1
|
Luo C, Zhang R, Guo R, Wu L, Xue T, He Y, Jin Y, Zhao Y, Zhang Z, Zhang P, Ye S, Li X, Li D, Zhang W, Wang C, Lai L, Pan-Hammarström Q, Wucherpfennig KW, Gao Z, Pan D, Zeng Z. Integrated computational analysis identifies therapeutic targets with dual action in cancer cells and T cells. Immunity 2025; 58:745-765.e9. [PMID: 40023158 DOI: 10.1016/j.immuni.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 10/11/2024] [Accepted: 02/04/2025] [Indexed: 03/04/2025]
Abstract
Many cancer drugs that target cancer cell pathways also impair the immune system. We developed a computational target discovery platform to enable examination of both cancer and immune cells so as to identify pathways that restrain tumor progression and potentiate anti-tumor immunity. Immune-related CRISPR screen analyzer of functional targets (ICRAFT) integrates immune-related CRISPR screen datasets, single-cell RNA sequencing (scRNA-seq) data, and pre-treatment RNA-seq data from clinical trials, enabling a systems-level approach to therapeutic target discovery. Using ICRAFT, we identified numerous targets that enhance both cancer cell susceptibility to immune attack and T cell activation, including tumor necrosis factor (TNF) alpha-induced protein 3 (TNFAIP3), protein tyrosine phosphatase non-receptor type 2 (PTPN2), and suppressor of cytokine signaling 1 (SOCS1). In cancer cells, Tnfaip3 (A20) deletion activated the TNF-nuclear factor kappa-B (NF-κB) pathway, promoting chemokine expression and T cell recruitment to the tumor. T cell-mediated elimination of Tnaifp3-null cancer cells was primarily driven by TNF-induced apoptosis. Inactivation of Tnfaip3 in T cells enhanced anti-tumor efficacy. By integrating diverse functional genomics and clinical datasets, ICRAFT provides an interactive resource toward a deeper understanding of anti-tumor immunity and immuno-oncology drug development.
Collapse
Affiliation(s)
- Ce Luo
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100084, China
| | - Rui Zhang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100084, China
| | - Rui Guo
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100084, China
| | - Lijian Wu
- School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Teng Xue
- Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, Sichuan 610213, China
| | - Yufeng He
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100084, China
| | - Yiteng Jin
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100084, China
| | - Yanping Zhao
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zongxu Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100084, China
| | - Peng Zhang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100084, China
| | - Sitong Ye
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA; Yale School of Medicine, New Haven, CT 06510, USA
| | - Xiaohong Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100084, China
| | - Dian Li
- Division of Biology and Biomedical Sciences, Washington University in St. Louis School of Medicine, Saint Louis, MO 63108, USA
| | - Wubing Zhang
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Chenfei Wang
- Shanghai Putuo District People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Luhua Lai
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100084, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100084, China; Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, Sichuan 610213, China
| | - Qiang Pan-Hammarström
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17165, Sweden
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02215, USA
| | - Zhidong Gao
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100084, China.
| | - Deng Pan
- School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Zexian Zeng
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100084, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100084, China; Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, Sichuan 610213, China.
| |
Collapse
|
2
|
Fiedler M, Off A, Gärtner A, Brockhoff G, Eichberger J, Gottsauner M, Schuderer JG, Maurer M, Bauer RJ, Gerken M, Reichert TE, Ettl T, Weber F. Increased PD-1/PD-L1 Immune Checkpoint Expression Is Associated With Oral Squamous Cell Carcinoma in Never-Smokers and Never-Drinkers. Head Neck 2025; 47:822-831. [PMID: 39462876 DOI: 10.1002/hed.27981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND This study aimed to explore the disparities in PD-1 and PD-L1 expression among oral squamous cell carcinomas (OSCCs) in individuals categorized as never-smokers/never-drinkers versus smokers/drinkers. METHODS Immunohistochemical staining for PD-1 and PD-L1, along with PDCD1LG2/cen9 dual color probe analysis, was conducted on 130 OSCC specimens from both smoker/drinker and never-smoker/never-drinker cohorts. Associations between smoking/drinking status, clinicopathologic data, immunohistochemical antibody expression, fluorescence in situ hybridization, and survival outcomes were assessed. RESULTS OSCC in never-smokers/never-drinkers exhibited significantly elevated PD-1 expression (p = 0.003), increased PD-L1-TPS expression (p = 0.044), and elevated PD-L1-CPS expression (p < 0.001). High PD-L1-ICS expression was more prevalent in never-smokers (p = 0.042). Moreover, never-smokers and never-drinkers demonstrated augmented PD-L1 gene copy numbers (p = 0.081 and p = 0.054, respectively). Increased PD-L1 gene copy number, particularly amplification, correlated with PD-L1-TPS (p = 0.039 and p < 0.001). Conversely, PD-L1 gene copy loss was associated with negative PD-L1-CPS (p = 0.023). Notably, positive PD-L1-CPS was significantly linked with improved overall survival (p = 0.023). CONCLUSIONS OSCC arising in never-smokers/never-drinkers exhibit heightened PD-1/PD-L1 signaling, suggesting potential efficacy of immune checkpoint therapy in this subgroup of tumors.
Collapse
Affiliation(s)
- Mathias Fiedler
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Alisa Off
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Andreas Gärtner
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Gero Brockhoff
- Clinic of Gynecology and Obstetrics, Caritas Hospital St. Josef, University of Regensburg, Regensburg, Germany
| | - Jonas Eichberger
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Maximilian Gottsauner
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Johannes G Schuderer
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Michael Maurer
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Richard J Bauer
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
- Department of Oral and Maxillofacial Surgery, Center for Medical Biotechnology, University Hospital Regensburg, Regensburg, Germany
| | - Michael Gerken
- Center of Tumor Registry, University of Regensburg, Regensburg, Germany
| | - Torsten E Reichert
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Tobias Ettl
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Florian Weber
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
3
|
Li S, Pan Y, Ye R, Wang Y, Li L. Immune checkpoints in B-cell Lymphoma: Still an Unmet challenge from Basic research to clinical practice. Int Immunopharmacol 2025; 146:113717. [PMID: 39673995 DOI: 10.1016/j.intimp.2024.113717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/24/2024] [Accepted: 11/24/2024] [Indexed: 12/16/2024]
Abstract
In the last decade, advancements in immunotherapy knowledge have highlighted CTLA-4, PD-1, LAG-3, TIM-3, and TIGIT, decisive immune checkpoints exhibiting within the tumor microenvironment (TME), as fundamental objects for cancer immunotherapy. The widespread clinical use of immune checkpoint inhibitors (ICls), employing PD-1/PD-L1 or CTLA-4 antibodies to obstruct crucial checkpoint regulators, is noted in treating B-cell lymphoma patients. Nevertheless, the prolonged advantages of the currently employed treatments against CTLA-4, PD-1, and PD-L1 are uncommon among patients. Thus, recent focus has been progressively moved to additional immune checkpoints on T cells, like LAG-3, TIM-3, and TIGIT, which are now seen as reassuring targets for treatment and broadly acknowledged. There are several types of immunecheckpoint molecules expressed by T cells, and inhibitors targeting immune checkpoints can revive and amplify the immune response of T lymphocytes against tumors, a crucial aspect in lymphoma therapy. However, there is little knowledge about their regulation. Herein, we discuss the anti-tumor effects and functions of ICIs in controlling T-cell activity, as well as the progress in combined application with other immunotherapies.
Collapse
Affiliation(s)
- Sijia Li
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, PR China
| | - Yuanyuan Pan
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, PR China
| | - Ruyu Ye
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, PR China
| | - Yu Wang
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, PR China
| | - Li Li
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, PR China.
| |
Collapse
|
4
|
Dollinger E, Hernandez-Davies J, Felgner J, Jain A, Hwang M, Strahsburger E, Nakajima R, Jasinskas A, Nie Q, Pone EJ, Othy S, Davies DH. Combination adjuvant improves influenza virus immunity by downregulation of immune homeostasis genes in lymphocytes. Immunohorizons 2025; 9:vlae007. [PMID: 39849993 PMCID: PMC11841980 DOI: 10.1093/immhor/vlae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 01/30/2025] Open
Abstract
Adjuvants play a central role in enhancing the immunogenicity of otherwise poorly immunogenic vaccine antigens. Combining adjuvants has the potential to enhance vaccine immunogenicity compared with single adjuvants, although the cellular and molecular mechanisms of combination adjuvants are not well understood. Using the influenza virus hemagglutinin H5 antigen, we define the immunological landscape of combining CpG and MPLA (TLR-9 and TLR-4 agonists, respectively) with a squalene nanoemulsion (AddaVax) using immunologic and transcriptomic profiling. Mice immunized and boosted with recombinant H5 in AddaVax, CpG+MPLA, or AddaVax plus CpG+MPLA (IVAX-1) produced comparable levels of neutralizing antibodies and were equally well protected against the H5N1 challenge. However, after challenge with H5N1 virus, H5/IVAX-1-immunized mice had 100- to 300-fold lower virus lung titers than mice receiving H5 in AddaVax or CpG+MPLA separately. Consistent with enhanced viral clearance, unsupervised expression analysis of draining lymph node cells revealed the combination adjuvant IVAX-1 significantly downregulated immune homeostasis genes, and induced higher numbers of antibody-producing plasmablasts than either AddaVax or CpG+MPLA. IVAX-1 was also more effective after single-dose administration than either AddaVax or CpG+MPLA. These data reveal a novel molecular framework for understanding the mechanisms of combination adjuvants, such as IVAX-1, and highlight their potential for the development of more effective vaccines against respiratory viruses.
Collapse
Affiliation(s)
- Emmanuel Dollinger
- Department of Mathematics, University of California Irvine, Irvine, CA, United States
| | - Jenny Hernandez-Davies
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Jiin Felgner
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Aarti Jain
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Michael Hwang
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Erwin Strahsburger
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Rie Nakajima
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Algimantas Jasinskas
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Qing Nie
- Department of Mathematics, University of California Irvine, Irvine, CA, United States
| | - Egest James Pone
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Shivashankar Othy
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - David Huw Davies
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| |
Collapse
|
5
|
Sardarabadi P, Lee KY, Sun WL, Kojabad AA, Liu CH. Investigating T Cell Immune Dynamics and IL-6's Duality in a Microfluidic Lung Tumor Model. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4354-4367. [PMID: 39471283 PMCID: PMC11758792 DOI: 10.1021/acsami.4c09065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
Interleukin 6 (IL-6), produced by immune cells, is crucial in promoting T cell trafficking to infection and inflammation sites, influencing various physiological and pathological processes. Concentrations of IL-6 and other cytokines and chemokines can influence T cell differentiation and activation. Understanding the dual faces of IL-6 within the tumor microenvironment is crucial to understanding its role. A flow-based microsystem was designed to investigate CD4+ T cell activation in response to different IL-6 gradients in an under-control 3D culture. The study found that cancer cells' response to varying IL-6 concentrations was dynamic and dose-sensitive, with immune cell migration rates showing sensitivity to the IL-6 gradient. A549 cell expansion increases gradually and time-dependently with 50 ng of IL-6, while Jurkat cell migration follows a time-dependent pattern. However, when a total of 100 ng IL-6 concentration is applied, A549 cells expand rapidly, potentially influencing Jurkat cell migration. Jurkat cell mobility is lower, possibly due to increased A549 cell presence and heightened cell-cell interactions. Different IL-6 concentration gradients can modulate the expression of some CD markers like CD69 and programed cell death protein 1 in CD4+ T cells, suggesting that IL-6 concentration gradients affect immune cell phenotypes. This suggests that IL-6 plays a crucial role in activating T helper cells and may be involved in the later phases of inflammation. Also, the increased levels of IFN-γ and TNF-α highlight IL-6's impact on T cell inflammatory response. This study emphasizes the intricate effects of IL-6 on T cell activation, phenotype, cytokine production, and phenotypic heterogeneity, providing valuable insights into immune response modulation in an experimental setting.
Collapse
Affiliation(s)
- Parvaneh Sardarabadi
- Institute
of Nanoengineering and Microsystems, National
Tsing Hua University, Hsinchu 30044, Taiwan,
R.O.C
| | - Kang-Yun Lee
- Division
of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho
Hospital, Taipei Medical University, New Taipei City 235, Taiwan, R.O.C
- Division
of Pulmonary Medicine, Department of Internal Medicine, School of
Medicine, College of Medicine, Taipei Medical
University, Taipei 110, Taiwan, R.O.C
- TMU
Research Center for Thoracic Medicine, Taipei
Medical University, Taipei 110, Taiwan, R.O.C
| | - Wei-Lun Sun
- Pythia
Biotech LTD., New Taipei City 23561, Taiwan,
R.O.C
| | - Amir Asri Kojabad
- Department
of Hematology, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran 14535, Iran
| | - Cheng-Hsien Liu
- Institute
of Nanoengineering and Microsystems, National
Tsing Hua University, Hsinchu 30044, Taiwan,
R.O.C
- Department
of Power Mechanical Engineering, National
Tsing Hua University, Hsinchu 30044, Taiwan,
R.O.C
- College
of Semiconductor Research, National Tsing
Hua University, Hsinchu 30044, Taiwan, R.O.C
| |
Collapse
|
6
|
Masubuchi T, Chen L, Marcel N, Wen GA, Caron C, Zhang J, Zhao Y, Morris GP, Chen X, Hedrick SM, Lu LF, Wu C, Zou Z, Bui JD, Hui E. Functional differences between rodent and human PD-1 linked to evolutionary divergence. Sci Immunol 2025; 10:eads6295. [PMID: 39752535 PMCID: PMC11774210 DOI: 10.1126/sciimmunol.ads6295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/04/2024] [Indexed: 01/30/2025]
Abstract
Mechanistic understanding of the inhibitory immunoreceptor PD-1 is largely based on mouse models, but human and mouse PD-1 share only 59.6% amino acid identity. Here, we found that human PD-1 is more inhibitory than mouse PD-1, owing to stronger interactions with the ligands PD-L1 and PD-L2 and more efficient recruitment of the effector phosphatase Shp2. In a mouse melanoma model with adoptively transferred T cells, humanization of a PD-1 intracellular domain disrupted the antitumor activity of CD8+ T cells and increased the magnitude of anti-PD-1 response. We identified a motif highly conserved across vertebrate PD-1 orthologs, absent in rodents, as a key determinant for differential Shp2 recruitment. Evolutionary analysis suggested that PD-1 underwent a rodent lineage-specific functional attenuation during evolution. Together, our study uncovers species-specific features of the PD-1 pathway, with implications for PD-1 evolution and differential anti-PD-(L)1 responses in mouse models and human patients.
Collapse
Affiliation(s)
- Takeya Masubuchi
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Lin Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Nimi Marcel
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - George A. Wen
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Christine Caron
- Department of Pathology, University of California San Diego, La Jolla, CA 92093
| | - Jibin Zhang
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Yunlong Zhao
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Gerald P. Morris
- Department of Pathology, University of California San Diego, La Jolla, CA 92093
| | - Xu Chen
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093
| | - Stephen M. Hedrick
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Li-Fan Lu
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhengting Zou
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jack D. Bui
- Department of Pathology, University of California San Diego, La Jolla, CA 92093
| | - Enfu Hui
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
7
|
Ou QL, Chang YL, Liu JH, Yan HX, Chen LZ, Guo DY, Zhang SF. Mapping the intellectual structure and landscape of colorectal cancer immunotherapy: A bibliometric analysis. Hum Vaccin Immunother 2024; 20:2323861. [PMID: 38497584 PMCID: PMC10950274 DOI: 10.1080/21645515.2024.2323861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/23/2024] [Indexed: 03/19/2024] Open
Abstract
Immunotherapy, particularly immune checkpoint inhibitor (ICIs) therapy, stands as an innovative therapeutic approach currently garnering substantial attention in cancer treatment. It has become a focal point of numerous studies, showcasing significant potential in treating malignancies, including lung cancer and melanoma. The objective of this research is to analyze publications regarding immunotherapy for colorectal cancer (CRC), investigating their attributes and identifying the current areas of interest and cutting-edge advancements. We took into account the publications from 2002 to 2022 included in the Web of Science Core Collection. Bibliometric analysis and visualization were conducted using CiteSpace, VOSviewer, R-bibliometrix, and Microsoft Excel. The quantity of publications associated with this domain has been steadily rising over the years, encompassing 3753 articles and 1498 reviews originating from 573 countries and regions, involving 19,166 institutions, 1011 journals, and 32,301 authors. In this field, China, the United States, and Italy are the main countries that come forward for publishing. The journal with the greatest impact factor is CA-A Cancer Journal for Clinicians. Romain Cohen leads in the number of publications, while Le Dt stands out as the most influential author. The immune microenvironment and immune infiltration are emerging as key hotspots and future research directions in this domain. This research carries out an extensive bibliometric examination of immunotherapy for colorectal cancer, aiding researchers in understanding current focal points, investigating possible avenues for research, and recognizing forthcoming development trends.
Collapse
Affiliation(s)
- Qin Ling Ou
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- College of Integrated Traditional Chinese & Western Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Yong Long Chang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jin Hui Liu
- College of Integrated Traditional Chinese & Western Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Hai Xia Yan
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lin Zi Chen
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Duan Yang Guo
- College of Integrated Traditional Chinese & Western Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Si Fang Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
8
|
Eshaq AM, Flanagan TW, Ba Abbad AA, Makarem ZAA, Bokir MS, Alasheq AK, Al Asheikh SA, Almashhor AM, Binyamani F, Al-Amoudi WA, Bawzir AS, Haikel Y, Megahed M, Hassan M. Immune Checkpoint Inhibitor-Associated Cutaneous Adverse Events: Mechanisms of Occurrence. Int J Mol Sci 2024; 26:88. [PMID: 39795946 PMCID: PMC11719825 DOI: 10.3390/ijms26010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
Immunotherapy, particularly that based on blocking checkpoint proteins in many tumors, including melanoma, Merkel cell carcinoma, non-small cell lung cancer (NSCLC), triple-negative breast (TNB cancer), renal cancer, and gastrointestinal and endometrial neoplasms, is a therapeutic alternative to chemotherapy. Immune checkpoint inhibitor (ICI)-based therapies have the potential to target different pathways leading to the destruction of cancer cells. Although ICIs are an effective treatment strategy for patients with highly immune-infiltrated cancers, the development of different adverse effects including cutaneous adverse effects during and after the treatment with ICIs is common. ICI-associated cutaneous adverse effects include mostly inflammatory and bullous dermatoses, as well as severe cutaneous side reactions such as rash or inflammatory dermatitis encompassing erythema multiforme; lichenoid, eczematous, psoriasiform, and morbilliform lesions; and palmoplantar erythrodysesthesia. The development of immunotherapy-related adverse effects is a consequence of ICIs' unique molecular action that is mainly mediated by the activation of cytotoxic CD4+/CD8+ T cells. ICI-associated cutaneous disorders are the most prevalent effects induced in response to anti-programmed cell death 1 (PD-1), anti-cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4), and anti-programmed cell death ligand 1 (PD-L1) agents. Herein, we will elucidate the mechanisms regulating the occurrence of cutaneous adverse effects following treatment with ICIs.
Collapse
Affiliation(s)
- Abdulaziz M. Eshaq
- Department of Epidemiology and Biostatstics, Milken Institute School of Public Health, George Washington University Washington, Washington, DC 20052, USA;
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA;
| | - Abdulqader A. Ba Abbad
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.A.B.A.); (Z.A.A.M.); (M.S.B.); (A.K.A.); (A.M.A.); (F.B.); (W.A.A.-A.)
| | - Zain Alabden A. Makarem
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.A.B.A.); (Z.A.A.M.); (M.S.B.); (A.K.A.); (A.M.A.); (F.B.); (W.A.A.-A.)
| | - Mohammed S. Bokir
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.A.B.A.); (Z.A.A.M.); (M.S.B.); (A.K.A.); (A.M.A.); (F.B.); (W.A.A.-A.)
| | - Ahmed K. Alasheq
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.A.B.A.); (Z.A.A.M.); (M.S.B.); (A.K.A.); (A.M.A.); (F.B.); (W.A.A.-A.)
| | - Sara A. Al Asheikh
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.A.B.A.); (Z.A.A.M.); (M.S.B.); (A.K.A.); (A.M.A.); (F.B.); (W.A.A.-A.)
| | - Abdullah M. Almashhor
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.A.B.A.); (Z.A.A.M.); (M.S.B.); (A.K.A.); (A.M.A.); (F.B.); (W.A.A.-A.)
| | - Faroq Binyamani
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.A.B.A.); (Z.A.A.M.); (M.S.B.); (A.K.A.); (A.M.A.); (F.B.); (W.A.A.-A.)
| | - Waleed A. Al-Amoudi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.A.B.A.); (Z.A.A.M.); (M.S.B.); (A.K.A.); (A.M.A.); (F.B.); (W.A.A.-A.)
| | - Abdulaziz S. Bawzir
- Department of Radiology, King Saud Medical City, Riyadh 11533, Saudi Arabia;
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France;
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Mossad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany;
| | - Mohamed Hassan
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France;
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
9
|
Arafat Hossain M. A comprehensive review of immune checkpoint inhibitors for cancer treatment. Int Immunopharmacol 2024; 143:113365. [PMID: 39447408 DOI: 10.1016/j.intimp.2024.113365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/28/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
Immunology-based therapies are emerging as an effective cancer treatment, using the body's immune system to target tumors. Immune checkpoints, which regulate immune responses to prevent tissue damage and autoimmunity, are often exploited by cancer cells to avoid destruction. The discovery of checkpoint proteins like PD-1/PD-L1 and CTLA-4 was pivotal in developing cancer immunotherapy. Immune checkpoint inhibitors (ICIs) have shown great success, with FDA-approved drugs like PD-1 inhibitors (Nivolumab, Pembrolizumab, Cemiplimab), PD-L1 inhibitors (Atezolizumab, Durvalumab, Avelumab), and CTLA-4 inhibitors (Ipilimumab, Tremelimumab), alongside LAG-3 inhibitor Relatlimab. Research continues on new checkpoints like TIM-3, VISTA, B7-H3, BTLA, and TIGIT. Biomarkers like PDL-1 expression, tumor mutation burden, interferon-γ presence, microbiome composition, and extracellular matrix characteristics play a crucial role in predicting responses to immunotherapy with checkpoint inhibitors. Despite their effectiveness, not all patients experience the same level of benefit, and organ-specific immune-related adverse events (irAEs) such as rash or itching, colitis, diarrhea, hyperthyroidism, and hypothyroidism may occur. Given the rapid advancements in this field and the variability in patient outcomes, there is an urgent need for a comprehensive review that consolidates the latest findings on immune checkpoint inhibitors, covering their clinical status, biomarkers, resistance mechanisms, strategies to overcome resistance, and associated adverse effects. This review aims to fill this gap by providing an analysis of the current clinical status of ICIs, emerging biomarkers, mechanisms of resistance, strategies to enhance therapeutic efficacy, and assessment of adverse effects. This review is crucial to furthering our understanding of ICIs and optimizing their application in cancer therapy.
Collapse
Affiliation(s)
- Md Arafat Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh.
| |
Collapse
|
10
|
Anton-Pampols P, Martinez Valenzuela L, Fernandez Lorente L, Quero Ramos M, Gómez Preciado F, Gomà M, Manrique J, Fulladosa X, Cruzado JM, Torras J, Draibe JB. Immune checkpoint molecules performance in ANCA vasculitis. RMD Open 2024; 10:e004660. [PMID: 39537557 PMCID: PMC11575324 DOI: 10.1136/rmdopen-2024-004660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVE The PD-1 axis promotes protection against autoimmunity. Immune checkpoint (IC) molecules performance in anti-neutrophil cytoplasmic antibody-associated vasculitis (AAV) remains unknown. This study aims to assess the IC pathway's role in the AAV's pathophysiology. METHODS We recruited 88 AAV from our centre as a discovery cohort (acute=42, remission=46) and 30 patients from another institution for external validation (acute=16, remission=14).Serum, urine and peripheral blood mononuclear cells (PBMCs) were collected. In vitro IC molecules production by lymphocytes was studied with and without MPO/PR3 antigen stimulus. Cell culture supernatant (SN) was obtained by centrifugation. PD-1, PD-L1 and PD-L2 concentrations were assessed in serum (s), urine (u) and SN of AAV and healthy controls (HC) using a multiplex assay. PD-1 and PD-L1's expression was analysed in six diagnostic kidney biopsies. RESULTS uPD-1 and uPD-L2's concentration was lower in AAV than HC (p<0.0001, p=0.0075). Acute patients exhibited lower uPD-L2 levels compared with those in remission (p=0.036). Similarly, PBMCs showed reduced PD-1 production than HC (stimulated group p=0.04, unstimulated p=0.0074). Furthermore, patients with inflammatory renal lesions had fewer PD-1-positive interstitial cells/staining intensity compared with those with sclerotic lesions. Contradictorily, sPD-1 and sPD-L1's concentration was higher in AAV than HC (p=0.007, p<0.0001) with acute patients exhibiting elevated sPD-1 levels compared with those in remission (p=0.0051). Serum and urine findings were confirmed in the validation cohort. CONCLUSIONS Results in urine, SN and histology suggest IC pathway abolition during acute disease restored in remission and contribute to understand PD-1 axis's role in AAV proposing it as a new biomarker of disease activity.
Collapse
Affiliation(s)
- Paula Anton-Pampols
- Nephrology, Bellvitge University Hospital, L'Hospitalet de Llobregat, Spain
- IDIBELL, Barcelona, Spain
| | - Laura Martinez Valenzuela
- Nephrology, Bellvitge University Hospital, L'Hospitalet de Llobregat, Spain
- IDIBELL, Barcelona, Spain
| | | | - Maria Quero Ramos
- Nephrology, Bellvitge University Hospital, L'Hospitalet de Llobregat, Spain
- IDIBELL, Barcelona, Spain
| | - Francisco Gómez Preciado
- Nephrology, Bellvitge University Hospital, L'Hospitalet de Llobregat, Spain
- IDIBELL, Barcelona, Spain
| | - Montserrat Gomà
- IDIBELL, Barcelona, Spain
- Pathological Anatomy, Bellvitge University Hospital, L'Hospitalet de Llobregat, Spain
| | - Joaquin Manrique
- Nephrology, Navarre Hospital Complex, Pamplona, Spain
- IdiSNA, Pamplona, Spain
| | - Xavier Fulladosa
- Nephrology, Bellvitge University Hospital, L'Hospitalet de Llobregat, Spain
- IDIBELL, Barcelona, Spain
| | - Josep M Cruzado
- Nephrology, Bellvitge University Hospital, L'Hospitalet de Llobregat, Spain
- IDIBELL, Barcelona, Spain
| | - Juan Torras
- Nephrology, Bellvitge University Hospital, L'Hospitalet de Llobregat, Spain
- IDIBELL, Barcelona, Spain
| | - Juliana Bordignon Draibe
- Nephrology, Bellvitge University Hospital, L'Hospitalet de Llobregat, Spain
- IDIBELL, Barcelona, Spain
| |
Collapse
|
11
|
Wang C, Liu X, Ren Z, Du X, Li N, Song X, Wu W, Qu L, Zhu H, Hua J. The Goat Cytotoxic T Lymphocyte-Associated Antigen-4 Gene: mRNA Expression and Association Analysis of Insertion/Deletion Variants with the Risk of Brucellosis. Int J Mol Sci 2024; 25:10948. [PMID: 39456732 PMCID: PMC11506940 DOI: 10.3390/ijms252010948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
The cytotoxic T lymphocyte-associated antigen-4 (CTLA4) gene, a member of the immunoglobulin superfamily, is crucial for maintaining immune homeostasis and preventing autoimmune diseases. Studies have shown that polymorphisms in the CTLA4 gene are linked to an increased risk of brucellosis in humans, but its association with brucellosis in goats remains unexplored. In this study, the tissue expression profile of CTLA4 in goats was investigated, and the correlation between InDel polymorphisms in the CTLA4 gene and susceptibility to brucellosis in goats was examined. The findings reveal the widespread expression of CTLA4 in goat tissues, particularly in the spleen and testes. The tested goat populations presented genotypes insertion/insertion (II), insertion/deletion (ID), and deletion/deletion (DD) at both the P1 and P2 loci, and an association analysis revealed significant differences in the distribution of genotypes and allele frequencies at the P1 and P2 loci of the CTLA4 gene between the Brucella goat case and the control groups (p < 0.05). Specifically, compared with the II genotype, the P1 and P2 loci were significantly associated with an elevated risk of brucellosis development in goats under both the codominant (ID/II) and dominant (ID + DD/II) models (P1, p = 0.042, p = 0.016; P2, p = 0.011, p = 0.014). Additionally, haplotype analysis indicated that haplotypes IP1DP2, DP1IP2, and DP1DP2 were significantly associated with an increased risk of brucellosis in goats compared to the reference haplotype IP1IP2 (p = 0.029, p = 0.012, p = 0.034). Importantly, the Lipopolysaccharide (LPS) stimulation of peripheral blood monocytes and/or macrophages from goats with the II, ID, and DD genotypes resulted in increased CTLA4 expression levels in the II genotype, leading to a robust LPS-induced inflammatory response. Through bioinformatic analysis, the observed effect of the InDel locus on Brucella pathogenesis risk in goats could be attributed to the differential binding of the transcription factors nuclear factor kappaB (NF-κB) and CCAAT/enhancer-binding protein α (C/EBPα). These findings offer potential insights for breeding strategies against brucellosis.
Collapse
Affiliation(s)
- Congliang Wang
- Shaanxi Centre of Stem Cells Engineering & Technology, College of Veterinary Medicine, Northwest Agriculture & Forestry University, Xianyang 712100, China; (C.W.); (N.L.)
| | - Xiaoyu Liu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Life Science Research Center, Yulin University, Yulin 719000, China; (X.L.); (Z.R.); (X.S.); (L.Q.)
| | - Zhaofei Ren
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Life Science Research Center, Yulin University, Yulin 719000, China; (X.L.); (Z.R.); (X.S.); (L.Q.)
| | - Xiaomin Du
- Key Laboratory of Livestock Biology, Northwest Agriculture & Forestry University, Xianyang 712100, China;
| | - Na Li
- Shaanxi Centre of Stem Cells Engineering & Technology, College of Veterinary Medicine, Northwest Agriculture & Forestry University, Xianyang 712100, China; (C.W.); (N.L.)
- Key Laboratory of Livestock Biology, Northwest Agriculture & Forestry University, Xianyang 712100, China;
| | - Xiaoyue Song
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Life Science Research Center, Yulin University, Yulin 719000, China; (X.L.); (Z.R.); (X.S.); (L.Q.)
| | - Weiwei Wu
- Institute of Animal Science, Xinjiang Academy of Animal Husbandry Sciences, Urumqi 830000, China;
| | - Lei Qu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Life Science Research Center, Yulin University, Yulin 719000, China; (X.L.); (Z.R.); (X.S.); (L.Q.)
| | - Haijing Zhu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Life Science Research Center, Yulin University, Yulin 719000, China; (X.L.); (Z.R.); (X.S.); (L.Q.)
| | - Jinlian Hua
- Shaanxi Centre of Stem Cells Engineering & Technology, College of Veterinary Medicine, Northwest Agriculture & Forestry University, Xianyang 712100, China; (C.W.); (N.L.)
- Key Laboratory of Livestock Biology, Northwest Agriculture & Forestry University, Xianyang 712100, China;
| |
Collapse
|
12
|
Srivastava P, Rütter M, Antoniraj G, Ventura Y, David A. Dendritic Cell-Targeted Nanoparticles Enhance T Cell Activation and Antitumor Immune Responses by Boosting Antigen Presentation and Blocking PD-L1 Pathways. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53577-53590. [PMID: 39344665 DOI: 10.1021/acsami.4c12821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Dendritic cells (DCs) within the tumor microenvironment (TME) have an insufficient capacity to activate T cells through antigen presentation. Furthermore, the programmed cell-death ligand 1 (PD-L1), abundantly expressed on tumor-associated DCs, binds the programmed cell-death 1 (PD-1)-positive T cells and suppresses their immune function. The binding of PD-L1 to CD80 (B7.1) on the same DC via cis-interactions further prevents T cell costimulation through CD28. Here, we present a strategy to simultaneously promote antigen cross-presentation and block the inhibitory interactions of PD-L1 on DCs to amplify T cell-mediated antitumor responses within the TME. Mesoporous silica nanoparticles (MSNPs) were loaded with clotrimazole (CLT) to boost MHC II-mediated antigen presentation by DCs, surface-modified with mannose to target CD206 on DCs, and then decorated with PD-L1 binding peptide (PDL1bp) to block PD-L1-mediated interactions. PDL1bp was cleaved from the mannosylated and CLT-loaded MSNPs (MSNP-MaN/CLT) under conditions simulating the TME and tethered to PD-L1 to reverse CD80 sequestration on DC2.4 cells. The blocking of PD-L1 by PDL1bp-decorated NPs (MSNP-MaN-PDL1bp) increased the cellular interactions between DC2.4 and EL4 T cells and the amount of IL-2 secretion. The MSNP-MaN/CLT were taken up rapidly by DC2.4 cells, promoted MHC II presentation of hen egg lysozyme (HEL), and increased IL-2 production from HEL antigen-primed 3A9 T cells, which was further enhanced by PDL1bp. In vivo investigation revealed that administration of the CLT-loaded and PDL1bp-functionalized MSNPs remarkably inhibited subcutaneous B16-F10 melanoma tumor growth when compared with anti-PD-L1 therapy. MSNP-MaN-PDL1bp/CLT treatment upregulated the levels of effector molecules such as granzyme B and proinflammatory cytokines (IFNγ and INFα) in the tumor tissue, indicating antitumoral T cell responses. This strategy of utilizing nanoparticles to trigger DC activation while promoting T cell stimulation can be used to amplify the antitumor T cell responses and represents a promising alternative to anti-PD-L1 immunotherapy.
Collapse
Affiliation(s)
- Prateek Srivastava
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Marie Rütter
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Gover Antoniraj
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Yvonne Ventura
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Ayelet David
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
13
|
Zhang F, Zhang H, Zhou S, Plewka J, Wang M, Sun S, Wu C, Yu Q, Zhu M, Awadasseid A, Wu Y, Magiera-Mularz K, Zhang W. Design, synthesis, and evaluation of antitumor activity of 2-arylmethoxy-4-(2-fluoromethyl-biphenyl-3-ylmethoxy) benzylamine derivatives as PD-1/PD-l1 inhibitors. Eur J Med Chem 2024; 276:116683. [PMID: 39032403 DOI: 10.1016/j.ejmech.2024.116683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
A series of novel 2-arylmethoxy-4-(2-fluoromethyl-biphenyl-3-ylmethoxy) benzylamine derivatives was designed, synthesized, and evaluated for their antitumor effects as PD-1/PD-L1 inhibitors both in vitro and in vivo. Firstly, the ability of these compounds to block the PD-1/PD-L1 immune checkpoint was assessed using the homogeneous time-resolved fluorescence (HTRF) assay. Two of the compounds can strongly block the PD-1/PD-L1 interaction, with IC50 values of less than 10 nM, notably, compound HD10 exhibited significant clinical potential by inhibiting the PD-1/PD-L1 interaction with an IC50 value of 3.1 nM. Further microscale thermophoresis (MST) analysis demonstrated that HD10 had strong interaction with PD-L1 protein. Co-crystal structure (2.7 Å) analysis of HD10 in complex with the PD-L1 protein revealed a strong affinity between the compound and the target PD-L1 dimer. This provides a solid theoretical basis for further in vitro and in vivo studies. Next, a typical cell-based experiment demonstrated that HD10 could remarkably prevent the interaction of hPD-1 293 T cells from human recombinant PD-L1 protein, effectively restoring T cell function, and promoting IFN-γ secretion in a dose-dependent manner. Moreover, HD10 was effective in suppressing tumor growth (TGI = 57.31 %) in a PD-1/PD-L1 humanized mouse model without obvious toxicity. Flow cytometry, qPCR, and immunohistochemistry data suggested that HD10 inhibits tumor growth by activating the immune system in vivo. Based on these results, it seems likely that HD10 is a promising clinical candidate that should be further investigated.
Collapse
Affiliation(s)
- Feng Zhang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing, 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing, 313299, China
| | - Hua Zhang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing, 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing, 313299, China; Department of Pharmacy, Changzhi Medical College, Shanxi, 046012, China
| | - Shijia Zhou
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing, 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing, 313299, China
| | - Jacek Plewka
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Ming Wang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing, 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing, 313299, China
| | - Shishi Sun
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing, 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing, 313299, China
| | - Caiyun Wu
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing, 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing, 313299, China
| | - Qimeng Yu
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing, 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing, 313299, China
| | - Mengyu Zhu
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing, 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing, 313299, China
| | - Annoor Awadasseid
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing, 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing, 313299, China; Moganshan Institute, Zhejiang University of Technology, Deqing, 313200, China.
| | - Yanling Wu
- Lab of Molecular Immunology, Virus Inspection Department, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China.
| | - Katarzyna Magiera-Mularz
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland.
| | - Wen Zhang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing, 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing, 313299, China; Zhejiang Jieyuan Med-Tech Co., Ltd., Hangzhou, 311113, China.
| |
Collapse
|
14
|
Krenz B, Lee J, Kannan T, Eilers M. Immune evasion: An imperative and consequence of MYC deregulation. Mol Oncol 2024; 18:2338-2355. [PMID: 38957016 PMCID: PMC11459038 DOI: 10.1002/1878-0261.13695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/08/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024] Open
Abstract
MYC has been implicated in the pathogenesis of a wide range of human tumors and has been described for many years as a transcription factor that regulates genes with pleiotropic functions to promote tumorigenic growth. However, despite extensive efforts to identify specific target genes of MYC that alone could be responsible for promoting tumorigenesis, the field is yet to reach a consensus whether this is the crucial function of MYC. Recent work shifts the view on MYC's function from being a gene-specific transcription factor to an essential stress resilience factor. In highly proliferating cells, MYC preserves cell integrity by promoting DNA repair at core promoters, protecting stalled replication forks, and/or preventing transcription-replication conflicts. Furthermore, an increasing body of evidence demonstrates that MYC not only promotes tumorigenesis by driving cell-autonomous growth, but also enables tumors to evade the host's immune system. In this review, we summarize our current understanding of how MYC impairs antitumor immunity and why this function is evolutionarily hard-wired to the biology of the MYC protein family. We show why the cell-autonomous and immune evasive functions of MYC are mutually dependent and discuss ways to target MYC proteins in cancer therapy.
Collapse
Affiliation(s)
- Bastian Krenz
- Department of Biochemistry and Molecular BiologyTheodor Boveri Institute, Biocenter, University of WürzburgWürzburgGermany
- Mildred Scheel Early Career CenterWürzburgGermany
| | - Jongkuen Lee
- Department of Biochemistry and Molecular BiologyTheodor Boveri Institute, Biocenter, University of WürzburgWürzburgGermany
| | - Toshitha Kannan
- Department of Biochemistry and Molecular BiologyTheodor Boveri Institute, Biocenter, University of WürzburgWürzburgGermany
| | - Martin Eilers
- Department of Biochemistry and Molecular BiologyTheodor Boveri Institute, Biocenter, University of WürzburgWürzburgGermany
- Comprehensive Cancer Center MainfrankenWürzburgGermany
| |
Collapse
|
15
|
Masubuchi T, Chen L, Marcel N, Wen GA, Caron C, Zhang J, Zhao Y, Morris GP, Chen X, Hedrick SM, Lu LF, Wu C, Zou Z, Bui JD, Hui E. Evolutionary fingerprint in rodent PD1 confers weakened activity and enhanced tumor immunity compared to human PD1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.21.614250. [PMID: 39372757 PMCID: PMC11451736 DOI: 10.1101/2024.09.21.614250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Mechanistic understanding of the immune checkpoint receptor PD1 is largely based on mouse models, but human and mouse PD1 orthologs exhibit only 59.6% identity in amino acid sequences. Here we show that human PD1 is more inhibitory than mouse PD1 due to stronger interactions with the ligands PDL1 and PDL2 and with the effector phosphatase Shp2. A novel motif highly conserved among PD1 orthologs in vertebrates except in rodents is primarily responsible for the differential Shp2 recruitment. Evolutionary analysis suggested that rodent PD1 orthologs uniquely underwent functional relaxation, particularly during the K-Pg boundary. Humanization of the PD1 intracellular domain disrupted the anti-tumor activity of mouse T cells while increasing the magnitude of anti-PD1 response. Together, our study uncovers species-specific features of the PD1 pathway, with implications to PD1 evolution and differential anti-PD(L)1 responses in mouse models and human patients.
Collapse
|
16
|
Shekarkar Azgomi M, Badami GD, Di Caro M, Tamburini B, Fallo M, Dieli C, Ebrahimi K, Dieli F, La Manna MP, Caccamo N. Deep Immunoprofiling of Large-Scale Tuberculosis Dataset at Single Cell Resolution Reveals a CD81 bright γδ T Cell Population Associated with Latency. Cells 2024; 13:1529. [PMID: 39329713 PMCID: PMC11430301 DOI: 10.3390/cells13181529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/28/2024] [Accepted: 09/07/2024] [Indexed: 09/28/2024] Open
Abstract
Tuberculosis (TB) remains one of the leading causes of death among infectious diseases, with 10.6 million new cases and 1.3 million deaths reported in 2022, according to the most recent WHO report. Early studies have shown an expansion of γδ T cells following TB infection in both experimental models and humans, indicating their abundance among lung lymphocytes and suggesting a role in protective immune responses against Mycobacterium tuberculosis (M. tuberculosis) infection. In this study, we hypothesized that distinct subsets of γδ T cells are associated with either protection against or disease progression in TB. To explore this, we applied large-scale scRNA-seq and bulk RNA-seq data integration to define the phenotypic and molecular characteristics of peripheral blood γδ T cells. Our analysis identified five unique γδ T subclusters, each with distinct functional profiles. Notably, we identified a unique cluster significantly enriched in the TCR signaling pathway, with high CD81 expression as a conserved marker. This distinct molecular signature suggests a specialized role for this cluster in immune signaling and regulation of immune response against M. tuberculosis. Flow cytometry confirmed our in silico results, showing that the mean fluorescence intensity (MFI) values of CD81 expression on γδ T cells were significantly increased in individuals with latent TB infection (TBI) compared to those with active TB (ATB). This finding underscores the importance of CD81 and its associated signaling mechanisms in modulating the activity and function of γδ T cells under TBI conditions, providing insights into potential therapeutic targets for TB management.
Collapse
Affiliation(s)
- Mojtaba Shekarkar Azgomi
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy; (M.S.A.); (G.D.B.); (M.D.C.); (B.T.); (M.F.); (C.D.); (F.D.); (M.P.L.M.)
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (B.N.D.), University of Palermo, 90127 Palermo, Italy
| | - Giusto Davide Badami
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy; (M.S.A.); (G.D.B.); (M.D.C.); (B.T.); (M.F.); (C.D.); (F.D.); (M.P.L.M.)
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (B.N.D.), University of Palermo, 90127 Palermo, Italy
| | - Miriam Di Caro
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy; (M.S.A.); (G.D.B.); (M.D.C.); (B.T.); (M.F.); (C.D.); (F.D.); (M.P.L.M.)
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (B.N.D.), University of Palermo, 90127 Palermo, Italy
| | - Bartolo Tamburini
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy; (M.S.A.); (G.D.B.); (M.D.C.); (B.T.); (M.F.); (C.D.); (F.D.); (M.P.L.M.)
- Department of Health Promotion, Mother and Childcare, Internal Medicine and Medical Specialties, University of Palermo, 90129 Palermo, Italy
| | - Miriana Fallo
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy; (M.S.A.); (G.D.B.); (M.D.C.); (B.T.); (M.F.); (C.D.); (F.D.); (M.P.L.M.)
| | - Costanza Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy; (M.S.A.); (G.D.B.); (M.D.C.); (B.T.); (M.F.); (C.D.); (F.D.); (M.P.L.M.)
| | - Kiana Ebrahimi
- Faculté d’Ingénierie et Management de la Santé (ILIS), Université de Lille, 59120 Loos, France;
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy; (M.S.A.); (G.D.B.); (M.D.C.); (B.T.); (M.F.); (C.D.); (F.D.); (M.P.L.M.)
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (B.N.D.), University of Palermo, 90127 Palermo, Italy
| | - Marco Pio La Manna
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy; (M.S.A.); (G.D.B.); (M.D.C.); (B.T.); (M.F.); (C.D.); (F.D.); (M.P.L.M.)
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (B.N.D.), University of Palermo, 90127 Palermo, Italy
| | - Nadia Caccamo
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy; (M.S.A.); (G.D.B.); (M.D.C.); (B.T.); (M.F.); (C.D.); (F.D.); (M.P.L.M.)
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (B.N.D.), University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
17
|
Wu L, Zheng Z, Xun J, Liu L, Wang J, Zhang X, Shao Y, Shen Y, Zhang R, Zhang M, Sun M, Qi T, Wang Z, Xu S, Song W, Tang Y, Zhao B, Song Z, Routy JP, Lu H, Chen J. Anti-PD-L1 antibody ASC22 in combination with a histone deacetylase inhibitor chidamide as a "shock and kill" strategy for ART-free virological control: a phase II single-arm study. Signal Transduct Target Ther 2024; 9:231. [PMID: 39245675 PMCID: PMC11381521 DOI: 10.1038/s41392-024-01943-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/07/2024] [Accepted: 08/04/2024] [Indexed: 09/10/2024] Open
Abstract
The combination of ASC22, an anti-PD-L1 antibody potentially enhancing HIV-specific immunity and chidamide, a HIV latency reversal agent, may serve as a strategy for antiretroviral therapy-free virological control for HIV. People living with HIV, having achieved virological suppression, were enrolled to receive ASC22 and chidamide treatment in addition to their antiretroviral therapy. Participants were monitored over 24 weeks to measure changes in viral dynamics and the function of HIV-specific CD8+ T cells (NCT05129189). 15 participants completed the study. At week 8, CA HIV RNA levels showed a significant increase from baseline, and the values returned to baseline after discontinuing ASC22 and chidamide. The total HIV DNA was only transiently increased at week 4 (P = 0.014). In contrast, integrated HIV DNA did not significantly differ from baseline. Increases in the proportions of effector memory CD4+ and CD8+ T cells (TEM) were observed from baseline to week 24 (P = 0.034 and P = 0.002, respectively). The combination treatment did not succeed in enhancing the function of HIV Gag/Pol- specific CD8+ T cells. Nevertheless, at week 8, a negative correlation was identified between the proportions of HIV Gag-specific TEM cells and alterations in integrated DNA in the T cell function improved group (P = 0.042 and P = 0.034, respectively). Nine adverse events were solicited, all of which were graded 1 and resolved spontaneously. The combined treatment of ASC22 and chidamide was demonstrated to be well-tolerated and effective in activating latent HIV reservoirs. Further investigations are warranted in the context of analytic treatment interruption.
Collapse
Affiliation(s)
- Luling Wu
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhihang Zheng
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Jingna Xun
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Li Liu
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jiangrong Wang
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xinyu Zhang
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yueming Shao
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yinzhong Shen
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Renfang Zhang
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Min Zhang
- Department of Clinical Laboratory, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Meiyan Sun
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Tangkai Qi
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhenyan Wang
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shuibao Xu
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Wei Song
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yang Tang
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Bihe Zhao
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zichen Song
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jean-Pierre Routy
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Hongzhou Lu
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
- Department of Infectious Diseases and Nursing Research Institution, National Clinical Research Center for Infectious Diseases, The Third People's Hospital of Shenzhen, Guangdong, China.
| | - Jun Chen
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| |
Collapse
|
18
|
Yin J, Chen J, Wang T, Sun H, Yan Y, Zhu C, Huang L, Chen Z. Coinhibitory Molecule VISTA Play an Important Negative Regulatory Role in the Immunopathology of Bronchial Asthma. J Asthma Allergy 2024; 17:813-832. [PMID: 39246611 PMCID: PMC11378793 DOI: 10.2147/jaa.s449867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 07/01/2024] [Indexed: 09/10/2024] Open
Abstract
Objective To investigate the significance of VISTA in bronchial asthma and its impact on the disease. Methods Human peripheral blood of asthma children was gathered. The expression concentrations of VISTA, IL-4, IL-6, CD25, CD40L, and PD-L2 in peripheral blood plasma were detected by ELISA. We established the mouse model of asthma and intervened with agonistic anti-VISTA mAb (4C11) and VISTA fusion protein. ELISA, flow cytometry, and Western blotting were performed to detect the expression levels of Th1, Th2, and Th17 cell subsets and related characteristic cytokines, as well as the protein levels of MAPKs, NF-κB, and TRAF6 in lung tissues. In addition, the infiltration of eosinophils and inflammatory cells, airway mucus secretion, and VISTA protein expression in lung histopathological sections of different groups of mice were analyzed. Results The concentration of VISTA in human asthma group decreased significantly (p < 0.05); A positive correlation was observed between VISTA and CD40L. The intervention of 4C11 mAb and fusion protein respectively during the induction period increase the differentiation of Th1 cells and the secretion of IFN-γ, and inhibit the differentiation of Th2 and Th17 cells, as well as the secretion of IL-4, IL-5, IL-13 and IL-17, partially reduce the pathological changes of asthma in mouse lungs and correct the progress of asthma. The MAPK, NF-κB, and TRAF6 protein levels were the middle range in the 4C11 mAb and fusion protein groups (p < 0.05). Conclusion The findings suggest VISTA may play a negative regulatory role in the occurrence and development of bronchial asthma.
Collapse
Affiliation(s)
- Jianqun Yin
- Respiratory Department, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Jiawei Chen
- Respiratory Department, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Ting Wang
- Respiratory Department, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Huiming Sun
- Respiratory Department, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yongdong Yan
- Respiratory Department, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Canhong Zhu
- Respiratory Department, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Li Huang
- Respiratory Department, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Zhengrong Chen
- Respiratory Department, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
19
|
Su H, Huang L, Zhou J, Yang G. Prostate cancer stem cells and their targeted therapies. Front Cell Dev Biol 2024; 12:1410102. [PMID: 39175878 PMCID: PMC11338935 DOI: 10.3389/fcell.2024.1410102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Prostate cancer (PCa) is the most common malignancy among men worldwide. Through androgen receptor signaling inhibitor (ARSI) treatment, patients eventually succumb to castration-resistant prostate cancer (CRPC). For this, the prostate cancer stem cells (PCSCs), as a minor population of tumor cells that can promote tumor relapse, ARSI resistance, and disease progression, are gaining attention. Therefore, specific therapy targeting PCSCs has momentum. This study reviewed the identification and characterization of PCSCs and PCSC-based putative biomarkers and summarized their mechanisms of action. We further discussed clinical trials of novel therapeutic interventions focused on PCSC-related pathways, the PCSC microenvironment, cutting-edge miRNA therapy, and immunotherapy approaches from a mechanistic standpoint. This review provides updated insights into PCSC plasticity, identifying new PCSC biomarkers and optimized treatments for patients with advanced PCa.
Collapse
Affiliation(s)
- Huilan Su
- Research Center for Translational Medicine, Cancer Stem Cell Institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liqun Huang
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianjun Zhou
- Research Center for Translational Medicine, Cancer Stem Cell Institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guosheng Yang
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Rahman M, Akter K, Ahmed KR, Fahim MMH, Aktary N, Park MN, Shin SW, Kim B. Synergistic Strategies for Castration-Resistant Prostate Cancer: Targeting AR-V7, Exploring Natural Compounds, and Optimizing FDA-Approved Therapies. Cancers (Basel) 2024; 16:2777. [PMID: 39199550 PMCID: PMC11352813 DOI: 10.3390/cancers16162777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/29/2024] [Accepted: 08/03/2024] [Indexed: 09/01/2024] Open
Abstract
Castration-resistant prostate cancer (CRPC) remains a significant therapeutic challenge due to its resistance to standard androgen deprivation therapy (ADT). The emergence of androgen receptor splice variant 7 (AR-V7) has been implicated in CRPC progression, contributing to treatment resistance. Current treatments, including first-generation chemotherapy, androgen receptor blockers, radiation therapy, immune therapy, and PARP inhibitors, often come with substantial side effects and limited efficacy. Natural compounds, particularly those derived from herbal medicine, have garnered increasing interest as adjunctive therapeutic agents against CRPC. This review explores the role of AR-V7 in CRPC and highlights the promising benefits of natural compounds as complementary treatments to conventional drugs in reducing CRPC and overcoming therapeutic resistance. We delve into the mechanisms of action underlying the anti-CRPC effects of natural compounds, showcasing their potential to enhance therapeutic outcomes while mitigating the side effects associated with conventional therapies. The exploration of natural compounds offers promising avenues for developing novel treatment strategies that enhance therapeutic outcomes and reduce the adverse effects of conventional CRPC therapies. These compounds provide a safer, more effective approach to managing CRPC, representing a significant advancement in improving patient care.
Collapse
Affiliation(s)
- Muntajin Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.R.); (K.R.A.); (M.M.H.F.); (N.A.); (M.N.P.)
| | - Khadija Akter
- Department of Plasma Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea;
| | - Kazi Rejvee Ahmed
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.R.); (K.R.A.); (M.M.H.F.); (N.A.); (M.N.P.)
| | - Md. Maharub Hossain Fahim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.R.); (K.R.A.); (M.M.H.F.); (N.A.); (M.N.P.)
| | - Nahida Aktary
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.R.); (K.R.A.); (M.M.H.F.); (N.A.); (M.N.P.)
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.R.); (K.R.A.); (M.M.H.F.); (N.A.); (M.N.P.)
| | - Sang-Won Shin
- Department of Humanities & Social Medicine, School of Korean Medicine, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan-si 50612, Republic of Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.R.); (K.R.A.); (M.M.H.F.); (N.A.); (M.N.P.)
- Department of Plasma Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea;
| |
Collapse
|
21
|
Wang L, Mu M, Guo Y, Huang J, Zhang R, Zhang M, Hu Y, Wang Y, Gao Z, Liu L, Wang W, Cheng Y, Zhu X, Liu J, Wang W, Ying S. PD-1/PD-L1 Provides Protective Role in Hypoxia-Induced Pulmonary Vascular Remodeling. Hypertension 2024; 81:1822-1836. [PMID: 38853755 DOI: 10.1161/hypertensionaha.123.22393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Hypoxia-induced pulmonary hypertension (HPH) is a T helper 17 cell response-driven disease, and PD-1 (programmed cell death 1)/PD-L1 (programmed cell death-ligand 1) inhibitor-associated pulmonary hypertension has been reported recently. This study is designed to explore whether the PD-1/PD-L1 pathway participates in HPH via regulating endothelial dysfunction and T helper 17 cell response. METHODS Lung tissue samples were obtained from eligible patients. Western blotting, immunohistochemistry, and immunofluorescence techniques were used to assess protein expression, while immunoprecipitation was utilized to detect ubiquitination. HPH models were established in C57BL/6 WT (wild-type) and PD-1-/- mice, followed by treatment with PD-L1 recombinant protein. Adeno-associated virus vector delivery was used to upregulate PD-L1 in the endothelial cells. Endothelial cell function was assessed through assays for cell angiogenesis and adhesion. RESULTS Expression of the PD-1/PD-L1 pathway was downregulated in patients with HPH and mouse models, with a notable decrease in PD-L1 expression in endothelial cells compared with the normoxia group. In comparison to WT mice, PD-1-/- mice exhibited a more severe HPH phenotype following exposure to hypoxia, However, administration of PD-L1 recombinant protein and overexpression of PD-L1 in lung endothelial cells mitigated HPH. In vitro, blockade of PD-L1 with a neutralizing antibody promoted endothelial cell angiogenesis, adhesion, and pyroptosis. Mechanistically, hypoxia downregulated PD-L1 protein expression through ubiquitination. Additionally, both in vivo and in vitro, PD-L1 inhibited T helper 17 cell response through the PI3K (phosphoinositide 3-kinase)/AKT (protein kinase B)/mTOR (mammalian target of rapamycin) pathway in HPH. CONCLUSIONS PD-1/PD-L1 plays a role in ameliorating HPH development by inhibiting T helper 17 cell response through the PI3K/AKT/mTOR pathway and improving endothelial dysfunction, suggesting a novel therapeutic indication for PD-1/PD-L1-based immunomodulatory therapies in the treatment of HPH.
Collapse
Affiliation(s)
- Lei Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China (L.W.)
- Department of Respiratory Medicine (L.W., Y.G., R.Z., M.Z., Y.H., Z.G., L.L., Wang Wang, J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
| | - Mi Mu
- Department of Respiratory and Critical Care Medicine, The Eighth Medical Center of Chinese PLA General Hospital, Beijing, China (M.M.)
| | - Yu Guo
- Department of Immunology, School of Basic Medical Sciences (Y.G., M.Z., Y.H., Z.G., J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
- Department of Respiratory Medicine (L.W., Y.G., R.Z., M.Z., Y.H., Z.G., L.L., Wang Wang, J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
| | - Jing Huang
- Department of Rheumatism and Immunology, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China (J.H., Y.W.)
| | - Ruoyang Zhang
- Department of Respiratory Medicine (L.W., Y.G., R.Z., M.Z., Y.H., Z.G., L.L., Wang Wang, J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing (R.Z.)
| | - Muzhi Zhang
- Department of Immunology, School of Basic Medical Sciences (Y.G., M.Z., Y.H., Z.G., J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
- Department of Respiratory Medicine (L.W., Y.G., R.Z., M.Z., Y.H., Z.G., L.L., Wang Wang, J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
| | - Yue Hu
- Department of Immunology, School of Basic Medical Sciences (Y.G., M.Z., Y.H., Z.G., J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
- Department of Respiratory Medicine (L.W., Y.G., R.Z., M.Z., Y.H., Z.G., L.L., Wang Wang, J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
| | - Yanhua Wang
- Department of Rheumatism and Immunology, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China (J.H., Y.W.)
| | - Zhenqiang Gao
- Department of Immunology, School of Basic Medical Sciences (Y.G., M.Z., Y.H., Z.G., J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
- Department of Respiratory Medicine (L.W., Y.G., R.Z., M.Z., Y.H., Z.G., L.L., Wang Wang, J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
| | - Lin Liu
- Department of Immunology, School of Basic Medical Sciences (Y.G., M.Z., Y.H., Z.G., J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
- Department of Respiratory Medicine (L.W., Y.G., R.Z., M.Z., Y.H., Z.G., L.L., Wang Wang, J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
| | - Wang Wang
- Department of Immunology, School of Basic Medical Sciences (Y.G., M.Z., Y.H., Z.G., J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
- Department of Respiratory Medicine (L.W., Y.G., R.Z., M.Z., Y.H., Z.G., L.L., Wang Wang, J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
| | - Yuli Cheng
- Department of Microbiology, School of Basic Medical Sciences (Y.C., X.Z.), Capital Medical University, Beijing, China
| | - XinPing Zhu
- Department of Microbiology, School of Basic Medical Sciences (Y.C., X.Z.), Capital Medical University, Beijing, China
| | - Jie Liu
- Department of Immunology, School of Basic Medical Sciences (Y.G., M.Z., Y.H., Z.G., J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
- Department of Respiratory Medicine (L.W., Y.G., R.Z., M.Z., Y.H., Z.G., L.L., Wang Wang, J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
| | - Wei Wang
- Department of Immunology, School of Basic Medical Sciences (Y.G., M.Z., Y.H., Z.G., J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
- Department of Respiratory Medicine (L.W., Y.G., R.Z., M.Z., Y.H., Z.G., L.L., Wang Wang, J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
| | - Sun Ying
- Department of Immunology, School of Basic Medical Sciences (Y.G., M.Z., Y.H., Z.G., J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
- Department of Respiratory Medicine (L.W., Y.G., R.Z., M.Z., Y.H., Z.G., L.L., Wang Wang, J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Wang J, Zheng P, Yu J, Yang X, Zhang J. Rational design of small-sized peptidomimetic inhibitors disrupting protein-protein interaction. RSC Med Chem 2024; 15:2212-2225. [PMID: 39026653 PMCID: PMC11253864 DOI: 10.1039/d4md00202d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/04/2024] [Indexed: 07/20/2024] Open
Abstract
Protein-protein interactions are fundamental to nearly all biological processes. Due to their structural flexibility, peptides have emerged as promising candidates for developing inhibitors targeting large and planar PPI interfaces. However, their limited drug-like properties pose challenges. Hence, rational modifications based on peptide structures are anticipated to expedite the innovation of peptide-based therapeutics. This review comprehensively examines the design strategies for developing small-sized peptidomimetic inhibitors targeting PPI interfaces, which predominantly encompass two primary categories: peptidomimetics with abbreviated sequences and low molecular weights and peptidomimetics mimicking secondary structural conformations. We have also meticulously detailed several instances of designing and optimizing small-sized peptidomimetics targeting PPIs, including MLL1-WDR5, PD-1/PD-L1, and Bak/Bcl-xL, among others, to elucidate the potential application prospects of these design strategies. Hopefully, this review will provide valuable insights and inspiration for the future development of PPI small-sized peptidomimetic inhibitors in pharmaceutical research endeavors.
Collapse
Affiliation(s)
- Junyuan Wang
- School of Pharmacy, Ningxia Medical University Yinchuan 750004 China
| | - Ping Zheng
- School of Pharmacy, Ningxia Medical University Yinchuan 750004 China
| | - Jianqiang Yu
- School of Pharmacy, Ningxia Medical University Yinchuan 750004 China
| | - Xiuyan Yang
- Medicinal Chemistry and Bioinformatics Center, School of Medicine, Shanghai Jiao Tong University Shanghai 200025 China
| | - Jian Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University Yinchuan 750004 China
| |
Collapse
|
23
|
Mazerolles F. New expression of PD-L1 on activated CD4 + T cells opens up new opportunities for cell interactions and signaling. Hum Immunol 2024; 85:110831. [PMID: 38870593 DOI: 10.1016/j.humimm.2024.110831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/06/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
Surface expression of programmed death-ligand 1 (PD-L1) is mainly observed on antigen presenting cells (APC) such as monocytes or dendritic cells (DCs). Our results showing a high expression of PD-L1 on human naïve CD4+ effector T-cells (TEFFs) and CD4+ regulatory T cells (TREGs) after activation with human DCs, allow us to propose a new role for PD-L1 and its ligands and their potential impact on new signaling pathways. Indeed, expression of PD-L1 on activated CD4+T cells could allow cis interaction with its ligands such as PD-1 and CD80, thus disrupting interactions with other signaling receptors, such as cytotoxic T-lymphocyte antigen-4 (CTLA-4) or CD28, which interact with CD80. The ability to compete with hypothetical configuration modifications that may cause a change in affinity/avidity for the trans and cis interactions between these proteins expressed on T cells and/or DCs is discussed. As the study of cancer is strongly influenced by the role of the PD-L1/PD-1 pathway and CD4+T cells, new interactions, cis and/or trans, between TEFFs, TREGs and tumor cells are also proposed. The presence of PD-L1 on activated CD4+ T cells could influence the quality of the cytotoxic T lymphocyte response during priming to provide other help signals.
Collapse
Affiliation(s)
- Fabienne Mazerolles
- Laboratory of Immunogenetics of Paediatric Autoimmunity, Mixed Research Unit 1163, Institut National de la Santé et de la Recherche Médicale, Paris, France; Imagine Institute Paris, Paris Descartes -Sorbonne Paris Cité University, Paris, France.
| |
Collapse
|
24
|
Su X, Li Y, Ren Y, Cao M, Yang G, Luo J, Hu Z, Deng H, Deng M, Liu B, Yao Z. A new strategy for overcoming drug resistance in liver cancer: Epigenetic regulation. Biomed Pharmacother 2024; 176:116902. [PMID: 38870626 DOI: 10.1016/j.biopha.2024.116902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024] Open
Abstract
Drug resistance in hepatocellular carcinoma has posed significant obstacles to effective treatment. Recent evidence indicates that, in addition to traditional gene mutations, epigenetic recoding plays a crucial role in HCC drug resistance. Unlike irreversible gene mutations, epigenetic changes are reversible, offering a promising avenue for preventing and overcoming drug resistance in liver cancer. This review focuses on various epigenetic modifications relevant to drug resistance in HCC and their underlying mechanisms. Additionally, we introduce current clinical epigenetic drugs and clinical trials of these drugs as regulators of drug resistance in other solid tumors. Although there is no clinical study to prevent the occurrence of drug resistance in liver cancer, the development of liquid biopsy and other technologies has provided a bridge to achieve this goal.
Collapse
Affiliation(s)
- Xiaorui Su
- Department of Hepatobiliary-Pancreatic-Splenic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Yuxuan Li
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Yupeng Ren
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Mingbo Cao
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Gaoyuan Yang
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Jing Luo
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Ziyi Hu
- Department of Hepatobiliary-Pancreatic-Splenic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Haixia Deng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Meihai Deng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Bo Liu
- Department of Hepatobiliary-Pancreatic-Splenic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Zhicheng Yao
- Department of Hepatobiliary-Pancreatic-Splenic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
25
|
Xia J, Xu M, Hu H, Zhang Q, Yu D, Cai M, Geng X, Zhang H, Zhang Y, Guo M, Lu D, Xu H, Li L, Zhang X, Wang Q, Liu S, Zhang W. 5,7,4'-Trimethoxyflavone triggers cancer cell PD-L1 ubiquitin-proteasome degradation and facilitates antitumor immunity by targeting HRD1. MedComm (Beijing) 2024; 5:e611. [PMID: 38938284 PMCID: PMC11208742 DOI: 10.1002/mco2.611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/29/2024] Open
Abstract
Targeting the programmed cell death 1/programmed cell death ligand 1 (PD-1/PD-L1) pathway has been identified as a successful approach for tumor immunotherapy. Here, we identified that the small molecule 5,7,4'-trimethoxyflavone (TF) from Kaempferia parviflora Wall reduces PD-L1 expression in colorectal cancer cells and enhances the killing of tumor cells by T cells. Mechanistically, TF targets and stabilizes the ubiquitin ligase HMG-CoA reductase degradation protein 1 (HRD1), thereby increasing the ubiquitination of PD-L1 and promoting its degradation through the proteasome pathway. In mouse MC38 xenograft tumors, TF can activate tumor-infiltrating T-cell immunity and reduce the immunosuppressive infiltration of myeloid-derived suppressor cells and regulatory T cells, thus exerting antitumor effects. Moreover, TF synergistically exerts antitumor immunity with CTLA-4 antibody. This study provides new insights into the antitumor mechanism of TF and suggests that it may be a promising small molecule immune checkpoint modulator for cancer therapy.
Collapse
Affiliation(s)
- Jianhua Xia
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Mengting Xu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Hongmei Hu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Qing Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Dianping Yu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Minchen Cai
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xiangxin Geng
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Hongwei Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yanyan Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Mengmeng Guo
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Dong Lu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Hanchi Xu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Linyang Li
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xing Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Qun Wang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Sanhong Liu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Weidong Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
- Department of PhytochemistrySchool of PharmacySecond Military Medical UniversityShanghaiChina
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- The Research Center for Traditional Chinese MedicineShanghai Institute of Infectious Diseases and BiosafetyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
26
|
Zhu Z, Huang J, Zhang Y, Hou W, Chen F, Mo YY, Zhang Z. Landscape of tumoral ecosystem for enhanced anti-PD-1 immunotherapy by gut Akkermansia muciniphila. Cell Rep 2024; 43:114306. [PMID: 38819989 DOI: 10.1016/j.celrep.2024.114306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/07/2024] [Accepted: 05/15/2024] [Indexed: 06/02/2024] Open
Abstract
Gut Akkermansia muciniphila (Akk) has been implicated in impacting immunotherapy or oncogenesis. This study aims to dissect the Akk-associated tumor immune ecosystem (TIME) by single-cell profiling coupled with T cell receptor (TCR) sequencing. We adopted mouse cancer models under anti-PD-1 immunotherapy, combined with oral administration of three forms of Akk, including live Akk, pasteurized Akk (Akk-past), or its membrane protein Amuc_1100 (Amuc). We show that live Akk is most effective in activation of CD8 T cells by rescuing the exhausted type into cytotoxic subpopulations. Remarkably, only live Akk activates MHC-II-pDC pathways, downregulates CXCL3 in Bgn(+)Dcn(+) cancer-associated fibroblasts (CAFs), blunts crosstalk between Bgn(+)Dcn(+) CAFs and PD-L1(+) neutrophils by a CXCL3-PD-L1 axis, and further suppresses the crosstalk between PD-L1(+) neutrophils and CD8 T cells, leading to the rescue of exhausted CD8 T cells. Together, this comprehensive picture of the tumor ecosystem provides deeper insights into immune mechanisms associated with gut Akk-dependent anti-PD-1 immunotherapy.
Collapse
Affiliation(s)
- Zhuxian Zhu
- Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Jianguo Huang
- Earle A. Chiles Research Institute, a division of Providence Cancer Institute, Portland, OR 97213, USA
| | - Yanling Zhang
- Department of Emergency Medicine, Tongji University School of Medicine, Shanghai 200065, China
| | - Weiwei Hou
- Department of Clinical Laboratory, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Fei Chen
- Department of Emergency Medicine, Tongji University School of Medicine, Shanghai 200065, China
| | - Yin-Yuan Mo
- Institute of Clinical Medicine, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou 310014 , China.
| | - Ziqiang Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong Hospital of Fudan University, Shanghai 201399, China.
| |
Collapse
|
27
|
Jin Y, Jiang J, Mao W, Bai M, Chen Q, Zhu J. Treatment strategies and molecular mechanism of radiotherapy combined with immunotherapy in colorectal cancer. Cancer Lett 2024; 591:216858. [PMID: 38621460 DOI: 10.1016/j.canlet.2024.216858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024]
Abstract
Radiotherapy (RT) remodels the tumor immune microenvironment (TIME) and modulates the immune response to indirectly destroy tumor cells, in addition to directly killing tumor cells. RT combined with immunotherapy may significantly enhance the efficacy of RT in colorectal cancer by modulating the microenvironment. However, the molecular mechanisms by which RT acts as an immunomodulator to modulate the immune microenvironment remain unclear. Further, the optimal modalities of RT combined with immunotherapy for the treatment of colorectal cancer, such as the time point of combining RT and immunization, the fractionation pattern and dosage of radiotherapy, and other methods to improve the efficacy, are also being explored parallelly. To address these aspects, in this review, we summarized the mechanisms by which RT modulates TIME and concluded the progress of RT combined with immunization in preclinical and clinical trials. Finally, we discussed heavy ion radiation therapy and the efficacy of prediction markers and other immune combination therapies. Overall, combining RT with immunotherapy to enhance antitumor effects will have a significant clinical implication and will help to facilitate individualized treatment modalities.
Collapse
Affiliation(s)
- Yuzhao Jin
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, 310000, China; Wenzhou Medical University, Wenzhou, 325000, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, 310000, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, 310000, China
| | - Jin Jiang
- Department of Oncology, Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing, 31400, China
| | - Wei Mao
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, 310000, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, 310000, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, 310000, China
| | - Minghua Bai
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, 310000, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, 310000, China
| | - Qianping Chen
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, 310000, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, 310000, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, 310000, China.
| | - Ji Zhu
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, 310000, China; Wenzhou Medical University, Wenzhou, 325000, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, 310000, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, 310000, China.
| |
Collapse
|
28
|
Li K, Chatterjee A, Qian C, Lagree K, Wang Y, Becker CA, Freeman MR, Murali R, Yang W, Underhill DM. Profiling phagosome proteins identifies PD-L1 as a fungal-binding receptor. Nature 2024; 630:736-743. [PMID: 38839956 DOI: 10.1038/s41586-024-07499-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 05/01/2024] [Indexed: 06/07/2024]
Abstract
Phagocytosis is the process by which myeloid phagocytes bind to and internalize potentially dangerous microorganisms1. During phagocytosis, innate immune receptors and associated signalling proteins are localized to the maturing phagosome compartment, forming an immune information processing hub brimming with microorganism-sensing features2-8. Here we developed proximity labelling of phagosomal contents (PhagoPL) to identify proteins localizing to phagosomes containing model yeast and bacteria. By comparing the protein composition of phagosomes containing evolutionarily and biochemically distinct microorganisms, we unexpectedly identified programmed death-ligand 1 (PD-L1) as a protein that specifically enriches in phagosomes containing yeast. We found that PD-L1 directly binds to yeast upon processing in phagosomes. By surface display library screening, we identified the ribosomal protein Rpl20b as a fungal protein ligand for PD-L1. Using an auxin-inducible depletion system, we found that detection of Rpl20b by macrophages cross-regulates production of distinct cytokines including interleukin-10 (IL-10) induced by the activation of other innate immune receptors. Thus, this study establishes PhagoPL as a useful approach to quantifying the collection of proteins enriched in phagosomes during host-microorganism interactions, exemplified by identifying PD-L1 as a receptor that binds to fungi.
Collapse
Affiliation(s)
- Kai Li
- Department of Biomedical Sciences, Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- F. Widjaja Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Avradip Chatterjee
- Department of Biomedical Sciences, Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Chen Qian
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Katherine Lagree
- Department of Biomedical Sciences, Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- F. Widjaja Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yang Wang
- Department of Biomedical Sciences, Division Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Courtney A Becker
- F. Widjaja Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael R Freeman
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Division Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ramachandran Murali
- Department of Biomedical Sciences, Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Wei Yang
- Department of Biomedical Sciences, Division Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - David M Underhill
- Department of Biomedical Sciences, Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- F. Widjaja Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Medicine, Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
29
|
Cai M, Xu M, Yu D, Wang Q, Liu S. Posttranslational regulatory mechanism of PD-L1 in cancers and associated opportunities for novel small-molecule therapeutics. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1415-1424. [PMID: 38826132 PMCID: PMC11532205 DOI: 10.3724/abbs.2024085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/03/2024] [Indexed: 06/04/2024] Open
Abstract
Despite the tremendous progress in cancer research over the past few decades, effective therapeutic strategies are still urgently needed. Accumulating evidence suggests that immune checkpoints are the cause of tumor immune escape. PD-1/PD-L1 are among them. Posttranslational modification is the most critical step for protein function, and the regulation of PD-L1 by small molecules through posttranslational modification is highly valuable. In this review, we discuss the mechanisms of tumor cell immune escape and several posttranslational modifications associated with PD-L1 and describe examples in which small molecules can regulate PD-L1 through posttranslational modifications. Herein, we propose that the use of small molecule compounds that act by inhibiting PD-L1 through posttranslational modifications is a promising therapeutic approach with the potential to improve clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Minchen Cai
- />Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Mengting Xu
- />Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Dianping Yu
- />Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Qun Wang
- />Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Sanhong Liu
- />Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghai201203China
| |
Collapse
|
30
|
Sabaghian A, Shamsabadi S, Momeni S, Mohammadikia M, Mohebbipour K, Sanami S, Ahmad S, Akhtar N, Sharma NR, Kushwah RBS, Gupta Y, Prakash A, Pazoki-Toroudi H. The role of PD-1/PD-L1 signaling pathway in cancer pathogenesis and treatment: a systematic review. JOURNAL OF CANCER METASTASIS AND TREATMENT 2024. [DOI: 10.20517/2394-4722.2024.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Aim: Cancer as a complex disease poses significant challenges for both diagnosis and treatment. Researchers have been exploring various avenues to find effective therapeutic strategies, with a particular emphasis on cellular signaling pathways and immunotherapy. One such pathway that has recently been suggested is the PD-1/PD-L1 pathway, which is an immune checkpoint signaling system that plays an important role in regulating the immune system and maintaining tissue homeostasis. Cancer cells exploit this pathway by producing PD-L1, which attaches to PD-1 on T cells, thus inhibiting immune responses and enabling the cancer cells to escape detection by the immune system. This study aimed to evaluate the role of the PD-1/PD-L1 pathway in cancer pathogenesis and treatment. Method: This study was performed based on the principles of Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). All in vitro , in vivo , and clinical studies that were published in English have been considered during a thorough search of the Scopus, Web of Science, and PubMed databases without date restriction until March 2024. Results: According to the studies reviewed, the PD-1/PD-L1 signaling axis suggests promising therapeutic effects on various types of cancers such as non-small cell lung cancer, melanoma, breast cancer, hepatocellular carcinoma, squamous cell carcinoma, and colorectal cancer, among others. Additionally, research suggests that immune checkpoint inhibitors that block PD1/PD-L1, such as pembrolizumab, atezolizumab, nivolumab, durvalumab, cemiplimab, avelumab, etc. , can effectively prevent tumor cells from escaping the immune system. Moreover, there might be a possible interaction between microbiome, obesity, etc. on immune mechanisms and on the immune checkpoint inhibitors (ICIs). Conclusion: Although we have gained considerable knowledge about ICIs, we are still facing challenges in effectively prescribing the appropriate ICIs for individual patients. This is largely due to the complex interactions between different intracellular pathways, which need to be thoroughly studied. To resolve this issue, it is necessary to conduct more reliable clinical trials that can produce a scientific consensus.
Collapse
|
31
|
Amengual-Cladera E, Morla-Barcelo PM, Morán-Costoya A, Sastre-Serra J, Pons DG, Valle A, Roca P, Nadal-Serrano M. Metformin: From Diabetes to Cancer-Unveiling Molecular Mechanisms and Therapeutic Strategies. BIOLOGY 2024; 13:302. [PMID: 38785784 PMCID: PMC11117706 DOI: 10.3390/biology13050302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/06/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Metformin, a widely used anti-diabetic drug, has garnered attention for its potential in cancer management, particularly in breast and colorectal cancer. It is established that metformin reduces mitochondrial respiration, but its specific molecular targets within mitochondria vary. Proposed mechanisms include inhibiting mitochondrial respiratory chain Complex I and/or Complex IV, and mitochondrial glycerophosphate dehydrogenase, among others. These actions lead to cellular energy deficits, redox state changes, and several molecular changes that reduce hyperglycemia in type 2 diabetic patients. Clinical evidence supports metformin's role in cancer prevention in type 2 diabetes mellitus patients. Moreover, in these patients with breast and colorectal cancer, metformin consumption leads to an improvement in survival outcomes and prognosis. The synergistic effects of metformin with chemotherapy and immunotherapy highlights its potential as an adjunctive therapy for breast and colorectal cancer. However, nuanced findings underscore the need for further research and stratification by molecular subtype, particularly for breast cancer. This comprehensive review integrates metformin-related findings from epidemiological, clinical, and preclinical studies in breast and colorectal cancer. Here, we discuss current research addressed to define metformin's bioavailability and efficacy, exploring novel metformin-based compounds and drug delivery systems, including derivatives targeting mitochondria, combination therapies, and novel nanoformulations, showing enhanced anticancer effects.
Collapse
Affiliation(s)
- Emilia Amengual-Cladera
- Grupo Metabolismo Energético y Nutrición, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universitat de les Illes Balears, Ctra. de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain; (E.A.-C.); (A.M.-C.); (A.V.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Illes Balears, Spain; (P.M.M.-B.); (J.S.-S.); (D.G.P.); (M.N.-S.)
| | - Pere Miquel Morla-Barcelo
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Illes Balears, Spain; (P.M.M.-B.); (J.S.-S.); (D.G.P.); (M.N.-S.)
- Grupo Multidisciplinar de Oncología Traslacional, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universitat de les Illes Balears, Ctra. de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain
| | - Andrea Morán-Costoya
- Grupo Metabolismo Energético y Nutrición, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universitat de les Illes Balears, Ctra. de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain; (E.A.-C.); (A.M.-C.); (A.V.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Illes Balears, Spain; (P.M.M.-B.); (J.S.-S.); (D.G.P.); (M.N.-S.)
| | - Jorge Sastre-Serra
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Illes Balears, Spain; (P.M.M.-B.); (J.S.-S.); (D.G.P.); (M.N.-S.)
- Grupo Multidisciplinar de Oncología Traslacional, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universitat de les Illes Balears, Ctra. de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn, CB06/03/0043), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Daniel Gabriel Pons
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Illes Balears, Spain; (P.M.M.-B.); (J.S.-S.); (D.G.P.); (M.N.-S.)
- Grupo Multidisciplinar de Oncología Traslacional, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universitat de les Illes Balears, Ctra. de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain
| | - Adamo Valle
- Grupo Metabolismo Energético y Nutrición, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universitat de les Illes Balears, Ctra. de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain; (E.A.-C.); (A.M.-C.); (A.V.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Illes Balears, Spain; (P.M.M.-B.); (J.S.-S.); (D.G.P.); (M.N.-S.)
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn, CB06/03/0043), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Pilar Roca
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Illes Balears, Spain; (P.M.M.-B.); (J.S.-S.); (D.G.P.); (M.N.-S.)
- Grupo Multidisciplinar de Oncología Traslacional, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universitat de les Illes Balears, Ctra. de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn, CB06/03/0043), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Mercedes Nadal-Serrano
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Illes Balears, Spain; (P.M.M.-B.); (J.S.-S.); (D.G.P.); (M.N.-S.)
- Grupo Multidisciplinar de Oncología Traslacional, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universitat de les Illes Balears, Ctra. de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain
| |
Collapse
|
32
|
Zhang T, Yu W, Cheng X, Yeung J, Ahumada V, Norris PC, Pearson MJ, Yang X, van Deursen W, Halcovich C, Nassar A, Vesely MD, Zhang Y, Zhang JP, Ji L, Flies DB, Liu L, Langermann S, LaRochelle WJ, Humphrey R, Zhao D, Zhang Q, Zhang J, Gu R, Schalper KA, Sanmamed MF, Chen L. Up-regulated PLA2G10 in cancer impairs T cell infiltration to dampen immunity. Sci Immunol 2024; 9:eadh2334. [PMID: 38669316 DOI: 10.1126/sciimmunol.adh2334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 10/19/2023] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
T cells are often absent from human cancer tissues during both spontaneously induced immunity and therapeutic immunotherapy, even in the presence of a functional T cell-recruiting chemokine system, suggesting the existence of T cell exclusion mechanisms that impair infiltration. Using a genome-wide in vitro screening platform, we identified a role for phospholipase A2 group 10 (PLA2G10) protein in T cell exclusion. PLA2G10 up-regulation is widespread in human cancers and is associated with poor T cell infiltration in tumor tissues. PLA2G10 overexpression in immunogenic mouse tumors excluded T cells from infiltration, resulting in resistance to anti-PD-1 immunotherapy. PLA2G10 can hydrolyze phospholipids into small lipid metabolites, thus inhibiting chemokine-mediated T cell mobility. Ablation of PLA2G10's enzymatic activity enhanced T cell infiltration and sensitized PLA2G10-overexpressing tumors to immunotherapies. Our study implicates a role for PLA2G10 in T cell exclusion from tumors and suggests a potential target for cancer immunotherapy.
Collapse
Affiliation(s)
- Tianxiang Zhang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Weiwei Yu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Xiaoxiao Cheng
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Jacky Yeung
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Viviana Ahumada
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | | | | | - Xuan Yang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Christina Halcovich
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Ala Nassar
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Matthew D. Vesely
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - Yu Zhang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Jian-Ping Zhang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Lan Ji
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | | - Dejian Zhao
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | - Qiuyu Zhang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Jindong Zhang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Runxia Gu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Kurt A Schalper
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Miguel F Sanmamed
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Program of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Lieping Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
33
|
Woo J, Choi Y. Biomarkers in Detection of Hepatitis C Virus Infection. Pathogens 2024; 13:331. [PMID: 38668286 PMCID: PMC11054098 DOI: 10.3390/pathogens13040331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024] Open
Abstract
The hepatitis C virus (HCV) infection affects 58 million people worldwide. In the United States, the incidence rate of acute hepatitis C has doubled since 2014; during 2021, this increased to 5% from 2020. Acute hepatitis C is defined by any symptom of acute viral hepatitis plus either jaundice or elevated serum alanine aminotransferase (ALT) activity with the detection of HCV RNA, the anti-HCV antibody, or hepatitis C virus antigen(s). However, most patients with acute infection are asymptomatic. In addition, ALT activity and HCV RNA levels can fluctuate, and a delayed detection of the anti-HCV antibody can occur among some immunocompromised persons with HCV infection. The detection of specific biomarkers can be of great value in the early detection of HCV infection at an asymptomatic stage. The high rate of HCV replication (which is approximately 1010 to 1012 virions per day) and the lack of proofreading by the viral RNA polymerase leads to enormous genetic diversity, creating a major challenge for the host immune response. This broad genetic diversity contributes to the likelihood of developing chronic infection, thus leading to the development of cirrhosis and liver cancer. Direct-acting antiviral (DAA) therapies for HCV infection are highly effective with a cure rate of up to 99%. At the same time, many patients with HCV infection are unaware of their infection status because of the mostly asymptomatic nature of hepatitis C, so they remain undiagnosed until the liver damage has advanced. Molecular mechanisms induced by HCV have been intensely investigated to find biomarkers for diagnosing the acute and chronic phases of the infection. However, there are no clinically verified biomarkers for patients with hepatitis C. In this review, we discuss the biomarkers that can differentiate acute from chronic hepatitis C, and we summarize the current state of the literature on the useful biomarkers that are detectable during acute and chronic HCV infection, liver fibrosis/cirrhosis, and hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
| | - Youkyung Choi
- Division of Viral Hepatitis, National Center for HIV, Viral Hepatitis, STD and TB Prevention, US Centers for Disease Control and Prevention (CDC), Atlanta, GA 30329-4018, USA;
| |
Collapse
|
34
|
Wu X, Li H, Liu H, Ding X, Chen X, Yin C, Gao Y, Ma J. Design, Synthesis, and Evaluation of 8-( o-Tolyl)quinazoline Derivatives as Small-Molecule PD-1/PD-L1 Antagonists. ACS Med Chem Lett 2024; 15:518-523. [PMID: 38628793 PMCID: PMC11017391 DOI: 10.1021/acsmedchemlett.4c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
Small-molecule inhibitors targeting programmed cell death-1/programmed cell death-ligand 1 (PD-1/PD-L1) interactions can compensate for the shortcomings of antibody-based inhibitors and have attracted considerable attention, some of which have already entered clinical trials. Herein, based on our previous study on small-molecule PD-L1 inhibitors, we reported a series of 8-(o-tolyl)quinazoline derivatives by the skeleton merging strategy. Homogenous time-resolved fluorescence (HTRF) assay against PD-1/PD-L1 interaction identified compound A5, which showed the most potent inhibition with an IC50 value of 23.78 nM. Meanwhile, based on the results of HTRF assay, the structure-activity relationships (SARs) of the tail were focused on. Cell-based PD-1/PD-L1 blockade assay further revealed that A5 significantly blocked the PD-1/PD-L1 interaction at 1.1 μM in the co-culture system of Jurkat-NFAT-PD-1 cells and Hep3B-OS8-hPD-L1 cells with no significant cytotoxicity on Jurkat cells. Moreover, the proposed binding mode of A5 was investigated by a docking analysis. These results indicate that compound A5 is a promising lead compound that deserves further investigation.
Collapse
Affiliation(s)
- Xingye Wu
- School
of Medicine, Huaqiao University, Quanzhou, 362000, China
| | - He Li
- School
of Medicine, Huaqiao University, Quanzhou, 362000, China
| | - Han Liu
- School
of Medicine, Huaqiao University, Quanzhou, 362000, China
| | - Xueyan Ding
- School
of Medicine, Huaqiao University, Quanzhou, 362000, China
| | - Xinting Chen
- School
of Medicine, Huaqiao University, Quanzhou, 362000, China
| | - Chenxi Yin
- School
of Medicine, Huaqiao University, Quanzhou, 362000, China
| | - Yali Gao
- Pharmacy
Department, The Second Affiliated Hospital
of Fujian Medical University, Quanzhou, 362002, China
| | - Junjie Ma
- School
of Medicine, Huaqiao University, Quanzhou, 362000, China
| |
Collapse
|
35
|
Chen X, Cui Y, Zou L. Treatment advances in high-grade gliomas. Front Oncol 2024; 14:1287725. [PMID: 38660136 PMCID: PMC11039916 DOI: 10.3389/fonc.2024.1287725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
High-grade gliomas (HGG) pose significant challenges in modern tumour therapy due to the distinct biological properties and limitations of the blood-brain barrier. This review discusses recent advancements in HGG treatment, particularly in the context of immunotherapy and cellular therapy. Initially, treatment strategies focus on targeting tumour cells guided by the molecular characteristics of various gliomas, encompassing chemotherapy, radiotherapy and targeted therapy for enhanced precision. Additionally, technological enhancements are augmenting traditional treatment modalities. Furthermore, immunotherapy, emphasising comprehensive tumour management, has gained widespread attention. Immune checkpoint inhibitors, vaccines and CAR-T cells exhibit promising efficacy against recurrent HGG. Moreover, emerging therapies such as tumour treating fields (TTFields) offer additional treatment avenues for patients with HGG. The combination of diverse treatments holds promise for improving the prognosis of HGG, particularly in cases of recurrence.
Collapse
Affiliation(s)
- Xi Chen
- Department of Radiotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yi Cui
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Liqun Zou
- Department of Medical Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
36
|
Carbone F, Russo C, Colamatteo A, La Rocca C, Fusco C, Matarese A, Procaccini C, Matarese G. Cellular and molecular signaling towards T cell immunological self-tolerance. J Biol Chem 2024; 300:107134. [PMID: 38432631 PMCID: PMC10981134 DOI: 10.1016/j.jbc.2024.107134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024] Open
Abstract
The binding of a cognate antigen to T cell receptor (TCR) complex triggers a series of intracellular events controlling T cell activation, proliferation, and differentiation. Upon TCR engagement, different negative regulatory feedback mechanisms are rapidly activated to counterbalance T cell activation, thus preventing excessive signal propagation and promoting the induction of immunological self-tolerance. Both positive and negative regulatory processes are tightly controlled to ensure the effective elimination of foreign antigens while limiting surrounding tissue damage and autoimmunity. In this context, signals deriving from co-stimulatory molecules (i.e., CD80, CD86), co-inhibitory receptors (PD-1, CTLA-4), the tyrosine phosphatase CD45 and cytokines such as IL-2 synergize with TCR-derived signals to guide T cell fate and differentiation. The balance of these mechanisms is also crucial for the generation of CD4+ Foxp3+ regulatory T cells, a cellular subset involved in the control of immunological self-tolerance. This review provides an overview of the most relevant pathways induced by TCR activation combined with those derived from co-stimulatory and co-inhibitory molecules implicated in the cell-intrinsic modulation of T cell activation. In addition to the latter, we dissected mechanisms responsible for T cell-mediated suppression of immune cell activation through regulatory T cell generation, homeostasis, and effector functions. We also discuss how imbalanced signaling derived from TCR and accessory molecules can contribute to autoimmune disease pathogenesis.
Collapse
Affiliation(s)
- Fortunata Carbone
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy; Unità di Neuroimmunologia, IRCCS-Fondazione Santa Lucia, Roma, Italy
| | - Claudia Russo
- D.A.I. Medicina di Laboratorio e Trasfusionale, Azienda Ospedaliera Universitaria "Federico II", Napoli, Italy
| | - Alessandra Colamatteo
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Claudia La Rocca
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy
| | - Clorinda Fusco
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Alessandro Matarese
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Claudio Procaccini
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy; Unità di Neuroimmunologia, IRCCS-Fondazione Santa Lucia, Roma, Italy.
| | - Giuseppe Matarese
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy; Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Napoli, Italy.
| |
Collapse
|
37
|
Chan KI, Zhang S, Li G, Xu Y, Cui L, Wang Y, Su H, Tan W, Zhong Z. MYC Oncogene: A Druggable Target for Treating Cancers with Natural Products. Aging Dis 2024; 15:640-697. [PMID: 37450923 PMCID: PMC10917530 DOI: 10.14336/ad.2023.0520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/20/2023] [Indexed: 07/18/2023] Open
Abstract
Various diseases, including cancers, age-associated disorders, and acute liver failure, have been linked to the oncogene, MYC. Animal testing and clinical trials have shown that sustained tumor volume reduction can be achieved when MYC is inactivated, and different combinations of therapeutic agents including MYC inhibitors are currently being developed. In this review, we first provide a summary of the multiple biological functions of the MYC oncoprotein in cancer treatment, highlighting that the equilibrium points of the MYC/MAX, MIZ1/MYC/MAX, and MAD (MNT)/MAX complexes have further potential in cancer treatment that could be used to restrain MYC oncogene expression and its functions in tumorigenesis. We also discuss the multifunctional capacity of MYC in various cellular cancer processes, including its influences on immune response, metabolism, cell cycle, apoptosis, autophagy, pyroptosis, metastasis, angiogenesis, multidrug resistance, and intestinal flora. Moreover, we summarize the MYC therapy patent landscape and emphasize the potential of MYC as a druggable target, using herbal medicine modulators. Finally, we describe pending challenges and future perspectives in biomedical research, involving the development of therapeutic approaches to modulate MYC or its targeted genes. Patients with cancers driven by MYC signaling may benefit from therapies targeting these pathways, which could delay cancerous growth and recover antitumor immune responses.
Collapse
Affiliation(s)
- Ka Iong Chan
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Siyuan Zhang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Guodong Li
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Yida Xu
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Liao Cui
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang 524000, China
| | - Yitao Wang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Huanxing Su
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| |
Collapse
|
38
|
Yang M, Liu Y, Zheng S, Geng P, He T, Lu L, Feng Y, Jiang Q. Associations of PD-1 and PD-L1 gene polymorphisms with cancer risk: a meta-analysis based on 50 studies. Aging (Albany NY) 2024; 16:6068-6097. [PMID: 38546391 PMCID: PMC11042937 DOI: 10.18632/aging.205689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 02/27/2024] [Indexed: 04/23/2024]
Abstract
Programmed death-1 and its ligand-1 (PD-1/PD-L1), immune checkpoints proteins, play a crucial role in anti-tumor responses. A large number of studies have evaluated the relationships of PD-1/PD-L1 polymorphisms with risk of cancer, but evidence for the associations remains inconsistent. Therefore, we performed a meta-analysis to examine the associations between PD-1/PD-L1 single nucleotide polymorphisms (SNPs) and cancer predisposition. Results showed that PD-1.3 and PD-L1 rs17718883 were significantly correlated with overall cancer risk. PD-1.5 was prominently linked with cervical cancer (CC), non-small cell lung cancer (NSCLC), TC (thyroid cancer), brain tumor, AML (acute myelocytic leukemia) and UCC (urothelial cell carcinoma) risk, PD-1.9 with breast cancer (BC), AML, esophageal cancer (EC) and ovarian cancer (OC) risk, and PD-1.3 with colorectal cancer (CRC) and BCC (basal cell carcinoma) risk. PD-1.1 polymorphism slightly elevated BC and OC susceptibility, whereas the rs4143815 variant notably decreased the risk of gastric cancer (GC), hepatocellular carcinoma (HCC) and OC, but increased the risk of BC. PD-1.6 was closely linked with AML risk, PD-L1 rs2890658 with NSCLC, HCC and BC risk, rs17718883 with HCC and GC risk, rs10815225 with GC risk, and rs2297136 with NSCLC and HCC risk. Interestingly, the rs7421861, rs10815225, and rs10815225 markedly reduced cancer susceptibility among Asians. The rs7421861 polymrophism decreased cancer risk among Caucasians, rather than the rs10815225 elevated cancer risk. Our results supported that PD-1 and PD-L1 SNPs were dramatically correlated with cancer risk.
Collapse
Affiliation(s)
- Maoquan Yang
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261042, Shandong, China
| | - Yan Liu
- Department of Gastroenterology, Weifang People’s Hospital, The First Affiliated Hospital of Shandong Second Medical University, Kuiwen, Weifang 261000, Shandong, China
| | - Shuangshuang Zheng
- Department of Health, Weifang People’s Hospital, The First Affiliated Hospital of Shandong Second Medical University, Kuiwen, Weifang 261000, Shandong, China
| | - Peizhen Geng
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261042, Shandong, China
| | - Tianhao He
- Department of Gastroenterology, Weifang People’s Hospital, The First Affiliated Hospital of Shandong Second Medical University, Kuiwen, Weifang 261000, Shandong, China
| | - Linan Lu
- Department of Gastroenterology, Weifang People’s Hospital, The First Affiliated Hospital of Shandong Second Medical University, Kuiwen, Weifang 261000, Shandong, China
| | - Yikuan Feng
- Department of Gastroenterology, Weifang People’s Hospital, The First Affiliated Hospital of Shandong Second Medical University, Kuiwen, Weifang 261000, Shandong, China
| | - Qiqi Jiang
- Department of Gastroenterology, Weifang People’s Hospital, The First Affiliated Hospital of Shandong Second Medical University, Kuiwen, Weifang 261000, Shandong, China
| |
Collapse
|
39
|
Kim SW, Kim CW, Kim HS. Scoparone attenuates PD-L1 expression in human breast cancer cells by MKP-3 upregulation. Anim Cells Syst (Seoul) 2024; 28:55-65. [PMID: 38348341 PMCID: PMC10860470 DOI: 10.1080/19768354.2024.2315950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/02/2024] [Indexed: 02/15/2024] Open
Abstract
Breast cancer is a frequently occurring malignant tumor that is one of the leading causes of cancer-related deaths in women worldwide. Monoclonal antibodies that block programed cell death 1 (PD-1)/programed cell death ligand 1 (PD-L1) - a typical immune checkpoint - are currently the recommended standard therapies for many advanced and metastatic tumors such as triple-negative breast cancer. However, some patients develop drug resistance, leading to unfavorable treatment outcomes. Therefore, other approaches are required for anticancer treatments, such as downregulation of PD-L1 expression and promotion of degradation of PD-L1. Scoparone (SCO) is a bioactive compound isolated from Artemisia capillaris that exhibits antitumor activity. However, the effect of SCO on PD-L1 expression in cancer has not been confirmed yet. This study aimed to evaluate the role of SCO in PD-L1 expression in breast cancer cells in vitro. Our results show that SCO downregulated PD-L1 expression in a dose-dependent manner, via AKT inhibition. Interestingly, SCO treatment did not alter PTEN expression, but increased the expression of mitogen-activated protein kinase phosphatase-3 (MKP-3). In addition, the SCO-induced decrease in PD-L1 expression was reversed by siRNA-mediated MKP-3 knockdown. Collectively, these findings suggest that SCO inhibited the expression of PD-L1 in breast cancer cells by upregulating MKP-3 expression. Therefore, SCO may serve as an innovative combinatorial agent for cancer immunotherapy.
Collapse
Affiliation(s)
- Seung-Woo Kim
- Department of Biomedical Sciences, Inha University College of Medicine, Incheon, Republic of Korea
| | - Chan Woo Kim
- Cancer Immunotherapy Evaluation Team, Non-Clinical Evaluation Center, Osong Medical Innovation Foundation (KBIO Health), Cheongju, Republic of Korea
| | - Hong Seok Kim
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, Republic of Korea
| |
Collapse
|
40
|
Jiang T, Xia Y, Li Y, Lu C, Lin J, Shen Y, Lv J, Xie L, Gu C, Xu Z, Wang L. TRIM29 promotes antitumor immunity through enhancing IGF2BP1 ubiquitination and subsequent PD-L1 downregulation in gastric cancer. Cancer Lett 2024; 581:216510. [PMID: 38029830 DOI: 10.1016/j.canlet.2023.216510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/05/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
Tripartite motif-containing protein 29 (TRIM29) is a member of TRIM family protein which has been reported to play a role in the progress of inflammatory and cancer diseases. However, its specific role in gastric cancer (GC) has yet to be fully understood. Here, we investigated the expression of TRIM29 in gastric cancer and its functions in the antitumor immunity. TRIM29 expression was lower in tumor tissues than that in paired normal tissues. Lower expression of TRIM29 was related to aberrant hypermethylation of CpG islands in TRIM29 gene. Comprehensive proteomics and immunoprecipitation analyses identified IGF2BP1 as TRIM29 interactors. TRIM29 interacted with IGF2BP1 and induced its ubiquitination at Lys440 and Lys450 site by K48-mediated linkage for protein degradation. IGF2BP1 promoted PD-L1 mRNA stability and expression in a 3'UTR and m6A-dependent manner. Functionally, TRIM29 enhanced antitumor T-cell immunity in gastric cancer dependent on the IGF2BP1/PD-L1 axis in vivo and in vitro. Clinical correlation analysis revealed that TRIM29 expression in patient samples was associated with CD8+ immune cell infiltration in the GC microenvironment and the overall survival rates of GC patients. Our findings revealed a crucial role of TRIM29 in regulating the antitumor T-cell immunity in GC. We also suggested that the TRIM29/IGF2BP1/PD-L1 axis could be used as a diagnostic and prognostic marker of gastric cancer and a promising target for GC immunotherapy.
Collapse
Affiliation(s)
- Tianlu Jiang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yiwen Xia
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ying Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chen Lu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jie Lin
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yikai Shen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jialun Lv
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Li Xie
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chao Gu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Linjun Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
41
|
Cho S, Kim W, Yoo D, Han Y, Hwang H, Kim S, Kim J, Park S, Park Y, Jo H, Pyun JC, Lee M. Impact of glucose metabolism on PD-L1 expression in sorafenib-resistant hepatocellular carcinoma cells. Sci Rep 2024; 14:1751. [PMID: 38243049 PMCID: PMC10798953 DOI: 10.1038/s41598-024-52160-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/15/2024] [Indexed: 01/21/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth leading cause of cancer-related mortality worldwide. Programmed cell death ligand-1 (PD-L1) is an immune checkpoint protein that binds to programmed cell death-1 (PD-1), which is expressed in activated T cells and other immune cells and has been employed in cancer therapy, including HCC. Recently, PD-L1 overexpression has been documented in treatment-resistant cancer cells. Sorafenib is a multikinase inhibitor and the only FDA-approved treatment for advanced HCC. However, several patients exhibit resistance to sorafenib during treatment. This study aimed to assess the effect of glucose deprivation on PD-L1 expression in HCC cells. We used PD-L1-overexpressing HepG2 cells and IFN-γ-treated SK-Hep1 cells to explore the impact of glycolysis on PD-L1 expression. To validate the correlation between PD-L1 expression and glycolysis, we analyzed data from The Cancer Genome Atlas (TCGA) and used immunostaining for HCC tissue analysis. Furthermore, to modulate PD-L1 expression, we treated HepG2, SK-Hep1, and sorafenib-resistant SK-Hep1R cells with rapamycin. Here, we found that glucose deprivation reduced PD-L1 expression in HCC cells. Additionally, TCGA data and immunostaining analyses confirmed a positive correlation between the expression of hexokinase II (HK2), which plays a key role in glucose metabolism, and PD-L1. Notably, rapamycin treatment decreased the expression of PD-L1 and HK2 in both high PD-L1-expressing HCC cells and sorafenib-resistant cells. Our results suggest that the modulation of PD-L1 expression by glucose deprivation may represent a strategy to overcome PD-L1 upregulation in patients with sorafenib-resistant HCC.
Collapse
Affiliation(s)
- Sua Cho
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Wonjin Kim
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Dayoung Yoo
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Yeonju Han
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Hyemin Hwang
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Seunghwan Kim
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Jimin Kim
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Sanghee Park
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Yusun Park
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - HanHee Jo
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Misu Lee
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea.
- Institute for New Drug Development, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea.
| |
Collapse
|
42
|
Hosseinzadeh R, Moini A, Hosseini R, Fatehnejad M, Yekaninejad MS, Javidan M, Changaei M, Feizisani F, Rajaei S. A higher number of exhausted local PD1+, but not TIM3+, NK cells in advanced endometriosis. Heliyon 2024; 10:e23294. [PMID: 38173487 PMCID: PMC10761348 DOI: 10.1016/j.heliyon.2023.e23294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
Endometriosis (EMT) is a chronic inflammatory disease characterized by the presence and growth of endometrial-like glandular epithelial and stromal cells outside the uterus. Natural Killer (NK) cell dysfunction/exhaustion has been shown in patients with EMT. In this case-control study, we compared the frequency of exhausted PD-1 or TIM-3 positive NK cells in peripheral blood (PB) and peritoneal fluid (PF) of women with advanced endometriosis to control fertile women. PB and PF were collected from women aged 25-40 who underwent the laparoscopic procedure, including 13 stages III/IV endometriosis and 13 control samples. Multicolor flowcytometry was used to compare the frequency of PD-1 or TIM-3 positive NK (CD3-CD56+) cells in PB and PF of two groups. We demonstrated a higher percentage of PD-1+ NK cells in the peritoneal fluid of patients with endometriosis rather than controls (P-value = 0.039). This significance was related to stage IV of endometriosis (P-value = 0.047). We can not show any significant difference in the number of PD-1 or TIM-3 positive NK cells in peripheral blood. Our results suggest a local exhausted NK cell response in endometriosis that can be a leading factor in the endometriosis pathogenesis.
Collapse
Affiliation(s)
- Ramin Hosseinzadeh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashraf Moini
- Department of Obstetrics and Gynecology, Arash Women’s Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Hosseini
- Department of Obstetrics and Gynecology, Arash Women’s Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Fatehnejad
- Department of Obstetrics and Gynecology, Arash Women’s Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mir Saeed Yekaninejad
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Moslem Javidan
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Changaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Feizisani
- Student Research Committee, Tabriz University of Medical Sciences, Sarab Faculty of Medical Sciences, Sarab, Iran
| | - Samira Rajaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Huang M, Yu X, Wang Q, Jiang Z, Li X, Chen W, Song C. The immune checkpoint TIGIT/CD155 promotes the exhaustion of CD8 + T cells in TNBC through glucose metabolic reprogramming mediated by PI3K/AKT/mTOR signaling. Cell Commun Signal 2024; 22:35. [PMID: 38216949 PMCID: PMC10785424 DOI: 10.1186/s12964-023-01455-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/21/2023] [Indexed: 01/14/2024] Open
Abstract
OBJECTIVE The CD155/TIGIT axis has attracted considerable interest as an emerging immune checkpoint with potential applications in cancer immunotherapy. Our research focused on investigating the role of CD155/TIGIT checkpoints in the progression of triple-negative breast cancer (TNBC). METHODS We evaluated CD155 and TIGIT expression in TNBC tissues using both immunohistochemistry (IHC) and gene expression profiling. Our experiments, both in vivo and in vitro, provided evidence that inhibiting the CD155/TIGIT pathway reinstates the ability of CD8 + T cells to generate cytokines. To assess the impact of CD155/TIGIT signaling blockade, we utilized Glucose Assay Kits and Lactate Assay Kits to measure alterations in glucose and lactate levels within CD8 + T cells. We employed western blotting (WB) to investigate alterations in glycolytic-related proteins within the PI3K/AKT/mTOR pathways following the inhibition of CD155/TIGIT signaling. RESULTS CD155 exhibits heightened expression within TNBC tissues and exhibits a negative correlation with the extent of infiltrating CD8 + T cells. Furthermore, patients with TNBC demonstrate elevated levels of TIGIT expression. Our findings indicate that the interaction between CD155 and TIGIT disrupts the glucose metabolism of CD8 + T cells by suppressing the activation of the PI3K/AKT/mTOR signaling pathway, ultimately leading to the reduced production of cytokines by CD8 + T cells. Both in vivo and in vitro experiments have conclusively demonstrated that the inhibition of CD155/TIGIT interaction reinstates the capacity of CD8 + T cells to generate cytokines. Moreover, in vivo administration of the blocking antibody against TIGIT not only inhibits tumor growth but also augments the functionality of CD8 + T lymphocytes. CONCLUSIONS Our research findings strongly suggest that CD155/TIGIT represents a promising therapeutic target for treating TNBC.
Collapse
Affiliation(s)
- Mingyao Huang
- Department of Breast Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350011, China
| | - Xiaoqin Yu
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Qing Wang
- Department of Breast Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350011, China
| | - Zirong Jiang
- Department of Thyroid and Breast Surgery, Ningde Municipal Hospital of Ningde Normal University, Ningde, 352100, China
| | - Xiaofen Li
- Department of Breast Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350011, China
| | - Wei Chen
- Department of Oncology Surgery, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Chuangui Song
- Department of Breast Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350011, China.
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| |
Collapse
|
44
|
Abdullah NA, Ali NH, Aljaleel NA. Gene expression profile of immune-check point in response to Trastuzumab therapy in patients with HER-2 positive breast cancer. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2024; 77:1056-1062. [PMID: 39008597 DOI: 10.36740/wlek202405127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
OBJECTIVE Aim: To clarify the association between response to Trastuzumab and molecular expression of TIM-3 and FOXP-3 immune checkpoints. PATIENTS AND METHODS Materials and Methods: FOXP-3 and TIM-3 expression in peripheral blood was analyzed using qPCR, and the serum level of Trastuzumab was estimated using an immune sorbent enzyme assay. RESULTS Results: During treatment with Trastuzumab, the FOXP-3 gene expression showed a significant decline throughout one year of treatment, going from 0.85 at cycle 9 to 0.75 at cycle 17. While the TIM-3 gene expression showed a significant up regulation at cycle 9 to 2.8 fold, followed by a reduction in the fold change from 2.8 to 1.7 in the font of reference gene expression. CONCLUSION Conclusions:FOXP-3 and TIM-3 have the potential to be suggestive markers that can anticipate the response to Trastuzumab, but they are not capable of predicting the likelihood of recurrence.
Collapse
|
45
|
Siqueira JM, Mitani Y, Hoff CO, Bonini F, Guimaraes de Sousa L, Marques-Piubelli ML, Purushothaman A, Mitani M, Dai H, Lin SY, Spiotto MT, Hanna EY, McGrail DJ, El-Naggar AK, Ferrarotto R. Analysis of B7-H4 Expression Across Salivary Gland Carcinomas Reveals Adenoid Cystic Carcinoma-Specific Prognostic Relevance. Mod Pathol 2024; 37:100371. [PMID: 38015043 DOI: 10.1016/j.modpat.2023.100371] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/11/2023] [Accepted: 10/22/2023] [Indexed: 11/29/2023]
Abstract
B7-H4 (VTCN1), a member of the B7 family, is overexpressed in several types of cancer. Here we investigated the pattern of expression of B7-H4 in salivary gland carcinomas (SGC) and assessed its potential as a prognostic marker and therapeutic target. Immunohistochemistry (IHC) analyses were performed in a cohort of 340 patient tumors, composed of 124 adenoid cystic carcinomas (ACC), 107 salivary duct carcinomas (SDC), 64 acinic cell carcinomas, 36 mucoepidermoid carcinomas (MEC), 9 secretory carcinomas (SC), as well as 20 normal salivary glands (controls). B7-H4 expression was scored and categorized into negative (<5% expression of any intensity), low (5%-70% expression of any intensity or >70% with weak intensity), or high (>70% moderate or strong diffuse intensity). The associations between B7-H4 expression and clinicopathologic characteristics, as well as overall survival, were assessed. Among all tumors, B7-H4 expression was more prevalent in ACC (94%) compared with those of SC (67%), MEC (44%), SDC (32%), and acinic cell carcinomas (0%). Normal salivary gland tissue did not express B7-H4. High expression of B7-H4 was found exclusively in ACC (27%), SDC (11%), and MEC (8%). In SDC, B7-H4 expression was associated with female gender (P = .002) and lack of androgen receptor expression (P = .012). In ACC, B7-H4 expression was significantly associated with solid histology (P < .0001) and minor salivary gland primary (P = .02). High B7-H4 expression was associated with a poorer prognosis in ACC, regardless of clinical stage and histologic subtype. B7-H4 expression was not prognostic in the non-ACC SGC evaluated. Our comparative study revealed distinct patterns of B7-H4 expression according to SGC histology, which has potential therapeutic implications. B7-H4 expression was particularly high in solid ACC and was an independent prognostic marker in this disease but not in the other SGC assessed.
Collapse
Affiliation(s)
- Juliana Mota Siqueira
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Stomatology, Discipline of Oral and Maxillofacial Pathology, School of Dentistry, University of São Paulo, São Paulo, SP, Brazil
| | - Yoshitsugu Mitani
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Camilla Oliveira Hoff
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Flavia Bonini
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Luana Guimaraes de Sousa
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mario L Marques-Piubelli
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anurag Purushothaman
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mutsumi Mitani
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hui Dai
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shiaw-Yih Lin
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael T Spiotto
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ehab Y Hanna
- Department of Head and Neck Surgery, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daniel J McGrail
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Adel K El-Naggar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Renata Ferrarotto
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
46
|
Zhao Y, Shi Z, Xie Y, Li N, Chen H, Jin M. The association between PD-1 / PD-L1 expression and clinicopathological features in sarcomatoid renal cell carcinoma. Asian J Surg 2024; 47:163-168. [PMID: 37419794 DOI: 10.1016/j.asjsur.2023.06.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/08/2023] [Accepted: 06/08/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND Sarcomatoid renal cell carcinoma (sRCC) accounts for about 4%-5% of all kidney cancers. Previous studies showed that PD-1 and PD-L1 expression was higher in sRCC compared to non-sRCC. In the present study, we aimed to investigate PD-1/PD-L1 expression and its association with clinicopathological features in sRCC. METHODS The study included 59 patients diagnosed with sRCC between January 2012 and January 2022. The expression of PD-1 and PD-L1 in sRCC was detected by immunohistochemical staining, and its correlation with clinicopathological parameters was analyzed by χ2 test and Fisher exact test. Kaplan-Meier curves and log-rank tests were used to describe the overall survival (OS). The prognostic significance of clinicopathological parameters on OS was assessed by Cox proportional hazards regression analysis. RESULTS Among the 59 cases, the positive expression of PD-1 and PD-L1 was 34 cases (57.6%) and 37 cases (62.7%), respectively. PD-1 expression was not significantly correlated with any parameters. However, PD-L1 expression was significantly correlated with tumor size and pathologic T stage. OS was shorter in the subgroup of patients with PD-L1-positive sRCC compared with the PD-L1-negative subgroup. There was no statistically significant difference in OS between PD-1-positive and negative subgroups. According to our study, the univariate and multivariate analysis indicated that pathological T3 and T4 was an independent risk factor in PD-1-positive sRCC. CONCLUSION We studied the relationship between PD-1/PD-L1 expression and clinicopathological characteristics in sRCC. The findings may provide valuable implications for clinical prediction.
Collapse
Affiliation(s)
- Yuan Zhao
- Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongti South Road, Chaoyang District, Beijing, 100020, PR China
| | - Zhongyue Shi
- Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongti South Road, Chaoyang District, Beijing, 100020, PR China
| | - Yan Xie
- Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongti South Road, Chaoyang District, Beijing, 100020, PR China
| | - Ning Li
- Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongti South Road, Chaoyang District, Beijing, 100020, PR China
| | - Hong Chen
- Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongti South Road, Chaoyang District, Beijing, 100020, PR China.
| | - Mulan Jin
- Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongti South Road, Chaoyang District, Beijing, 100020, PR China.
| |
Collapse
|
47
|
Dey DK, Krause D, Rai R, Choudhary S, Dockery LE, Chandra V. The role and participation of immune cells in the endometrial tumor microenvironment. Pharmacol Ther 2023; 251:108526. [PMID: 37690483 DOI: 10.1016/j.pharmthera.2023.108526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/12/2023]
Abstract
The tumor microenvironment is surrounded by blood vessels and consists of malignant, non-malignant, and immune cells, as well as signalling molecules, which primarily affect the therapeutic response and curative effects of drugs in clinical studies. Tumor-infiltrating immune cells participate in tumor progression, impact anticancer therapy, and eventually lead to the development of immune tolerance. Immunotherapy is evolving as a promising therapeutic intervention to stimulate and activate the immune system to suppress cancer cell growth. Endometrial cancer (EC) is an immunogenic disease, and in recent years, immunotherapy has shown benefit in the treatment of recurrent and advanced EC. This review discusses the key molecular pathways associated with the intra-tumoral immune response and the involvement of circulatory signalling molecules. Specific immunologic signatures in EC which offer targets for immunomodulating agents, are also discussed. We have summarized the available literature in support of using immunotherapy in EC. Lastly, we have also discussed ongoing clinical trials that may offer additional promising immunotherapy options in the future. The manuscript also explored innovative approaches for screening and identifying effective drugs, and to reduce the financial burdens for the development of personalized treatment strategies. Collectively, we aim to provide a comprehensive review of the role of immune cells and the tumor microenvironment in the development, progression, and treatment of EC.
Collapse
Affiliation(s)
- Debasish Kumar Dey
- Gynecologic Oncology Section, Obstetrics and Gynecology Department, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Danielle Krause
- Gynecologic Oncology Section, Obstetrics and Gynecology Department, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Rajani Rai
- Gynecologic Oncology Section, Obstetrics and Gynecology Department, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Swati Choudhary
- Gynecologic Oncology Section, Obstetrics and Gynecology Department, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Lauren E Dockery
- Gynecologic Oncology Section, Obstetrics and Gynecology Department, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Vishal Chandra
- Gynecologic Oncology Section, Obstetrics and Gynecology Department, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
48
|
Patel M, Hudson O, Han J, Kondapalli L, Arora G, Hawi R, Andrikopoulou E, Estes C, Johnson AM, Lenneman C. Update on Immunotherapy Cardiotoxicity: Checkpoint Inhibitors, CAR T, and Beyond. Curr Treat Options Oncol 2023; 24:1489-1503. [PMID: 37624557 DOI: 10.1007/s11864-023-01130-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2023] [Indexed: 08/26/2023]
Abstract
OPINION STATEMENT Immunotherapy is an innovative approach to cancer treatment that involves using the body's immune system to fight cancer. The landscape of immunotherapy is constantly evolving, as new therapies are developed and refined. Some of the most promising approaches in immunotherapy include immune checkpoint inhibitors (ICIs): these drugs target proteins on the surface of T-cells that inhibit their ability to attack cancer cells. By blocking these proteins, checkpoint inhibitors allow T-cells to recognize and destroy cancer cells more effectively. CAR T-cell therapy: this therapy involves genetically modifying a patient's own T-cells to recognize and attack cancer cells. CAR T-cell therapy exhibits favorable response in many patients with refractory hematological cancers with growing clinical trials in solid tumors. Immune system modulators: these drugs enhance the immune system's ability to fight cancer by stimulating the production of immune cells or inhibiting the activity of immune-suppressing cells. While immunotherapy has shown great promise in the treatment of cancer, it can also pose significant cardiac side effects. Some immunotherapy drugs like ICIs can cause myocarditis, which can lead to chest pain, shortness of breath, and heart failure. Other cardiac side effects of ICIs include arrhythmias, pericarditis, vasculitis, and accelerated atherosclerosis. It is important for patients receiving immunotherapy to be monitored closely for these side effects, as prompt treatment can help prevent serious complications. Patients should also report any symptoms to their healthcare providers right away, so that appropriate action can be taken. CAR T-cell therapy can also illicit an exaggerated immune response creating cytokine release syndrome (CRS) that may precipitate cardiovascular events: arrhythmias, myocardial infarction, and heart failure. Overall, while immune modulating therapy is a promising and expanding approach to cancer treatment, it is important to weigh the potential benefits against the risks and side effects, especially in patients with high risk for cardiovascular complications.
Collapse
Affiliation(s)
- Murti Patel
- University of Alabama at Birmingham (UAB) Heersink School of Medicine, Birmingham, AL, USA
| | - Olivia Hudson
- University of Alabama at Birmingham (UAB) Heersink School of Medicine, Birmingham, AL, USA
| | - Jingnan Han
- University of Alabama at Birmingham (UAB) Heersink School of Medicine, Birmingham, AL, USA
| | - Lavanya Kondapalli
- University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Garima Arora
- University of Alabama at Birmingham (UAB) Heersink School of Medicine, Birmingham, AL, USA
| | - Riem Hawi
- University of Alabama at Birmingham (UAB) Heersink School of Medicine, Birmingham, AL, USA
| | | | - Courtney Estes
- University of Alabama at Birmingham (UAB) Heersink School of Medicine, Birmingham, AL, USA
| | - Abigail M Johnson
- University of Alabama at Birmingham (UAB) Heersink School of Medicine, Birmingham, AL, USA
| | - Carrie Lenneman
- University of Alabama at Birmingham (UAB) Heersink School of Medicine, Birmingham, AL, USA.
| |
Collapse
|
49
|
Liu J, Li J, Luo F, Wu S, Li B, Liu K. The Predictive Value of CD3+/CD8+ Lymphocyte Infiltration and PD-L1 Expression in Colorectal Cancer. Curr Oncol 2023; 30:9647-9659. [PMID: 37999119 PMCID: PMC10670477 DOI: 10.3390/curroncol30110699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 11/25/2023] Open
Abstract
AIM The immune system plays an important role in tumor development and treatment. In this study, we aimed to determine the relationships among the expressions of PD-L1, CD3, CD8, MMR proteins, clinicopathological features, and prognosis of CRC. METHODS Immunohistochemistry was used to determine the expression of PD-L1, CD3, and CD8 in 771 patients with CRC. RESULTS The expression of PD-L1 in TC was related to the right colon, adenocarcinoma, and dMMR, and in IC, it was related to younger CRC patients and the TNM stage. The expression of CD3 and CD8 in tumor-infiltrating lymphocytes was related to lymph node metastasis and the TNM stage. The expression of PD-L1 in TC and IC was correlated with the infiltration of CD3+ and CD8+ lymphocytes. Univariate survival analysis showed that the expression of PD-L1 in TC, IC, and dMMR was related to a better prognosis. Multivariate survival analysis showed that age, TNM stage, and dMMR were independent prognostic factors for CRC. The OS of the chemotherapy was significantly higher than that of the non-chemotherapy in III-IV TNM stage patients; CRC patients with positive PD-L1 expression in TC or IC and dMMR did not benefit from chemotherapy. CONCLUSIONS PD-L1 expression in TC and IC was closely related to the density of CD3 and CD8 infiltration in tumor-infiltrating lymphocytes. The expression of CD3 and CD8 in tumor-infiltrating lymphocytes and the expression of PD-L1 in IC were linked to the TNM stage of CRC patients. PD-L1 expression in TC and IC and MMR status may act as an important biomarker for guiding the postoperative treatment of III-IV TNM stage CRC patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Kunping Liu
- Department of Pathology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan 511518, China
| |
Collapse
|
50
|
Hao Q, Wu H, Liu E, Wang L. BUB1, BUB1B, CCNA2, and CDCA8, along with miR-524-5p, as clinically relevant biomarkers for the diagnosis and treatment of endometrial carcinoma. BMC Cancer 2023; 23:995. [PMID: 37853361 PMCID: PMC10585751 DOI: 10.1186/s12885-023-11515-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Endometrial carcinoma (EC) is a malignant tumor of the female reproductive tract that has been associated with increased morbidity and mortality. This study aimed to identify biomarkers and potential therapeutic targets for EC. METHODS A publicly available transcriptome data set comprising 587 EC cases was subjected to a comprehensive bioinformatics analysis to identify candidate genes responsible for EC occurrence and development. Next, we used clinical samples and cell experiments for validation. RESULTS A total of 1,617 differentially expressed genes (DEGs) were identified. Analysis of patient survival outcomes revealed that BUB1, BUB1B, CCNA2, and CDCA8 were correlated with prognosis in patients with EC. Moreover, assessment of clinical samples confirmed that BUB1, BUB1B, CCNA2 and CDCA8 were strongly expressed in EC tissues. Additionally, bioinformatics and luciferase reporter assays confirmed that miR-524-5p can target and regulate these four genes. Overexpression of miR-524-5p significantly inhibited EC Ishikawa cells viability, migration and invasion. Inhibition of miR-524-5p showed the opposite results. CONCLUSIONS Expression of miR-524-5p reduced the migration and invasion of Ishikawa EC cells, and decreased BUB1, BUB1B, CCNA2, and CDCA8 expression. miR-524-5p, as well as BUB1, BUB1B, CCNA2, and CDCA8, may be clinically relevant biomarkers for the diagnosis and treatment of EC.
Collapse
Affiliation(s)
- Qirong Hao
- Department of Obstetrics and Gynecology, the Second Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Hongqin Wu
- Department of Obstetrics and Gynecology, the Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Erniao Liu
- Department of Obstetrics and Gynecology, the Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Lina Wang
- Department of Obstetrics and Gynecology, the Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|