1
|
Khan S, Khan AA. Hypoparathyroidism: diagnosis, management and emerging therapies. Nat Rev Endocrinol 2025; 21:360-374. [PMID: 39905273 DOI: 10.1038/s41574-024-01075-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/29/2024] [Indexed: 02/06/2025]
Abstract
Hypoparathyroidism is characterized by inadequate parathyroid hormone (PTH) secretion or action and results in hypocalcaemia, and can lead to hyperphosphataemia and hypercalciuria. Most cases of hypoparathyroidism occur as a complication of surgery, with the remainder due to causes including autoimmune disease, genetic causes, infiltrative diseases, mineral deposition or due to abnormalities in serum levels of magnesium. Hypoparathyroidism can cause multisystem disease, with long-term complications resulting from ectopic calcification as well as renal complications with nephrocalcinosis, nephrolithiasis and renal impairment in addition to respiratory, cardiac or neurological manifestations. Conventional therapy consists of oral calcium salts and active vitamin D but it has limitations, including fluctuations in serum levels of calcium and a high pill burden, and can increase the risk of long-term complications. By contrast, PTH replacement therapy can effectively achieve normal serum levels of calcium, and lower serum levels of phosphate. The long-acting PTH analogue, palopegteriparatide, has been shown to normalize urine levels of calcium. In addition, PTH replacement therapy reduces the pill burden. Palopegteriparatide is also associated with improved quality of life in comparison to conventional therapy. This Review summarizes current recommendations regarding the pathophysiology, evaluation and management of hypoparathyroidism and also references the 2022 international hypoparathyroidism guidelines. Palopegteriparatide has now been approved as PTH replacement therapy for hypoparathyroidism. Emerging therapies will also be presented in this Review.
Collapse
Affiliation(s)
- Sarah Khan
- Trillium Health Partners, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
2
|
Berger AH, Oftedal BE, Wolff ASB, Husebye ES, Knappskog PM, Bratland E, Johansson S. High-resolution transcriptional impact of AIRE: effects of pathogenic variants p.Arg257Ter, p.Cys311Tyr, and polygenic risk variant p.Arg471Cys. Front Immunol 2025; 16:1572789. [PMID: 40330469 PMCID: PMC12053179 DOI: 10.3389/fimmu.2025.1572789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/25/2025] [Indexed: 05/08/2025] Open
Abstract
Introduction The Autoimmune Regulator, AIRE, acts as a transcriptional regulator in the thymus, facilitating ectopic expression of thousands of genes important for the process of negative T-cell selection and immunological tolerance to self. Pathogenic variants in the gene encoding AIRE are causing Autoimmune polyendocrine syndrome type 1 (APS-1), defined by multiorgan autoimmunity and chronic mucocutaneous candidiasis. More recently, Genome Wide Association Studies (GWAS) have also implicated AIRE in several common organ-specific autoimmune diseases including autoimmune primary adrenal insufficiency, type 1 diabetes and pernicious anemia. Methods We developed a highly sensitive cell-system approach based on HEK293FT cells transfected with AIRE that allowed us to characterise and functionally evaluate the transcriptional potential of genetic variants in the AIRE gene. By utilizing RNAseq with an average read depth of 100 million reads and 12 replicates per condition we have the statistical power and sensitivity to characterize the AIRE induced transcriptome in depth. Results We confirm that our cell system recapitulates the expression of the vast majority of known AIRE induced genes including well-characterised tissue restricted antigens (TRAs). Our approach also increases the total number of identified AIRE induced genes by an order of magnitude compared to previously published strategies, including a comprehensive number of clinically relevant autoantigens. Discussion Our cell-system approach differentiates between categories of AIRE variants on the transcriptional level, including the nonsense variant p.R257* (near complete loss of function), the p.C311Y variant associated with dominantly inherited APS-1 (severely impaired function), and the polygenic risk variant p.R471C (slightly increased function) linked to common organ-specific autoimmunity. The increased activity of p.R471C compared to wildtype indicates different molecular mechanisms for monogenic and polygenic AIRE related autoimmunity. We find that AIRE induced expression is characterised by a small absolute increase in expression levels of genes of both high and low tissue specificity.
Collapse
Affiliation(s)
- Amund Holte Berger
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | | | - Anette Susanne Bøe Wolff
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Eystein Sverre Husebye
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Per Morten Knappskog
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Eirik Bratland
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Stefan Johansson
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
3
|
Bender MJ, Lucas CL. Decoding Immunobiology Through Genetic Errors of Immunity. Annu Rev Immunol 2025; 43:285-311. [PMID: 39952637 DOI: 10.1146/annurev-immunol-082323-124920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
Throughout biology, the pursuit of genotype-phenotype relationships has provided foundational knowledge upon which new concepts and hypotheses are built. Genetic perturbation, whether occurring naturally or in experimental settings, is the mainstay of mechanistic dissection in biological systems. The unbiased discovery of causal genetic lesions via forward genetics in patients who have a rare disease elucidates a particularly impactful set of genotype-phenotype relationships. Here, we review the field of genetic errors of immunity, often termed inborn errors of immunity (IEIs), in a framework aimed at highlighting the powerful real-world immunology insights provided collectively and individually by these (approximately) 500 disorders. By conceptualizing essential immune functions in a model of the adaptive arsenal of rapid defenses, we organize IEIs based on immune circuits in which sensors, relays, and executioners cooperate to carry out pathogen clearance functions in an effective yet regulated manner. We review and discuss findings from IEIs that not only reinforce known immunology concepts but also offer surprising phenotypes, prompting an opportunity to refine our understanding of immune system function.
Collapse
Affiliation(s)
- Mackenzie J Bender
- Department of Immunobiology, Yale University, New Haven, Connecticut, USA;
| | - Carrie L Lucas
- Department of Immunobiology, Yale University, New Haven, Connecticut, USA;
| |
Collapse
|
4
|
Musa SA, Abdullah MA, Hassan SS, Fauzi LS, Babiker OO, Ahmed AI, Mohammedali M, Hutchison C, Mohamadsalih G, Hall CL, Maitra S, Ibrahim AA, Qamar Y, Maharaj AV, Marroquin Ramirez LM, Read J, Chan LF, Metherell LA, Smith CJ. Novel recurrent mutations and genetic diversity in Sudanese children with adrenal insufficiency. Eur J Endocrinol 2025; 192:277-289. [PMID: 40063902 DOI: 10.1093/ejendo/lvaf037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/10/2025] [Accepted: 03/07/2025] [Indexed: 03/22/2025]
Abstract
OBJECTIVE Studies of primary adrenal insufficiency (PAI) in African children are rare, but in Sudan, congenital adrenal hyperplasia (CAH) and triple A syndrome are the most common genetic causes. Differential diagnosis is challenging, especially in resource-limited settings, where presentation can mimic common childhood diseases and facilities for biochemical and genetic testing may be restricted. DESIGN Forty-eight patients from 43 families (31 male:17 female) with PAI were included (CAH/triple A excluded). Additional features seen included white matter changes on magnetic resonance imaging, auto-immune features, and/or obesity. Sanger and whole exome sequencing (WES) were employed for diagnosis, confirmation, and segregation with in vitro assays to investigate potential splice defects. RESULTS In 21/43 families, a genetic aetiology consistent with non-autoimmune PAI was discovered, and in 3 families, autoimmune regulator (AIRE) mutations were found, indicating an autoimmune origin. In Sudan, adenosine triphosphate (ATP) binding cassette subfamily D member 1 (ABCD1)/nicotinamide nucleotide transhydrogenase (NNT)/AIRE mutations were commonest, including recurrent NNT splice and AIRE deletion mutations. In 2 families, we identified ARSA mutations fitting a diagnosis of metachromatic leucodystrophy (MLD), in which adrenal insufficiency has not previously been described. In the remaining 17 families, no causative gene mutations were found. Putative causal variants for comorbidities were concomitantly detected. CONCLUSIONS In this population, WES revealed itself as a useful frontline tool for the differential diagnosis of individuals presenting with adrenal insufficiency, including discrimination between MLD and adrenoleucodystrophy and giving plausible gene defects for additional comorbidities such as obesity. Such genetic diagnoses are crucial to design optimal treatment plans and for genetic counselling in affected individuals and their families.
Collapse
Affiliation(s)
- Salwa A Musa
- Department of Paediatric Endocrinology and Diabetes, Gaafar Ibn Auf Paediatric Tertiary Hospital, Khartoum 11114, Sudan
- Department of Paediatrics and Child Health Faculty of Medicine, Al-Neelain University, Khartoum 11121, Sudan
| | - Mohamed A Abdullah
- Department of Paediatric Endocrinology and Diabetes, Gaafar Ibn Auf Paediatric Tertiary Hospital, Khartoum 11114, Sudan
- Department of Paediatrics, Faculty of Medicine, University of Khartoum, Khartoum 11115, Sudan
| | - Samar S Hassan
- Department of Paediatric Endocrinology and Diabetes, Gaafar Ibn Auf Paediatric Tertiary Hospital, Khartoum 11114, Sudan
| | - Luqman S Fauzi
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, United Kingdom
| | - Omer O Babiker
- Sudan Childhood Diabetes Center, Khartoum 11111, Sudan
- Department of Paediatrics, Faculty of Medicine and Health Sciences, Omdurman Islamic University, Omdurman 14415, Sudan
| | - Amna I Ahmed
- Department of Paediatric Endocrinology and Diabetes, Gaafar Ibn Auf Paediatric Tertiary Hospital, Khartoum 11114, Sudan
- Department of Paediatrics, Faculty of Medicine, University of Khartoum, Khartoum 11115, Sudan
| | - Marwa Mohammedali
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, United Kingdom
| | - Claire Hutchison
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, United Kingdom
| | - Ghassan Mohamadsalih
- Division of Endocrinology, Department of Paediatric Medicine, Sidra Medicine, Doha 26999, Qatar
| | - Charlotte L Hall
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, United Kingdom
| | - Saptarshi Maitra
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, United Kingdom
| | - Areej A Ibrahim
- Department of Paediatric Endocrinology and Diabetes, Gaafar Ibn Auf Paediatric Tertiary Hospital, Khartoum 11114, Sudan
| | - Younus Qamar
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, United Kingdom
| | - Avinaash V Maharaj
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, United Kingdom
| | - Lucia M Marroquin Ramirez
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, United Kingdom
| | - Jordan Read
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, United Kingdom
| | - Li F Chan
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, United Kingdom
| | - Louise A Metherell
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, United Kingdom
| | - Chris J Smith
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, United Kingdom
| |
Collapse
|
5
|
Akpunar M, Yalcin Kehribar D, Günaydın S, Koyuncu H, Celik ZB, Özgen M. Investigation of methylation status of interleukin-16 and autoimmune regulator gene promoter regions in Behçet's disease. Arch Rheumatol 2025; 40:80-86. [PMID: 40264473 PMCID: PMC12010259 DOI: 10.46497/archrheumatol.2025.11022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/16/2025] [Indexed: 04/24/2025] Open
Abstract
Objectives The aim of this study was to determine the epigenetic changes in interleukin-16 (IL-16) and autoimmune regulator (AIRE) genes in Behçet's disease (BD) and to investigate the relationship between these changes and the disease mechanism. Patients and methods Between October 2022 and January 2023, a total of 40 patients (20 males, 20 females; mean age: 37.0±11.4 years; range, 19 to 71 years) who met the 2014 International Criteria for Behçet's Disease with no concomitant diseases and who were either newly diagnosed or under follow-up and 40 age- and sex-matched healthy hospital staff as the control group (20 males, 20 females mean age: 35.1±5.7 years; range, 29 to 45 years) with no chronic diseases or active infections were included. Peripheral blood samples were obtained from all participants, and genomic deoxyribonucleic acid (DNA) was isolated. The DNA samples were modified using a bisulfite modification kit. Subsequently, the promoter methylation profiles of IL-16 and AIRE genes were determined using methylation-specific polymerase chain reaction (MSP) with primers specifically designed for methylation. Results In both BD and control groups, methylation was detected in the promoter region of IL-16, indicating a weak expression of the IL-16 gene. In contrast, while the promoter region of the AIRE gene was methylated in all control participants, it was unmethylated in all patients with BD. Conclusion This is the first study to evaluate the methylation status of both AIRE and IL-16 genes in BD. Our study results suggest that the promoter region of the AIRE gene is unmethylated in BD and that AIRE gene is activated in BD and produces autoimmune regulatory proteins that eliminate autoreactive T cells, suggesting a tendency toward autoimmunity in BD. These findings also suggest that IL-16, which is involved in the pathogenesis of many rheumatic diseases, does not play a significant role in the pathogenesis of BD.
Collapse
Affiliation(s)
- Melih Akpunar
- Department of Internal Medicine, Ondokuz Mayıs University Faculty of Medicine, Samsun, Türkiye
| | - Demet Yalcin Kehribar
- Department of Internal Medicine, Dokuz Eylül University Faculty of Medicine, İzmir, Türkiye
| | - Serkan Günaydın
- Department of Rheumatology, Ministry of Health Ordu Training and Research Hospital, Ordu, Türkiye
| | - Hilal Koyuncu
- Department of Medical Biology, Ondokuz Mayıs University Faculty of Medicine, Samsun, Türkiye
| | | | - Metin Özgen
- Department of Internal Medicine, Ondokuz Mayıs University Faculty of Medicine, Samsun, Türkiye
| |
Collapse
|
6
|
Giraud M, Peterson P. The Autoimmune Regulator (AIRE) Gene, The Master Activator of Self-Antigen Expression in the Thymus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1471:199-221. [PMID: 40067588 DOI: 10.1007/978-3-031-77921-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
It has been more than 20 years since the AIRE gene was discovered. The mutations in the AIRE gene cause a rare and life-threatening autoimmune disease with severe manifestations against a variety of organs. Since the identification of the AIRE gene in 1997, more than two decades of investigations have revealed key insights into the role of AIRE and its mode of action. These studies have shown that AIRE uniquely induces the expression of thousands of tissue-restricted self-antigens in the thymus. These self-antigens are presented to developing T cells, resulting in the deletion of the self-reactive T cells and the generation of regulatory T cells. Thus, AIRE is a master guardian in establishing and maintaining central immune tolerance.
Collapse
Affiliation(s)
- Matthieu Giraud
- INSERM, Nantes Université, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France.
| | - Pärt Peterson
- Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.
| |
Collapse
|
7
|
Geenen V, Savino W. History of the Thymus: From a Vestigial Organ to the Programming of Immunological Self-Tolerance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1471:1-19. [PMID: 40067582 DOI: 10.1007/978-3-031-77921-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
This introductive chapter presents the most important disruptions of concepts concerning the thymus since its discovery in Antique Greece. For centuries, the thymus was considered as a vestigial organ, and its role in T-cell differentiation was proposed only in the 1960s. Most recent studies attribute to the thymus an essential and unique role in programming central immunological self-tolerance. The basic mechanism implicated in this function is the transcription in the thymic epithelium of genes encoding precursors of neuroendocrine-related and tissue-restricted self-peptides. Their processing leads to the presentation of self-antigens by the major histocompatibility complex (MHC) machinery expressed by thymic epithelial and dendritic cells. Already during foetal life, this presentation promotes negative selection of T lymphocytes harbouring a receptor with high affinity for MHC/self-peptide complexes. Mainly after birth, this presentation also drives the generation of regulatory T cells specific for these complexes. Numerous studies, as well as the identification of Aire and Fezf2 genes, have shown that a thymus defect plays a crucial role in the development of autoimmunity. The discovery of the central tolerogenic action of the thymus revolutionized the whole field of immunology, and such knowledge will pave the way for innovative tolerogenic therapies against autoimmunity, the so heavy tribute paid by mankind for the extreme diversity and efficiency of adaptive immunity.
Collapse
Affiliation(s)
- Vincent Geenen
- University of Liège, GIGA Institute, GIGA-I, Immunoendocrinology, Liège, Belgium.
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Wolff ASB, Oftedal BE. Aire Mutations and Autoimmune Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1471:223-246. [PMID: 40067589 DOI: 10.1007/978-3-031-77921-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
Autoimmune diseases were first recognized by Mackay and Macfarlane Burnet in 1962 (Burnet and Mackay 1962). It is defined as the failure of an organism to tolerate its own cells and tissue, resulting in an aberrant immune response by lymphocytes (T-cell-driven disease) and/or antibodies (B-cell-driven disease). Autoimmune diseases can be divided into systemic autoimmune diseases and specific organ- or body-system diseases, including the endocrine, gastro-intestinal, and neurological systems, and it's not uncommon for individuals to experience multiple autoimmune conditions simultaneously. Autoimmune diseases affect ~10% of the population (Conrad et al. 2023), causing chronic suffering, vital organ failure, and premature death at the level of cancer and cardiovascular diseases. The rising incidence of these disorders poses a significant challenge to healthcare systems, underscoring the critical need to elucidate disease mechanisms and translate these into effective diagnostic tests and therapeutics. Current therapeutic strategies are predominantly confined to symptomatic relief through replacement therapy and broad-spectrum anti-inflammatory drugs, often resulting in increased disease burden, diminished life quality, and elevated mortality rates. Most autoimmune diseases are likely a result of a combination of different genetic and environmental factors. However, there are a few exemptions, like the autoimmune polyendocrine syndrome type 1 (APS-1) caused by mutations in the Autoimmune Regulator (AIRE) gene.
Collapse
Affiliation(s)
- Anette S B Wolff
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | | |
Collapse
|
9
|
Matsumoto M, Sobral F, Cardoso JS, Oya T, Tsuneyama K, Matsumoto M, Alves NL. The Ins and Outs of Thymic Epithelial Cell Differentiation and Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1471:51-79. [PMID: 40067584 DOI: 10.1007/978-3-031-77921-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
The thymus is an essential component of the immune system responsible for producing T cells. It is anatomically divided into two main regions: the outer cortex and the inner medulla. This chapter summarizes our current understanding of thymic stromal cell functions, with a particular focus on the interactions between these cells and T cells. This exploration aims to shed light on the pathogenesis of immune disorders, including autoimmunity.
Collapse
Affiliation(s)
- Minoru Matsumoto
- Department of Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Francisco Sobral
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Thymus Development and Function Laboratory, Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - João S Cardoso
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Thymus Development and Function Laboratory, Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Takeshi Oya
- Department of Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Mitsuru Matsumoto
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima, Japan.
| | - Nuno L Alves
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- Thymus Development and Function Laboratory, Instituto de Biologia Molecular e Celular, Porto, Portugal.
| |
Collapse
|
10
|
Michelson DA, Mathis D. Thymic Mimetic Cells: Ontogeny as Immunology. Annu Rev Cell Dev Biol 2024; 40:283-300. [PMID: 38608315 PMCID: PMC11446667 DOI: 10.1146/annurev-cellbio-112122-023316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Medullary thymic epithelial cells (mTECs) generate immunological self-tolerance by ectopically expressing peripheral-tissue antigens (PTAs) within the thymus to preview the peripheral self to maturing T cells. Recent work, drawing inspiration from old histological observations, has shown that subtypes of mTECs, collectively termed mimetic cells, co-opt developmental programs from throughout the organism to express biologically coherent groups of PTAs. Here, we review key aspects of mimetic cells, especially as they relate to the larger contexts of molecular, cellular, developmental, and evolutionary biology. We highlight lineage-defining transcription factors as key regulators of mimetic cells and speculate as to what other factors, including Aire and the chromatin potential of mTECs, permit mimetic cell differentiation and function. Last, we consider what mimetic cells can teach us about not only the thymus but also other tissues.
Collapse
Affiliation(s)
- Daniel A Michelson
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Boston, Massachusetts, USA;
| | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
11
|
Pomenti SF, Flashner SP, Del Portillo A, Nakagawa H, Gabre J, Rustgi AK, Katzka DA. Clinical and Biological Perspectives on Noncanonical Esophageal Squamous Cell Carcinoma in Rare Subtypes. Am J Gastroenterol 2024:00000434-990000000-01310. [PMID: 39166765 DOI: 10.14309/ajg.0000000000003041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 07/30/2024] [Indexed: 08/23/2024]
Abstract
Esophageal squamous cell carcinoma (ESCC) remains the most common malignancy of the esophagus worldwide. Environmental and lifestyle exposures such as alcohol and tobacco have been well defined in the pathogenesis of ESCC, acting in concert with cell intrinsic epigenomic, genomic and transcriptomic changes. However, a variety of nonenvironmental etiologies including Fanconi anemia, lichen planus, chronic mucocutaneous candidiasis, esophageal epidermoid metaplasia, epidermolysis bullosa, tylosis, esophageal atresia, and achalasia receive minimal attention despite a high risk of ESCC in these diseases. The goal of this review was to promote clinical recognition and suggest a diagnostic framework for earlier detection of ESCC in patients with these rare diseases. In all the discussed conditions, a change in symptoms should trigger a prompt endoscopic evaluation, and endoscopic surveillance programs with advanced imaging techniques and chromoendoscopy should be considered. Moreover, we leverage the convergence of these diseases on ESCC to identify common mechanisms underlying malignant transformation including aberrant proliferation, mucosal barrier dysfunction, increased inflammation, and genome instability. In this study, we summarize the clinical presentation, pathologic findings, potential screening strategies, and common mechanisms of malignant transformation associated with these rare diseases that drive ESCC.
Collapse
Affiliation(s)
- Sydney F Pomenti
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, New York, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, USA
- Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Samuel P Flashner
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, New York, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, USA
- Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Armando Del Portillo
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, New York, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, USA
- Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Hiroshi Nakagawa
- Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Joel Gabre
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, New York, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, USA
- Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Anil K Rustgi
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, New York, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, USA
- Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - David A Katzka
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, New York, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, USA
- Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
12
|
Chiu H, Weinstein KN, Spath S, Hu A, Varela S, Obata-Ninomiya K, Ziegler SF. SKI Regulates Medullary Thymic Epithelial Cell Differentiation to Control Peripheral T Cell Responses in Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:52-62. [PMID: 38767415 PMCID: PMC11182718 DOI: 10.4049/jimmunol.2300262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 04/15/2024] [Indexed: 05/22/2024]
Abstract
The thymus is an important site for the establishment of an appropriate immune response through positive and negative selection of developing T cells. During selection, developing T cells interact with cortical and medullary thymic epithelial cells (TECs), termed cTECs and mTECs, respectively. Using a Foxn1Cre+/-SKIfl/fl mouse model, we found that TEC-specific deletion of SKI reduced the mTEC compartment in the thymus and that tissue-restricted Ag expression in mTECs was altered. This decrease in the medullary area led to a decrease in CD4 thymocyte cellularity; however, mature CD4 cellularity in the spleen remained normal. Interestingly, naive CD4 T cells purified from SKI-deleted mice showed a defect in proliferation in vitro after global TCR stimulation, and these mice were significantly protected from developing experimental autoimmune encephalomyelitis compared with the control mice. Overall, our findings suggest that SKI signaling in the thymus regulates mTEC differentiation and function as well as downstream peripheral T cell responses and provide evidence for targeting SKI in T cell-driven autoimmune diseases such as multiple sclerosis.
Collapse
|
13
|
Alrufaidi AM, Alnashery MM, Alghanimi AA, Elmansor REA, Ghazy RM. An uncommon presentation of autoimmune polyglandular syndrome type 1 (APS-1)-A case report. Clin Case Rep 2024; 12:e9015. [PMID: 38808199 PMCID: PMC11130226 DOI: 10.1002/ccr3.9015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024] Open
Abstract
Key Clinical Message Autoimmune polyglandular syndrome type 1 (APS-1) is a rare disorder defined by the presence of at least two of the following conditions: chronic mucocutaneous candidiasis (CMC), chronic hypoparathyroidism, and Addison's syndrome. Despite the lack of CMC and autoimmune history, APS-1 can be diagnosed using genetic testing. We present the case of a 28-year-old female patient with a history of hypocalcemia due to hypoparathyroidism since the age of 2 years. She presented to the endocrine clinic with hypogonadism, primary amenorrhea, and primary ovarian insufficiency. Addison's disease was eventually diagnosed, despite a negative Synacthen test. The adrenal crisis required intravenous hydrocortisone therapy. No CMC was documented, and there was no family history of such conditions. The diagnosis of APS-1 was confirmed by genetic testing, revealing homozygous pathogenic variants of the autoimmune regulator gene. Management included oral calcium and calcitriol and oral hydrocortisone and fludrocortisone for Addison's disease. Hormonal induction of secondary sexual characteristics was initiated. The patient received combined oral estrogen and progesterone pills. This case highlights the critical significance of early recognition, thorough evaluation, and tailored treatment for patients with APS-1 to enhance their quality of life and mitigate potentially life-threatening complications. This underscores the importance of screening for associated minor autoimmune diseases as part of a holistic approach to care.
Collapse
Affiliation(s)
- Ali M. Alrufaidi
- Endocrinology DepartmentAl‐Qunfudhdh General HospitalMakkahSaudi Arabia
| | | | | | | | - Ramy Mohamed Ghazy
- Family and Community Medicine DepartmentCollege of Medicine, King Khalid UniversityAbhaSaudi Arabia
- Tropical Health DepartmentHigh Institute of Public Health, Alexandria UniversityAlexandriaEgypt
| |
Collapse
|
14
|
Miller CN, Waterfield MR, Gardner JM, Anderson MS. Aire in Autoimmunity. Annu Rev Immunol 2024; 42:427-53. [PMID: 38360547 PMCID: PMC11774315 DOI: 10.1146/annurev-immunol-090222-101050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The role of the autoimmune regulator (Aire) in central immune tolerance and thymic self-representation was first described more than 20 years ago, but fascinating new insights into its biology continue to emerge, particularly in the era of advanced single-cell genomics. We briefly describe the role of human genetics in the discovery of Aire, as well as insights into its function gained from genotype-phenotype correlations and the spectrum of Aire-associated autoimmunity-including insights from patients with Aire mutations with broad and diverse implications for human health. We then highlight emerging trends in Aire biology, focusing on three topic areas. First, we discuss medullary thymic epithelial diversity and the role of Aire in thymic epithelial development. Second, we highlight recent developments regarding the molecular mechanisms of Aire and its binding partners. Finally, we describe the rapidly evolving biology of the identity and function of extrathymic Aire-expressing cells (eTACs), and a novel eTAC subset called Janus cells, as well as their potential roles in immune homeostasis.
Collapse
Affiliation(s)
- Corey N Miller
- Diabetes Center, University of California, San Francisco, California, USA; ,
- Department of Medicine, University of California, San Francisco, California, USA
| | - Michael R Waterfield
- Department of Pediatrics, University of California, San Francisco, California, USA
| | - James M Gardner
- Diabetes Center, University of California, San Francisco, California, USA; ,
- Department of Surgery, University of California, San Francisco, California, USA
| | - Mark S Anderson
- Diabetes Center, University of California, San Francisco, California, USA; ,
- Department of Medicine, University of California, San Francisco, California, USA
| |
Collapse
|
15
|
Smith JA, Yuen BTK, Purtha W, Balolong JM, Phipps JD, Crawford F, Bluestone JA, Kappler JW, Anderson MS. Aire mediates tolerance to insulin through thymic trimming of high-affinity T cell clones. Proc Natl Acad Sci U S A 2024; 121:e2320268121. [PMID: 38709934 PMCID: PMC11098115 DOI: 10.1073/pnas.2320268121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/16/2024] [Indexed: 05/08/2024] Open
Abstract
Insulin is a central autoantigen in the pathogenesis of T1D, and thymic epithelial cell expression of insulin under the control of the Autoimmune Regulator (Aire) is thought to be a key component of maintaining tolerance to insulin. In spite of this general working model, direct detection of this thymic selection on insulin-specific T cells has been somewhat elusive. Here, we used a combination of highly sensitive T cell receptor transgenic models for detecting thymic selection and sorting and sequencing of Insulin-specific CD4+ T cells from Aire-deficient mice as a strategy to further define their selection. This analysis revealed a number of unique t cell receptor (TCR) clones in Aire-deficient hosts with high affinity for insulin/major histocompatibility complex (MHC) ligands. We then modeled the thymic selection of one of these clones in Aire-deficient versus wild-type hosts and found that this model clone could escape thymic negative selection in the absence of thymic Aire. Together, these results suggest that thymic expression of insulin plays a key role in trimming and removing high-affinity insulin-specific T cells from the repertoire to help promote tolerance.
Collapse
Affiliation(s)
- Jennifer A. Smith
- Diabetes Center, University of California San Francisco, San Francisco, CA94143
| | - Benjamin T. K. Yuen
- Diabetes Center, University of California San Francisco, San Francisco, CA94143
| | - Whitney Purtha
- Diabetes Center, University of California San Francisco, San Francisco, CA94143
| | - Jared M. Balolong
- Diabetes Center, University of California San Francisco, San Francisco, CA94143
| | - Jonah D. Phipps
- Diabetes Center, University of California San Francisco, San Francisco, CA94143
| | - Frances Crawford
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO80206
| | - Jeffrey A. Bluestone
- Sean N. Parker Autoimmune Research Laboratory, Diabetes Center, University of California, San Francisco, CA94143
| | - John W. Kappler
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO80206
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO80045
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| | - Mark S. Anderson
- Diabetes Center, University of California San Francisco, San Francisco, CA94143
| |
Collapse
|
16
|
Sjøgren T, Islam S, Filippov I, Jebrzycka A, Sulen A, Breivik LE, Hellesen A, Jørgensen AP, Lima K, Tserel L, Kisand K, Peterson P, Ranki A, Husebye ES, Oftedal BE, Wolff AS. Single cell characterization of blood and expanded regulatory T cells in autoimmune polyendocrine syndrome type 1. iScience 2024; 27:109610. [PMID: 38632993 PMCID: PMC11022049 DOI: 10.1016/j.isci.2024.109610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/06/2024] [Accepted: 03/25/2024] [Indexed: 04/19/2024] Open
Abstract
Immune tolerance fails in autoimmune polyendocrine syndrome type 1 (APS-1) because of AIRE mutations. We have used single cell transcriptomics to characterize regulatory T cells (Tregs) sorted directly from blood and from in vitro expanded Tregs in APS-1 patients compared to healthy controls. We revealed only CD52 and LTB (down) and TXNIP (up) as consistently differentially expressed genes in the datasets. There were furthermore no large differences of the TCR-repertoire of expanded Tregs between the cohorts, but unique patients showed a more restricted use of specific clonotypes. We also found that in vitro expanded Tregs from APS-1 patients had similar suppressive capacity as controls in co-culture assays, despite expanding faster and having more exhausted cells. Our results suggest that APS-1 patients do not have intrinsic defects in their Treg functionality, and that their Tregs can be expanded ex vivo for potential therapeutic applications.
Collapse
Affiliation(s)
- Thea Sjøgren
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Shahinul Islam
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Igor Filippov
- QIAGEN Aarhus A/S, Aarhus, Denmark
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | | | - André Sulen
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Lars E. Breivik
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | | | | | - Kari Lima
- Department of Medicine, Akershus University Hospital, Lørenskog, Norway
| | - Liina Tserel
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Pärt Peterson
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Annamari Ranki
- Department of Dermatology, Allergology and Venereology, University of Helsinki and Helsinki University Hospital, Inflammation Centre, Helsinki, Finland
| | - Eystein S. Husebye
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Bergithe E. Oftedal
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Anette S.B. Wolff
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
17
|
Källberg E, Mehmeti-Ajradini M, Björk Gunnarsdottir F, Göransson M, Bergenfelz C, Allaoui Fredriksson R, Hagerling C, Johansson ME, Welinder C, Jirström K, Leandersson K. AIRE is expressed in breast cancer TANs and TAMs to regulate the extrinsic apoptotic pathway and inflammation. J Leukoc Biol 2024; 115:664-678. [PMID: 38060995 DOI: 10.1093/jleuko/qiad152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/02/2023] [Accepted: 11/19/2023] [Indexed: 04/02/2024] Open
Abstract
The autoimmune regulator (AIRE) is a transcriptional regulator expressed in the thymus and is necessary for maintaining immunological self-tolerance. Extrathymic AIRE expression is rare, and a role for AIRE in tumor-associated innate immune cells has not yet been established. In this study, we show that AIRE is expressed in human pro-tumor neutrophils. In breast cancer, AIRE was primarily located to tumor-associated neutrophils (TANs), and to a lesser extent to tumor-associated macrophages (TAMs) and tumor cells. Expression of AIRE in TAN/TAMs, but not in cancer cells, was associated with an adverse prognosis. We show that the functional role for AIRE in neutrophils and macrophages is to regulate expression of immune mediators and the extrinsic apoptotic pathway involving the Fas/TNFR death receptors and cathepsin G. Here, we propose that the role for AIRE in TAN/TAMs in breast tumors is to regulate cell death and inflammation, thus promoting tumor progression.
Collapse
Affiliation(s)
- Eva Källberg
- Cancer Immunology, Department of Translational Medicine, Lund University, Jan Waldenströmsg 35, 214 28 Malmö, Sweden
| | - Meliha Mehmeti-Ajradini
- Cancer Immunology, Department of Translational Medicine, Lund University, Jan Waldenströmsg 35, 214 28 Malmö, Sweden
| | - Frida Björk Gunnarsdottir
- Cancer Immunology, Department of Translational Medicine, Lund University, Jan Waldenströmsg 35, 214 28 Malmö, Sweden
| | - Marcus Göransson
- Cancer Immunology, Department of Translational Medicine, Lund University, Jan Waldenströmsg 35, 214 28 Malmö, Sweden
| | - Caroline Bergenfelz
- Cancer Immunology, Department of Translational Medicine, Lund University, Jan Waldenströmsg 35, 214 28 Malmö, Sweden
| | - Roni Allaoui Fredriksson
- Cancer Immunology, Department of Translational Medicine, Lund University, Jan Waldenströmsg 35, 214 28 Malmö, Sweden
| | - Catharina Hagerling
- Cancer Immunology, Department of Translational Medicine, Lund University, Jan Waldenströmsg 35, 214 28 Malmö, Sweden
| | - Martin E Johansson
- Sahlgrenska Center for Cancer Research, Department of Biomedicine, Vasaparken Universitetsplatsen 1, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Charlotte Welinder
- Mass Spectrometry, Department for Clinical Sciences, Lund University, Sölvegatan 19, 221 84 Lund, Sweden
| | - Karin Jirström
- Oncology and Therapeutic Pathology, Department of Clinical Sciences Lund, Lund University, Sölvegatan 19, 221 84 Lund, Sweden
| | - Karin Leandersson
- Cancer Immunology, Department of Translational Medicine, Lund University, Jan Waldenströmsg 35, 214 28 Malmö, Sweden
| |
Collapse
|
18
|
Shirafkan F, Hensel L, Rattay K. Immune tolerance and the prevention of autoimmune diseases essentially depend on thymic tissue homeostasis. Front Immunol 2024; 15:1339714. [PMID: 38571951 PMCID: PMC10987875 DOI: 10.3389/fimmu.2024.1339714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Abstract
The intricate balance of immune reactions towards invading pathogens and immune tolerance towards self is pivotal in preventing autoimmune diseases, with the thymus playing a central role in establishing and maintaining this equilibrium. The induction of central immune tolerance in the thymus involves the elimination of self-reactive T cells, a mechanism essential for averting autoimmunity. Disruption of the thymic T cell selection mechanisms can lead to the development of autoimmune diseases. In the dynamic microenvironment of the thymus, T cell migration and interactions with thymic stromal cells are critical for the selection processes that ensure self-tolerance. Thymic epithelial cells are particularly significant in this context, presenting self-antigens and inducing the negative selection of autoreactive T cells. Further, the synergistic roles of thymic fibroblasts, B cells, and dendritic cells in antigen presentation, selection and the development of regulatory T cells are pivotal in maintaining immune responses tightly regulated. This review article collates these insights, offering a comprehensive examination of the multifaceted role of thymic tissue homeostasis in the establishment of immune tolerance and its implications in the prevention of autoimmune diseases. Additionally, the developmental pathways of the thymus are explored, highlighting how genetic aberrations can disrupt thymic architecture and function, leading to autoimmune conditions. The impact of infections on immune tolerance is another critical area, with pathogens potentially triggering autoimmunity by altering thymic homeostasis. Overall, this review underscores the integral role of thymic tissue homeostasis in the prevention of autoimmune diseases, discussing insights into potential therapeutic strategies and examining putative avenues for future research on developing thymic-based therapies in treating and preventing autoimmune conditions.
Collapse
|
19
|
Oftedal BE, Sjøgren T, Wolff ASB. Interferon autoantibodies as signals of a sick thymus. Front Immunol 2024; 15:1327784. [PMID: 38455040 PMCID: PMC10917889 DOI: 10.3389/fimmu.2024.1327784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/07/2024] [Indexed: 03/09/2024] Open
Abstract
Type I interferons (IFN-I) are key immune messenger molecules that play an important role in viral defense. They act as a bridge between microbe sensing, immune function magnitude, and adaptive immunity to fight infections, and they must therefore be tightly regulated. It has become increasingly evident that thymic irregularities and mutations in immune genes affecting thymic tolerance can lead to the production of IFN-I autoantibodies (autoAbs). Whether these biomarkers affect the immune system or tissue integrity of the host is still controversial, but new data show that IFN-I autoAbs may increase susceptibility to severe disease caused by certain viruses, including SARS-CoV-2, herpes zoster, and varicella pneumonia. In this article, we will elaborate on disorders that have been identified with IFN-I autoAbs, discuss models of how tolerance to IFN-Is is lost, and explain the consequences for the host.
Collapse
Affiliation(s)
- Bergithe E. Oftedal
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Thea Sjøgren
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Anette S. B. Wolff
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
20
|
Takakura Y, Machida M, Terada N, Katsumi Y, Kawamura S, Horie K, Miyauchi M, Ishikawa T, Akiyama N, Seki T, Miyao T, Hayama M, Endo R, Ishii H, Maruyama Y, Hagiwara N, Kobayashi TJ, Yamaguchi N, Takano H, Akiyama T, Yamaguchi N. Mitochondrial protein C15ORF48 is a stress-independent inducer of autophagy that regulates oxidative stress and autoimmunity. Nat Commun 2024; 15:953. [PMID: 38296961 PMCID: PMC10831050 DOI: 10.1038/s41467-024-45206-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 01/18/2024] [Indexed: 02/02/2024] Open
Abstract
Autophagy is primarily activated by cellular stress, such as starvation or mitochondrial damage. However, stress-independent autophagy is activated by unclear mechanisms in several cell types, such as thymic epithelial cells (TECs). Here we report that the mitochondrial protein, C15ORF48, is a critical inducer of stress-independent autophagy. Mechanistically, C15ORF48 reduces the mitochondrial membrane potential and lowers intracellular ATP levels, thereby activating AMP-activated protein kinase and its downstream Unc-51-like kinase 1. Interestingly, C15ORF48-dependent induction of autophagy upregulates intracellular glutathione levels, promoting cell survival by reducing oxidative stress. Mice deficient in C15orf48 show a reduction in stress-independent autophagy in TECs, but not in typical starvation-induced autophagy in skeletal muscles. Moreover, C15orf48-/- mice develop autoimmunity, which is consistent with the fact that the stress-independent autophagy in TECs is crucial for the thymic self-tolerance. These results suggest that C15ORF48 induces stress-independent autophagy, thereby regulating oxidative stress and self-tolerance.
Collapse
Affiliation(s)
- Yuki Takakura
- Department of Molecular Cardiovascular Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Moeka Machida
- Department of Molecular Cardiovascular Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Natsumi Terada
- Department of Molecular Cardiovascular Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Yuka Katsumi
- Department of Molecular Cardiovascular Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Seika Kawamura
- Department of Molecular Cardiovascular Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Kenta Horie
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Maki Miyauchi
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan
| | - Tatsuya Ishikawa
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan
| | - Nobuko Akiyama
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Takao Seki
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Takahisa Miyao
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan
| | - Mio Hayama
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan
| | - Rin Endo
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan
| | - Hiroto Ishii
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan
| | - Yuya Maruyama
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan
| | - Naho Hagiwara
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Tetsuya J Kobayashi
- Institute of Industrial Science, The University of Tokyo, Tokyo, 153-8505, Japan
| | - Naoto Yamaguchi
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Hiroyuki Takano
- Department of Molecular Cardiovascular Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Taishin Akiyama
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan.
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan.
| | - Noritaka Yamaguchi
- Department of Molecular Cardiovascular Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan.
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan.
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan.
| |
Collapse
|
21
|
Lucas CL. Human genetic errors of immunity illuminate an adaptive arsenal model of rapid defenses. Trends Immunol 2024; 45:113-126. [PMID: 38302340 DOI: 10.1016/j.it.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 02/03/2024]
Abstract
New discoveries in the field of human monogenic immune diseases highlight critical genes and pathways governing immune responses. Here, I describe how the ~500 currently defined human inborn errors of immunity help shape what I propose is an 'adaptive arsenal model of rapid defenses', emphasizing the set of immunological defenses poised for rapid responses in the natural environment. This arsenal blurs the lines between innate and adaptive immunity and is established through molecular relays between cell types, often traversing from sensors (pathogen detection) to intermediates to executioners (pathogen clearance) via soluble factors. Predictions and missing information based on the adaptive arsenal model are discussed, as are emergent and outstanding questions fundamental to advances in the field.
Collapse
Affiliation(s)
- Carrie L Lucas
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
22
|
Yin M, Smith JA, Chou M, Chan J, Jittayasothorn Y, Gould DB, Caspi RR, Anderson MS, DeFranco AL. Tracking the role of Aire in immune tolerance to the eye with a TCR transgenic mouse model. Proc Natl Acad Sci U S A 2024; 121:e2311487121. [PMID: 38261611 PMCID: PMC10835137 DOI: 10.1073/pnas.2311487121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/04/2023] [Indexed: 01/25/2024] Open
Abstract
Roughly one-half of mice with partial defects in two immune tolerance pathways (AireGW/+Lyn-/- mice) spontaneously develop severe damage to their retinas due to T cell reactivity to Aire-regulated interphotoreceptor retinoid-binding protein (IRBP). Single-cell T cell receptor (TCR) sequencing of CD4+ T cells specific for a predominate epitope of IRBP showed a remarkable diversity of autoantigen-specific TCRs with greater clonal expansions in mice with disease. TCR transgenic mice made with an expanded IRBP-specific TCR (P2.U2) of intermediate affinity exhibited strong but incomplete negative selection of thymocytes. This negative selection was absent in IRBP-/- mice and greatly defective in AireGW/+ mice. Most P2.U2+/- mice and all P2.U.2+/-AireGW/+ mice rapidly developed inflammation of the retina and adjacent uvea (uveitis). Aire-dependent IRBP expression in the thymus also promoted Treg differentiation, but the niche for this fate determination was small, suggesting differences in antigen presentation leading to negative selection vs. thymic Treg differentiation and a stronger role for negative selection in preventing autoimmune disease in the retina.
Collapse
Affiliation(s)
- Mianmian Yin
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA94143
| | - Jennifer A. Smith
- Diabetes Center, University of California, San Francisco, San Francisco, CA94143
| | - Marissa Chou
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA94143
| | - Jackie Chan
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA94143
| | | | - Douglas B. Gould
- Department of Ophthalmology, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA94143
- Department of Anatomy, Cardiovascular Research Institute, Bakar Aging Research Institute, and Institute for Human Genetics, University of California, San Francisco, San Francisco, CA94143
| | - Rachel R. Caspi
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD20892-1857
| | - Mark S. Anderson
- Diabetes Center, University of California, San Francisco, San Francisco, CA94143
- Department of Medicine, University of California, San Francisco, San Francisco, CA94143
| | - Anthony L. DeFranco
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA94143
| |
Collapse
|
23
|
Gounari E, Elfeky R, Ghataore L, Muhi-Iddin N, Buchanan CR, Arya VB. A well child with prolonged oral thrush: an unexpected diagnostic journey. Arch Dis Child Educ Pract Ed 2024; 109:47-54. [PMID: 37985017 DOI: 10.1136/archdischild-2023-325497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023]
Abstract
Oral thrush is a familiar presentation in both general practice and paediatrics, and is usually responsive to treatment in the community. Here, we present the diagnostic journey of a previously well boy aged 3 years who presented with treatment-resistant thrush and describe how 'unexpected' results led to eventual diagnosis and management. This intriguing case was managed jointly by district hospital general paediatric team and tertiary hospital specialist teams.
Collapse
Affiliation(s)
- Eleni Gounari
- Department of Paediatrics, East Sussex Hospitals NHS Trust, St Leonards-on-Sea, UK
| | - Reem Elfeky
- Department of Immunology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Immunity and Transplantation, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Lea Ghataore
- Department of Clinical Biochemistry (Viapath), King's College Hospital, London, UK
| | - Nadia Muhi-Iddin
- Department of Paediatrics, East Sussex Hospitals NHS Trust, St Leonards-on-Sea, UK
| | - Charles R Buchanan
- Department of Child Health, King's College Hospital NHS Foundation Trust, London, UK
| | - Ved Bhushan Arya
- Department of Child Health, King's College Hospital NHS Foundation Trust, London, UK
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
24
|
Zhou JZ, Huang B, Pei B, Sun GW, Pawlitz MD, Zhang W, Li X, Hokynar KC, Yao F, Perera MLW, Wei S, Zheng S, Polin LA, Poulik JM, Ranki A, Krohn K, Cunningham-Rundles C, Yang N, Bhagwat AS, Yu K, Peterson P, Kisand K, Vuong BQ, Cerutti A, Chen K. A Germinal Center Checkpoint of AIRE in B Cells Limits Antibody Diversification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.574926. [PMID: 38260362 PMCID: PMC10802573 DOI: 10.1101/2024.01.10.574926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
In response to antigens, B cells undergo affinity maturation and class switching mediated by activation-induced cytidine deaminase (AID) in germinal centers (GCs) of secondary lymphoid organs, but uncontrolled AID activity can precipitate autoimmunity and cancer. The regulation of GC antibody diversification is of fundamental importance but not well understood. We found that autoimmune regulator (AIRE), the molecule essential for T cell tolerance, is expressed in GC B cells in a CD40-dependent manner, interacts with AID and negatively regulates antibody affinity maturation and class switching by inhibiting AID function. AIRE deficiency in B cells caused altered antibody repertoire, increased somatic hypermutations, elevated autoantibodies to T helper 17 effector cytokines and defective control of skin Candida albicans. These results define a GC B cell checkpoint of humoral immunity and illuminate new approaches of generating high-affinity neutralizing antibodies for immunotherapy.
Collapse
Affiliation(s)
- Jordan Z. Zhou
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
- These authors contributed equally
| | - Bihui Huang
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
- The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
- These authors contributed equally
| | - Bo Pei
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
| | - Guang Wen Sun
- School of Applied Science, Republic Polytechnic, Singapore 738984, Singapore
| | - Michael D. Pawlitz
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
| | - Wei Zhang
- Beijing Genomics Institute (BGI)-Shenzhen, Guangdong 518083, China
| | - Xinyang Li
- Beijing Genomics Institute (BGI)-Shenzhen, Guangdong 518083, China
| | - Kati C. Hokynar
- Department of Virology, University of Helsinki, Helsinki 00029, Finland
| | - Fayi Yao
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | | | - Shanqiao Wei
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | - Simin Zheng
- School of Biological Sciences, Nanyang Technological University, Singapore 636921, Singapore
| | - Lisa A. Polin
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University, Detroit, MI 48201, USA
| | - Janet M. Poulik
- Department of Pathology, Children’s Hospital of Michigan, Detroit, MI 48201, USA
| | - Annamari Ranki
- Department of Dermatology and Allergic Diseases, University of Helsinki and Helsinki University Hospital, Helsinki 00250, Finland
| | - Kai Krohn
- Helsinki University Hospital Research Institute, Biomedicum, Helsinki 00290, Finland
| | | | - Naibo Yang
- Beijing Genomics Institute (BGI)-Shenzhen, Guangdong 518083, China
- Complete Genomics Inc., Mountain View, California 94043, USA
| | - Ashok S. Bhagwat
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University, Detroit, MI 48201, USA
| | - Kefei Yu
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Pärt Peterson
- Department of Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Kai Kisand
- Department of Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Bao Q. Vuong
- Department of Biology, City College of New York, New York, NY 10031, USA
| | - Andrea Cerutti
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mucosal Immunology Studies Team, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Maryland 20892, USA
| | - Kang Chen
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
- School of Biological Sciences, Nanyang Technological University, Singapore 636921, Singapore
- Lead Contact
| |
Collapse
|
25
|
Sjøgren T, Bjune JI, Husebye ES, Oftedal BE, Wolff ASB. Regulatory T cells in autoimmune primary adrenal insufficiency. Clin Exp Immunol 2024; 215:47-57. [PMID: 37578839 PMCID: PMC10776243 DOI: 10.1093/cei/uxad087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/01/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023] Open
Abstract
Primary adrenal insufficiency (PAI) is most often caused by an autoimmune destruction of the adrenal cortex resulting in failure to produce cortisol and aldosterone. The aetiology is thought to be a combination of genetic and environmental risk factors, leading to breakdown of immunological tolerance. Regulatory T cells (Tregs) are deficient in many autoimmune disorders, but it is not known whether they contribute to development of PAI. We aimed to investigate the frequency and function of naive and expanded Tregs in patients with PAI and polyendocrine syndromes compared to age- and gender-matched healthy controls. Flow cytometry was used to assess the frequency and characterize functional markers of blood Tregs in PAI (N = 15). Expanded Treg suppressive abilities were assessed with a flow cytometry based suppression assay (N = 20), while bulk RNA-sequencing was used to examine transcriptomic differences (N = 16) and oxygen consumption rate was measured by a Seahorse cell metabolic assay (N = 11). Our results showed that Treg frequency and suppressive capacity were similar between patients and controls. An increased expression of killer-cell leptin-like receptors and mitochondrial genes was revealed in PAI patients, but their expanded Tregs did not display signs of mitochondrial dysfunction. Our findings do not support a clear role for Tregs in the contribution of PAI development.
Collapse
Affiliation(s)
- Thea Sjøgren
- Endocrine Medicine Group, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Jan-Inge Bjune
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| | - Eystein S Husebye
- Endocrine Medicine Group, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Bergithe E Oftedal
- Endocrine Medicine Group, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Anette S B Wolff
- Endocrine Medicine Group, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
26
|
Filipp D, Manning J, Petrusová J. Extrathymic AIRE-Expressing Cells: A Historical Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1444:33-49. [PMID: 38467971 DOI: 10.1007/978-981-99-9781-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Since its discovery, Aire has been the topic of numerous studies in its role as a transcriptional regulator in the thymus where it promotes the "promiscuous" expression of a large repertoire of tissue-restricted antigens (TRAs) that are normally expressed only in the immune periphery. This process occurs in specialized medullary thymic epithelial cells (mTECs) and mediates the elimination of self-reactive T cells or promotes their conversion to the Foxp3+ regulatory T cell lineage, both of which are required for the prevention of autoimmunity. In recent years, there has been increasing interest in the role of extrathymic Aire expression in peripheral organs. The focus has primarily been on the identification of the cellular source(s) and mechanism(s) by which extrathymic AIRE affects tolerance-related or other physiological processes. A cadre of OMICs tools including single cell RNA sequencing and novel transgenic models to trace Aire expression to perform lineage tracing experiments have shed light on a phenomenon that is more complex than previously thought. In this chapter, we provide a deeper analysis of how extrathymic Aire research has developed and progressed, how cellular sources were identified, and how the function of AIRE was determined. Current data suggests that extrathymic AIRE fulfills a function that differs from what has been observed in the thymus and strongly argues that its main purpose is to regulate transcriptional programs in a cell content-dependent manner. Surprisingly, there is data that also suggests a non-transcriptional role of extrathymic AIRE in the cytoplasm. We have arrived at a potential turning point that will take the field from the classical understanding of AIRE as a transcription factor in control of TRA expression to its role in immunological and non-immunological processes in the periphery.
Collapse
Affiliation(s)
- Dominik Filipp
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Jasper Manning
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Petrusová
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
27
|
Peterson P. Novel Insights into the Autoimmunity from the Genetic Approach of the Human Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1444:3-18. [PMID: 38467969 DOI: 10.1007/978-981-99-9781-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Autoimmune-polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a monogenic inborn error of autoimmunity that is caused by damaging germline variants in the AIRE gene and clinically manifests with multiple autoimmune diseases in patients. Studies on the function of the AIRE gene, discovered in 1997, have contributed to fundamental aspects of human immunology as they have been important in understanding the basic mechanism of immune balance between self and non-self. This chapter looks back to the discovery of the AIRE gene, reviews its main properties, and discusses the key findings of its function in the thymus. However, more recent autoantibody profilings in APECED patients have highlighted a gap in our knowledge of the disease pathology and point to the need to revisit the current paradigm of AIRE function. The chapter reviews these new findings in APECED patients, which potentially trigger new thoughts on the mechanism of immune tolerance.
Collapse
Affiliation(s)
- Pärt Peterson
- Institute of Biomedical and Translational Medicine, University of Tartu, Tartu, Estonia.
| |
Collapse
|
28
|
Abramson J, Dobeš J, Lyu M, Sonnenberg GF. The emerging family of RORγt + antigen-presenting cells. Nat Rev Immunol 2024; 24:64-77. [PMID: 37479834 PMCID: PMC10844842 DOI: 10.1038/s41577-023-00906-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2023] [Indexed: 07/23/2023]
Abstract
Antigen-presenting cells (APCs) are master regulators of the immune response by directly interacting with T cells to orchestrate distinct functional outcomes. Several types of professional APC exist, including conventional dendritic cells, B cells and macrophages, and numerous other cell types have non-classical roles in antigen presentation, such as thymic epithelial cells, endothelial cells and granulocytes. Accumulating evidence indicates the presence of a new family of APCs marked by the lineage-specifying transcription factor retinoic acid receptor-related orphan receptor-γt (RORγt) and demonstrates that these APCs have key roles in shaping immunity, inflammation and tolerance, particularly in the context of host-microorganism interactions. These RORγt+ APCs include subsets of group 3 innate lymphoid cells, extrathymic autoimmune regulator-expressing cells and, potentially, other emerging populations. Here, we summarize the major findings that led to the discovery of these RORγt+ APCs and their associated functions. We discuss discordance in recent reports and identify gaps in our knowledge in this burgeoning field, which has tremendous potential to advance our understanding of fundamental immune concepts.
Collapse
Affiliation(s)
- Jakub Abramson
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Jan Dobeš
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Mengze Lyu
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Gregory F Sonnenberg
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
29
|
Khan GJ, Imtiaz A, Wang W, Duan H, Cao H, Zhai K, He N. Thymus as Incontrovertible Target of Future Immune Modulatory Therapeutics. Endocr Metab Immune Disord Drug Targets 2024; 24:1587-1610. [PMID: 38347798 DOI: 10.2174/0118715303283164240126104109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/01/2023] [Accepted: 12/22/2023] [Indexed: 10/22/2024]
Abstract
Thymus plays a crucial role in cellular immunity by acting as a warehouse for proliferating and differentiating lymphocytes. Thymic stromal cells educate T-cells to differentiate self from non-self antigens while nurse cells and thymoproteasome play a major role in the maturation and differentiation of T-cells. The thymic conditions dictate T-cells to cope with the risk of cancer development. A study was designed to demonstrate potential mechanisms behind the failure to eliminate tumors and impaired immune surveillance as well as the impact of delay in thymus regression on cancer and autoimmune disorders. Scientific literature from Pubmed; Scopus; WOS; JSTOR; National Library of Medicine Bethesda, Maryland; The New York Academy of Medicine; Library of Speech Rehabilitation, NY; St. Thomas' Hospital Library; The Wills Library of Guys Hospital; Repository of Kings College London; and Oxford Academic repository was explored for pathological, physiological, immunological and toxicological studies of thymus. Studies have shown that systemic chemotherapy may lead to micro inflammatory environment within thymus where conventionally and dynamically metastasized dormant cells seek refuge. The malfunctioning of the thymus and defective T and Treg cells, bypassing negative selection, contributes to autoimmune disorders, while AIRE and Fezf2 play significant roles in thymic epithelial cell solidity. Different vitamins, TCM, and live cell therapy are effective therapeutics. Vitamin A, C, D, and E, selenium and zinc, cinobufagin and dietary polysaccharides, and glandular extracts and live cell injections have strong potential to restore immune system function and thymus health. Moreover, the relationship between different ages/ stages of thymus and their corresponding T-cell mediated anti-tumor immune response needs further exploration.
Collapse
Affiliation(s)
- Ghulam Jilany Khan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P.R. China
- Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Abeeha Imtiaz
- Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Wei Wang
- School of Biological and Food Engineering, Engineering Research Center for Development and High-value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui, 234000, China
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense E-32004, Spain
| | - Hong Duan
- School of Biological and Food Engineering, Engineering Research Center for Development and High-value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui, 234000, China
| | - Hui Cao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense E-32004, Spain
| | - Kefeng Zhai
- School of Biological and Food Engineering, Engineering Research Center for Development and High-value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui, 234000, China
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense E-32004, Spain
| | - Nongyue He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P.R. China
| |
Collapse
|
30
|
Matsumoto M, Matsumoto M. Learning the Autoimmune Pathogenesis Through the Study of Aire. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1444:19-32. [PMID: 38467970 DOI: 10.1007/978-981-99-9781-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
One of the difficulties in studying the pathogenesis of autoimmune diseases is that the disease is multifactorial involving sex, age, MHC, environment, and some genetic factors. Because deficiency of Aire, a transcriptional regulator, is an autoimmune disease caused by a single gene abnormality, Aire is an ideal research target for approaching the enigma of autoimmunity, e.g., the mechanisms underlying Aire deficiency can be studied using genetically modified animals. Nevertheless, the exact mechanisms of the breakdown of self-tolerance due to Aire's dysfunction have not yet been fully clarified. This is due, at least in part, to the lack of information on the exact target genes controlled by Aire. State-of-the-art research infrastructures such as single-cell analysis are now in place to elucidate the essential function of Aire. The knowledge gained through the study of Aire-mediated tolerance should help our understanding of the pathogenesis of autoimmune disease in general.
Collapse
Affiliation(s)
| | - Minoru Matsumoto
- Department of Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| |
Collapse
|
31
|
Fujimori S, Ohigashi I. The role of thymic epithelium in thymus development and age-related thymic involution. THE JOURNAL OF MEDICAL INVESTIGATION 2024; 71:29-39. [PMID: 38735722 DOI: 10.2152/jmi.71.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The establishment of an adaptive immune system is critical for protecting our bodies from neoplastic cancers and invading pathogens such as viruses and bacteria. As a primary lymphoid organ, the thymus generates lymphoid T cells that play a major role in the adaptive immune system. T cell generation in the thymus is controlled by interactions between thymocytes and other thymic cells, primarily thymic epithelial cells. Thus, the normal development and function of thymic epithelial cells are important for the generation of immunocompetent and self-tolerant T cells. On the other hand, the degeneration of the thymic epithelium due to thymic aging causes thymic involution, which is associated with the decline of adaptive immune function. Herein we summarize basic and current knowledge of the development and function of thymic epithelial cells and the mechanism of thymic involution. J. Med. Invest. 71 : 29-39, February, 2024.
Collapse
Affiliation(s)
- Sayumi Fujimori
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Izumi Ohigashi
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
32
|
Lévy R, Escudier A, Bastard P, Briand C, Polivka L, Stoupa A, Talbotec C, Rothenbuhler A, Charbit M, Debray D, Bodemer C, Casanova JL, Linglart A, Neven B. Ruxolitinib Rescues Multiorgan Clinical Autoimmunity in Patients with APS-1. J Clin Immunol 2023; 44:5. [PMID: 38112858 PMCID: PMC10730634 DOI: 10.1007/s10875-023-01629-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023]
Abstract
Autoimmune polyendocrine syndrome type-1 (APS-1) is caused by mono- or biallelic loss-of-function variants of the autoimmune regulator gene AIRE underlying early-onset multiorgan autoimmunity and the production of neutralizing autoantibodies against cytokines, accounting for mucosal candidiasis and viral diseases. Medical intervention is essential to prevent or attenuate autoimmune manifestations. Ruxolitinib is a JAK inhibitor approved for use in several autoimmune conditions. It is also used off-label to treat autoimmune manifestations of a growing range of inborn errors of immunity. We treated three APS-1 patients with ruxolitinib and followed them for at least 30 months. Tolerance was excellent, with no medical or biological adverse events. All three patients had remarkably positive responses to ruxolitinib for alopecia, nail dystrophy, keratitis, mucosal candidiasis, steroid-dependent autoimmune hepatitis, exocrine pancreatic insufficiency, renal potassium wasting, hypoparathyroidism, and diabetes insipidus. JAK inhibitors were therefore considered an effective treatment in three patients with APS-1. Our observations suggest that JAK/STAT pathways are involved in the pathogenesis of APS-1 autoimmune manifestations. They also suggest that JAK inhibitors should be tested in a broader range of APS-1 patients.
Collapse
Affiliation(s)
- Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, EU, France.
- Paris-Cité University, Imagine Institute, Paris, EU, France.
- Pediatric Hematology, Immunology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, EU, France.
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
| | - Agathe Escudier
- Paris-Cité University, Imagine Institute, Paris, EU, France
- Pediatric Hematology, Immunology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, EU, France
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, EU, France
- Paris-Cité University, Imagine Institute, Paris, EU, France
- Pediatric Hematology, Immunology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, EU, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Coralie Briand
- Department of Pediatrics, Jean Verdier Hospital, AP-HP, Bondy, EU, France
| | - Laura Polivka
- Paris-Cité University, Imagine Institute, Paris, EU, France
- Department of Dermatology, Reference Center for Genodermatoses (MAGEC), Imagine Institute, Necker Hospital for Sick Children, AP-HP, Paris, EU, France
| | - Athanasia Stoupa
- Pediatric Endocrinology, Gynecology and Diabetology Department, Necker Hospital for Sick Children, AP-HP, Paris, EU, France
| | - Cécile Talbotec
- Department of Pediatric Gastroenterology, Necker Hospital for Sick Children, AP-HP, Paris, EU, France
| | - Anya Rothenbuhler
- Department of Endocrinology and Diabetes for Children; Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, Filière OSCAR, ERN BOND, Endo-ERN, Bicêtre Paris Saclay Hospital, AP-HP, Le Kremlin-Bicêtre, EU, France
| | - Marina Charbit
- Department of Pediatric Nephrology, Necker Hospital for Sick Children, AP-HP, Paris, EU, France
| | - Dominique Debray
- Department of Pediatric Hepatology, Necker Hospital for Sick Children, AP-HP, Paris, EU, France
| | - Christine Bodemer
- Paris-Cité University, Imagine Institute, Paris, EU, France
- Department of Dermatology, Reference Center for Genodermatoses (MAGEC), Imagine Institute, Necker Hospital for Sick Children, AP-HP, Paris, EU, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, EU, France
- Paris-Cité University, Imagine Institute, Paris, EU, France
- Pediatric Hematology, Immunology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, EU, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
| | - Agnès Linglart
- Department of Endocrinology and Diabetes for Children; Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, Filière OSCAR, ERN BOND, Endo-ERN, Bicêtre Paris Saclay Hospital, AP-HP, Le Kremlin-Bicêtre, EU, France
- Paris Saclay University, INSERM U1185, Bicêtre Paris Saclay Hospital, Le Kremlin-Bicêtre, EU, France
| | - Bénédicte Neven
- Paris-Cité University, Imagine Institute, Paris, EU, France
- Pediatric Hematology, Immunology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, EU, France
| |
Collapse
|
33
|
Wei X, Zhu T, Wang L, Sui R. Leber congenital amaurosis as the initial and essential manifestation in a Chinese patient with autoimmune polyglandular syndrome Type 1. Doc Ophthalmol 2023; 147:225-232. [PMID: 37715919 DOI: 10.1007/s10633-023-09953-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/28/2023] [Indexed: 09/18/2023]
Abstract
PURPOSE Autoimmune polyglandular syndrome Type 1 (APS-1) is a rare autosomal recessive disorder caused by defects in the autoimmune regulator (AIRE) gene. Patients are generally diagnosed at ages between five and fifteen years when they exhibit three or more manifestations, most typically mucocutaneous candidiasis, autoimmune Addison's disease, and hypoparathyroidism. Our study aims to report the first case of a Chinese APS-1 patient, presented with LCA as the initial and essential clinical feature of this rare syndrome. METHODS Detailed medical and family history were recorded for the patient. Also, the comprehensive ophthalmological examinations were conducted. Whole exome sequencing (WES) was applied to screen pathogenic variants. Sanger sequencing validation and segregation analysis were further performed for confirmation. RESULTS A 3-year-old boy with severely impaired vision and initially referred as LCA. However, with a detailed history review, oral candidiasis, dental enamel hypoplasia, and nail candida infection were revealed. Moreover, genetic analysis revealed the homozygous c.769C>T (p.R257X) in AIRE gene (NM_000383.3) as the causative variant. CONCLUSION We presented one case diagnosed with APS-1 based on clinical characteristics and genetic analysis. Our study demonstrated that LCA could serve as a warning sign for APS-1 and a potential trigger of early screening, which might prevent life-threatening complications.
Collapse
Affiliation(s)
- Xing Wei
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1, Shuai Fu Yuan, Beijing, 100730, China
| | - Tian Zhu
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1, Shuai Fu Yuan, Beijing, 100730, China
| | - Lei Wang
- Beijing Mei'ermu Hospital, Beijing, China
| | - Ruifang Sui
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1, Shuai Fu Yuan, Beijing, 100730, China.
| |
Collapse
|
34
|
Mesbah Z, Tiwari N, Sacco K. Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy-Associated Hepatitis. ACG Case Rep J 2023; 10:e01235. [PMID: 38111786 PMCID: PMC10727666 DOI: 10.14309/crj.0000000000001235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/14/2023] [Indexed: 12/20/2023] Open
Abstract
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is an inborn error of immunity, resulting from variation in the autoimmune regulator gene (AIRE). Pathogenic variants in the AIRE gene result in autoimmunity typically involving endocrine organs with nonendocrine organs less commonly affected. Hepatitis associated with APECED has emerged as a potentially fatal complication with higher reported prevalence in the Americas. We describe a case of a 3-year-old boy presenting with hepatitis from APECED without classical clinical diagnostic criteria. This case highlights the importance of APECED in the evaluation of hepatitis given response to immunomodulator treatment and risk of fulminate liver failure.
Collapse
Affiliation(s)
- Zhubene Mesbah
- Carl T. Hayden Veterans' Administration Medical Center, Phoenix, AZ
- University of Arizona College of Medicine, Phoenix, AZ
| | | | | |
Collapse
|
35
|
Uccella S, Dottermusch M, Erickson L, Warmbier J, Montone K, Saeger W. Inflammatory and Infectious Disorders in Endocrine Pathology. Endocr Pathol 2023; 34:406-436. [PMID: 37209390 PMCID: PMC10199304 DOI: 10.1007/s12022-023-09771-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 05/22/2023]
Abstract
A variety of inflammatory conditions may directly involve the endocrine glands, leading to endocrine dysfunction that can cause severe consequences on patients' health, if left untreated. Inflammation of the endocrine system may be caused by either infectious agents or other mechanisms, including autoimmune and other immune-mediated processes. Not infrequently, inflammatory and infectious diseases may appear as tumor-like lesions of endocrine organs and simulate neoplastic processes. These diseases may be clinically under-recognized and not infrequently the diagnosis is suggested on pathological samples. Thus, the pathologist should be aware of the basic principles of their pathogenesis, as well as of their morphological features, clinicopathological correlates, and differential diagnosis. Interestingly, several systemic inflammatory conditions show a peculiar tropism to the endocrine system as a whole. In turn, organ-specific inflammatory disorders are observed in endocrine glands. This review will focus on the morphological aspects and clinicopathological features of infectious diseases, autoimmune disorders, drug-induced inflammatory reactions, IgG4-related disease, and other inflammatory disorders involving the endocrine system. A mixed entity-based and organ-based approach will be used, with the aim to provide the practicing pathologist with a comprehensive and practical guide to the diagnosis of infectious and inflammatory disorders of the endocrine system.
Collapse
Affiliation(s)
- Silvia Uccella
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanule, Milan, Italy
- Pathology Service IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Matthias Dottermusch
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lori Erickson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN USA
| | - Julia Warmbier
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kathleen Montone
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA USA
| | - Wolfgang Saeger
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
36
|
Oftedal BE, Berger AH, Bruserud Ø, Goldfarb Y, Sulen A, Breivik L, Hellesen A, Ben-Dor S, Haffner-Krausz R, Knappskog PM, Johansson S, Wolff AS, Bratland E, Abramson J, Husebye ES. A partial form of AIRE deficiency underlies a mild form of autoimmune polyendocrine syndrome type 1. J Clin Invest 2023; 133:e169704. [PMID: 37909333 PMCID: PMC10617782 DOI: 10.1172/jci169704] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/29/2023] [Indexed: 11/03/2023] Open
Abstract
Autoimmune polyendocrine syndrome type 1 (APS-1) is caused by mutations in the autoimmune regulator (AIRE) gene. Most patients present with severe chronic mucocutaneous candidiasis and organ-specific autoimmunity from early childhood, but the clinical picture is highly variable. AIRE is crucial for negative selection of T cells, and scrutiny of different patient mutations has previously highlighted many of its molecular mechanisms. In patients with a milder adult-onset phenotype sharing a mutation in the canonical donor splice site of intron 7 (c.879+1G>A), both the predicted altered splicing pattern with loss of exon 7 (AireEx7-/-) and normal full-length AIRE mRNA were found, indicating leaky rather than abolished mRNA splicing. Analysis of a corresponding mouse model demonstrated that the AireEx7-/- mutant had dramatically impaired transcriptional capacity of tissue-specific antigens in medullary thymic epithelial cells but still retained some ability to induce gene expression compared with the complete loss-of-function AireC313X-/- mutant. Our data illustrate an association between AIRE activity and the severity of autoimmune disease, with implications for more common autoimmune diseases associated with AIRE variants, such as primary adrenal insufficiency, pernicious anemia, type 1 diabetes, and rheumatoid arthritis.
Collapse
Affiliation(s)
- Bergithe Eikeland Oftedal
- Department of Clinical Science and KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
- Department of Medicine and
| | - Amund Holte Berger
- Department of Clinical Science and KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Øyvind Bruserud
- Department of Clinical Science and KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
- Department of Medicine and
| | - Yael Goldfarb
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Andre Sulen
- Department of Clinical Science and KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
| | - Lars Breivik
- Department of Clinical Science and KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
- Department of Medicine and
| | - Alexander Hellesen
- Department of Clinical Science and KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
| | - Shifra Ben-Dor
- Bioinformatics Unit, Department of Life Sciences Core Facilities and
| | | | - Per M. Knappskog
- Department of Clinical Science and KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Stefan Johansson
- Department of Clinical Science and KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Anette S.B. Wolff
- Department of Clinical Science and KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
- Department of Medicine and
| | - Eirik Bratland
- Department of Clinical Science and KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Jakub Abramson
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Eystein Sverre Husebye
- Department of Clinical Science and KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
- Department of Medicine and
| |
Collapse
|
37
|
Tsilifis C, Slatter MA, Gennery AR. Too much of a good thing: a review of primary immune regulatory disorders. Front Immunol 2023; 14:1279201. [PMID: 38022498 PMCID: PMC10645063 DOI: 10.3389/fimmu.2023.1279201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Primary immune regulatory disorders (PIRDs) are inborn errors of immunity caused by a loss in the regulatory mechanism of the inflammatory or immune response, leading to impaired immunological tolerance or an exuberant inflammatory response to various stimuli due to loss or gain of function mutations. Whilst PIRDs may feature susceptibility to recurrent, severe, or opportunistic infection in their phenotype, this group of syndromes has broadened the spectrum of disease caused by defects in immunity-related genes to include autoimmunity, autoinflammation, lymphoproliferation, malignancy, and allergy; increasing focus on PIRDs has thus redefined the classical 'primary immunodeficiency' as one aspect of an overarching group of inborn errors of immunity. The growing number of genetic defects associated with PIRDs has expanded our understanding of immune tolerance mechanisms and prompted identification of molecular targets for therapy. However, PIRDs remain difficult to recognize due to incomplete penetrance of their diverse phenotype, which may cross organ systems and present to multiple clinical specialists prior to review by an immunologist. Control of immune dysregulation with immunosuppressive therapies must be balanced against the enhanced infective risk posed by the underlying defect and accumulated end-organ damage, posing a challenge to clinicians. Whilst allogeneic hematopoietic stem cell transplantation may correct the underlying immune defect, identification of appropriate patients and timing of transplant is difficult. The relatively recent description of many PIRDs and rarity of individual genetic entities that comprise this group means data on natural history, clinical progression, and treatment are limited, and so international collaboration will be needed to better delineate phenotypes and the impact of existing and potential therapies. This review explores pathophysiology, clinical features, current therapeutic strategies for PIRDs including cellular platforms, and future directions for research.
Collapse
Affiliation(s)
- Christo Tsilifis
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mary A. Slatter
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrew R. Gennery
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
38
|
Abstract
Display of tissue self-antigens within the thymus is critical for the regulation of self-reactive T cells. In this issue of JEM, Michelson et al. (2023. J. Exp. Med.https://doi.org/10.1084/jem.20230461) continue to advance our understanding of self-antigen representation by medullary thymic epithelial cells, identifying a new role for Hnf4γ in the regulation of thymic mimetic cells as well as their peripheral counterparts.
Collapse
Affiliation(s)
- Vanja Cabric
- Immuno-Oncology, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chrysothemis C. Brown
- Immuno-Oncology, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine Graduate School of Medical Sciences, New York, NY, USA
| |
Collapse
|
39
|
Rahman T, Das A, Abir MH, Nafiz IH, Mahmud AR, Sarker MR, Emran TB, Hassan MM. Cytokines and their role as immunotherapeutics and vaccine Adjuvants: The emerging concepts. Cytokine 2023; 169:156268. [PMID: 37320965 DOI: 10.1016/j.cyto.2023.156268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
Cytokines are a protein family comprising interleukins, lymphokines, chemokines, monokines and interferons. They are significant constituents of the immune system, and they act in accordance with specific cytokine inhibiting compounds and receptors for the regulation of immune responses. Cytokine studies have resulted in the establishment of newer therapies which are being utilized for the treatment of several malignant diseases. The advancement of these therapies has occurred from two distinct strategies. The first strategy involves administrating the recombinant and purified cytokines, and the second strategy involves administrating the therapeutics which inhibits harmful effects of endogenous and overexpressed cytokines. Colony stimulating factors and interferons are two exemplary therapeutics of cytokines. An important effect of cytokine receptor antagonist is that they can serve as anti-inflammatory agents by altering the treatments of inflammation disorder, therefore inhibiting the effects of tumour necrosis factor. In this article, we have highlighted the research behind the establishment of cytokines as therapeutics and vaccine adjuvants, their role of immunotolerance, and their limitations.
Collapse
Affiliation(s)
- Tanjilur Rahman
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Ayan Das
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Mehedy Hasan Abir
- Faculty of Food Science and Technology, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | - Iqbal Hossain Nafiz
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Aar Rafi Mahmud
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Md Rifat Sarker
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chattogram 4381, Bangladesh; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Mohammad Mahmudul Hassan
- Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh; Queensland Alliance for One Health Sciences, School of Veterinary Science, The University of Queensland, Queensland 4343, Australia.
| |
Collapse
|
40
|
Yu X, Wax J, Riemekasten G, Petersen F. Functional autoantibodies: Definition, mechanisms, origin and contributions to autoimmune and non-autoimmune disorders. Autoimmun Rev 2023; 22:103386. [PMID: 37352904 DOI: 10.1016/j.autrev.2023.103386] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/06/2023] [Accepted: 06/18/2023] [Indexed: 06/25/2023]
Abstract
A growing body of evidence underscores the relevance of functional autoantibodies in the development of various pathogenic conditions but also in the regulation of homeostasis. However, the definition of functional autoantibodies varies among studies and a comprehensive overview on this emerging topic is missing. Here, we do not only explain functional autoantibodies but also summarize the mechanisms underlying the effect of such autoantibodies including receptor activation or blockade, induction of receptor internalization, neutralization of ligands or other soluble extracellular antigens, and disruption of protein-protein interactions. In addition, in this review article we discuss potential triggers of production of functional autoantibodies, including infections, immune deficiency and tumor development. Finally, we describe the contribution of functional autoantibodies to autoimmune diseases including autoimmune thyroid diseases, myasthenia gravis, autoimmune pulmonary alveolar proteinosis, autoimmune autonomic ganglionopathy, pure red cell aplasia, autoimmune encephalitis, pemphigus, acquired thrombotic thrombocytopenic purpura, idiopathic dilated cardiomyopathy and systemic sclerosis, as well as non-autoimmune disorders such as allograft rejection, infectious diseases and asthma.
Collapse
Affiliation(s)
- Xinhua Yu
- Priority Area Chronic Lung Diseases, Research Center Borstel, Members of the German Center for Lung Research (DZL), 23845 Borstel, Germany.
| | - Jacqueline Wax
- Priority Area Chronic Lung Diseases, Research Center Borstel, Members of the German Center for Lung Research (DZL), 23845 Borstel, Germany
| | - Gabriela Riemekasten
- Department of Rheumatology and Clinical Immunology, University Clinic of Schleswig Holstein, University of Lübeck, 23538 Lübeck, Germany
| | - Frank Petersen
- Priority Area Chronic Lung Diseases, Research Center Borstel, Members of the German Center for Lung Research (DZL), 23845 Borstel, Germany
| |
Collapse
|
41
|
Feng Y, Yao S, Li S, Peng Z, Feng G, Ma Y, Guo B, Liu H. Autoimmune regulator (Aire) deficiency results in reduced memory CD8 + T cells after Listeria monocytogenes infection in a murine model. FEBS Lett 2023; 597:2185-2195. [PMID: 37418594 DOI: 10.1002/1873-3468.14696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/09/2023]
Abstract
Homozygous mutations in the autoimmune regulator (AIRE) gene that cripple thymic negative selection of autoreactive T cells result in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). However, how AIRE regulates the T-cell response against foreign pathogens is not well understood. Here, we observed comparable primary CD8+ T cells but a markedly reduced memory T-cell population and protective function in Aire-/- mice compared with wild-type after infection with a strain of recombinant Listeria monocytogenes. In adoptive transfer models, exogenous congenic CD8+ T cells transferred into Aire-/- mice also showed a reduction in the memory T-cell population, indicating an important role for extrathymic Aire-expressing cells in shaping or sustaining memory T cells. Moreover, using a bone marrow chimeric model, we found that Aire expressed in radioresistant cells plays an important role in maintaining the memory phenotype. These results provide important insights into the role of extrathymic Aire in the T-cell response to infection.
Collapse
Affiliation(s)
- Yi Feng
- Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Shu Yao
- Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Shan Li
- Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Zuxiang Peng
- Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Guoying Feng
- Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yan Ma
- Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Bo Guo
- Maternal & Child Health Research Institute, Baoan Womens's and Children's Hospital, Jinan University, Shenzhen, China
| | - Hongming Liu
- Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
42
|
Wang Y, Jiang Y, Wang J, Li S, Jia X, Xiao X, Sun W, Wang P, Zhang Q. Retinopathy as an initial sign of hereditary immunological diseases: report of six families and challenges in eye clinic. Front Immunol 2023; 14:1239886. [PMID: 37711606 PMCID: PMC10498122 DOI: 10.3389/fimmu.2023.1239886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/09/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction Retinal degenerative or inflammatory changes may occur with hereditary immunological disorders (HID) due to variants in approximately 20 genes. This study aimed to investigate if such retinopathy may present as an initial sign of immunological disorders in eye clinic. Methods The variants in the 20 genes were selected from in-house exome sequencing data from 10,530 individuals with different eye conditions. Potential pathogenic variants were assessed by multistep bioinformatic analysis. Pathogenic variants were defined according to the ACMG/AMP criteria and confirmed by Sanger sequencing, co-segregation analysis, and consistency with related phenotypes. Ocular clinical data were thoroughly reviewed, especially fundus changes. Results A total of seven pathogenic variants in four of the 20 genes were detected in six probands from six families, including three with hemizygous nonsense variants p.(Q308*), p.(Q416*), and p.(R550*) in MSN, one with homozygous nonsense variants p.(R257*) in AIRE, one with compound heterozygous nonsense variants p.(R176*) and p.(T902*) in LAMB2, and one with a known c.1222T>C (p.W408R) heterozygous variant in CBL. Ocular presentation, as the initial signs of the diseases, was mainly retinopathy mimicking other forms of hereditary retinal degeneration, including exudative vitreoretinopathy in the three patients with MSN variants or tapetoretinal degeneration in the other three patients. Neither extraocular symptoms nor extraocular manifestations were recorded at the time of visit to our eye clinic. However, of the 19 families in the literature with retinopathy caused by variants in these four genes, only one family with an AIRE homozygous variant had retinopathy as an initial symptom, while the other 18 families had systemic abnormalities that preceded retinopathy. Discussion This study, for the first time, identified six unrelated patients with retinopathy as their initial and only presenting sign of HID, contrary to the previous reports where retinopathy was the accompanying sign of systemic HID. Recognizing such phenotype of HID may facilitate the clinical care of these patients. Follow-up visits to such patients and additional studies are expected to validate and confirm our findings.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| |
Collapse
|
43
|
Sun R, Wang Y, Abolhassani H. Cellular mechanisms and clinical applications for phenocopies of inborn errors of immunity: infectious susceptibility due to cytokine autoantibodies. Expert Rev Clin Immunol 2023:1-14. [PMID: 37114623 DOI: 10.1080/1744666x.2023.2208863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
INTRODUCTION With a growing knowledge of Inborn error immunity (IEI), immunological profiling and genetic predisposition to IEI phenocopies have been developed in recent years. AREAS COVERED Here we summarized the correlation between various pathogen invasions, autoantibody profiles, and corresponding clinical features in the context of patients with IEI phenocopies. It has been extensively evident that patients with anti-cytokine autoantibodies underly impaired anti-pathogen immune responses and lead to broad unregulated inflammation and tissue damage. Several hypotheses of anti-cytokine autoantibodies production were summarized here, including a defective negative selection of autoreactive T cells, abnormal germinal center formation, molecular mimicry, HLA class II allele region, lack of auto-reactive lymphocyte apoptosis, and other possible hypotheses. EXPERT OPINION Phenocopies of IEI associated with anti-cytokine autoantibodies are increasingly recognized as one of the causes of acquired immunodeficiency and susceptibility to certain pathogen infections, especially facing the current challenge of the COVID-19 pandemic. By investigating clinical, genetic, and pathogenesis autoantibodies profiles associated with various pathogens' susceptibilities, we could better understand the IEI phenocopies with anti-cytokine autoantibodies, especially for those that underlie life-threatening SARS-CoV-2.
Collapse
Affiliation(s)
- Rui Sun
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Yating Wang
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
44
|
Costa F, Beltrami E, Mellone S, Sacchetti S, Boggio E, Gigliotti CL, Stoppa I, Dianzani U, Rolla R, Giordano M. Genes and Microbiota Interaction in Monogenic Autoimmune Disorders. Biomedicines 2023; 11:1127. [PMID: 37189745 PMCID: PMC10135656 DOI: 10.3390/biomedicines11041127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Monogenic autoimmune disorders represent an important tool to understand the mechanisms behind central and peripheral immune tolerance. Multiple factors, both genetic and environmental, are known to be involved in the alteration of the immune activation/immune tolerance homeostasis typical of these disorders, making it difficult to control the disease. The latest advances in genetic analysis have contributed to a better and more rapid diagnosis, although the management remains confined to the treatment of clinical manifestations, as there are limited studies on rare diseases. Recently, the correlation between microbiota composition and the onset of autoimmune disorders has been investigated, thus opening up new perspectives on the cure of monogenic autoimmune diseases. In this review, we will summarize the main genetic features of both organ-specific and systemic monogenic autoimmune diseases, reporting on the available literature data on microbiota alterations in these patients.
Collapse
Affiliation(s)
- Federica Costa
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
| | - Eleonora Beltrami
- Maggiore della Carità University Hospital, 28100 Novara, Italy; (E.B.); (S.M.)
| | - Simona Mellone
- Maggiore della Carità University Hospital, 28100 Novara, Italy; (E.B.); (S.M.)
| | - Sara Sacchetti
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
| | - Elena Boggio
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
| | - Casimiro Luca Gigliotti
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
| | - Ian Stoppa
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
| | - Umberto Dianzani
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
- Maggiore della Carità University Hospital, 28100 Novara, Italy; (E.B.); (S.M.)
| | - Roberta Rolla
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
- Maggiore della Carità University Hospital, 28100 Novara, Italy; (E.B.); (S.M.)
| | - Mara Giordano
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
- Maggiore della Carità University Hospital, 28100 Novara, Italy; (E.B.); (S.M.)
| |
Collapse
|
45
|
Hasenmajer V, Ferrigno R, Minnetti M, Pellegrini B, Isidori AM, Lenzi A, Salerno M, Cappa M, Chan L, De Martino MC, Savage MO. Rare forms of genetic paediatric adrenal insufficiency: Excluding congenital adrenal hyperplasia. Rev Endocr Metab Disord 2023; 24:345-363. [PMID: 36763264 PMCID: PMC10023752 DOI: 10.1007/s11154-023-09784-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/03/2023] [Indexed: 02/11/2023]
Abstract
Adrenal insufficiency (AI) is a severe endocrine disorder characterized by insufficient glucocorticoid (GC) and/or mineralocorticoid (MC) secretion by the adrenal glands, due to impaired adrenal function (primary adrenal insufficiency, PAI) or to insufficient adrenal stimulation by pituitary ACTH (secondary adrenal insufficiency, SAI) or tertiary adrenal insufficiency due to hypothalamic dysfunction. In this review, we describe rare genetic causes of PAI with isolated GC or combined GC and MC deficiencies and we also describe rare syndromes of isolated MC deficiency. In children, the most frequent cause of PAI is congenital adrenal hyperplasia (CAH), a group of adrenal disorders related to steroidogenic enzyme deficiencies, which will not be included in this review. Less frequently, several rare diseases can cause PAI, either affecting exclusively the adrenal glands or with systemic involvement. The diagnosis of these diseases is often challenging, due to the heterogeneity of their clinical presentation and to their rarity. Therefore, the current review aims to provide an overview on these rare genetic forms of paediatric PAI, offering a review of genetic and clinical features and a summary of diagnostic and therapeutic approaches, promoting awareness among practitioners, and favoring early diagnosis and optimal clinical management in suspect cases.
Collapse
Affiliation(s)
- Valeria Hasenmajer
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Rosario Ferrigno
- UOSD Auxology and Endocrinology, Department of Pediatric, AORN Santobono-Pausilipon, Naples, Italy
| | - Marianna Minnetti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Bianca Pellegrini
- Dipartimento Di Medicina Clinica E Chirurgia, Federico II University, Naples, Italy
| | - Andrea M Isidori
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Andrea Lenzi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Marco Cappa
- Endocrinology Unit, Pediatric University Department, Bambino Gesù Children's Hospital, Rome, Italy
| | - Li Chan
- Endocrinology Centre, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | | | - Martin O Savage
- Endocrinology Centre, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
46
|
Sundaresan B, Shirafkan F, Ripperger K, Rattay K. The Role of Viral Infections in the Onset of Autoimmune Diseases. Viruses 2023; 15:v15030782. [PMID: 36992490 PMCID: PMC10051805 DOI: 10.3390/v15030782] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
Autoimmune diseases (AIDs) are the consequence of a breach in immune tolerance, leading to the inability to sufficiently differentiate between self and non-self. Immune reactions that are targeted towards self-antigens can ultimately lead to the destruction of the host's cells and the development of autoimmune diseases. Although autoimmune disorders are comparatively rare, the worldwide incidence and prevalence is increasing, and they have major adverse implications for mortality and morbidity. Genetic and environmental factors are thought to be the major factors contributing to the development of autoimmunity. Viral infections are one of the environmental triggers that can lead to autoimmunity. Current research suggests that several mechanisms, such as molecular mimicry, epitope spreading, and bystander activation, can cause viral-induced autoimmunity. Here we describe the latest insights into the pathomechanisms of viral-induced autoimmune diseases and discuss recent findings on COVID-19 infections and the development of AIDs.
Collapse
Affiliation(s)
- Bhargavi Sundaresan
- Institute of Pharmacology, Biochemical Pharmacological Center, University of Marburg, 35043 Marburg, Germany
| | - Fatemeh Shirafkan
- Institute of Pharmacology, Biochemical Pharmacological Center, University of Marburg, 35043 Marburg, Germany
| | - Kevin Ripperger
- Institute of Pharmacology, Biochemical Pharmacological Center, University of Marburg, 35043 Marburg, Germany
| | - Kristin Rattay
- Institute of Pharmacology, Biochemical Pharmacological Center, University of Marburg, 35043 Marburg, Germany
| |
Collapse
|
47
|
Abstract
Monogenic diabetes includes several clinical conditions generally characterized by early-onset diabetes, such as neonatal diabetes, maturity-onset diabetes of the young (MODY) and various diabetes-associated syndromes. However, patients with apparent type 2 diabetes mellitus may actually have monogenic diabetes. Indeed, the same monogenic diabetes gene can contribute to different forms of diabetes with early or late onset, depending on the functional impact of the variant, and the same pathogenic variant can produce variable diabetes phenotypes, even in the same family. Monogenic diabetes is mostly caused by impaired function or development of pancreatic islets, with defective insulin secretion in the absence of obesity. The most prevalent form of monogenic diabetes is MODY, which may account for 0.5-5% of patients diagnosed with non-autoimmune diabetes but is probably underdiagnosed owing to insufficient genetic testing. Most patients with neonatal diabetes or MODY have autosomal dominant diabetes. More than 40 subtypes of monogenic diabetes have been identified to date, the most prevalent being deficiencies of GCK and HNF1A. Precision medicine approaches (including specific treatments for hyperglycaemia, monitoring associated extra-pancreatic phenotypes and/or following up clinical trajectories, especially during pregnancy) are available for some forms of monogenic diabetes (including GCK- and HNF1A-diabetes) and increase patients' quality of life. Next-generation sequencing has made genetic diagnosis affordable, enabling effective genomic medicine in monogenic diabetes.
Collapse
|
48
|
Zhang Y, Lu Y, Gao Y, Liang X, Zhang R, Wang X, Zou X, Yang W. Effects of Aire on perforin expression in BMDCs via TLR7/8 and its therapeutic effect on type 1 diabetes. Int Immunopharmacol 2023; 117:109890. [PMID: 36805202 DOI: 10.1016/j.intimp.2023.109890] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/30/2023] [Accepted: 02/11/2023] [Indexed: 02/19/2023]
Abstract
AIMS Type 1 diabetes, as a kind of autoimmune diseases, usually results from the broken-down of self-tolerance. Autoimmune regulator (Aire), as a transcription factor, induces peripheral tolerance by regulating Toll-like receptor (TLR) expression in dendritic cells (DCs). Several studies have recently identified a small population of perforin-expressing DCs, which is an important population of tolerogenic DCs (tolDCs) that restricts autoreactive T cells in vivo through a perforin-mediated mechanism. Thus, the present study explored the specific relationship among Aire, perforin-expressing DCs and immune tolerance, as well as their roles in type 1 diabetes. METHODS We conducted studies based on the Aire-overexpressing bone marrow-derived dendritic cell (BMDC) model. And through in vitro and in vivo experiments to observe that Aire-overexpressing BMDCs which express perforin induce immune tolerance and treat type 1 diabetes via TLR7/8. RESULTS Aire enhances the expression of perforin in BMDCs after treatment with the TLR7/8 ligand as well as promotes the expression of TLR7/8 and myeloid differentiation primary response gene 88 (MyD88)-dependent pathway molecules. Aire-overexpressing BMDCs mediate apoptosis of allogeneic CD8+ T cells via perforin in vitro. Moreover, Aire-overexpressing BMDCs enhance the therapeutic effect of type 1 diabetes in non-obese diabetic (NOD) mice via perforin and induce apoptosis of autoreactive CD8+ T cells in vivo. CONCLUSIONS These results provide an experimental basis for comprehensively elucidating the role and significance of Aire expression in peripheral DCs, thereby providing new ideas for the treatment of autoimmune diseases by using Aire as a target to induce the production of perforin-expressing DCs.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yaoping Lu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yan Gao
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiaojing Liang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Rongchao Zhang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiaoya Wang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xueyang Zou
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Wei Yang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China.
| |
Collapse
|
49
|
Clarke T, Du P, Kumar S, Okitsu SL, Schuette M, An Q, Zhang J, Tzvetkov E, Jensen MA, Niewold TB, Ferre EMN, Nardone J, Lionakis MS, Vlach J, DeMartino J, Bender AT. Autoantibody repertoire characterization provides insight into the pathogenesis of monogenic and polygenic autoimmune diseases. Front Immunol 2023; 14:1106537. [PMID: 36845162 PMCID: PMC9955420 DOI: 10.3389/fimmu.2023.1106537] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/16/2023] [Indexed: 02/12/2023] Open
Abstract
Autoimmune diseases vary in the magnitude and diversity of autoantibody profiles, and these differences may be a consequence of different types of breaks in tolerance. Here, we compared the disparate autoimmune diseases autoimmune polyendocrinopathy-candidiasis-ecto-dermal dystrophy (APECED), systemic lupus erythematosus (SLE), and Sjogren's syndrome (SjS) to gain insight into the etiology of breaks in tolerance triggering autoimmunity. APECED was chosen as a prototypical monogenic disease with organ-specific pathology while SjS and SLE represent polygenic autoimmunity with focal or systemic disease. Using protein microarrays for autoantibody profiling, we found that APECED patients develop a focused but highly reactive set of shared mostly anti-cytokine antibodies, while SLE patients develop broad and less expanded autoantibody repertoires against mostly intracellular autoantigens. SjS patients had few autoantibody specificities with the highest shared reactivities observed against Ro-52 and La. RNA-seq B-cell receptor analysis revealed that APECED samples have fewer, but highly expanded, clonotypes compared with SLE samples containing a diverse, but less clonally expanded, B-cell receptor repertoire. Based on these data, we propose a model whereby the presence of autoreactive T-cells in APECED allows T-dependent B-cell responses against autoantigens, while SLE is driven by breaks in peripheral B-cell tolerance and extrafollicular B-cell activation. These results highlight differences in the autoimmunity observed in several monogenic and polygenic disorders and may be generalizable to other autoimmune diseases.
Collapse
Affiliation(s)
- Thomas Clarke
- TIP Immunology, EMD Serono, Billerica, MA, United States
| | - Pan Du
- TIP Immunology, EMD Serono, Billerica, MA, United States
| | | | | | - Mark Schuette
- Protein Engineering and Antibody Technologies, Merck KGaA, Darmstadt, Germany
| | - Qi An
- TIP Immunology, EMD Serono, Billerica, MA, United States
| | - Jinyang Zhang
- TIP Immunology, EMD Serono, Billerica, MA, United States
| | | | - Mark A. Jensen
- Department of Immunology, Division of Rheumatology, Mayo Clinic, Rochester, MN, United States
| | - Timothy B. Niewold
- Department of Immunology, Division of Rheumatology, Mayo Clinic, Rochester, MN, United States
| | - Elise M. N. Ferre
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, United States
| | - Julie Nardone
- TIP Immunology, EMD Serono, Billerica, MA, United States
| | - Michail S. Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, United States
| | - Jaromir Vlach
- TIP Immunology, EMD Serono, Billerica, MA, United States
| | | | | |
Collapse
|
50
|
Casanova JL, Anderson MS. Unlocking life-threatening COVID-19 through two types of inborn errors of type I IFNs. J Clin Invest 2023; 133:e166283. [PMID: 36719370 PMCID: PMC9888384 DOI: 10.1172/jci166283] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Since 2003, rare inborn errors of human type I IFN immunity have been discovered, each underlying a few severe viral illnesses. Autoantibodies neutralizing type I IFNs due to rare inborn errors of autoimmune regulator (AIRE)-driven T cell tolerance were discovered in 2006, but not initially linked to any viral disease. These two lines of clinical investigation converged in 2020, with the discovery that inherited and/or autoimmune deficiencies of type I IFN immunity accounted for approximately 15%-20% of cases of critical COVID-19 pneumonia in unvaccinated individuals. Thus, insufficient type I IFN immunity at the onset of SARS-CoV-2 infection may be a general determinant of life-threatening COVID-19. These findings illustrate the unpredictable, but considerable, contribution of the study of rare human genetic diseases to basic biology and public health.
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, New York, USA
| | - Mark S. Anderson
- Diabetes Center and
- Department of Medicine, UCSF, San Francisco, California, USA
| |
Collapse
|