1
|
Yang D, Sun W, Gao L, Zhao K, Zhuang Q, Cai Y. Cell competition as an emerging mechanism and therapeutic target in cancer. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167769. [PMID: 40054587 DOI: 10.1016/j.bbadis.2025.167769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/18/2025] [Accepted: 02/27/2025] [Indexed: 03/17/2025]
Abstract
Cell competition, as an internal quality control mechanism that constantly monitor cell fitness and eliminate unfit cells, maintains proper embryogenesis and tissue integrity during early development and adult homeostasis. Recent studies have revealed that cell competition functions as a tumor-suppressive mechanism to defend against cancer by removing neoplastic cell, which however, is hijacked by tumor cells and drive cell competition in favor of mutant cells, thereby promoting cancer initiation and progression. In this review, with a special focus on mammalian systems, we discuss the latest insights into the mechanisms regulating cell competition and its dual role in tumor development. We also provide current strategies to modulate the direction of cell competition for the prevention and treatment of cancers.
Collapse
Affiliation(s)
- Dakai Yang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jintan, People's Republic of China; Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, People's Republic of China.
| | - Wenyue Sun
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, People's Republic of China
| | - Lu Gao
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, People's Republic of China
| | - Kai Zhao
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jintan, People's Republic of China
| | - Qin Zhuang
- Department of General Practice, Affiliated Hospital of Jiangsu University, Zhenjiang, People's Republic of China.
| | - Yun Cai
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jintan, People's Republic of China.
| |
Collapse
|
2
|
Vosough M, Shokouhian B, Sharbaf MA, Solhi R, Heidari Z, Seydi H, Hassan M, Devaraj E, Najimi M. Role of mitogens in normal and pathological liver regeneration. Hepatol Commun 2025; 9:e0692. [PMID: 40304568 PMCID: PMC12045551 DOI: 10.1097/hc9.0000000000000692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/31/2025] [Indexed: 05/02/2025] Open
Abstract
The liver has a unique ability to regenerate to meet the body's metabolic needs, even following acute or chronic injuries. The cellular and molecular mechanisms underlying normal liver regeneration have been well investigated to improve organ transplantation outcomes. Once liver regeneration is impaired, pathological regeneration occurs, and the underlying cellular and molecular mechanisms require further investigations. Nevertheless, a plethora of cytokines and growth factor-mediated pathways have been reported to modulate physiological and pathological liver regeneration. Regenerative mitogens play an essential role in hepatocyte proliferation. Accelerator mitogens in synergism with regenerative ones promote liver regeneration following hepatectomy. Finally, terminator mitogens restore the proliferating status of hepatocytes to a differentiated and quiescent state upon completion of regeneration. Chronic loss of hepatocytes, which can manifest in chronic liver disorders of any etiology, often has undesired structural consequences, including fibrosis, cirrhosis, and liver neoplasia due to the unregulated proliferation of remaining hepatocytes. In fact, any impairment in the physiological function of the terminator mitogens results in the progression of pathological liver regeneration. In the current review, we intend to highlight the updated cellular and molecular mechanisms involved in liver regeneration and discuss the impairments in central regulating mechanisms responsible for pathological liver regeneration.
Collapse
Affiliation(s)
- Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bahare Shokouhian
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Amin Sharbaf
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Roya Solhi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zahra Heidari
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Homeyra Seydi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ezhilarasan Devaraj
- Department of Pharmacology, Hepatology and Molecular Medicine Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| |
Collapse
|
3
|
Huang X, Zhao H, Chen H, Liu Z, Liu K, Lv Z, Liu X, Han X, Han M, Lu J, Zhou Q, Zhou B. Ductal or Ngn3 + cells do not contribute to adult pancreatic islet beta-cell neogenesis in homeostasis. EMBO J 2025:10.1038/s44318-025-00434-z. [PMID: 40205162 DOI: 10.1038/s44318-025-00434-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 03/15/2025] [Accepted: 03/21/2025] [Indexed: 04/11/2025] Open
Abstract
The adult pancreatic ducts have long been proposed to contain rare progenitors, some of which expressing Ngn3, that generate new beta cells in endocrine-islet homeostasis. Due to their postulated rarity and the lack of definitive markers, the existence or absence of ductal endocrine progenitors remains unsettled despite many studies. Genetic lineage tracing of ductal cells or Ngn3+ cells with currently available CreER drivers has been complicated by off-target labeling of pre-existing beta cells. Here, using dual-recombinase-mediated intersectional genetic strategy and newly-derived Ngn3-2A-CreER and Hnf1b-2A-CreER knock-in drivers, we succeeded in specifically labeling Ngn3-positive cells and Hnf1b-positive ductal cells without marking pre-existing beta cells. These data revealed no evidence of de novo generation of insulin-producing beta cells from ductal cells or endogenous Ngn3-positive cells in the adult pancreas during homeostasis.
Collapse
Affiliation(s)
- Xiuzhen Huang
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Huan Zhao
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China.
| | - Hui Chen
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Zixin Liu
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Kuo Liu
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 310024, Hangzhou, China
| | - Zan Lv
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Xiuxiu Liu
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Ximeng Han
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Maoying Han
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Jie Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China
| | - Qiao Zhou
- Division of Regenerative Medicine & Hartman Institute for Organ Regeneration, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Bin Zhou
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 310024, Hangzhou, China.
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, 201210, Shanghai, China.
| |
Collapse
|
4
|
Deng J, Ding K, Liu S, Chen F, Huang R, Xu B, Zhang X, Xie W. SOX9 Overexpression Ameliorates Metabolic Dysfunction-associated Steatohepatitis Through Activation of the AMPK Pathway. J Clin Transl Hepatol 2025; 13:189-199. [PMID: 40078197 PMCID: PMC11894392 DOI: 10.14218/jcth.2024.00197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 03/14/2025] Open
Abstract
Background and Aims The transcription factor sex-determining region Y-related high-mobility group-box gene 9 (SOX9) plays a critical role in organ development. Although SOX9 has been implicated in regulating lipid metabolism in vitro, its specific role in metabolic dysfunction-associated steatohepatitis (MASH) remains poorly understood. This study aimed to investigate the role of SOX9 in MASH pathogenesis and explored the underlying mechanisms. Methods MASH models were established using mice fed either a methionine- and choline-deficient (MCD) diet or a high-fat, high-fructose diet. To evaluate the effects of SOX9, hepatocyte-specific SOX9 deletion or overexpression was performed. Lipidomic analyses were conducted to assess how SOX9 influences hepatic lipid metabolism. RNA sequencing was employed to identify pathways modulated by SOX9 during MASH progression. To elucidate the mechanism further, HepG2 cells were treated with an adenosine monophosphate-activated protein kinase (AMPK) inhibitor to test whether SOX9 acts via AMPK activation. Results SOX9 expression was significantly elevated in hepatocytes of MASH mice. Hepatocyte-specific SOX9 deletion exacerbated MCD-induced MASH, whereas overexpression of SOX9 mitigated high-fat, high-fructose-induced MASH. Lipidomic and RNA sequencing analyses revealed that SOX9 suppresses the expression of genes associated with lipid metabolism, inflammation, and fibrosis in MCD-fed mice. Furthermore, SOX9 deletion inhibited AMPK pathway activation, while SOX9 overexpression enhanced it. Notably, administration of an AMPK inhibitor negated the protective effects of SOX9 overexpression, leading to increased lipid accumulation in HepG2 cells. Conclusions Our findings demonstrate that SOX9 overexpression alleviates hepatic lipid accumulation in MASH by activating the AMPK pathway. These results highlight SOX9 as a promising therapeutic target for treating MASH.
Collapse
Affiliation(s)
- Juan Deng
- Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Kai Ding
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Shuqing Liu
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Fei Chen
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ru Huang
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Bonan Xu
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xin Zhang
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Weifen Xie
- Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| |
Collapse
|
5
|
Yu X, Kawakami R, Yambe S, Yoshimoto Y, Sasaki T, Higuchi S, Watanabe H, Akiyama H, Miura S, Hu K, Kondoh G, Sagasaki R, Inui M, Adachi T, Docheva D, Imamura T, Shukunami C. Dynamic interactions between cartilaginous and tendinous/ligamentous primordia during musculoskeletal integration. Development 2025; 152:dev204512. [PMID: 40135875 DOI: 10.1242/dev.204512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 02/14/2025] [Indexed: 03/27/2025]
Abstract
Proper connections between cartilaginous and muscular primordia through tendinous/ligamentous primordia are essential for musculoskeletal integration. Herein, we report a novel double-reporter mouse model for investigating this process via fluorescently visualising scleraxis (Scx) and SRY-box containing gene 9 (Sox9) expression. We generated ScxTomato transgenic mice and crossed them with Sox9EGFP knock-in mice to obtain ScxTomato;Sox9EGFP mice. Deep imaging of optically cleared double-reporter embryos at E13.5 and E16.5 revealed previously unknown differences in the dynamic interactions between cartilaginous and tendinous/ligamentous primordia in control and Scx-deficient mice. Tendon/ligament maturation was evaluated through simultaneous detection of fluorescence and visualisation of collagen fibre formation using second harmonic generation imaging. Lack of deltoid tuberosity in Scx-deficient mice caused misdirected muscle attachment with morphological changes. Loss of Scx also dysregulated progenitor cell fate determination in the chondrotendinous junction, resulting in the formation of a rounded enthesis rather than the protruding enthesis observed in the control. Hence, our double-reporter mouse system, in combination with loss- or gain-of-function approaches, is a unique and powerful tool that could be used to gain a comprehensive understanding of musculoskeletal integration.
Collapse
Affiliation(s)
- Xinyi Yu
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Ryosuke Kawakami
- Department of Molecular Medicine for Pathogenesis, Graduate School of Medicine, Ehime University, Ehime 791-0295, Japan
| | - Shinsei Yambe
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Yuki Yoshimoto
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Takako Sasaki
- Department of Biochemistry II, Faculty of Medicine, Oita University, Oita 879-5593, Japan
| | - Shinnosuke Higuchi
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Hitomi Watanabe
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Haruhiko Akiyama
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu 501-1193, Japan
| | - Shigenori Miura
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Kadi Hu
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Gen Kondoh
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Ramu Sagasaki
- Laboratory of Animal Regeneration Systemology, Department of Life Sciences, School of Agriculture, Meiji University, Kanagawa 214-8571, Japan
| | - Masafumi Inui
- Laboratory of Animal Regeneration Systemology, Department of Life Sciences, School of Agriculture, Meiji University, Kanagawa 214-8571, Japan
| | - Taiji Adachi
- Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Denitsa Docheva
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, University of Würzburg, 97074 Würzburg, Germany
| | - Takeshi Imamura
- Department of Molecular Medicine for Pathogenesis, Graduate School of Medicine, Ehime University, Ehime 791-0295, Japan
| | - Chisa Shukunami
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| |
Collapse
|
6
|
Guest RV, Goeppert B, Nault JC, Sia D. Morphomolecular Pathology and Genomic Insights into the Cells of Origin of Cholangiocarcinoma and Combined Hepatocellular-Cholangiocarcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:345-361. [PMID: 39341365 PMCID: PMC11841493 DOI: 10.1016/j.ajpath.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024]
Abstract
Cholangiocarcinomas are a highly heterogeneous group of malignancies that, despite recent progress in the understanding of their molecular pathogenesis and clinical management, continue to pose a major challenge to public health. The traditional view posits that cholangiocarcinomas derive from the neoplastic transformation of cholangiocytes lining the biliary tree. However, increasing genetic and experimental evidence has recently pointed to a more complex, and nuanced, scenario for the potential cell of origin of cholangiocarcinomas. Hepatocytes as well as hepatic stem/progenitor cells are being considered as additional potential sources, depending on microenvironmental contexts, including liver injury. The hypothesis of potentially diverse cells of origin for cholangiocarcinoma, albeit controversial, is certainly not surprising given the plasticity of the cells populating the liver as well as the existence of liver cancer subtypes with mixed histologic and molecular features. This review carefully examines the current pathologic, genomic, and experimental evidence supporting the existence of multiple cells of origin of liver and biliary tract cancers, with particular focus on cholangiocarcinoma and combined hepatocellular-cholangiocarcinoma.
Collapse
Affiliation(s)
- Rachel V Guest
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Benjamin Goeppert
- Institute of Pathology, RKH Klinikum Ludwigsburg, Ludwigsburg, Germany; Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Jean-Charles Nault
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Team "Functional Genomics of Solid Tumors", Equipe labellisée Ligue Nationale Contre le Cancer, Labex OncoImmunology, Paris, France; Liver Unit, Avicenne Hospital, APHP, University Sorbonne Paris Nord, Bobigny, France
| | - Daniela Sia
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
7
|
Lam WLM, Gabernet G, Poth T, Sator-Schmitt M, Oquendo MB, Kast B, Lohr S, de Ponti A, Weiß L, Schneider M, Helm D, Müller-Decker K, Schirmacher P, Heikenwälder M, Klingmüller U, Schneller D, Geisler F, Nahnsen S, Angel P. RAGE is a key regulator of ductular reaction-mediated fibrosis during cholestasis. EMBO Rep 2025; 26:880-907. [PMID: 39747668 PMCID: PMC11811172 DOI: 10.1038/s44319-024-00356-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025] Open
Abstract
Ductular reaction (DR) is the hallmark of cholestatic diseases manifested in the proliferation of bile ductules lined by biliary epithelial cells (BECs). It is commonly associated with an increased risk of fibrosis and liver failure. The receptor for advanced glycation end products (RAGE) was identified as a critical mediator of DR during chronic injury. Yet, the direct link between RAGE-mediated DR and fibrosis as well as the mode of interaction between BECs and hepatic stellate cells (HSCs) to drive fibrosis remain elusive. Here, we delineate the specific function of RAGE on BECs during DR and its potential association with fibrosis in the context of cholestasis. Employing a biliary lineage tracing cholestatic liver injury mouse model, combined with whole transcriptome sequencing and in vitro analyses, we reveal a role for BEC-specific Rage activity in fostering a pro-fibrotic milieu. RAGE is predominantly expressed in BECs and contributes to DR. Notch ligand Jagged1 is secreted from activated BECs in a Rage-dependent manner and signals HSCs in trans, eventually enhancing fibrosis during cholestasis.
Collapse
Affiliation(s)
- Wai-Ling Macrina Lam
- Division of Signal Transduction and Growth Control, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Faculty of Biosciences, Ruprecht Karl University of Heidelberg, Heidelberg, Germany
| | - Gisela Gabernet
- Quantitative Biology Center (QBiC), Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Tanja Poth
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Melanie Sator-Schmitt
- Division of Signal Transduction and Growth Control, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Morgana Barroso Oquendo
- Quantitative Biology Center (QBiC), Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Bettina Kast
- Division of Signal Transduction and Growth Control, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Sabrina Lohr
- Division of Signal Transduction and Growth Control, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Aurora de Ponti
- Division of Signal Transduction and Growth Control, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Lena Weiß
- Division of Signal Transduction and Growth Control, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Martin Schneider
- Protein Analysis Unit, Genomics and Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominic Helm
- Protein Analysis Unit, Genomics and Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karin Müller-Decker
- Tumor Models Unit, Center for Preclinical Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ursula Klingmüller
- Division of Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Doris Schneller
- Division of Signal Transduction and Growth Control, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Fabian Geisler
- TUM School of Medicine and Health, Department of Clinical Medicine - Clinical Department for Internal Medicine II, University Medical Center, Technical University of Munich, München, Germany
| | - Sven Nahnsen
- Quantitative Biology Center (QBiC), Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Peter Angel
- Division of Signal Transduction and Growth Control, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|
8
|
Zhao H, Zhou B. Lineage tracing of pancreatic cells for mechanistic and therapeutic insights. Trends Endocrinol Metab 2025:S1043-2760(24)00330-8. [PMID: 39828453 DOI: 10.1016/j.tem.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025]
Abstract
Recent advances in lineage-tracing technologies have significantly improved our understanding of pancreatic cell biology, particularly in elucidating the ontogeny and regenerative capacity of pancreatic cells. A deeper appreciation of the mechanisms underlying pancreatic cell identity and plasticity holds the potential to inform the development of new therapeutic modalities for conditions such as diabetes and pancreatitis. With this goal in mind, here we summarize advances, challenges, and future directions in tracing pancreatic cell origins and fates using lineage-tracing technologies. Given their essential role for blood glucose regulation, we pay particular attention on the insights gained from endocrine cells, especially β-cells.
Collapse
Affiliation(s)
- Huan Zhao
- CAS CEMCS-CUHK Joint Laboratories, New Cornerstone Investigator Institute, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Bin Zhou
- CAS CEMCS-CUHK Joint Laboratories, New Cornerstone Investigator Institute, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
9
|
Inada A. Differentiation, reduction, and proliferation of pancreatic β-cells and their regulatory factors. Diabetol Int 2025; 16:23-29. [PMID: 39877437 PMCID: PMC11769892 DOI: 10.1007/s13340-024-00774-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/21/2024] [Indexed: 01/31/2025]
Abstract
The prevalence of diabetes has increased rapidly in recent years, and many types of therapeutic agents have been developed. However, the main purpose of these drugs is to lower blood glucose levels, and they are not fundamental solutions. In contrast, our research has been aimed at stimulating and inducing β-cell proliferation in vivo and replenishing β-cells. We demonstrated that pancreatic ductal cells are a source of β-cells both after birth and during regeneration after partial duct ligation: cell lineage tracing showed that 39% of growing islets and 50% of adult islets during tissue regeneration contained β-cells differentiated from duct cells. We also examined the factors contributing to β-cell depletion. Insulin and cyclin A genes are tightly regulated by transcriptional activators and repressors, and we found that imbalanced and excessive levels of repressors result in a drastic reduction of insulin and β-cell numbers, leading to severe diabetes. Thus, we searched for factors that induce β-cell proliferation in vivo. In our transgenic (Tg) mice, there was a sex difference in the progression of diabetes and sex steroid hormones were shown to contribute to this. Surprisingly, in diabetic male Tg mice, modulation of sex steroid hormones under certain conditions resulted in a marked increase of β-cells. We identified Greb1 as a factor inducing β-cell proliferation in response to a rapid elevation of E2 levels. This series of studies has demonstrated that islet cells exhibit plasticity and indicates that changes of islet cell mass and function are dynamic and recoverable.
Collapse
Affiliation(s)
- Akari Inada
- Clinical Research Department, Institute of Biomedical Research and Innovation (IBRI), Foundation for Biomedical Research and Innovation at Kobe (FBRI), 6-3-7 Minatojima Minami-machi, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| |
Collapse
|
10
|
Kim M, Park Y, Kim YS, Ko S. Cellular Plasticity in Gut and Liver Regeneration. Gut Liver 2024; 18:949-960. [PMID: 39081200 PMCID: PMC11565004 DOI: 10.5009/gnl240005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/07/2024] [Accepted: 06/21/2024] [Indexed: 11/16/2024] Open
Abstract
The intestine and liver share a unique regenerative property that sets them apart from other mammalian visceral organs. The intestinal epithelium exhibits rapid renewal, making it one of the fastest renewing tissues in humans. Under physiological conditions, intestinal stem cells within each intestinal crypt continuously differentiate into the different types of intestinal epithelial cells to maintain intestinal homeostasis. However, when exposed to tissue damage or stressful conditions such as inflammation, intestinal epithelial cells in the gastrointestinal tract exhibit plasticity, allowing fully differentiated cells to regain their stem cell properties. Likewise, hepatic epithelial cells possess a remarkable regenerative capacity to restore lost liver mass through proliferation-mediated liver regeneration. When the proliferation-mediated regenerative capacity is impaired, hepatocytes and biliary epithelial cells (BECs) can undergo plasticity-mediated regeneration and replenish each other. The transition of mammalian liver progenitor cells to hepatocytes/BECs can be observed under tightly controlled experimental conditions such as severe hepatocyte injury accompanied by the loss of regenerative capacity. In this review, we will discuss the mechanism by which cellular plasticity contributes to the regeneration process and the potential therapeutic implications of understanding and harnessing cellular plasticity in the gut and liver.
Collapse
Affiliation(s)
- Minwook Kim
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yoojeong Park
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - You Sun Kim
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Internal Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Sungjin Ko
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
11
|
Rashwan AM, Abumandour MMA, Kandyel R, Choudhary OP, Soliman RM, El Sharaby A, Nomir AG. Implications of endoplasmic reticulum stress and beta-cell loss in immunodeficient diabetic NRG-Akita mice for understanding monogenic diabetes. Int J Surg 2024; 110:6231-6242. [PMID: 38329104 PMCID: PMC11486971 DOI: 10.1097/js9.0000000000001148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Immunodeficient mice models have become increasingly important as in vivo models engrafted with human cells or tissues for research. The NOD-Rag1 null Ins2 Akita Il2r null (NRG-Akita) mice is a model combined with immunodeficient NRG and monogenic diabetes Akita mice that develop spontaneous hyperglycemia with progressive loss of pancreatic insulin-producing beta-cells with age. This model is one of the monogenic diabetic models, which has been providing a powerful platform for transplantation experiments of stem cells-generated human β-cells. This research aimed to provide insights into the mechanisms underlying this monogenic diabetes, which remains incompletely understood. METHODS Histological and immunofluorescence analyses were conducted on endocrine pancreatic islets to compare NRG wild-type (Wt) controls with NRG-Akita mice. Our investigation focused on assessing the expression of endocrine hormones, transcription factors, proliferation, ER stress, and apoptosis. RESULTS Histological analyses on NRG-Akita mice revealed smaller islets at 6-weeks-old, due to fewer β-cells in the islets, compared to NRG-Wt controls, which further progressed with age. The proliferation rate decreased, and apoptosis was abundant in β-cells in NRG-Akita mice. Interestingly, our mechanistic analyses revealed that β-cells in NRG-Akita mice progressively accumulated the endoplasmic reticulum (ER) stresses, leading to a decreased expression of pivotal β-cell transcriptional factor PDX1. CONCLUSIONS Altogether, our mechanistic insight into β-cell loss in this model could shed light on essential links between ER stress, proliferation, and cell identity, which might open the door to new therapeutic strategies for various diseases since ER stress is one of the most common features not only in diabetes but also in other degenerative diseases.
Collapse
Affiliation(s)
- Ahmed M. Rashwan
- Department of Anatomy and Embryology
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Japan
| | | | - Ramadan Kandyel
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
- Department of Biology, Faculty of Arts and Sciences, Najran University, Najran, Saudi Arabia
| | - Om P. Choudhary
- Department of Veterinary Anatomy, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Rampura Phul, Bathinda, Punjab, India
| | - Rofaida M. Soliman
- Department of Animal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour
| | | | | |
Collapse
|
12
|
Liu S. AHR regulates liver enlargement and regeneration through the YAP signaling pathway. Heliyon 2024; 10:e37265. [PMID: 39296106 PMCID: PMC11408047 DOI: 10.1016/j.heliyon.2024.e37265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/30/2024] [Accepted: 08/29/2024] [Indexed: 09/21/2024] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a transcription factor activated by ligands that participates in many important physiological processes. Although AHR activation is associated with hepatomegaly, the underlying mechanism remains unclear. This study evaluated the effects of AHR activation on liver enlargement and regeneration in various transgenic mice and animal models. Activation of AHR by the non-toxic ligand YH439 significantly induced liver/body weight ratio in wild-type mice (1.37-fold) and AHRfl/fl.ALB-CreERT2 mice (1.54-fold). However, these effects not present in AHRΔHep mice. Additionally, the activation of AHR promotes hepatocyte enlargement (1.43-fold or 1.41-fold) around the central vein (CV) and increases number of Ki67+ cells (42.5-fold or 48.8-fold) around the portal vein (PV) in wild-type mice and AHRfl/fl.ALB-CreERT2 mice. In the 70 % partial hepatectomy (PHx) model, YH439 significantly induced hepatocyte enlargement (1.40-fold) and increased number of Ki67+ cells (3.97-fold) in AHRfl/fl.ALB-CreERT2 mice. However, these effects were not observed in AHRΔHep mice. Co-immunoprecipitation results suggested a potential protein-protein interaction between AHR and Yes-associated protein (YAP). Disruption of the association between YAP and transcription enhancer domain family member (TEAD) significantly inhibited AHR-induced liver enlargement and regeneration. Furthermore, AHR failed to induce liver enlargement and regeneration in YAPΔHep mice. Blocking the YAP signaling pathway effectively eliminated AHR-induced liver enlargement and regeneration. This study revealed the molecular mechanism of AHR regulation of liver size and regeneration through the activation of AHR-TEAD signaling pathway, thereby offering novel insights into the physiological role of AHR. These findings provide a theoretical foundation for the prevention and treatment of disorders associated with liver regeneration.
Collapse
Affiliation(s)
- Shenghui Liu
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| |
Collapse
|
13
|
Li Z, Sun X. Epigenetic regulation in liver regeneration. Life Sci 2024; 353:122924. [PMID: 39038511 DOI: 10.1016/j.lfs.2024.122924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
The liver is considered unique in its enormous capacity for regeneration and self-repair. In contrast to other regenerative organs (i.e., skin, skeletal muscle, and intestine), whether the adult liver contains a defined department of stem cells is still controversial. In order to compensate for the massive loss of hepatocytes following liver injury, the liver processes a precisely controlled transcriptional reprogram that can trigger cell proliferation and cell-fate switch. Epigenetic events are thought to regulate the organization of chromatin architecture and gene transcription during the liver regenerative process. In this review, we will summarize how changes to the chromatin by epigenetic modifiers are translated into cell fate transitions to restore liver homeostasis during liver regeneration.
Collapse
Affiliation(s)
- Zilong Li
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117 Jinan, Shandong, China; Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong, China.
| | - Xinyue Sun
- Department of Pharmacology, China Pharmaceutical University, 210009 Nanjing, Jiangsu, China
| |
Collapse
|
14
|
Liu D, Yuan L, Xu F, Ma Y, Zhang H, Jin Y, Chen M, Zhang Z, Luo S. Interleukin-33 promotes intrauterine adhesion formation in mice through the mitogen-activated protein kinase signaling pathway. Commun Biol 2024; 7:1022. [PMID: 39164588 PMCID: PMC11336135 DOI: 10.1038/s42003-024-06709-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
IL-33 belongs to the inflammatory factor family and is closely associated with the inflammatory response. However, its role in the development of intrauterine adhesions (IUAs) remains unclear. In this study, the role of IL-33 in the formation of IUAs after endometrial injury was identified via RNA sequencing after mouse endometrial organoids were transplanted into an IUA mouse model. Major pathological changes in the mouse uterus, consistent with the expression of fibrotic markers, such as TGF-β, were observed in response to treatment with IL-33. This finding may be attributed to activation of the phosphorylation of downstream MAPK signaling pathway components, which are activated by the release of IL-33 in macrophages. Our study provides a novel mechanism for elucidating IUA formation, suggesting a new therapeutic strategy for the prevention and clinical treatment of IUAs.
Collapse
Affiliation(s)
- Dan Liu
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, China
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Ministry of Education for Fertility Preservation and Maintenance, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Liwei Yuan
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, China
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Fengjuan Xu
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, Yinchuan, Ningxia, China
| | - Yulan Ma
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, China
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, Yinchuan, Ningxia, China
| | - Huixing Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiran Jin
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | | | - Zhining Zhang
- Department of Gynecological Oncology Surgery of the General Hospital of Ningxia Medical University, Yinchuan, China
| | - Sang Luo
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.
- Key Laboratory of Ministry of Education for Fertility Preservation and Maintenance, Ningxia Medical University, Yinchuan, Ningxia, China.
| |
Collapse
|
15
|
Wang S, Link F, Munker S, Wang W, Feng R, Liebe R, Li Y, Yao Y, Liu H, Shao C, Ebert MP, Ding H, Dooley S, Weng HL, Wang SS. Retinoic acid generates a beneficial microenvironment for liver progenitor cell activation in acute liver failure. Hepatol Commun 2024; 8:e0483. [PMID: 39023343 PMCID: PMC11262820 DOI: 10.1097/hc9.0000000000000483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/05/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND When massive necrosis occurs in acute liver failure (ALF), rapid expansion of HSCs called liver progenitor cells (LPCs) in a process called ductular reaction is required for survival. The underlying mechanisms governing this process are not entirely known to date. In ALF, high levels of retinoic acid (RA), a molecule known for its pleiotropic roles in embryonic development, are secreted by activated HSCs. We hypothesized that RA plays a key role in ductular reaction during ALF. METHODS RNAseq was performed to identify molecular signaling pathways affected by all-trans retinoid acid (atRA) treatment in HepaRG LPCs. Functional assays were performed in HepaRG cells treated with atRA or cocultured with LX-2 cells and in the liver tissue of patients suffering from ALF. RESULTS Under ALF conditions, activated HSCs secreted RA, inducing RARα nuclear translocation in LPCs. RNAseq data and investigations in HepaRG cells revealed that atRA treatment activated the WNT-β-Catenin pathway, enhanced stemness genes (SOX9, AFP, and others), increased energy storage, and elevated the expression of ATP-binding cassette transporters in a RARα nuclear translocation-dependent manner. Further, atRA treatment-induced pathways were confirmed in a coculture system of HepaRG with LX-2 cells. Patients suffering from ALF who displayed RARα nuclear translocation in the LPCs had significantly better MELD scores than those without. CONCLUSIONS During ALF, RA secreted by activated HSCs promotes LPC activation, a prerequisite for subsequent LPC-mediated liver regeneration.
Collapse
Affiliation(s)
- Sai Wang
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Frederik Link
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefan Munker
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
- Liver Center Munich, University Hospital, LMU, Munich, Germany
| | - Wenjing Wang
- Beijing Institute of Hepatology, Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Rilu Feng
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Roman Liebe
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke-University, Magdeburg, Germany
| | - Yujia Li
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ye Yao
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hui Liu
- Department of Pathology, Beijing You’an Hospital, Affiliated with Capital Medical University, Beijing, China
| | - Chen Shao
- Department of Pathology, Beijing You’an Hospital, Affiliated with Capital Medical University, Beijing, China
| | - Matthias P.A. Ebert
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center, Mannheim, Germany
| | - Huiguo Ding
- Department of Gastroenterology and Hepatology, Beijing You’an Hospital, Affiliated with Capital Medical University, Beijing, China
| | - Steven Dooley
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hong-Lei Weng
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Shan-Shan Wang
- Beijing Institute of Hepatology, Beijing You’an Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
16
|
Shang T, Jiang T, Cui X, Pan Y, Feng X, Dong L, Wang H. Diverse functions of SOX9 in liver development and homeostasis and hepatobiliary diseases. Genes Dis 2024; 11:100996. [PMID: 38523677 PMCID: PMC10958229 DOI: 10.1016/j.gendis.2023.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/13/2023] [Accepted: 03/19/2023] [Indexed: 03/26/2024] Open
Abstract
The liver is the central organ for digestion and detoxification and has unique metabolic and regenerative capacities. The hepatobiliary system originates from the foregut endoderm, in which cells undergo multiple events of cell proliferation, migration, and differentiation to form the liver parenchyma and ductal system under the hierarchical regulation of transcription factors. Studies on liver development and diseases have revealed that SRY-related high-mobility group box 9 (SOX9) plays an important role in liver embryogenesis and the progression of hepatobiliary diseases. SOX9 is not only a master regulator of cell fate determination and tissue morphogenesis, but also regulates various biological features of cancer, including cancer stemness, invasion, and drug resistance, making SOX9 a potential biomarker for tumor prognosis and progression. This review systematically summarizes the latest findings of SOX9 in hepatobiliary development, homeostasis, and disease. We also highlight the value of SOX9 as a novel biomarker and potential target for the clinical treatment of major liver diseases.
Collapse
Affiliation(s)
- Taiyu Shang
- School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Tianyi Jiang
- National Center for Liver Cancer, The Naval Medical University, Shanghai 201805, China
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
| | - Xiaowen Cui
- National Center for Liver Cancer, The Naval Medical University, Shanghai 201805, China
| | - Yufei Pan
- National Center for Liver Cancer, The Naval Medical University, Shanghai 201805, China
| | - Xiaofan Feng
- National Center for Liver Cancer, The Naval Medical University, Shanghai 201805, China
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
| | - Liwei Dong
- National Center for Liver Cancer, The Naval Medical University, Shanghai 201805, China
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
| | - Hongyang Wang
- School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
- National Center for Liver Cancer, The Naval Medical University, Shanghai 201805, China
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
- Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Second Military Medical University & Ministry of Education, Shanghai 200438, China
| |
Collapse
|
17
|
Ghuwalewala S, Jiang K, Ragi S, Shalloway D, Tumbar T. A transit-amplifying progenitor with biphasic behavior contributes to epidermal renewal. Development 2024; 151:dev202389. [PMID: 38934416 PMCID: PMC11234368 DOI: 10.1242/dev.202389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
Transit-amplifying (TA) cells are progenitors that undergo an amplification phase followed by transition into an extinction phase. A long postulated epidermal TA progenitor with biphasic behavior has not yet been experimentally observed in vivo. Here, we identify such a TA population using clonal analysis of Aspm-CreER genetic cell-marking in mice, which uncovers contribution to both homeostasis and injury repair of adult skin. This TA population is more frequently dividing than a Dlx1-CreER-marked long-term self-renewing (e.g. stem cell) population. Newly developed generalized birth-death modeling of long-term lineage tracing data shows that both TA progenitors and stem cells display neutral competition, but only the stem cells display neutral drift. The quantitative evolution of a nascent TA cell and its direct descendants shows that TA progenitors indeed amplify the basal layer before transition and that the homeostatic TA population is mostly in extinction phase. This model will be broadly useful for analyzing progenitors whose behavior changes with their clone age. This work identifies a long-missing class of non-self-renewing biphasic epidermal TA progenitors and has broad implications for understanding tissue renewal mechanisms.
Collapse
Affiliation(s)
- Sangeeta Ghuwalewala
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Kevin Jiang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Sara Ragi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - David Shalloway
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Tudorita Tumbar
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
18
|
Miyazaki N, Takami S, Uemura M, Oiki H, Takahashi M, Kawashima H, Kanamori Y, Yoshioka T, Kasahara M, Nakazawa A, Higashi M, Yanagida A, Hiramatsu R, Kanai-Azuma M, Fujishiro J, Kanai Y. Impact of gallbladder hypoplasia on hilar hepatic ducts in biliary atresia. COMMUNICATIONS MEDICINE 2024; 4:111. [PMID: 38862768 PMCID: PMC11166647 DOI: 10.1038/s43856-024-00544-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Biliary atresia (BA) is an intractable disease of unknown cause that develops in the neonatal period. It causes jaundice and liver damage due to the destruction of extrahepatic biliary tracts,. We have found that heterozygous knockout mice of the SRY related HMG-box 17 (Sox17) gene, a master regulator of stem/progenitor cells in the gallbladder wall, exhibit a condition like BA. However, the precise contribution of hypoplastic gallbladder wall to the pathogenesis of hepatobiliary disease in Sox17 heterozygous embryos and human BA remains unclear. METHODS We employed cholangiography and histological analyses in the mouse BA model. Furthermore, we conducted a retrospective analysis of human BA. RESULTS We show that gallbladder wall hypoplasia causes abnormal multiple connections between the hilar hepatic bile ducts and the gallbladder-cystic duct in Sox17 heterozygous embryos. These multiple hilar extrahepatic ducts fuse with the developing intrahepatic duct walls and pull them out of the liver parenchyma, resulting in abnormal intrahepatic duct network and severe cholestasis. In human BA with gallbladder wall hypoplasia (i.e., abnormally reduced expression of SOX17), we also identify a strong association between reduced gallbladder width (a morphometric parameter indicating gallbladder wall hypoplasia) and severe liver injury at the time of the Kasai surgery, like the Sox17-mutant mouse model. CONCLUSIONS Together with the close correlation between gallbladder wall hypoplasia and liver damage in both mouse and human cases, these findings provide an insight into the critical role of SOX17-positive gallbladder walls in establishing functional bile duct networks in the hepatic hilus of neonates.
Collapse
Affiliation(s)
- Nanae Miyazaki
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shohei Takami
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Department of Pediatric Surgery, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Mami Uemura
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Center for Experimental Animals, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Hironobu Oiki
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Department of Pediatric Surgery, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Department of Surgery, Saitama Children's Medical Center, Saitama, Saitama, Japan
| | - Masataka Takahashi
- Division of Surgery, Department of Surgical Specialties, National Center for Child Health and Development, Setagaya-ku, Tokyo, Japan
| | - Hiroshi Kawashima
- Department of Surgery, Saitama Children's Medical Center, Saitama, Saitama, Japan
| | - Yutaka Kanamori
- Division of Surgery, Department of Surgical Specialties, National Center for Child Health and Development, Setagaya-ku, Tokyo, Japan
| | - Takako Yoshioka
- Department of Pathology, National Center for Child Health and Development, Setagaya-ku, Tokyo, Japan
| | - Mureo Kasahara
- Organ Transplantation Center, National Center for Child Health and Development, Setagaya-ku, Tokyo, Japan
| | - Atsuko Nakazawa
- Department of Clinical Research, Saitama Children's Medical Center, Saitama, Saitama, Japan
| | - Mayumi Higashi
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, Kyoto Kamikyo-ku, Kyoto, Japan
| | - Ayaka Yanagida
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ryuji Hiramatsu
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masami Kanai-Azuma
- Center for Experimental Animals, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Jun Fujishiro
- Department of Pediatric Surgery, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yoshiakira Kanai
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
19
|
Yamazaki Y, Kikuchi K, Yamada Y, Neo S, Nitta S, Igarashi H, Kamiya A, Hisasue M. Reprogramming canine cryopreserved hepatocytes to hepatic progenitor cells using small molecule compounds. Regen Ther 2024; 26:1078-1086. [PMID: 39582800 PMCID: PMC11585473 DOI: 10.1016/j.reth.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 11/26/2024] Open
Abstract
Introduction Exploring techniques for differentiating and culturing canine hepatocytes serves as a means to establish systems for liver transplantation and drug metabolism testing. However, establishing consistent methods for culturing stable hepatocytes remains a challenge. Recently, several investigations have shown the reprogramming of mature hepatocytes into hepatic progenitor cells by applying specific small molecule compounds, including Y-27632, (a ROCK inhibitor), A-83-01 (a TGFβ inhibitor), and CHIR99021 (a GSK3 inhibitor) (termed YAC) in rat, mouse, and humans, respectively. However, reports or evidence of successful reprogramming using these small-molecule compounds in dogs are absent. This study aimed to induce the differentiation of mature canine hepatocytes into progenitor cells. Methods Cryopreserved canine hepatocytes (cHep) were cultured for 14 d in a YAC-supplemented hepatocyte growth medium. Subsequently, an assessment was conducted involving morphological observations, quantitative real-time polymerase chain reaction (qRT-PCR), and immunocytochemistry. Results Notably, cryopreserved cHep cells emerged and exhibited ongoing proliferation and concurrently developed colonies within the YAC-enriched culture. These observations indicated that the mature hepatocytes reprogrammed into hepatic progenitor cells. Moreover, qRT-PCR analysis revealed a notable enhancement in gene expression levels. Specifically, the genes encoding α-fetoprotein (AFP), epithelial cell adhesion molecule (EpCAM), Cytokeratin 19 (CK19) and SRY-box9 (Sox9) displayed approximately 12-, 2.2-, 517- and 2.9- increases in hepatic progenitor cells, respectively, on day 14 as compared to their state before induction of differentiation. Hepatocyte-related protein expression of AFP, EPCAM, SOX9 and CK19 was confirmed via immunocytochemistry on day 21. In contrast, ALB and MRP2, which are highly expressed in mature hepatocytes, were decreased compared to those before YAC addition, which is consistent with the characteristics of undifferentiated hepatocytes. Conclusions Herein, we effectively promoted the reprogramming of cryopreserved cHep cells into hepatic progenitor cells using three small-molecule compounds. The mRNA and protein expression analyses demonstrated increased levels of hepatic progenitor cells-specific markers, whereas markers related to mature hepatocytes decreased, suggesting that reprogramming cryopreserved cHep cells to hepatic progenitor cells was achieved using YAC. Therefore, cultivating liver progenitor cells holds the potential to offer valuable insights into the development of artificial livers for drug discovery research and transplantation therapy aimed at addressing liver diseases in dogs.
Collapse
Affiliation(s)
- Yu Yamazaki
- Laboratory of Small Animal Internal Medicine, School of Veterinary Medicine, Azabu University, Sagamihara City, Kanagawa, Japan
| | - Kaoruko Kikuchi
- Laboratory of Small Animal Internal Medicine, School of Veterinary Medicine, Azabu University, Sagamihara City, Kanagawa, Japan
| | - Yoko Yamada
- Laboratory of Small Animal Internal Medicine, School of Veterinary Medicine, Azabu University, Sagamihara City, Kanagawa, Japan
| | - Sakurako Neo
- Laboratory of Clinical Diagnostics, School of Veterinary Medicine, Azabu University, Sagamihara City, Kanagawa, Japan
| | - Suguru Nitta
- Laboratory of Small Animal Internal Medicine, School of Veterinary Medicine, Azabu University, Sagamihara City, Kanagawa, Japan
| | - Hirotaka Igarashi
- Laboratory of Small Animal Internal Medicine, School of Veterinary Medicine, Azabu University, Sagamihara City, Kanagawa, Japan
| | - Akihide Kamiya
- Department of Molecular Life Sciences, Tokai University School of Medicine, Kanagawa, Japan
| | - Masaharu Hisasue
- Laboratory of Small Animal Internal Medicine, School of Veterinary Medicine, Azabu University, Sagamihara City, Kanagawa, Japan
| |
Collapse
|
20
|
Afonso MB, Marques V, van Mil SW, Rodrigues CM. Human liver organoids: From generation to applications. Hepatology 2024; 79:1432-1451. [PMID: 36815360 PMCID: PMC11095893 DOI: 10.1097/hep.0000000000000343] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/11/2022] [Accepted: 12/19/2022] [Indexed: 02/24/2023]
Abstract
In the last decade, research into human hepatology has been revolutionized by the development of mini human livers in a dish. These liver organoids are formed by self-organizing stem cells and resemble their native counterparts in cellular content, multicellular architecture, and functional features. Liver organoids can be derived from the liver tissue or pluripotent stem cells generated from a skin biopsy, blood cells, or renal epithelial cells present in urine. With the development of liver organoids, a large part of previous hurdles in modeling the human liver is likely to be solved, enabling possibilities to better model liver disease, improve (personalized) drug testing, and advance bioengineering options. In this review, we address strategies to generate and use organoids in human liver disease modeling, followed by a discussion of their potential application in drug development and therapeutics, as well as their strengths and limitations.
Collapse
Affiliation(s)
- Marta B. Afonso
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Vanda Marques
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Saskia W.C. van Mil
- Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, The Netherlands
| | - Cecilia M.P. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| |
Collapse
|
21
|
Chen J, Lu J, Wang SN, Miao CY. Application and challenge of pancreatic organoids in therapeutic research. Front Pharmacol 2024; 15:1366417. [PMID: 38855754 PMCID: PMC11157021 DOI: 10.3389/fphar.2024.1366417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/06/2024] [Indexed: 06/11/2024] Open
Abstract
The in-vivo non-human primate animal and in-vitro cell disease models play a crucial part in the study of the mechanisms underlying the occurrence and development of pancreatic diseases, but with increasingly prominent limitations with in-depth research. Organoids derived from human pluripotent and adult stem cells resemble human in-vivo organs in their cellular composition, spatial tissue structure and physiological function, making them as an advantageous research tool. Up until now, numerous human organoids, including pancreas, have been effectively developed, demonstrating significant potential for research in organ development, disease modeling, drug screening, and regenerative medicine. However, different from intestine, liver and other organs, the pancreas is the only special organ in the human body, consisting of an exocrine gland and an endocrine gland. Thus, the development of pancreatic organoid technology faces greater challenges, and how to construct a composite pancreatic organoid with exocrine and endocrine gland is still difficult in current research. By reviewing the fundamental architecture and physiological role of the human pancreas, along with the swiftly developing domain of pancreatic organoids, we summarize the method and characteristics of human pancreatic organoids, and its application in modeling pancreatic diseases, as a platform for individualized drug screening and in regenerative medicine study. As the first comprehensive review that focus on the pharmacological study of human pancreatic organoid, the review hopes to help scholars to have a deeper understanding in the study of pancreatic organoid.
Collapse
Affiliation(s)
- Jin Chen
- Department of Endocrinology and Metabolism, Changhai Hospital, Second Military University /Naval Medical University, Shanghai, China
- Department of Pharmacology, Second Military Medical University /Naval Medical University, Shanghai, China
| | - Jin Lu
- Department of Endocrinology and Metabolism, Changhai Hospital, Second Military University /Naval Medical University, Shanghai, China
| | - Shu-Na Wang
- Department of Pharmacology, Second Military Medical University /Naval Medical University, Shanghai, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University /Naval Medical University, Shanghai, China
| |
Collapse
|
22
|
Yan W, Wang Y, Lu Y, Peng S, Wu B, Cai W, Xiao Y. Reg4 deficiency aggravates pancreatitis by increasing mitochondrial cell death and fibrosis. Cell Death Dis 2024; 15:348. [PMID: 38769308 PMCID: PMC11106239 DOI: 10.1038/s41419-024-06738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024]
Abstract
Regenerating gene family member 4 (Reg4) has been implicated in acute pancreatitis, but its precise functions and involved mechanisms have remained unclear. Herein, we sought to investigate the contribution of Reg4 to the pathogenesis of pancreatitis and evaluate its therapeutic effects in experimental pancreatitis. In acute pancreatitis, Reg4 deletion increases inflammatory infiltrates and mitochondrial cell death and decreases autophagy recovery, which are rescued by the administration of recombinant Reg4 (rReg4) protein. In chronic pancreatitis, Reg4 deficiency aggravates inflammation and fibrosis and inhibits compensatory cell proliferation. Moreover, C-X-C motif ligand 12 (CXCL12)/C-X-C motif receptor 4 (CXCR4) axis is sustained and activated in Reg4-deficient pancreas. The detrimental effects of Reg4 deletion are attenuated by the administration of the approved CXCR4 antagonist plerixafor (AMD3100). Mechanistically, Reg4 mediates its function in pancreatitis potentially via binding its receptor exostosin-like glycosyltransferase 3 (Extl3). In conclusion, our findings suggest that Reg4 exerts a therapeutic effect during pancreatitis by limiting inflammation and fibrosis and improving cellular regeneration.
Collapse
Affiliation(s)
- Weihui Yan
- Division of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, 200092, China
| | - Ying Wang
- Division of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, 200092, China
| | - Ying Lu
- Division of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, 200092, China
- Shanghai Institute for Pediatric Research, Shanghai, 200092, China
| | - Shicheng Peng
- Division of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, 200092, China
- Shanghai Institute for Pediatric Research, Shanghai, 200092, China
| | - Bo Wu
- Division of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Wei Cai
- Division of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China.
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, 200092, China.
| | - Yongtao Xiao
- Division of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China.
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, 200092, China.
- Shanghai Institute for Pediatric Research, Shanghai, 200092, China.
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China.
| |
Collapse
|
23
|
Krotenberg Garcia A, Ledesma-Terrón M, Lamprou M, Vriend J, van Luyk ME, Suijkerbuijk SJE. Cell competition promotes metastatic intestinal cancer through a multistage process. iScience 2024; 27:109718. [PMID: 38706869 PMCID: PMC11068562 DOI: 10.1016/j.isci.2024.109718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/28/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
Cell competition plays an instrumental role in quality control during tissue development and homeostasis. Nevertheless, cancer cells can exploit this process for their own proliferative advantage. In our study, we generated mixed murine organoids and microtissues to explore the impact of cell competition on liver metastasis. Unlike competition at the primary site, the initial effect on liver progenitor cells does not involve the induction of apoptosis. Instead, metastatic competition manifests as a multistage process. Initially, liver progenitors undergo compaction, which is followed by cell-cycle arrest, ultimately forcing differentiation. Subsequently, the newly differentiated liver cells exhibit reduced cellular fitness, rendering them more susceptible to outcompetition by intestinal cancer cells. Notably, cancer cells leverage different interactions with different epithelial populations in the liver, using them as scaffolds to facilitate their growth. Consequently, tissue-specific mechanisms of cell competition are fundamental in driving metastatic intestinal cancer.
Collapse
Affiliation(s)
- Ana Krotenberg Garcia
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Mario Ledesma-Terrón
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
- Universidad Autónoma de Madrid (UAM), University City of Cantoblanco, 28049 Madrid, Spain
| | - Maria Lamprou
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Joyce Vriend
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Merel Elise van Luyk
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Saskia Jacoba Elisabeth Suijkerbuijk
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| |
Collapse
|
24
|
Rice G, Farrelly O, Huang S, Kuri P, Curtis E, Ohman L, Li N, Lengner C, Lee V, Rompolas P. Sox9 marks limbal stem cells and is required for asymmetric cell fate switch in the corneal epithelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588195. [PMID: 38645161 PMCID: PMC11030424 DOI: 10.1101/2024.04.08.588195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Adult tissues with high cellular turnover require a balance between stem cell renewal and differentiation, yet the mechanisms underlying this equilibrium are unclear. The cornea exhibits a polarized lateral flow of progenitors from the peripheral stem cell niche to the center; attributed to differences in cellular fate. To identify genes that are critical for regulating the asymmetric fates of limbal stem cells and their transient amplified progeny in the central cornea, we utilized an in vivo cell cycle reporter to isolate proliferating basal cells across the anterior ocular surface epithelium and performed single-cell transcriptional analysis. This strategy greatly increased the resolution and revealed distinct basal cell identities with unique expression profiles of structural genes and transcription factors. We focused on Sox9; a transcription factor implicated in stem cell regulation across various organs. Sox9 was found to be differentially expressed between limbal stem cells and their progeny in the central corneal. Lineage tracing analysis confirmed that Sox9 marks long-lived limbal stem cells and conditional deletion led to abnormal differentiation and squamous metaplasia in the central cornea. These data suggest a requirement for Sox9 for the switch to asymmetric fate and commitment toward differentiation, as transient cells exit the limbal niche. By inhibiting terminal differentiation of corneal progenitors and forcing them into perpetual symmetric divisions, we replicated the Sox9 loss-of-function phenotype. Our findings reveal an essential role for Sox9 for the spatial regulation of asymmetric fate in the corneal epithelium that is required to sustain tissue homeostasis.
Collapse
|
25
|
Santos AA, Delgado TC, Marques V, Ramirez-Moncayo C, Alonso C, Vidal-Puig A, Hall Z, Martínez-Chantar ML, Rodrigues CM. Spatial metabolomics and its application in the liver. Hepatology 2024; 79:1158-1179. [PMID: 36811413 PMCID: PMC11020039 DOI: 10.1097/hep.0000000000000341] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/05/2023] [Indexed: 02/24/2023]
Abstract
Hepatocytes work in highly structured, repetitive hepatic lobules. Blood flow across the radial axis of the lobule generates oxygen, nutrient, and hormone gradients, which result in zoned spatial variability and functional diversity. This large heterogeneity suggests that hepatocytes in different lobule zones may have distinct gene expression profiles, metabolic features, regenerative capacity, and susceptibility to damage. Here, we describe the principles of liver zonation, introduce metabolomic approaches to study the spatial heterogeneity of the liver, and highlight the possibility of exploring the spatial metabolic profile, leading to a deeper understanding of the tissue metabolic organization. Spatial metabolomics can also reveal intercellular heterogeneity and its contribution to liver disease. These approaches facilitate the global characterization of liver metabolic function with high spatial resolution along physiological and pathological time scales. This review summarizes the state of the art for spatially resolved metabolomic analysis and the challenges that hinder the achievement of metabolome coverage at the single-cell level. We also discuss several major contributions to the understanding of liver spatial metabolism and conclude with our opinion on the future developments and applications of these exciting new technologies.
Collapse
Affiliation(s)
- André A. Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Teresa C. Delgado
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance, Derio, Bizkaia, Spain
- Congenital Metabolic Disorders, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Vanda Marques
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Carmen Ramirez-Moncayo
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
| | | | - Antonio Vidal-Puig
- MRC Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Centro Investigation Principe Felipe, Valencia, Spain
| | - Zoe Hall
- Division of Systems Medicine, Imperial College London, London, UK
| | - María Luz Martínez-Chantar
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance, Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Cecilia M.P. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
26
|
Liu S, Zhang Y, Luo Y, Liu J. Traditional and emerging strategies using hepatocytes for pancreatic regenerative medicine. J Diabetes 2024; 16:e13545. [PMID: 38599852 PMCID: PMC11006621 DOI: 10.1111/1753-0407.13545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 01/23/2024] [Accepted: 02/04/2024] [Indexed: 04/12/2024] Open
Abstract
Although pancreas and islet cell transplantation are the only ways to prevent the late complications of insulin-dependent diabetes, a shortage of donors is a major obstacle to tissue and organ transplantation. Stem cell therapy is an effective treatment for diabetes and other pancreatic-related diseases, which can be achieved by inducing their differentiation into insulin-secreting cells. The liver is considered an ideal source of pancreatic cells due to its similar developmental origin and strong regenerative ability as the pancreas. This article reviews the traditional and emerging strategies using hepatocytes for pancreatic regenerative medicine and evaluates their advantages and challenges. Gene reprogramming and chemical reprogramming technologies are traditional strategies with potential to improve the efficiency and specificity of cell reprogramming and promote the transformation of hepatocytes into islet cells. At the same time, organoid technology, as an emerging strategy, has received extensive attention. Biomaterials provide a three-dimensional culture microenvironment for cells, which helps improve cell survival and differentiation efficiency. In addition, clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing technology has brought new opportunities and challenges to the development of organoid technology.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Metabolism and Endocrinology, the Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - YuYing Zhang
- Department of Metabolism and Endocrinology, the Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - YunFei Luo
- Department of Metabolism and Endocrinology, the Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - JianPing Liu
- Department of Metabolism and Endocrinology, the Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| |
Collapse
|
27
|
Gómez‐Álvarez M, Bueno‐Fernandez C, Rodríguez‐Eguren A, Francés‐Herrero E, Agustina‐Hernández M, Faus A, Gisbert Roca F, Martínez‐Ramos C, Galán A, Pellicer A, Ferrero H, Cervelló I. Hybrid Endometrial-Derived Hydrogels: Human Organoid Culture Models and In Vivo Perspectives. Adv Healthc Mater 2024; 13:e2303838. [PMID: 37983675 PMCID: PMC11468130 DOI: 10.1002/adhm.202303838] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Indexed: 11/22/2023]
Abstract
The endometrium plays a vital role in fertility, providing a receptive environment for embryo implantation and development. Understanding the endometrial physiology is essential for developing new strategies to improve reproductive healthcare. Human endometrial organoids (hEOs) are emerging as powerful models for translational research and personalized medicine. However, most hEOs are cultured in a 3D microenvironment that significantly differs from the human endometrium, limiting their applicability in bioengineering. This study presents a hybrid endometrial-derived hydrogel that combines the rigidity of PuraMatrix (PM) with the natural scaffold components and interactions of a porcine decellularized endometrial extracellular matrix (EndoECM) hydrogel. This hydrogel provides outstanding support for hEO culture, enhances hEO differentiation efficiency due to its biochemical similarity with the native tissue, exhibits superior in vivo stability, and demonstrates xenogeneic biocompatibility in mice over a 2-week period. Taken together, these attributes position this hybrid endometrial-derived hydrogel as a promising biomaterial for regenerative treatments in reproductive medicine.
Collapse
Affiliation(s)
- María Gómez‐Álvarez
- IVIRMA Global Research AllianceIVI FoundationInstituto de Investigación Sanitaria La Fe (IIS La Fe)Valencia46026Spain
| | - Clara Bueno‐Fernandez
- IVIRMA Global Research AllianceIVI FoundationInstituto de Investigación Sanitaria La Fe (IIS La Fe)Valencia46026Spain
- Universitat de ValènciaDepartment of PediatricsObstetrics and GynaecologyValencia46010Spain
| | - Adolfo Rodríguez‐Eguren
- IVIRMA Global Research AllianceIVI FoundationInstituto de Investigación Sanitaria La Fe (IIS La Fe)Valencia46026Spain
| | - Emilio Francés‐Herrero
- IVIRMA Global Research AllianceIVI FoundationInstituto de Investigación Sanitaria La Fe (IIS La Fe)Valencia46026Spain
- Universitat de ValènciaDepartment of PediatricsObstetrics and GynaecologyValencia46010Spain
| | - Marcos Agustina‐Hernández
- IVIRMA Global Research AllianceIVI FoundationInstituto de Investigación Sanitaria La Fe (IIS La Fe)Valencia46026Spain
| | - Amparo Faus
- IVIRMA Global Research AllianceIVI FoundationInstituto de Investigación Sanitaria La Fe (IIS La Fe)Valencia46026Spain
| | - Fernando Gisbert Roca
- Universitat Politècnica de ValènciaCentre for Biomaterials and Tissue EngineeringValencia46022Spain
| | - Cristina Martínez‐Ramos
- Universitat Politècnica de ValènciaCentre for Biomaterials and Tissue EngineeringValencia46022Spain
- Unitat Predepartamental de MedicinaUniversitat Jaume ICastellón de la Plana12071Spain
| | - Amparo Galán
- Laboratory of NeuroendocrinologyPrince Felipe Research Center (CIPF)Valencia46012Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)Instituto de Salud Carlos IIIMadrid28029Spain
| | | | - Hortensia Ferrero
- IVIRMA Global Research AllianceIVI FoundationInstituto de Investigación Sanitaria La Fe (IIS La Fe)Valencia46026Spain
| | - Irene Cervelló
- IVIRMA Global Research AllianceIVI FoundationInstituto de Investigación Sanitaria La Fe (IIS La Fe)Valencia46026Spain
| |
Collapse
|
28
|
Zheng C, Wang J, Wang J, Zhang Q, Liang T. Cell of Origin of Pancreatic cancer: Novel Findings and Current Understanding. Pancreas 2024; 53:e288-e297. [PMID: 38277420 PMCID: PMC11882172 DOI: 10.1097/mpa.0000000000002301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/08/2023] [Indexed: 01/28/2024]
Abstract
ABSTRACT Pancreatic ductal adenocarcinoma (PDAC) stands as one of the most lethal diseases globally, boasting a grim 5-year survival prognosis. The origin cell and the molecular signaling pathways that drive PDAC progression are not entirely understood. This review comprehensively outlines the categorization of PDAC and its precursor lesions, expounds on the creation and utility of genetically engineered mouse models used in PDAC research, compiles a roster of commonly used markers for pancreatic progenitors, duct cells, and acinar cells, and briefly addresses the mechanisms involved in the progression of PDAC. We acknowledge the value of precise markers and suitable tracing tools to discern the cell of origin, as it can facilitate the creation of more effective models for PDAC exploration. These conclusions shed light on our existing understanding of foundational genetically engineered mouse models and focus on the origin and development of PDAC.
Collapse
Affiliation(s)
- Chenlei Zheng
- From the Department of Hepatobiliary and Pancreatic Surgery
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine
| | - Jianing Wang
- From the Department of Hepatobiliary and Pancreatic Surgery
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine
| | - Junli Wang
- From the Department of Hepatobiliary and Pancreatic Surgery
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine
| | - Qi Zhang
- From the Department of Hepatobiliary and Pancreatic Surgery
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province
- Zhejiang University Cancer Center, Hangzhou, China
| | - Tingbo Liang
- From the Department of Hepatobiliary and Pancreatic Surgery
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province
- Zhejiang University Cancer Center, Hangzhou, China
| |
Collapse
|
29
|
Aggarwal S, Wang Z, Fernandez Pacheco DR, Rinaldi A, Rajewski A, Callemeyn J, Van Loon E, Lamarthée B, Covarrubias AE, Hou J, Yamashita M, Akiyama H, Karumanchi SA, Svendsen CN, Noble PW, Jordan SC, Breunig J, Naesens M, Cippà PE, Kumar S. SOX9 switch links regeneration to fibrosis at the single-cell level in mammalian kidneys. Science 2024; 383:eadd6371. [PMID: 38386758 PMCID: PMC11345873 DOI: 10.1126/science.add6371] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 01/11/2024] [Indexed: 02/24/2024]
Abstract
The steps governing healing with or without fibrosis within the same microenvironment are unclear. After acute kidney injury (AKI), injured proximal tubular epithelial cells activate SOX9 for self-restoration. Using a multimodal approach for a head-to-head comparison of injury-induced SOX9 lineages, we identified a dynamic SOX9 switch in repairing epithelia. Lineages that regenerated epithelia silenced SOX9 and healed without fibrosis (SOX9on-off). By contrast, lineages with unrestored apicobasal polarity maintained SOX9 activity in sustained efforts to regenerate, which were identified as a SOX9on-on Cadherin6pos cell state. These reprogrammed cells generated substantial single-cell WNT activity to provoke a fibroproliferative response in adjacent fibroblasts, driving AKI to chronic kidney disease. Transplanted human kidneys displayed similar SOX9/CDH6/WNT2B responses. Thus, we have uncovered a sensor of epithelial repair status, the activity of which determines regeneration with or without fibrosis.
Collapse
Affiliation(s)
- Shikhar Aggarwal
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Zhanxiang Wang
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - David Rincon Fernandez Pacheco
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Anna Rinaldi
- Division of Nephrology, Ente Ospedaliero Cantonale, CH-6900 Lugano, Switzerland
| | - Alex Rajewski
- Applied Genomics, Computation, and Translational Core, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jasper Callemeyn
- Department of Microbiology, Immunology and Transplantation, KU Leuven, BE-3000 Leuven, Belgium
| | - Elisabet Van Loon
- Department of Microbiology, Immunology and Transplantation, KU Leuven, BE-3000 Leuven, Belgium
| | - Baptiste Lamarthée
- Department of Microbiology, Immunology and Transplantation, KU Leuven, BE-3000 Leuven, Belgium
| | - Ambart Ester Covarrubias
- Division of Nephrology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jean Hou
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Michifumi Yamashita
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Haruhiko Akiyama
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, Gifu 500-8705, Japan
| | - S. Ananth Karumanchi
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Division of Nephrology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Clive N. Svendsen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Paul W. Noble
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Stanley C. Jordan
- Division of Nephrology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Joshua Breunig
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, KU Leuven, BE-3000 Leuven, Belgium
| | - Pietro E Cippà
- Division of Nephrology, Ente Ospedaliero Cantonale, CH-6900 Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, CH-6900 Lugano, Switzerland
| | - Sanjeev Kumar
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Division of Nephrology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
30
|
Abstract
Molecular abnormalities that shape human neoplasms dissociate their phenotypic landscape from that of the healthy counterpart. Through the lens of a microscope, tumour pathology optically captures such aberrations projected onto a tissue slide and has categorized human epithelial neoplasms into distinct histological subtypes based on the diverse morphogenetic and molecular programmes that they manifest. Tumour histology often reflects tumour aggressiveness, patient prognosis and therapeutic vulnerability, and thus has been used as a de facto diagnostic tool and for making clinical decisions. However, it remains elusive how the diverse histological subtypes arise and translate into pleiotropic biological phenotypes. Molecular analysis of clinical tumour tissues and their culture, including patient-derived organoids, and add-back genetic reconstruction of tumorigenic pathways using gene engineering in culture models and rodents further elucidated molecular mechanisms that underlie morphological variations. Such mechanisms include genetic mutations and epigenetic alterations in cellular identity codes that erode hard-wired morphological programmes and histologically digress tumours from the native tissues. Interestingly, tumours acquire the ability to grow independently of the niche-driven stem cell ecosystem along with these morphological alterations, providing a biological rationale for histological diversification during tumorigenesis. This Review comprehensively summarizes our current understanding of such plasticity in the histological and lineage commitment fostered cooperatively by molecular alterations and the tumour environment, and describes basic and clinical implications for future cancer therapy.
Collapse
Affiliation(s)
- Masayuki Fujii
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan.
| | - Shigeki Sekine
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Toshiro Sato
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
31
|
Ahmad A, Tiwari RK, Siddiqui S, Chadha M, Shukla R, Srivastava V. Emerging trends in gastrointestinal cancers: Targeting developmental pathways in carcinogenesis and tumor progression. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 385:41-99. [PMID: 38663962 DOI: 10.1016/bs.ircmb.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Gastrointestinal carcinomas are a group of cancers associated with the digestive system and its accessory organs. The most prevalent cancers related to the gastrointestinal tract are colorectal, gall bladder, gastric, hepatocellular, and esophageal cancers, respectively. Molecular aberrations in different signaling pathways, such as signal transduction systems or developmental pathways are the chief triggering mechanisms in different cancers Though a massive advancement in diagnostic and therapeutic interventions results in improved survival of patients with gastrointestinal cancer; the lower malignancy stages of these carcinomas are comparatively asymptomatic. Various gastrointestinal-related cancers are detected at advanced stages, leading to deplorable prognoses and increased rates of recurrence. Recent molecular studies have elucidated the imperative roles of several signaling pathways, namely Wnt, Hedgehog, and Notch signaling pathways, play in the progression, therapeutic responsiveness, and metastasis of gastrointestinal-related cancers. This book chapter gives an interesting update on recent findings on the involvement of developmental signaling pathways their mechanistic insight in gastrointestinalcancer. Subsequently, evidences supporting the exploration of gastrointestinal cancer related molecular mechanisms have also been discussed for developing novel therapeutic strategies against these debilitating carcinomas.
Collapse
Affiliation(s)
- Afza Ahmad
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | - Rohit Kumar Tiwari
- Department of Clinical Research, Sharda School of Allied Health Sciences, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Saleha Siddiqui
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Muskan Chadha
- Department of Nutrition and Dietetics, Sharda School of Allied Health Sciences, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Ratnakar Shukla
- Department of Clinical Research, Sharda School of Allied Health Sciences, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Vivek Srivastava
- Department of Chemistry & Biochemistry, Sharda School of Basic Sciences & Research, Sharda University, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
32
|
Obata T, Mizoguchi S, Greaney AM, Adams T, Yuan Y, Edelstein S, Leiby KL, Rivero R, Wang N, Kim H, Yang J, Schupp JC, Stitelman D, Tsuchiya T, Levchenko A, Kaminski N, Niklason LE, Brickman Raredon MS. Organ Boundary Circuits Regulate Sox9+ Alveolar Tuft Cells During Post-Pneumonectomy Lung Regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.07.574469. [PMID: 38260691 PMCID: PMC10802449 DOI: 10.1101/2024.01.07.574469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Tissue homeostasis is controlled by cellular circuits governing cell growth, organization, and differentation. In this study we identify previously undescribed cell-to-cell communication that mediates information flow from mechanosensitive pleural mesothelial cells to alveolar-resident stem-like tuft cells in the lung. We find mesothelial cells to express a combination of mechanotransduction genes and lineage-restricted ligands which makes them uniquely capable of responding to tissue tension and producing paracrine cues acting on parenchymal populations. In parallel, we describe a large population of stem-like alveolar tuft cells that express the endodermal stem cell markers Sox9 and Lgr5 and a receptor profile making them uniquely sensitive to cues produced by pleural Mesothelium. We hypothesized that crosstalk from mesothelial cells to alveolar tuft cells might be central to the regulation of post-penumonectomy lung regeneration. Following pneumonectomy, we find that mesothelial cells display radically altered phenotype and ligand expression, in a pattern that closely tracks with parenchymal epithelial proliferation and alveolar tissue growth. During an initial pro-inflammatory stage of tissue regeneration, Mesothelium promotes epithelial proliferation via WNT ligand secretion, orchestrates an increase in microvascular permeability, and encourages immune extravasation via chemokine secretion. This stage is followed first by a tissue remodeling period, characterized by angiogenesis and BMP pathway sensitization, and then a stable return to homeostasis. Coupled with key changes in parenchymal structure and matrix production, the cumulative effect is a now larger organ including newly-grown, fully-functional tissue parenchyma. This study paints Mesothelial cells as a key orchestrating cell type that defines the boundary of the lung and exerts critical influence over the tissue-level signaling state regulating resident stem cell populations. The cellular circuits unearthed here suggest that human lung regeneration might be inducible through well-engineered approaches targeting the induction of tissue regeneration and safe return to homeostasis.
Collapse
Affiliation(s)
- Tomohiro Obata
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, 06511, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
- Vascular Biology & Therapeutics, Yale School of Medicine, New Haven, CT, 06511, USA
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Satoshi Mizoguchi
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, 06511, USA
- Vascular Biology & Therapeutics, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Allison M. Greaney
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06511, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of technology, Cambridge, MA, 02139
| | - Taylor Adams
- Pulmonary, Critical Care, & Sleep Medicine, Internal Medicine, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Yifan Yuan
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, 06511, USA
- Vascular Biology & Therapeutics, Yale School of Medicine, New Haven, CT, 06511, USA
- Pulmonary, Critical Care, & Sleep Medicine, Internal Medicine, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Sophie Edelstein
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, 06511, USA
- Vascular Biology & Therapeutics, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Katherine L. Leiby
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
- Vascular Biology & Therapeutics, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Rachel Rivero
- Vascular Biology & Therapeutics, Yale School of Medicine, New Haven, CT, 06511, USA
- Department of Surgery, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Nuoya Wang
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, 06511, USA
- Vascular Biology & Therapeutics, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Haram Kim
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, 06511, USA
- Vascular Biology & Therapeutics, Yale School of Medicine, New Haven, CT, 06511, USA
- Pulmonary, Critical Care, & Sleep Medicine, Internal Medicine, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Junchen Yang
- Computational Biology and Biomedical Informatics, Yale University, New Haven, CT, 06511, USA
| | - Jonas C. Schupp
- Pulmonary, Critical Care, & Sleep Medicine, Internal Medicine, Yale School of Medicine, New Haven, CT, 06511, USA
- Department of Respiratory Medicine, Hanover Medical School, Hanover, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), German Center for Lung Research (DZL), Hanover, Germany
| | - David Stitelman
- Department of Surgery, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Tomoshi Tsuchiya
- Department of Thoracic Surgery, University of Toyama, Toyama, 9300194, Japan
| | - Andre Levchenko
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
- Systems Biology Institute, Yale University, New Haven, CT, 06511, USA
- Department of Physics, Yale University, New Haven, CT, 06511, USA
| | - Naftali Kaminski
- Pulmonary, Critical Care, & Sleep Medicine, Internal Medicine, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Laura E. Niklason
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, 06511, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
- Vascular Biology & Therapeutics, Yale School of Medicine, New Haven, CT, 06511, USA
- Humacyte, Inc., Durham, North Carolina
| | - Micha Sam Brickman Raredon
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, 06511, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
- Vascular Biology & Therapeutics, Yale School of Medicine, New Haven, CT, 06511, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06511, USA
- Pulmonary, Critical Care, & Sleep Medicine, Internal Medicine, Yale School of Medicine, New Haven, CT, 06511, USA
| |
Collapse
|
33
|
Hussein MM, Sayed RKA, Mokhtar DM. Structural and immunohistochemical characterization of pancreas of Molly fish (Poecilia sphenops), with a special reference to its immune role. Microsc Res Tech 2023; 86:1667-1680. [PMID: 37610072 DOI: 10.1002/jemt.24407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/12/2023] [Accepted: 08/12/2023] [Indexed: 08/24/2023]
Abstract
Recently, teleost species have been considered important model systems for investigating different research areas including immunologic one. The available literature provides poor data about the localization and the structure of pancreas in Molly fish. Moreover, little attention has been paid to the immunologic role of pancreatic tissue of teleost, particularly Molly fish; therefore, this study aimed to highlights the description of pancreatic tissue in Molly fish using light- and electron- microscopy, focusing on the role of pancreatic immune cells and pancreatic acinar cells in immune responses. Microscopic analysis revealed that the pancreas of Molly fish was composed of intrahepatic, disseminated and compact parts. Exocrine pancreatic tissue was diffusely extended within the hepatic tissue forming hepatopancreas. The disseminated pancreas appeared as several irregular nodules of pancreatic tissue localized within the mesenteric adipose tissue. The compact pancreas appeared as an oval shaped body embedded within the mesenteric adipose tissue between the spleen and the intestinal loops. Several telocytes and melanomacrophages were detected within the disseminated pancreatic nodules. Moreover, dendritic cells were found in a close association to the exocrine pancreatic acini. The pancreatic acinar cells showed strong immunoreactivity to APG5, TGF-β, IL-1β, NF-κB, Nrf2, and SOX9 in both hepatopancreas and disseminated pancreas of Molly fish. S100 protein revealed a strong expression in the exocrine pancreatic acinar cells of disseminated pancreas and also in the endocrine cells of the compact pancreas. In conclusion, findings of this study suggest the potential role of the pancreas of the Molly fish in cell proliferation and differentiation, proinflammatory cytokines stimulation, and regulation of both innate and adaptive immunity. RESEARCH HIGHLIGHTS: Telocytes and melanomacrophages were detected in the disseminated pancreatic nodules of the Molly fish. In Molly fish, dendritic cells were found in a close association to the exocrine pancreatic acini. Strong immunoreactivity of the pancreatic acinar cells of the Molly fish to APG5, TGF-β, IL-1β, NF-κB, Nrf2, SOX9, and S100.
Collapse
Affiliation(s)
- Marwa M Hussein
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assuit University, Assiut, Egypt
| | - Ramy K A Sayed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | - Doaa M Mokhtar
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assuit University, Assiut, Egypt
- Department of Histology and Anatomy, School of Veterinary Medicine, Badr University in Assuit, Assiut, Egypt
| |
Collapse
|
34
|
Rizzoti K, Chakravarty P, Sheridan D, Lovell-Badge R. SOX9-positive pituitary stem cells differ according to their position in the gland and maintenance of their progeny depends on context. SCIENCE ADVANCES 2023; 9:eadf6911. [PMID: 37792947 PMCID: PMC10550238 DOI: 10.1126/sciadv.adf6911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 09/01/2023] [Indexed: 10/06/2023]
Abstract
Stem cell (SC) differentiation and maintenance of resultant progeny underlie cell turnover in many organs, but it is difficult to pinpoint the contribution of either process. In the pituitary, a central regulator of endocrine axes, adult SCs undergo activation after target organ ablation, providing a well-characterized paradigm to study an adaptative response in a multi-organ system. Here, we used single-cell technologies to characterize SC heterogeneity and mobilization together with lineage tracing. We show that SC differentiation occurs more frequently than thought previously. In adaptative conditions, differentiation increases and is more diverse than demonstrated by the lineage tracing experiments. Detailed examination of SC progeny suggests that maintenance of selected nascent cells underlies SC output, highlighting a trophic role for the microenvironment. Analyses of cell trajectories further predict pathways and potential regulators. Our model provides a valuable system to study the influence of evolving states on the mechanisms of SC mobilization.
Collapse
Affiliation(s)
- Karine Rizzoti
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London NW1 1AT, UK
| | | | - Daniel Sheridan
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London NW1 1AT, UK
| | - Robin Lovell-Badge
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|
35
|
Ohyama K, Shinohara HM, Omura S, Kawachi T, Sato T, Toda K. PSmad3+/Olig2- expression defines a subpopulation of gfap-GFP+/Sox9+ neural progenitors and radial glia-like cells in mouse dentate gyrus through embryonic and postnatal development. Front Neurosci 2023; 17:1204012. [PMID: 37795190 PMCID: PMC10547214 DOI: 10.3389/fnins.2023.1204012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/29/2023] [Indexed: 10/06/2023] Open
Abstract
In mouse dentate gyrus, radial glia-like cells (RGLs) persist throughout life and play a critical role in the generation of granule neurons. A large body of evidence has shown that the combinatorial expression of transcription factors (TFs) defines cell types in the developing central nervous system (CNS). As yet, the identification of specific TFs that exclusively define RGLs in the developing mouse dentate gyrus (DG) remains elusive. Here we show that phospho-Smad3 (PSmad3) is expressed in a subpopulation of neural progenitors in the DG. During embryonic stage (E14-15), PSmad3 was predominantly expressed in gfap-GFP-positive (GFP+)/Sox2+ progenitors located at the lower dentate notch (LDN). As the development proceeds (E16-17), the vast majority of PSmad3+ cells were GFP+/Sox2+/Prox1low+/Ki67+ proliferative progenitors that eventually differentiated into granule neurons. During postnatal stage (P1-P6) PSmad3 expression was observed in GFP+ progenitors and astrocytes. Subsequently, at P14-P60, PSmad3 expression was found both in GFP+ RGLs in the subgranular zone (SGZ) and astrocytes in the molecular layer (ML) and hilus. Notably, PSmad3+ SGZ cells did not express proliferation markers such as PCNA and phospho-vimentin, suggesting that they are predominantly quiescent from P14 onwards. Significantly PSmad3+/GFP+ astrocytes, but not SGZ cells, co-expressed Olig2 and S100β. Together, PSmad3+/Olig2- expression serves as an exclusive marker for a specific subpopulation of GFP+ neural progenitors and RGLs in the mouse DG during both embryonic and postnatal period.
Collapse
Affiliation(s)
- Kyoji Ohyama
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Qin D, Wang R, Ji J, Wang D, Lu Y, Cao S, Chen Y, Wang L, Chen X, Zhang L. Hepatocyte-specific Sox9 knockout ameliorates acute liver injury by suppressing SHP signaling and improving mitochondrial function. Cell Biosci 2023; 13:159. [PMID: 37649095 PMCID: PMC10468867 DOI: 10.1186/s13578-023-01104-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND AND AIMS Sex determining region Y related high-mobility group box protein 9 (Sox9) is expressed in a subset of hepatocytes, and it is important for chronic liver injury. However, the roles of Sox9+ hepatocytes in response to the acute liver injury and repair are poorly understood. METHODS In this study, we developed the mature hepatocyte-specific Sox9 knockout mouse line and applied three acute liver injury models including PHx, CCl4 and hepatic ischemia reperfusion (IR). Huh-7 cells were subjected to treatment with hydrogen peroxide (H2O2) in order to induce cellular damage in an in vitro setting. RESULTS We found the positive effect of Sox9 deletion on acute liver injury repair. Small heterodimer partner (SHP) expression was highly suppressed in hepatocyte-specific Sox9 deletion mouse liver, accompanied by less cell death and more cell proliferation. However, in mice with hepatocyte-specific Sox9 deletion and SHP overexpression, we observed an opposite phenotype. In addition, the overexpression of SOX9 in H2O2-treated Huh-7 cells resulted in an increase in cytoplasmic SHP accumulation, accompanied by a reduction of SHP in the nucleus. This led to impaired mitochondrial function and subsequent cell death. Notably, both the mitochondrial dysfunction and cell damage were reversed when SHP siRNA was employed, indicating the crucial role of SHP in mediating these effects. Furthermore, we found that Sox9, as a vital transcription factor, directly bound to SHP promoter to regulate SHP transcription. CONCLUSIONS Overall, our findings unravel the mechanism by which hepatocyte-specific Sox9 knockout ameliorates acute liver injury via suppressing SHP signaling and improving mitochondrial function. This study may provide a new treatment strategy for acute liver injury in future.
Collapse
Affiliation(s)
- Dan Qin
- College of Veterinary Medicine/College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Rui Wang
- College of Veterinary Medicine/College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Jinwei Ji
- College of Veterinary Medicine/College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Duo Wang
- College of Veterinary Medicine/College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yuanyuan Lu
- College of Veterinary Medicine/College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Shiyao Cao
- College of Veterinary Medicine/College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yaqing Chen
- College of Veterinary Medicine/College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Liqiang Wang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, 28th Fuxing Road, Beijing, 100853, China
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, 28th Fuxing Road, Beijing, 100853, China
| | - Lisheng Zhang
- College of Veterinary Medicine/College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
37
|
Hora S, Wuestefeld T. Liver Injury and Regeneration: Current Understanding, New Approaches, and Future Perspectives. Cells 2023; 12:2129. [PMID: 37681858 PMCID: PMC10486351 DOI: 10.3390/cells12172129] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023] Open
Abstract
The liver is a complex organ with the ability to regenerate itself in response to injury. However, several factors can contribute to liver damage beyond repair. Liver injury can be caused by viral infections, alcoholic liver disease, non-alcoholic steatohepatitis, and drug-induced liver injury. Understanding the cellular and molecular mechanisms involved in liver injury and regeneration is critical to developing effective therapies for liver diseases. Liver regeneration is a complex process that involves the interplay of various signaling pathways, cell types, and extracellular matrix components. The activation of quiescent hepatocytes that proliferate and restore the liver mass by upregulating genes involved in cell-cycle progression, DNA repair, and mitochondrial function; the proliferation and differentiation of progenitor cells, also known as oval cells, into hepatocytes that contribute to liver regeneration; and the recruitment of immune cells to release cytokines and angiogenic factors that promote or inhibit cell proliferation are some examples of the regenerative processes. Recent advances in the fields of gene editing, tissue engineering, stem cell differentiation, small interfering RNA-based therapies, and single-cell transcriptomics have paved a roadmap for future research into liver regeneration as well as for the identification of previously unknown cell types and gene expression patterns. In summary, liver injury and regeneration is a complex and dynamic process. A better understanding of the cellular and molecular mechanisms driving this phenomenon could lead to the development of new therapies for liver diseases and improve patient outcomes.
Collapse
Affiliation(s)
- Shainan Hora
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore;
| | - Torsten Wuestefeld
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore;
- National Cancer Centre Singapore, Singapore 168583, Singapore
- School of Biological Science, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
38
|
Feng D, Xiang X, Guan Y, Guillot A, Lu H, Chang C, He Y, Wang H, Pan H, Ju C, Colgan SP, Tacke F, Wang XW, Kunos G, Gao B. Monocyte-derived macrophages orchestrate multiple cell-type interactions to repair necrotic liver lesions in disease models. J Clin Invest 2023; 133:e166954. [PMID: 37338984 PMCID: PMC10378165 DOI: 10.1172/jci166954] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/15/2023] [Indexed: 06/22/2023] Open
Abstract
The liver can fully regenerate after partial resection, and its underlying mechanisms have been extensively studied. The liver can also rapidly regenerate after injury, with most studies focusing on hepatocyte proliferation; however, how hepatic necrotic lesions during acute or chronic liver diseases are eliminated and repaired remains obscure. Here, we demonstrate that monocyte-derived macrophages (MoMFs) were rapidly recruited to and encapsulated necrotic areas during immune-mediated liver injury and that this feature was essential in repairing necrotic lesions. At the early stage of injury, infiltrating MoMFs activated the Jagged1/notch homolog protein 2 (JAG1/NOTCH2) axis to induce cell death-resistant SRY-box transcription factor 9+ (SOX9+) hepatocytes near the necrotic lesions, which acted as a barrier from further injury. Subsequently, necrotic environment (hypoxia and dead cells) induced a cluster of complement 1q-positive (C1q+) MoMFs that promoted necrotic removal and liver repair, while Pdgfb+ MoMFs activated hepatic stellate cells (HSCs) to express α-smooth muscle actin and induce a strong contraction signal (YAP, pMLC) to squeeze and finally eliminate the necrotic lesions. In conclusion, MoMFs play a key role in repairing the necrotic lesions, not only by removing necrotic tissues, but also by inducing cell death-resistant hepatocytes to form a perinecrotic capsule and by activating α-smooth muscle actin-expressing HSCs to facilitate necrotic lesion resolution.
Collapse
Affiliation(s)
- Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism (NIAAA), NIH, Bethesda, Maryland, USA
| | - Xiaogang Xiang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism (NIAAA), NIH, Bethesda, Maryland, USA
| | - Yukun Guan
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism (NIAAA), NIH, Bethesda, Maryland, USA
| | - Adrien Guillot
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism (NIAAA), NIH, Bethesda, Maryland, USA
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Hongkun Lu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism (NIAAA), NIH, Bethesda, Maryland, USA
| | - Chingwen Chang
- Laboratory of Human Carcinogenesis and
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Yong He
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism (NIAAA), NIH, Bethesda, Maryland, USA
| | - Hua Wang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism (NIAAA), NIH, Bethesda, Maryland, USA
| | - Hongna Pan
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism (NIAAA), NIH, Bethesda, Maryland, USA
| | - Cynthia Ju
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Sean P. Colgan
- Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis and
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - George Kunos
- Laboratory of Physiologic Studies, NIAAA, NIH, Bethesda, Maryland, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism (NIAAA), NIH, Bethesda, Maryland, USA
| |
Collapse
|
39
|
Passman AM, Haughey MJ, Carlotti E, Williams MJ, Cereser B, Lin ML, Devkumar S, Gabriel JP, Gringeri E, Cillo U, Russo FP, Hoare M, ChinAleong J, Jansen M, Wright NA, Kocher HM, Huang W, Alison MR, McDonald SAC. Hepatocytes undergo punctuated expansion dynamics from a periportal stem cell niche in normal human liver. J Hepatol 2023; 79:417-432. [PMID: 37088309 DOI: 10.1016/j.jhep.2023.03.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/25/2023]
Abstract
BACKGROUND & AIMS While normal human liver is thought to be generally quiescent, clonal hepatocyte expansions have been observed, though neither their cellular source nor their expansion dynamics have been determined. Knowing the hepatocyte cell of origin, and their subsequent dynamics and trajectory within the human liver will provide an important basis to understand disease-associated dysregulation. METHODS Herein, we use in vivo lineage tracing and methylation sequence analysis to demonstrate normal human hepatocyte ancestry. We exploit next-generation mitochondrial sequencing to determine hepatocyte clonal expansion dynamics across spatially distinct areas of laser-captured, microdissected, clones, in tandem with computational modelling in morphologically normal human liver. RESULTS Hepatocyte clones and rare SOX9+ hepatocyte progenitors commonly associate with portal tracts and we present evidence that clones can lineage-trace with cholangiocytes, indicating the presence of a bipotential common ancestor at this niche. Within clones, we demonstrate methylation CpG sequence diversity patterns indicative of periportal not pericentral ancestral origins, indicating a portal to central vein expansion trajectory. Using spatial analysis of mitochondrial DNA variants by next-generation sequencing coupled with mathematical modelling and Bayesian inference across the portal-central axis, we demonstrate that patterns of mitochondrial DNA variants reveal large numbers of spatially restricted mutations in conjunction with limited numbers of clonal mutations. CONCLUSIONS These datasets support the existence of a periportal progenitor niche and indicate that clonal patches exhibit punctuated but slow growth, then quiesce, likely due to acute environmental stimuli. These findings crucially contribute to our understanding of hepatocyte dynamics in the normal human liver. IMPACT AND IMPLICATIONS The liver is mainly composed of hepatocytes, but we know little regarding the source of these cells or how they multiply over time within the disease-free human liver. In this study, we determine a source of new hepatocytes by combining many different lab-based methods and computational predictions to show that hepatocytes share a common cell of origin with bile ducts. Both our experimental and computational data also demonstrate hepatocyte clones are likely to expand in slow waves across the liver in a specific trajectory, but often lie dormant for many years. These data show for the first time the expansion dynamics of hepatocytes in normal liver and their cell of origin enabling the accurate measurment of changes to their dynamics that may lead to liver disease. These findings are important for researchers determining cancer risk in human liver.
Collapse
Affiliation(s)
- Adam M Passman
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Magnus J Haughey
- School of Mathematical Sciences, Queen Mary University of London, London, UK
| | - Emanuela Carlotti
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Marc J Williams
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Bianca Cereser
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Meng-Lay Lin
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Shruthi Devkumar
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Jonathan P Gabriel
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Enrico Gringeri
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Umberto Cillo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Francesco Paolo Russo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Matthew Hoare
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Marnix Jansen
- Department of Cellular Pathology, University College London, London, UK; UCL Cancer Centre, University College London, London, UK
| | - Nicholas A Wright
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Hermant M Kocher
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK; Cancer Tissue Bank, Barts Cancer Institute, Queen Mary University of London, London, UK; Barts and the London HPB Centre, The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Weini Huang
- School of Mathematical Sciences, Queen Mary University of London, London, UK; Group of Theoretical Biology, The State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Malcolm R Alison
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Stuart A C McDonald
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
40
|
Chen F, Schönberger K, Tchorz JS. Distinct hepatocyte identities in liver homeostasis and regeneration. JHEP Rep 2023; 5:100779. [PMID: 37456678 PMCID: PMC10339260 DOI: 10.1016/j.jhepr.2023.100779] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 07/18/2023] Open
Abstract
The process of metabolic liver zonation is spontaneously established by assigning distributed tasks to hepatocytes along the porto-central blood flow. Hepatocytes fulfil critical metabolic functions, while also maintaining hepatocyte mass by replication when needed. Recent technological advances have enabled us to fine-tune our understanding of hepatocyte identity during homeostasis and regeneration. Subsets of hepatocytes have been identified to be more regenerative and some have even been proposed to function like stem cells, challenging the long-standing view that all hepatocytes are similarly capable of regeneration. The latest data show that hepatocyte renewal during homeostasis and regeneration after liver injury is not limited to rare hepatocytes; however, hepatocytes are not exactly the same. Herein, we review the known differences that give individual hepatocytes distinct identities, recent findings demonstrating how these distinct identities correspond to differences in hepatocyte regenerative capacity, and how the plasticity of hepatocyte identity allows for division of labour among hepatocytes. We further discuss how these distinct hepatocyte identities may play a role during liver disease.
Collapse
Affiliation(s)
- Feng Chen
- Novartis Institutes for BioMedical Research, Cambridge, MA, United States
| | | | - Jan S. Tchorz
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| |
Collapse
|
41
|
Wei X, Tan X, Chen Q, Jiang Y, Wu G, Ma X, Fu J, Li Y, Gang K, Yang Q, Ni R, He J, Luo L. Extensive jejunal injury is repaired by migration and transdifferentiation of ileal enterocytes in zebrafish. Cell Rep 2023; 42:112660. [PMID: 37342912 DOI: 10.1016/j.celrep.2023.112660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/07/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023] Open
Abstract
A major cause of intestinal failure (IF) is intestinal epithelium necrosis and massive loss of enterocytes, especially in the jejunum, the major intestinal segment in charge of nutrient absorption. However, mechanisms underlying jejunal epithelial regeneration after extensive loss of enterocytes remain elusive. Here, we apply a genetic ablation system to induce extensive damage to jejunal enterocytes in zebrafish, mimicking the jejunal epithelium necrosis that causes IF. In response to injury, proliferation and filopodia/lamellipodia drive anterior migration of the ileal enterocytes into the injured jejunum. The migrated fabp6+ ileal enterocytes transdifferentiate into fabp2+ jejunal enterocytes to fulfill the regeneration, consisting of dedifferentiation to precursor status followed by redifferentiation. The dedifferentiation is activated by the IL1β-NFκB axis, whose agonist promotes regeneration. Extensive jejunal epithelial damage is repaired by the migration and transdifferentiation of ileal enterocytes, revealing an intersegmental migration mechanism of intestinal regeneration and providing potential therapeutic targets for IF caused by jejunal epithelium necrosis.
Collapse
Affiliation(s)
- Xiangyong Wei
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Xinmiao Tan
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Qi Chen
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Yan Jiang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Guozhen Wu
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Xue Ma
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Jialong Fu
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Yongyu Li
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Kai Gang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Qifen Yang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Rui Ni
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Jianbo He
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
42
|
Drasdo D, Zhao J. An integrative experimental and computational twin modeling approach to understand the clonal dynamics in normal liver. J Hepatol 2023:S0168-8278(23)00345-8. [PMID: 37277076 DOI: 10.1016/j.jhep.2023.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 06/07/2023]
Affiliation(s)
- Dirk Drasdo
- Institut National de Recherche en Informatique et en Automatique (INRIA), Palaiseau, 91120, France; Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, 44139 Dortmund, Germany.
| | - Jieling Zhao
- Institut National de Recherche en Informatique et en Automatique (INRIA), Palaiseau, 91120, France; Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, 44139 Dortmund, Germany
| |
Collapse
|
43
|
Liu W, Gao L, Hou X, Feng S, Yan H, Pan H, Zhang S, Yang X, Jiang J, Ye F, Zhao Q, Wei L, Han Z. TWEAK Signaling-Induced ID1 Expression Drives Malignant Transformation of Hepatic Progenitor Cells During Hepatocarcinogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300350. [PMID: 37085918 PMCID: PMC10288241 DOI: 10.1002/advs.202300350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/14/2023] [Indexed: 05/03/2023]
Abstract
The malignant transformation of hepatic progenitor cells (HPCs) in the inflammatory microenvironment is the root cause of hepatocarcinogenesis. However, the potential molecular mechanisms are still elusive. The HPCs subgroup is identified by single-cell RNA (scRNA) sequencing and the phenotype of HPCs is investigated in the primary HCC model. Bulk RNA sequencing (RNA-seq) and proteomic analyses are also performed on HPC-derived organoids. It is found that tumors are formed from HPCs in peritumor tissue at the 16th week in a HCC model. Furthermore, it is confirmed that the macrophage-derived TWEAK/Fn14 promoted the expression of inhibitor of differentiation-1 (ID1) in HPCs via NF-κB signaling and a high level of ID1 induced aberrant differentiation of HPCs. Mechanistically, ID1 suppressed differentiation and promoted proliferation in HPCs through the inhibition of HNF4α and Rap1GAP transcriptions. Finally, scRNA sequencing of HCC patients and investigation of clinical specimens also verified that the expression of ID1 is correlated with aberrant differentiation of HPCs into cancer stem cells, patients with high levels of ID1 in HPCs showed a poorer prognosis. This study provides important intervention targets and a theoretical basis for the clinical diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Wenting Liu
- Tumor Immunology and Gene Therapy CenterThird Affiliated Hospital of Naval Medical UniversityShanghai200438P. R. China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer of Ministry of EducationEastern Hepatobiliary Surgery Hospital/National Center for Liver CancerNaval Medical UniversityShanghai200438P. R. China
| | - Lu Gao
- Tumor Immunology and Gene Therapy CenterThird Affiliated Hospital of Naval Medical UniversityShanghai200438P. R. China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer of Ministry of EducationEastern Hepatobiliary Surgery Hospital/National Center for Liver CancerNaval Medical UniversityShanghai200438P. R. China
| | - Xiaojuan Hou
- Tumor Immunology and Gene Therapy CenterThird Affiliated Hospital of Naval Medical UniversityShanghai200438P. R. China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer of Ministry of EducationEastern Hepatobiliary Surgery Hospital/National Center for Liver CancerNaval Medical UniversityShanghai200438P. R. China
| | - Shiyao Feng
- Department of UrologySecond Affiliated HospitalAnhui Medical UniversityHefei230601P. R. China
| | - Haixin Yan
- Department of UrologySecond Affiliated HospitalAnhui Medical UniversityHefei230601P. R. China
| | - Hongyu Pan
- Department of Hepatic SurgeryThird Affiliated Hospital of Naval Medical UniversityShanghai200438P. R. China
| | - Shichao Zhang
- Department of Hepatic SurgeryThird Affiliated Hospital of Naval Medical UniversityShanghai200438P. R. China
| | - Xue Yang
- Tumor Immunology and Gene Therapy CenterThird Affiliated Hospital of Naval Medical UniversityShanghai200438P. R. China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer of Ministry of EducationEastern Hepatobiliary Surgery Hospital/National Center for Liver CancerNaval Medical UniversityShanghai200438P. R. China
| | - Jinghua Jiang
- Tumor Immunology and Gene Therapy CenterThird Affiliated Hospital of Naval Medical UniversityShanghai200438P. R. China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer of Ministry of EducationEastern Hepatobiliary Surgery Hospital/National Center for Liver CancerNaval Medical UniversityShanghai200438P. R. China
| | - Fei Ye
- Tumor Immunology and Gene Therapy CenterThird Affiliated Hospital of Naval Medical UniversityShanghai200438P. R. China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer of Ministry of EducationEastern Hepatobiliary Surgery Hospital/National Center for Liver CancerNaval Medical UniversityShanghai200438P. R. China
| | - Qiudong Zhao
- Tumor Immunology and Gene Therapy CenterThird Affiliated Hospital of Naval Medical UniversityShanghai200438P. R. China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer of Ministry of EducationEastern Hepatobiliary Surgery Hospital/National Center for Liver CancerNaval Medical UniversityShanghai200438P. R. China
| | - Lixin Wei
- Tumor Immunology and Gene Therapy CenterThird Affiliated Hospital of Naval Medical UniversityShanghai200438P. R. China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer of Ministry of EducationEastern Hepatobiliary Surgery Hospital/National Center for Liver CancerNaval Medical UniversityShanghai200438P. R. China
| | - Zhipeng Han
- Tumor Immunology and Gene Therapy CenterThird Affiliated Hospital of Naval Medical UniversityShanghai200438P. R. China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer of Ministry of EducationEastern Hepatobiliary Surgery Hospital/National Center for Liver CancerNaval Medical UniversityShanghai200438P. R. China
| |
Collapse
|
44
|
Chen Q, Weng K, Lin M, Jiang M, Fang Y, Chung SSW, Huang X, Zhong Q, Liu Z, Huang Z, Lin J, Li P, El-Rifai W, Zaika A, Li H, Rustgi AK, Nakagawa H, Abrams JA, Wang TC, Lu C, Huang C, Que J. SOX9 Modulates the Transformation of Gastric Stem Cells Through Biased Symmetric Cell Division. Gastroenterology 2023; 164:1119-1136.e12. [PMID: 36740200 PMCID: PMC10200757 DOI: 10.1053/j.gastro.2023.01.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Transformation of stem/progenitor cells has been associated with tumorigenesis in multiple tissues, but stem cells in the stomach have been hard to localize. We therefore aimed to use a combination of several markers to better target oncogenes to gastric stem cells and understand their behavior in the initial stages of gastric tumorigenesis. METHODS Mouse models of gastric metaplasia and cancer by targeting stem/progenitor cells were generated and analyzed with techniques including reanalysis of single-cell RNA sequencing and immunostaining. Gastric cancer cell organoids were genetically manipulated with clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) for functional studies. Cell division was determined by bromodeoxyuridine-chasing assay and the assessment of the orientation of the mitotic spindles. Gastric tissues from patients were examined by histopathology and immunostaining. RESULTS Oncogenic insults lead to expansion of SOX9+ progenitor cells in the mouse stomach. Genetic lineage tracing and organoid culture studies show that SOX9+ gastric epithelial cells overlap with SOX2+ progenitors and include stem cells that can self-renew and differentiate to generate all gastric epithelial cells. Moreover, oncogenic targeting of SOX9+SOX2+ cells leads to invasive gastric cancer in our novel mouse model (Sox2-CreERT;Sox9-loxp(66)-rtTA-T2A-Flpo-IRES-loxp(71);Kras(Frt-STOP-Frt-G12D);P53R172H), which combines Cre-loxp and Flippase-Frt genetic recombination systems. Sox9 deletion impedes the expansion of gastric progenitor cells and blocks neoplasia after Kras activation. Although Sox9 is not required for maintaining tissue homeostasis where asymmetric division predominates, loss of Sox9 in the setting of Kras activation leads to reduced symmetric cell division and effectively attenuates the Kras-dependent expansion of stem/progenitor cells. Similarly, Sox9 deletion in gastric cancer organoids reduces symmetric cell division, organoid number, and organoid size. In patients with gastric cancer, high levels of SOX9 are associated with recurrence and poor prognosis. CONCLUSION SOX9 marks gastric stem cells and modulates biased symmetric cell division, which appears to be required for the malignant transformation of gastric stem cells.
Collapse
Affiliation(s)
- Qiyue Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China; Columbia Center for Human Development, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, People's Republic of China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, People's Republic of China; Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Kai Weng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, People's Republic of China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Mi Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China; Columbia Center for Human Development, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, People's Republic of China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, People's Republic of China; Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Ming Jiang
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Yinshan Fang
- Columbia Center for Human Development, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Sanny S W Chung
- Columbia Center for Human Development, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Xiaobo Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, People's Republic of China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Qing Zhong
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, People's Republic of China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Zhiyu Liu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, People's Republic of China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Zening Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, People's Republic of China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Jianxian Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, People's Republic of China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Ping Li
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, People's Republic of China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Wael El-Rifai
- Department of Surgery, University of Miami, Miami, Florida; Department of Veterans Affairs, Miami Healthcare System, Miami, Florida
| | - Alexander Zaika
- Department of Surgery, University of Miami, Miami, Florida; Department of Veterans Affairs, Miami Healthcare System, Miami, Florida
| | - Haiyan Li
- Department of Pathology & Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Anil K Rustgi
- Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Hiroshi Nakagawa
- Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Julian A Abrams
- Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Chao Lu
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York
| | - Changming Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, People's Republic of China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, People's Republic of China.
| | - Jianwen Que
- Columbia Center for Human Development, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York.
| |
Collapse
|
45
|
Barkin JM, Jin-Smith B, Torok K, Pi L. Significance of CCNs in liver regeneration. J Cell Commun Signal 2023; 17:321-332. [PMID: 37202628 PMCID: PMC10326177 DOI: 10.1007/s12079-023-00762-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/01/2023] [Indexed: 05/20/2023] Open
Abstract
The liver has an inherent regenerative capacity via hepatocyte proliferation after mild-to-modest damage. When hepatocytes exhaust their replicative ability during chronic or severe liver damage, liver progenitor cells (LPC), also termed oval cells (OC) in rodents, are activated in the form of ductular reaction (DR) as an alternative pathway. LPC is often intimately associated with hepatic stellate cells (HSC) activation to promote liver fibrosis. The Cyr61/CTGF/Nov (CCN) protein family consists of six extracellular signaling modulators (CCN1-CCN6) with affinity to a repertoire of receptors, growth factors, and extracellular matrix proteins. Through these interactions, CCN proteins organize microenvironments and modulate cell signalings in a diverse variety of physiopathological processes. In particular, their binding to subtypes of integrin (αvβ5, αvβ3, α6β1, αvβ6, etc.) influences the motility and mobility of macrophages, hepatocytes, HSC, and LPC/OC during liver injury. This paper summarizes the current understanding of the significance of CCN genes in liver regeneration in relation to hepatocyte-driven or LPC/OC-mediated pathways. Publicly available datasets were also searched to compare dynamic levels of CCNs in developing and regenerating livers. These insights not only add to our understanding of the regenerative capability of the liver but also provide potential targets for the pharmacological management of liver repair in the clinical setting. Ccns in liver regeneration Restoring damaged or lost tissues requires robust cell growth and dynamic matrix remodeling. Ccns are matricellular proteins highly capable of influencing cell state and matrix production. Current studies have identified Ccns as active players in liver regeneration. Cell types, modes of action, and mechanisms of Ccn induction may vary depending on liver injuries. Hepatocyte proliferation is a default pathway for liver regeneration following mild-to-modest damages, working in parallel with the transient activation of stromal cells, such as macrophages and hepatic stellate cells (HSC). Liver progenitor cells (LPC), also termed oval cells (OC) in rodents, are activated in the form of ductular reaction (DR) and are associated with sustained fibrosis when hepatocytes lose their proliferative ability in severe or chronic liver damage. Ccns may facilitate both hepatocyte regeneration and LPC/OC repair via various mediators (growth factors, matrix proteins, integrins, etc.) for cell-specific and context-dependent functions.
Collapse
Affiliation(s)
- Joshua M Barkin
- Department of Pathology, Tulane University, New Orleans, LA, USA
| | - Brady Jin-Smith
- Department of Pathology, Tulane University, New Orleans, LA, USA
| | - Kendle Torok
- Department of Pathology, Tulane University, New Orleans, LA, USA
| | - Liya Pi
- Department of Pathology, Tulane University, New Orleans, LA, USA.
- Department of Pathology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, USA.
| |
Collapse
|
46
|
Lin YH, Wei Y, Zeng Q, Wang Y, Pagani CA, Li L, Zhu M, Wang Z, Hsieh MH, Corbitt N, Zhang Y, Sharma T, Wang T, Zhu H. IGFBP2 expressing midlobular hepatocytes preferentially contribute to liver homeostasis and regeneration. Cell Stem Cell 2023; 30:665-676.e4. [PMID: 37146585 PMCID: PMC10580294 DOI: 10.1016/j.stem.2023.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/21/2023] [Accepted: 04/10/2023] [Indexed: 05/07/2023]
Abstract
Although midlobular hepatocytes in zone 2 are a recently identified cellular source for liver homeostasis and regeneration, these cells have not been exclusively fate mapped. We generated an Igfbp2-CreER knockin strain that specifically labels midlobular hepatocytes. During homeostasis over 1 year, zone 2 hepatocytes increased in abundance from occupying 21%-41% of the lobular area. After either pericentral injury with carbon tetrachloride or periportal injury with 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC), IGFBP2+ cells replenished lost hepatocytes in zones 3 and 1, respectively. IGFBP2+ cells also preferentially contributed to regeneration after 70% partial hepatectomy, as well as liver growth during pregnancy. Because IGFBP2 labeling increased substantially with fasting, we used single nuclear transcriptomics to explore zonation as a function of nutrition, revealing that the zonal division of labor shifts dramatically with fasting. These studies demonstrate the contribution of IGFBP2-labeled zone 2 hepatocytes to liver homeostasis and regeneration.
Collapse
Affiliation(s)
- Yu-Hsuan Lin
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yonglong Wei
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qiyu Zeng
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yunguan Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chase A Pagani
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lin Li
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Min Zhu
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zixi Wang
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Meng-Hsiung Hsieh
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Natasha Corbitt
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yu Zhang
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tripti Sharma
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tao Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hao Zhu
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
47
|
Uragami T, Ando Y, Aoi M, Fukui T, Matsumoto Y, Horitani S, Tomiyama T, Okazaki K, Tsuneyama K, Tanaka H, Naganuma M. Establishment of a Novel Colitis-Associated Cancer Mouse Model Showing Flat Invasive Neoplasia. Dig Dis Sci 2023; 68:1885-1893. [PMID: 36504013 DOI: 10.1007/s10620-022-07774-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/14/2022] [Indexed: 04/27/2023]
Abstract
BACKGROUND Chronic inflammation, such as ulcerative colitis, increases the risk of developing colitis-associated cancers. Currently, mice administered with azoxymethane/dextran sodium sulfate are well-known models for colitis-associated cancers. Although human colitis-associated cancers are often flat lesions, most azoxymethane/dextran sodium sulfate mouse cancers are raised lesions. AIMS To establish a novel mouse model for colitis-associated cancers and evaluate its characteristics. METHODS A single dose of azoxymethane was intraperitoneally administered to CD4-dnTGFβRII mice, which are genetically modified mice that spontaneously develop inflammatory bowel disease at different doses and timings. The morphological and biological characteristics of cancers was assessed in these mice. RESULTS Colorectal cancer developed with different proportions in each group. In particular, a high rate of cancer was observed at 10 and 20 weeks after administration in 12-week-old CD4-dnTGFβRII mice dosed at 15 mg/kg. Immunohistochemical staining of tumors was positive for β-catenin, ki67, and Sox9 but not for p53. Grade of inflammation was significantly higher in mice with cancer than in those without cancer (p < 0.001). In CD4-dnTGFβRII/azoxymethane mice, adenocarcinomas with flat lesions were observed, with moderate-to-severe inflammation in the non-tumor area. In comparison, non-tumor areas of azoxymethane/dextran sodium sulfate mice had less inflammation than those of CD4-dnTGFβRII/azoxymethane mice, and most macroscopic characteristics of tumors were pedunculated or sessile lesions in azoxymethane/dextran sodium sulfate mice. CONCLUSIONS Although feasibility and reproducibility of azoxymethane/CD4-dbTGFβRII appear to be disadvantages compared to the azoxymethane/dextran sodium sulfate model, this is the first report to demonstrate that the chronic inflammatory colitis model, CD4-dnTGFβRII also develops colitis-related colorectal cancer.
Collapse
Affiliation(s)
- Tomio Uragami
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Kansai Medical University, 2-5-1, Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Yugo Ando
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Kansai Medical University, 2-5-1, Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Mamiko Aoi
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Kansai Medical University, 2-5-1, Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Toshiro Fukui
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Kansai Medical University, 2-5-1, Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Yasushi Matsumoto
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Kansai Medical University, 2-5-1, Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Shunsuke Horitani
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Kansai Medical University, 2-5-1, Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Takashi Tomiyama
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Kansai Medical University, 2-5-1, Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Kazuichi Okazaki
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Kansai Medical University, 2-5-1, Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hajime Tanaka
- Department of Community-Based Medical Education, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Makoto Naganuma
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Kansai Medical University, 2-5-1, Shinmachi, Hirakata, Osaka, 573-1010, Japan.
| |
Collapse
|
48
|
Fabian P, Crump JG. Reassessing the embryonic origin and potential of craniofacial ectomesenchyme. Semin Cell Dev Biol 2023; 138:45-53. [PMID: 35331627 PMCID: PMC9489819 DOI: 10.1016/j.semcdb.2022.03.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 02/28/2022] [Accepted: 03/14/2022] [Indexed: 11/27/2022]
Abstract
Of all the cell types arising from the neural crest, ectomesenchyme is likely the most unusual. In contrast to the neuroglial cells generated by neural crest throughout the embryo, consistent with its ectodermal origin, cranial neural crest-derived cells (CNCCs) generate many connective tissue and skeletal cell types in common with mesoderm. Whether this ectoderm-derived mesenchyme (ectomesenchyme) potential reflects a distinct developmental origin from other CNCC lineages, and/or epigenetic reprogramming of the ectoderm, remains debated. Whereas decades of lineage tracing studies have defined the potential of CNCC ectomesenchyme, these are being revisited by modern genetic techniques. Recent work is also shedding light on the extent to which intrinsic and extrinsic cues determine ectomesenchyme potential, and whether maintenance or reacquisition of CNCC multipotency influences craniofacial repair.
Collapse
Affiliation(s)
- Peter Fabian
- Eli and Edythe Broad California Institute for Regenerative Medicine Center for Regenerative Medicine and Stem Cell Research, Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - J Gage Crump
- Eli and Edythe Broad California Institute for Regenerative Medicine Center for Regenerative Medicine and Stem Cell Research, Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA.
| |
Collapse
|
49
|
Liver Organoids, Novel and Promising Modalities for Exploring and Repairing Liver Injury. Stem Cell Rev Rep 2023; 19:345-357. [PMID: 36199007 PMCID: PMC9534590 DOI: 10.1007/s12015-022-10456-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2022] [Indexed: 02/07/2023]
Abstract
The past decades have witnessed great advances in organoid technology. Liver is the biggest solid organ, performing multifaceted physiological functions. Nowadays, liver organoids have been applied in many fields including pharmaceutical research, precision medicine and disease models. Compared to traditional 2-dimensional cell line cultures and animal models, liver organoids showed the unique advantages. More importantly, liver organoids can well model the features of the liver and tend to be novel and promising modalities for exploring liver injury, thus finding potential treatment targets and repairing liver injury. In this review, we reviewed the history of the development of liver organoids and summarized the application of liver organoids and recent studies using organoids to explore and further repair the liver injury. These novel modalities could provide new insights about the process of liver injury.
Collapse
|
50
|
Rigual MDM, Sánchez Sánchez P, Djouder N. Is liver regeneration key in hepatocellular carcinoma development? Trends Cancer 2023; 9:140-157. [PMID: 36347768 DOI: 10.1016/j.trecan.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/08/2022]
Abstract
The liver is the largest organ of the mammalian body and has the remarkable ability to fully regenerate in order to maintain tissue homeostasis. The adult liver consists of hexagonal lobules, each with a central vein surrounded by six portal triads localized in the lobule border containing distinct parenchymal and nonparenchymal cells. Because the liver is continuously exposed to diverse stress signals, several sophisticated regenerative processes exist to restore its functional status following impairment. However, these stress signals can affect the liver's capacity to regenerate and may lead to the development of hepatocellular carcinoma (HCC), one of the most aggressive liver cancers. Here, we review the mechanisms of hepatic regeneration and their potential to influence HCC development.
Collapse
Affiliation(s)
- María Del Mar Rigual
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid, ES-28029, Spain
| | - Paula Sánchez Sánchez
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid, ES-28029, Spain
| | - Nabil Djouder
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid, ES-28029, Spain.
| |
Collapse
|