Health, Faculty of Health & Life Sciences Waterhouse Building, University of Liverpool, Liverpool, England.
| |
Collapse
|
3
|
Wang J, Yin J, Liu X, Liu Y, Jin X. Gut commensal bacterium Bacteroides vulgatus exacerbates helminth-induced cardiac fibrosis through succinate accumulation. PLoS Pathog 2025; 21:e1013069. [PMID: 40238740 PMCID: PMC12002503 DOI: 10.1371/journal.ppat.1013069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 02/21/2025] [Indexed: 04/18/2025] Open
Abstract
Trichinella spiralis (Ts) is known to cause cardiac fibrosis, which is a critical precursor to various heart diseases, and its progression is influenced by metabolic changes. However, the metabolic mechanisms remain unclear. Here, we observed that Ts-infected mice exhibited cardiac fibrosis along with elevated succinate levels in the heart using metabolomic analysis. Administration of succinate exacerbated fibrosis during Ts infection, while deficiency in succinate receptor 1 (Sucnr1) alleviated the condition, highlighting the role of the succinate-Sucnr1 axis in fibrosis development. Furthermore, metagenomics sequencing showed that Ts-infected mice had a higher abundance ratio of succinate-producing bacteria to succinate-consuming bacteria in the intestines. Notably, the succinate-producer Bacteroides vulgatus was enriched in Ts group. Oral supplementation with B. vulgatus aggravated Ts-induced cardiac fibrosis. In summary, our findings underscore the succinate-Sucnr1 axis as a critical pathway in helminth-induced cardiac fibrosis and highlight the potential of targeting this axis for therapeutic interventions. This study presents novel insights into the gut-heart axis, revealing innovative strategies for managing cardiovascular complications associated with helminth infections.
Collapse
Affiliation(s)
- Jiaqi Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
- College of Animal Sciences, Jilin University, Changchun, China
| | - Jiali Yin
- The Second Hospital of Jilin University, Changchun, China
| | - Xiaolei Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yi Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Xuemin Jin
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
4
|
Hong L, Chen X, Liu Y, Liang H, Zhao Y, Guo P. The relationship between ferroptosis and respiratory infectious diseases: a novel landscape for therapeutic approach. Front Immunol 2025; 16:1550968. [PMID: 40170865 PMCID: PMC11959089 DOI: 10.3389/fimmu.2025.1550968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/05/2025] [Indexed: 04/03/2025] Open
Abstract
Respiratory infectious diseases, particularly those caused by respiratory viruses, have the potential to lead to global pandemics, thereby posing significant threats to public and human health. Historically, the primary treatment for respiratory bacterial infections has been antibiotic therapy, while severe cases of respiratory viral infections have predominantly been managed by controlling inflammatory cytokine storms. Ferroptosis is a novel form of programmed cell death that is distinct from apoptosis and autophagy. In recent years, Recent studies have demonstrated that ferroptosis plays a significant regulatory role in various respiratory infectious diseases, indicating that targeting ferroptosis may represent a novel approach for the treatment of these conditions. This article summarized the toxic mechanisms underlying ferroptosis, its relationship with respiratory infectious diseases, the mechanisms of action, and current treatment strategies. Particular attentions were given to the interplay between ferroptosis and Mycobacterium tuberculosis, Epstein-Barr virus, severe acute respiratory syndrome coronavirus-2, Pseudomonas aeruginosa, dengue virus, influenza virus and herpes simplex virus type1infection. A deeper understanding of the regulatory mechanisms of ferroptosis in respiratory infections will not only advance our knowledge of infection-related pathophysiology but also provide a theoretical foundation for the development of novel therapeutic strategies. Targeting ferroptosis pathways represents a promising therapeutic approach for respiratory infections, with significant clinical and translational implications.
Collapse
Affiliation(s)
- Longyan Hong
- Department of Pathogen Biology, School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Xiangyu Chen
- Department of Pathogen Biology, School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Yiming Liu
- Department of Pathogen Biology, School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Hao Liang
- Department of Health Inspection and Quarantine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yinghui Zhao
- Department of Pathogen Biology, School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Pengbo Guo
- Department of Pathogen Biology, School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| |
Collapse
|
5
|
Zhu J, Huang Z, Lin Y, Zhu W, Zeng B, Tang D. Intestinal-pulmonary axis: a 'Force For Good' against respiratory viral infections. Front Immunol 2025; 16:1534241. [PMID: 40170840 PMCID: PMC11959011 DOI: 10.3389/fimmu.2025.1534241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/28/2025] [Indexed: 04/03/2025] Open
Abstract
Respiratory viral infections are a major global public health concern, and current antiviral therapies still have limitations. In recent years, research has revealed significant similarities between the immune systems of the gut and lungs, which interact through the complex physiological network known as the "gut-lung axis." As one of the largest immune organs, the gut, along with the lungs, forms an inter-organ immune network, with strong parallels in innate immune mechanisms, such as the activation of pattern recognition receptors (PRRs). Furthermore, the gut microbiota influences antiviral immune responses in the lungs through mechanisms such as systemic transport of gut microbiota-derived metabolites, immune cell migration, and cytokine regulation. Studies have shown that gut dysbiosis can exacerbate the severity of respiratory infections and may impact the efficacy of antiviral therapies. This review discusses the synergistic role of the gut-lung axis in antiviral immunity against respiratory viruses and explores potential strategies for modulating the gut microbiota to mitigate respiratory viral infections. Future research should focus on the immune mechanisms of the gut-lung axis to drive the development of novel clinical treatment strategies.
Collapse
Affiliation(s)
- Jianing Zhu
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Zihang Huang
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Ying Lin
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Wenxu Zhu
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Binbin Zeng
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
- Northern Jiangsu People’s Hospital, Yangzhou, China
- The Yangzhou Clinical Medical College of Xuzhou Medical University, Yangzhou, China
- The Yangzhou School of Clinical Medicine of Dalian Medical University, Yangzhou, China
- The Yangzhou School of Clinical Medicine of Nanjing Medical University, Yangzhou, China
- Northern Jiangsu People’s Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Yangzhou, China
| |
Collapse
|
6
|
Li L, Zhang X, Yan H, Dai M, Gao H, Wang Y, Jiang P, Dai E. Different immunological characteristics of asymptomatic and symptomatic COVID-19 patients without vaccination in the acute and convalescence stages. PeerJ 2025; 13:e18451. [PMID: 39897496 PMCID: PMC11786710 DOI: 10.7717/peerj.18451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 10/14/2024] [Indexed: 02/04/2025] Open
Abstract
The immune status of Coronavirus disease 2019 (COVID-19) patients in different stages of infection remains difficult to determine. In this study, we performed high-throughput single-cell mass cytometry on peripheral blood samples from 10 COVID-19 patients and four healthy donors to analyze their immune status at acute and convalescence phases. During the acute stage, the proportion of neutrophils increased significantly while natural killer (NK) cells decreased. In contrast, during the convalescence phase, the proportion of plasma cells decreased from the acute stage of disease onset and was lower than normal. The proportions of B, mast and plasma cell subsets decreased significantly with the process of disease recovery. Further analysis of the subsets of major immune cell types in COVID-19 patients with different clinical presentations in different stages showed that in the acute stages of disease progression, the T helper cell 1 (Th1), IgD+ B and neutrophil subsets increased in COVID-19 patients, especially in symptomatic patients, while the central memory CD4+T cells (CD4 TCM), mucosa-associated invariant T (MAIT) and NK cell subsets decreased significantly, especially in symptomatic patients. Then CD4 TCM and MAIT returned to normal levels at the recovery phase. Dynamic assessment displayed that the immune imbalance at the onset of COVID-19 could be corrected during recovery. Our study provides additional information on the immune status of COVID-19 patients with different clinical manifestations in different stages. These findings may provide new insights into COVID-19 immunotherapy and immune intervention.
Collapse
Affiliation(s)
- Li Li
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
- Intensive Care Unit, The Fifth Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Xin Zhang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
- Department of Tuberculosis, The Fifth Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Huimin Yan
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
- Clinical Research Center, The Fifth Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Muwei Dai
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University and Hebei Cancer Hospital, Shijiazhuang, Hebei, China
| | - Huixia Gao
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Yuling Wang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Ping Jiang
- Department of Cardiovascular Medicine, The Third Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Erhei Dai
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| |
Collapse
|
7
|
Tourki B, Jia M, Karampitsakos T, Vera IM, Arsenault A, Fatima Z, Perrot CY, Allen D, Farsaei F, Rutenberg D, Bandyopadhyay D, Restrepo-Jaramillo R, Qureshi MR, Patel K, Tzouvelekis A, Kapetanaki MG, Juan-Guardela BM, Kim K, Benos PV, Herazo-Maya JD. Convergent and divergent immune aberrations in COVID-19, post-COVID-19-interstitial lung disease, and idiopathic pulmonary fibrosis. Am J Physiol Cell Physiol 2025; 328:C199-C211. [PMID: 39510135 DOI: 10.1152/ajpcell.00528.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024]
Abstract
We aimed to study transcriptional and phenotypic changes in circulating immune cells associated with increased risk of mortality in COVID-19, resolution of pulmonary fibrosis in post-COVID-19-interstitial lung disease (ILD), and persistence of idiopathic pulmonary fibrosis (IPF). Whole blood and peripheral blood mononuclear cells (PBMCs) were obtained from 227 subjects with COVID-19, post-COVID-19 interstitial lung disease (ILD), IPF, and controls. We measured a 50-gene signature (nCounter, Nanostring) previously found to be predictive of IPF and COVID-19 mortality along with plasma levels of several biomarkers by Luminex. In addition, we performed single-cell RNA sequencing (scRNA-seq) in PBMCs (10x Genomics) to determine the cellular source of the 50-gene signature. We identified the presence of three genomic risk profiles in COVID-19 based on the 50-gene signature associated with low-, intermediate-, or high-risk of mortality and with significant differences in proinflammatory and profibrotic cytokines. Patients with COVID-19 in the high-risk group had increased expression of seven genes in CD14+HLA-DRlowCD163+ monocytic-myeloid-derived suppressive cells (7Gene-M-MDSCs) and decreased expression of 43 genes in CD4 and CD8 T cell subsets. The loss of 7Gene-M-MDSCs and increased expression of these 43 genes in T cells was seen in survivors with post-COVID-19-ILD. On the contrary, patients with IPF had low expression of the 43 genes in CD4 and CD8 T cells. Collectively, we showed that a 50-gene, high-risk profile, predictive of IPF and COVID-19 mortality is characterized by a genomic imbalance in monocyte and T-cell subsets. This imbalance reverses in survivors with post-COVID-19-ILD highlighting genomic differences between post-COVID-19-ILD and IPF.NEW & NOTEWORTHY Changes in the 50-gene signature, reflective of increase in CD14+HLA-DRlowCD163+ monocytes and decrease in CD4 and CD8 T cells, are associated with increased mortality in COVID-19. A reversal of this pattern can be seen in post-COVID-19-ILD, whereas its persistence can be seen in IPF. Modulating the imbalance between HLA-DRlow monocytes and T cell subsets should be investigated as a potential strategy to treat pulmonary fibrosis associated with severe COVID-19 and progressive IPF.
Collapse
Affiliation(s)
- Bochra Tourki
- Ubben Center for Pulmonary Fibrosis Research, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Minxue Jia
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Joint Carnegie Mellon-University of Pittsburgh Computational Biology Ph.D. Program, Pittsburgh, Pennsylvania, United States
| | - Theodoros Karampitsakos
- Ubben Center for Pulmonary Fibrosis Research, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Iset M Vera
- Division of infectious Disease, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Alyssa Arsenault
- Ubben Center for Pulmonary Fibrosis Research, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Zainab Fatima
- Ubben Center for Pulmonary Fibrosis Research, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Carole Y Perrot
- Ubben Center for Pulmonary Fibrosis Research, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Dylan Allen
- Division of infectious Disease, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Forouzandeh Farsaei
- Division of infectious Disease, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - David Rutenberg
- Division of infectious Disease, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Debabrata Bandyopadhyay
- Ubben Center for Pulmonary Fibrosis Research, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
- Center for Advanced Lung Disease and Lung Transplant Program, Tampa General Hospital, Florida, United States
| | - Ricardo Restrepo-Jaramillo
- Ubben Center for Pulmonary Fibrosis Research, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
- Center for Advanced Lung Disease and Lung Transplant Program, Tampa General Hospital, Florida, United States
| | - Muhammad R Qureshi
- Ubben Center for Pulmonary Fibrosis Research, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
- Center for Advanced Lung Disease and Lung Transplant Program, Tampa General Hospital, Florida, United States
| | - Kapilkumar Patel
- Ubben Center for Pulmonary Fibrosis Research, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
- Center for Advanced Lung Disease and Lung Transplant Program, Tampa General Hospital, Florida, United States
| | | | - Maria G Kapetanaki
- Department of Epidemiology, College of Public Health, and Health Professions, and College of Medicine, University of Florida, Gainesville, Florida, United States
| | - Brenda M Juan-Guardela
- Ubben Center for Pulmonary Fibrosis Research, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Kami Kim
- Division of infectious Disease, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Panayiotis V Benos
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Joint Carnegie Mellon-University of Pittsburgh Computational Biology Ph.D. Program, Pittsburgh, Pennsylvania, United States
- Department of Epidemiology, College of Public Health, and Health Professions, and College of Medicine, University of Florida, Gainesville, Florida, United States
| | - Jose D Herazo-Maya
- Ubben Center for Pulmonary Fibrosis Research, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
- Center for Advanced Lung Disease and Lung Transplant Program, Tampa General Hospital, Florida, United States
| |
Collapse
|
8
|
Zhao T, Zhou ZR, Wan HQ, Feng T, Hu XH, Li XQ, Zhao SM, Li HL, Hou JW, Li W, Lu DY, Qian MY, Shen X. Otilonium bromide ameliorates pulmonary fibrosis in mice through activating phosphatase PPM1A. Acta Pharmacol Sin 2025; 46:107-121. [PMID: 39160244 PMCID: PMC11695943 DOI: 10.1038/s41401-024-01368-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024]
Abstract
Pulmonary fibrosis (PF) is a chronic, progressive and irreversible interstitial lung disease characterized by unremitting pulmonary myofibroblasts activation, extracellular matrix (ECM) deposition and inflammatory recruitment. PF has no curable medication yet. In this study we investigated the molecular pathogenesis and potential therapeutic targets of PF and discovered drug lead compounds for PF therapy. A murine PF model was established in mice by intratracheal instillation of bleomycin (BLM, 5 mg/kg). We showed that the protein level of pulmonary protein phosphatase magnesium-dependent 1A (PPM1A, also known as PP2Cα) was significantly downregulated in PF patients and BLM-induced PF mice. We demonstrated that TRIM47 promoted ubiquitination and decreased PPM1A protein in PF progression. By screening the lab in-house compound library, we discovered otilonium bromide (OB, clinically used for treating irritable bowel syndrome) as a PPM1A enzymatic activator with an EC50 value of 4.23 μM. Treatment with OB (2.5, 5 mg·kg-1·d-1, i.p., for 20 days) significantly ameliorated PF-like pathology in mice. We constructed PF mice with PPM1A-specific knockdown in the lung tissues, and determined that by targeting PPM1A, OB treatment suppressed ECM deposition through TGF-β/SMAD3 pathway in fibroblasts, repressed inflammatory responses through NF-κB/NLRP3 pathway in alveolar epithelial cells, and blunted the crosstalk between inflammation in alveolar epithelial cells and ECM deposition in fibroblasts. Together, our results demonstrate that pulmonary PPM1A activation is a promising therapeutic strategy for PF and highlighted the potential of OB in the treatment of the disease.
Collapse
Affiliation(s)
- Tong Zhao
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhi-Ruo Zhou
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Hui-Qi Wan
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tian Feng
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xu-Hui Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiao-Qian Li
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shi-Mei Zhao
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hong-Lin Li
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ji-Wei Hou
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China
| | - Wei Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Da-Yun Lu
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Min-Yi Qian
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xu Shen
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
9
|
Zhang Z, Zhou L, Liu Q, Zheng Y, Tan X, Huang Z, Guo M, Wang X, Chen X, Liang S, Li W, Song K, Yan K, Li J, Li Q, Zhang Y, Yang S, Cai Z, Dai M, Xian Q, Shi ZL, Xu K, Lan K, Chen Y. The lethal K18-hACE2 knock-in mouse model mimicking the severe pneumonia of COVID-19 is practicable for antiviral development. Emerg Microbes Infect 2024; 13:2353302. [PMID: 38753462 PMCID: PMC11132709 DOI: 10.1080/22221751.2024.2353302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024]
Abstract
Animal models of COVID-19 facilitate the development of vaccines and antivirals against SARS-CoV-2. The efficacy of antivirals or vaccines may differ in different animal models with varied degrees of disease. Here, we introduce a mouse model expressing human angiotensin-converting enzyme 2 (ACE2). In this model, ACE2 with the human cytokeratin 18 promoter was knocked into the Hipp11 locus of C57BL/6J mouse by CRISPR - Cas9 (K18-hACE2 KI). Upon intranasal inoculation with high (3 × 105 PFU) or low (2.5 × 102 PFU) dose of SARS-CoV-2 wildtype (WT), Delta, Omicron BA.1, or Omicron BA.2 variants, all mice showed obvious infection symptoms, including weight loss, high viral loads in the lung, and interstitial pneumonia. 100% lethality was observed in K18-hACE2 KI mice infected by variants with a delay of endpoint for Delta and BA.1, and a significantly attenuated pathogenicity was observed for BA.2. The pneumonia of infected mice was accompanied by the infiltration of neutrophils and pulmonary fibrosis in the lung. Compared with K18-hACE2 Tg mice and HFH4-hACE2 Tg mice, K18-hACE2 KI mice are more susceptible to SARS-CoV-2. In the antivirals test, REGN10933 and Remdesivir had limited antiviral efficacies in K18-hACE2 KI mice upon the challenge of SARS-CoV-2 infections, while Nirmatrelvir, monoclonal antibody 4G4, and mRNA vaccines potently protected the mice from death. Our results suggest that the K18-hACE2 KI mouse model is lethal and stable for SARS-CoV-2 infection, and is practicable and stringent to antiviral development.
Collapse
Affiliation(s)
- Zhen Zhang
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
- Institute for Vaccine Research, Animal Bio-Safety Level III Laboratory / Center for Animal Experiment, Wuhan University School of Medicine, Wuhan, People’s Republic of China
| | - Li Zhou
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
- Institute for Vaccine Research, Animal Bio-Safety Level III Laboratory / Center for Animal Experiment, Wuhan University School of Medicine, Wuhan, People’s Republic of China
| | - Qianyun Liu
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
| | - Yucheng Zheng
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
| | - Xue Tan
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
| | - Zhixiang Huang
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
- Institute for Vaccine Research, Animal Bio-Safety Level III Laboratory / Center for Animal Experiment, Wuhan University School of Medicine, Wuhan, People’s Republic of China
| | - Ming Guo
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
| | - Xin Wang
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
| | - Xianying Chen
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
| | - Simeng Liang
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
| | - Wenkang Li
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
| | - Kun Song
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
| | - Kun Yan
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
| | - Jiali Li
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
| | - Qiaohong Li
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
- Institute for Vaccine Research, Animal Bio-Safety Level III Laboratory / Center for Animal Experiment, Wuhan University School of Medicine, Wuhan, People’s Republic of China
| | - Yuzhen Zhang
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
- Institute for Vaccine Research, Animal Bio-Safety Level III Laboratory / Center for Animal Experiment, Wuhan University School of Medicine, Wuhan, People’s Republic of China
| | - Shimin Yang
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
| | - Zeng Cai
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
- Institute for Vaccine Research, Animal Bio-Safety Level III Laboratory / Center for Animal Experiment, Wuhan University School of Medicine, Wuhan, People’s Republic of China
| | - Ming Dai
- Institute for Vaccine Research, Animal Bio-Safety Level III Laboratory / Center for Animal Experiment, Wuhan University School of Medicine, Wuhan, People’s Republic of China
| | - Qiaoyang Xian
- Institute for Vaccine Research, Animal Bio-Safety Level III Laboratory / Center for Animal Experiment, Wuhan University School of Medicine, Wuhan, People’s Republic of China
| | - Zheng-Li Shi
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Ke Xu
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
- Institute for Vaccine Research, Animal Bio-Safety Level III Laboratory / Center for Animal Experiment, Wuhan University School of Medicine, Wuhan, People’s Republic of China
| | - Ke Lan
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
- Institute for Vaccine Research, Animal Bio-Safety Level III Laboratory / Center for Animal Experiment, Wuhan University School of Medicine, Wuhan, People’s Republic of China
| | - Yu Chen
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
- Institute for Vaccine Research, Animal Bio-Safety Level III Laboratory / Center for Animal Experiment, Wuhan University School of Medicine, Wuhan, People’s Republic of China
| |
Collapse
|
10
|
Osati EFO, Shayo GA, Sangeda RZ, Nagu TJ, Moshiro C, Adams N, Ramadhani A, Wajanga B, Muniko A, Seni J, Nicholaus MA, Nyaisonga G, Mbije C, Meda JR, Rainer D, Nkya ME, Mhame P, Samwel L, Vumilia L, Shekalaghe S, Kilonzo KG, Makubi A. Clinical manifestations and treatment outcomes among hospitalised COVID-19 patients in tertiary hospitals in Tanzania, 2021-2022: a retrospective cohort study. BMJ PUBLIC HEALTH 2024; 2:e000881. [PMID: 40018602 PMCID: PMC11816690 DOI: 10.1136/bmjph-2023-000881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/25/2024] [Indexed: 03/01/2025]
Abstract
Background There have been differential mortality rates from COVID-19 in different parts of the world. It is not clear whether the clinical presentation does also differ, thus the need for this study in a sub-Saharan African setting. The aim of this study was to describe the clinical manifestations and outcomes of patients diagnosed with COVID-19 in selected tertiary hospitals in Tanzania. Methods This was a retrospective analysis of hospitalised adults confirmed SAR-COV-2 infection in five tertiary-level hospitals in Tanzania. Data collected and analysed included sociodemographic, radiological and clinical characteristics of the patients as well as the outcome of the admission (discharge vs death). Results Out of 1387 COVID-19 patients, 52% were males. The median age was 60 years ((IQR)=(19-102)). The most common symptoms were dyspnoea (943,68%), cough (889, 64%), fever (597,43%) and fatigue (570, 41%). In-hospital mortality was (476, 34%). Mortality significantly increased with increasing age, being the most in age >90 years (aHR (95% CI)=4.4 (2.52 to 28.82), p=0.02). Other predictors of mortality were not possessing a health insurance, (aHR (95% CI)=3.7 (1.09 to 14.25), p=0.04); chest pain, (aHR (95% CI)=2.27 (1.36 to 4.13), p=0.03); HIV positivity, (aHR (95% CI)=3.9 (1.46 to 8.15), p=0.03); neutrophilia, (aHR (95% CI)=1.12 (1.01 to 2.65), p=0.03); no use of ivermectin, (aHR (95% CI)=1.21 (1.04 to 1.57), p=0.04) and non-use of steroids, (aHR (95% CI)=1.36 (1.18 to 2.78), p=0.04). The retrospective nature of this study which based on documented patients' records, with a large number of patients left out of the analysis due to missed data, this might in a way affect the results of the present study. Conclusion In-hospital mortality was 34%. The independent predictors of mortality were advanced age, HIV infection, no possession of a health insurance, chest pain, neutrophilia and no use of steroids or ivermectin.
Collapse
Affiliation(s)
- Elisha Fred Otieno Osati
- Department of Internal Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania, United Republic of
- Department of Internal Medicine, Muhimbili National Hospital, Dar es Salaam, Tanzania, United Republic of
| | - Grace Ambrose Shayo
- Department of Internal Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania, United Republic of
- Department of Internal Medicine, Muhimbili National Hospital, Dar es Salaam, Tanzania, United Republic of
| | - Raphael Z Sangeda
- Department of Pharmaceutical Microbiology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania, United Republic of
| | - Tumaini Joseph Nagu
- Department of Internal Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania, United Republic of
- Department of Internal Medicine, Muhimbili National Hospital, Dar es Salaam, Tanzania, United Republic of
| | - Candida Moshiro
- Department of Internal Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania, United Republic of
| | - Naveeda Adams
- Department of Internal Medicine, Muhimbili National Hospital, Dar es Salaam, Tanzania, United Republic of
| | - Athumani Ramadhani
- Department of Internal Medicine, Muhimbili National Hospital, Dar es Salaam, Tanzania, United Republic of
| | - Bahati Wajanga
- Department of Internal Medicine, Bugando Medical Centre, Mwanza, Tanzania, United Republic of
| | - Albert Muniko
- Department of Internal Medicine, Bugando Medical Centre, Mwanza, Tanzania, United Republic of
| | - Jeremiah Seni
- Department of Internal Medicine, Catholic University of Health and Allied Sciences Bugando, Mwanza, Tanzania, United Republic of
| | - Mary A Nicholaus
- Department of Internal Medicine, Kilimanjaro Christian Medical Centre, Moshi, Kilimanjaro, Tanzania, United Republic of
| | - Gervas Nyaisonga
- Department of Internal Medicine, Mbeya Zonal Referral Hospital, Mbeya, Tanzania, United Republic of
| | - Christian Mbije
- Department of Internal Medicine, Mbeya Zonal Referral Hospital, Mbeya, Tanzania, United Republic of
| | - John Robson Meda
- Department of Internal Medicine, University of Dodoma, Dodoma, Tanzania, United Republic of
| | - Denis Rainer
- Department of Internal Medicine, Benjamin Mkapa Hospital, Dodoma, Tanzania, United Republic of
| | - Martha Elisande Nkya
- Community, Management and Development for Health, Dar es Salaam, Tanzania, United Republic of
| | - Paulo Mhame
- Ministry of Health, Dar as Salaam, Tanzania, United Republic of
| | - Lucy Samwel
- Ministry of Health, Dar as Salaam, Tanzania, United Republic of
| | - Liggyle Vumilia
- Ministry of Health, Dar as Salaam, Tanzania, United Republic of
| | - Seif Shekalaghe
- Ministry of Health, Dar as Salaam, Tanzania, United Republic of
| | - Kajiru G Kilonzo
- Department of Internal Medicine, Kilimanjaro Christian Medical Centre, Moshi, Kilimanjaro, Tanzania, United Republic of
| | - Abel Makubi
- Ministry of Health, Dar as Salaam, Tanzania, United Republic of
| |
Collapse
|
11
|
Aikwanich A, Eksombatchai D, Petnak T, Tassaneeyasin T, Boonsarngsuk V. Risk Factors for Secondary Organizing Pneumonia and Acute Fibrinous and Organizing Pneumonia in Patients with COVID-19 Pneumonia. Infect Drug Resist 2024; 17:5017-5026. [PMID: 39554470 PMCID: PMC11566205 DOI: 10.2147/idr.s481540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/17/2024] [Indexed: 11/19/2024] Open
Abstract
Purpose Secondary organizing pneumonia (OP) and acute fibrinous and organizing pneumonia (AFOP) are frequently observed in cases of COVID-19 pneumonia. Nevertheless, the identification of risk factors related to OP/AFOP and their impact on patient outcomes remain inadequately elucidated. Patients and Methods This retrospective study aimed to identify risk factors associated with OP/AFOP in patients with COVID-19 pneumonia and to compare clinical outcomes between patients with and without OP/AFOP. The study included hospitalized patients with COVID-19 pneumonia admitted between July 1 and September 30, 2021. Factors associated with OP/AFOP were identified using multivariable regression analysis. Additionally, a multivariable Cox proportional hazard model was used to evaluate the association of OP/AFOP with 90-day mortality. Results Among the 666 hospitalized patients with COVID-19 pneumonia, 53 (8%) developed OP/AFOP during their admission. When compared to patients younger than 50 years old, those aged 50-70 and over 70 years old exhibited an increased risk of developing OP/AFOP, with adjusted odds ratios (aOR) of 3.87 (95% CI, 1.24-12.11; P=0.02) and 5.74 (95% CI, 1.80-18.27; P=0.003), respectively. Other factors associated with OP/AFOP included a history of diabetes mellitus (aOR 2.37; 95% CI, 1.27-4.44; P=0.01) and patients with oxygen saturation at admission below 88% (aOR 4.52; 95% CI, 1.22-16.67; P=0.02). Furthermore, the presence of OP/AFOP was correlated with an increased risk of various complications, such as respiratory failure, acute kidney injury, secondary infections, pneumothorax, pneumomediastinum, and pulmonary embolism. Lastly, patients with OP/AFOP exhibited significantly higher 90-day mortality (adjusted hazard ratio 3.40; 95% CI, 1.68-6.92; P=0.001) compared to those without OP/AFOP. Conclusion We identified factors associated with an increased risk of OP/AFOP in patients with COVID-19 pneumonia, which included age ≥50 years, a history of DM, and hypoxemia on admission (SpO2 <88%). Furthermore, our study revealed that OP/AFOP was significantly linked to higher 90-day mortality.
Collapse
Affiliation(s)
- Alisa Aikwanich
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Dararat Eksombatchai
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Tananchai Petnak
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Tanapat Tassaneeyasin
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Viboon Boonsarngsuk
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
12
|
Merhavy ZI, Junor T, Gonzalez A, Filippis SMD, Oveisitork S, Rivera E, Ndukwu I, Bhatara K. Long COVID: A Comprehensive Overview of the Signs and Symptoms across Multiple Organ Systems. Korean J Fam Med 2024; 45:305-316. [PMID: 39600184 PMCID: PMC11605154 DOI: 10.4082/kjfm.24.0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 11/29/2024] Open
Abstract
Long coronavirus disease (COVID), also known as the post-acute sequelae of coronavirus disease 2019 (COVID-19) (PASC), is a significant concern since the end of the COVID-19 pandemic, as it still manifests in individuals with persistent symptoms and complications beyond the acute phase of infection. Defining this disease is challenging, as it manifests as a spectrum of symptoms varying in severity among individuals who have previously tested positive for COVID-19. Long COVID is more prevalent in hospitalized COVID-19 patients and presents in various ways, ranging from pulmonary to extrapulmonary symptoms. This literature review examines the current body of research on long COVID with a focus on its effects on the cardiovascular, hematological, respiratory, renal, and neurological systems with systematically analyzed, peer-reviewed articles retrieved from the PubMed database. There have been several proposed pathophysiological mechanisms by which severe acute respiratory syndrome coronavirus 2 affects the aforementioned organ systems; however, research on the definite mechanisms is lacking, especially when considering the management of long COVID in the perioperative setting. The impact of post-COVID sequelae necessitates individualized management strategies tailored to each symptomatic profile, particularly in patients with comorbidities. The COVID-19 pandemic affected millions of people and had a profound impact on those who developed PASC, lowering their quality of life and increasing potential surgical risks. However, there is still uncertainty regarding the specific risk factors for long COVID and who is most susceptible to it. Further research is required to fill these gaps and explore potential avenues for preventing PASC.
Collapse
Affiliation(s)
| | - Tiana Junor
- University of Medicine and Health Sciences, Basseterre, St. Kitts & Nevis
| | - Aranice Gonzalez
- University of Medicine and Health Sciences, Basseterre, St. Kitts & Nevis
| | | | | | - Eliu Rivera
- University of Medicine and Health Sciences, Basseterre, St. Kitts & Nevis
| | - Ifeanyi Ndukwu
- University of Medicine and Health Sciences, Basseterre, St. Kitts & Nevis
| | - Kanika Bhatara
- Department of Family Medicine, Wayne State University School of Medicine, Rochester, MI, USA
| |
Collapse
|
13
|
Badary HA, Hashem MB, El-Kassas M. Drug-induced liver injury during the era of COVID-19 polypharmacy: a statement of account, lessons learned, and a proposed approach. EGYPTIAN LIVER JOURNAL 2024; 14:75. [DOI: 10.1186/s43066-024-00381-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 10/07/2024] [Indexed: 01/03/2025] Open
Abstract
AbstractThe coronavirus disease 2019 (COVID-19) causes a systemic illness that can result in various manifestations. In addition to severe acute respiratory syndrome, patients often exhibit complications unrelated to the respiratory system. Potential liver damage can occur in 14.8 to 53.0% of the affected patients. Liver impairment in COVID-19 can also occur because of the use of polypharmacy during disease management. It is essential to be aware of drug-induced liver injury (DILI) in patients diagnosed with COVID-19, especially when considering the off-label usage of medications in both preventative and therapeutic regimens used on a wide scale. This review aims to give pertinent information regarding drugs utilized thus far in COVID-19 patients and their potential toxicity to the liver. We also present a suggested management approach to DILI in COVID-19 patients and lessons learned from the pharmacological management of this pandemic.
Collapse
|
14
|
Osborn E, Ransom JT, Shulman A, Sengupta V, Choudhry M, Hafiz A, Gooden J, Lightner AL. A novel extracellular vesicle paradigm for the treatment of COVID-19 induced acute respiratory distress syndrome (ARDS). Respir Med Case Rep 2024; 51:102087. [PMID: 39099663 PMCID: PMC11295994 DOI: 10.1016/j.rmcr.2024.102087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 06/08/2024] [Accepted: 07/03/2024] [Indexed: 08/06/2024] Open
Abstract
Efficacy of mesenchymal stem cells (MSCs) for treatment of acute respiratory distress syndrome (ARDS) suggests bioactive bone marrow MSC extracellular vesicles (BM-MSC EVs) may be effective. A patient with severe COVID-19 associated ARDS who was presumed to expire was treated with a BM-MSC EV preparation (14 doses over two months) as a rescue treatment for refractory COVID ARDS. Near complete reversal of lung inflammation and fibrosis (per computed tomography), near complete restoration of mobility, hospital discharge (3 months) with resumption of normal activities of daily living (one year) and return to work occurred. No adverse events occurred despite repeated dosing of investigational product, highlighting safety of this potential therapy for ARDS.
Collapse
Affiliation(s)
- Erik Osborn
- Mary Washington Healthcare, Fredericksburg, VA, USA
| | | | | | | | | | - Ali Hafiz
- Mary Washington Healthcare, Fredericksburg, VA, USA
| | - Jacob Gooden
- Edward Via College of Osteopathic Medicine, Blacksburg, VA, USA
| | | |
Collapse
|
15
|
Nasir N, Khanum I, Habib K, Wagley A, Arshad A, Majeed A. Insight into COVID-19 associated liver injury: Mechanisms, evaluation, and clinical implications. HEPATOLOGY FORUM 2024; 5:139-149. [PMID: 39006140 PMCID: PMC11237249 DOI: 10.14744/hf.2023.2023.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/25/2023] [Accepted: 11/02/2023] [Indexed: 07/16/2024]
Abstract
COVID-19 has affected millions worldwide, causing significant morbidity and mortality. While predominantly involving the respiratory tract, SARS-CoV-2 has also caused systemic illnesses involving other sites. Liver injury due to COVID-19 has been variably reported in observational studies. It has been postulated that liver damage may be due to direct damage by the SARS-CoV-2 virus or multifactorial secondary to hepatotoxic therapeutic options, as well as cytokine release syndrome and sepsis-induced multiorgan dysfunction. The approach to a COVID-19 patient with liver injury requires a thorough evaluation of the pattern of hepatocellular injury, along with the presence of underlying chronic liver disease and concurrent medications which may cause drug-induced liver injury. While studies have shown uneventful recovery in the majority of mildly affected patients, severe COVID-19 associated liver injury has been associated with higher mortality, prolonged hospitalization, and greater morbidity in survivors. Furthermore, its impact on long-term outcomes remains to be ascertained as recent studies report an association with metabolic-fatty liver disease. This present review provides insight into the subject by describing the postulated mechanism of liver injury, its impact in the presence of pre-existing liver disease, and its short- and long-term clinical implications.
Collapse
Affiliation(s)
- Nosheen Nasir
- Section of Adult Infectious Diseases, Department of Medicine, Aga Khan University, Karachi, Pakistan
| | - Iffat Khanum
- Section of Adult Infectious Diseases, Department of Medicine, Aga Khan University, Karachi, Pakistan
| | - Kiren Habib
- Section of Adult Infectious Diseases, Department of Medicine, Aga Khan University, Karachi, Pakistan
| | - Abdullah Wagley
- Research Facilitation Office, Medical College, Aga Khan University, Karachi, Pakistan
| | - Aleena Arshad
- Section of Adult Infectious Diseases, Department of Medicine, Aga Khan University, Karachi, Pakistan
| | - Atif Majeed
- Section of Gastroenterology, Department of Medicine, Aga Khan University, Karachi, Pakistan
| |
Collapse
|
16
|
Padín JF, Pérez-Ortiz JM, Redondo-Calvo FJ. Aprotinin (II): Inhalational Administration for the Treatment of COVID-19 and Other Viral Conditions. Int J Mol Sci 2024; 25:7209. [PMID: 39000315 PMCID: PMC11241800 DOI: 10.3390/ijms25137209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Aprotinin is a broad-spectrum inhibitor of human proteases that has been approved for the treatment of bleeding in single coronary artery bypass surgery because of its potent antifibrinolytic actions. Following the outbreak of the COVID-19 pandemic, there was an urgent need to find new antiviral drugs. Aprotinin is a good candidate for therapeutic repositioning as a broad-spectrum antiviral drug and for treating the symptomatic processes that characterise viral respiratory diseases, including COVID-19. This is due to its strong pharmacological ability to inhibit a plethora of host proteases used by respiratory viruses in their infective mechanisms. The proteases allow the cleavage and conformational change of proteins that make up their viral capsid, and thus enable them to anchor themselves by recognition of their target in the epithelial cell. In addition, the activation of these proteases initiates the inflammatory process that triggers the infection. The attraction of the drug is not only its pharmacodynamic characteristics but also the possibility of administration by the inhalation route, avoiding unwanted systemic effects. This, together with the low cost of treatment (≈2 Euro/dose), makes it a good candidate to reach countries with lower economic means. In this article, we will discuss the pharmacodynamic, pharmacokinetic, and toxicological characteristics of aprotinin administered by the inhalation route; analyse the main advances in our knowledge of this medication; and the future directions that should be taken in research in order to reposition this medication in therapeutics.
Collapse
Affiliation(s)
- Juan-Fernando Padín
- Department of Medical Sciences, School of Medicine at Ciudad Real, University of Castilla-La Mancha, 13971 Ciudad Real, Spain
| | - José Manuel Pérez-Ortiz
- Facultad HM de Ciencias de la Salud, Universidad Camilo José Cela, 28692 Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, 28015 Madrid, Spain
| | - Francisco Javier Redondo-Calvo
- Department of Medical Sciences, School of Medicine at Ciudad Real, University of Castilla-La Mancha, 13971 Ciudad Real, Spain
- Department of Anaesthesiology and Critical Care Medicine, University General Hospital, 13005 Ciudad Real, Spain
- Translational Research Unit, University General Hospital and Research Institute of Castilla-La Mancha (IDISCAM), 13005 Ciudad Real, Spain
| |
Collapse
|
17
|
Shatnawi S, Gunasekara S, Bashor L, Tamil Selvan M, Nehring M, Cowan S, Ritchey J, VandeWoude S, Taylor B, Miller C, Rudd JM. Utilizing Feline Lentiviral Infection to Establish a Translational Model for COVID-19 in People with Human Immunodeficiency Virus Infection. Microorganisms 2024; 12:1289. [PMID: 39065058 PMCID: PMC11278576 DOI: 10.3390/microorganisms12071289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/04/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
People living with human immunodeficiency virus (PLWH) are a significant population globally. Research delineating our understanding of coinfections in PLWH is critical to care for those navigating infection with other pathogens. The recent COVID-19 pandemic underscored the urgent need for studying the effects of SARS-CoV-2 infections in therapy-controlled and uncontrolled immunodeficiency viral infections. This study established the utility of a feline model for the in vivo study of coinfections. Domestic cats are naturally infected with SARS-CoV-2 and Feline Immunodeficiency Virus, a lentivirus molecularly and pathogenically similar to HIV. In this study, comparisons are made between FIV-positive and FIV-negative cats inoculated with SARS-CoV-2 (B.1.617.2.) in an experimental setting. Of the FIV+ cats, three received Zidovudine (AZT) therapy in the weeks leading up to SARS-CoV-2 inoculation, and two did not. SARS-CoV-2 viral RNA was quantified, histopathologic comparisons of respiratory tissues were made, and T-cell populations were analyzed for immune phenotype shifts between groups. CD4+ T lymphocyte responses varied, with FIV+-untreated cats having the poorest CD4+ response to SARS-CoV-2 infection. While all cats had significant pulmonary inflammation, key histopathologic features of the disease differed between groups. Additionally, viral genomic analysis was performed, and results were analyzed for the presence of emerging, absent, amplified, or reduced mutations in SARS-CoV-2 viral RNA after passage through the feline model. Positive selection is noted, especially in FIV+ cats untreated with AZT, and mutations with potential relevance were identified; one FIV+-untreated cat had persistent, increasing SARS-CoV-2 RNA in plasma five days post-infection. These findings and others support the utility of the feline model for studying coinfection in people with HIV and highlight the importance of antiretroviral therapy in clearing SARS-CoV-2 coinfections to minimize transmission and emergence of mutations that may have deleterious effects.
Collapse
Affiliation(s)
- Shoroq Shatnawi
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (S.S.)
| | - Sachithra Gunasekara
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (S.S.)
| | - Laura Bashor
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80521, USA
| | - Miruthula Tamil Selvan
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (S.S.)
| | - Mary Nehring
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80521, USA
| | - Shannon Cowan
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (S.S.)
| | - Jerry Ritchey
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (S.S.)
| | - Susan VandeWoude
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80521, USA
| | - Brianne Taylor
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (S.S.)
| | - Craig Miller
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (S.S.)
| | - Jennifer M. Rudd
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (S.S.)
| |
Collapse
|
18
|
Rodriguez-Espada A, Salgado-de la Mora M, Rodriguez-Paniagua BM, Limon-de la Rosa N, Martinez-Gutierrez MI, Pastrana-Brandes S, Navarro-Alvarez N. Histopathological impact of SARS-CoV-2 on the liver: Cellular damage and long-term complications. World J Gastroenterol 2024; 30:2866-2880. [PMID: 38947288 PMCID: PMC11212712 DOI: 10.3748/wjg.v30.i22.2866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/08/2024] [Accepted: 05/24/2024] [Indexed: 06/05/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by the highly pathogenic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), primarily impacts the respiratory tract and can lead to severe outcomes such as acute respiratory distress syndrome, multiple organ failure, and death. Despite extensive studies on the pathogenicity of SARS-CoV-2, its impact on the hepatobiliary system remains unclear. While liver injury is commonly indicated by reduced albumin and elevated bilirubin and transaminase levels, the exact source of this damage is not fully understood. Proposed mechanisms for injury include direct cytotoxicity, collateral damage from inflammation, drug-induced liver injury, and ischemia/hypoxia. However, evidence often relies on blood tests with liver enzyme abnormalities. In this comprehensive review, we focused solely on the different histopathological manifestations of liver injury in COVID-19 patients, drawing from liver biopsies, complete autopsies, and in vitro liver analyses. We present evidence of the direct impact of SARS-CoV-2 on the liver, substantiated by in vitro observations of viral entry mechanisms and the actual presence of viral particles in liver samples resulting in a variety of cellular changes, including mitochondrial swelling, endoplasmic reticulum dilatation, and hepatocyte apoptosis. Additionally, we describe the diverse liver pathology observed during COVID-19 infection, encompassing necrosis, steatosis, cholestasis, and lobular inflammation. We also discuss the emergence of long-term complications, notably COVID-19-related secondary sclerosing cholangitis. Recognizing the histopathological liver changes occurring during COVID-19 infection is pivotal for improving patient recovery and guiding decision-making.
Collapse
Affiliation(s)
- Alfonso Rodriguez-Espada
- Department of Molecular Biology, Universidad Panamericana School of Medicine, Campus México, Mexico 03920, Mexico
| | - Moises Salgado-de la Mora
- Department of Internal Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico 14080, Mexico
| | | | - Nathaly Limon-de la Rosa
- Department of Surgery, University of Colorado Anschutz Medical Campus, Denver, CO 80045, United States
| | | | - Santiago Pastrana-Brandes
- Department of Molecular Biology, Universidad Panamericana School of Medicine, Campus México, Mexico 03920, Mexico
| | - Nalu Navarro-Alvarez
- Department of Molecular Biology, Universidad Panamericana School of Medicine, Campus México, Mexico 03920, Mexico
- Department of Surgery, University of Colorado Anschutz Medical Campus, Denver, CO 80045, United States
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico 14080, Mexico
| |
Collapse
|
19
|
Dal Negro RW, Turco P, Povero M. mRNA vaccines protect from the lung microvasculature injury and the capillary blood volume loss occurring in SARS-CoV-2 paucisymptomatic infections. Multidiscip Respir Med 2024; 19:973. [PMID: 38833210 PMCID: PMC11186436 DOI: 10.5826/mrm.2024.973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/07/2024] [Indexed: 06/06/2024] Open
Abstract
INTRODUCTION The reduction of lung capillary blood volume (Vc) had been identified as the microvascular injury mostly underlying the respiratory Long-COVID syndrome following post-COVID-19 pneumonia. The same kind of injury have been recently also found in several individuals after milder paucisymptomatic SARS-CoV-2 infections. Though current guidelines strongly recommend vac-cination, studies aimed to investigate the in vivo protection of anti-SARS-CoV-2 vaccines on lung microvascular targets still are missing to our best knowledge. AIM to assess the protection of mRNA vaccines from the reduction of lung capillary blood volume (Vc) caused by pauci-symptomatic SARS.CoV-2 infections in vaccinated compared to unvaccinated individuals. METHODS Non-smoking individuals with recent paucisymptomatic SARS-CoV-2 infection were divided into vaccinated and unvaccinated groups. Lung function parameters, including single-breath diffusing capacity and microvascular blood volume, were compared between groups. RESULTS fifty vaccinated and twenty-five unvaccinated well-matched individuals were studied. Differently than usual lung function parameters, only the single-breath simultaneous assessment of sDLCO, sDLNO/sDLCO ratio and Vc allowed to identify the occurrence of the lung microvascular injury with high sensitivity and specificity (p<0.001). CONCLUSION mRNA vaccines proved to exert a high protection from the loss of lung capillary blood volume (Vc) induced by SARS.CoV-2 paucisymptomatic infections (p<0.001). The availability of this non-invasive investigational model should be regarded as a very helpful tool for assessing and comparing in vivo the protective effect of mRNA vaccines on the human microvascular structures of the deep lung.
Collapse
Affiliation(s)
- Roberto W. Dal Negro
- National Centre for Respiratory Pharmacoeconomics and Pharmacoepidemiology - CESFAR, Verona, Italy
| | - Paola Turco
- AdRes Health Economics and Outcomes Research, Torino, Italy
| | | |
Collapse
|
20
|
Li Y, Hu H, Liu J, Ma L, Wang X, Liu L, Liu Q, Ren L, Li J, Deng F, Hu Z, Zhou Y, Wang M. Crucial role played by CK8 + cells in mediating alveolar injury remodeling for patients with COVID-19. Virol Sin 2024; 39:390-402. [PMID: 38521412 PMCID: PMC11280282 DOI: 10.1016/j.virs.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/18/2024] [Indexed: 03/25/2024] Open
Abstract
The high risk of SARS-CoV-2 infection and reinfection and the occurrence of post-acute pulmonary sequelae have highlighted the importance of understanding the mechanism underlying lung repair after injury. To address this concern, comparative and systematic analyses of SARS-CoV-2 infection in COVID-19 patients and animals were conducted. In the lungs of nine patients who died of COVID-19 and one recovered from COVID-19 but died of unrelated disease in early 2020, damage-related transient progenitor (DATP) cells expressing CK8 marker proliferated significantly. These CK8+ DATP cells were derived from bronchial CK5+ basal cells. However, they showed different cell fate toward differentiation into type I alveolar cells in the deceased and convalescent patients, respectively. By using a self-limiting hamster infection model mimicking the dynamic process of lung injury remodeling in mild COVID-19 patients, the accumulation and regression of CK8+ cell marker were found to be closely associated with the disease course. Finally, we examined the autopsied lungs of two patients who died of infection by the recent Omicron variant and found that they only exhibited mild pathological injury with no CK8+ cell proliferation. These results indicate a clear pulmonary cell remodeling route and suggest that CK8+ DATP cells play a primary role in mediating alveolar remodeling, highlighting their potential applications as diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Yufeng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Hengrui Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jia Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Longda Ma
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430010, China
| | - Xi Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Liang Liu
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430010, China
| | - Qian Liu
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430010, China
| | - Liang Ren
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430010, China
| | - Jiang Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yiwu Zhou
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430010, China.
| | - Manli Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
21
|
Borczuk AC. Pathology of COVID-19 Lung Disease. Surg Pathol Clin 2024; 17:203-214. [PMID: 38692805 DOI: 10.1016/j.path.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
The pathology of severe COVID-19 lung injury is predominantly diffuse alveolar damage, with other reported patterns including acute fibrinous organizing pneumonia, organizing pneumonia, and bronchiolitis. Lung injury was caused by primary viral injury, exaggerated immune responses, and superinfection with bacteria and fungi. Although fatality rates have decreased from the early phases of the pandemic, persistent pulmonary dysfunction occurs and its pathogenesis remains to be fully elucidated.
Collapse
Affiliation(s)
- Alain C Borczuk
- Department of Pathology, Northwell Health, 2200 Northern Boulevard Suite 104, Greenvale, NY 11548, USA.
| |
Collapse
|
22
|
Moneshwaran S, Macrin D, Kanagathara N. An unprecedented global challenge, emerging trends and innovations in the fight against COVID-19: A comprehensive review. Int J Biol Macromol 2024; 267:131324. [PMID: 38574936 DOI: 10.1016/j.ijbiomac.2024.131324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 03/30/2024] [Accepted: 03/30/2024] [Indexed: 04/06/2024]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a highly contagious and dangerous virus that caused the global COVID-19 pandemic in early 2020. It primarily affects the respiratory system, leading to severe illness and high rates of mortality worldwide. The virus enters the body by binding to a receptor called ACE2, which is present in specific cells of the lungs known as type 2 alveolar epithelial cells. Numerous studies have investigated the consequences of SARS-CoV-2 infection, revealing various impacts on the body. This review provides an overview of SARS-CoV-2, including its structure and how it infects cells. It also examines the different variants of concern, such as Alpha, Beta, Gamma, Delta, and the more recent Omicron variant, discussing their characteristics and the level of damage they cause. The usage of drugs to treat COVID-19 is another aspect that has been covered and compares the effectiveness and use of antiviral drugs in the treatment and its potential benefits in COVID-19 treatment. Furthermore, this review explores the consequences and abnormalities associated with SARS-CoV-2 infection, including its impact on various organs and systems in the body. And also discussing the different COVID-19 vaccines available and their effectiveness in preventing infection and reducing the severity of illness. The current review ensures the recent update of the COVID research with expert's knowledge, collection of numerous data from reliable sources and methodologies as well as update of findings based on reviews. This review also provided clear contextual explanations to aid the interpretation and application of the results. The main motto and limitation of this manuscript are to address the computational methods of drug discovery against the rapidly evolving SARS-CoV-2 virus, which has been discussed. Additionally, current computational approaches which are cost effective and can able to predict the therapeutic agents for the treatment against the virus have also been discussed.
Collapse
Affiliation(s)
- S Moneshwaran
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Thandalam, Chennai 602 105, India
| | - D Macrin
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Thandalam, Chennai 602 105, India
| | - N Kanagathara
- Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Thandalam, Chennai 602 105, India.
| |
Collapse
|
23
|
Shchepikhin EI, Shmelev EI, Ergeshov AE. [Pulmonary fibrosis after a new coronavirus infection - versions and controversies: A review]. TERAPEVT ARKH 2024; 96:298-302. [PMID: 38713047 DOI: 10.26442/00403660.2024.03.202632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 03/30/2024] [Indexed: 05/08/2024]
Abstract
Fibrosis is a dynamic process characterized by a typical cascade of events as a result of overexpressed repair of connective tissue in response to injury, and manifested by excessive accumulation of extracellular matrix. The development of fibrosis is a determining factor in the pathogenesis, clinical course and prognosis of many diseases, among which interstitial lung diseases occupy a special place. According to a large Russian registry (ClinicalTrials.gov: NCT04492384), in a third of patients with COVID-19, the volume of lung parenchyma involvement exceeds 50% (CT 3-4). The rapid growth in the number of patients who have had a coronavirus infection with lung damage has raised the issues of its long-term consequences to the number of the most relevant in internal medicine of the current time. Often, in the outcome of a coronavirus infection, patients retain clinical and functional changes that are similar to interstitial lung diseases of a different origin, the prognosis of which is determined by the development of interstitial fibrosis and the rate of its progression. This article is an attempt to consider topical issues of fibrogenesis in patients who have undergone a new coronavirus infection through the prism of polar data on immunobiology, clinical course and prognosis.
Collapse
Affiliation(s)
- E I Shchepikhin
- Central Tuberculosis Research Institute
- Central Clinical Hospital of the Administrative Directorate of the President of the Russian Federation
| | | | | |
Collapse
|
24
|
Irie Y, Wakabayashi H, Matuzawa Y, Hiruta N, Kaneko K. A Case of Anti-Synthetase Syndrome With Anti-Glycyl tRNA Synthetases Antibody Developed After COVID-19. Cureus 2024; 16:e58004. [PMID: 38738103 PMCID: PMC11087665 DOI: 10.7759/cureus.58004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2024] [Indexed: 05/14/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a life-threatening respiratory disease characterized by severe acute infection. In some cases, COVID-19 symptoms may persist for a long term, posing a significant social problem. Long-term COVID-19 symptoms resemble those observed in various autoimmune diseases, such as dermatomyositis and polymyositis. In this report, we present the case of a 55-year-old woman who had been experiencing persistent dyspnea on exertion since contracting COVID-19 a month ago and was subsequently diagnosed with anti-synthetase syndrome (ASS). The patient presented with fever, dyspnea, rash, mechanic's hands, and arthritis. Computed tomography imaging revealed findings indicative of interstitial pneumonia. Immunological test results were positive for anti-EJ antibody, leading to a diagnosis of ASS based on Solomon's established criteria. The patient's condition improved following treatment with prednisolone, tacrolimus, and intravenous cyclophosphamide. Pathological findings of transbronchial biopsy revealed nonspecific interstitial pneumonia with organizing pneumonia, leading to speculation that ASS had developed after COVID-19. Given the scarcity of reports on ASS development post COVID-19, we conducted a literature review and compared our present case to previous ones. This report highlights the importance of considering ASS in the differential diagnosis of patients with long-term COVID-19 symptoms.
Collapse
Affiliation(s)
- Yusuke Irie
- Respiratory Medicine, Toho University Sakura Medical Center, Sakura-shi, JPN
| | - Hiroki Wakabayashi
- Respiratory Medicine, Toho University Sakura Medical Center, Sakura-shi, JPN
| | - Yasuo Matuzawa
- Respiratory Medicine, Toho University Sakura Medical Center, Sakura-shi, JPN
| | - Nobuyuki Hiruta
- Pathology and Laboratory Medicine, Toho University Sakura Medical Center, Sakura-shi, JPN
| | - Kaichi Kaneko
- Rheumatology, Toho University Sakura Medical Center, Sakura-shi, JPN
| |
Collapse
|
25
|
Brilakis L, Theofilogiannakou E, Lykoudis PM. Current remarks and future directions on the interactions between metabolic dysfunction-associated fatty liver disease and COVID-19. World J Gastroenterol 2024; 30:1480-1487. [PMID: 38617460 PMCID: PMC11008415 DOI: 10.3748/wjg.v30.i11.1480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/30/2024] [Accepted: 03/04/2024] [Indexed: 03/21/2024] Open
Abstract
During the outbreak of the coronavirus disease 2019 (COVID-19) pandemic, particular interest rose regarding the interaction between metabolic dysfunction-associated fatty liver disease (MAFLD) and the COVID-19 infection. Several studies highlighted the fact that individuals with MAFLD had higher probability of severe acute respiratory syndrome coronavirus 2 infection and more severe adverse clinical outcomes. One of the proposed mechanisms is the inflammatory response pathway, especially the one involving cytokines, such as interleukin 6, which appeared particularly elevated in those patients and was deemed responsible for additional insult to the already damaged liver. This should increase our vigilance in terms of early detection, close follow up and early treatment for individuals with MAFLD and COVID-19 infection. In the direction of early diagnosis, biomarkers such as cytokeratin-18 and scoring systems such as Fibrosis-4 index score are proposed. COVID-19 is a newly described entity, expected to be of concern for the years to come, and MAFLD is a condition with an ever-increasing impact. Delineating the interaction between these two entities should be brought into the focus of research. Reducing morbidity and mortality of patients with COVID-19 and MAFLD should be the ultimate objective, and the optimal way to achieve this is by designing evidence-based prevention and treatment policies.
Collapse
Affiliation(s)
- Leonidas Brilakis
- School of Medicine, National & Kapodistrian University of Athens, Athens 11527, Greece
| | | | - Panagis M Lykoudis
- School of Medicine, National & Kapodistrian University of Athens, Athens 11527, Greece
- Division of Surgery & Interventional Science, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
26
|
Mao Y, Chen Y, Li Y, Ma L, Wang X, Wang Q, He A, Liu X, Dong T, Gao W, Xu Y, Liu L, Ren L, Liu Q, Zhou P, Hu B, Zhou Y, Tian R, Shi ZL. Deep spatial proteomics reveals region-specific features of severe COVID-19-related pulmonary injury. Cell Rep 2024; 43:113689. [PMID: 38241149 DOI: 10.1016/j.celrep.2024.113689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/23/2023] [Accepted: 01/02/2024] [Indexed: 01/21/2024] Open
Abstract
As a primary target of severe acute respiratory syndrome coronavirus 2, lung exhibits heterogeneous histopathological changes following infection. However, comprehensive insight into their protein basis with spatial resolution remains deficient, which hinders further understanding of coronavirus disease 2019 (COVID-19)-related pulmonary injury. Here, we generate a region-resolved proteomic atlas of hallmark pathological pulmonary structures by integrating histological examination, laser microdissection, and ultrasensitive proteomics. Over 10,000 proteins are quantified across 71 post-mortem specimens. We identify a spectrum of pathway dysregulations in alveolar epithelium, bronchial epithelium, and blood vessels compared with non-COVID-19 controls, providing evidence for transitional-state pneumocyte hyperplasia. Additionally, our data reveal the region-specific enrichment of functional markers in bronchiole mucus plugs, pulmonary fibrosis, airspace inflammation, and alveolar type 2 cells, uncovering their distinctive features. Furthermore, we detect increased protein expression associated with viral entry and inflammatory response across multiple regions, suggesting potential therapeutic targets. Collectively, this study provides a distinct perspective for deciphering COVID-19-caused pulmonary dysfunction by spatial proteomics.
Collapse
Affiliation(s)
- Yiheng Mao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ying Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430030, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Li
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Longda Ma
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xi Wang
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qi Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430030, China; University of Chinese Academy of Sciences, Beijing, China
| | - An He
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xi Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430030, China; University of Chinese Academy of Sciences, Beijing, China
| | - Tianyi Dong
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430030, China; University of Chinese Academy of Sciences, Beijing, China
| | - Weina Gao
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yanfen Xu
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liang Liu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liang Ren
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qian Liu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Peng Zhou
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou 510005, China
| | - Ben Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430030, China
| | - Yiwu Zhou
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Ruijun Tian
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Zheng-Li Shi
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430030, China.
| |
Collapse
|
27
|
Sandi JD, Levy JI, Tapela K, Zeller M, Yeboah JA, Saka DF, Grant DS, Awandare GA, Quashie PK, Andersen KG, Paemka L. Upper Airway Epithelial Tissue Transcriptome Analysis Reveals Immune Signatures Associated with COVID-19 Severity in Ghanaians. J Immunol Res 2024; 2024:6668017. [PMID: 38375062 PMCID: PMC10876312 DOI: 10.1155/2024/6668017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/04/2023] [Accepted: 01/03/2024] [Indexed: 02/21/2024] Open
Abstract
The immunological signatures driving the severity of coronavirus disease 19 (COVID-19) in Ghanaians remain poorly understood. We performed bulk transcriptome sequencing of nasopharyngeal samples from severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-infected Ghanaians with mild and severe COVID-19, as well as healthy controls to characterize immune signatures at the primary SARS-CoV-2 infection site and identify drivers of disease severity. Generally, a heightened antiviral response was observed in SARS-CoV-2-infected Ghanaians compared with uninfected controls. COVID-19 severity was associated with immune suppression, overexpression of proinflammatory cytokines, including CRNN, IL1A, S100A7, and IL23A, and activation of pathways involved in keratinocyte proliferation. SAMD9L was among the differentially regulated interferon-stimulated genes in our mild and severe disease cohorts, suggesting that it may play a critical role in SARS-CoV-2 pathogenesis. By comparing our data with a publicly available dataset from a non-African (Indians) (GSE166530), an elevated expression of antiviral response-related genes was noted in COVID-19-infected Ghanaians. Overall, the study describes immune signatures driving COVID-19 severity in Ghanaians and identifies immune drivers that could serve as potential prognostic markers for future outbreaks or pandemics. It further provides important preliminary evidence suggesting differences in antiviral response at the upper respiratory interface in sub-Saharan Africans (Ghanaians) and non-Africans, which could be contributing to the differences in disease outcomes. Further studies using larger datasets from different populations will expand on these findings.
Collapse
Affiliation(s)
- John Demby Sandi
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology (BCMB), School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Faculty of Laboratory Medicine, College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
- Kenema Government Hospital, Kenema, Sierra Leone
| | - Joshua I. Levy
- Department of Immunology and Microbiology, The Scripps Research Institute, San Diego, California 92037, USA
| | - Kesego Tapela
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology (BCMB), School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Mark Zeller
- Department of Immunology and Microbiology, The Scripps Research Institute, San Diego, California 92037, USA
| | - Joshua Afari Yeboah
- Department of Biochemistry, Cell and Molecular Biology (BCMB), School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Daniel Frimpong Saka
- Department of Biochemistry, Cell and Molecular Biology (BCMB), School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Donald S. Grant
- Faculty of Laboratory Medicine, College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
- Kenema Government Hospital, Kenema, Sierra Leone
| | - Gordon A. Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology (BCMB), School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Peter K. Quashie
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology (BCMB), School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Kristian G. Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute, San Diego, California 92037, USA
| | - Lily Paemka
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology (BCMB), School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
28
|
Righi FA, Vander Heide RS, Graham RP, Aubry MC, Trejo-Lopez JA, Bois MC, Roden AC, Reichard R, Maleszewski JJ, Alexander MP, Quinton RA, Jenkins SM, Hartley CP, Hagen CE. A case-control autopsy series of liver pathology associated with novel coronavirus disease (COVID-19). Ann Diagn Pathol 2024; 68:152240. [PMID: 37995413 DOI: 10.1016/j.anndiagpath.2023.152240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) responsible for coronavirus disease 2019 (COVID-19) is most well-known for causing pulmonary injury, a significant proportion of patients experience hepatic dysfunction. The mechanism by which SARS-CoV2 causes liver injury is not fully understood. The goal of this study was to describe the hepatic pathology in a large cohort of deceased patients with COVID-19 as compared to a control group of deceased patients without COVID-19. METHODS Consented autopsy cases at two institutions were searched for documentation of COVID-19 as a contributing cause of death. A group of consecutive consented autopsy cases during the same period, negative for SARS-CoV-2 infection, was used as a control group. The autopsy report and electronic medical records were reviewed for relevant clinicopathologic information. H&E-stained liver sections from both groups were examined for pertinent histologic features. Select cases underwent immunohistochemical staining for CD 68 and ACE2 and droplet digital polymerase chain reaction (ddPCR) assay for evaluation of SARS-CoV2 RNA. RESULTS 48 COVID-19 positive patients (median age 73, M:F 3:1) and 40 COVID-19 negative control patients (median age 67.5, M:F 1.4:1) were included in the study. The COVID-19 positive group was significantly older and had a lower rate of alcoholism and malignancy, but there was no difference in other comorbidities. The COVID-19 positive group was more likely to have received steroids (75.6 % vs. 36.1 %, p < 0.001). Hepatic vascular changes were seen in a minority (10.6 %) of COVID-19 positive cases. When all patients were included, there were no significant histopathologic differences between groups, but when patients with chronic alcoholism were excluded, the COVID-19 positive group was significantly more likely to have steatosis (80.9 % vs. 50.0 %, p = 0.004) and lobular inflammation (45.7 % vs. 20.7 %, p = 0.03). Testing for viral RNA by ddPCR identified 2 of the 18 (11.1 %) COVID-19 positive cases to have SARS-CoV-2 RNA detected within the liver FFPE tissue. CONCLUSIONS The most significant findings in the liver of COVID-19 positive patients were mild lobular inflammation and steatosis. The high rate of steroid therapy in this population may be a possible source of steatosis. Hepatic vascular alterations were only identified in a minority of patients and did not appear to play a predominant role in COVID-19 mediated hepatic injury. Low incidence of SARS-CoV-2 RNA positivity in liver tissue in our cohort suggests hepatic injury in the setting of COVID-19 may be secondary in nature.
Collapse
Affiliation(s)
- Fabiola A Righi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Richard S Vander Heide
- Department of Pathology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Rondell P Graham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Marie Christine Aubry
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Jorge A Trejo-Lopez
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Melanie C Bois
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Anja C Roden
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Ross Reichard
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Joseph J Maleszewski
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Mariam P Alexander
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Reade A Quinton
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Sarah M Jenkins
- Department of Quantitative Health Sciences, Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN, United States of America
| | - Christopher P Hartley
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Catherine E Hagen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America.
| |
Collapse
|
29
|
Mengual-Moreno E, Nava M, Manzano A, Ariza D, D’Marco L, Castro A, Marquina MA, Hernández M, Corredor-Pereira C, Checa-Ros A, Bermúdez V. Pancreatic and Hepatic Injury in COVID-19: A Worse Prognosis in NAFLD Patients? Biomedicines 2024; 12:283. [PMID: 38397885 PMCID: PMC10887136 DOI: 10.3390/biomedicines12020283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/13/2023] [Accepted: 01/14/2024] [Indexed: 02/25/2024] Open
Abstract
The novel disease produced by SARS-CoV-2 mainly harms the respiratory tract, but it has shown the capacity to affect multiple organs. Epidemiologic evidence supports the relationship between Coronavirus Disease 2019 (COVID-19) and pancreatic and hepatic injury development, identified by alterations in these organ function markers. In this regard, it is important to ascertain how the current prevalence of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) might affect COVID-19 evolution and complications. Although it is not clear how SARS-CoV-2 affects both the pancreas and the liver, a multiplicity of potential pathophysiological mechanisms seem to be implicated; among them, a direct viral-induced injury to the organ involving liver and pancreas ACE2 expression. Additionally, immune system dysregulation, coagulopathies, and drugs used to treat the disease could be key for developing complications associated with the patient's clinical decline. This review aims to provide an overview of the available epidemiologic evidence regarding developing liver and pancreatic alterations in patients with COVID-19, as well as the possible role that NAFLD/NASH might play in the pathophysiological mechanisms underlying some of the complications associated with COVID-19. This review employed a comprehensive search on PubMed using relevant keywords and filters. From the initial 126 articles, those aligning with the research target were selected and evaluated for their methodologies, findings, and conclusions. It sheds light on the potential pathophysiological mechanisms underlying this relationship. As a result, it emphasises the importance of monitoring pancreatic and hepatic function in individuals affected by COVID-19.
Collapse
Affiliation(s)
- Edgardo Mengual-Moreno
- Biological Research Institute “Doctors Orlando Castejon and Haydee V Castejon”, Universidad del Zulia, Maracaibo 4002, Venezuela;
| | - Manuel Nava
- Endocrine and Metabolic Diseases Research Center, School of Medicine, Universidad del Zulia, Maracaibo 4002, Venezuela; (M.N.); (A.M.); (D.A.); (A.C.); (M.A.M.); (M.H.)
| | - Alexander Manzano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, Universidad del Zulia, Maracaibo 4002, Venezuela; (M.N.); (A.M.); (D.A.); (A.C.); (M.A.M.); (M.H.)
| | - Daniela Ariza
- Endocrine and Metabolic Diseases Research Center, School of Medicine, Universidad del Zulia, Maracaibo 4002, Venezuela; (M.N.); (A.M.); (D.A.); (A.C.); (M.A.M.); (M.H.)
| | - Luis D’Marco
- Grupo de Investigación en Enfermedades Cardiorenales y Metabólicas, Departamento de Medicina y Cirugía, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal s/n, 46115 Alfara del Patriarca, Valencia, Spain; (L.D.); (A.C.-R.)
| | - Ana Castro
- Endocrine and Metabolic Diseases Research Center, School of Medicine, Universidad del Zulia, Maracaibo 4002, Venezuela; (M.N.); (A.M.); (D.A.); (A.C.); (M.A.M.); (M.H.)
| | - María A. Marquina
- Endocrine and Metabolic Diseases Research Center, School of Medicine, Universidad del Zulia, Maracaibo 4002, Venezuela; (M.N.); (A.M.); (D.A.); (A.C.); (M.A.M.); (M.H.)
| | - Marlon Hernández
- Endocrine and Metabolic Diseases Research Center, School of Medicine, Universidad del Zulia, Maracaibo 4002, Venezuela; (M.N.); (A.M.); (D.A.); (A.C.); (M.A.M.); (M.H.)
| | | | - Ana Checa-Ros
- Grupo de Investigación en Enfermedades Cardiorenales y Metabólicas, Departamento de Medicina y Cirugía, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal s/n, 46115 Alfara del Patriarca, Valencia, Spain; (L.D.); (A.C.-R.)
| | - Valmore Bermúdez
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080001, Colombia;
| |
Collapse
|
30
|
Deshpande R, Li W, Li T, Fanning KV, Clemens Z, Nyunoya T, Zhang L, Deslouches B, Barchowsky A, Wenzel S, McDyer JF, Zou C. SARS-CoV-2 Accessory Protein Orf7b Induces Lung Injury via c-Myc Mediated Apoptosis and Ferroptosis. Int J Mol Sci 2024; 25:1157. [PMID: 38256231 PMCID: PMC10816122 DOI: 10.3390/ijms25021157] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
The pandemic of coronavirus disease 2019 (COVID-19) has been the foremost modern global public health challenge. The airway is the primary target in severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2) infection, with substantial cell death and lung injury being signature hallmarks of exposure. The viral factors that contribute to cell death and lung injury remain incompletely understood. Thus, this study investigated the role of open reading frame 7b (Orf7b), an accessory protein of the virus, in causing lung injury. In screening viral proteins, we identified Orf7b as one of the major viral factors that mediates lung epithelial cell death. Overexpression of Orf7b leads to apoptosis and ferroptosis in lung epithelial cells, and inhibitors of apoptosis and ferroptosis ablate Orf7b-induced cell death. Orf7b upregulates the transcription regulator, c-Myc, which is integral in the activation of lung cell death pathways. Depletion of c-Myc alleviates both apoptotic and ferroptotic cell deaths and lung injury in mouse models. Our study suggests a major role of Orf7b in the cell death and lung injury attributable to COVID-19 exposure, supporting it as a potential therapeutic target.
Collapse
Affiliation(s)
- Rushikesh Deshpande
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA; (R.D.); (B.D.); (A.B.); (S.W.)
| | - Wangyang Li
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA (K.V.F.); (T.N.); (L.Z.); (J.F.M.)
| | - Tiao Li
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA (K.V.F.); (T.N.); (L.Z.); (J.F.M.)
| | - Kristen V. Fanning
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA (K.V.F.); (T.N.); (L.Z.); (J.F.M.)
| | - Zachary Clemens
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA; (R.D.); (B.D.); (A.B.); (S.W.)
| | - Toru Nyunoya
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA (K.V.F.); (T.N.); (L.Z.); (J.F.M.)
| | - Lianghui Zhang
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA (K.V.F.); (T.N.); (L.Z.); (J.F.M.)
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Berthony Deslouches
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA; (R.D.); (B.D.); (A.B.); (S.W.)
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA; (R.D.); (B.D.); (A.B.); (S.W.)
| | - Sally Wenzel
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA; (R.D.); (B.D.); (A.B.); (S.W.)
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA (K.V.F.); (T.N.); (L.Z.); (J.F.M.)
| | - John F. McDyer
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA (K.V.F.); (T.N.); (L.Z.); (J.F.M.)
| | - Chunbin Zou
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA; (R.D.); (B.D.); (A.B.); (S.W.)
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA (K.V.F.); (T.N.); (L.Z.); (J.F.M.)
| |
Collapse
|
31
|
Said KB, Alsolami A, Alshammari KF, Alshammari F, Alhallabi SA, Alafnan SF, Moussa S, Bashir AI, Alshurtan KS, Aboras R, Sogeir EK, Alnajib AMA, Alotaibi AD, Ahmed RME. A Sequent of Gram-Negative Co-Infectome-Induced Acute Respiratory Distress Syndrome Are Potentially Subtle Aggravators Associated to the SARS-CoV-2 Evolution of Virulence. Diagnostics (Basel) 2024; 14:120. [PMID: 38201429 PMCID: PMC10802668 DOI: 10.3390/diagnostics14010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is one of the major problems in COVID-19 that is not well understood. ARDS is usually complicated by co-infections in hospitals. Although ARDS is inherited by Europeans and Africans, this is not clear for those from the Middle East. There are severe limitations in correlations made between COVID-19, ARDS, co-infectome, and patient demographics. We investigated 298 patients for associations of ARDS, coinfections, and patient demographics on COVID-19 patients' outcomes. Of the 149 patients examined for ARDS during COVID-19, 16 had an incidence with a higher case fatality rate (CFR) of 75.0% compared to those without ARDS (27.0%) (p value = 0.0001). The co-infectome association showed a CFR of 31.3% in co-infected patients; meanwhile, only 4.8% of those without co-infections (p value = 0.01) died. The major bacteria were Acinetobacter baumannii and Escherichia coli, either alone or in a mixed infection with Klebsiella pneumoniae. Kaplan-Meier survival analysis of COVID-19 patients with and without ARDS revealed a significant difference in the survival time of patients with ARDS (58.8 +/- 2.7 days) and without ARDS (41.9 +/- 1.8 days) (p value = 0.0002). These findings prove that increased hospital time was risky for co-infectome-induced SDRS later on. This also explained that while empiric therapy and lethal ventilations delayed the mortality in 75% of patients, they potentially did not help those without co-infection or ARDS who stayed for shorter times. In addition, the age of patients (n = 298) was significantly associated with ARDS (72.9 +/- 8.9) compared to those without it (56.2 +/- 15.1) and was irrespective of gender. However, there were no significant differences neither in the age of admitted patients before COVID-19 (58.5 +/- 15.3) and during COVID-19 (57.2 +/- 15.5) nor in the gender and COVID-19 fatality (p value 0.546). Thus, Gram-negative co-infectome potentially induced fatal ARDS, aggravating the COVID-19 outcome. These findings are important for the specific differential diagnosis of patients with and without ARDS and co-infections. Future vertical investigations on mechanisms of Gram-negative-induced ARDS are imperative since hypervirulent strains are rapidly circulating. This study was limited as it was a single-center study confined to Ha'il hospitals; a large-scale investigation in major national hospitals would gain more insights.
Collapse
Affiliation(s)
- Kamaleldin B. Said
- Department of Pathology, College of Medicine, University of Ha’il, Ha’il 55476, Saudi Arabia (R.M.E.A.)
- Genomics, Bioinformatics and Systems Biology, Carleton University, 1125 Colonel-By Drive, Ottawa, ON K1S 5B6, Canada
| | - Ahmed Alsolami
- Department of Internal Medicine, College of Medicine, University of Ha’il, Ha’il 55476, Saudi Arabia
| | - Khalid F. Alshammari
- Department of Internal Medicine, College of Medicine, University of Ha’il, Ha’il 55476, Saudi Arabia
| | - Fawaz Alshammari
- Department of Dermatology, College of Medicine, University of Ha’il, Ha’il 55476, Saudi Arabia
| | - Sulaf A. Alhallabi
- Department of Pathology, College of Medicine, University of Ha’il, Ha’il 55476, Saudi Arabia (R.M.E.A.)
| | - Shahad F. Alafnan
- Department of Pathology, College of Medicine, University of Ha’il, Ha’il 55476, Saudi Arabia (R.M.E.A.)
| | - Safia Moussa
- Department of Microbiology, King Salman Specialist Hospital, Ha’il 55476, Saudi Arabia;
| | - Abdelhafiz I. Bashir
- Department of Physiology, College of Medicine, University of Hail, Ha’il 55476, Saudi Arabia
| | - Kareemah S. Alshurtan
- Departments of Intensive Care, College of Medicine, University of Ha’il, Ha’il 55476, Saudi Arabia
| | - Rana Aboras
- Department of Family and Community Medicine, College of Medicine, University of Ha’il, Ha’il 55476, Saudi Arabia
| | - Ehab K. Sogeir
- Department of Family and Community Medicine, College of Medicine, University of Ha’il, Ha’il 55476, Saudi Arabia
| | - Alfatih M. A. Alnajib
- Department of Surgery, College of Medicine, University of Ha’il, Ha’il 55476, Saudi Arabia
| | - Abdullah D. Alotaibi
- Department of Otolaryngology, College of Medicine, University of Ha’il, Ha’il 55476, Saudi Arabia;
| | - Ruba M. Elsaid Ahmed
- Department of Pathology, College of Medicine, University of Ha’il, Ha’il 55476, Saudi Arabia (R.M.E.A.)
| |
Collapse
|
32
|
Duksal F, Keceli AM. Evaluation of Lung Ultrasonography Findings of Children With Late Respiratory System Symptoms Due to COVID-19 Infection. Clin Pediatr (Phila) 2024; 63:32-39. [PMID: 37249255 PMCID: PMC10230308 DOI: 10.1177/00099228231177789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Owing to coronavirus disease 2019 (COVID-19), lung damage is seen as an important problem in patients after recovery. In this study, evaluation of respiratory symptoms and lung ultrasonography (LUS) findings of those who have had symptomatic and asymptomatic COVID-19 disease in children was aimed. A total of 81 patients with positive and 18 healthy children with negative COVID-19 antibodies were included to the study. The most common late presentation symptoms were cough (85.2%), shortness of breath (77.8%), and chest pain (60.5%). In LUS, 2 or less B lines, 3 or more B lines, and Z line were seen in 66.7%, 33.3%, and 9.9% of patients, respectively. There was no significant difference between control and patients in terms of these parameters (P > .05). Pleural effusion was detected in 2 patients in the late period. Respiratory system findings may develop in the late period in patients infected with COVID-19. Therefore, patients should be followed closely.
Collapse
Affiliation(s)
- Fatma Duksal
- Department of Pediatric Allergy and
Immunology, Konya City Hospital, Konya, Turkey
| | | |
Collapse
|
33
|
Espinar-Herranz K, Delgado-Lima AH, Villatoro BS, Garaboa EM, Gómez VS, Vides LG, Bouhaben J, Delgado-Losada ML. Memory, Emotion, and Quality of Life in Patients with Long COVID-19. Brain Sci 2023; 13:1670. [PMID: 38137118 PMCID: PMC10742100 DOI: 10.3390/brainsci13121670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
(1) Background: Persistent COVID is characterized by the presence of fatigue, mental fog, and sleep problems, among others. We aimed to study cognitive abilities (attention, executive functions, memory, language) and psychological and emotional factors in a group of participants of the population with persistent COVID-19 and asymptomatic or non-COVID-19-infected patients; (2) Methods: A total of 86 participants aged 18 to 66 years (X = 46.76) took part in the study, with 57 individuals (66.27%) in the experimental group and 29 (33.73%) in the control group. A comprehensive assessment included neuropsychological evaluations, evaluations of anxious and depressive symptomatology, assessments of the impact of fatigue, sleep quality, memory failures in daily life, and the perceived general health status of the participants; (3) Results: significant differences between groups were found in incidental learning within the Key Numbers task (U = 462.5; p = 0.001; p = 0.022) and in the Direct Digit Span (U = 562; p = 0.022), but not in the Inverse Digit Span (U = 632.5; p = 0.105). Differences were also observed in the prospective memory task of the Rivermead Prospective Memory Tasks (from the Rivermead Behavioural Memory Test) in the recall of quotations (U = 610; p = 0.020) as well as in the recall of objects (U = 681.5; p = 0.032). Concerning the task of verbal fluency, significant differences were found for both phonological cues (p- and s-) (t = -2.190; p = 0.031) and semantic cues (animals) (t = -2.277; p = 0.025). In terms of the psychological impact assessment, significant differences were found in the emotional impact across all variables studied (fatigue, quality of sleep, memory lapses, and the perceived general health status), except for quality of life; (4) Conclusions: Our results suggest that the sequelae derived from persistent COVID may have an impact on people's lives, with higher levels of anxiety and depression, worse sleep quality, a greater number of subjective memory complaints, and a greater feeling of fatigue and impact on quality of life. Furthermore, poorer performance was observed in memory and verbal fluency.
Collapse
Affiliation(s)
- Katrina Espinar-Herranz
- Experimental Psychology, Cognitive Processes and Speech Therapy Department, Faculty of Psychology, Complutense University of Madrid, Campus de Somosaguas, 28223 Pozuelo de Alarcón, Spain; (K.E.-H.); (A.H.D.-L.); (B.S.V.); (E.M.G.); (V.S.G.); (J.B.)
| | - Alice Helena Delgado-Lima
- Experimental Psychology, Cognitive Processes and Speech Therapy Department, Faculty of Psychology, Complutense University of Madrid, Campus de Somosaguas, 28223 Pozuelo de Alarcón, Spain; (K.E.-H.); (A.H.D.-L.); (B.S.V.); (E.M.G.); (V.S.G.); (J.B.)
| | - Beatriz Sequeira Villatoro
- Experimental Psychology, Cognitive Processes and Speech Therapy Department, Faculty of Psychology, Complutense University of Madrid, Campus de Somosaguas, 28223 Pozuelo de Alarcón, Spain; (K.E.-H.); (A.H.D.-L.); (B.S.V.); (E.M.G.); (V.S.G.); (J.B.)
| | - Esther Marín Garaboa
- Experimental Psychology, Cognitive Processes and Speech Therapy Department, Faculty of Psychology, Complutense University of Madrid, Campus de Somosaguas, 28223 Pozuelo de Alarcón, Spain; (K.E.-H.); (A.H.D.-L.); (B.S.V.); (E.M.G.); (V.S.G.); (J.B.)
| | - Valeria Silva Gómez
- Experimental Psychology, Cognitive Processes and Speech Therapy Department, Faculty of Psychology, Complutense University of Madrid, Campus de Somosaguas, 28223 Pozuelo de Alarcón, Spain; (K.E.-H.); (A.H.D.-L.); (B.S.V.); (E.M.G.); (V.S.G.); (J.B.)
| | - Leonela González Vides
- Optometry and Vision Department, Faculty of Optics and Optometry, Complutense University of Madrid, C. de Arcos de Jalón, 118, 28037 Madrid, Spain;
| | - Jaime Bouhaben
- Experimental Psychology, Cognitive Processes and Speech Therapy Department, Faculty of Psychology, Complutense University of Madrid, Campus de Somosaguas, 28223 Pozuelo de Alarcón, Spain; (K.E.-H.); (A.H.D.-L.); (B.S.V.); (E.M.G.); (V.S.G.); (J.B.)
| | - María Luisa Delgado-Losada
- Experimental Psychology, Cognitive Processes and Speech Therapy Department, Faculty of Psychology, Complutense University of Madrid, Campus de Somosaguas, 28223 Pozuelo de Alarcón, Spain; (K.E.-H.); (A.H.D.-L.); (B.S.V.); (E.M.G.); (V.S.G.); (J.B.)
- Group of Neurosciences, Psychoneuroendocrinology, Neuroimaging and Molecular Genetics in Neuropsychiatric Diseases, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico de Madrid, 28040 Madrid, Spain
| |
Collapse
|
34
|
Miguel V, Rey-Serra C, Tituaña J, Sirera B, Alcalde-Estévez E, Herrero JI, Ranz I, Fernández L, Castillo C, Sevilla L, Nagai J, Reimer KC, Jansen J, Kramann R, Costa IG, Castro A, Sancho D, Rodríguez González-Moro JM, Lamas S. Enhanced fatty acid oxidation through metformin and baicalin as therapy for COVID-19 and associated inflammatory states in lung and kidney. Redox Biol 2023; 68:102957. [PMID: 37977043 PMCID: PMC10682832 DOI: 10.1016/j.redox.2023.102957] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
Progressive respiratory failure is the primary cause of death in the coronavirus disease 2019 (COVID-19) pandemic. It is the final outcome of the acute respiratory distress syndrome (ARDS), characterized by an initial exacerbated inflammatory response, metabolic derangement and ultimate tissue scarring. A positive balance of cellular energy may result crucial for the recovery of clinical COVID-19. Hence, we asked if two key pathways involved in cellular energy generation, AMP-activated protein kinase (AMPK)/acetyl-CoA carboxylase (ACC) signaling and fatty acid oxidation (FAO) could be beneficial. We tested the drugs metformin (AMPK activator) and baicalin (CPT1A activator) in different experimental models mimicking COVID-19 associated inflammation in lung and kidney. We also studied two different cohorts of COVID-19 patients that had been previously treated with metformin. These drugs ameliorated lung damage in an ARDS animal model, while activation of AMPK/ACC signaling increased mitochondrial function and decreased TGF-β-induced fibrosis, apoptosis and inflammation markers in lung epithelial cells. Similar results were observed with two indole derivatives, IND6 and IND8 with AMPK activating capacity. Consistently, a reduced time of hospitalization and need of intensive care was observed in COVID-19 patients previously exposed to metformin. Baicalin also mitigated the activation of pro-inflammatory bone marrow-derived macrophages (BMDMs) and reduced kidney fibrosis in two animal models of kidney injury, another key target of COVID-19. In human epithelial lung and kidney cells, both drugs improved mitochondrial function and prevented TGF-β-induced renal epithelial cell dedifferentiation. Our results support that favoring cellular energy production through enhanced FAO may prove useful in the prevention of COVID-19-induced lung and renal damage.
Collapse
Affiliation(s)
- Verónica Miguel
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029, Madrid, Spain.
| | - Carlos Rey-Serra
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Jessica Tituaña
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Belén Sirera
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Elena Alcalde-Estévez
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - J Ignacio Herrero
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Irene Ranz
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Laura Fernández
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Carolina Castillo
- Department of Pathology. University Hospital "Príncipe de Asturias", Alcalá de Henares, Madrid, Spain
| | - Lucía Sevilla
- Department of Pneumology, University Hospital "Principe de Asturias", Alcala de Henares, Madrid, Spain
| | - James Nagai
- Institute for Computational Genomics, RWTH Aachen University Hospital, Aachen, Germany; Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Katharina C Reimer
- Department of Medicine 2, Nephrology, Rheumatology and Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany; Institute for Biomedical Technologies, Department of Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Jitske Jansen
- Department of Medicine 2, Nephrology, Rheumatology and Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany; Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rafael Kramann
- Department of Medicine 2, Nephrology, Rheumatology and Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Ivan G Costa
- Institute for Computational Genomics, RWTH Aachen University Hospital, Aachen, Germany; Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Ana Castro
- Instituto de Química Medica (IQM-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - David Sancho
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029, Madrid, Spain
| | | | - Santiago Lamas
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain.
| |
Collapse
|
35
|
Lightner AL, Sengupta V, Qian S, Ransom JT, Suzuki S, Park DJ, Melson TI, Williams BP, Walsh JJ, Awili M. Bone Marrow Mesenchymal Stem Cell-Derived Extracellular Vesicle Infusion for the Treatment of Respiratory Failure From COVID-19: A Randomized, Placebo-Controlled Dosing Clinical Trial. Chest 2023; 164:1444-1453. [PMID: 37356708 PMCID: PMC10289818 DOI: 10.1016/j.chest.2023.06.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 06/27/2023] Open
Abstract
BACKGROUND Bone marrow mesenchymal stem cell (BM-MSC)-derived extracellular vesicles (ExoFlo) convey the immunomodulatory and regenerative properties of intact BM-MSCs. This study aimed to determine the safety and efficacy of ExoFlo as treatment for moderate to severe ARDS in patients with severe COVID-19. RESEARCH QUESTION Do two doses of ExoFlo safely reduce mortality in COVID-19-associated moderate to severe ARDS compared with placebo? STUDY DESIGN AND METHODS A prospective phase 2 multicenter double-anonymized randomized placebo-controlled dosing trial was conducted at five sites across the United States with infusions of placebo, 10 mL of ExoFlo, or 15 mL of ExoFlo on days 1 and 4. Patients (N = 102) with COVID-19-associated moderate to severe ARDS were enrolled and randomized to treatment. Adverse events were documented throughout the study. The primary outcome measure was all-cause 60-day mortality rate. Secondary outcomes included time to death (overall mortality); the incidence of treatment-emergent serious adverse events; proportion of discharged patients at 7, 30, and 60 days; time to hospital discharge; and ventilation-free days. RESULTS No treatment-related adverse events were reported. Mortality (60-day) in the intention-to-treat population was reduced with 15 mL ExoFlo mixed with 85 mL normal saline (ExoFlo-15) compared with placebo (not significant, χ2, P = .1343). For the post hoc subgroup analyses, 60-day mortality was decreased with ExoFlo-15 compared with placebo (relative risk, 0.385; 95% CI, 0.159-0.931; P = .0340; n = 50). With ExoFlo-15, a relative risk of 0.423 (95% CI, 0.173-1.032; P = .0588; n = 24) was determined for participants aged 18 to 65 years with moderate to severe ARDS. Ventilation-free days improved with ExoFlo-15 (P = .0455; n = 50) for all participants aged 18 to 65 years. INTERPRETATION The 15 mL dose of ExoFlo was found to be safe in patients with severe or critical COVID-19-associated respiratory failure. In participants aged 18 to 65 years, the risk reduction in 60-day mortality was further improved from subjects of all ages in the intention-to-treat population after two doses of 15 mL of ExoFlo compared with placebo. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov; No.: NCT04493242; URL: www. CLINICALTRIALS gov.
Collapse
Affiliation(s)
| | | | | | | | | | - David J Park
- Providence St Jude Medical Center/Providence Medical Foundation, Fullerton, CA
| | | | | | | | | |
Collapse
|
36
|
Zakynthinos GE, Tsolaki V, Oikonomou E, Vavouranakis M, Siasos G, Zakynthinos E. New-Onset Atrial Fibrillation in the Critically Ill COVID-19 Patients Hospitalized in the Intensive Care Unit. J Clin Med 2023; 12:6989. [PMID: 38002603 PMCID: PMC10672690 DOI: 10.3390/jcm12226989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/28/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
New-onset atrial fibrillation (NOAF) is the most frequently encountered cardiac arrhythmia observed in patients with COVID-19 infection, particularly in Intensive Care Unit (ICU) patients. The purpose of the present review is to delve into the occurrence of NOAF in COVID-19 and thoroughly review recent, pertinent data. However, the causality behind this connection has yet to be thoroughly explored. The proposed mechanisms that could contribute to the development of AF in these patients include myocardial damage resulting from direct virus-induced cardiac injury, potentially leading to perimyocarditis; a cytokine crisis and heightened inflammatory response; hypoxemia due to acute respiratory distress; disturbances in acid-base and electrolyte levels; as well as the frequent use of adrenergic drugs in critically ill patients. Additionally, secondary bacterial sepsis and septic shock have been suggested as primary causes of NOAF in ICU patients. This notion gains strength from the observation of a similar prevalence of NOAF in septic non-COVID ICU patients with ARDS. It is plausible that both myocardial involvement from SARS-CoV-2 and secondary sepsis play pivotal roles in the onset of arrhythmia in ICU patients. Nonetheless, there exists a significant variation in the prevalence of NOAF among studies focused on severe COVID-19 cases with ARDS. This discrepancy could be attributed to the inclusion of mixed populations with varying degrees of illness severity, encompassing not only patients in general wards but also those admitted to the ICU, whether intubated or not. Furthermore, the occurrence of NOAF is linked to increased morbidity and mortality. However, it remains to be determined whether NOAF independently influences outcomes in critically ill COVID-19 ICU patients or if it merely reflects the disease's severity. Lastly, the management of NOAF in these patients has not been extensively studied. Nevertheless, the current guidelines for NOAF in non-COVID ICU patients appear to be effective, while accounting for the specific drugs used in COVID-19 treatment that may prolong the QT interval (although drugs like lopinavir/ritonavir, hydrochlorothiazide, and azithromycin have been discontinued) or induce bradycardia (e.g., remdesivir).
Collapse
Affiliation(s)
- George E. Zakynthinos
- 3rd Department of Cardiology, “Sotiria” Chest Diseases Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.E.Z.); (E.O.); (M.V.); (G.S.)
| | - Vasiliki Tsolaki
- Critical Care Department, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece;
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, “Sotiria” Chest Diseases Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.E.Z.); (E.O.); (M.V.); (G.S.)
| | - Manolis Vavouranakis
- 3rd Department of Cardiology, “Sotiria” Chest Diseases Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.E.Z.); (E.O.); (M.V.); (G.S.)
| | - Gerasimos Siasos
- 3rd Department of Cardiology, “Sotiria” Chest Diseases Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.E.Z.); (E.O.); (M.V.); (G.S.)
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Epaminondas Zakynthinos
- Critical Care Department, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece;
| |
Collapse
|
37
|
Alba JR, Zapater E, Martin C, Ocete D, Gonzalez-Cruz A, Angel-de-Miguel A, Ferrer C, Oishi N. Mapping of SARS-CoV-2 in Waldeyer's lymphatic ring and visceral biopsies: the age and the illness duration's impact. Braz J Otorhinolaryngol 2023; 89:101317. [PMID: 37696117 PMCID: PMC10498168 DOI: 10.1016/j.bjorl.2023.101317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 08/27/2023] [Indexed: 09/13/2023] Open
Abstract
OBJECTIVE To study the impact of age and the interval between disease diagnosis and death on the organotropism of SARS-CoV-2. METHOD Patients underwent post-mortem biopsies from lungs, Waldeyer ring, heart, liver, kidneys and bone marrow between 2020‒2021. SARS-CoV-2 organotropism was mapped by using molecular RT-PCR analyses for SARS-CoV2 targeting the Envelope gene (E), the RNA Polymerase Gene (RdRp), and the Nucleocapsid gene (N). Statistical and linear regression analysis was performed to study the impact of age and illness duration in SARS-CoV-2 organotropism. RESULTS We performed 158 postmortem biopsies in 21 patients, with a mean age of 76 years old. The mean interval between the diagnosis of the infection to the death was 23 days. The RNA of the SARS-CoV-2 was detected in 100% of lung biopsies, 76%‒82% of Waldeyer's ring biopsies, 55% of heart biopsies, 40% of kidney biopsies, 33% of liver and 25% of bone marrow biopsies. Patients who died before the day 9, presented extensive visceral dissemination of SARS-CoV-2 RNA. Most of the patients older than 80 years (90%) presented visceral dissemination of SARS-CoV-2 RNA, while among younger patients, only 3/11 patients presented visceral dissemination of the virus. The relationship between "age" and "illness duration" and multitropism of the virus was statistically significant (p<0.001). CONCLUSION Disease interval and age were factors that were significantly associated with RT-PCR positive results in multiple organs. Critical COVID-19 patients have multiorganic viral dissemination in early stages. In the critical older patients, multiorganic viral dissemination is the rule. LEVEL OF EVIDENCE: 4 CASE SERIES
Collapse
Affiliation(s)
- Jose Ramón Alba
- University of Valencia, Faculty of Medicine and Dentistry, Valencia, Spain
| | - Enrique Zapater
- University of Valencia, Faculty of Medicine and Dentistry, Valencia, Spain.
| | - Cristina Martin
- León University Hospital, ENT Department, Ponferrada, Castilla y Leon, Spain
| | - Dolores Ocete
- Valencia University General Hospital, Microbiology Department, Valencia, Spain
| | | | | | - Carolina Ferrer
- Valencia University General Hospital, Anesthesia Department, Valencia, Spain
| | - Natsuki Oishi
- Valencia University General Hospital, ENT Department, Valencia, Spain
| |
Collapse
|
38
|
Meehan GR, Herder V, Allan J, Huang X, Kerr K, Mendonca DC, Ilia G, Wright DW, Nomikou K, Gu Q, Molina Arias S, Hansmann F, Hardas A, Attipa C, De Lorenzo G, Cowton V, Upfold N, Palmalux N, Brown JC, Barclay WS, Filipe ADS, Furnon W, Patel AH, Palmarini M. Phenotyping the virulence of SARS-CoV-2 variants in hamsters by digital pathology and machine learning. PLoS Pathog 2023; 19:e1011589. [PMID: 37934791 PMCID: PMC10656012 DOI: 10.1371/journal.ppat.1011589] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/17/2023] [Accepted: 10/30/2023] [Indexed: 11/09/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has continued to evolve throughout the coronavirus disease-19 (COVID-19) pandemic, giving rise to multiple variants of concern (VOCs) with different biological properties. As the pandemic progresses, it will be essential to test in near real time the potential of any new emerging variant to cause severe disease. BA.1 (Omicron) was shown to be attenuated compared to the previous VOCs like Delta, but it is possible that newly emerging variants may regain a virulent phenotype. Hamsters have been proven to be an exceedingly good model for SARS-CoV-2 pathogenesis. Here, we aimed to develop robust quantitative pipelines to assess the virulence of SARS-CoV-2 variants in hamsters. We used various approaches including RNAseq, RNA in situ hybridization, immunohistochemistry, and digital pathology, including software assisted whole section imaging and downstream automatic analyses enhanced by machine learning, to develop methods to assess and quantify virus-induced pulmonary lesions in an unbiased manner. Initially, we used Delta and Omicron to develop our experimental pipelines. We then assessed the virulence of recent Omicron sub-lineages including BA.5, XBB, BQ.1.18, BA.2, BA.2.75 and EG.5.1. We show that in experimentally infected hamsters, accurate quantification of alveolar epithelial hyperplasia and macrophage infiltrates represent robust markers for assessing the extent of virus-induced pulmonary pathology, and hence virus virulence. In addition, using these pipelines, we could reveal how some Omicron sub-lineages (e.g., BA.2.75 and EG.5.1) have regained virulence compared to the original BA.1. Finally, to maximise the utility of the digital pathology pipelines reported in our study, we developed an online repository containing representative whole organ histopathology sections that can be visualised at variable magnifications (https://covid-atlas.cvr.gla.ac.uk). Overall, this pipeline can provide unbiased and invaluable data for rapidly assessing newly emerging variants and their potential to cause severe disease.
Collapse
Affiliation(s)
- Gavin R. Meehan
- MRC-University of Glasgow Centre for Virus Research, United Kingdom
- CVR-CRUSH, MRC-University of Glasgow Centre for Virus Research, United Kingdom
| | - Vanessa Herder
- MRC-University of Glasgow Centre for Virus Research, United Kingdom
- CVR-CRUSH, MRC-University of Glasgow Centre for Virus Research, United Kingdom
| | - Jay Allan
- MRC-University of Glasgow Centre for Virus Research, United Kingdom
| | - Xinyi Huang
- MRC-University of Glasgow Centre for Virus Research, United Kingdom
| | - Karen Kerr
- MRC-University of Glasgow Centre for Virus Research, United Kingdom
- CVR-CRUSH, MRC-University of Glasgow Centre for Virus Research, United Kingdom
| | - Diogo Correa Mendonca
- MRC-University of Glasgow Centre for Virus Research, United Kingdom
- CVR-CRUSH, MRC-University of Glasgow Centre for Virus Research, United Kingdom
| | - Georgios Ilia
- MRC-University of Glasgow Centre for Virus Research, United Kingdom
| | - Derek W. Wright
- MRC-University of Glasgow Centre for Virus Research, United Kingdom
| | - Kyriaki Nomikou
- MRC-University of Glasgow Centre for Virus Research, United Kingdom
| | - Quan Gu
- MRC-University of Glasgow Centre for Virus Research, United Kingdom
| | - Sergi Molina Arias
- MRC-University of Glasgow Centre for Virus Research, United Kingdom
- CVR-CRUSH, MRC-University of Glasgow Centre for Virus Research, United Kingdom
| | - Florian Hansmann
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Leipzig University, Germany
| | - Alexandros Hardas
- Department of Pathobiology & Population Sciences, The Royal Veterinary College, North Mymms, United Kingdom
| | - Charalampos Attipa
- The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, United Kingdom
| | | | - Vanessa Cowton
- MRC-University of Glasgow Centre for Virus Research, United Kingdom
| | - Nicole Upfold
- MRC-University of Glasgow Centre for Virus Research, United Kingdom
- CVR-CRUSH, MRC-University of Glasgow Centre for Virus Research, United Kingdom
| | - Natasha Palmalux
- MRC-University of Glasgow Centre for Virus Research, United Kingdom
| | - Jonathan C. Brown
- Department of Infectious Disease, Imperial College London, United Kingdom
| | - Wendy S. Barclay
- Department of Infectious Disease, Imperial College London, United Kingdom
| | | | - Wilhelm Furnon
- MRC-University of Glasgow Centre for Virus Research, United Kingdom
| | - Arvind H. Patel
- MRC-University of Glasgow Centre for Virus Research, United Kingdom
- CVR-CRUSH, MRC-University of Glasgow Centre for Virus Research, United Kingdom
| | | |
Collapse
|
39
|
Pepe-Mooney BJ, Smith CJ, Sherman MS, North TE, Padera RF, Goessling W. SARS-CoV-2 viral liver aggregates and scarce parenchymal infection implicate systemic disease as a driver of abnormal liver function. Hepatol Commun 2023; 7:e0290. [PMID: 37889528 PMCID: PMC10615432 DOI: 10.1097/hc9.0000000000000290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/22/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Liver function tests (LFTs) are elevated in >50% of hospitalized individuals infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), with increased enzyme levels correlating with a more severe COVID-19 course. Despite these observations, evaluations of viral presence within liver parenchyma and viral impact on liver function remain controversial. METHODS AND RESULTS Our work is a comprehensive immunopathological evaluation of liver tissue from 33 patients with severe, and ultimately fatal, cases of SARS-CoV-2 infection. Coupled with clinical data, we reveal the absence of SARS-CoV-2 infection in cholangiocytes and hepatocytes despite dramatic systemic viral presence. Critically, we identify significant focal viral sinusoidal aggregates in 2/33 patients and single viral RNA molecules circulating in the hepatic sinusoids of 15/33 patients. Utilizing co-immunofluorescence, focal viral liver aggregates in patients with COVID-19 were colocalized to platelet and fibrin clots, indicating the presence of virus-containing sinusoidal microthrombi. Furthermore, this patient cohort, from the initial months of the COVID-19 pandemic, demonstrates a general downtrend of LFTs over the course of the study timeline and serves as a remarkable historical time point of unattenuated viral replication within patients. CONCLUSIONS Together, our findings indicate that elevated LFTs found in our patient cohort are not due to direct viral parenchymal infection with SARS-CoV-2 but rather likely a consequence of systemic complications of COVID-19. This work aids in the clinical treatment considerations of patients with SARS-CoV-2 as therapies for these patients may be considered in terms of their direct drug hepatotoxity rather than worsening hepatic function due to direct infection.
Collapse
Affiliation(s)
- Brian J. Pepe-Mooney
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Harvard–MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Colton J. Smith
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Marc S. Sherman
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Trista E. North
- Stem Cell Program, Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Developmental and Regenerative Biology Program, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Robert F. Padera
- Harvard–MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston Massachusetts, USA
| | - Wolfram Goessling
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Harvard–MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Developmental and Regenerative Biology Program, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
40
|
Nasr P, Jönsson C, Ekstedt M, Kechagias S. Non-metabolic causes of steatotic liver disease. METABOLISM AND TARGET ORGAN DAMAGE 2023; 3. [DOI: 10.20517/mtod.2023.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Hepatic steatosis is caused by exaggerated hepatic lipid accumulation and is a common histological and radiological finding. Non-alcoholic fatty liver disease (NAFLD), or metabolic dysfunction associated steatotic liver disease (MASLD), is highly associated with metabolic syndrome and represents the most common cause of hepatic steatosis. However, since several comorbidities, lifestyle factors, and drugs can cause hepatic steatosis, MASLD is, to some extent, a diagnosis of exclusion. Nevertheless, initiatives have been taken to encompass positive (instead of negative) criteria for diagnosis - such as the presence of cardiometabolic risk factors together with hepatic steatosis. Nonetheless, before confirming a patient with MASLD, it is essential to map and evaluate other causes of fatty liver disease or steatotic liver disease. Several causes of hepatic steatosis have been identified in studies; however, the study cohorts are scarce and often anecdotal. Additionally, many studies have shown correlation without proving causation, and many are retrospective without reporting relevant patient characteristics and comorbidities - making it difficult to draw conclusions regarding the underlying etiology or present comorbidity of hepatic steatosis. In this narrative review, we aimed to identify and summarize present studies evaluating the impact of the most common and often suggested causes of hepatic steatosis.
Collapse
|
41
|
Lairion F, Carbia C, Chiesa IM, Saporito-Magriña C, Borda N, Lazarowski A, Repetto MG. Uridine Diphosphate Glucose (UDP-G) Activates Oxidative Stress and Respiratory Burst in Isolated Neutrophils. Pharmaceuticals (Basel) 2023; 16:1501. [PMID: 37895972 PMCID: PMC10609875 DOI: 10.3390/ph16101501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
The extracellular purinergic agonist uridine diphosphate glucose (UDP-G) activates chemotaxis of human neutrophils (PMN) and the recruitment of PMN at the lung level, via P2Y14 purinergic receptor signaling. This effect is similar to the activation of PMN with N-formyl-methionyl-leucyl-phenylalanine (fMLP), a mechanism that also triggers the production of superoxide anion and hydrogen peroxide via the NADPH oxidase system. However, the effects of UDP-G on this system have not been studied. Defects in the intracellular phagocyte respiratory burst (RB) cause recurrent infections, immunodeficiency, and chronic and severe diseases in affected patients, often with sepsis and hypoxia. The extracellular activation of PMN by UDP-G could affect the RB and oxidative stress (OS) in situations of inflammation, infection and/or sepsis. The association of PMNs activation by UDP-G with OS and RB was studied. OS was evaluated by measuring spontaneous chemiluminescence (CL) of PMNs with a scintillation photon counter, and RB by measuring oxygen consumption with an oxygen Clark electrode at 37 °C, in non-stimulated cells and after activation (15 min) with lipopolysaccharides (LPS, 2 µg/mL), phorbol myristate acetate (PMA, 20 ng/mL), or UDP-G (100 μM). The stimulation index (SI) was calculated in order to establish the activation effect of the three agonists. After stimulation with LPS or PMA, the activated PMNs (0.1 × 106 cells/mL) showed an increase in CL (35%, p < 0.05 and 56%, p < 0.01, SI of 1.56 and 2.20, respectively). Contrariwise, the stimulation with UDP-G led to a decreased CL in a dose-dependent manner (60%, 25 μM, p < 0.05; 90%, 50-150 μM, p < 0.001). Nonetheless, despite the lack of oxidative damage, UDP-G triggered RB (SI 1.8) in a dose-dependent manner (38-50%, 100-200 μM, p < 0.0001). UDP-G is able to trigger NADPH oxidase activation in PMNs. Therefore, the prevention of OS and oxidative damage observed upon PMN stimulation with UDP-G indicates an antioxidant property of this molecule which is likely due to the activation of antioxidant defenses. Altogether, LPS and UDP-G have a synergistic effect, suggesting a key role in infection and/or sepsis.
Collapse
Affiliation(s)
- Fabiana Lairion
- Cátedra de Química General e Inorgánica, Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113AAD, Argentina; (F.L.); (I.M.C.); (C.S.-M.)
- Instituto de Bioquímica y Medicina Molecular Prof. Alberto Boveris, Consejo Nacional de Investigaciones Científicas y Tecnológicas (IBIMOL, UBA-CONICET), Buenos Aires 1113AAD, Argentina
| | - Claudio Carbia
- Cátedra de Bioquímica Clínica II-Área Hematología, Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Universidad de Buenos Aires, Buenos Aires 1113AAD, Argentina; (C.C.); (N.B.)
| | - Iris Maribel Chiesa
- Cátedra de Química General e Inorgánica, Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113AAD, Argentina; (F.L.); (I.M.C.); (C.S.-M.)
| | - Christian Saporito-Magriña
- Cátedra de Química General e Inorgánica, Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113AAD, Argentina; (F.L.); (I.M.C.); (C.S.-M.)
- Instituto de Bioquímica y Medicina Molecular Prof. Alberto Boveris, Consejo Nacional de Investigaciones Científicas y Tecnológicas (IBIMOL, UBA-CONICET), Buenos Aires 1113AAD, Argentina
| | - Natalia Borda
- Cátedra de Bioquímica Clínica II-Área Hematología, Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Universidad de Buenos Aires, Buenos Aires 1113AAD, Argentina; (C.C.); (N.B.)
| | - Alberto Lazarowski
- Cátedra de Bioquímica Clínica II-Área Hematología, Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Universidad de Buenos Aires, Buenos Aires 1113AAD, Argentina; (C.C.); (N.B.)
| | - Marisa Gabriela Repetto
- Cátedra de Química General e Inorgánica, Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113AAD, Argentina; (F.L.); (I.M.C.); (C.S.-M.)
- Instituto de Bioquímica y Medicina Molecular Prof. Alberto Boveris, Consejo Nacional de Investigaciones Científicas y Tecnológicas (IBIMOL, UBA-CONICET), Buenos Aires 1113AAD, Argentina
| |
Collapse
|
42
|
Mikhaleva L, Gioeva Z, Varyasin V, Berezhnaja E, Vandysheva R, Gutyrchik N, Pechnikova V, Kontorshchikov A, Midiber K, Kakturskij L. Pathomorphological Features of the Novel Coronavirus Disease in Patients with Systemic Amyloidosis. Biomedicines 2023; 11:2811. [PMID: 37893183 PMCID: PMC10604009 DOI: 10.3390/biomedicines11102811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/10/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
Amyloidosis is one of the rare systemic illnesses characterized by the deposition of amyloid fibrils in various organs and tissues. There is a common point between COVID-19 and systemic amyloidosis regarding the multiorgan involvement in the pathological process which leads to a heightened risk for severe morbidity and mortality in amyloidosis patients who contracted COVID-19. We performed a pathomorphological analysis of the autopsy records of 22 patients who had COVID-19 and pre-existing systemic amyloidosis. The premortem diagnosis of systemic amyloidosis was established in 55% of patients, and in other 45% of cases, amyloidosis was found at autopsy. Based on the results of immunohistochemical amyloid typing, amyloid A (AA) amyloidosis was detected in 23%, amyloid light chain (AL) lambda in 32%, AL kappa-in 9%, and transthyretin (ATTR) amyloidosis-in 36% of observations. Immunohistochemical staining with an antibody against SARS-CoV-2 Spike (S) protein revealed positive immune reactions in type II alveolocytes in 59% of deceased persons. The analysis of autopsy findings indicates that patients with systemic amyloidosis are more likely to experience an aggressive clinical course of COVID-19 which leads to a multiorgan failure and a higher risk of fatal outcome.
Collapse
Affiliation(s)
- Liudmila Mikhaleva
- Avtsyn Research Institute of Human Morphology, Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", 117418 Moscow, Russia
| | - Zarina Gioeva
- Avtsyn Research Institute of Human Morphology, Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", 117418 Moscow, Russia
| | | | | | - Rositsa Vandysheva
- Avtsyn Research Institute of Human Morphology, Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", 117418 Moscow, Russia
| | - Nikita Gutyrchik
- Avtsyn Research Institute of Human Morphology, Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", 117418 Moscow, Russia
- Medical Institute, Peoples' Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Valentina Pechnikova
- Avtsyn Research Institute of Human Morphology, Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", 117418 Moscow, Russia
| | - Andrej Kontorshchikov
- Avtsyn Research Institute of Human Morphology, Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", 117418 Moscow, Russia
| | - Konstantin Midiber
- Avtsyn Research Institute of Human Morphology, Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", 117418 Moscow, Russia
| | - Lev Kakturskij
- Avtsyn Research Institute of Human Morphology, Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", 117418 Moscow, Russia
| |
Collapse
|
43
|
Naik R, Avula S, Palleti SK, Gummadi J, Ramachandran R, Chandramohan D, Dhillon G, Gill AS, Paiwal K, Shaik B, Balachandran M, Patel B, Gurugubelli S, Mariswamy Arun Kumar AK, Nanjundappa A, Bellamkonda M, Rathi K, Sakhamuri PL, Nassar M, Bali A. From Emergence to Endemicity: A Comprehensive Review of COVID-19. Cureus 2023; 15:e48046. [PMID: 37916248 PMCID: PMC10617653 DOI: 10.7759/cureus.48046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2023] [Indexed: 11/03/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), later renamed coronavirus disease 2019 (COVID-19), was first identified in Wuhan, China, in early December 2019. Initially, the China office of the World Health Organization was informed of numerous cases of pneumonia of unidentified etiology in Wuhan, Hubei Province at the end of 2019. This would subsequently result in a global pandemic with millions of confirmed cases of COVID-19 and millions of deaths reported to the WHO. We have analyzed most of the data published since the beginning of the pandemic to compile this comprehensive review of SARS-CoV-2. We looked at the core ideas, such as the etiology, epidemiology, pathogenesis, clinical symptoms, diagnostics, histopathologic findings, consequences, therapies, and vaccines. We have also included the long-term effects and myths associated with some therapeutics of COVID-19. This study presents a comprehensive assessment of the SARS-CoV-2 virology, vaccines, medicines, and significant variants identified during the course of the pandemic. Our review article is intended to provide medical practitioners with a better understanding of the fundamental sciences, clinical treatment, and prevention of COVID-19. As of May 2023, this paper contains the most recent data made accessible.
Collapse
Affiliation(s)
- Roopa Naik
- Medicine, Geisinger Commonwealth School of Medicine, Scranton, USA
- Internal Medicine/Hospital Medicine, Geisinger Health System, Wilkes Barre, USA
| | - Sreekant Avula
- Diabetes, Endocrinology, and Metabolism, University of Minnesota, Minneapolis, USA
| | - Sujith K Palleti
- Nephrology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Jyotsna Gummadi
- Internal Medicine, MedStar Franklin Square Medical Center, Baltimore, USA
| | | | | | - Gagandeep Dhillon
- Physician Executive MBA, University of Tennessee, Knoxville, USA
- Internal Medicine, University of Maryland Baltimore Washington Medical Center, Glen Burnie, USA
| | | | - Kapil Paiwal
- Oral & Maxillofacial Pathology, Daswani Dental College & Research Center, Kota, IND
| | - Bushra Shaik
- Internal Medicine, Onslow Memorial Hospital, Jacksonville, USA
| | | | - Bhumika Patel
- Oral Medicine and Radiology, Howard University, Washington, D.C., USA
| | | | | | | | - Mahita Bellamkonda
- Hospital Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Kanika Rathi
- Internal Medicine, University of Florida, Gainesville, USA
| | | | - Mahmoud Nassar
- Endocrinology, Diabetes, and Metabolism, Jacobs School of Medicine and Biomedical Sciences, Buffalo, USA
| | - Atul Bali
- Internal Medicine/Nephrology, Geisinger Medical Center, Danville, USA
- Internal Medicine/Nephrology, Geisinger Health System, Wilkes-Barre, USA
- Medicine, Geisinger Commonwealth School of Medicine, Scranton, USA
| |
Collapse
|
44
|
Xia Y, Sun R, Zhu Y, Wang J, Pang H, Chen M, Xu Z, Zhang Y. Moxibustion Treatment of COVID-19 and Rehabilitation Period of COVID-19: A Scoping Review. JOURNAL OF INTEGRATIVE AND COMPLEMENTARY MEDICINE 2023; 29:637-648. [PMID: 37159407 DOI: 10.1089/jicm.2022.0742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Objective: The aim of this study is to provide a scoping review of the clinical literature on moxibustion therapy for the treatment of Coronavirus disease 2019 (COVID-19). Design: The PubMed, Embase, Cochrane Library, MEDLINE, CNKI, Wanfang, and VIP databases were searched from January 1, 2020, to August 31, 2022. Essential data were extracted from each article, and the data were displayed using tables and graphs. The study did not require IRB approval. Results: This scoping review included 14 research articles: 8 observational studies, 5 randomized controlled trials, and 1 nonrandomized clinical trial. All the studies were published by Chinese scholars. The findings revealed that moxibustion can contribute to reducing the symptoms of patients with COVID-19, improving inflammation and immune indicators, and shortening the time of nucleic acid negative conversion. Moxibustion confers curative effects on patients of all ages and degrees of illness. In addition, moxibustion can optimize the prognosis of patients in the rehabilitation period. The most commonly chosen acupoints are ST36, RN4, RN8, and RN12. No side effect was mentioned in the included studies. Conclusion: Moxibustion can produce a good effect in the treatment and rehabilitation of patients with COVID-19. It is safe, effective, simple, and noninvasive and should be included as standard care.
Collapse
Affiliation(s)
- Yuge Xia
- The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Rui Sun
- School of Acupuncture-Moxibustion and Tuina, Anhui University of Chinese Medicine, Hefei, China
| | - Yunyi Zhu
- Suzhou Hospital of Traditional Chinese Medicine, Suzhou, China
| | - Jing Wang
- The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Hailin Pang
- Guangzhou Qinzheng Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Mingzhu Chen
- Guangzhou Zengcheng District Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Zhirui Xu
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yicong Zhang
- China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, China
| |
Collapse
|
45
|
Jain R, Mathew D. Mechanisms influencing the high prevalence of COVID-19 in diabetics: A systematic review. MEDICAL RESEARCH ARCHIVES 2023; 11:4540. [PMID: 38933091 PMCID: PMC11198970 DOI: 10.18103/mra.v11i10.4540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Diabetics have an increased risk of contracting COVID-19 infection and tend to have more severe symptoms. This systematic review explores the potential mechanisms influencing the high prevalence of COVID-19 infections in individuals with diabetes. It reviews the emerging evidence about the interactions between viral and diabetic pathways, particularly how diabetes physiology could contribute to higher viral reception, viral entry and pathogenicity, and the severity of disease symptoms. Finally, it examines the challenges we face in studying these mechanisms and offers new strategies that might assist our fight against current and future pandemics.
Collapse
Affiliation(s)
- Roshni Jain
- Cell and Molecular Biology Program, University of Nevada, Reno, NV 89557
- Department of Biology, University of Nevada, Reno, NV 89557
| | - Dennis Mathew
- Cell and Molecular Biology Program, University of Nevada, Reno, NV 89557
- Department of Biology, University of Nevada, Reno, NV 89557
| |
Collapse
|
46
|
Wang J, Liu X, Sun R, Mao H, Liu M, Jin X. Akkermansia muciniphila participates in the host protection against helminth-induced cardiac fibrosis via TLR2. PLoS Pathog 2023; 19:e1011683. [PMID: 37788279 PMCID: PMC10547169 DOI: 10.1371/journal.ppat.1011683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/12/2023] [Indexed: 10/05/2023] Open
Abstract
Helminth Trichinella spiralis (Ts) is one of the major pathogens of human infective myocarditis that can lead to cardiac fibrosis (CF). The gut microbiota involved in this pathology are of interest. Here, we use mice infected with Ts as a model to examine the interactions between gut microbes and host protection to CF. Infected mice show enhanced CF severity. We find that antibiotics treatment to deplete the microbiota aggravates the disease phenotype. Attempts to restore microbiota using fecal microbiota transplantation ameliorates helminth-induced CF. 16S rRNA gene sequencing and metagenomics sequencing reveal a higher abundance of Akkermansia muciniphila in gut microbiomes of Ts-infected mice. Oral supplementation with alive or pasteurized A. muciniphila improves CF via TLR2. This work represents a substantial advance toward our understanding of causative rather than correlative relationships between the gut microbiota and CF.
Collapse
Affiliation(s)
- Jiaqi Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Animal Sciences, Jilin University, Changchun, China
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaolei Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ruohang Sun
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hanhai Mao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Mingyuan Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xuemin Jin
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
47
|
Rajagopal J, Konaka Gautamdas S, Sivakumar G, Ramaraju K. A Case Series on Post-COVID Tuberculosis: An Underrated Duo of COVID-19 and Tuberculosis. Cureus 2023; 15:e48013. [PMID: 38034214 PMCID: PMC10687378 DOI: 10.7759/cureus.48013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
In India, tuberculosis (TB) has the second highest disease burden following diabetes mellitus. During the COVID-19 pandemic, there was a surge of several opportunistic infections. In this case series, we report five patients, including three adults and two adolescents, who have developed various forms of TB disease after symptomatic COVID-19 pneumonia. The average time for development of post-COVID TB was 48 days. Adolescent patients have developed disseminated TB, which can be due to COVID-19-induced immunological injury or its treatment-related immune suppression. All the adult patients had high CT severity scores (CTSS) and required the administration of intravenous steroids during their COVID-19 pneumonia. Various presentations of TB were secondary spontaneous pneumothorax, miliary TB, consolidation, and nodular infiltrates. One patient had a drug-induced liver injury, which complicated the treatment of that patient. Factors that may contribute to the development of post-COVID TB are diabetes mellitus, increased severity of COVID-19 pneumonia manifested by CTSS, and administration of intravenous steroids. Bidirectional screening of TB had to be done when patients present with symptoms of COVID-19 pneumonia.
Collapse
Affiliation(s)
- Jayakumar Rajagopal
- Respiratory Medicine, PSG Institute of Medical Sciences and Research, Coimbatore, IND
| | | | - Gayathri Sivakumar
- Respiratory Medicine, PSG Institute of Medical Sciences and Research, Coimbatore, IND
| | - Karthikeyan Ramaraju
- Respiratory Medicine, PSG Institute of Medical Sciences and Research, Coimbatore, IND
| |
Collapse
|
48
|
Das S, Roy A, Das R. New autopsy technique in COVID-19 positive dead bodies: opening the thoracic cavity with an outlook to reduce aerosol spread. J Clin Pathol 2023; 76:664-670. [PMID: 35701143 PMCID: PMC9240445 DOI: 10.1136/jclinpath-2022-208173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/20/2022] [Indexed: 11/19/2022]
Abstract
AIMS After the advent of the COVID-19 pandemic, most countries have modified some of their health-related regulations. However, this has not been in the case of the postmortem of deceased because it has a legal aspect. Thus, the healthcare providers knowingly or unknowingly faced the threat of COVID-19 exposure from those dead bodies. To introduce an autopsy technique that reduces the droplet spreads, especially in those mortuaries where the biosafety mechanism is not highly equipped. METHODS The validity of the new incision was achieved through the calculation of the Scale Content Validity Index (SCVI) taking inputs from 17 forensic specialists. The subjects for the new technique were selected from the patients who were RTPCR positive for COVID-19 or clinically or radiologically showing features of COVID-19. RESULTS The dissection procedure was finalised by achieving the SCVI at 0.92. The chest cavity was approached through the abdominal cavity by opening the diaphragm and dissecting out the contents of the chest using a long blade knife. CONCLUSIONS The advantage of this approach is that the autopsy surgeon and pathologists do not have to open the chest cavity by dissecting the Sternum, and hence the chance of droplet infection becomes almost nil. This technique is complete, simple, less time-consuming and conducive for sample collection, and even reduces the possibility of body fluid seepage following a postmortem examination.
Collapse
Affiliation(s)
- Somnath Das
- Forensic Medicine and Toxicology, RG Kar Medical College, Kolkata, West Bengal, India
| | - Anshuman Roy
- Anatomy, Raiganj Government Medical College, Raiganj, West Bengal, India
| | - Rina Das
- Forensic Medicine and Toxicology, NRS Medical College, Kolkata, West Bengal, India
| |
Collapse
|
49
|
Obleagă CV, Ahmet RAM, Florescu DN, Popescu DM, Meşină C, Streba L, Vere CC, Constantin C. Post-COVID-19 enterocolitis - a cause of rebellious diarrhea, acute abdomen and liver failure. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2023; 64:527-533. [PMID: 38184833 PMCID: PMC10863687 DOI: 10.47162/rjme.64.4.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/09/2023] [Indexed: 01/09/2024]
Abstract
Currently, worldwide, the coronavirus disease 2019 (COVID-19) pandemic, which first appeared in Wuhan, China, in December 2019, is capsizing the medical system and turning the attention of the entire healthcare system through the many aspects it presents, both from a pathophysiological and from a semiological view, insufficiently studied aspects. With a high rate of morbidity and mortality, the COVID-19 pandemic was initially observed as a pathology leading to a severe acute respiratory syndrome, but over time gastrointestinal and hepatic manifestations have been reported. The study includes an analysis of 21 patients in the stage of the clinical disease of COVID-19 or in the stage of recovery, hospitalized in the Departments of General Surgery II or Gastroenterology, Emergency Clinical County Hospital of Craiova, Romania, with predominantly digestive symptoms, with the clinical expression of infectious enterocolitis, although stool culture was negative for pathogenic bacteria. The evolution of patients was influenced by the appearance of peritonitis through colonic necrosis or remission of clinical symptoms under empirical therapy.
Collapse
Affiliation(s)
| | | | - Dan Nicolae Florescu
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, Romania
| | - Dragoş Marian Popescu
- Department of Extreme Conditions Medicine, University of Medicine and Pharmacy of Craiova, Romania
| | - Cristian Meşină
- Department of Surgery, University of Medicine and Pharmacy of Craiova, Romania
| | - Liliana Streba
- Department of Medical Oncology, University of Medicine and Pharmacy of Craiova, Romania
| | | | - Cristian Constantin
- Department of Medical Imaging, University of Medicine and Pharmacy of Craiova, Romania
| |
Collapse
|
50
|
Lisman D, Zielińska G, Drath J, Łaszczewska A, Savochka I, Parafiniuk M, Ossowski A. Molecular Diagnosis of COVID-19 Sudden and Unexplained Deaths: The Insidious Face of the Pandemic. Diagnostics (Basel) 2023; 13:2980. [PMID: 37761347 PMCID: PMC10529476 DOI: 10.3390/diagnostics13182980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
The COVID-19 epidemic has led to a significant increase in the number of deaths. This has resulted in forensic autopsies focusing on additional diagnostic possibilities. The following article is a summary of 23 autopsies of sudden and unexplained deaths. Particularly noteworthy are the described cases of children whose deaths were originally classified as SIDS (sudden infant death syndrome). All tests were performed at the Department of Forensic Medicine and Forensic Genetics, Pomeranian Medical University in Szczecin. Autopsy analyses were extended to include diagnostics of the SARS-CoV-2 virus using molecular methods and a detailed histopathological analysis of lung tissue. The material for molecular tests consisted of a nasopharyngeal swab taken postmortem and a lung tissue homogenate. In both cases, the RT-PCR method with CT cut-off point analysis was used for diagnosis. In all analyzed cases, the lungs showed massive congestion and increased fragility and cohesion. The tested material showed the presence of the SARS-CoV-2 virus, which indicated various stages of infection. It was observed that the higher the virus expression in the lungs, the lower or undetectable it was in the nasopharyngeal swab. This may explain false negative results during life in swabs. An interesting finding is that child deaths classified as SIDS also showed the presence of the virus. This may constitute a new direction of research.
Collapse
Affiliation(s)
- Dagmara Lisman
- Forensic Genetic Department, Pomeranian Medical University, 70-204 Szczecin, Poland; (G.Z.); (J.D.); (A.Ł.); (A.O.)
| | - Grażyna Zielińska
- Forensic Genetic Department, Pomeranian Medical University, 70-204 Szczecin, Poland; (G.Z.); (J.D.); (A.Ł.); (A.O.)
| | - Joanna Drath
- Forensic Genetic Department, Pomeranian Medical University, 70-204 Szczecin, Poland; (G.Z.); (J.D.); (A.Ł.); (A.O.)
| | - Aleksandra Łaszczewska
- Forensic Genetic Department, Pomeranian Medical University, 70-204 Szczecin, Poland; (G.Z.); (J.D.); (A.Ł.); (A.O.)
| | - Ilona Savochka
- Forensic Medicine Department, Pomeranian Medical University, 70-204 Szczecin, Poland; (I.S.); (M.P.)
| | - Mirosław Parafiniuk
- Forensic Medicine Department, Pomeranian Medical University, 70-204 Szczecin, Poland; (I.S.); (M.P.)
| | - Andrzej Ossowski
- Forensic Genetic Department, Pomeranian Medical University, 70-204 Szczecin, Poland; (G.Z.); (J.D.); (A.Ł.); (A.O.)
| |
Collapse
|