1
|
Dongre DS, Saha UB, Saroj SD. Exploring the role of gut microbiota in antibiotic resistance and prevention. Ann Med 2025; 57:2478317. [PMID: 40096354 PMCID: PMC11915737 DOI: 10.1080/07853890.2025.2478317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND/INTRODUCTION Antimicrobial resistance (AMR) and the evolution of multiple drug-resistant (MDR) bacteria is of grave public health concern. To combat the pandemic of AMR, it is necessary to focus on novel alternatives for drug development. Within the host, the interaction of the pathogen with the microbiome plays a pivotal role in determining the outcome of pathogenesis. Therefore, microbiome-pathogen interaction is one of the potential targets to be explored for novel antimicrobials. MAIN BODY This review focuses on how the gut microbiome has evolved as a significant component of the resistome as a source of antibiotic resistance genes (ARGs). Antibiotics alter the composition of the native microbiota of the host by favouring resistant bacteria that can manifest as opportunistic infections. Furthermore, gut dysbiosis has also been linked to low-dosage antibiotic ingestion or subtherapeutic antibiotic treatment (STAT) from food and the environment. DISCUSSION Colonization by MDR bacteria is potentially acquired and maintained in the gut microbiota. Therefore, it is pivotal to understand microbial diversity and its role in adapting pathogens to AMR. Implementing several strategies to prevent or treat dysbiosis is necessary, including faecal microbiota transplantation, probiotics and prebiotics, phage therapy, drug delivery models, and antimicrobial stewardship regulation.
Collapse
Affiliation(s)
- Devyani S. Dongre
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra, India
| | - Ujjayni B. Saha
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra, India
| | - Sunil D. Saroj
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra, India
| |
Collapse
|
2
|
Cantu-Jungles TM, Agamennone V, Van den Broek TJ, Schuren FHJ, Hamaker B. Systematically-designed mixtures outperform single fibers for gut microbiota support. Gut Microbes 2025; 17:2442521. [PMID: 39704614 DOI: 10.1080/19490976.2024.2442521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/03/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024] Open
Abstract
Dietary fiber interventions to modulate the gut microbiota have largely relied on isolated fibers or specific fiber sources. We hypothesized that fibers systematically blended could promote more health-related bacterial groups. Initially, pooled in vitro fecal fermentations were used to design dietary fiber mixtures to support complementary microbial groups related to health. Then, microbial responses were compared for the designed mixtures versus their single fiber components in vitro using fecal samples from a separate cohort of 10 healthy adults. The designed fiber mixtures outperformed individual fibers in supporting bacterial taxa across donors resulting in superior alpha diversity and unexpected higher SCFA production. Moreover, unique shifts in community structure and specific taxa were observed for fiber mixtures that were not observed for single fibers, suggesting a synergistic effect when certain fibers are put together. Fiber mixture responses were remarkably more consistent than individual fibers across donors in promoting several taxa, especially butyrate producers from the Clostridium cluster XIVa. This is the first demonstration of synergistic fiber interactions for superior support of a diverse group of important beneficial microbes consistent across people, and unexpectedly high SCFA production. Overall, harnessing the synergistic potential of designed fiber mixtures represents a promising and more efficacious avenue for future prebiotic development.
Collapse
Affiliation(s)
- T M Cantu-Jungles
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - V Agamennone
- Microbiology and Systems Biology Group, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, the Netherlands
| | - T J Van den Broek
- Microbiology and Systems Biology Group, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, the Netherlands
| | - F H J Schuren
- Microbiology and Systems Biology Group, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, the Netherlands
| | - B Hamaker
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
3
|
Otani S, Louise Jespersen M, Brinch C, Duus Møller F, Pilgaard B, Egholm Bruun Jensen E, Leekitcharoenphon P, Aaby Svendsen C, Aarestrup AH, Sonda T, Sylvina TJ, Leach J, Piel A, Stewart F, Sapountzis P, Kazyoba PE, Kumburu H, Aarestrup FM. Genomic and functional co-diversification imprint African Hominidae microbiomes to signal dietary and lifestyle adaptations. Gut Microbes 2025; 17:2484385. [PMID: 40164980 PMCID: PMC11959905 DOI: 10.1080/19490976.2025.2484385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/27/2025] [Accepted: 03/20/2025] [Indexed: 04/02/2025] Open
Abstract
In the diverse landscape of African hominids, the obligate relationship between the host and its microbiome narrates signals of adaptation and co-evolution. Sequencing 546 African hominid metagenomes, including those from indigenous Hadza and wild chimpanzees, identified similar bacterial richness and diversity surpassing those of westernized populations. While hominids share core bacterial communities, they also harbor distinct, population-specific bacterial taxa tailored to specific diets, ecology and lifestyles, differentiating non-indigenous and indigenous humans and chimpanzees. Even amongst shared bacterial communities, several core bacteria have co-diversified to fulfil unique dietary degradation functions within their host populations. These co-evolutionary trends extend to non-bacterial elements, such as mitochondrial DNA, antimicrobial resistance, and parasites. Our findings indicate that microbiome-host co-adaptations have led to both taxonomic and within taxa functional displacements to meet host physiological demands. The microbiome, in turn, transcends its taxonomic interchangeable role, reflecting the lifestyle, ecology and dietary history of its host.
Collapse
Affiliation(s)
- Saria Otani
- Research group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Marie Louise Jespersen
- Research group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Lyngby, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Brinch
- Research group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Frederik Duus Møller
- Research group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Bo Pilgaard
- Department of Biotechnology and Biomedicine, Section for Protein Chemistry and Enzyme Technology, Technical University of Denmark, Lyngby, Denmark
| | - Emilie Egholm Bruun Jensen
- Research group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Pimlapas Leekitcharoenphon
- Research group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Christina Aaby Svendsen
- Research group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Amalie H. Aarestrup
- Research group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Tolbert Sonda
- Biotechnology Research Laboratory, Kilimanjaro Clinical Research Institute (KCRI), Moshi, Tanzania
- Kilimanjaro Christian Medical Centre (KCMC), Moshi, Tanzania
- Department of Microbiology, Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania
| | - Teresa J. Sylvina
- National Academies of Sciences, Engineering and Medicine, Washington, DC, USA
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, State College, PA, USA
| | - Jeff Leach
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Alexander Piel
- Department of Human Origins, Max Planck Institute of Evolutionary Anthropology, Leipzig, Germany
- Department of Anthropology, University College London, London, UK
| | - Fiona Stewart
- Department of Human Origins, Max Planck Institute of Evolutionary Anthropology, Leipzig, Germany
- Department of Anthropology, University College London, London, UK
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | | | - Paul E. Kazyoba
- National Institute for Medical Research, Dar-Es-Salaam, Tanzania
| | - Happiness Kumburu
- Biotechnology Research Laboratory, Kilimanjaro Clinical Research Institute (KCRI), Moshi, Tanzania
| | - Frank M. Aarestrup
- Research group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
4
|
Aboulalazm FA, Kazen AB, deLeon O, Müller S, Saravia FL, Lozada-Fernandez V, Hadiono MA, Keyes RF, Smith BC, Kellogg SL, Grobe JL, Kindel TL, Kirby JR. Reutericyclin, a specialized metabolite of Limosilactobacillus reuteri, mitigates risperidone-induced weight gain in mice. Gut Microbes 2025; 17:2477819. [PMID: 40190120 PMCID: PMC11980487 DOI: 10.1080/19490976.2025.2477819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 01/14/2025] [Accepted: 03/05/2025] [Indexed: 04/11/2025] Open
Abstract
The role of xenobiotic disruption of microbiota, corresponding dysbiosis, and potential links to host metabolic diseases are of critical importance. In this study, we used a widely prescribed antipsychotic drug, risperidone, known to influence weight gain in humans, to induce weight gain in C57BL/6J female mice. We hypothesized that microbes essential for maintaining gut homeostasis and energy balance would be depleted following treatment with risperidone, leading to enhanced weight gain relative to controls. Thus, we performed metagenomic analyses on stool samples to identify microbes that were excluded in risperidone-treated animals but remained present in controls. We identified multiple taxa including Limosilactobacillus reuteri as a candidate for further study. Oral supplementation with L. reuteri protected against risperidone-induced weight gain (RIWG) and was dependent on cellular production of a specialized metabolite, reutericyclin. Further, synthetic reutericyclin was sufficient to mitigate RIWG. Both synthetic reutericyclin and L. reuteri restored energy balance in the presence of risperidone to mitigate excess weight gain and induce shifts in the microbiome associated with leanness. In total, our results identify reutericyclin production by L. reuteri as a potential probiotic to restore energy balance induced by risperidone and to promote leanness.
Collapse
Affiliation(s)
- Fatima A. Aboulalazm
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Alexis B. Kazen
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Orlando deLeon
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Susanne Müller
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Fatima L. Saravia
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Matthew A. Hadiono
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Robert F. Keyes
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
- Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brian C. Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
- Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Stephanie L. Kellogg
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Justin L. Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Tammy L. Kindel
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - John R. Kirby
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
5
|
Budzinski L, Kang GU, Riedel R, Sempert T, Lietz L, Maier R, Büttner J, Bochow B, Tordai MT, Shah A, Abbas A, Momtaz T, Krause JL, Kempkens R, Lehman K, Heinz GA, Benken AE, Bartsch S, Necke K, Hoffmann U, Mashreghi MF, Biesen R, Kallinich T, Alexander T, Jessen B, Weidinger C, Siegmund B, Radbruch A, Schirbel A, Moser B, Chang HD. Single-cell microbiota phenotyping reveals distinct disease and therapy-associated signatures in Crohn's disease. Gut Microbes 2025; 17:2452250. [PMID: 39815413 PMCID: PMC11740678 DOI: 10.1080/19490976.2025.2452250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/20/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025] Open
Abstract
IgA-coated fractions of the intestinal microbiota of Crohn's disease (CD) patients have been shown to contain taxa that hallmark the compositional dysbiosis in CD microbiomes. However, the correlation between other cellular properties of intestinal bacteria and disease has not been explored further, especially for features that are not directly driven by the host immune-system, e.g. the expression of surface sugars by bacteria. By sorting and sequencing IgA-coated and lectin-stained fractions from CD patients microbiota and healthy controls, we found that lectin-stained bacteria were distinct from IgA-coated bacteria, but still displayed specific differences between CD and healthy controls. To exploit the discriminatory potential of both, immunoglobulin coated bacteria and the altered surface sugar expression of bacteria in CD, we developed a multiplexed single cell-based analysis approach for intestinal microbiota. By multi-parameter microbiota flow cytometry (mMFC) we characterized the intestinal microbiota of 55 CD patients and 44 healthy controls for 11-parameters in total, comprising host-immunoglobulin coating and the presence of distinct surface sugar moieties. The data were analyzed by machine-learning to assess disease-specific marker patterns in the microbiota phenotype. mMFC captured detailed characteristics of CD microbiota and identified patterns to classify CD patients. In addition, we identified phenotypic signatures in the CD microbiota which not only reflected remission after 6 weeks of anti-TNF treatment, but were also able to predict remission before the start of an adalimumab treatment course in a pilot study. We here present the proof-of-concept demonstrating that multi-parameter single-cell bacterial phenotyping by mMFC could be a novel tool with high translational potential to expand current microbiome investigations by phenotyping of bacteria to identify disease- and therapy-associated cellular alterations and to reveal novel target properties of bacteria for functional assays and therapeutic approaches.
Collapse
Affiliation(s)
- Lisa Budzinski
- German Rheumatology Research Centre Berlin – A Leibniz Institute, Berlin, Germany
- Department for Cytometry, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Gi-Ung Kang
- German Rheumatology Research Centre Berlin – A Leibniz Institute, Berlin, Germany
| | - René Riedel
- German Rheumatology Research Centre Berlin – A Leibniz Institute, Berlin, Germany
- Bioinformatics and Computational Biology, Department of Cardiology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Toni Sempert
- German Rheumatology Research Centre Berlin – A Leibniz Institute, Berlin, Germany
| | - Leonie Lietz
- German Rheumatology Research Centre Berlin – A Leibniz Institute, Berlin, Germany
- Department for Cytometry, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - René Maier
- German Rheumatology Research Centre Berlin – A Leibniz Institute, Berlin, Germany
| | - Janine Büttner
- Department of Hepatology and Gastroenterology, Campus Charité Mitte, Charité, Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Bettina Bochow
- Department of Hepatology and Gastroenterology, Campus Charité Mitte, Charité, Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marcell T. Tordai
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Aayushi Shah
- German Rheumatology Research Centre Berlin – A Leibniz Institute, Berlin, Germany
- Department for Cytometry, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Amro Abbas
- German Rheumatology Research Centre Berlin – A Leibniz Institute, Berlin, Germany
| | - Tanisha Momtaz
- German Rheumatology Research Centre Berlin – A Leibniz Institute, Berlin, Germany
- School of Pharmacy, BRAC University, Dhaka, Bangladesh
| | - Jannike L. Krause
- German Rheumatology Research Centre Berlin – A Leibniz Institute, Berlin, Germany
| | - Robin Kempkens
- German Rheumatology Research Centre Berlin – A Leibniz Institute, Berlin, Germany
| | - Katrin Lehman
- German Rheumatology Research Centre Berlin – A Leibniz Institute, Berlin, Germany
| | - Gitta A. Heinz
- German Rheumatology Research Centre Berlin – A Leibniz Institute, Berlin, Germany
| | - Anne E. Benken
- Department of Rheumatology, Campus Charité Mitte, Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefanie Bartsch
- Department of Paediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Campus Virchow, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Kathleen Necke
- Department of Paediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Campus Virchow, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Ute Hoffmann
- German Rheumatology Research Centre Berlin – A Leibniz Institute, Berlin, Germany
| | - Mir-Farzin Mashreghi
- German Rheumatology Research Centre Berlin – A Leibniz Institute, Berlin, Germany
| | - Robert Biesen
- Department of Rheumatology, Campus Charité Mitte, Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tilmann Kallinich
- Department of Paediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Campus Virchow, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Tobias Alexander
- German Rheumatology Research Centre Berlin – A Leibniz Institute, Berlin, Germany
- Department of Rheumatology, Campus Charité Mitte, Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Bosse Jessen
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Carl Weidinger
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Britta Siegmund
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- BIH Charité Clinician Scientist Program
| | - Andreas Radbruch
- German Rheumatology Research Centre Berlin – A Leibniz Institute, Berlin, Germany
| | - Anja Schirbel
- Department of Hepatology and Gastroenterology, Campus Charité Mitte, Charité, Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Benjamin Moser
- Department of Hepatology and Gastroenterology, Campus Charité Mitte, Charité, Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DRK Kliniken Berlin, Clinic for internal medicine – Gastroenterology, Haematology and Oncology, Nephrology, Centre for chronic gastrointestinal inflammations, Berlin, Germany
| | - Hyun-Dong Chang
- German Rheumatology Research Centre Berlin – A Leibniz Institute, Berlin, Germany
- Department for Cytometry, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
6
|
Wang H, Han J, Zhang XA. Interplay of m6A RNA methylation and gut microbiota in modulating gut injury. Gut Microbes 2025; 17:2467213. [PMID: 39960310 PMCID: PMC11834532 DOI: 10.1080/19490976.2025.2467213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/12/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025] Open
Abstract
The gut microbiota undergoes continuous variations among individuals and across their lifespan, shaped by diverse factors encompassing diet, age, lifestyle choices, medication intake, and disease states. These microbial inhabitants play a pivotal role in orchestrating physiological metabolic pathways through the production of metabolites like bile acids, choline, short-chain fatty acids, and neurotransmitters, thereby establishing a dynamic "gut-organ axis" with the host. The intricate interplay between the gut microbiota and the host is indispensable for gut health, and RNA N6-methyladenosine modification, a pivotal epigenetic mark on RNA, emerges as a key player in this process. M6A modification, the most prevalent internal modification of eukaryotic RNA, has garnered significant attention in the realm of RNA epigenetics. Recent findings underscore its potential to influence gut microbiota diversity and intestinal barrier function by modulating host gene expression patterns. Conversely, the gut microbiota, through its impact on the epigenetic landscape of host cells, may indirectly regulate the recruitment and activity of RNA m6A-modifying enzymes. This review endeavors to delve into the biological functions of m6A modification and its consequences on intestinal injury and disease pathogenesis, elucidating the partial possible mechanisms by which the gut microbiota and its metabolites maintain host intestinal health and homeostasis. Furthermore, it also explores the intricate crosstalk between them in intestinal injury, offering a novel perspective that deepens our understanding of the mechanisms underlying intestinal diseases.
Collapse
Affiliation(s)
- Haixia Wang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Juanjuan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Xin-An Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| |
Collapse
|
7
|
Du W, Zou ZP, Ye BC, Zhou Y. Gut microbiota and associated metabolites: key players in high-fat diet-induced chronic diseases. Gut Microbes 2025; 17:2494703. [PMID: 40260760 PMCID: PMC12026090 DOI: 10.1080/19490976.2025.2494703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/26/2025] [Accepted: 04/11/2025] [Indexed: 04/24/2025] Open
Abstract
Excessive intake of dietary fats is strongly associated with an increased risk of various chronic diseases, such as obesity, diabetes, hepatic metabolic disorders, cardiovascular disease, chronic intestinal inflammation, and certain cancers. A significant portion of the adverse effects of high-fat diet on disease risk is mediated through modifications in the gut microbiota. Specifically, high-fat diets are linked to reduced microbial diversity, an overgrowth of gram-negative bacteria, an elevated Firmicutes-to-Bacteroidetes ratio, and alterations at various taxonomic levels. These microbial alterations influence the intestinal metabolism of small molecules, which subsequently increases intestinal permeability, exacerbates inflammatory responses, disrupts metabolic functions, and impairs signal transduction pathways in the host. Consequently, diet-induced changes in the gut microbiota play a crucial role in the initiation and progression of chronic diseases. This review explores the relationship between high-fat diets and gut microbiota, highlighting their roles and underlying mechanisms in the development of chronic metabolic diseases. Additionally, we propose probiotic interventions may serve as a promising adjunctive therapy to counteract the negative effects of high-fat diet-induced alterations in gut microbiota composition.
Collapse
Affiliation(s)
- Wei Du
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhen-Ping Zou
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ying Zhou
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
8
|
Zhang Y, Mo C, Ai P, He X, Xiao Q, Yang X. Pharmacomicrobiomics: a new field contributing to optimizing drug therapy in Parkinson's disease. Gut Microbes 2025; 17:2454937. [PMID: 39875349 PMCID: PMC11776486 DOI: 10.1080/19490976.2025.2454937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/19/2024] [Accepted: 01/13/2025] [Indexed: 01/30/2025] Open
Abstract
Gut microbiota, which act as a determinant of pharmacokinetics, have long been overlooked. In recent years, a growing body of evidence indicates that the gut microbiota influence drug metabolism and efficacy. Conversely, drugs also exert a substantial influence on the function and composition of the gut microbiota. Pharmacomicrobiomics, an emerging field focusing on the interplay of drugs and gut microbiota, provides a potential foundation for making certain advances in personalized medicine. Understanding the communication between gut microbiota and antiparkinsonian drugs is critical for precise treatment of Parkinson's disease. Here, we provide a historical overview of the interplay between gut microbiota and antiparkinsonian drugs. Moreover, we discuss potential mechanistic insights into the complex associations between gut microbiota and drug metabolism. In addition, we also draw attention to microbiota-based biomarkers for predicting antiparkinsonian drug efficacy and examine current state-of-the-art knowledge of microbiota-based strategies to optimize drug therapy in Parkinson's disease.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengjun Mo
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Penghui Ai
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoqin He
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Xiao
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaodong Yang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Li XL, Megdadi M, Quadri HS. Interaction between gut virome and microbiota on inflammatory bowel disease. World J Methodol 2025; 15:100332. [DOI: 10.5662/wjm.v15.i3.100332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/31/2024] [Accepted: 01/15/2025] [Indexed: 03/06/2025] Open
Abstract
Inflammatory bowel disease (IBD), encompassing Crohn's disease and ulcerative colitis, is a chronic condition marked by recurring gastrointestinal inflammation. While immune, genetic, and environmental factors are well-studied, the gut virome has received less attention. This editorial highlights the work which investigates the gut virome’s role in IBD and its interactions with the bacterial microbiome and host immune system. The gut virome consists of bacteriophages, eukaryotic viruses, and endogenous retroviruses. Among these, Caudovirales bacteriophages are predominant and influence bacterial communities via lysogenic and lytic cycles. Eukaryotic viruses infect host cells directly, while endogenous retroviruses impact gene regulation and immune responses. In IBD, the virome shows distinct alterations, including an increased abundance of Caudovirales phages and reduced Microviridae diversity, suggesting a pro-inflammatory viral environment. Dysbiosis, chronic inflammation, and aberrant immune responses contribute to these changes by disrupting microbial communities and modifying virome composition. Phages affect bacterial dynamics through lysis, lysogeny, and horizontal gene transfer, shaping microbial adaptability and resilience. Understanding these interactions is crucial for identifying novel therapeutic targets and restoring microbial balance in IBD.
Collapse
Affiliation(s)
- Xiao-Long Li
- Department of Surgery, Ascension St Agnes Hospital, Baltimore, MD 21009, United States
| | - Mueen Megdadi
- Department of Surgery, Ascension St Agnes Hospital, Baltimore, MD 21009, United States
| | - Humair S Quadri
- Department of Surgery, Ascension St Agnes Hospital, Baltimore, MD 21009, United States
| |
Collapse
|
10
|
Kulkarni H, Gaikwad AB. The mitochondria-gut microbiota crosstalk - A novel frontier in cardiovascular diseases. Eur J Pharmacol 2025; 998:177562. [PMID: 40157703 DOI: 10.1016/j.ejphar.2025.177562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/06/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Cardiovascular diseases (CVDs), including hypertension, atherosclerosis, and cardiomyopathy among others, remain the leading cause of global morbidity and mortality. Despite advances in treatment, the complex pathophysiology of CVDs necessitates innovative approaches to improve patient outcomes. Recent research has uncovered a dynamic interplay between mitochondria and gut microbiota, fundamentally altering our understanding of cardiovascular health. However, while existing studies have primarily focused on individual components of this axis, this review examines the bidirectional communication between these biological systems and their collective impact on cardiovascular health. Mitochondria, serving as cellular powerhouses, are crucial for maintaining cardiovascular homeostasis through oxidative phosphorylation (OXPHOS), calcium regulation, and redox balance. Simultaneously, the gut microbiota influences cardiovascular function through metabolite production, barrier integrity maintenance, and immune system modulation. The mitochondria-gut microbiota axis operates through various molecular mechanisms, including microbial metabolites such as trimethylamine N-oxide (TMAO), short-chain fatty acids (SCFA), and secondary bile acids, which directly influence mitochondrial function. Conversely, mitochondrial stress signals and damage-associated molecular patterns (DAMPs) affect gut microbial communities and barrier function. Key signalling pathways, including AMP-activated protein kinase (AMPK), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and the silent information regulator 1-peroxisome proliferator-activated receptor gamma coactivator 1-alpha (SIRT1-PGC-1α) axis, integrate these interactions, highlighting their role in CVD pathogenesis. Understanding these interactions has revealed promising therapeutic targets, suggesting new therapies aimed at both mitochondrial function and gut microbiota composition. Thus, this review provides a comprehensive framework for leveraging the mitochondria-gut microbiota axis in providing newer therapeutics for CVDs by targeting the AMPK/SIRT-1/PGC-1α/NF-κB signalling.
Collapse
Affiliation(s)
- Hrushikesh Kulkarni
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Vidya Vihar, Pilani, Rajasthan 333031, India
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Vidya Vihar, Pilani, Rajasthan 333031, India.
| |
Collapse
|
11
|
Yang S, Liu X, Chen Y, Wang X, Zhang Z, Wang L. NNSFMDA: Lightweight Transformer Model with Bounded Nuclear Norm Minimization for Microbe-Drug Association Prediction. J Mol Biol 2025; 437:169086. [PMID: 40139309 DOI: 10.1016/j.jmb.2025.169086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/21/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025]
Abstract
Identifying potential connections between microbe-drug pairs play an important role in drug discovery and clinical treatment. Techniques like graph neural networks effectively derive accurate node representations from sparse topologies,however, they struggle with over-smoothing and over-compression, and their interpretability is relatively poor. Conversely, mathematical methods with low-rank approximations are interpretable but often get trapped in local optima. To address these issues, we propose a new prediction model named NNSFMDA, in which, the bounded nuclear norm minimization and the simplified transformer were combined to infer possible drug-microbe associations. In NNSFMDA, we first constructed a heterogeneous microbe-drug network by integrating multiple microbe and drug similarity metrics, according to which, we subsequently transformed the prediction problem to a matrix filling problem, and then, iteratively approximated the matrix by minimizing the number of bounded nuclear norm. Finally, based on the newly-filled matrix, we introduced a simplified transformer to estimate possible scores of microbe-drug pairs. Results showed that NNSFMDA could achieve reliable AUC value of 0.98, which outperformed existing state-of-the-art competitive methods. In the experimental section, ablation experiments and modular analyses further demonstrate the superiority of the model, and case studies of microbe-drug associations confirm the validity of the model. These tests have all highlighted the potential of the NNSFMDA to predict latent microbe-drug associations in the future.
Collapse
Affiliation(s)
- Shuyuan Yang
- School of Mathematics, Changsha University, Changsha 410022, China; Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha 410022, China
| | - Xin Liu
- School of Computer Science & Computer Engineering, Changsha University, Changsha 410022, China; Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha 410022, China.
| | - Yiming Chen
- School of Computer Science & Computer Engineering, Changsha University, Changsha 410022, China; Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha 410022, China
| | - Xiangyi Wang
- School of Artificial Intelligence, The University of New South Wales, Sydney, Australia
| | - Zhen Zhang
- School of Computer Science & Computer Engineering, Changsha University, Changsha 410022, China; Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha 410022, China
| | - Lei Wang
- School of Computer Science & Computer Engineering, Changsha University, Changsha 410022, China; Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha 410022, China
| |
Collapse
|
12
|
Deleu S, Sabino J. Personalized Dietary Approaches to Optimizing Intestinal Microbial Health and Homeostasis. Gastroenterol Clin North Am 2025; 54:317-331. [PMID: 40348490 DOI: 10.1016/j.gtc.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Diet has a profound impact in human health, which is partly driven by changes in the intestinal microbiota. Several associations between dietary intake and the intestinal microbiota composition and function have been described. Namely, the Mediterranean diet is associated with beneficial bacteria, while the intake of ultraprocessed foods is linked to dysbiosis. It is, therefore, very tempting to tailor dietary approaches to the individual needs of the microbiota; however, high-quality prospective data are lacking. Provisionally, a diet rich in fruits and vegetables and low in ultraprocessed foods is recommended to improve the intestinal microbiota composition and function.
Collapse
Affiliation(s)
- Sara Deleu
- Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106, USA; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, Rome 00168, Italy
| | - João Sabino
- Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
13
|
Støy S, Schnabl B. Role of Intestinal Microbiome in Potentiating Inflammation and Predicting Outcomes in Alcohol-Associated Cirrhosis. Gastroenterol Clin North Am 2025; 54:453-467. [PMID: 40348498 PMCID: PMC12066832 DOI: 10.1016/j.gtc.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
In patients with alcohol-associated cirrhosis, the intestinal microbiome composition is disturbed with a loss of beneficial functions and an increase in pathobionts. These changes are associated with disease severity and decompensation, due in part to the exacerbation of liver inflammation by an altered microbiome. Microbes or their antigens may translocate to the liver to potentiate the activation of immune cells and thereby contribute to inflammatory injury. Moreover, microbes may aggravate liver disease through the production of toxins or metabolites, via the effects on bile acids or the intestinal immune system.
Collapse
Affiliation(s)
- Sidsel Støy
- Department of Medicine, University of California San Diego, La Jolla, CA, USA; Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA; Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
14
|
Garcia-Morena D, Fernandez-Cantos MV, Escalera SL, Lok J, Iannone V, Cancellieri P, Maathuis W, Panagiotou G, Aranzamendi C, Aidy SE, Kolehmainen M, El-Nezami H, Wellejus A, Kuipers OP. In Vitro Influence of Specific Bacteroidales Strains on Gut and Liver Health Related to Metabolic Dysfunction-Associated Fatty Liver Disease. Probiotics Antimicrob Proteins 2025; 17:1498-1512. [PMID: 38319537 PMCID: PMC12055940 DOI: 10.1007/s12602-024-10219-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) has become a major health risk and a serious worldwide issue. MAFLD typically arises from aberrant lipid metabolism, insulin resistance, oxidative stress, and inflammation. However, subjacent causes are multifactorial. The gut has been proposed as a major factor in health and disease, and over the last decade, bacterial strains with potentially beneficial effects on the host have been identified. In vitro cell models have been commonly used as an early step before in vivo drug assessment and can confer complementary advantages in gut and liver health research. In this study, several selected strains of the order Bacteroidales were used in a three-cell line in vitro analysis (HT-29, Caco-2, and HepG2 cell lines) to investigate their potential as new-generation probiotics and microbiota therapeutics. Antimicrobial activity, a potentially useful trait, was studied, and the results showed that Bacteroidales can be a source of either wide- or narrow-spectrum antimicrobials targeting other closely related strains. Moreover, Bacteroides sp. 4_1_36 induced a significant decrease in gut permeability, as evidenced by the high TEER values in the Caco-2 monolayer assay, as well as a reduction in free fatty acid accumulation and improved fatty acid clearance in a steatosis HepG2 model. These results suggest that Bacteroidales may spearhead the next generation of probiotics to prevent or diminish MAFLD.
Collapse
Affiliation(s)
- Diego Garcia-Morena
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Maria Victoria Fernandez-Cantos
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Silvia Lopez Escalera
- Chr. Hansen A/S, Bøge Allé 10-12, 2970, Hørsholm, Denmark
- Friedrich-Schiller Universität Jena, Fakultät für Biowissenschaften, 18K, 07743, Bachstraβe, Germany
| | - Johnson Lok
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200, Kuopio, Finland
| | - Valeria Iannone
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200, Kuopio, Finland
| | - Pierluca Cancellieri
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Willem Maathuis
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Gianni Panagiotou
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745, Jena, Germany
- Department of Medicine and State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, China
- Faculty of Biological Sciences, Friedrich Schiller University, 07745, Jena, Germany
| | - Carmen Aranzamendi
- Groningen Biomolecular Sciences and Biotechnology Institute, Host-Microbe Metabolic Interactions, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, the Netherlands
| | - Sahar El Aidy
- Groningen Biomolecular Sciences and Biotechnology Institute, Host-Microbe Metabolic Interactions, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, the Netherlands
| | - Marjukka Kolehmainen
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200, Kuopio, Finland
| | - Hani El-Nezami
- Molecular and Cell Biology Division, School of Biological Sciences, University of Hong Kong, Pok Fu Lam, Hong Kong SAR
| | - Anja Wellejus
- Chr. Hansen A/S, Bøge Allé 10-12, 2970, Hørsholm, Denmark
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
15
|
Yau R, Pavloudi C, Zeng Y, Saw J, Eleftherianos I. Infection with the entomopathogenic nematodes Steinernema alters the Drosophila melanogaster larval microbiome. PLoS One 2025; 20:e0323657. [PMID: 40378358 DOI: 10.1371/journal.pone.0323657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 04/11/2025] [Indexed: 05/18/2025] Open
Abstract
The fruit fly Drosophila melanogaster is a vital model for studying the microbiome due to the availability of genetic resources and procedures. To understand better the importance of microbial composition in shaping immune modulation, we can investigate the role of the microbiota through parasitic infection. For this, we use entomopathogenic nematodes (EPN) of the genus Steinernema which exhibit remarkable ability to efficiently infect a diverse array of insect species, facilitated by the mutualistic bacteria Xenorhabdus found within their gut. To examine the microbiome changes in D. melanogaster larvae in response to Steinernema nematode infection, D. melanogaster late second to early third instar larvae were exposed separately to S. carpocapsae and S. hermaphroditum infective juveniles. We have found that S. carpocapsae infective juveniles are more pathogenic to D. melanogaster larvae compared to the closely related S. hermaphroditum. Our microbiome analysis also indicates substantial changes in the size and composition of the D. melanogaster larval microbiome during infection with either nematode species compared to the uninfected controls. Our results serve as a foundation for future studies to elucidate the entomopathogenic-specific effector molecules that alter the D. melanogaster microbiome and understand the role of the microbiome in regulating insect anti-nematode immune processes.
Collapse
Affiliation(s)
- Raymond Yau
- Department of Biological Sciences, The George Washington University, Washington, DC, United States of America
| | - Christina Pavloudi
- Department of Biological Sciences, The George Washington University, Washington, DC, United States of America
- European Marine Biological Resource Centre-European Research Infrastructure Consortium (EMBRC-ERIC), Paris, France
| | - Yingying Zeng
- Department of Biological Sciences, The George Washington University, Washington, DC, United States of America
| | - Jimmy Saw
- Department of Biological Sciences, The George Washington University, Washington, DC, United States of America
| | - Ioannis Eleftherianos
- Department of Biological Sciences, The George Washington University, Washington, DC, United States of America
| |
Collapse
|
16
|
Baker JS, Qu E, Mancuso CP, Tripp AD, Conwill A, Lieberman TD. Intraspecies dynamics underlie the apparent stability of two important skin microbiome species. Cell Host Microbe 2025; 33:643-656.e7. [PMID: 40315837 DOI: 10.1016/j.chom.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/29/2025] [Accepted: 04/11/2025] [Indexed: 05/04/2025]
Abstract
Adult human facial skin microbiomes are remarkably similar at the species level, dominated by Cutibacterium acnes and Staphylococcus epidermidis, yet each person harbors a unique community of strains. Understanding how person-specific communities assemble is critical for designing microbiome-based therapies. Here, using 4,055 isolate genomes and 356 metagenomes, we reconstruct on-person evolutionary history to reveal on- and between-person strain dynamics. We find that multiple cells are typically involved in transmission, indicating ample opportunity for migration. Despite this accessibility, family members share only some of their strains. S. epidermidis communities are dynamic, with each strain persisting for an average of only 2 years. C. acnes strains are more stable and have a higher colonization rate during the transition to an adult facial skin microbiome, suggesting this window could facilitate engraftment of therapeutic strains. These previously undetectable dynamics may influence the design of microbiome therapeutics and motivate the study of their effects on hosts.
Collapse
Affiliation(s)
- Jacob S Baker
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Evan Qu
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Christopher P Mancuso
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - A Delphine Tripp
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | - Arolyn Conwill
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tami D Lieberman
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
17
|
Crouch AL, Severance BM, Creary S, Hood D, Bailey M, Mejias A, Ramilo O, Gillespie M, Ebelt S, Sheehan V, Kopp BT, Anderson MZ. Altered nasal and oral microbiomes define pediatric sickle cell disease. mSphere 2025:e0013725. [PMID: 40366139 DOI: 10.1128/msphere.00137-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 04/09/2025] [Indexed: 05/15/2025] Open
Abstract
Sickle cell disease (SCD) is a chronic blood disorder that disrupts multiple organ systems and can lead to severe morbidity. Persistent and acute symptoms caused by immune system dysregulation in individuals with SCD could contribute to disease either directly or indirectly via dysbiosis of commensal microbes and increased susceptibility to infection. Here, we explored the nasal and oral microbiomes of children with SCD (cwSCD) to uncover potential dysbiotic associations with the blood disorder. Microbiota collected from nasal and oral swabs of 40 cwSCD were compared to eight healthy siblings using shotgun metagenomic sequencing. Commensal taxa were present at similar levels in the nasal and oral microbiome of both groups. However, the nasal microbiomes of cwSCD contained a higher prevalence of Pseudomonadota species, including pathobionts such as Yersinia enterocolitica and Klebsiella pneumoniae. Furthermore, the oral microbiome of cwSCD displayed lower α-diversity and fewer commensal and pathobiont species compared to the healthy siblings. Thus, subtle but notable shifts seem to exist in the nasal and oral microbiomes of cwSCD, suggesting an interaction between SCD and the microbiome that may influence health outcomes. IMPORTANCE The oral and nasal cavities are susceptible to environmental exposures including pathogenic microbes. In individuals with systemic disorders, antibiotic exposure, changes to the immune system, or changes to organ function could influence the composition of the microbes at these sites and the overall health of individuals. Children with sickle cell disease (SCD) commonly experience respiratory infections, such as pneumonia or sinusitis, and may have increased susceptibility to infection because of disrupted microbiota at these body sites. We found that children with SCD (cwSCD) had more pathobiont bacteria in the nasal cavity and reduced bacterial diversity in the oral cavity compared to their healthy siblings. Defining when, why, and how these changes occur in cwSCD could help identify specific microbial signatures associated with susceptibility to infection or adverse outcomes, providing insights into personalized treatment strategies and preventive measures.
Collapse
Affiliation(s)
- Audra L Crouch
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Beatrice M Severance
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Susan Creary
- Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Darryl Hood
- College of Public Health, The Ohio State University, Columbus, Ohio, USA
| | - Michael Bailey
- Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Asuncion Mejias
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Octavio Ramilo
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Michelle Gillespie
- Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Stefanie Ebelt
- Environmental Health and Epidemiology, Rollins School of Public Health at Emory University, Atlanta, Georgia, USA
| | | | - Benjamin T Kopp
- Children's Healthcare of Atlanta, Atlanta, Georgia, USA
- Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Matthew Z Anderson
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
18
|
Yu J, Liang Y, Zhang Q, Ding H, Xie M, Zhang J, Hu W, Xu S, Xiao Y, Xu S, Na R, Wu B, Zhou J, Chen H. An interplay between human genetics and intratumoral microbiota in the progression of colorectal cancer. Cell Host Microbe 2025; 33:657-670.e6. [PMID: 40306270 DOI: 10.1016/j.chom.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/10/2025] [Accepted: 04/04/2025] [Indexed: 05/02/2025]
Abstract
Intratumoral microbiota plays a crucial role in cancer progression. However, the relationship between host genetics and intratumoral microbiota, as well as their interaction in colorectal cancer (CRC) progression, remains unclear. With 748 Chinese CRC patients enrolled from three cohorts, we find that the single nucleotide polymorphism (SNP) rs2355016, located in the intron of ATP-sensitive inward rectifier potassium channel 11 (KCNJ11), is significantly associated with the abundance of Fusobacterium. Compared with the rs2355016 GG genotype, patients carrying the A allele exhibit downregulation of KCNJ11 and enrichment of Fusobacterium, which corresponds to accelerated proliferation and progression. Low expression of KCNJ11 can increase the level of galactose-N-acetyl-d-galactosamine (Gal-GalNAc) on the surface of CRC cells, thereby facilitating the binding of the Fap2 protein from F. nucleatum to Gal-GalNAc. This further enhances the adhesion and invasion of F. nucleatum and promotes CRC growth. Our study explores the interaction between intratumoral microbiota and SNPs in CRC patients, which will enhance our understanding of CRC proliferation.
Collapse
Affiliation(s)
- Jing Yu
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Yuxuan Liang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Qingrong Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Hui Ding
- Department of General Surgery, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510655, China
| | - Minghao Xie
- Department of General Surgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330038, China
| | - Jingjing Zhang
- Cancer Hospital Chinese Academy of Medical Sciences Shenzhen Center, Shenzhen, Guangdong 518116, China
| | - Wenyan Hu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Sihua Xu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Yiyuan Xiao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Sha Xu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Rong Na
- Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China.
| | - Baixing Wu
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China.
| | - Jiaming Zhou
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.
| | - Haitao Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong 510275, China; Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
19
|
Ellis E, Fulte S, Boylan S, Flory A, Paine K, Lopez S, Allen G, Warya K, Ortiz-Merino J, Blacketer S, Thompson S, Sanchez S, Burdette K, Duchscherer A, Pinkham N, Shih JD, Rahn-Lee L. Community living causes changes in metabolic behavior and is permitted by specific growth conditions in two bacterial co-culture systems. J Bacteriol 2025:e0007525. [PMID: 40366143 DOI: 10.1128/jb.00075-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 04/16/2025] [Indexed: 05/15/2025] Open
Abstract
Although bacteria exist in complex microbial communities in the environment, their features and behavior are most often studied in monoculture. While environmental enrichments or complex co-cultures with tens or hundreds of members might more accurately represent the natural communities of bacteria, we sought to create simple pairs of organisms to learn what conditions create successful co-culture and how bacteria change transcriptionally when a partner species is present. We grew two pairs of organisms in co-culture, Pseudomonas aeruginosa and Escherichia coli and Lacticaseibacillus rhamnosus and Bacteroides thetaiotaomicron. At first, both co-cultures failed, with one organism outcompeting the other. However, through manipulating media and environmental conditions, we created co-cultures with stable member ratios over many generations for each community. We then show that changes in the expression of metabolic genes are present in all studied species, with key catabolic and anabolic pathways often upregulated in the presence of another organism. These changes in gene expression fail to occur in conditions that will not lead to successful co-culture, suggesting they are essential for adapting to and surviving in the presence of others. IMPORTANCE In 1882, Robert Koch and Fanny Hesse developed the agar plate, which enabled microbiologists to separate individual microbial cells from each other and create monocultures of a single strain of bacteria. This powerful tool has been used in the almost 150 years since to develop a robust understanding of how bacterial cells are structured, how they manage and process their information, and how they respond to the environment to produce behaviors that match their circumstances. We were curious about how the behavior of bacteria, as measured by their gene expression, changes between well-studied monoculture conditions and co-culture. We found that only specific growth conditions permit co-culture and that bacteria change their metabolic strategies in the presence of a partner.
Collapse
Affiliation(s)
- Elizabeth Ellis
- Department of Biology, William Jewell College, Liberty, Missouri, USA
| | - Sam Fulte
- Department of Biology, William Jewell College, Liberty, Missouri, USA
| | - Skyler Boylan
- Department of Biology, William Jewell College, Liberty, Missouri, USA
| | - Alaina Flory
- Department of Biology, William Jewell College, Liberty, Missouri, USA
| | - Katherine Paine
- Department of Biology, William Jewell College, Liberty, Missouri, USA
| | - Sophia Lopez
- Department of Biology, William Jewell College, Liberty, Missouri, USA
| | - Grace Allen
- Department of Biology, William Jewell College, Liberty, Missouri, USA
| | - Kanwar Warya
- Department of Biology, William Jewell College, Liberty, Missouri, USA
| | | | - Sadie Blacketer
- Department of Biology, William Jewell College, Liberty, Missouri, USA
| | - Samantha Thompson
- Department of Biology, William Jewell College, Liberty, Missouri, USA
| | - Sierra Sanchez
- Department of Biology, William Jewell College, Liberty, Missouri, USA
| | - Kayla Burdette
- Department of Biology, William Jewell College, Liberty, Missouri, USA
| | | | - Nick Pinkham
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Joseph D Shih
- Department of Biology, William Jewell College, Liberty, Missouri, USA
| | - Lilah Rahn-Lee
- Department of Biology, William Jewell College, Liberty, Missouri, USA
| |
Collapse
|
20
|
Netter U, Bisht V, Gaurav A, Sharma R, Ghosh A, Bisht VS, Ambatipudi K, Sharma HP, Mohanty S, Loat S, Sarkar M, Tahlan K, Navani NK. Discovery and mechanistic characterization of a probiotic-origin 3β-OH-Δ 5-6-cholesterol-5β-reductase directly converting cholesterol to coprostanol. FEBS J 2025. [PMID: 40364602 DOI: 10.1111/febs.70131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/21/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025]
Abstract
Cholesterol serves as a fundamental molecule in various structural and biochemical pathways; however, high cholesterol levels are linked to cardiovascular diseases. Some selected strains of Lactobacilli are known for modulating cholesterol levels. However, the molecular mechanism underlying cholesterol transformation by lactobacilli has remained elusive. This study describes the discovery and function of a microbial 3β-OH-Δ5-6-cholesterol-5β-reductase (5βChR) from Limosilactobacillus fermentum NKN51, which directly converts cholesterol to coprostanol, thereby unraveling this longstanding mystery. Protein engineering of the reductase enzyme identified the cholesterol and NADPH interacting amino acid residues, detailing the catalytic mechanism of 5βChR. Phylogenetic analyses highlight the prevalence of 5βChRs in gut commensal lactobacilli, which share a common evolutionary origin with plant 5β reductases. Meta-analysis of microbiomes from healthy individuals underscores the importance of 5βChR homologs, while a cohort study demonstrates an inverse association between 5βChR abundance and diabetes. The discovery of the 5βChR enzyme and its molecular mechanism in cholesterol metabolism paves the way for a better understanding of the gut-associated microbiome and the design of practical applications to ameliorate dyslipidemia.
Collapse
Affiliation(s)
- Urmila Netter
- Chemical Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
| | - Vishakha Bisht
- Chemical Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
| | - Amit Gaurav
- Chemical Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
| | - Rekha Sharma
- Chemical Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
| | - Avik Ghosh
- Chemical Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
| | - Vinod Singh Bisht
- Proteomics and Lipidomics Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
| | - Kiran Ambatipudi
- Proteomics and Lipidomics Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
| | - Hanuman Prasad Sharma
- Centralized Core Research Facility, All India Institute of Medical Sciences, New Delhi, India
| | - Sujata Mohanty
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, India
| | - Shubham Loat
- ICAR-National Research Centre on Yak, Dirang, India
| | - Mihir Sarkar
- ICAR-National Research Centre on Yak, Dirang, India
| | - Kapil Tahlan
- Department of Biology, Memorial University of Newfoundland and Labrador, St. John's, Canada
| | - Naveen K Navani
- Chemical Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
| |
Collapse
|
21
|
Fernandez E, Wargo JA, Helmink BA. The Microbiome and Cancer: A Translational Science Review. JAMA 2025:2833859. [PMID: 40354071 DOI: 10.1001/jama.2025.2191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Importance Growing evidence suggests that microbes located within the gastrointestinal tract and other anatomical locations influence the development and progression of diseases such as cancer. Observations Clinical and preclinical evidence suggests that microbes in the gastrointestinal tract and other anatomical locations, such as the respiratory tract, may affect carcinogenesis, development of metastases, cancer treatment response, and cancer treatment-related adverse effects. Within tumors of patients with cancer, microbes may affect response to treatment, and therapies that reduce or eliminate these microbes may improve outcomes in patients with cancer. Modulating gastrointestinal tract (gut) microbes through fecal microbiota transplant and other strategies such as dietary intervention (eg, high-fiber diet intervention) has improved outcomes in small studies of patients treated with cancer immunotherapy. In contrast, disruption of the gut microbiota by receipt of broad-spectrum antibiotics prior to treatment with cancer immunotherapy has been associated with poorer overall survival and higher rates of adverse effects in patients treated with immune checkpoint blockade for solid tumors and also with chimeric antigen receptor T-cell therapy for hematologic malignancies. Conclusions and Relevance Microbes in the gut and other locations in the body may influence the development and progression of cancer and may affect the response to adverse effects from cancer therapy. Future therapies targeting microbes in the gut and other locations in the body could potentially improve outcomes in patients with cancer.
Collapse
Affiliation(s)
- Estefania Fernandez
- Department of Gynecologic Oncology & Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | - Jennifer A Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | - Beth A Helmink
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| |
Collapse
|
22
|
Zhang WL, Yu LP, Zhou W, Wang X, Du J. Exploring the oral bacteria-oral lichen planus connection: mechanisms, clinical implications and future directions. Arch Microbiol 2025; 207:143. [PMID: 40353891 DOI: 10.1007/s00203-025-04342-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/15/2025] [Accepted: 04/25/2025] [Indexed: 05/14/2025]
Abstract
Oral lichen planus (OLP) is a prevalent T-cell mediated inflammatory-immune disease with uncertain etiology. Recently, there is emerging evidence suggesting that oral bacteria may exert a prominent role in the onset and development of OLP. They might promote the initiation and progression of OLP by disrupting the oral epithelia, invading the lamina propria, stimulating pro-inflammatory cytokines production and inducing immune dysfunction. In this review, we will focus on the possible mechanisms of oral bacteria contributing to occurrence and development of OLP, and provide new insights into the bacteria-related diagnosis, prevention and treatment strategies for OLP.
Collapse
Affiliation(s)
- Wei-Long Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Lian-Pin Yu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Wei Zhou
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xue Wang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Juan Du
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| |
Collapse
|
23
|
Jiang WH, Zhao XW, Jin XM, Wang WJ, Chen Z. Mixed Infections in the Female Lower Genital Tract: Unlocking the Current Landscape and Future Directions. Curr Med Sci 2025:10.1007/s11596-025-00058-8. [PMID: 40327219 DOI: 10.1007/s11596-025-00058-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 05/07/2025]
Abstract
Understanding mixed infections in the female lower genital tract is a critical challenge in modern infection research. The interplay of multiple pathogens complicates disease progression, often resulting in treatment failure, recurrent infections, and significant public health and economic burdens. These infections are further exacerbated by disrupted host immune responses, which hinder the recovery of the vaginal microecosystem. Additionally, microbial biofilms-a fundamental mode of pathogen coexistence-contribute to the persistence and drug resistance of these infections, complicating management strategies. This review examines the pathogenesis, diagnosis, and treatment of mixed infections in the female lower genital tract while exploring potential avenues for future research. These findings emphasize the need for greater focus on these infections and offer insights to enhance further research in this area.
Collapse
Affiliation(s)
- Wen-Hua Jiang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xin-Wei Zhao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xi-Ming Jin
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wen-Jia Wang
- Department of Child Healthcare, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhuo Chen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
24
|
Austin GI, Korem T. Compositional transformations can reasonably introduce phenotype-associated values into sparse features. mSystems 2025:e0002125. [PMID: 40314439 DOI: 10.1128/msystems.00021-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/13/2025] [Indexed: 05/03/2025] Open
Abstract
Gihawi et al. (mBio 14:e01607-23, 2023, https://doi.org/10.1128/mbio.01607-23) argued that the analysis of tumor-associated microbiome data by Poore et al. (Nature 579:567-574, 2020, https://doi.org/10.1038/s41586-020-2095-1) is invalid because features that were originally very sparse (genera with mostly zero read counts) became associated with the phenotype following batch correction. Here, we examine whether such an observation should necessarily indicate issues with processing or machine learning pipelines. We show counterexamples using the centered log ratio (CLR) transformation, which is often used for analysis of compositional microbiome data. The CLR transformation has similarities to voom-SNM, the batch-correction method brought into question by Gihawi et al., and yet is a sample-wise operation that cannot, in itself, "leak" information or invalidate downstream analyses. We show that because the CLR transformation divides each value by the geometric mean of its sample, common imputation strategies for missing or zero values result in transformed features that are associated with the geometric mean. Through analyses of both synthetic and vaginal microbiome data sets, we demonstrate that when the geometric mean is associated with a phenotype, sparse and CLR-transformed features will also become associated with it. We re-analyze features highlighted by Gihawi et al. and demonstrate that the phenomenon of sparse features becoming phenotype-associated can also be observed after a CLR transformation, which serves as a counterexample to the claim that such an observation necessarily means information leakage. While we do not intend to address other concerns regarding tumor microbiome analyses, validate Poore et al.'s results, or evaluate batch-correction pipelines, we conclude that because phenotype-associated features that were initially sparse can be created by a sample-wise transformation that cannot artifactually inflate machine learning performance, their detection is not independently sufficient to demonstrate information leakage in machine learning pipelines. Microbiome data are multivariate, and as such, a value of 0 carries a different meaning for each sample. Many transformations, including CLR and other batch-correction methods, are likewise multivariate, and, as these issues demonstrate, each individual feature should be interpreted with caution. IMPORTANCE Gihawi et al. claim that finding that a transformation turned highly sparse (mostly zero) features into features that are associated with a phenotype is sufficient to conclude that there is information leakage and to invalidate an analysis. This claim has critical implications for both the debate regarding The Cancer Genome Atlas (TCGA) cancer microbiome analysis and for interpretation and evaluation of analyses in the microbiome field at large. We show by counterexamples and by reanalysis that such transformations can be valid.
Collapse
Affiliation(s)
- George I Austin
- Department of Biomedical Informatics, Columbia University Irving Medical, New York, New York, USA
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - Tal Korem
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University Irving Medical Center, New York, New York, USA
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
25
|
Shen Y, Fan N, Ma S, Cheng X, Yang X, Wang G. Gut Microbiota Dysbiosis: Pathogenesis, Diseases, Prevention, and Therapy. MedComm (Beijing) 2025; 6:e70168. [PMID: 40255918 PMCID: PMC12006732 DOI: 10.1002/mco2.70168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 04/22/2025] Open
Abstract
Dysbiosis refers to the disruption of the gut microbiota balance and is the pathological basis of various diseases. The main pathogenic mechanisms include impaired intestinal mucosal barrier function, inflammation activation, immune dysregulation, and metabolic abnormalities. These mechanisms involve dysfunctions in the gut-brain axis, gut-liver axis, and others to cause broader effects. Although the association between diseases caused by dysbiosis has been extensively studied, many questions remain regarding the specific pathogenic mechanisms and treatment strategies. This review begins by examining the causes of gut microbiota dysbiosis and summarizes the potential mechanisms of representative diseases caused by microbiota imbalance. It integrates clinical evidence to explore preventive and therapeutic strategies targeting gut microbiota dysregulation, emphasizing the importance of understanding gut microbiota dysbiosis. Finally, we summarized the development of artificial intelligence (AI) in the gut microbiota research and suggested that it will play a critical role in future studies on gut dysbiosis. The research combining multiomics technologies and AI will further uncover the complex mechanisms of gut microbiota dysbiosis. It will drive the development of personalized treatment strategies.
Collapse
Affiliation(s)
- Yao Shen
- International Joint Laboratory for Embryonic Development & Prenatal MedicineDivision of Histology and EmbryologySchool of MedicineJinan UniversityGuangzhouChina
- Key Laboratory for Regenerative Medicine of the Ministry of EducationJinan UniversityGuangzhouChina
| | - Nairui Fan
- Basic Medical College of Jiamusi UniversityHeilongjiangChina
| | - Shu‐xia Ma
- Basic Medical College of Jiamusi UniversityHeilongjiangChina
| | - Xin Cheng
- International Joint Laboratory for Embryonic Development & Prenatal MedicineDivision of Histology and EmbryologySchool of MedicineJinan UniversityGuangzhouChina
- Key Laboratory for Regenerative Medicine of the Ministry of EducationJinan UniversityGuangzhouChina
| | - Xuesong Yang
- International Joint Laboratory for Embryonic Development & Prenatal MedicineDivision of Histology and EmbryologySchool of MedicineJinan UniversityGuangzhouChina
- Key Laboratory for Regenerative Medicine of the Ministry of EducationJinan UniversityGuangzhouChina
- International SchoolGuangzhou Huali College, ZengchengGuangzhouChina
| | - Guang Wang
- International Joint Laboratory for Embryonic Development & Prenatal MedicineDivision of Histology and EmbryologySchool of MedicineJinan UniversityGuangzhouChina
- Key Laboratory for Regenerative Medicine of the Ministry of EducationJinan UniversityGuangzhouChina
- Guangdong‐Hong Kong Metabolism & Reproduction Joint LaboratoryGuangdong Second Provincial General HospitalSchool of MedicineJinan UniversityGuangzhouChina
| |
Collapse
|
26
|
Chaturvedi AK, Vogtmann E, Shi J, Yano Y, Blaser MJ, Bokulich NA, Caporaso JG, Gillison ML, Graubard BI, Hua X, Hullings AG, Kahle L, Knight R, Li S, McLean J, Purandare V, Wan Y, Freedman ND, Abnet CC. Oral Microbiome Profile of the US Population. JAMA Netw Open 2025; 8:e258283. [PMID: 40323603 PMCID: PMC12053784 DOI: 10.1001/jamanetworkopen.2025.8283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/03/2025] [Indexed: 05/08/2025] Open
Abstract
Importance The oral microbiome likely plays key roles in human health. Yet, population-representative characterizations are lacking. Objective To characterize the composition, diversity, and correlates of the oral microbiome in US adults. Design, Setting, and Participants This cross-sectional study analyzed data from the population-representative National Health and Nutrition Examination Survey (NHANES) from 2009 to 2012. Microbiome data were made publicly available in 2024. NHANES participants were aged 18 to 69 years and provided oral rinse samples in 1 of 2 consecutive NHANES cycles (2009-2010 and 2011-2012). Exposures Demographic, socioeconomic, behavioral, anthropometric, metabolic, and clinical characteristics. Main Outcomes and Measures Oral microbiome measures, characterized through 16S ribosomal RNA gene sequencing, included α diversity (observed amplicon sequence variants [ASVs], Faith phylogenetic diversity, Shannon-Weiner Index, and Simpson Index); β diversity (unweighted UniFrac, weighted UniFrac, and Bray-Curtis dissimilarity); and prevalence and relative abundance at phylum level through genus level. Analyses accounted for the NHANES complex sample design. Results This study included 8237 US adults aged 18 to 69 years, representing 202 314 000 individuals (102 813 000 men [50.8%]; mean [SD] age, 42.3 [14.4] years; 9.3% self-reported as Mexican American, 12.1% as non-Hispanic Black, 64.7% as non-Hispanic White, 5.9% as other Hispanic, and 8.1% as other non-Hispanic individuals). The oral microbiome encompassed 37 bacterial phyla, 99 classes, 212 orders, 446 families, and 1219 genera. Five phyla (Firmicutes, Actinobacteria, Bacteroidetes, Proteobacteria, and Fusobacteria) and 6 genera (Veillonella, Streptococcus, Prevotella 7, Rothia, Actinomyces, and Gemella) were present in nearly all US adults (weighted prevalence, >99%). These genera were the most abundant, accounting for 65.7% of total abundance. Observed ASVs showed a quadratic pattern with age (peak at 30 years), were similar by sex, significantly lower among non-Hispanic White individuals, and increased with greater body mass index (BMI), alcohol use, and periodontal disease severity. All covariates together accounted for a modest proportion of oral microbiome variability as measured by β diversity: R2 = 8.7% (95% CI, 8.4%-9.1%) for unweighted UniFrac, R2 = 7.2% (95% CI, 6.6%-7.7%) for weighted UniFrac, and R2 = 6.3% (95% CI, 3.1%-6.7%) for Bray-Curtis matrices. By contrast, relative abundance of a few genera explained a high percentage of variability in β diversity for weighted UniFrac: Aggregatibacter (R2 = 22.4%; 95% CI, 22.1%-22.8%), Lactococcus (R2 = 21.6%; 95% CI, 20.9%-22.3%), and Haemophilus (R2 = 18.4%; 95% CI, 18.1%-18.8%). Prevalence and relative abundance of numerous genera were associated with age, race and ethnicity, smoking, BMI categories, alcohol use, and periodontal disease severity. Conclusions and Relevance This cross-sectional study of the oral microbiome in US adults showed that a few genera were universally present and a different set of genera explained a high percentage of oral microbiome diversity across the population. This comprehensive characterization provides a contemporary reference standard for future studies.
Collapse
Affiliation(s)
- Anil K. Chaturvedi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Emily Vogtmann
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Yukiko Yano
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Martin J. Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey
| | | | - J. Gregory Caporaso
- Center for Applied Microbiome Science, Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff
| | - Maura L. Gillison
- Department of Thoracic and Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Barry I. Graubard
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Xing Hua
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Autumn G. Hullings
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Lisa Kahle
- Information Management Services, Calverton, Maryland
| | - Rob Knight
- Center for Microbiome Innovation, University of California, San Diego, La Jolla
| | - Shilan Li
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Jody McLean
- National Center for Health Statistics, Centers for Disease Control and Prevention, Hyattsville, Maryland
| | - Vaishnavi Purandare
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Yunhu Wan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Neal D. Freedman
- Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, Maryland
| | - Christian C. Abnet
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
27
|
Russo CJ, Husain K, Murugan A. Soft Modes as a Predictive Framework for Low-Dimensional Biological Systems Across Scales. Annu Rev Biophys 2025; 54:401-426. [PMID: 39971349 PMCID: PMC12079786 DOI: 10.1146/annurev-biophys-081624-030543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
All biological systems are subject to perturbations arising from thermal fluctuations, external environments, or mutations. Yet, while biological systems consist of thousands of interacting components, recent high-throughput experiments have shown that their response to perturbations is surprisingly low dimensional: confined to only a few stereotyped changes out of the many possible. In this review, we explore a unifying dynamical systems framework-soft modes-to explain and analyze low dimensionality in biology, from molecules to ecosystems. We argue that this soft mode framework makes nontrivial predictions that generalize classic ideas from developmental biology to disparate systems, namely phenocopying, dual buffering, and global epistasis. While some of these predictions have been borne out in experiments, we discuss how soft modes allow for a surprisingly far-reaching and unifying framework in which to analyze data from protein biophysics to microbial ecology.
Collapse
Affiliation(s)
- Christopher Joel Russo
- James Franck Institute, University of Chicago, Chicago, Illinois, USA
- Program in Biophysical Sciences, University of Chicago, Chicago, Illinois, USA
| | - Kabir Husain
- James Franck Institute, University of Chicago, Chicago, Illinois, USA
- Department of Physics, University College London, London, United Kingdom
| | - Arvind Murugan
- James Franck Institute, University of Chicago, Chicago, Illinois, USA
- Department of Physics, University of Chicago, Chicago, Illinois, USA;
| |
Collapse
|
28
|
Metris A, Walker AW, Showering A, Doolan A, McBain AJ, Ampatzoglou A, Murphy B, O'Neill C, Shortt C, Darby EM, Aldis G, Hillebrand GG, Brown HL, Browne HP, Tiesman JP, Leng J, Lahti L, Jakubovics NS, Hasselwander O, Finn RD, Klamert S, Korcsmaros T, Hall LJ. Assessing the safety of microbiome perturbations. Microb Genom 2025; 11. [PMID: 40371892 DOI: 10.1099/mgen.0.001405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025] Open
Abstract
Everyday actions such as eating, tooth brushing or applying cosmetics inherently modulate our microbiome. Advances in sequencing technologies now facilitate detailed microbial profiling, driving intentional microbiome-targeted product development. Inspired by an academic-industry workshop held in January 2024, this review explores the oral, skin and gut microbiomes, focussing on the potential long-term implications of perturbations. Key challenges in microbiome safety assessment include confounding factors (ecological variability, host influences and external conditions like geography and diet) and biases from experimental measurements and bioinformatics analyses. The taxonomic composition of the microbiome has been associated with both health and disease, and perturbations like regular disruption of the dental biofilm are essential for preventing caries and inflammatory gum disease. However, further research is required to understand the potential long-term impacts of microbiome disturbances, particularly in vulnerable populations including infants. We propose that emerging technologies, such as omics technologies to characterize microbiome functions rather than taxa, leveraging artificial intelligence to interpret clinical study data and in vitro models to characterize and measure host-microbiome interaction endpoints, could all enhance the risk assessments. The workshop emphasized the importance of detailed documentation, transparency and openness in computational models to reduce uncertainties. Harmonisation of methods could help bridge regulatory gaps and streamline safety assessments but should remain flexible enough to allow innovation and technological advancements. Continued scientific collaboration and public engagement are critical for long-term microbiome monitoring, which is essential to advancing safety assessments of microbiome perturbations.
Collapse
Affiliation(s)
- Aline Metris
- Unilever, Safety, Environmental and Regulatory Sciences (SERS), Sharnbrook, UK
| | - Alan W Walker
- Microbiome, Food Innovation and Food Security Theme, Rowett Institute, University of Aberdeen, Aberdeen, UK
| | | | | | - Andrew J McBain
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Antonis Ampatzoglou
- Unilever, Safety, Environmental and Regulatory Sciences (SERS), Sharnbrook, UK
| | - Barry Murphy
- Unilever R&D Port Sunlight, Bebington, Wirral, UK
| | - Catherine O'Neill
- Division of Dermatology and Musculoskeletal Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | | | - Elizabeth M Darby
- Department of Microbes, Infection and Microbiomes, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | | | - Greg G Hillebrand
- University of Cincinnati, James L. Winkle College of Pharmacy, Cincinnati, OH, USA
| | - Helen L Brown
- School of Biosciences, Sir Martin Evans Building, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Hilary P Browne
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College, Cork, Ireland
| | | | - Joy Leng
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Leo Lahti
- Department of Computing, University of Turku, Turku FI-20014, Finland
| | - Nicholas S Jakubovics
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | | | - Robert D Finn
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Silvia Klamert
- Unilever, Safety, Environmental and Regulatory Sciences (SERS), Sharnbrook, UK
| | - Tamas Korcsmaros
- Food, Microbiomes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Division of Digestive Diseases, Imperial College London, London, UK
- NIHR Imperial BRC Organoid Facility, Imperial College London, London, UK
| | - Lindsay J Hall
- Food, Microbiomes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Department of Microbes, Infection and Microbiomes, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| |
Collapse
|
29
|
Vorapreechapanich A, Thammahong A, Chatsuwan T, Edwards SW, Kumtornrut C, Chantawarangul K, Chatproedprai S, Wananukul S, Chiewchengchol D. Perturbations in the skin microbiome of infantile and adult seborrheic dermatitis and new treatment options based on restoring a healthy skin microbiome. Int J Dermatol 2025; 64:809-818. [PMID: 39526559 DOI: 10.1111/ijd.17568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/10/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Seborrheic dermatitis (SD) is a common, multifaceted skin condition, but its undefined etiology hampers the development of effective therapeutic strategies. In this review, we describe the intricate relationship between the skin microbiome and the pathogenesis of SD, focusing on the complex interplay between three major groups of organisms that can either induce inflammation (Malassezia spp., Staphylococcus aureus) or else promote healthy skin (Propionibacterium spp.). We describe how the disequilibrium of these microorganisms in the skin microbiome can develop skin inflammation in SD patients. Understanding these complex interactions of the skin microbiome has led to development of novel probiotics (e.g., Vitreoscilla spp. and Lactobacillus spp.) to restore normal skin physiology in SD. There are also differences in the skin microbiomes of healthy and SD infant and adult patients that impact pathogenesis and prompt different management strategies. A deeper understanding of the skin microbiome and its dynamic interactions will provide valuable insights into the pathogenesis of SD and prompt further development of targeted probiotic treatments to restore the balance of the skin microbiome in SD patients.
Collapse
Affiliation(s)
- Akira Vorapreechapanich
- Center of Excellence in Immunology and Immune-Mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Arsa Thammahong
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Steven W Edwards
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Chanat Kumtornrut
- Division of Dermatology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
| | - Karaked Chantawarangul
- Division of Pediatric Dermatology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Susheera Chatproedprai
- Division of Pediatric Dermatology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Siriwan Wananukul
- Division of Pediatric Dermatology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Direkrit Chiewchengchol
- Center of Excellence in Immunology and Immune-Mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
30
|
Kim Y, Worby CJ, Acharya S, van Dijk LR, Alfonsetti D, Gromko Z, Azimzadeh PN, Dodson KW, Gerber GK, Hultgren SJ, Earl AM, Berger B, Gibson TE. Longitudinal profiling of low-abundance strains in microbiomes with ChronoStrain. Nat Microbiol 2025; 10:1184-1197. [PMID: 40328944 DOI: 10.1038/s41564-025-01983-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/13/2025] [Indexed: 05/08/2025]
Abstract
The ability to detect and quantify microbiota over time from shotgun metagenomic data has a plethora of clinical, basic science and public health applications. Given these applications, and the observation that pathogens and other taxa of interest can reside at low relative abundance, there is a critical need for algorithms that accurately profile low-abundance microbial taxa with strain-level resolution. Here we present ChronoStrain: a sequence quality- and time-aware Bayesian model for profiling strains in longitudinal samples. ChronoStrain explicitly models the presence or absence of each strain and produces a probability distribution over abundance trajectories for each strain. Using synthetic and semi-synthetic data, we demonstrate how ChronoStrain outperforms existing methods in abundance estimation and presence/absence prediction. Applying ChronoStrain to two human microbiome datasets demonstrated its improved interpretability for profiling Escherichia coli strain blooms in longitudinal faecal samples from adult women with recurring urinary tract infections, and its improved accuracy for detecting Enterococcus faecalis strains in infant faecal samples. Compared with state-of-the-art methods, ChronoStrain's ability to detect low-abundance taxa is particularly stark.
Collapse
Affiliation(s)
- Younhun Kim
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Colin J Worby
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sawal Acharya
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Lucas R van Dijk
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Delft Bioinformatics Lab, Delft University of Technology, Delft, the Netherlands
| | - Daniel Alfonsetti
- Computer Science and AI Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zackary Gromko
- Computer Science and AI Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Philippe N Azimzadeh
- Department of Molecular Microbiology and Center for Women's Infectious Disease Research, Washington University School of Medicine, St Louis, MO, USA
| | - Karen W Dodson
- Department of Molecular Microbiology and Center for Women's Infectious Disease Research, Washington University School of Medicine, St Louis, MO, USA
| | - Georg K Gerber
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Harvard-MIT Health Sciences and Technology, Cambridge, MA, USA
| | - Scott J Hultgren
- Department of Molecular Microbiology and Center for Women's Infectious Disease Research, Washington University School of Medicine, St Louis, MO, USA
| | - Ashlee M Earl
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bonnie Berger
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Computer Science and AI Lab, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Harvard-MIT Health Sciences and Technology, Cambridge, MA, USA.
| | - Travis E Gibson
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Computer Science and AI Lab, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
31
|
Husain N, Kumar A, Anbazhagan AN, Gill RK, Dudeja PK. Intestinal luminal anion transporters and their interplay with gut microbiome and inflammation. Am J Physiol Cell Physiol 2025; 328:C1455-C1472. [PMID: 40047092 PMCID: PMC12023768 DOI: 10.1152/ajpcell.00026.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/29/2025] [Accepted: 02/28/2025] [Indexed: 04/16/2025]
Abstract
The intestine, as a critical interface between the external environment and the internal body, plays a central role in nutrient absorption, immune regulation, and maintaining homeostasis. The intestinal epithelium, composed of specialized epithelial cells, harbors apical anion transporters that primarily mediate the transport of chloride and bicarbonate ions, essential for maintaining electrolyte balance, pH homeostasis, and fluid absorption/secretion. In addition, the intestine hosts a diverse population of gut microbiota that plays a pivotal role in various physiological processes including nutrient metabolism, immune regulation, and maintenance of intestinal barrier integrity, all of which are critical for host gut homeostasis and health. The anion transporters and gut microbiome are intricately interconnected, where alterations in one can trigger changes in the other, leading to compromised barrier integrity and increasing susceptibility to pathophysiological states including gut inflammation. This review focuses on the interplay of key apical anion transporters including Down-Regulated in Adenoma (DRA, SLC26A3), Putative Anion Transporter-1 (PAT1, SLC26A6), and Cystic Fibrosis Transmembrane Conductance Regulator [CFTR, ATP-binding cassette subfamily C member 7 (ABCC7)] with the gut microbiome, barrier integrity, and their relationship to gut inflammation.
Collapse
Affiliation(s)
- Nazim Husain
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, IL, USA
| | - Anoop Kumar
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, IL, USA
- Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Arivarasu N. Anbazhagan
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, IL, USA
| | - Ravinder K Gill
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, IL, USA
- Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Pradeep. K. Dudeja
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, IL, USA
- Jesse Brown VA Medical Center, Chicago, IL, USA
| |
Collapse
|
32
|
Zheng Y, Ke J, Song J, Li X, Kuang R, Wang H, Li S, Li Y. Correlation between daily physical activity and intestinal microbiota in perimenopausal women. SPORTS MEDICINE AND HEALTH SCIENCE 2025; 7:230-236. [PMID: 39991125 PMCID: PMC11846433 DOI: 10.1016/j.smhs.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/04/2024] [Accepted: 02/21/2024] [Indexed: 02/25/2025] Open
Abstract
This study aimed to examine the correlation between daily physical activity levels and gut microbiota during the perimenopausal period. To explore the physiopathological traits of perimenopause women, and provide a theoretical basis for the development of menopause exercise intervention program. In this study, daily physical activity was assessed using the ActiGraph wGT3X-BT wearable sensor, and 16S rRNA sequencing was employed to analyze gut microbiota diversity and composition. Comparative analysis was conducted to evaluate the association between physical activity and specific phyla and genera in the gut microbiota, comparing perimenopausal women to youth women. The results showed perimenopausal women exhibited significantly lower levels of daily physical activity, including Kcals, metabolic equivalents (METs), and moderate-to-vigorous physical activity (MVPA), compared to youth women. The composition of the gut microbiota was markedly different between the two groups. Specifically, the abundance of Acidobacteria, Chloroflexi, Nitrospirae, and Gemmatimonadetes were lower at the phylum level (p < 0.01). Collinsella, Ruminococcus gnavus, Rothia, Haemophilus, Sphingomonas, Lactobacillales, and Lactococcus were lower at the genus level, while Phascolarctobacterium, Paraprevotella, Acinetobacter, Flavonifractor, and Intestinimonas exhibited a significant increase (p < 0.05, p < 0.01). Furthermore, a positive correlation was observed between Chloroflexi or Sphingomonas and physical activity (kcals, METs, and MVPA), while a negative correlation was found between Intestinimonas and physical activity (METs: p < 0.01, and MVPA: p < 0.05). Doubtlessly, the perimenopausal period is associated with lower levels of physical activity and distinct changes in gut microbiota. Sphingomonas may serve as a sensitive bacterium closely linked to physical activity.
Collapse
Affiliation(s)
- Yanqiu Zheng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Junyu Ke
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - JinBin Song
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xuyu Li
- School of Physical Education, Guangzhou University, Guangzhou, 510006, China
| | - Rongman Kuang
- School of Physical Education, Guangzhou University, Guangzhou, 510006, China
| | - Haiyan Wang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Shuang Li
- School of Physical Education, Guangzhou University, Guangzhou, 510006, China
| | - Yanwu Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| |
Collapse
|
33
|
Dou S, Ma G, Liang Y, Shen J, Zhao G, Fu G, Fu L, Cong B, Li S. Construction of the time since deposition (TsD) model in saliva stains with 16S rRNA full-length sequencing technology and microbial markers. Int J Legal Med 2025; 139:1019-1030. [PMID: 39676105 DOI: 10.1007/s00414-024-03383-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 11/20/2024] [Indexed: 12/17/2024]
Abstract
Determining the time since deposition (TsD) and sex of saliva stains is crucial for revealing the time of the crime's occurrence and clarifying the nature of the crime. This process not only shortens the time required to solve the case but also helps narrow down the scope of investigation, thereby enhancing the efficiency of case resolution. Currently, the forensic study of the microbial composition in long-term saliva stains remains a relatively underexplored field. The purpose of this study was to explore the succession pattern of long-placed human saliva stains microbial communities and identify relevant microbial markers for estimating TsD and identifying the sex of the donor, in order to be an effective alternative tool for solving practical forensic cases. Therefore, in this study, saliva stains exposed to indoor environmental conditions for up to 140 days were collected and 16S rRNA full-length sequencing was performed using single-molecule real-time sequencing technology based on the PacBio sequencing platform. The study reveals that after 140 days of placement, the relative abundance of Firmicutes significantly decreased (p = 0.00304). At the genus level, the relative abundances of Streptococcus (p = 0.0008), Rothia (p = 0.0448), Gemella (p = 0.016), and Veillonella (p = 0.0208) also significantly decreased. Additionally, significant differences were found in the microbial communities between saliva stains from males and females (p = 0.00013). Then, we constructed a TsD estimating model for microbial community markers based on random forest, and the results showed that the mean absolute error was 9.59 days, and the accuracy of sex classification model based on stepwise logistic regression model and 4 bacterial markers was 84.21%. This indicates that saliva stains that have been in place for a long time still retain significant forensic value, and microbial markers can be used to determine the time since deposition (TsD) of dried saliva stains as well as to identify the sex of the donor.
Collapse
Affiliation(s)
- Shujie Dou
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Hebei Medical University, Chinese Academy of Medical Sciences, No. 361 Zhongshan Road, Shijiazhuang, 050017, Hebei, China
| | - Guanju Ma
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Hebei Medical University, Chinese Academy of Medical Sciences, No. 361 Zhongshan Road, Shijiazhuang, 050017, Hebei, China
| | - Yu Liang
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Hebei Medical University, Chinese Academy of Medical Sciences, No. 361 Zhongshan Road, Shijiazhuang, 050017, Hebei, China
| | - Jie Shen
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Hebei Medical University, Chinese Academy of Medical Sciences, No. 361 Zhongshan Road, Shijiazhuang, 050017, Hebei, China
| | - Guangzhong Zhao
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Hebei Medical University, Chinese Academy of Medical Sciences, No. 361 Zhongshan Road, Shijiazhuang, 050017, Hebei, China
| | - Guangping Fu
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Hebei Medical University, Chinese Academy of Medical Sciences, No. 361 Zhongshan Road, Shijiazhuang, 050017, Hebei, China
| | - Lihong Fu
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Hebei Medical University, Chinese Academy of Medical Sciences, No. 361 Zhongshan Road, Shijiazhuang, 050017, Hebei, China
| | - Bin Cong
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Hebei Medical University, Chinese Academy of Medical Sciences, No. 361 Zhongshan Road, Shijiazhuang, 050017, Hebei, China
- Hainan Tropical Forensic Medicine Academician Workstation, Haikou, China
| | - Shujin Li
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Hebei Medical University, Chinese Academy of Medical Sciences, No. 361 Zhongshan Road, Shijiazhuang, 050017, Hebei, China.
| |
Collapse
|
34
|
Li Q, Zhang Y, Wang X, Dai L, Zhao W. Gut microbiota of patients with post-stroke depression in Chinese population: a systematic review and meta-analysis. Front Cell Infect Microbiol 2025; 15:1444793. [PMID: 40375894 PMCID: PMC12078233 DOI: 10.3389/fcimb.2025.1444793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 03/17/2025] [Indexed: 05/18/2025] Open
Abstract
Background Evidence of changes in the composition and function of the gut microbiota (GM) in post-stroke depression (PSD) patients is gradually accumulating. This study aimed to systematically evaluate the relationship between PSD and GM. Methods We searched in PubMed, Web of Science, Embase, Cochrane databases, Wangfang, VIP, CBM, and CNKI from the establishment of the database to April 17, 2024, and systematic review and meta-analysis were performed to investigate the differences of GM between patients with PSD spectrum and healthy controls (HC) or stroke spectrum. Result There were 14 studies consisting a total of 1,556 individuals included in the meta-analysis. The pooled results showed that PSD spectrum demonstrated significantly increased α diversity as indexed by Chao1 index, ACE indexes, Shannon index, and Simpson index as compared to HC. Additionally, stroke spectrum significantly increased α diversity as indexed by Simpson index compared to PSD. Furthermore, the pooled estimation of relative abundance showed that Bacteroidota, Fusobacteriota, and Pseudomonadota in PSD patients were significantly higher than those in the HC group, while the abundance of Bacillota was higher in the HC group. Moreover, significant differences in GM were observed between PSD patients and HC at the family and genus levels. Conclusion This study found that the α diversity of PSD patients was higher than that of HC. Moreover, there were also differences in the distribution of GM at the phylum, family, and genus levels, respectively. At the same time, the level of Lachnospira in PSD patients was lower than that in the stroke group. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42024582708.
Collapse
Affiliation(s)
- Qiaoling Li
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Yuejuan Zhang
- Department of Nursing, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xiaoqian Wang
- Department of Nursing, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Lin Dai
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Wenli Zhao
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
35
|
Dai R, Zhang J, Liu F, Xu H, Qian JM, Cheskis S, Liu W, Wang B, Zhu H, Pronk LJU, Medema MH, de Jonge R, Pieterse CMJ, Levy A, Schlaeppi K, Bai Y. Crop root bacterial and viral genomes reveal unexplored species and microbiome patterns. Cell 2025; 188:2521-2539.e22. [PMID: 40081368 DOI: 10.1016/j.cell.2025.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 11/14/2024] [Accepted: 02/16/2025] [Indexed: 03/16/2025]
Abstract
Reference genomes of root microbes are essential for metagenomic analyses and mechanistic studies of crop root microbiomes. By combining high-throughput bacterial cultivation with metagenomic sequencing, we constructed comprehensive bacterial and viral genome collections from the roots of wheat, rice, maize, and Medicago. The crop root bacterial genome collection (CRBC) significantly expands the quantity and phylogenetic diversity of publicly available crop root bacterial genomes, with 6,699 bacterial genomes (68.9% from isolates) and 1,817 undefined species, expanding crop root bacterial diversity by 290.6%. The crop root viral genome collection (CRVC) contains 9,736 non-redundant viral genomes, with 1,572 previously unreported genus-level clusters in crop root microbiomes. From these, we identified conserved bacterial functions enriched in root microbiomes across soils and host species and uncovered previously unexplored bacteria-virus connections in crop root ecosystems. Together, the CRBC and CRVC serve as valuable resources for investigating microbial mechanisms and applications, supporting sustainable agriculture.
Collapse
Affiliation(s)
- Rui Dai
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Peking-Tsinghua Center for Life Sciences, State Key Laboratory of Gene Function and Modulation Research, Peking-Tsinghua-NIBS Graduate Program, School of Life Sciences, Peking University, Beijing 100871, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Jingying Zhang
- Peking-Tsinghua Center for Life Sciences, State Key Laboratory of Gene Function and Modulation Research, Peking-Tsinghua-NIBS Graduate Program, School of Life Sciences, Peking University, Beijing 100871, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fang Liu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Haoran Xu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Jing-Mei Qian
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Shani Cheskis
- Department of Plant Pathology and Microbiology, Institute of Environmental Science, The Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Weidong Liu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Binglei Wang
- Peking-Tsinghua Center for Life Sciences, State Key Laboratory of Gene Function and Modulation Research, Peking-Tsinghua-NIBS Graduate Program, School of Life Sciences, Peking University, Beijing 100871, China
| | - Honghui Zhu
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Lotte J U Pronk
- Bioinformatics Group, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Ronnie de Jonge
- Plant-Microbe Interactions, Department of Biology, Science for Life, Utrecht University, 3584 CH Utrecht, the Netherlands; AI Technology for Life, Department of Information and Computing Sciences, Science for Life, Utrecht University, 3584 CC Utrecht, the Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Science for Life, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Asaf Levy
- Department of Plant Pathology and Microbiology, Institute of Environmental Science, The Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Klaus Schlaeppi
- Department of Environmental Sciences, University of Basel, Basel 4056, Switzerland
| | - Yang Bai
- Peking-Tsinghua Center for Life Sciences, State Key Laboratory of Gene Function and Modulation Research, Peking-Tsinghua-NIBS Graduate Program, School of Life Sciences, Peking University, Beijing 100871, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
36
|
Cole LD, Kuhn KA. It Takes a Village: Juvenile Idiopathic Arthritis and the Microbiome. Rheum Dis Clin North Am 2025; 51:233-282. [PMID: 40246440 DOI: 10.1016/j.rdc.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Multiple risk factors for juvenile idiopathic arthritis (JIA) influence the microbiome, and various differences in the oral and fecal microbiome have been described to date in JIA. This review summarizes what is known and discusses potential implications for future research on the microbiome in JIA.
Collapse
Affiliation(s)
- Lyndsey D Cole
- Sections of Rheumatology & Infectious Diseases, Department of Pediatrics, University of Colorado Anschutz Medical Campus, 13123 East 16th Avenue, B311, Aurora, CO 80045, USA.
| | - Kristine A Kuhn
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
37
|
Rizzuto V, Settino M, Stroffolini G, Covello G, Vanags J, Naccarato M, Montanari R, de Lossada CR, Mazzotta C, Forestiero A, Adornetto C, Rechichi M, Ricca F, Greco G, Laganovska G, Borroni D. Ocular surface microbiome: Influences of physiological, environmental, and lifestyle factors. Comput Biol Med 2025; 190:110046. [PMID: 40174504 DOI: 10.1016/j.compbiomed.2025.110046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 01/22/2025] [Accepted: 03/16/2025] [Indexed: 04/04/2025]
Abstract
PURPOSE The ocular surface (OS) microbiome is influenced by various factors and impacts on ocular health. Understanding its composition and dynamics is crucial for developing targeted interventions for ocular diseases. This study aims to identify host variables, including physiological, environmental, and lifestyle (PEL) factors, that influence the ocular microbiome composition and establish valid associations between the ocular microbiome and health outcomes. METHODS The 16S rRNA gene sequencing was performed on OS samples collected from 135 healthy individuals using eSwab. DNA was extracted, libraries prepared, and PCR products purified and analyzed. PEL confounding factors were identified, and a cross-validation strategy using various bioinformatics methods including Machine learning was used to identify features that classify microbial profiles. RESULTS Nationality, allergy, sport practice, and eyeglasses usage are significant PEL confounding factors influencing the eye microbiome. Alpha-diversity analysis revealed significant differences between Spanish and Italian subjects (p-value < 0.001), with a median Shannon index of 1.05 for Spanish subjects and 0.59 for Italian subjects. Additionally, 8 microbial genera were significantly associated with eyeglass usage. Beta-diversity analysis indicated significant differences in microbial community composition based on nationality, age, sport, and eyeglasses usage. Differential abundance analysis identified several microbial genera associated with these PEL factors. The Support Vector Machine (SVM) model for Nationality achieved an accuracy of 100%, with an AUC-ROC score of 1.0, indicating excellent performance in classifying microbial profiles. CONCLUSION This study underscores the importance of considering PEL factors when studying the ocular microbiome. Our findings highlight the complex interplay between environmental, lifestyle, and demographic factors in shaping the OS microbiome. Future research should further explore these interactions to develop personalized approaches for managing ocular health.
Collapse
Affiliation(s)
- Vincenzo Rizzuto
- Clinic of Ophthalmology, P. Stradins Clinical University Hospital, Riga, Latvia; School of Advanced Studies, Center for Neuroscience, University of Camerino, Camerino, Italy; Latvian American Eye Center (LAAC), Riga, Latvia
| | - Marzia Settino
- Department of Mathematics and Computer Science, University of Calabria, Rende, Italy; Institute of High Performance Computing and Networks-National Research Council (ICAR-CNR), Rende, Italy.
| | - Giacomo Stroffolini
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy
| | - Giuseppe Covello
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Juris Vanags
- Department of Ophthalmology, Riga Stradins University, Riga, Latvia; Clinic of Ophthalmology, P. Stradins Clinical University Hospital, Riga, Latvia
| | - Marta Naccarato
- Clinic of Ophthalmology, P. Stradins Clinical University Hospital, Riga, Latvia; Iris Medical Center, Cosenza, Italy
| | - Roberto Montanari
- Pharmacology Institute, Heidelberg University Hospital, Heidelberg, Germany
| | - Carlos Rocha de Lossada
- Eyemetagenomics Ltd., London, United Kingdom; Ophthalmology Department, QVision, Almeria, Spain; Ophthalmology Department, Hospital Regional Universitario of Malaga, Malaga, Spain; Department of Surgery, Ophthalmology Area, University of Seville, Seville, Spain
| | - Cosimo Mazzotta
- Siena Crosslinking Center, Siena, Italy; Departmental Ophthalmology Unit, USL Toscana Sud Est, Siena, Italy; Postgraduate Ophthalmology School, University of Siena, Siena, Italy
| | - Agostino Forestiero
- Institute of High Performance Computing and Networks-National Research Council (ICAR-CNR), Rende, Italy
| | | | | | - Francesco Ricca
- Department of Mathematics and Computer Science, University of Calabria, Rende, Italy
| | - Gianluigi Greco
- Department of Mathematics and Computer Science, University of Calabria, Rende, Italy
| | - Guna Laganovska
- Department of Ophthalmology, Riga Stradins University, Riga, Latvia; Clinic of Ophthalmology, P. Stradins Clinical University Hospital, Riga, Latvia
| | - Davide Borroni
- Department of Ophthalmology, Riga Stradins University, Riga, Latvia; Eyemetagenomics Ltd., London, United Kingdom; Centro Oculistico Borroni, Gallarate, Italy
| |
Collapse
|
38
|
BharathwajChetty B, Kumar A, Deevi P, Abbas M, Alqahtani A, Liang L, Sethi G, Liu L, Kunnumakkara AB. Gut microbiota and their influence in brain cancer milieu. J Neuroinflammation 2025; 22:129. [PMID: 40312370 PMCID: PMC12046817 DOI: 10.1186/s12974-025-03434-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 04/01/2025] [Indexed: 05/03/2025] Open
Abstract
Microbial communities are not simply remnants of the past but dynamic entities that continuously evolve under the selective pressures of nature, reflecting the intricate and adaptive processes of evolution. The microbiota residing in the various regions of the human body has numerous roles in different physiological processes such as nutrition, metabolism, immune regulation, etc. In the zeal of achieving empirical insights into the ambit of the gut microbiome, the research over the years led to the revelation of reciprocal interaction between the gut microbiome and the cognitive functioning of the human body. Dysbiosis in the gut microbial composition disturbs the homeostatic cognitive functioning of the human body. This dysbiosis has been associated with various chronic diseases, including brain cancer, such as glioma, glioblastoma, etc. This review explores the mechanistic role of dysbiosis-mediated progression of brain cancers and their subtypes. Moreover, it demonstrates the regulatory role of microbial metabolites produced by the gut microbiota, such as short-chain fatty acids, amino acids, lipids, etc., in the tumour progression. Further, we also provide valuable insights into the microbiota mediating the efficiency of therapeutic regimens, thereby leveraging gut microbiota as potential biomarkers and targets for improved treatment outcomes.
Collapse
Affiliation(s)
- Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Pranav Deevi
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
- International Joint M. Tech Degree in Food Science and Technology, Department of Chemical Engineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - Athba Alqahtani
- Research Centre, King Fahad Medical City, Riyadh, 11525, Saudi Arabia
| | - Liping Liang
- Guangzhou Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
- NUS Centre for Cancer Research, Yong Loo Lin Scool of Medicine, National University of Singapore, Singapore, 117699, Singapore.
| | - Le Liu
- Integrated Clinical Microecology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China.
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
- International Joint M. Tech Degree in Food Science and Technology, Department of Chemical Engineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
39
|
Yu S, Huang F, Huang Y, Yan F, Li Y, Xu S, Zhao Y, Zhang X, Chen R, Chen X, Zhang P. Deciphering the influence of gut and oral microbiomes on menopause for healthy aging. J Genet Genomics 2025; 52:601-614. [PMID: 39577767 DOI: 10.1016/j.jgg.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
Menopause is characterized by the cessation of menstruation and a decline in reproductive function, which is an intrinsic component of the aging process. However, it has been a frequently overlooked field of women's health. The oral and gut microbiota, constituting the largest ecosystem within the human body, are important for maintaining human health and notably contribute to the healthy aging of menopausal women. Therefore, a comprehensive review elucidating the impact of the gut and oral microbiota on menopause for healthy aging is of paramount importance. This paper presents the current understanding of the microbiome during menopause, with a particular focus on alterations in the oral and gut microbiota. Our study elucidates the complex interplay between the microbiome and sex hormone levels, explores microbial crosstalk dynamics, and investigates the associations between the microbiome and diseases linked to menopause. Additionally, this review explores the potential of microbiome-targeting therapies for managing menopause-related diseases. Given that menopause can last for approximately 30 years, gaining insights into how the microbiome and menopause interact could pave the way for innovative interventions, which may result in symptomatic relief from menopause and an increase in quality of life in women.
Collapse
Affiliation(s)
- Shuting Yu
- Department of Otolaryngology-Head and Neck Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Feiling Huang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing 100730, China
| | - Yixuan Huang
- Beijing ClouDNA Technology Co., Ltd., Beijing 101407, China
| | - Fangxu Yan
- Department of Otolaryngology-Head and Neck Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yi Li
- Hunan Agriculture University, Changsha, Hunan 410128, China
| | - Shenglong Xu
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Yan Zhao
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Xinlei Zhang
- Beijing ClouDNA Technology Co., Ltd., Beijing 101407, China
| | - Rong Chen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing 100730, China.
| | - Xingming Chen
- Department of Otolaryngology-Head and Neck Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Peng Zhang
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Rare Disease Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China.
| |
Collapse
|
40
|
Zheng CM, Kang HW, Moon S, Byun YJ, Kim WT, Choi YH, Moon SK, Piao XM, Yun SJ. Optimizing extraction of microbial DNA from urine: Advancing urinary microbiome research in bladder cancer. Investig Clin Urol 2025; 66:272-280. [PMID: 40312907 PMCID: PMC12058534 DOI: 10.4111/icu.20240454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/06/2025] [Accepted: 03/17/2025] [Indexed: 05/03/2025] Open
Abstract
PURPOSE This study aimed to evaluate and optimize microbial DNA extraction methods from urine, a non-invasive sample source, to enhance DNA quality, purity, and reliability for urinary microbiome research and biomarker discovery in bladder cancer. MATERIALS AND METHODS A total of 302 individuals (258 with genitourinary cancers and 44 with benign urologic diseases) participated in this study. Urine samples were collected via sterile catheterization, resulting in 445 vials for microbial analysis. DNA extraction was performed using three protocols: the standard protocol (SP), water dilution protocol (WDP), and chelation-assisted protocol (CAP). DNA quality (concentration, purity, and contamination levels) was assessed using NanoDrop spectrophotometry. Microbial analysis was conducted on 138 samples (108 cancerous and 30 benign) using 16S rRNA sequencing. Prior to sequencing on the Illumina MiSeq platform, Victor 3 fluorometry was used for validation. RESULTS WDP outperformed other methods, achieving significantly higher 260/280 and 260/230 ratios, indicating superior DNA purity and reduced contamination, while maintaining reliable DNA yields. CAP was excluded due to poor performance across all metrics. Microbial abundance was significantly higher in WDP-extracted samples (p<0.0001), whereas SP demonstrated higher alpha diversity indices (p<0.01), likely due to improved detection of low-abundance taxa. Beta diversity analysis showed no significant compositional differences between SP and WDP (p=1.0), supporting the reliability of WDP for microbiome research. CONCLUSIONS WDP is a highly effective and reliable method for microbial DNA extraction from urine, ensuring high-quality and reproducible results. Future research should address sample variability and crystal precipitation to further refine microbiome-based diagnostics and therapeutics.
Collapse
Affiliation(s)
- Chuang-Ming Zheng
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China
| | - Ho Won Kang
- Department of Urology, Chungbuk National University College of Medicine, Cheongju, Korea
- Department of Urology, Chungbuk National University Hospital, Cheongju, Korea
| | - Seongmin Moon
- Department of Urology, Chungbuk National University Hospital, Cheongju, Korea
- Department of Convergence of Medical Science, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Young Joon Byun
- Department of Urology, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Won Tae Kim
- Department of Urology, Chungbuk National University College of Medicine, Cheongju, Korea
- Department of Urology, Chungbuk National University Hospital, Cheongju, Korea
| | - Yung Hyun Choi
- Department of Biochemistry, Dong-Eui University College of Oriental Medicine, Busan, Korea
| | - Sung-Kwon Moon
- Department of Food Science and Technology, Chung-Ang University, Anseong, Korea
| | - Xuan-Mei Piao
- Department of Urology, Chungbuk National University College of Medicine, Cheongju, Korea.
| | - Seok Joong Yun
- Department of Urology, Chungbuk National University College of Medicine, Cheongju, Korea
- Department of Urology, Chungbuk National University Hospital, Cheongju, Korea.
| |
Collapse
|
41
|
Liu M, Blattman SB, Takahashi M, Mandayam N, Jiang W, Oikonomou P, Tavazoie SF, Tavazoie S. Conserved genetic basis for microbial colonization of the gut. Cell 2025; 188:2505-2520.e22. [PMID: 40187346 PMCID: PMC12048274 DOI: 10.1016/j.cell.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/02/2024] [Accepted: 03/06/2025] [Indexed: 04/07/2025]
Abstract
Despite the fundamental importance of gut microbes, the genetic basis of their colonization remains largely unexplored. Here, by applying cross-species genotype-habitat association at the tree-of-life scale, we identify conserved microbial gene modules associated with gut colonization. Across thousands of species, we discovered 79 taxonomically diverse putative colonization factors organized into operonic and non-operonic modules. They include previously characterized colonization pathways such as autoinducer-2 biosynthesis and novel processes including tRNA modification and translation. In vivo functional validation revealed YigZ (IMPACT family) and tRNA hydroxylation protein-P (TrhP) are required for E. coli intestinal colonization. Overexpressing YigZ alone is sufficient to enhance colonization of the poorly colonizing MG1655 E. coli by >100-fold. Moreover, natural allelic variations in YigZ impact inter-strain colonization efficiency. Our findings highlight the power of large-scale comparative genomics in revealing the genetic basis of microbial adaptations. These broadly conserved colonization factors may prove critical for understanding gastrointestinal (GI) dysbiosis and developing therapeutics.
Collapse
Affiliation(s)
- Menghan Liu
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Sydney B Blattman
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Mai Takahashi
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY 10065, USA
| | - Nandan Mandayam
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY 10065, USA
| | - Wenyan Jiang
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Panos Oikonomou
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Sohail F Tavazoie
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY 10065, USA
| | - Saeed Tavazoie
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
42
|
Ahmad P, Moussa DG, Siqueira WL. Metabolomics for dental caries diagnosis: Past, present, and future. MASS SPECTROMETRY REVIEWS 2025; 44:454-490. [PMID: 38940512 DOI: 10.1002/mas.21896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/22/2024] [Accepted: 06/15/2024] [Indexed: 06/29/2024]
Abstract
Dental caries, a prevalent global infectious condition affecting over 95% of adults, remains elusive in its precise etiology. Addressing the complex dynamics of caries demands a thorough exploration of taxonomic, potential, active, and encoded functions within the oral ecosystem. Metabolomic profiling emerges as a crucial tool, offering immediate insights into microecosystem physiology and linking directly to the phenotype. Identified metabolites, indicative of caries status, play a pivotal role in unraveling the metabolic processes underlying the disease. Despite challenges in metabolite variability, the use of metabolomics, particularly via mass spectrometry and nuclear magnetic resonance spectroscopy, holds promise in caries research. This review comprehensively examines metabolomics in caries prevention, diagnosis, and treatment, highlighting distinct metabolite expression patterns and their associations with disease-related bacterial communities. Pioneering in approach, it integrates singular and combinatory metabolomics methodologies, diverse biofluids, and study designs, critically evaluating prior limitations while offering expert insights for future investigations. By synthesizing existing knowledge, this review significantly advances our comprehension of caries, providing a foundation for improved prevention and treatment strategies.
Collapse
Affiliation(s)
- Paras Ahmad
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Dina G Moussa
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Walter L Siqueira
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
43
|
Piłot M, Dzięgielewska-Gęsiak S, Walkiewicz KW, Bednarczyk M, Waniczek D, Muc-Wierzgoń M. Gut Microbiota and Metabolic Dysregulation in Elderly Diabetic Patients: Is There a Gender-Specific Effect. J Clin Med 2025; 14:3103. [PMID: 40364140 PMCID: PMC12073094 DOI: 10.3390/jcm14093103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/14/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Background/Objectives: The aim of this study was to qualitatively and quantitatively assess the bacterial domain of the gut microbiome in elderly patients with type 2 diabetes (T2D), with a focus on sex differences, glycemic control, and lipid disorders. Methods: This study included 60 older adults with T2D (38 women and 22 men) treated with metformin or a combination of metformin and insulin. The gut microbiota was profiled using 16S rRNA gene sequencing. Statistical analyses, including correlation analysis and multiple regression, were performed to identify the associations between microbial taxa, sex, and metabolic parameters. Results: No statistically significant differences in alpha or beta diversity were observed between the sexes. Multiple regression analysis indicated a positive relationship between Tenericutes and HbA1c in male participants (β = 2.22931, CI [0.75, 3.70], R = 0.67; R2 = 0.36; unadjusted p = 0.0052; adjusted p = 0.0496). In female participants, G0' (β = -2.24107, CI [-3.19, -1.30], R = 0.78; R2 = 0.58; unadjusted p = 0.00003; adjusted p = 0.0005) and HbA1c (β = -1.86670, CI [-2.61, -1.12], R = 0.78; R2 = 0.58; unadjusted p = 0.00001; adjusted p = 0.0003) correlated negatively with Verrucomicrobia as well G0' (β = -1.90427, CI [-2.95, -0.85], R = 0.46; R2 = 0.17; unadjusted p = 0.0008; adjusted p = 0.007) and HbA1c (β = -1.69561, CI [-2.52, -0.87], R = 0.46; R2 = 0.17; unadjusted p = 0.0002; adjusted p = 0.002) correlated negatively with OD1 bacteria, known as Parcubacteria. Conclusions: In this elderly population with type 2 diabetes, biological sex did not significantly affect the gut microbiota diversity. However, several exploratory associations between microbial taxa and metabolic parameters differed between men and women, suggesting that sex may influence specific aspects of microbiota-metabolism interactions. These preliminary findings underscore the importance of considering both age- and sex-related factors when investigating the gut microbiome in the context of type 2 diabetes.
Collapse
Affiliation(s)
- Magdalena Piłot
- Department of Internal Diseases Propaedeutics and Emergency Medicine, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, Piekarska 18, 44-902 Bytom, Poland; (M.P.); (S.D.-G.); (K.W.W.)
| | - Sylwia Dzięgielewska-Gęsiak
- Department of Internal Diseases Propaedeutics and Emergency Medicine, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, Piekarska 18, 44-902 Bytom, Poland; (M.P.); (S.D.-G.); (K.W.W.)
| | - Katarzyna Weronika Walkiewicz
- Department of Internal Diseases Propaedeutics and Emergency Medicine, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, Piekarska 18, 44-902 Bytom, Poland; (M.P.); (S.D.-G.); (K.W.W.)
| | - Martyna Bednarczyk
- Department of Cancer Prevention, Faculty of Public Health, Medical University of Silesia in Katowice, 40-752 Katowice, Poland;
| | - Dariusz Waniczek
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 41-808 Katowice, Poland;
| | - Małgorzata Muc-Wierzgoń
- Department of Internal Diseases Propaedeutics and Emergency Medicine, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, Piekarska 18, 44-902 Bytom, Poland; (M.P.); (S.D.-G.); (K.W.W.)
| |
Collapse
|
44
|
Andreu-Sánchez S, Blanco-Míguez A, Wang D, Golzato D, Manghi P, Heidrich V, Fackelmann G, Zhernakova DV, Kurilshikov A, Valles-Colomer M, Weersma RK, Zhernakova A, Fu J, Segata N. Global genetic diversity of human gut microbiome species is related to geographic location and host health. Cell 2025:S0092-8674(25)00416-7. [PMID: 40311618 DOI: 10.1016/j.cell.2025.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/23/2025] [Accepted: 04/07/2025] [Indexed: 05/03/2025]
Abstract
The human gut harbors thousands of microbial species, each exhibiting significant inter-individual genetic variability. Although many studies have associated microbial relative abundances with human-health-related phenotypes, the substantial intraspecies genetic variability of gut microbes has not yet been comprehensively considered, limiting the potential of linking such genetic traits with host conditions. Here, we analyzed 32,152 metagenomes from 94 microbiome studies across the globe to investigate the human microbiome intraspecies genetic diversity. We reconstructed 583 species-specific phylogenies and linked them to geographic information and species' horizontal transmissibility. We identified 484 microbial-strain-level associations with 241 host phenotypes, encompassing human anthropometric factors, biochemical measurements, diseases, and lifestyle. We observed a higher prevalence of a Ruminococcus gnavus clade in nonagenarians correlated with distinct plasma bile acid profiles and a melanoma and prostate-cancer-associated Collinsella clade. Our large-scale intraspecies genetic analysis highlights the relevance of strain diversity as it relates to human health.
Collapse
Affiliation(s)
- Sergio Andreu-Sánchez
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands; Department of Pediatrics, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | | | - Daoming Wang
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands; Department of Pediatrics, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Davide Golzato
- Department of CIBIO, University of Trento, Trento, Italy
| | - Paolo Manghi
- Department of CIBIO, University of Trento, Trento, Italy
| | - Vitor Heidrich
- Department of CIBIO, University of Trento, Trento, Italy
| | | | - Daria V Zhernakova
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Alexander Kurilshikov
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Mireia Valles-Colomer
- Department of CIBIO, University of Trento, Trento, Italy; MELIS Department, Universitat Pompeu Fabra, Barcelona, Spain
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Jingyuan Fu
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands; Department of Pediatrics, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands.
| | - Nicola Segata
- Department of CIBIO, University of Trento, Trento, Italy; IEO, Istituto Europeo di Oncologia IRCSS, Milan, Italy; Department of Twins Research and Genetic Epidemiology, King's College London, London, UK.
| |
Collapse
|
45
|
DeClercq V, Wright RJ, van Limbergen J, Langille MGI. Characterization of the salivary microbiome of adults with inflammatory bowel disease. J Oral Microbiol 2025; 17:2499923. [PMID: 40322049 PMCID: PMC12046613 DOI: 10.1080/20002297.2025.2499923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/10/2025] [Accepted: 04/22/2025] [Indexed: 05/08/2025] Open
Abstract
Background Perturbations of the gut microbiota in patients with inflammatory bowel disease (IBD) have been extensively characterised, but changes to the oral microbiome remain understudied. This study aimed to evaluate the oral microbiome of adults with IBD and of matched controls. Methods Saliva samples and data were obtained from a Canadian population cohort (n = 320). The salivary microbiome was characterised using 16S rRNA gene sequencing and examined for differences between control participants and those with IBD, as well as disease subcategories (Crohn's Disease and Ulcerative Colitis). Results Alpha diversity was significantly lower in participants with IBD than controls in unadjusted models and many remained significant after adjusting for covariates. Significant differences in some beta diversity metrics between participants with IBD and controls were found, although these did not remain significant when adjusted for covariates. Ten genera were significantly differentially abundant between cases and controls. Veillonella and Streptococcus were both increased in abundance in IBD cases vs controls (25% vs 22% and 14% vs 12%, respectively). Conclusion These results showcase changes in oral microbial diversity and composition in those living with IBD and highlight the potential of using the salivary microbiome as a biomarker for screening or monitoring IBD.
Collapse
Affiliation(s)
- Vanessa DeClercq
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Robyn J. Wright
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Johan van Limbergen
- Department of Paediatric Gastroenterology and Nutrition, Emma Children’s Hospital, Amsterdam UMC, Amsterdam, The Netherlands
| | | |
Collapse
|
46
|
Yao C, Zhang Y, You L, E J, Wang J. Comparative analysis of three experimental methods for revealing human fecal microbial diversity. BMC Microbiol 2025; 25:258. [PMID: 40301726 PMCID: PMC12039119 DOI: 10.1186/s12866-025-03985-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 04/22/2025] [Indexed: 05/01/2025] Open
Abstract
Due to the heterogeneity of the human gut environment, the gut microbiota is complex and diverse, and has been insufficiently explored. In this study, one fresh fecal sample was cultured using 12 commercial or modified media and incubation of culture plates anaerobically and aerobically, the conventional experienced colony picking (ECP) was first used to isolate the colonies and obtain pure culture strains. On this basis, all the colonies grown on the culture plates were collected for culture-enriched metagenomic sequencing (CEMS), and the original sample was also subjected to direct culture-independent metagenomic sequencing (CIMS), the study compared the effects of three methods for analyzing the microbiota contained in the sample. It was found that compared with CEMS, conventional ECP failed to detect a large proportion of strains grown in culture media, resulting in missed detection of culturable microorganisms in the gut. Microbes identified by CEMS and CIMS showed a low degree of overlap (18% of species), whereas species identified by CEMS and CIMS alone accounted for 36.5% and 45.5%, respectively. It suggests that both culture-dependent and culture-independent approaches are essential in revealing gut microbial diversity. Moreover, based on the CEMS results, growth rate index (GRiD) values for various strains on different media were calculated to predict the optimal medium for bacterial growth; this method can be used to design new media for intestinal microbial isolation, promote the recovery of specific microbiota, and obtain new insights into the human microbiome diversity. This is among the first studies on CEMS of the human gut microbiota.
Collapse
Affiliation(s)
- Caiqing Yao
- College of Food Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Yu Zhang
- College of Food Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Lijun You
- School of Food Science and Engineering, Bohai University, Liaoning, 121013, China
| | - Jingjing E
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, School of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Junguo Wang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, School of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China.
| |
Collapse
|
47
|
Wu M, Peng M, Zang J, Han S, Li P, Guo S, Maiorano G, Hu Q, Hou Y, Yi D. Phloretin supplementation ameliorates intestinal injury of broilers with necrotic enteritis by alleviating inflammation, enhancing antioxidant capacity, regulating intestinal microbiota, and producing plant secondary metabolites. Poult Sci 2025; 104:105187. [PMID: 40367711 DOI: 10.1016/j.psj.2025.105187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/13/2025] [Accepted: 04/18/2025] [Indexed: 05/16/2025] Open
Abstract
The present study aimed to explore the effects of dietary phloretin (PT) on growth performance, immune response, and intestinal function in broilers with necrotic enteritis (NE). A total of 288 1-day-old Arbor Acres chicks were assigned to 3 groups, with 8 replicates per group and 12 chicks per replicate. Over 6 weeks, birds were fed a basal diet or the same diet supplemented with 200 mg/kg phloretin. Birds in the challenged groups were inoculated with coccildia during d 7 to 9 and Clostridium perfringens(CP) during d 14 to 18. Results showed that CP and coccidia challenge reduced the average daily gain and average daily feed intake, increased the feed conversion ratio of broilers, induced inflammation and oxidative stress, and inhibited mRNA expression levels for genes associated with intestinal barrier and nutrient transporters (P < 0.05). PT addition to the feed improved growth performance at early phase improved intestinal morphology, and elevated antioxidant capacity via increasing the activity of total antioxidant capacity and superoxide dismutase in the ileum in broilers with necrotic enteritis (P < 0.01). Dietary PT regulated the intesetinal immune function as observed by the increases in the content of secretory IgA in the ileum and decreased cytokines (Interleukin-1β, Interleukin-10) (P < 0.05). Moreover, NE infection significantly disrupted the balance of intestinal flora, and led to a lower level of short-chain fatty acids such as butyric acid concentration in the ileum, while PT improved the microbiota structure, and increased the intestinal acetic acid and butyric acid concentration (P < 0.001). Furthermore, metabolomics analysis indicated PT treatment improve plant secondary metabolites contents like phloretin 2'-o-glucuronide. Additionally, we observed a significant positive correlation among PT, Ligilactobacillus and butyric acid, and a positive correlation between Ligilactobacillus and plant secondary metabolites. Overall, PT supplementation could improve growth performance and ameliorate intestinal injury in broilers with necrotic enteritis by enhancing the antioxidant capacity and immune function, regulating intestinal flora structure and producing plant secondary metabolites.
Collapse
Affiliation(s)
- Mengjun Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China; Engineering Research Center of Feed Protein Resources of Agricultural By-products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Meng Peng
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, 86100, Italy
| | - Jiajia Zang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China; Engineering Research Center of Feed Protein Resources of Agricultural By-products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shaochen Han
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China; Engineering Research Center of Feed Protein Resources of Agricultural By-products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Peng Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China; Engineering Research Center of Feed Protein Resources of Agricultural By-products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shuangshuang Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China; Engineering Research Center of Feed Protein Resources of Agricultural By-products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Giuseppe Maiorano
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, 86100, Italy
| | - Qunbing Hu
- Hubei Horwath Biotechnology Co., Ltd., Xianning 437099, China
| | - Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China; Engineering Research Center of Feed Protein Resources of Agricultural By-products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Dan Yi
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China; Engineering Research Center of Feed Protein Resources of Agricultural By-products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
48
|
Ma G, Yang P, Lu T, Deng X, Meng L, Xie H, Zhou J, Xiao X, Tang X. Comparative analysis of oral, placental, and gut microbiota characteristics, functional features and microbial networks in healthy pregnant women. J Reprod Immunol 2025; 169:104535. [PMID: 40315739 DOI: 10.1016/j.jri.2025.104535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/14/2025] [Accepted: 04/27/2025] [Indexed: 05/04/2025]
Abstract
AIM Most studies on pregnant women focus on analyzing individual microbial species at specific body sites. This study aims to explore the characteristics, functions, and microbial networks of the oral, placental, and gut microbiota in healthy pregnant women. METHODS A total of 23 healthy pregnant women were enrolled in this study. We analyzed the microbial composition, functional profiles, and microbial networks of the oral, placental, and gut microbiota using 16S rRNA gene sequencing. RESULTS Our findings revealed significant differences in microbial composition across these three sites. The placental microbiota contained a relatively high proportion of low-abundance microorganisms, which were more diverse and evenly distributed compared to the gut and oral microbiota. The microbial composition at each site displayed distinct characteristics, likely influenced by environmental, physiological, and biological factors. The placental microbiota exhibited a complex network of tightly interconnected genera, whereas the gut microbiota showed sparser connections, with fewer closely related genera compared to the placental and oral microbiota. Functional differences were also observed among the three microbiota, with each playing a unique role in maintaining host health and metabolic balance. While the oral and gut microbiota shared functional similarities, the placental microbiota exhibited distinct functional characteristics. CONCLUSIONS This study provides valuable insights into the microbial communities of healthy pregnant women, offering important data for microbiological research during pregnancy and laying the foundation for future investigations into the roles of these microbial communities in maternal health.
Collapse
Affiliation(s)
- Guangyu Ma
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ping Yang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong province, China
| | - Tong Lu
- Department of Otolaryngology, Shenzhen Long Hua District Central Hospital, Shenzhen, China
| | - Xinyi Deng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lulu Meng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Haishan Xie
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Juan Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaomin Xiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Xiaomei Tang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
49
|
Chen S, Dan L, Xiang L, He Q, Hu D, Gao Y. The role of gut flora-driven Th cell responses in preclinical rheumatoid arthritis. J Autoimmun 2025; 154:103426. [PMID: 40300482 DOI: 10.1016/j.jaut.2025.103426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/24/2025] [Accepted: 04/22/2025] [Indexed: 05/01/2025]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disorder with an immune pathogenesis that evolves over decades. Preclinical RA (PreRA) represents a dynamic immune phase preceding clinical RA, marked by the loss of autoimmune tolerance, the appearance of tissue-invasive effector T cells, and the production of autoantibodies (such as antibodies against citrullinated proteins and rheumatoid factors). Extensive research has demonstrated that gut microbiota influence mucosal T-cell responses, driving the progression of PreRA through multiple mechanisms, including altered intestinal permeability, gene-environment interactions, bacterial antigenic specificity, molecular mimicry, and metabolite production. Environmental risk factors such as smoking, hormonal changes, and high-sodium (Na) diets, may contribute to RA pathogenesis via the gut microbiome. The next challenge in RA research lies in developing therapeutic strategies to intervene during the asymptomatic autoimmune phase, where dietary adjustments, natural compounds, probiotics, and other approaches could effectively modulate gut flora to prevent or delay RA onset.
Collapse
Affiliation(s)
- Shuanglan Chen
- Department of Rheumatology and Immunology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Lijuan Dan
- Department of Infection, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Li Xiang
- Department of Rheumatology and Immunology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Qingman He
- Department of Rheumatology and Immunology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Dongsen Hu
- Sichuan Jinxin Xi'nan Women's and Children's Hospital Co., Ltd, Chengdu, 610023, China
| | - Yongxiang Gao
- Department of Rheumatology and Immunology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
50
|
Geertsema J, Juncker HG, Wilmes L, Burchell GL, de Rooij SR, van Goudoever JB, O'Riordan KJ, Clarke G, Cryan JF, Korosi A. Nutritional interventions to counteract the detrimental consequences of early-life stress. Mol Psychiatry 2025:10.1038/s41380-025-03020-1. [PMID: 40289212 DOI: 10.1038/s41380-025-03020-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 03/19/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025]
Abstract
Exposure to stress during sensitive developmental periods comes with long term consequences for neurobehavioral outcomes and increases vulnerability to psychopathology later in life. While we have advanced our understanding of the mechanisms underlying the programming effects of early-life stress (ES), these are not yet fully understood and often hard to target, making the development of effective interventions challenging. In recent years, we and others have suggested that nutrition might be instrumental in modulating and possibly combatting the ES-induced increased risk to psychopathologies and neurobehavioral impairments. Nutritional strategies are very promising as they might be relatively safe, cheap and easy to implement. Here, we set out to comprehensively review the existing literature on nutritional interventions aimed at counteracting the effects of ES on neurobehavioral outcomes in preclinical and clinical settings. We identified eighty six rodent and ten human studies investigating a nutritional intervention to ameliorate ES-induced impairments. The human evidence to date, is too few and heterogeneous in terms of interventions, thus not allowing hard conclusions, however the preclinical studies, despite their heterogeneity in terms of designs, interventions used, and outcomes measured, showed nutritional interventions to be promising in combatting ES-induced impairments. Furthermore, we discuss the possible mechanisms involved in the beneficial effects of nutrition on the brain after ES, including neuroinflammation, oxidative stress, hypothalamus-pituitary-adrenal axis regulation and the microbiome-gut-brain axis. Lastly, we highlight the critical gaps in our current knowledge and make recommendations for future research to move the field forward.
Collapse
Affiliation(s)
- Jorine Geertsema
- Brain Plasticity group, Centre for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Hannah G Juncker
- Brain Plasticity group, Centre for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children's Hospital, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
| | - Lars Wilmes
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - George L Burchell
- Medical Library, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Susanne R de Rooij
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Epidemiology and Data Science, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Public Health research institute, Aging and Later Life, Health Behaviors and Chronic Diseases, Amsterdam, The Netherlands
| | - J B van Goudoever
- Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children's Hospital, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
| | | | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Aniko Korosi
- Brain Plasticity group, Centre for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|