1
|
Fiste O, Mavrothalassitis E, Kokkalis A, Anagnostakis M, Gomatou G, Kontogiannis A, Karaviti D, Karaviti E, Syrigos NK, Kotsakis A, Kotteas EA. Inflammation-related biomarkers as predictors of pathological complete response in early-stage breast cancer. Clin Transl Oncol 2025; 27:2453-2460. [PMID: 39668275 DOI: 10.1007/s12094-024-03814-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 11/23/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND Neoadjuvant systemic therapy (NAT) represents an attractive option for improved outcomes of early-stage breast cancer (BC) patients, as it can significantly reduce tumor burden thus permitting breast-conserving resections. Equally important, the eradication of viable cancer cells post-NAT, also known as pathological complete response (pCR), has emerged as a strong prognostic biomarker, reflecting tumor's biology and subsequent treatment responses. Yet to date, no validated markers predictive of pCR have been identified. METHODS The present retrospective study aimed to explore the value of neutrophil-tolymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) as potential predictors of pCR. RESULTS Despite no statistically significant associations have been reported, NLR and PLR dynamics during NAT, as longitudinal inflammatory phenotypes, merit further investigation in larger cohorts. CONCLUSION In the future, the integration of a comprehensive inflammatory biomarker panel into clinical practice could assist in a priori treatment selection process.
Collapse
Affiliation(s)
- Oraianthi Fiste
- Oncology Unit, Third Department of Internal Medicine and Laboratory, National and Kapodistrian University of Athens, Sotiria General Hospital, 11527, Athens, Greece.
| | - Evangelos Mavrothalassitis
- Oncology Unit, Third Department of Internal Medicine and Laboratory, National and Kapodistrian University of Athens, Sotiria General Hospital, 11527, Athens, Greece
| | - Alexandros Kokkalis
- Department of Medical Oncology, University Hospital of Larissa, 41334, Larissa, Greece
| | - Maximilian Anagnostakis
- Oncology Unit, Third Department of Internal Medicine and Laboratory, National and Kapodistrian University of Athens, Sotiria General Hospital, 11527, Athens, Greece
| | - Georgia Gomatou
- Oncology Unit, Third Department of Internal Medicine and Laboratory, National and Kapodistrian University of Athens, Sotiria General Hospital, 11527, Athens, Greece
| | - Athanasios Kontogiannis
- Oncology Unit, Third Department of Internal Medicine and Laboratory, National and Kapodistrian University of Athens, Sotiria General Hospital, 11527, Athens, Greece
| | - Dimitra Karaviti
- Oncology Unit, Third Department of Internal Medicine and Laboratory, National and Kapodistrian University of Athens, Sotiria General Hospital, 11527, Athens, Greece
| | - Eleftheria Karaviti
- Oncology Unit, Third Department of Internal Medicine and Laboratory, National and Kapodistrian University of Athens, Sotiria General Hospital, 11527, Athens, Greece
| | - Nikolaos Konstantinos Syrigos
- Oncology Unit, Third Department of Internal Medicine and Laboratory, National and Kapodistrian University of Athens, Sotiria General Hospital, 11527, Athens, Greece
| | - Athanasios Kotsakis
- Department of Medical Oncology, University Hospital of Larissa, 41334, Larissa, Greece
| | - Elias Alexandros Kotteas
- Oncology Unit, Third Department of Internal Medicine and Laboratory, National and Kapodistrian University of Athens, Sotiria General Hospital, 11527, Athens, Greece
| |
Collapse
|
2
|
Hsu CY, Jasim SA, Rasool KH, H M, Kaur J, Jabir MS, Alhajlah S, Kumar A, Jawad SF, Husseen B. Divergent functions of TLRs in gastrointestinal (GI) cancer: Overview of their diagnostic, prognostic and therapeutic value. Semin Oncol 2025; 52:152344. [PMID: 40347779 DOI: 10.1016/j.seminoncol.2025.152344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/10/2025] [Accepted: 03/15/2025] [Indexed: 05/14/2025]
Abstract
The relationship between the innate immune signal and the start of the adaptive immune response is the central idea of this theory. By controlling the inflammatory and tissue-repair reactions to damage, the Toll-like receptors (TLRs), as a family of PRRs, have attracted increasing attention for its function in protecting the host against infection and preserving tissue homeostasis. Microbial infection, damage, inflammation, and tissue healing have all been linked to the development of malignancies, especially gastrointestinal (GI) cancers. Recently, increased studies on TLR recognition and binding, as well as their ligands, have significantly advanced our knowledge of the various TLR signaling pathways and offered therapy options for GI malignancies. Upon activation by pathogen-associated or damage-associated molecular patterns (DAMPs and PAMPs), TLRs trigger key pathways like NF-κB, MAPK, and IRF. NF-κB activation promotes inflammation, cell survival, and proliferation, often contributing to tumor growth, metastasis, and therapy resistance. MAPK pathways similarly drive uncontrolled cell growth and invasion, while IRF pathways modulate interferon production, yielding both anti-tumor and protumor effects. The resulting chronic inflammatory environment within tumors can foster progression, yet TLR activation can also stimulate beneficial anti-tumor immune responses. However, the functions of TLR expression in GI cancers and their diagnostic and prognostic along with therapeutic value have not yet entirely been elucidated. Understanding how TLR activation contributes to anti-cancer immunity against GI malignancies may hasten immunotherapy developments and increase patient survival.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, Arizona, USA
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-maarif University College, Anbar, Iraq; Biotechnology Department, College of Applied Science, Fallujah University, Fallujah, Iraq
| | - Khetam Habeeb Rasool
- Department of Biology, College of Science, University of Mustansiriyah, Mustansiriyah, Iraq
| | - Malathi H
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Jaswinder Kaur
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Mohali, Punjab, India
| | - Majid S Jabir
- Department of Applied Sciences, University of Technology, Anbar, Iraq
| | - Sharif Alhajlah
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia.
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin, Ekaterinburg, Russia; Centre for Research Impact & Outcome, Chitkara University, Rajpura, Punjab, India; Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - Sabrean F Jawad
- Department of Pharmacy, Al-Mustaqbal University College, Hillah, Babylon, Iraq
| | - Beneen Husseen
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq; Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
3
|
Izhar M, Lesniak MS. Role of Extracellular Vesicles in the Pathogenesis of Brain Metastasis. JOURNAL OF EXTRACELLULAR BIOLOGY 2025; 4:e70051. [PMID: 40330713 PMCID: PMC12053894 DOI: 10.1002/jex2.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 05/08/2025]
Abstract
Extracellular vesicles (EVs) are small particles released by various cells, including cancer cells. They play a significant role in the development of different cancers, including brain metastasis. These EVs transport biomolecular materials such as RNA, DNA, and proteins from tumour cells to other cells, facilitating the spread of primary tumours to the brain tissue. EVs interact with the endothelial cells of the blood-brain barrier (BBB), compromising its integrity and allowing metastatic cells to pass through easily. Additionally, EVs interact with various cells in the brain's microenvironment, creating a conducive environment for incoming metastatic cells. They also influence the immune system within this premetastatic environment, promoting the growth of metastatic cells. This review paper focuses on the research regarding the role of EVs in the development of brain metastasis, including their impact on disrupting the BBB, preparing the premetastatic environment, and modulating the immune system. Furthermore, the paper discusses the potential of EVs as diagnostic and prognostic biomarkers for brain metastasis.
Collapse
Affiliation(s)
- Muhammad Izhar
- Department of NeurosurgeryMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Maciej S. Lesniak
- Department of Neurological SurgeryLou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| |
Collapse
|
4
|
Randhawa G, Mobarakabadi M, D'Mello C, Morch MT, Zhang P, Ling CC, Yong VW, Ghorbani S. Targeting extracellular matrix components to attenuate microglia neuroinflammation: A study of fibulin-2 and CSPGs in a model of multiple sclerosis. J Neuroimmunol 2025; 400:578533. [PMID: 39864280 DOI: 10.1016/j.jneuroim.2025.578533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/28/2024] [Accepted: 01/20/2025] [Indexed: 01/28/2025]
Abstract
The extracellular matrix (ECM) plays an important role in the central nervous system (CNS), shaping tissue structure and functions as well as contributing to the pathology of chronic diseases such as multiple sclerosis (MS). ECM components, including fibulin-2 (FBLN2) and chondroitin sulfate proteoglycans (CSPGs), may impact neuroinflammation and remyelination. We investigated the capacity of FBLN2 to modulate immune responses and evaluated its interaction with CSPGs in experimental autoimmune encephalomyelitis (EAE), a common model for MS. We show that FBLN2 deficiency in EAE mice reduced microglial pro-inflammatory activity, while effects on monocyte-derived macrophages and border-associated macrophages were less pronounced. Targeting FBLN2 and CSPGs individually, using FBLN2-/- mice and the CSPG-synthesis inhibitor difluorosamine (DIF), respectively, enhanced recovery of disability and reduced neuroinflammation in EAE mice. However, their combined targeting did not result in additive therapeutic effects beyond either alone. This study underscores the complex regulatory roles of ECM components on neuroinflammation and provides insights into potential therapeutic strategies for neuroinflammatory diseases.
Collapse
MESH Headings
- Animals
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Mice
- Calcium-Binding Proteins/metabolism
- Calcium-Binding Proteins/deficiency
- Extracellular Matrix/metabolism
- Extracellular Matrix/drug effects
- Chondroitin Sulfate Proteoglycans/metabolism
- Chondroitin Sulfate Proteoglycans/antagonists & inhibitors
- Microglia/metabolism
- Microglia/drug effects
- Microglia/pathology
- Microglia/immunology
- Mice, Inbred C57BL
- Female
- Mice, Knockout
- Multiple Sclerosis/metabolism
- Multiple Sclerosis/pathology
- Extracellular Matrix Proteins
- Neuroinflammatory Diseases/metabolism
Collapse
Affiliation(s)
- Gurleen Randhawa
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Maryam Mobarakabadi
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Charlotte D'Mello
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Marlene T Morch
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Ping Zhang
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Chang-Chun Ling
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - V Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta T2N 4N1, Canada.
| | - Samira Ghorbani
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta T2N 4N1, Canada; Department of Biology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada; Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
5
|
Zhu R, Huang J, Qian F. The role of tumor-associated macrophages in lung cancer. Front Immunol 2025; 16:1556209. [PMID: 40079009 PMCID: PMC11897577 DOI: 10.3389/fimmu.2025.1556209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
Lung cancer remains a leading cause of cancer-related deaths worldwide, necessitating innovative treatments. Tumor-associated macrophages (TAMs) are primary immunosuppressive effectors that foster tumor proliferation, angiogenesis, metastasis, and resistance to therapy. They are broadly categorized into proinflammatory M1 and tumor-promoting M2 phenotypes, with elevated M2 infiltration correlating with poor prognosis. Strategies aimed at inhibiting TAM recruitment, depleting TAMs, or reprogramming M2 to M1 are therefore highly promising. Key signaling pathways, such as CSF-1/CSF-1R, IL-4/IL-13-STAT6, TLRs, and CD47-SIRPα, regulate TAM polarization. Additionally, macrophage-based drug delivery systems permit targeted agent transport to hypoxic regions, enhancing therapy. Preclinical studies combining TAM-targeted therapies with chemotherapy or immune checkpoint inhibitors have yielded improved responses and prolonged survival. Several clinical trials have also reported benefits in previously unresponsive patients. Future work should clarify the roles of macrophage-derived exosomes, cytokines, and additional mediators in shaping the immunosuppressive tumor microenvironment. These insights will inform the design of next-generation drug carriers and optimize combination immunotherapies within precision medicine frameworks. Elucidating TAM phenotypes and their regulatory molecules remains central to developing novel strategies that curb tumor progression and ultimately improve outcomes in lung cancer. Importantly, macrophage-based immunomodulation may offer expanded treatment avenues.
Collapse
Affiliation(s)
| | | | - Fenhong Qian
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
6
|
Chuang PC, Su WH, Hsieh CH, Huang EY. TIAM2S Operates Multifaced Talents to Alleviate Radiosensitivity, Restrict Apoptosis, Provoke Cell Propagation, and Escalate Cell Migration for Aggravating Radioresistance-Intensified Cervical Cancer Progression. Cells 2025; 14:339. [PMID: 40072068 PMCID: PMC11898548 DOI: 10.3390/cells14050339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/15/2025] Open
Abstract
Radioresistance remains a major obstacle in cervical cancer treatment, frequently engendering tumor relapse and metastasis. However, the details of its mechanism of action remain largely enigmatic. This study delineates the prospective impacts of short-form human T-cell lymphoma invasion and metastasis 2 (TIAM2S) involving the radiation resistance of cervical cancer. In this study, we established three pairs of radioresistant (RR) cervical cancer cells (HeLa, C33A and CaSki) and their parental wild-type (WT) cells. We revealed a consistent augmentation of TIAM2S, but not long-form human T-cell lymphoma invasion and metastasis 2 (TIAM2L) were displayed in RR cells that underwent a 6 Gy radiation administration. Remarkably, RR cells exhibited decreased radiosensitivity and abridged apoptosis, as estimated through a clonogenic survival curve assay and Annexin V/Propidium Iodide apoptosis assay, respectively. TIAM2S suppression increased radiosensitivity and enhanced cell apoptosis in RR cells, whereas its forced introduction modestly abolished radiosensitivity and diminished WT cell apoptosis. Furthermore, TIAM2S overexpression notably aggravated RR cell migration, whereas its blockage reduced WT cell mobilities, as confirmed by an in vitro time-lapse recording assay. Notably, augmented lung localization was revealed after a tail-vein injection of CaSki-RR cells using the in vivo short-term lung locomotion BALB/c nude mouse model. TIAM2S impediment notably reduced radioresistance-increased lung locomotion. This study provides evidence that TIAM2S may operate as an innovative signature in cervical cancer that is resistant to radiotherapy. It displays multi-faceted roles including radioprotection, restricting apoptosis, promoting cell proliferation, and escalating cell migration/metastasis. Targeting TIAM2S, together with conventional radiotherapy, may be an innovative strategy for intensifying radiosensitivity and protecting against subsequent uncontrolled tumor growth and metastasis in cervical cancer treatment.
Collapse
Affiliation(s)
- Pei-Chin Chuang
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (P.-C.C.); (W.-H.S.)
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807017, Taiwan
| | - Wen-Hong Su
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (P.-C.C.); (W.-H.S.)
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan
| | - Ching-Hua Hsieh
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan
| | - Eng-Yen Huang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan 333323, Taiwan
| |
Collapse
|
7
|
Xie Y, Liu F, Wu Y, Zhu Y, Jiang Y, Wu Q, Dong Z, Liu K. Inflammation in cancer: therapeutic opportunities from new insights. Mol Cancer 2025; 24:51. [PMID: 39994787 PMCID: PMC11849313 DOI: 10.1186/s12943-025-02243-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/20/2025] [Indexed: 02/26/2025] Open
Abstract
As one part of the innate immune response to external stimuli, chronic inflammation increases the risk of various cancers, and tumor-promoting inflammation is considered one of the enabling characteristics of cancer development. Recently, there has been growing evidence on the role of anti-inflammation therapy in cancer prevention and treatment. And researchers have already achieved several noteworthy outcomes. In the review, we explored the underlying mechanisms by which inflammation affects the occurrence and development of cancer. The pro- or anti-tumor effects of these inflammatory factors such as interleukin, interferon, chemokine, inflammasome, and extracellular matrix are discussed. Since FDA-approved anti-inflammation drugs like aspirin show obvious anti-tumor effects, these drugs have unique advantages due to their relatively fewer side effects with long-term use compared to chemotherapy drugs. The characteristics make them promising candidates for cancer chemoprevention. Overall, this review discusses the role of these inflammatory molecules in carcinogenesis of cancer and new inflammation molecules-directed therapeutic opportunities, ranging from cytokine inhibitors/agonists, inflammasome inhibitors, some inhibitors that have already been or are expected to be applied in clinical practice, as well as recent discoveries of the anti-tumor effect of non-steroidal anti-inflammatory drugs and steroidal anti-inflammatory drugs. The advantages and disadvantages of their application in cancer chemoprevention are also discussed.
Collapse
Affiliation(s)
- Yifei Xie
- Department of Pathology and Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China
| | - Fangfang Liu
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450007, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China
| | - Yunfei Wu
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yuer Zhu
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yanan Jiang
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450007, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China
| | - Qiong Wu
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450007, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China
| | - Zigang Dong
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China.
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450007, China.
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China.
| | - Kangdong Liu
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China.
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450007, China.
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
8
|
Janssen R, Benito-Zarza L, Cleijpool P, Valverde MG, Mihăilă SM, Bastiaan-Net S, Garssen J, Willemsen LEM, Masereeuw R. Biofabrication Directions in Recapitulating the Immune System-on-a-Chip. Adv Healthc Mater 2025; 14:e2304569. [PMID: 38625078 DOI: 10.1002/adhm.202304569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/19/2024] [Indexed: 04/17/2024]
Abstract
Ever since the implementation of microfluidics in the biomedical field, in vitro models have experienced unprecedented progress that has led to a new generation of highly complex miniaturized cell culture platforms, known as Organs-on-a-Chip (OoC). These devices aim to emulate biologically relevant environments, encompassing perfusion and other mechanical and/or biochemical stimuli, to recapitulate key physiological events. While OoCs excel in simulating diverse organ functions, the integration of the immune organs and immune cells, though recent and challenging, is pivotal for a more comprehensive representation of human physiology. This comprehensive review covers the state of the art in the intricate landscape of immune OoC models, shedding light on the pivotal role of biofabrication technologies in bridging the gap between conceptual design and physiological relevance. The multifaceted aspects of immune cell behavior, crosstalk, and immune responses that are aimed to be replicated within microfluidic environments, emphasizing the need for precise biomimicry are explored. Furthermore, the latest breakthroughs and challenges of biofabrication technologies in immune OoC platforms are described, guiding researchers toward a deeper understanding of immune physiology and the development of more accurate and human predictive models for a.o., immune-related disorders, immune development, immune programming, and immune regulation.
Collapse
Affiliation(s)
- Robine Janssen
- Department of Pharmaceutical Sciences, Pharmacology, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Laura Benito-Zarza
- Department of Pharmaceutical Sciences, Pharmacology, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Pim Cleijpool
- Department of Pharmaceutical Sciences, Pharmacology, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Marta G Valverde
- Department of Pharmaceutical Sciences, Pharmacology, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Silvia M Mihăilă
- Department of Pharmaceutical Sciences, Pharmacology, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Shanna Bastiaan-Net
- Wageningen Food & Biobased Research, Wageningen University & Research, Wageningen, 6708 WG, The Netherlands
| | - Johan Garssen
- Department of Pharmaceutical Sciences, Pharmacology, Utrecht University, Utrecht, 3584 CG, The Netherlands
- Danone Global Research & Innovation Center, Danone Nutricia Research B.V., Utrecht, 3584 CT, The Netherlands
| | - Linette E M Willemsen
- Department of Pharmaceutical Sciences, Pharmacology, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Rosalinde Masereeuw
- Department of Pharmaceutical Sciences, Pharmacology, Utrecht University, Utrecht, 3584 CG, The Netherlands
| |
Collapse
|
9
|
Kaynak A, Vallabhapurapu SD, Davis HW, Smith EP, Muller P, Vojtesek B, Franco RS, Shao WH, Qi X. TLR2-Bound Cancer-Secreted Hsp70 Induces MerTK-Mediated Immunosuppression and Tumorigenesis in Solid Tumors. Cancers (Basel) 2025; 17:450. [PMID: 39941817 PMCID: PMC11815864 DOI: 10.3390/cancers17030450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/13/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Background: A hallmark of cancer is the presence of an immunosuppressive tumor microenvironment (TME). Immunosuppressive M2 macrophages (MΦs) in the TME facilitate escape from immune surveillance and promote tumor growth; therefore, TME-induced immunosuppression is a potent immunotherapeutic approach to treating cancer. Methods: Cancer cell-secreted proteins were detected by using liquid chromatography-mass spectrometry (LC-MS). Neutralizing antibodies (nAbs) were used to assess which proteins were involved in MΦs polarization and differentiation. The protein-protein interaction was characterized using co-immunoprecipitation and immunofluorescence assays. Cancer-secreted heat shock protein 70 (Hsp70) protein was quantified using an enzyme-linked immunosorbent assay (ELISA). MΦ polarization and tumor growth were assessed in vivo with subcutaneous LLC-GFP tumor models and toll-like receptor 2 (TLR2) knockout mice; in vitro assessments were conducted using TLR2 knockout and both LLC-GFP and LN227 lentiviral-mediated knockdown (KD) cells. Results: Cancer cells released a secreted form of Hsp70 that acted on MΦ TLR2 to upregulate Mer receptor tyrosine kinase (MerTK) and induce MΦ M2 polarization. Hsp70 nAbs led to a reduction in CD14 expression by 75% in THP-1 cells in response to Gli36 EMD-CM. In addition, neutralizing TLR2 nAbs resulted in a 30% and 50% reduction in CD14 expression on THP-1 cells in response to MiaPaCa-2 and Gli36 exosome/microparticle-depleted conditioned media (EMD-CMs), respectively. Hsp70, TLR2, and MerTK formed a protein complex. Tumor growth and intra-tumor M2 MΦs were significantly reduced upon cancer cell Hsp70 knockdown and in TLR2 knockout mice. Conclusions: Cancer-secreted Hsp70 interacts with TLR2, upregulates MerTK on MΦs, and induces immunosuppressive MΦ M2 polarization. This previously unreported action of secreted Hsp70 suggests that disrupting the Hsp70-TLR2-MerTK interaction could serve as a promising immunotherapeutic approach to mitigate TME immunosuppression in solid cancers.
Collapse
Affiliation(s)
- Ahmet Kaynak
- Division of Hematology & Oncology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (A.K.); (S.D.V.); (H.W.D.); (E.P.S.); (R.S.F.)
| | - Subrahmanya D. Vallabhapurapu
- Division of Hematology & Oncology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (A.K.); (S.D.V.); (H.W.D.); (E.P.S.); (R.S.F.)
| | - Harold W. Davis
- Division of Hematology & Oncology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (A.K.); (S.D.V.); (H.W.D.); (E.P.S.); (R.S.F.)
| | - Eric P. Smith
- Division of Hematology & Oncology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (A.K.); (S.D.V.); (H.W.D.); (E.P.S.); (R.S.F.)
| | - Petr Muller
- Masaryk Memorial Cancer Institute, Research Centre for Applied Molecular Oncology, Zluty Kopec 7, 656 53 Brno, Czech Republic; (P.M.); (B.V.)
| | - Borek Vojtesek
- Masaryk Memorial Cancer Institute, Research Centre for Applied Molecular Oncology, Zluty Kopec 7, 656 53 Brno, Czech Republic; (P.M.); (B.V.)
| | - Robert S. Franco
- Division of Hematology & Oncology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (A.K.); (S.D.V.); (H.W.D.); (E.P.S.); (R.S.F.)
| | - Wen-Hai Shao
- Division of Rheumatology, Allergy & Immunology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA;
| | - Xiaoyang Qi
- Division of Hematology & Oncology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (A.K.); (S.D.V.); (H.W.D.); (E.P.S.); (R.S.F.)
| |
Collapse
|
10
|
Parry TL, Gilmore LA, Khamoui AV. Pan-cancer secreted proteome and skeletal muscle regulation: insight from a proteogenomic data-driven knowledge base. Funct Integr Genomics 2025; 25:14. [PMID: 39812750 DOI: 10.1007/s10142-024-01524-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/16/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025]
Abstract
Large-scale, pan-cancer analysis is enabled by data driven knowledge bases that link tumor molecular profiles with phenotypes. A debilitating cancer-related phenotype is skeletal muscle loss, or cachexia, which occurs partly from tumor products secreted into circulation. Using the LinkedOmicsKB knowledge base assembled from the Clinical Proteomics Tumor Analysis Consortium proteogenomic analysis, along with catalogs of human secretome proteins, ligand-receptor pairs and molecular signatures, we sought to identify candidate pan-cancer proteins secreted to blood that could regulate skeletal muscle phenotypes in multiple solid cancers. Tumor proteins having significant pan-cancer associations with muscle were referenced against secretome proteins secreted to blood from the Human Protein Atlas, then verified as increased in paired tumor vs. normal tissues in pan-cancer manner. This workflow revealed seven secreted proteins from cancers afflicting kidneys, head and neck, lungs and pancreas that classified as protein-binding activity modulator, extracellular matrix protein or intercellular signaling molecule. Concordance of these biomarkers with validated molecular signatures of cachexia and senescence supported relevance to muscle and cachexia disease biology, and high tumor expression of the biomarker set associated with lower overall survival. In this article, we discuss avenues by which skeletal muscle and cachexia may be regulated by these candidate pan-cancer proteins secreted to blood, and conceptualize a strategy that considers them collectively as a biomarker signature with potential for refinement by data analytics and radiogenomics for predictive testing of future risk in a non-invasive, blood-based panel amenable to broad uptake and early management.
Collapse
Affiliation(s)
- Traci L Parry
- Department of Kinesiology, University of North Carolina Greensboro, Greensboro, NC, USA
| | - L Anne Gilmore
- Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andy V Khamoui
- Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL, USA.
- Institute for Human Health and Disease Intervention, Florida Atlantic University, Jupiter, FL, USA.
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA.
| |
Collapse
|
11
|
Li H, Ghorbani S, Oladosu O, Zhang P, Visser F, Dunn J, Zhang Y, Ling CC, Yong VW, Xue M. Therapeutic reduction of neurocan in murine intracerebral hemorrhage lesions promotes oligodendrogenesis and functional recovery. J Neuroinflammation 2025; 22:2. [PMID: 39755654 DOI: 10.1186/s12974-024-03331-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) causes prominent deposition of extracellular matrix molecules, particularly the chondroitin sulphate proteoglycan (CSPG) member neurocan. In tissue culture, neurocan impedes the properties of oligodendrocytes. Whether therapeutic reduction of neurocan promotes oligodendrogenesis and functional recovery in ICH is unknown. METHODS Mice were retro-orbitally injected with adeno-associated virus (AAV-CRISPR/Cas9) to reduce neurocan deposition after ICH induction by collagenase. Other groups of ICH mice were treated with vehicle or a drug that reduces CSPG synthesis, 4-4-difluoro-N-acetylglucosamine (difluorosamine). Rota-rod and grip strength behavioral tests were conducted over 7 or 14 days. Brain tissues were investigated for expression of neurocan by immunofluorescence microscopy and western blot analysis. Brain cryosections were also stained for microglia/macrophage phenotype, oligodendrocyte lineage cells and neuroblasts by immunofluorescence microscopy. Tissue structural changes were assessed using brain magnetic resonance imaging (MRI). RESULTS The adeno-associated virus (AAV)-reduction of neurocan increased oligodendrocyte numbers and functional recovery in ICH. The small molecule inhibitor of CSPG synthesis, difluorosamine, lowered neurocan levels in lesions and elevated numbers of oligodendrocyte precursor cells, mature oligodendrocytes, and SOX2+ nestin+ neuroblasts in the perihematomal area. Difluorosamine shifted the degeneration-associated functional state of microglia/macrophages in ICH towards a regulatory phenotype. MRI analyses showed better fiber tract integrity in the penumbra of difluorosamine mice. These beneficial difluorosamine results were achieved with delayed (2 or 3 days) treatment after ICH. CONCLUSION Reducing neurocan deposition following ICH injury is a therapeutic approach to promote histological and behavioral recovery from the devastating stroke.
Collapse
Affiliation(s)
- Hongmin Li
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, 2 Jingba Road, Zhengzhou, Henan, China
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, 3330 Hospital Drive, Calgary, AB, Canada
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Samira Ghorbani
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, 3330 Hospital Drive, Calgary, AB, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, Canada
| | - Olayinka Oladosu
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, 3330 Hospital Drive, Calgary, AB, Canada
| | - Ping Zhang
- Department of Chemistry, University of Calgary, Calgary, Canada
| | - Frank Visser
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, 3330 Hospital Drive, Calgary, AB, Canada
| | - Jeff Dunn
- Department of Radiology, University of Calgary, Calgary, Canada
| | - Yunyan Zhang
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, 3330 Hospital Drive, Calgary, AB, Canada
| | - Chang-Chun Ling
- Department of Chemistry, University of Calgary, Calgary, Canada
| | - V Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, 3330 Hospital Drive, Calgary, AB, Canada.
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, 2 Jingba Road, Zhengzhou, Henan, China.
| |
Collapse
|
12
|
Lichtenstein AV. Rethinking the Evolutionary Origin, Function, and Treatment of Cancer. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:19-31. [PMID: 40058971 DOI: 10.1134/s0006297924603575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 09/29/2024] [Accepted: 12/08/2024] [Indexed: 05/13/2025]
Abstract
Despite remarkable progress in basic oncology, practical results remain unsatisfactory. This discrepancy is partly due to the exclusive focus on processes within the cancer cell, which results in a lack of recognition of cancer as a systemic disease. It is evident that a wise balance is needed between two alternative methodological approaches: reductionism, which would break down complex phenomena into smaller units to be studied separately, and holism, which emphasizes the study of complex systems as integrated wholes. A consistent holistic approach has so far led to the notion of cancer as a special organ, stimulating debate about its function and evolutionary significance. This article discusses the role of cancer as a mechanism of purifying selection of the gene pool, the correlation between hereditary and sporadic cancer, the cancer interactome, and the role of metastasis in a lethal outcome. It is also proposed that neutralizing the cancer interactome may be a novel treatment strategy.
Collapse
Affiliation(s)
- Anatoly V Lichtenstein
- N. N. Blokhin National Medical Research Centre of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia.
| |
Collapse
|
13
|
Chang MY, Chan CK, Brune JE, Manicone AM, Bomsztyk K, Frevert CW, Altemeier WA. Regulation of versican expression in macrophages is mediated by canonical type I interferon signaling via ISGF3. Am J Physiol Cell Physiol 2024; 327:C1274-C1288. [PMID: 39400584 PMCID: PMC11559644 DOI: 10.1152/ajpcell.00174.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
Growing evidence supports a role for versican as an important component of the inflammatory response, with both pro- and anti-inflammatory roles depending on the specific context of the system or disease under investigation. Our goal is to understand the regulation of macrophage-derived versican and the role it plays in innate immunity. In previous work, we showed that LPS triggers a signaling cascade involving Toll-like receptor (TLR)4, the Trif adaptor, type I interferons, and the type I interferon receptor, leading to increased versican expression by macrophages. In the present study, we used a combination of chromatin immunoprecipitation, siRNA, chemical inhibitors, and mouse model approaches to investigate the regulatory events downstream of the type I interferon receptor to better define the mechanism controlling versican expression. Results indicate that transcriptional regulation by canonical type I interferon signaling via interferon-stimulated gene factor 3 (ISGF3), the heterotrimeric transcription factor complex of Irf9, Stat1, and Stat2, controls versican expression in macrophages exposed to LPS. This pathway is not dependent on MAPK signaling, which has been shown to regulate versican expression in other cell types. The stability of versican mRNA may also contribute to prolonged versican expression in macrophages. These findings strongly support a role for macrophage-derived versican as a type I interferon-stimulated gene and further our understanding of versican's role in regulating inflammation.NEW & NOTEWORTHY We report the novel finding that versican expression is regulated by the interferon-stimulated gene factor 3 (ISGF3) arm of canonical type I Ifn signaling in LPS-stimulated macrophages. This pathway is distinct from mechanisms that control versican expression in other cell types. This suggests that macrophage-derived versican may play a role in limiting a potentially excessive inflammatory response. The detailed understanding of how versican expression is regulated in different cells could lead to unique approaches for enhancing its anti-inflammatory properties.
Collapse
Affiliation(s)
- Mary Y Chang
- Department of Comparative Medicine, University of Washington, Seattle, Washington, United States
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, Washington, United States
| | - Christina K Chan
- Department of Comparative Medicine, University of Washington, Seattle, Washington, United States
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, Washington, United States
| | - Jourdan E Brune
- Department of Comparative Medicine, University of Washington, Seattle, Washington, United States
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, Washington, United States
| | - Anne M Manicone
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, Washington, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, United States
| | - Karol Bomsztyk
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, United States
| | - Charles W Frevert
- Department of Comparative Medicine, University of Washington, Seattle, Washington, United States
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, Washington, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, United States
| | - William A Altemeier
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, Washington, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, United States
| |
Collapse
|
14
|
Mantovani A, Marchesi F, Di Mitri D, Garlanda C. Macrophage diversity in cancer dissemination and metastasis. Cell Mol Immunol 2024; 21:1201-1214. [PMID: 39402303 PMCID: PMC11528009 DOI: 10.1038/s41423-024-01216-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/06/2024] [Indexed: 11/02/2024] Open
Abstract
Invasion and metastasis are hallmarks of cancer. In addition to the well-recognized hematogenous and lymphatic pathways of metastasis, cancer cell dissemination can occur via the transcoelomic and perineural routes, which are typical of ovarian and pancreatic cancer, respectively. Macrophages are a universal major component of the tumor microenvironment and, in established tumors, promote growth and dissemination to secondary sites. Here, we review the role of tumor-associated macrophages (TAMs) in cancer cell dissemination and metastasis, emphasizing the diversity of myeloid cells in different tissue contexts (lungs, liver, brain, bone, peritoneal cavity, nerves). The generally used models of lung metastasis fail to capture the diversity of pathways and tissue microenvironments. A better understanding of TAM diversity in different tissue contexts may pave the way for tailored diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Alberto Mantovani
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy.
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy.
- William Harvey Research Institute, Queen Mary University, London, UK.
| | - Federica Marchesi
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
- Department Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Diletta Di Mitri
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy
| | - Cecilia Garlanda
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy
| |
Collapse
|
15
|
Park YJ, Pang WK, Hwang SM, Ryu DY, Rahman MS, Pang MG. Establishment of tumor microenvironment following bisphenol A exposure in the testis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117071. [PMID: 39303638 DOI: 10.1016/j.ecoenv.2024.117071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/03/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Although detrimental roles of bisphenol A (BPA) in xenoestrogen target organs, testis and epididymis, and male fertility are well-documented, disruption of the immune privilege system in the male reproductive tract following BPA exposure remains poorly understood. Therefore, this study aimed to explore the precise mechanisms of BPA in interfering immune privilege in the testis on RNA sequencing results. CD-1 male mice were daily treated no-observed-adverse-effect (NOAEL, 5 mg BPA/kg BW) and lowest-observed-adverse-effects (LOAEL, 50 mg BPA/kg BW) of BPA by oral gavage for 6 weeks. Following the LOAEL exposure, the expression of immune response-associated transcripts was upregulated in the testis. Moreover, BPA switch the testicular microenvironment to tumor friendly through the recruitment of tumor associated macrophages (TAMs), which can produce both anti- and pro-inflammatory cytokines, such as TNF-α, TLR2, IL-10, and CXCL9. Number of testicular blood vessels were approximately 2-times increased by upregulation of matrix metallopeptidase 2 in TAMs and upregulation of AR expression in the nucleus of Leydig cells. Moreover, we found that the tumor-supportive environment can also be generated even though NOAEL BPA concentration due to the individual's variability in cancer susceptibility.
Collapse
Affiliation(s)
- Yoo-Jin Park
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Won-Ki Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Soo-Min Hwang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Do-Yeal Ryu
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Md Saidur Rahman
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
16
|
Haynes NM, Chadwick TB, Parker BS. The complexity of immune evasion mechanisms throughout the metastatic cascade. Nat Immunol 2024; 25:1793-1808. [PMID: 39285252 DOI: 10.1038/s41590-024-01960-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/12/2024] [Indexed: 09/29/2024]
Abstract
Metastasis, the spread of cancer from a primary site to distant organs, is an important challenge in oncology. This Review explores the complexities of immune escape mechanisms used throughout the metastatic cascade to promote tumor cell dissemination and affect organotropism. Specifically, we focus on adaptive plasticity of disseminated epithelial tumor cells to understand how they undergo phenotypic transitions to survive microenvironmental conditions encountered during metastasis. The interaction of tumor cells and their microenvironment is analyzed, highlighting the local and systemic effects that innate and adaptive immune systems have in shaping an immunosuppressive milieu to foster aggressive metastatic tumors. Effectively managing metastatic disease demands a multipronged approach to target the parallel and sequential mechanisms that suppress anti-tumor immunity. This management necessitates a deep understanding of the complex interplay between tumor cells, their microenvironment and immune responses that we provide with this Review.
Collapse
Affiliation(s)
- Nicole M Haynes
- Cancer Evolution and Metastasis Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Thomas B Chadwick
- Cancer Evolution and Metastasis Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Belinda S Parker
- Cancer Evolution and Metastasis Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
17
|
Wang Y, Jia J, Wang F, Fang Y, Yang Y, Zhou Q, Yuan W, Gu X, Hu J, Yang S. Pre-metastatic niche: formation, characteristics and therapeutic implication. Signal Transduct Target Ther 2024; 9:236. [PMID: 39317708 PMCID: PMC11422510 DOI: 10.1038/s41392-024-01937-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/29/2024] [Accepted: 07/23/2024] [Indexed: 09/26/2024] Open
Abstract
Distant metastasis is a primary cause of mortality and contributes to poor surgical outcomes in cancer patients. Before the development of organ-specific metastasis, the formation of a pre-metastatic niche is pivotal in promoting the spread of cancer cells. This review delves into the intricate landscape of the pre-metastatic niche, focusing on the roles of tumor-derived secreted factors, extracellular vesicles, and circulating tumor cells in shaping the metastatic niche. The discussion encompasses cellular elements such as macrophages, neutrophils, bone marrow-derived suppressive cells, and T/B cells, in addition to molecular factors like secreted substances from tumors and extracellular vesicles, within the framework of pre-metastatic niche formation. Insights into the temporal mechanisms of pre-metastatic niche formation such as epithelial-mesenchymal transition, immunosuppression, extracellular matrix remodeling, metabolic reprogramming, vascular permeability and angiogenesis are provided. Furthermore, the landscape of pre-metastatic niche in different metastatic organs like lymph nodes, lungs, liver, brain, and bones is elucidated. Therapeutic approaches targeting the cellular and molecular components of pre-metastatic niche, as well as interventions targeting signaling pathways such as the TGF-β, VEGF, and MET pathways, are highlighted. This review aims to enhance our understanding of pre-metastatic niche dynamics and provide insights for developing effective therapeutic strategies to combat tumor metastasis.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Jiachi Jia
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Fuqi Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Yingshuai Fang
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Yabing Yang
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Quanbo Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Xiaoming Gu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China.
| | - Junhong Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China.
| | - Shuaixi Yang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China.
| |
Collapse
|
18
|
Jia J, Wang Y, Li M, Wang F, Peng Y, Hu J, Li Z, Bian Z, Yang S. Neutrophils in the premetastatic niche: key functions and therapeutic directions. Mol Cancer 2024; 23:200. [PMID: 39277750 PMCID: PMC11401288 DOI: 10.1186/s12943-024-02107-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024] Open
Abstract
Metastasis has been one of the primary reasons for the high mortality rates associated with tumours in recent years, rendering the treatment of current malignancies challenging and representing a significant cause of recurrence in patients who have undergone surgical tumour resection. Halting tumour metastasis has become an essential goal for achieving favourable prognoses following cancer treatment. In recent years, increasing clarity in understanding the mechanisms underlying metastasis has been achieved. The concept of premetastatic niches has gained widespread acceptance, which posits that tumour cells establish a unique microenvironment at distant sites prior to their migration, facilitating their settlement and growth at those locations. Neutrophils serve as crucial constituents of the premetastatic niche, actively shaping its microenvironmental characteristics, which include immunosuppression, inflammation, angiogenesis and extracellular matrix remodelling. These characteristics are intimately associated with the successful engraftment and subsequent progression of tumour cells. As our understanding of the role and significance of neutrophils in the premetastatic niche deepens, leveraging the presence of neutrophils within the premetastatic niche has gradually attracted the interest of researchers as a potential therapeutic target. The focal point of this review revolves around elucidating the involvement of neutrophils in the formation and shaping of the premetastatic niche (PMN), alongside the introduction of emerging therapeutic approaches aimed at impeding cancer metastasis.
Collapse
Affiliation(s)
- Jiachi Jia
- Zhengzhou University, Zhengzhou, 450000, China
| | - Yuhang Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Mengjia Li
- Department of Haematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Fuqi Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Yingnan Peng
- Department of Haematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Junhong Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Zhen Li
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Zhilei Bian
- Department of Haematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Shuaixi Yang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
19
|
Rosales P, Vitale D, Icardi A, Sevic I, Alaniz L. Role of Hyaluronic acid and its chemical derivatives in immunity during homeostasis, cancer and tissue regeneration. Semin Immunopathol 2024; 46:15. [PMID: 39240397 DOI: 10.1007/s00281-024-01024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Over the last few decades, scientists have recognized the critical role that various components of the extracellular matrix (ECM) play in maintaining homeostatic immunity. Besides, dysregulation in the synthesis or degradation levels of these components directly impacts the mechanisms of immune response during tissue injury caused by tumor processes or the regeneration of the tissue itself in the event of damage. ECM is a complex network of protein compounds, proteoglycans and glycosaminoglycans (GAGs). Hyaluronic acid (HA) is one of the major GAGs of this network, whose metabolism is strictly physiologically regulated and quickly altered in injury processes, affecting the behavior of different cells, from stem cells to differentiated immune cells. In this revision we discuss how the native or chemically modified HA interacts with its specific receptors and modulates intra and intercellular communication of immune cells, focusing on cancer and tissue regeneration conditions.
Collapse
Affiliation(s)
- Paolo Rosales
- Laboratorio de Microambiente Tumoral, CIBA, UNNOBA/ CIT NOBA (UNNOBA-UNSADA- CONICET), Jorge Newbery 261, Junín, 6000, Bs. As, Argentina
| | - Daiana Vitale
- Laboratorio de Microambiente Tumoral, CIBA, UNNOBA/ CIT NOBA (UNNOBA-UNSADA- CONICET), Jorge Newbery 261, Junín, 6000, Bs. As, Argentina
| | - Antonella Icardi
- Laboratorio de Microambiente Tumoral, CIBA, UNNOBA/ CIT NOBA (UNNOBA-UNSADA- CONICET), Jorge Newbery 261, Junín, 6000, Bs. As, Argentina
| | - Ina Sevic
- Laboratorio de Microambiente Tumoral, CIBA, UNNOBA/ CIT NOBA (UNNOBA-UNSADA- CONICET), Jorge Newbery 261, Junín, 6000, Bs. As, Argentina
| | - Laura Alaniz
- Laboratorio de Microambiente Tumoral, CIBA, UNNOBA/ CIT NOBA (UNNOBA-UNSADA- CONICET), Jorge Newbery 261, Junín, 6000, Bs. As, Argentina.
| |
Collapse
|
20
|
Man SM, Kanneganti TD. Innate immune sensing of cell death in disease and therapeutics. Nat Cell Biol 2024; 26:1420-1433. [PMID: 39223376 DOI: 10.1038/s41556-024-01491-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
Innate immunity, cell death and inflammation underpin many aspects of health and disease. Upon sensing pathogens, pathogen-associated molecular patterns or damage-associated molecular patterns, the innate immune system activates lytic, inflammatory cell death, such as pyroptosis and PANoptosis. These genetically defined, regulated cell death pathways not only contribute to the host defence against infectious disease, but also promote pathological manifestations leading to cancer and inflammatory diseases. Our understanding of the underlying mechanisms has grown rapidly in recent years. However, how dying cells, cell corpses and their liberated cytokines, chemokines and inflammatory signalling molecules are further sensed by innate immune cells, and their contribution to further amplify inflammation, trigger antigen presentation and activate adaptive immunity, is less clear. Here, we discuss how pattern-recognition and PANoptosome sensors in innate immune cells recognize and respond to cell-death signatures. We also highlight molecular targets of the innate immune response for potential therapeutic development.
Collapse
Affiliation(s)
- Si Ming Man
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia.
| | | |
Collapse
|
21
|
Suehiro JI, Kimura T, Fukutomi T, Naito H, Kanki Y, Wada Y, Kubota Y, Takakura N, Sakurai H. Endothelial cell-specific LAT1 ablation normalizes tumor vasculature. JCI Insight 2024; 9:e171371. [PMID: 39163136 PMCID: PMC11457854 DOI: 10.1172/jci.insight.171371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/02/2024] [Indexed: 08/22/2024] Open
Abstract
Some endothelial cells in the tumor vasculature express a system L amino acid transporter, LAT1. To elucidate the role of LAT1 in tumor-related endothelial cells, tumor cells were injected into endothelial cell-specific LAT1 conditional knockout mice (Slc7a5flox/flox; Cdh5-Cre-ERT2), and we found that the shape of the tumor vasculature was normalized and the size and numbers of lung metastasis was reduced. TNF-α-induced expression of VCAM1 and E-selectin at the surface of HUVEC, both of which are responsible for enhanced monocyte attachment and premetastatic niche formation, was reduced in the presence of LAT1 inhibitor, nanvuranlat. Deprivation of tryptophan, a LAT1 substrate, mimicked LAT1 inhibition, which led to activation of MEK1/2-ERK1/2 pathway and subsequent cystathionine γ lyase (CTH) induction. Increased production of hydrogen sulfide (H2S) by CTH was at least partially responsible for tumor vascular normalization, leading to decreased leakiness and enhanced delivery of chemotherapeutic agents to the tumor.
Collapse
Affiliation(s)
- Jun-ichi Suehiro
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Toru Kimura
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Toshiyuki Fukutomi
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Hisamichi Naito
- Department of Vascular Physiology, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, Japan
| | - Yasuharu Kanki
- Laboratory of Clinical Examination and Sports Medicine, Department of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Youichiro Wada
- Isotope Science Center, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Nobuyuki Takakura
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Hiroyuki Sakurai
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| |
Collapse
|
22
|
Bermúdez M, Martínez-Barajas MG, Bueno-Urquiza LJ, López-Gutiérrez JA, Villegas-Mercado CE, López-Camarillo C. Role of MicroRNA-204 in Regulating the Hallmarks of Breast Cancer: An Update. Cancers (Basel) 2024; 16:2814. [PMID: 39199587 PMCID: PMC11352763 DOI: 10.3390/cancers16162814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/01/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
microRNA-204-5p (miR-204) is a small noncoding RNA with diverse regulatory roles in breast cancer (BC) development and progression. miR-204 is implicated in the instauration of fundamental traits acquired during the multistep development of BC, known as the hallmarks of cancer. It may act as a potent tumor suppressor by inhibiting key cellular processes like angiogenesis, vasculogenic mimicry, invasion, migration, and metastasis. It achieves this by targeting multiple master genes involved in these processes, including HIF-1α, β-catenin, VEGFA, TGFBR2, FAK, FOXA1, among others. Additionally, miR-204 modulates signaling pathways like PI3K/AKT and interacts with HOTAIR and DSCAM-AS1 lncRNAs, further influencing tumor progression. Beyond its direct effects on tumor cells, miR-204 shapes the tumor microenvironment by regulating immune cell infiltration, suppressing pro-tumorigenic cytokine production, and potentially influencing immunotherapy response. Moreover, miR-204 plays a crucial role in metabolic reprogramming by directly suppressing metabolic genes within tumor cells, indirectly affecting metabolism through exosome signaling, and remodeling metabolic flux within the tumor microenvironment. This review aims to present an update on the current knowledge regarding the role of miR-204 in the hallmarks of BC. In conclusion, miR-204 is a potential therapeutic target and prognostic marker in BC, emphasizing the need for further research to fully elucidate its complex roles in orchestrating aggressive BC behavior.
Collapse
Affiliation(s)
- Mercedes Bermúdez
- Faculty of Dentistry, Autonomous University of Chihuahua, Chihuahua 31000, Mexico;
| | | | - Lesly Jazmín Bueno-Urquiza
- University Center for Health Sciences, University of Guadalajara, Guadalajara 44340, Mexico; (M.G.M.-B.); (L.J.B.-U.)
| | - Jorge Armando López-Gutiérrez
- Faculty of Dentistry, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Mexico;
| | | | - César López-Camarillo
- Genomic Sciences Program, Autonomous University of Mexico City, San Lorenzo 290, Col del Valle, Mexico City 03100, Mexico
| |
Collapse
|
23
|
Wang K, Zhang R, Li C, Chen H, Lu J, Zhao H, Zhuo X. Construction and assessment of an angiogenesis-related gene signature for prognosis of head and neck squamous cell carcinoma. Discov Oncol 2024; 15:284. [PMID: 39012409 PMCID: PMC11252106 DOI: 10.1007/s12672-024-01084-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/05/2024] [Indexed: 07/17/2024] Open
Abstract
OBJECTIVE Angiogenesis-associated genes (AAGs) play a critical role in cancer patient survival. However, there are insufficient reports on the prognostic value of AAGs in head and neck squamous cell carcinoma (HNSC). Therefore, this study aimed to investigate the correlation between AAG expression levels and survival in HNSC patients, explore the predictive value of signature genes and lay the groundwork for future in-depth research. METHODS Relevant data for HNSC were obtained from the databases. AAGs-associated signature genes linked to prognosis were screened to construct a predictive model. Further analysis was conducted to determine the functional correlation of the signature genes. RESULTS The signature genes (STC1, SERPINA5, APP, OLR1, and PDGFA) were used to construct prognostic models. Patients were divided into high-risk and low-risk groups based on the calculated risk scores. Survival analysis showed that patients in the high-risk group had a significantly lower overall survival than those in the low-risk group (P < 0.05). Therefore, this prognostic model was an independent prognostic factor for predicting HNSC. In addition, patients in the low-risk group were more sensitive to multiple anti-cancer drugs. Functional correlation analysis showed a good correlation between the characteristic genes and HNSC metastasis, invasion, and angiogenesis. CONCLUSION This study established a new prognostic model for AAGs and may guide the selection of therapeutic agents for HNSC. These genes have important functions in the tumor microenvironment; it also provides a valuable resource for the future clinical trials investigating the relationship between HNSC and AAGs.
Collapse
Affiliation(s)
- Kaiqin Wang
- Department of Otolaryngology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Ruizhe Zhang
- Department of Otolaryngology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Changya Li
- Department of Otolaryngology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Huarong Chen
- Department of Otolaryngology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Jiafeng Lu
- Department of Otolaryngology, Anshun People's Hospital, Anshun, Guizhou, China
| | - Houyu Zhao
- Department of Otolaryngology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
| | - Xianlu Zhuo
- Department of Otolaryngology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
24
|
Almeida PP, Moraes JA, Barja-Fidalgo TC, Renovato-Martins M. Extracellular vesicles as modulators of monocyte and macrophage function in tumors. AN ACAD BRAS CIENC 2024; 96:e20231212. [PMID: 38922279 DOI: 10.1590/0001-3765202420231212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/17/2024] [Indexed: 06/27/2024] Open
Abstract
The tumor microenvironment (TME) harbors several cell types, such as tumor cells, immune cells, and non-immune cells. These cells communicate through several mechanisms, such as cell-cell contact, cytokines, chemokines, and extracellular vesicles (EVs). Tumor-derived vesicles are known to have the ability to modulate the immune response. Monocytes are a subset of circulating innate immune cells and play a crucial role in immune surveillance, being recruited to tissues where they differentiate into macrophages. In the context of tumors, it has been observed that tumor cells can attract monocytes to the TME and induce their differentiation into tumor-associated macrophages with a pro-tumor phenotype. Tumor-derived EVs have emerged as essential structures mediating this process. Through the transfer of specific molecules and signaling factors, tumor-derived EVs can shape the phenotype and function of monocytes, inducing the expression of cytokines and molecules by these cells, thus modulating the TME towards an immunosuppressive environment.
Collapse
Affiliation(s)
- Palloma P Almeida
- Universidade Federal Fluminense, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Laboratório de Inflamação e Metabolismo, Rua Professor Marcos Waldemar de Freitas Reis, s/n, 24020-140 Niterói, RJ, Brazil
- Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Laboratório de Biologia Redox, Av. Carlos Chagas Filho, 373, Prédio do ICB - Anexo B1F3, Ilha do Fundão, 21941-902 Rio de Janeiro, RJ, Brazil
- Universidade do Estado do Rio de Janeiro, Departamento de Biologia Celular, Instituto de Biologia Roberto Alcantara Gomes - IBRAG, Laboratório de Farmacologia Celular e Molecular, Av. 28 de setembro, 87, 20551-030 Rio de Janeiro, RJ, Brazil
| | - João Alfredo Moraes
- Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Laboratório de Biologia Redox, Av. Carlos Chagas Filho, 373, Prédio do ICB - Anexo B1F3, Ilha do Fundão, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Thereza Christina Barja-Fidalgo
- Universidade do Estado do Rio de Janeiro, Departamento de Biologia Celular, Instituto de Biologia Roberto Alcantara Gomes - IBRAG, Laboratório de Farmacologia Celular e Molecular, Av. 28 de setembro, 87, 20551-030 Rio de Janeiro, RJ, Brazil
| | - Mariana Renovato-Martins
- Universidade Federal Fluminense, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Laboratório de Inflamação e Metabolismo, Rua Professor Marcos Waldemar de Freitas Reis, s/n, 24020-140 Niterói, RJ, Brazil
| |
Collapse
|
25
|
Rahman MM, Grice ID, Ulett GC, Wei MQ. Advances in Bacterial Lysate Immunotherapy for Infectious Diseases and Cancer. J Immunol Res 2024; 2024:4312908. [PMID: 38962577 PMCID: PMC11221958 DOI: 10.1155/2024/4312908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 07/05/2024] Open
Abstract
Antigenic cell fragments, pathogen-associated molecular patterns, and other immunostimulants in bacterial lysates or extracts may induce local and systemic immune responses in specific and nonspecific paradigms. Based on current knowledge, this review aimed to determine whether bacterial lysate has comparable functions in infectious diseases and cancer treatment. In infectious diseases, including respiratory and urinary tract infections, immune system activation by bacterial lysate can identify and combat pathogens. Commercially available bacterial lysates, including OM-85, Ismigen, Lantigen B, and LW 50020, were effective in children and adults in treating respiratory tract infections, chronic obstructive pulmonary disease, rhinitis, and rhinosinusitis with varying degrees of success. Moreover, OM-89, Uromune, Urovac, Urivac, and ExPEC4V showed therapeutic benefits in controlling urinary tract infections in adults, especially women. Bacterial lysate-based therapeutics are safe, well-tolerated, and have few side effects, making them a good alternative for infectious disease management. Furthermore, a nonspecific immunomodulation by bacterial lysates may stimulate innate immunity, benefiting cancer treatment. "Coley's vaccine" has been used to treat sarcomas, carcinomas, lymphomas, melanomas, and myelomas with varying outcomes. Later, several similar bacterial lysate-based therapeutics have been developed to treat cancers, including bladder cancer, non-small cell lung cancer, and myeloma; among them, BCG for in situ bladder cancer is well-known. Proinflammatory cytokines, including IL-1, IL-6, IL-12, and TNF-α, may activate bacterial antigen-specific adaptive responses that could restore tumor antigen recognition and response by tumor-specific type 1 helper cells and cytotoxic T cells; therefore, bacterial lysates are worth investigating as a vaccination adjuvants or add-on therapies for several cancers.
Collapse
Affiliation(s)
- Md. Mijanur Rahman
- School of Pharmacy and Medical SciencesGriffith University, Gold Coast 4222, QLD, Australia
- Menzies Health Institute QueenslandGriffith University, Gold Coast 4222, QLD, Australia
| | - I. Darren Grice
- School of Pharmacy and Medical SciencesGriffith University, Gold Coast 4222, QLD, Australia
- Institute for GlycomicsGriffith University, Gold Coast 4222, QLD, Australia
| | - Glen C. Ulett
- School of Pharmacy and Medical SciencesGriffith University, Gold Coast 4222, QLD, Australia
- Menzies Health Institute QueenslandGriffith University, Gold Coast 4222, QLD, Australia
| | - Ming Q. Wei
- School of Pharmacy and Medical SciencesGriffith University, Gold Coast 4222, QLD, Australia
- Menzies Health Institute QueenslandGriffith University, Gold Coast 4222, QLD, Australia
| |
Collapse
|
26
|
Ahmadpour S, Habibi MA, Ghazi FS, Molazadeh M, Pashaie MR, Mohammadpour Y. The effects of tumor-derived supernatants (TDS) on cancer cell progression: A review and update on carcinogenesis and immunotherapy. Cancer Treat Res Commun 2024; 40:100823. [PMID: 38875884 DOI: 10.1016/j.ctarc.2024.100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/16/2024]
Abstract
Tumors can produce bioactive substances called tumor-derived supernatants (TDS) that modify the immune response in the host body. This can result in immunosuppressive effects that promote the growth and spread of cancer. During tumorigenesis, the exudation of these substances can disrupt the function of immune sentinels in the host and reinforce the support for cancer cell growth. Tumor cells produce cytokines, growth factors, and proteins, which contribute to the progression of the tumor and the formation of premetastatic niches. By understanding how cancer cells influence the host immune system through the secretion of these factors, we can gain new insights into cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Sajjad Ahmadpour
- Patient Safety Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Amin Habibi
- Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mikaeil Molazadeh
- Department of Medical Physics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Pashaie
- Patient Safety Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Internal Medicine, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Mohammadpour
- Department of Medical Education, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
27
|
Li G, Liao C, Chen J, Wang Z, Zhu S, Lai J, Li Q, Chen Y, Wu D, Li J, Huang Y, Tian Y, Chen Y, Chen S. Targeting the MCP-GPX4/HMGB1 Axis for Effectively Triggering Immunogenic Ferroptosis in Pancreatic Ductal Adenocarcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308208. [PMID: 38593415 PMCID: PMC11151063 DOI: 10.1002/advs.202308208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/22/2024] [Indexed: 04/11/2024]
Abstract
Induction of ferroptosis can inhibit cancer cells in vitro, however, the role of ferroptosis in treatment in vivo is controversial. The immunosuppressive cells activated by the ferroptotic tumor cells can promote the growth of residual tumor cells, hindering the application of ferroptosis stimulation in tumor treatment. In this study, a new strategy is aimed to be identified for effectively triggering immunogenic ferroptosis in pancreatic ductal adenocarcinoma (PDAC) and simultaneously stimulating antitumor immune responses. Toward this, several molecular and biochemical experiments are performed using patient-derived organoid models and a KPC mouse model (LSL-KrasG12D /+, LSL-Trp53R172H/+, Pdx-1-Cre). It is observed that the inhibition of macrophage-capping protein (MCP) suppressed the ubiquitin fold modifier (UFM)ylation of pirin (PIR), a newly identified substrate of UFM1, thereby decreasing the transcription of GPX4, a marker of ferroptosis, and promoting the cytoplasmic transportation of HMGB1, a damage-associated molecular pattern. GPX4 deficiency triggered ferroptosis, and the pre-accumulated cytosolic HMGB1 is released rapidly. This altered release pattern of HMGB1 facilitated the pro-inflammatory M1-like polarization of macrophages. Thus, therapeutic inhibition of MCP yielded dual antitumor effects by stimulating ferroptosis and activating antitumor pro-inflammatory M1-like macrophages. The nanosystem developed for specifically silencing MCP is a promising tool for treating PDAC.
Collapse
Affiliation(s)
- Ge Li
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary SurgeryFujian Medical University Union HospitalFuzhou350001China
| | - Chengyu Liao
- Shengli Clinical Medical College of Fujian Medical UniversityFujian Medical UniversityFuzhou350001China
| | - Jiangzhi Chen
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary SurgeryFujian Medical University Union HospitalFuzhou350001China
| | - Zuwei Wang
- Shengli Clinical Medical College of Fujian Medical UniversityFujian Medical UniversityFuzhou350001China
- Department of Hepatopancreatobiliary SurgeryFujian Provincial HospitalFuzhou350001China
| | - Shuncang Zhu
- Shengli Clinical Medical College of Fujian Medical UniversityFujian Medical UniversityFuzhou350001China
| | - Jianlin Lai
- Shengli Clinical Medical College of Fujian Medical UniversityFujian Medical UniversityFuzhou350001China
- Department of Hepatopancreatobiliary SurgeryFujian Provincial HospitalFuzhou350001China
| | - Qiaowei Li
- Fujian Provincial Center for GeriatricsFuzhou350001China
- Fujian Key Laboratory of GeriatricsFuzhou350001China
| | - Yinhao Chen
- Shengli Clinical Medical College of Fujian Medical UniversityFujian Medical UniversityFuzhou350001China
| | - Dihan Wu
- Shengli Clinical Medical College of Fujian Medical UniversityFujian Medical UniversityFuzhou350001China
| | - Jianbo Li
- Shengli Clinical Medical College of Fujian Medical UniversityFujian Medical UniversityFuzhou350001China
| | - Yi Huang
- Shengli Clinical Medical College of Fujian Medical UniversityFujian Medical UniversityFuzhou350001China
- Center for Experimental Research in Clinical MedicineFujian Provincial HospitalFuzhou350001China
| | - Yifeng Tian
- Shengli Clinical Medical College of Fujian Medical UniversityFujian Medical UniversityFuzhou350001China
- Department of Hepatopancreatobiliary SurgeryFujian Provincial HospitalFuzhou350001China
| | - Yanling Chen
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary SurgeryFujian Medical University Union HospitalFuzhou350001China
| | - Shi Chen
- Shengli Clinical Medical College of Fujian Medical UniversityFujian Medical UniversityFuzhou350001China
- Department of Hepatopancreatobiliary SurgeryFujian Provincial HospitalFuzhou350001China
- Fujian Provincial Center for GeriatricsFuzhou350001China
- Fujian Key Laboratory of GeriatricsFuzhou350001China
| |
Collapse
|
28
|
Almanza G, Searles S, Zanetti M. Delivery of miR-214 via extracellular vesicles downregulates Xbp1 expression and pro-inflammatory cytokine genes in macrophages. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:249-258. [PMID: 39118980 PMCID: PMC11308798 DOI: 10.20517/evcna.2023.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Aim Tumor-infiltrating macrophages are tumor-promoting and show activation of the unfolded protein response (UPR). The transcription factor X-box binding protein 1 (XBP1) is a conserved element of the UPR. Upon activation, the UPR mediates the transcriptional activation of pro-inflammatory cytokines and immune suppressive factors, hence contributing to immune dysregulation in the tumor microenvironment (TME). miR-214 is a short non-coding miRNA that targets the 3'-UTR of the Xbp1 transcript. Here, we tested a new method to efficiently deliver miR-214 to macrophages as a potential new therapeutic approach. Methods We generated miR-214-laden extracellular vesicles (iEV-214) in a murine B cell and demonstrated that iEV-214 were enriched in miR-214 between 1,500 - 2,000 fold relative to control iEVs. Results Bone marrow-derived macrophages (BMDM) treated with iEV-214 for 24 h underwent a specific enrichment in miR-214, suggesting transfer of the miR-214 payload from the iEVs to macrophages. iEV-214 treatment of BMDM markedly reduced (> 50%) Xbp1 transcription under endoplasmic reticulum stress conditions compared to controls. Immune-related genes downstream of XBP1s (Il-6, Il-23p19, and Arg1) were also reduced by 69%, 51%, and 34%, respectively. Conclusions Together, these data permit to conclude that iEV-214 are an efficient strategy to downregulate the expression of Xbp1 mRNA and downstream genes in macrophages. We propose miRNA-laden iEVs are a new approach to target macrophages and control immune dysregulation in the TME.
Collapse
Affiliation(s)
- Gonzalo Almanza
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stephen Searles
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maurizio Zanetti
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
29
|
Meng Q, Tan X, Wu B, Zhang S, Zu Y, Jiang S. Polysaccharide of sunflower (Helianthus annuus L.) stalk pith inhibits cancer proliferation and metastases via TNF-α pathway. Int J Biol Macromol 2024; 272:132873. [PMID: 38838890 DOI: 10.1016/j.ijbiomac.2024.132873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/21/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
The decoctions of sunflower (Helianthus annuus L. HAL) stalk pith have been used to treat advanced cancer, and polysaccharide of sunflower stalk pith (HSPP) was key ingredient of the decoctions. To forage specially structured HSPP with anti-tumor effects and to uncover its mechanisms of anticancer activity, syngeneic mouse model of lung carcinoma metastasis was established and the HSPP was found to contain long-chain fatty acid. Encouragingly, the mean survival of the polysaccharide group (47.3 ± 12.8 d) and its sub-fractions group HSPP-4 (50.7 ± 13.0 d) was significantly increased compared with control group (38.7 ± 12.7 d) or positive control group (41.8 ± 13.4 d), (n = 20, P < 0.01 vs. the control group or positive control group). Furthermore, the HSPP exerted inhibitory effects on the tumor cells' metastasis. Eventually, it is postulated that the polysaccharide could inhibit tumor proliferation and metastasis by reduction of TNF-α from the macrophage.
Collapse
Affiliation(s)
- Qi Meng
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China; State Engineering Laboratory of Bio-Resources Eco-Utilization, Northeast Forestry University, Harbin, PR China; College of Chemistry Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China; Heilongjiang Provincial Key Laboratory of ecological utilization of Forestry-based active substances, Harbin, PR China
| | - Xiao Tan
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China; State Engineering Laboratory of Bio-Resources Eco-Utilization, Northeast Forestry University, Harbin, PR China
| | - Bi Wu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China; State Engineering Laboratory of Bio-Resources Eco-Utilization, Northeast Forestry University, Harbin, PR China
| | - Siyan Zhang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China; State Engineering Laboratory of Bio-Resources Eco-Utilization, Northeast Forestry University, Harbin, PR China; College of Chemistry Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China; Heilongjiang Provincial Key Laboratory of ecological utilization of Forestry-based active substances, Harbin, PR China
| | - Yuangang Zu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China; State Engineering Laboratory of Bio-Resources Eco-Utilization, Northeast Forestry University, Harbin, PR China.
| | - Shougang Jiang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China; State Engineering Laboratory of Bio-Resources Eco-Utilization, Northeast Forestry University, Harbin, PR China; College of Chemistry Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China; Heilongjiang Provincial Key Laboratory of ecological utilization of Forestry-based active substances, Harbin, PR China.
| |
Collapse
|
30
|
Tikhonova MA, Shoeva OY, Tenditnik MV, Akopyan AA, Litvinova EA, Popova NA, Amstislavskaya TG, Khlestkina EK. Antitumor Effects of an Anthocyanin-Rich Grain Diet in a Mouse Model of Lewis Lung Carcinoma. Int J Mol Sci 2024; 25:5727. [PMID: 38891915 PMCID: PMC11171629 DOI: 10.3390/ijms25115727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Functional foods enriched with plant polyphenol anthocyanins attract particular attention due to their health-promoting properties, including antitumor activity. We evaluated the effects of a grain diet rich in anthocyanins in a mouse model of Lewis lung carcinoma. Mice of the C57BL/6 strain were fed with wheat of near-isogenic lines differing in the anthocyanin content for four months prior to tumor transplantation. Although a significant decrease in the size of the tumor and the number of metastases in the lungs was revealed in the groups with both types of grain diet, the highest percentage of animals without metastases and with attenuated cell proliferation in the primary tumor were observed in the mice with the anthocyanin-rich diet. Both grain diets reduced the body weight gain and spleen weight index. The antitumor effects of the grain diets were associated with the activation of different mechanisms: immune response of the allergic type with augmented interleukin(IL)-9 and eotaxin serum levels in mice fed with control grain vs. inhibition of the IL-6/LIF system accompanied by a decrease in the tumor-associated M2 macrophage marker arginase 1 gene mRNA levels and enhanced autophagy in the tumor evaluated by the mRNA levels of Beclin 1 gene. Thus, anthocyanin-rich wheat is suggested as a promising source of functional nutrition with confirmed in vivo antitumor activity.
Collapse
Affiliation(s)
- Maria A. Tikhonova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (IC&G SB RAS), 630090 Novosibirsk, Russia; (O.Y.S.); (T.G.A.)
- Scientific Research Institute of Neurosciences and Medicine (SRINM), 630117 Novosibirsk, Russia
| | - Olesya Y. Shoeva
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (IC&G SB RAS), 630090 Novosibirsk, Russia; (O.Y.S.); (T.G.A.)
| | - Michael V. Tenditnik
- Scientific Research Institute of Neurosciences and Medicine (SRINM), 630117 Novosibirsk, Russia
| | - Anna A. Akopyan
- Scientific Research Institute of Neurosciences and Medicine (SRINM), 630117 Novosibirsk, Russia
| | - Ekaterina A. Litvinova
- Scientific Research Institute of Neurosciences and Medicine (SRINM), 630117 Novosibirsk, Russia
| | - Nelly A. Popova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (IC&G SB RAS), 630090 Novosibirsk, Russia; (O.Y.S.); (T.G.A.)
- Department of Neuroscience, V. Zelman Institute for Medicine and Psychology, Faculty of Life Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Tamara G. Amstislavskaya
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (IC&G SB RAS), 630090 Novosibirsk, Russia; (O.Y.S.); (T.G.A.)
- Scientific Research Institute of Neurosciences and Medicine (SRINM), 630117 Novosibirsk, Russia
- Department of Neuroscience, V. Zelman Institute for Medicine and Psychology, Faculty of Life Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Elena K. Khlestkina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (IC&G SB RAS), 630090 Novosibirsk, Russia; (O.Y.S.); (T.G.A.)
- N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources, 190000 St. Petersburg, Russia
| |
Collapse
|
31
|
Xu Y, Benedikt J, Ye L. Hyaluronic Acid Interacting Molecules Mediated Crosstalk between Cancer Cells and Microenvironment from Primary Tumour to Distant Metastasis. Cancers (Basel) 2024; 16:1907. [PMID: 38791985 PMCID: PMC11119954 DOI: 10.3390/cancers16101907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Hyaluronic acid (HA) is a prominent component of the extracellular matrix, and its interactions with HA-interacting molecules (HAIMs) play a critical role in cancer development and disease progression. This review explores the multifaceted role of HAIMs in the context of cancer, focusing on their influence on disease progression by dissecting relevant cellular and molecular mechanisms in tumour cells and the tumour microenvironment. Cancer progression can be profoundly affected by the interactions between HA and HAIMs. They modulate critical processes such as cell adhesion, migration, invasion, and proliferation. The TME serves as a dynamic platform in which HAIMs contribute to the formation of a unique niche. The resulting changes in HA composition profoundly influence the biophysical properties of the TME. These modifications in the TME, in conjunction with HAIMs, impact angiogenesis, immune cell recruitment, and immune evasion. Therefore, understanding the intricate interplay between HAIMs and HA within the cancer context is essential for developing novel therapeutic strategies. Targeting these interactions offers promising avenues for cancer treatment, as they hold the potential to disrupt critical aspects of disease progression and the TME. Further research in this field is imperative for advancing our knowledge and the treatment of cancer.
Collapse
Affiliation(s)
- Yali Xu
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK;
- School of Engineering, Cardiff University, Cardiff CF24 3AA, UK;
| | | | - Lin Ye
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK;
| |
Collapse
|
32
|
Jalil SMA, Henry JC, Cameron AJM. Targets in the Tumour Matrisome to Promote Cancer Therapy Response. Cancers (Basel) 2024; 16:1847. [PMID: 38791926 PMCID: PMC11119821 DOI: 10.3390/cancers16101847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The extracellular matrix (ECM) is composed of complex fibrillar proteins, proteoglycans, and macromolecules, generated by stromal, immune, and cancer cells. The components and organisation of the matrix evolves as tumours progress to invasive disease and metastasis. In many solid tumours, dense fibrotic ECM has been hypothesised to impede therapy response by limiting drug and immune cell access. Interventions to target individual components of the ECM, collectively termed the matrisome, have, however, revealed complex tumour-suppressor, tumour-promoter, and immune-modulatory functions, which have complicated clinical translation. The degree to which distinct components of the matrisome can dictate tumour phenotypes and response to therapy is the subject of intense study. A primary aim is to identify therapeutic opportunities within the matrisome, which might support a better response to existing therapies. Many matrix signatures have been developed which can predict prognosis, immune cell content, and immunotherapy responses. In this review, we will examine key components of the matrisome which have been associated with advanced tumours and therapy resistance. We have primarily focussed here on targeting matrisome components, rather than specific cell types, although several examples are described where cells of origin can dramatically affect tumour roles for matrix components. As we unravel the complex biochemical, biophysical, and intracellular transduction mechanisms associated with the ECM, numerous therapeutic opportunities will be identified to modify tumour progression and therapy response.
Collapse
Affiliation(s)
| | | | - Angus J. M. Cameron
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK; (S.M.A.J.); (J.C.H.)
| |
Collapse
|
33
|
Sun Z, Chen Z, Yin M, Wu X, Guo B, Cheng X, Quan R, Sun Y, Zhang Q, Fan Y, Jin C, Yin Y, Hou X, Liu W, Shu M, Xue X, Shi Y, Chen B, Xiao Z, Dai J, Zhao Y. Harnessing developmental dynamics of spinal cord extracellular matrix improves regenerative potential of spinal cord organoids. Cell Stem Cell 2024; 31:772-787.e11. [PMID: 38565140 DOI: 10.1016/j.stem.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/07/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
Neonatal spinal cord tissues exhibit remarkable regenerative capabilities as compared to adult spinal cord tissues after injury, but the role of extracellular matrix (ECM) in this process has remained elusive. Here, we found that early developmental spinal cord had higher levels of ECM proteins associated with neural development and axon growth, but fewer inhibitory proteoglycans, compared to those of adult spinal cord. Decellularized spinal cord ECM from neonatal (DNSCM) and adult (DASCM) rabbits preserved these differences. DNSCM promoted proliferation, migration, and neuronal differentiation of neural progenitor cells (NPCs) and facilitated axonal outgrowth and regeneration of spinal cord organoids more effectively than DASCM. Pleiotrophin (PTN) and Tenascin (TNC) in DNSCM were identified as contributors to these abilities. Furthermore, DNSCM demonstrated superior performance as a delivery vehicle for NPCs and organoids in spinal cord injury (SCI) models. This suggests that ECM cues from early development stages might significantly contribute to the prominent regeneration ability in spinal cord.
Collapse
Affiliation(s)
- Zheng Sun
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenni Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Man Yin
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianming Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Guo
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaokang Cheng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rui Quan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuting Sun
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongheng Fan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Jin
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyun Yin
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xianglin Hou
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Weiyuan Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Muya Shu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoyu Xue
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ya Shi
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bing Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
34
|
Hou YJ, Yang XX, He L, Meng HX. Pathological mechanisms of cold and mechanical stress in modulating cancer progression. Hum Cell 2024; 37:593-606. [PMID: 38538930 DOI: 10.1007/s13577-024-01049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/22/2024] [Indexed: 04/15/2024]
Abstract
Environmental temperature and cellular mechanical force are the inherent factors that participate in various biological processes and regulate cancer progress, which have been hot topics worldwide. They occupy a dominant part in the cancer tissues through different approaches. However, extensive investigation regarding pathological mechanisms in the carcinogenic field. After research, we found cold stress via two means to manipulate tumors: neuroscience and mechanically sensitive ion channels (MICHs) such as TRP families to regulate the physiological and pathological activities. Excessive cold stimulation mediated neuroscience acting on every cancer stage through the hypothalamus-pituitary-adrenocorticoid (HPA) to reach the target organs. Comparatively speaking, mechanical force via Piezo of MICHs controls cancer development. The progression of cancer depends on the internal activation of proto-oncogenes and the external tumorigenic factors; the above two means eventually lead to genetic disorders at the molecular level. This review summarizes the interaction of bidirectional communication between them and the tumor. It covers the main processes from cytoplasm to nucleus related to metastasis cascade and tumor immune escape.
Collapse
Affiliation(s)
- Yun-Jing Hou
- Harbin Medical University, Harbin, China
- Department of Precision Medicine Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xin-Xin Yang
- Harbin Medical University, Harbin, China
- Department of Precision Medicine Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lin He
- Department of Stomatology, Heilongjiang Provincial Hospital, Harbin, China
| | - Hong-Xue Meng
- Harbin Medical University, Harbin, China.
- Department of Pathology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, China.
| |
Collapse
|
35
|
Ma L, Yin Y, Yu Z, Xu N, Ma L, Qiao W, Zhen X, Yang F, Zhang N, Yu Y. Toll-like receptor 6 inhibits colorectal cancer progression by suppressing NF-κB signaling. Heliyon 2024; 10:e26984. [PMID: 38509947 PMCID: PMC10951511 DOI: 10.1016/j.heliyon.2024.e26984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 01/20/2024] [Accepted: 02/22/2024] [Indexed: 03/22/2024] Open
Abstract
Background Toll-like receptors (TLRs) are implicated in the pathogenesis and progression of inflammation-associated cancers, except their role in regulating innate immunity. Specifically, a berrant expression of TLR6 has been observed in colorectal cancers (CRC). However, the effect of abnormal TLR6 expression on CRC remians unclear. Therefore, the present study evaluated TLR6 expression in CRC, its effect on CRC proliferation, and its underlying mechanism. Methods The expression of TLR6 in CRC was assessed using data from TCGA, GTEx, and HPA datasets and immunohistochemical assays of tumor tissues from patients with CRC. In human CRC cell lines, TLR6 signaling was activated using the TLR6 agonist Pam2CSK4 and was blocked using antiTLR6-IgG; subsequently, cell growth, migration, invasion, cell cycle, and apoptosis were compared in CRC cells. The levels of the anti-apoptotic protein Bcl-2 and the apoptotic protein Bax were identified using western blotting. In addition, the effect of TLR6 knockdown by shRNAs in CRC cells was observed both in vitro and in vivo. Nuclear factor κB (NF-κB) level was evaluated using immunofluorescence and western bolt. Results TLR6 expression was significantly downregulated in CRC tissues. The activation of TLR6 by Pam2CSK4 (100 pg/mL to 10 ng/mL) inhibited the proliferation of CRC cells. Compared with blocking TLR6 signaling using antiTLR6-IgG, activating TLR6 signaling significantly inhibited CRC cell growth, migration, and invasion as well as decreased the proportion of cells in the S and G2/M phases and promoted apoptosis. Furthermore, the knockdown of TLR6 by shRNA promoted the biological activity of CRC cells both in vitro and in vivo. Moreover, the activation of TLR6 signaling by Pam2CSK4 significantly downregulated NF-κB and Bcl-2 levels but upregulated Bax levels. Conclusion The findings of this study demonstrate that TLR6 may play a inhibitive role in CRC tumorigenesis by suppressing the activity of NF-κB signaling.
Collapse
Affiliation(s)
- Lina Ma
- Cheeloo College of Medicine, Shandong University, 44 Wenhua West Road, Jinan, Shandong, 250012, China
- Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Department of Diagnostics, The Second School of Medicine, Binzhou Medical University, 346 Guanhai Road, Laishan, Yantai, Shandong, 264003, China
| | - Yancun Yin
- Department of Human Anatomy, School of Basic Medical Science, Binzhou Medical University, 346 Guanhai Road, Laishan, Yantai, Shandong, 264003, China
| | - Zhenhai Yu
- Department of Human Anatomy, School of Basic Medical Science, Binzhou Medical University, 346 Guanhai Road, Laishan, Yantai, Shandong, 264003, China
| | - Ning Xu
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, 717 Jinbu Street, Yantai, Shandong, 264100, China
| | - Lianhuan Ma
- Department of Diagnostics, The Second School of Medicine, Binzhou Medical University, 346 Guanhai Road, Laishan, Yantai, Shandong, 264003, China
| | - Weiwei Qiao
- Department of Diagnostics, The Second School of Medicine, Binzhou Medical University, 346 Guanhai Road, Laishan, Yantai, Shandong, 264003, China
| | - Xiaowen Zhen
- Department of Diagnostics, The Second School of Medicine, Binzhou Medical University, 346 Guanhai Road, Laishan, Yantai, Shandong, 264003, China
| | - Fan Yang
- Department of Diagnostics, The Second School of Medicine, Binzhou Medical University, 346 Guanhai Road, Laishan, Yantai, Shandong, 264003, China
| | - Naili Zhang
- Department of Human Anatomy, School of Basic Medical Science, Binzhou Medical University, 346 Guanhai Road, Laishan, Yantai, Shandong, 264003, China
| | - Yue Yu
- Cheeloo College of Medicine, Shandong University, 44 Wenhua West Road, Jinan, Shandong, 250012, China
- Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| |
Collapse
|
36
|
Hu A, Sun L, Lin H, Liao Y, Yang H, Mao Y. Harnessing innate immune pathways for therapeutic advancement in cancer. Signal Transduct Target Ther 2024; 9:68. [PMID: 38523155 PMCID: PMC10961329 DOI: 10.1038/s41392-024-01765-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 03/26/2024] Open
Abstract
The innate immune pathway is receiving increasing attention in cancer therapy. This pathway is ubiquitous across various cell types, not only in innate immune cells but also in adaptive immune cells, tumor cells, and stromal cells. Agonists targeting the innate immune pathway have shown profound changes in the tumor microenvironment (TME) and improved tumor prognosis in preclinical studies. However, to date, the clinical success of drugs targeting the innate immune pathway remains limited. Interestingly, recent studies have shown that activation of the innate immune pathway can paradoxically promote tumor progression. The uncertainty surrounding the therapeutic effectiveness of targeted drugs for the innate immune pathway is a critical issue that needs immediate investigation. In this review, we observe that the role of the innate immune pathway demonstrates heterogeneity, linked to the tumor development stage, pathway status, and specific cell types. We propose that within the TME, the innate immune pathway exhibits multidimensional diversity. This diversity is fundamentally rooted in cellular heterogeneity and is manifested as a variety of signaling networks. The pro-tumor effect of innate immune pathway activation essentially reflects the suppression of classical pathways and the activation of potential pro-tumor alternative pathways. Refining our understanding of the tumor's innate immune pathway network and employing appropriate targeting strategies can enhance our ability to harness the anti-tumor potential of the innate immune pathway and ultimately bridge the gap from preclinical to clinical application.
Collapse
Affiliation(s)
- Ankang Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Li Sun
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Hao Lin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Yuheng Liao
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, P.R. China
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China.
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
| |
Collapse
|
37
|
ZHOU Y, REN D, BI H, YI B, ZHANG C, WANG H, SUN J. [Tumor-associated Macrophage:
Emerging Targets for Modulating the Tumor Microenvironment]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2024; 27:231-240. [PMID: 38590197 PMCID: PMC11002190 DOI: 10.3779/j.issn.1009-3419.2024.102.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Indexed: 04/10/2024]
Abstract
Tumor-associated macrophage (TAM) play a crucial role in the immune microenvironment of lung cancer. Through changes in their phenotype and phagocytic functions, TAM contribute to the initiation and progression of lung cancer. By promoting the formation of an immune-suppressive microenvironment and accelerating the growth of abnormal tumor vasculature, TAM facilitate the invasion and metastasis of lung cancer. Macrophages can polarize into different subtypes with distinct functions and characteristics in response to various stimuli, categorized as anti-tumor M1 and pro-tumor M2 types. In tumor tissues, TAM typically polarize into the alternatively activated M2 phenotype, exhibiting inhibitory effects on tumor immunity. This article reviews the role of anti-angiogenic drugs in modulating TAM phenotypes, highlighting their potential to reprogram M2-type TAM into an anti-tumor M1 phenotype. Additionally, the functional alterations of TAM play a significant role in anti-angiogenic therapy and immunotherapy strategies. In summary, the regulation of TAM polarization and function opens up new avenues for lung cancer treatment and may serve as a novel target for modulating the immune microenvironment of tumors.
.
Collapse
|
38
|
Chang MY, Chan CK, Brune JE, Manicone AM, Bomsztyk K, Frevert CW, Altemeier WA. Regulation of Versican Expression in Macrophages is Mediated by Canonical Type I Interferon Signaling via ISGF3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.585097. [PMID: 38559011 PMCID: PMC10980001 DOI: 10.1101/2024.03.14.585097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Growing evidence supports a role for versican as an important component of the inflammatory response, with both pro- and anti-inflammatory roles depending on the specific context of the system or disease under investigation. Our goal is to understand the regulation of macrophage-derived versican and the role it plays in innate immunity. In previous work, we showed that LPS triggers a signaling cascade involving TLR4, the Trif adaptor, type I interferons, and the type I interferon receptor, leading to increased versican expression by macrophages. In the present study, we used a combination of chromatin immunoprecipitation, siRNA, chemical inhibitors, and mouse model approaches to investigate the regulatory events downstream of the type I interferon receptor to better define the mechanism controlling versican expression. Results indicate that transcriptional regulation by canonical type I interferon signaling via the heterotrimeric transcription factor, ISGF3, controls versican expression in macrophages exposed to LPS. This pathway is not dependent on MAPK signaling, which has been shown to regulate versican expression in other cell types. The stability of versican mRNA may also contribute to prolonged versican expression in macrophages. These findings strongly support a role for macrophage-derived versican as a type I interferon-stimulated gene and further our understanding of versican's role in regulating inflammation.
Collapse
Affiliation(s)
- Mary Y. Chang
- Department of Comparative Medicine, University of Washington, Seattle, WA
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, WA
| | - Christina K. Chan
- Department of Comparative Medicine, University of Washington, Seattle, WA
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, WA
| | - Jourdan E. Brune
- Department of Comparative Medicine, University of Washington, Seattle, WA
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, WA
| | - Anne M. Manicone
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, WA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA
| | - Karol Bomsztyk
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA
| | - Charles W. Frevert
- Department of Comparative Medicine, University of Washington, Seattle, WA
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, WA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA
| | - William A. Altemeier
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, WA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
39
|
Blackman SA, Miles D, Suresh J, Calve S, Bryant SJ. Cell- and Serum-Derived Proteins Act as DAMPs to Activate RAW 264.7 Macrophage-like Cells on Silicone Implants. ACS Biomater Sci Eng 2024; 10:1418-1434. [PMID: 38319825 PMCID: PMC11316276 DOI: 10.1021/acsbiomaterials.3c01393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Protein adsorption after biomaterial implantation is the first stage of the foreign body response (FBR). However, the source(s) of the adsorbed proteins that lead to damaged associated molecular patterns (DAMPs) and induce inflammation have not been fully elucidated. This study examined the effects of different protein sources, cell-derived (from a NIH/3T3 fibroblast cell lysate) and serum-derived (from fetal bovine serum), which were compared to implant-derived proteins (after a 30 min subcutaneous implantation in mice) on activation of RAW 264.7 cells cultured in minimal (serum-free) medium. Both cell-derived and serum-derived protein sources when preadsorbed to either tissue culture polystyrene or medical-grade silicone induced RAW 264.7 cell activation. The combination led to an even higher expression of pro-inflammatory cytokine genes and proteins. Implant-derived proteins on silicone explants induced a rapid inflammatory response that then subsided more quickly and to a greater extent than the studies with in vitro cell-derived or serum-derived protein sources. Proteomic analysis of the implant-derived proteins identified proteins that included cell-derived and serum-derived, but also other proteinaceous sources (e.g., extracellular matrix), suggesting that the latter or nonproteinaceous sources may help to temper the inflammatory response in vivo. These findings indicate that both serum-derived and cell-derived proteins adsorbed to implants can act as DAMPs to drive inflammation in the FBR, but other protein sources may play an important role in controlling inflammation.
Collapse
Affiliation(s)
- Samuel A. Blackman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO 80309-0596, USA
| | - Dalton Miles
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO 80309-0596, USA
| | - Joshita Suresh
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO 80309-0596, USA
| | - Sarah Calve
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Dr, Boulder, CO 80309-0427, USA
- BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO 80309-0596, USA
| | - Stephanie J. Bryant
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO 80309-0596, USA
- BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO 80309-0596, USA
- Materials Science and Engineering Program, University of Colorado Boulder, 4001 Discovery Dr, Boulder, CO 80300-0613, USA
| |
Collapse
|
40
|
Ash SL, Orha R, Mole H, Dinesh-Kumar M, Lee SP, Turrell FK, Isacke CM. Targeting the activated microenvironment with endosialin (CD248)-directed CAR-T cells ablates perivascular cells to impair tumor growth and metastasis. J Immunother Cancer 2024; 12:e008608. [PMID: 38413223 PMCID: PMC10900351 DOI: 10.1136/jitc-2023-008608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Targeting of solid cancers with chimeric antigen receptor (CAR)-T cells is limited by the lack of suitable tumor-specific antigens and the immunosuppressive, desmoplastic tumor microenvironment that impedes CAR-T cell infiltration, activity and persistence. We hypothesized that targeting the endosialin (CD248) receptor, strongly expressed by tumor-associated pericytes and perivascular cancer-associated fibroblasts, would circumvent these challenges and offer an exciting antigen for CAR-T cell therapy due to the close proximity of target cells to the tumor vasculature, the limited endosialin expression in normal tissues and the lack of phenotype observed in endosialin knockout mice. METHODS We generated endosialin-directed E3K CAR-T cells from three immunocompetent mouse strains, BALB/c, FVB/N and C57BL/6. E3K CAR-T cell composition (CD4+/CD8+ ratio), activity in vitro against endosialin+ and endosialin- cells, and expansion and activity in vivo in syngeneic tumor models as well as in tumor-naive healthy and wounded mice and tumor-bearing endosialin knockout mice was assessed. RESULTS E3K CAR-T cells were active in vitro against both mouse and human endosialin+, but not endosialin-, cells. Adoptively transferred E3K CAR-T cells exhibited no activity in endosialin knockout mice, tumor-naive endosialin wildtype mice or in wound healing models, demonstrating an absence of off-target and on-target/off-tumor activity. By contrast, adoptive transfer of E3K CAR-T cells into BALB/c, FVB/N or C57BL/6 mice bearing syngeneic breast or lung cancer lines depleted target cells in the tumor stroma resulting in increased tumor necrosis, reduced tumor growth and a substantial impairment in metastatic outgrowth. CONCLUSIONS Together these data highlight endosialin as a viable antigen for CAR-T cell therapy and that targeting stromal cells closely associated with the tumor vasculature avoids CAR-T cells having to navigate the harsh immunosuppressive tumor microenvironment. Further, the ability of E3K CAR-T cells to recognize and target both mouse and human endosialin+ cells makes a humanized and optimized E3K CAR a promising candidate for clinical development applicable to a broad range of solid tumor types.
Collapse
Affiliation(s)
- Sarah L Ash
- The Institute of Cancer Research, London, UK
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | | | - Holly Mole
- University of Birmingham, Birmingham, UK
| | | | | | - Frances K Turrell
- The Institute of Cancer Research, London, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | | |
Collapse
|
41
|
Aouad P, Quinn HM, Berger A, Brisken C. Tumor dormancy: EMT beyond invasion and metastasis. Genesis 2024; 62:e23552. [PMID: 37776086 DOI: 10.1002/dvg.23552] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 10/01/2023]
Abstract
More than two-thirds of cancer-related deaths are attributable to metastases. In some tumor types metastasis can occur up to 20 years after diagnosis and successful treatment of the primary tumor, a phenomenon termed late recurrence. Metastases arise from disseminated tumor cells (DTCs) that leave the primary tumor early on in tumor development, either as single cells or clusters, adapt to new environments, and reduce or shut down their proliferation entering a state of dormancy for prolonged periods of time. Dormancy has been difficult to track clinically and study experimentally. Recent advances in technology and disease modeling have provided new insights into the molecular mechanisms orchestrating dormancy and the switch to a proliferative state. A new role for epithelial-mesenchymal transition (EMT) in inducing plasticity and maintaining a dormant state in several cancer models has been revealed. In this review, we summarize the major findings linking EMT to dormancy control and highlight the importance of pre-clinical models and tumor/tissue context when designing studies. Understanding of the cellular and molecular mechanisms controlling dormant DTCs is pivotal in developing new therapeutic agents that prevent distant recurrence by maintaining a dormant state.
Collapse
Affiliation(s)
- Patrick Aouad
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Hazel M Quinn
- ISREC-Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Adeline Berger
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Cathrin Brisken
- ISREC-Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| |
Collapse
|
42
|
Abstract
Gliomas are a diverse group of primary central nervous system tumors that affect both children and adults. Recent studies have revealed a dynamic cross talk that occurs between glioma cells and components of their microenvironment, including neurons, astrocytes, immune cells, and the extracellular matrix. This cross talk regulates fundamental aspects of glioma development and growth. In this review, we discuss recent discoveries about the impact of these interactions on gliomas and highlight how tumor cells actively remodel their microenvironment to promote disease. These studies provide a better understanding of the interactions in the microenvironment that are important in gliomas, offer insight into the cross talk that occurs, and identify potential therapeutic vulnerabilities that can be utilized to improve clinical outcomes.
Collapse
Affiliation(s)
- Maya Anjali Jayaram
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, California, USA;
| | - Joanna J Phillips
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, California, USA;
- Division of Neuropathology, Department of Pathology, University of California, San Francisco, California, USA
| |
Collapse
|
43
|
Zhao W, Wang H, Zhang X, Zhang L, Pu W, Ma Y, Chen W. Effects of IFN-γ on the immunological microenvironment and TAM polarity in stage IA non-small cell lung cancer and its mechanisms. BMC Pulm Med 2024; 24:46. [PMID: 38254043 PMCID: PMC10802021 DOI: 10.1186/s12890-023-02809-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 12/08/2023] [Indexed: 01/24/2024] Open
Abstract
OBJECTIVE To investigate the effect of interferon-γ (IFN-γ) on the immune microenvironment and the polarity of tumor-associated macrophages (TAMs) in stage IA non-small cell lung cancer (NSCLC) and its mechanisms. METHODS Human non-small cell lung cancer A549 cells were treated with a series of IFN-γ concentrations (0, 50, 100, 150, 200, 250, and 300 ng/mL). Tumor tissues from patients with stage IA NSCLC were cultured using the air-liquid interface culture technique to establish a tumor microenvironment (TME) organ model. The NSCLC model was constructed by subcutaneously embedding small tumor pieces into the back of nonobese diabetic severe combined immune deficiency (NOD SCID) mice. The size and weight of the tumors were recorded, and the tumor volume was calculated. CCK-8 assays were used to investigate cell proliferation, flow cytometry and TUNEL staining were used to evaluate cell apoptosis, colony formation was investigated by cloning experiments, and cell invasion and migration were evaluated by Transwell assays and scratch tests. The expression of apoptosis-related proteins (Bax, Bcl-2 and C-caspase 3), M2 polarization-related markers (CD163, CD206 and IDO1), and marker proteins of cytotoxic T cells and helper T cells (CD8 and CD4) was detected by Western blot. The expression of Ki-67 and IDO1 was detected by immunohistochemistry, and the levels of IL-6, IL-10, IL-13 and TNF-α were measured by ELISA. The expression of CD68 was measured by RT‒qPCR, and the phagocytosis of TAMs was evaluated by a Cell Trace CFSE kit and cell probe staining. RESULTS The proliferation activity of A549 cells increased with increasing IFN-γ concentration and peaked when the concentration reached 200 ng/mL, and the proliferation activity of A549 cells was suppressed thereafter. After treatment with 200 ng/mL IFN-γ, the apoptosis rate of cells decreased, the number of cell colonies increased, the invasion and migration of cells were promoted, the expression of Bax and C-caspase 3 was downregulated, and the expression of Bcl-2 was upregulated in cells and the TME model. In the TME model, CD163, CD206, IDO1 and Ki-67 were upregulated, CD8 and CD4 were downregulated, apoptosis was reduced, the levels of IL-6 and TNF-α were decreased, and the levels of IL-10 and IL-13 were increased. IL-4 induced TAMs to express CD163 and CD206, reduced the levels of IL-6 and TNF-α, increased the levels of IL-10 and IL-13, and weakened the phagocytic function of TAMs. IFN-γ treatment further enhanced the effect of IL-4 and enhanced the viability of A549 cells. IDO1 decreased the viability of T cells and NK cells, while suppressing the effect of IFN-γ. In mice, compared with NSCLC mice, the tumor volume and weight of the IFN-γ group were increased, the expression of CD163, CD206, IDO1, Ki-67 and Bcl-2 in tumor tissue was upregulated, the expression of Bax and C-caspase 3 was downregulated, and apoptosis was reduced. The levels of IL-6 and TNF-α were decreased, and the levels of IL-10 and IL-13 were increased in the serum of mice. CONCLUSION In stage IA NSCLC, a low concentration of IFN-γ promotes the polarization of TAMs to the M2 phenotype in the TME model by upregulating the expression of IDO1, promoting the viability of cancer cells, inhibiting the viability of T cells and NK cells, and thus establishing an immune microenvironment conducive to tumor progression.
Collapse
Affiliation(s)
- Weijie Zhao
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), No. 519, Kunzhou Road, Xishan District, Kunming, Yunnan, 650118, China
| | - Huipeng Wang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), No. 519, Kunzhou Road, Xishan District, Kunming, Yunnan, 650118, China
| | - Xiangwu Zhang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), No. 519, Kunzhou Road, Xishan District, Kunming, Yunnan, 650118, China
| | - Li Zhang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), No. 519, Kunzhou Road, Xishan District, Kunming, Yunnan, 650118, China
| | - Wei Pu
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), No. 519, Kunzhou Road, Xishan District, Kunming, Yunnan, 650118, China
| | - Yuhui Ma
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), No. 519, Kunzhou Road, Xishan District, Kunming, Yunnan, 650118, China
| | - Wanling Chen
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), No. 519, Kunzhou Road, Xishan District, Kunming, Yunnan, 650118, China.
| |
Collapse
|
44
|
Zhang Q, Dai Z, Chen Y, Li Q, Guo Y, Zhu Z, Tu M, Cai L, Lu X. Endosome associated trafficking regulator 1 promotes tumor growth and invasion of glioblastoma multiforme via inhibiting TNF signaling pathway. J Neurooncol 2024; 166:113-127. [PMID: 38191954 DOI: 10.1007/s11060-023-04527-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024]
Abstract
PURPOSE Endosome associated trafficking regulator 1 (ENTR1) is a novel endosomal protein, which can affect multiple cellular biological behavior by remodeling plasma membrane structures. However, little is known regarding its function and underlying mechanisms in glioblastoma multiforme. METHODS Expression profile and clinical signature were obtained from The Public Database of human tumor. Immunohistochemical staining and western blotting assays were used to measure ENTR1 expression level. Human primary GBM tumor cells and human GBM cell lines A172, U87 and U251 were used to clarify the precise role of ENTR1. CCK-8 assays, wound healing and transwell invasion assays were designed to investigate cell viability, invasion and migration of GBM cells, respectively. Underlying molecular mechanisms of ENTR1 were determined via RNA-seq analysis. Tumor formation assay was used to validate the influence of ENTR1 in vivo. RESULTS Compared with normal brain tissues, ENTR1 was highly expressed in gliomas and correlated with malignant grades of gliomas and poor overall survival time. The proliferation and invasion of GBM cells could be weaken and the sensitivity to temozolomide (TMZ) chemotherapy increased after knocking down ENTR1. Overexpression of ENTR1 could reverse this effect. RNA-seq analysis showed that tumor necrosis factor (TNF) signaling pathway might be a putative regulatory target of ENTR1. Tumor formation assay validated that ENTR1 was a significant factor in tumor growth. CONCLUSION Our results indicated that ENTR1 played an important role in cell proliferation, invasion and chemotherapeutic sensitivity of GBM, suggesting that ENTR1 might be a novel prognostic marker and significant therapeutic target for GBM.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Zhang'an Dai
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yingyu Chen
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Qun Li
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yuhang Guo
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Department of Neurosurgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Zhangzhang Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Ming Tu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Lin Cai
- Department of Neurosurgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Xianghe Lu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
45
|
Mahmoudi A, Butler AE, De Vincentis A, Jamialahmadi T, Sahebkar A. Microarray-based Detection of Critical Overexpressed Genes in the Progression of Hepatic Fibrosis in Non-alcoholic Fatty Liver Disease: A Protein-protein Interaction Network Analysis. Curr Med Chem 2024; 31:3631-3652. [PMID: 37194229 DOI: 10.2174/0929867330666230516123028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/26/2023] [Accepted: 04/11/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a prevalent cause of chronic liver disease and encompasses a broad spectrum of disorders, including simple steatosis, steatohepatitis, fibrosis, cirrhosis, and liver cancer. However, due to the global epidemic of NAFLD, where invasive liver biopsy is the gold standard for diagnosis, it is necessary to identify a more practical method for early NAFLD diagnosis with useful therapeutic targets; as such, molecular biomarkers could most readily serve these aims. To this end, we explored the hub genes and biological pathways in fibrosis progression in NAFLD patients. METHODS Raw data from microarray chips with GEO accession GSE49541 were downloaded from the Gene Expression Omnibus database, and the R package (Affy and Limma) was applied to investigate differentially expressed genes (DEGs) involved in the progress of low- (mild 0-1 fibrosis score) to high- (severe 3-4 fibrosis score) fibrosis stage NAFLD patients. Subsequently, significant DEGs with pathway enrichment were analyzed, including gene ontology (GO), KEGG and Wikipathway. In order to then explore critical genes, the protein-protein interaction network (PPI) was established and visualized using the STRING database, with further analysis undertaken using Cytoscape and Gephi software. Survival analysis was undertaken to determine the overall survival of the hub genes in the progression of NAFLD to hepatocellular carcinoma. RESULTS A total of 311 significant genes were identified, with an expression of 278 being upregulated and 33 downregulated in the high vs. low group. Gene functional enrichment analysis of these significant genes demonstrated major involvement in extracellular matrix (ECM)-receptor interaction, protein digestion and absorption, and the AGE-RAGE signaling pathway. The PPI network was constructed with 196 nodes and 572 edges with PPI enrichment using a p-value < 1.0 e-16. Based on this cut-off, we identified 12 genes with the highest score in four centralities: Degree, Betweenness, Closeness, and Eigenvector. Those twelve hub genes were CD34, THY1, CFTR, COL3A1, COL1A1, COL1A2, SPP1, THBS1, THBS2, LUM, VCAN, and VWF. Four of these hub genes, namely CD34, VWF, SPP1, and VCAN, showed significant association with the development of hepatocellular carcinoma. CONCLUSION This PPI network analysis of DEGs identified critical hub genes involved in the progression of fibrosis and the biological pathways through which they exert their effects in NAFLD patients. Those 12 genes offer an excellent opportunity for further focused research to determine potential targets for therapeutic applications.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Antonio De Vincentis
- Unit of Internal Medicine and Geriatrics, Università Campus Bio-Medico di Roma, Fondazione Policlinico Universitario Campus Bio-Medico di Roma, Via Alvaro del Portillo 200, Rome 00128, Italy
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Australia
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
46
|
Reghu G, Vemula PK, Bhat SG, Narayanan S. Harnessing the innate immune system by revolutionizing macrophage-mediated cancer immunotherapy. J Biosci 2024; 49:63. [PMID: 38864238 PMCID: PMC11286319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 06/13/2024]
Abstract
Immunotherapy is a promising and safer alternative to conventional cancer therapies. It involves adaptive T-cell therapy, cancer vaccines, monoclonal antibodies, immune checkpoint blockade (ICB), and chimeric antigen receptor (CAR) based therapies. However, most of these modalities encounter restrictions in solid tumours owing to a dense, highly hypoxic and immune-suppressive microenvironment as well as the heterogeneity of tumour antigens. The elevated intra-tumoural pressure and mutational rates within fastgrowing solid tumours present challenges in efficient drug targeting and delivery. The tumour microenvironment is a dynamic niche infiltrated by a variety of immune cells, most of which are macrophages. Since they form a part of the innate immune system, targeting macrophages has become a plausible immunotherapeutic approach. In this review, we discuss several versatile approaches (both at pre-clinical and clinical stages) such as the direct killing of tumour-associated macrophages, reprogramming pro-tumour macrophages to anti-tumour phenotypes, inhibition of macrophage recruitment into the tumour microenvironment, novel CAR macrophages, and genetically engineered macrophages that have been devised thus far. These strategies comprise a strong and adaptable macrophage-toolkit in the ongoing fight against cancer and by understanding their significance, we may unlock the full potential of these immune cells in cancer therapy.
Collapse
Affiliation(s)
- Gayatri Reghu
- Department of Biotechnology, Cochin University of Science and Technology, Kochi 682 022, India
| | | | | | | |
Collapse
|
47
|
Minns AF, Santamaria S. Determination of Versikine Levels by Enzyme-Linked Immunosorbent Assay (ELISA). Methods Mol Biol 2024; 2747:83-93. [PMID: 38038934 DOI: 10.1007/978-1-0716-3589-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
The proteoglycan versican plays multiple roles in cancer progression, from promoting cell invasion and proliferation to evasion of immune surveillance. Metalloproteinases of the A Disintegrin and Metalloproteinase with Thrombospondin-like motif (ADAMTS) family cleave versican at a specific Glu-Ala bond, thus releasing a bioactive fragment named versikine, whose biological function, still not entirely revealed, seems that of antagonizing the effects of the parental molecule. Here we describe an enzyme-linked immunosorbent assay (ELISA) that specifically detects versikine in media, pure component systems, and biological fluids using neoepitope antibodies. Such antibodies recognize their target proteolytic fragment but not the intact, parental molecule. Versikine fragments are captured by neoepitope antibodies and detected by antibodies directed against its N-terminal globular (G1) domain. The method here described can therefore be used to measure ADAMTS versicanase activity and provides a quantitative alternative to immunoblotting.
Collapse
Affiliation(s)
- Alexander Frederick Minns
- Department of Biochemical Sciences, School of Biosciences, Faculty of Health and Medical Sciences, Edward Jenner Building, University of Surrey, Surrey, UK
| | - Salvatore Santamaria
- Department of Biochemical Sciences, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK.
| |
Collapse
|
48
|
Cossu C, Di Lorenzo A, Fiorilla I, Todesco AM, Audrito V, Conti L. The Role of the Toll-like Receptor 2 and the cGAS-STING Pathways in Breast Cancer: Friends or Foes? Int J Mol Sci 2023; 25:456. [PMID: 38203626 PMCID: PMC10778705 DOI: 10.3390/ijms25010456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Breast cancer stands as a primary malignancy among women, ranking second in global cancer-related deaths. Despite treatment advancements, many patients progress to metastatic stages, posing a significant therapeutic challenge. Current therapies primarily target cancer cells, overlooking their intricate interactions with the tumor microenvironment (TME) that fuel progression and treatment resistance. Dysregulated innate immunity in breast cancer triggers chronic inflammation, fostering cancer development and therapy resistance. Innate immune pattern recognition receptors (PRRs) have emerged as crucial regulators of the immune response as well as of several immune-mediated or cancer cell-intrinsic mechanisms that either inhibit or promote tumor progression. In particular, several studies showed that the Toll-like receptor 2 (TLR2) and the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathways play a central role in breast cancer progression. In this review, we present a comprehensive overview of the role of TLR2 and STING in breast cancer, and we explore the potential to target these PRRs for drug development. This information will significantly impact the scientific discussion on the use of PRR agonists or inhibitors in cancer therapy, opening up new and promising avenues for breast cancer treatment.
Collapse
Affiliation(s)
- Chiara Cossu
- Department of Molecular Biotechnology and Health Sciences–Molecular Biotechnology Center “Guido Tarone”, University of Turin, Piazza Nizza 44, 10126 Turin, Italy; (C.C.); (A.D.L.)
| | - Antonino Di Lorenzo
- Department of Molecular Biotechnology and Health Sciences–Molecular Biotechnology Center “Guido Tarone”, University of Turin, Piazza Nizza 44, 10126 Turin, Italy; (C.C.); (A.D.L.)
| | - Irene Fiorilla
- Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, 15121 Alessandria, Italy; (I.F.); (A.M.T.); (V.A.)
| | - Alberto Maria Todesco
- Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, 15121 Alessandria, Italy; (I.F.); (A.M.T.); (V.A.)
| | - Valentina Audrito
- Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, 15121 Alessandria, Italy; (I.F.); (A.M.T.); (V.A.)
| | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences–Molecular Biotechnology Center “Guido Tarone”, University of Turin, Piazza Nizza 44, 10126 Turin, Italy; (C.C.); (A.D.L.)
| |
Collapse
|
49
|
Papadas A, Huang Y, Cicala A, Dou Y, Fields M, Gibbons A, Hong D, Lagal DJ, Quintana V, Rizo A, Zomalan B, Asimakopoulos F. Emerging roles for tumor stroma in antigen presentation and anti-cancer immunity. Biochem Soc Trans 2023; 51:2017-2028. [PMID: 38031753 PMCID: PMC10754280 DOI: 10.1042/bst20221083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
Advances in immunotherapy in the last decade have revolutionized treatment paradigms across multiple cancer diagnoses. However, only a minority of patients derive durable benefit and progress with traditional approaches, such as cancer vaccines, remains unsatisfactory. A key to overcoming these barriers resides with a deeper understanding of tumor antigen presentation and the complex and dynamic heterogeneity of tumor-infiltrating antigen-presenting cells (APCs). Reminiscent of the 'second touch' hypothesis proposed by Klaus Ley for CD4+ T cell differentiation, the acquisition of full effector potential by lymph node- primed CD8+ T cells requires a second round of co-stimulation at the site where the antigen originated, i.e. the tumor bed. The tumor stroma holds a prime role in this process by hosting specialized APC niches, apparently distinct from tertiary lymphoid structures, that support second antigenic touch encounters and CD8+ T cell effector proliferation and differentiation. We propose that APC within second-touch niches become licensed for co-stimulation through stromal-derived instructive signals emulating embryonic or wound-healing provisional matrix remodeling. These immunostimulatory roles of stroma contrast with its widely accepted view as a physical and functional 'immune barrier'. Stromal control of antigen presentation makes evolutionary sense as the host stroma-tumor interface constitutes the prime line of homeostatic 'defense' against the emerging tumor. In this review, we outline how stroma-derived signals and cells regulate tumor antigen presentation and T-cell effector differentiation in the tumor bed. The re-definition of tumor stroma as immune rheostat rather than as inflexible immune barrier harbors significant untapped therapeutic opportunity.
Collapse
Affiliation(s)
- Athanasios Papadas
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, U.S.A
- Moores Cancer Center, University of California San Diego (UCSD), La Jolla, CA, U.S.A
| | - Yun Huang
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, U.S.A
- Moores Cancer Center, University of California San Diego (UCSD), La Jolla, CA, U.S.A
| | - Alexander Cicala
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, U.S.A
- Moores Cancer Center, University of California San Diego (UCSD), La Jolla, CA, U.S.A
| | - Yaling Dou
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, U.S.A
- Moores Cancer Center, University of California San Diego (UCSD), La Jolla, CA, U.S.A
| | - Matteo Fields
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, U.S.A
- Moores Cancer Center, University of California San Diego (UCSD), La Jolla, CA, U.S.A
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Alicia Gibbons
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, U.S.A
- Moores Cancer Center, University of California San Diego (UCSD), La Jolla, CA, U.S.A
| | - Duncan Hong
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, U.S.A
- Moores Cancer Center, University of California San Diego (UCSD), La Jolla, CA, U.S.A
| | - Daniel J. Lagal
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, U.S.A
- Moores Cancer Center, University of California San Diego (UCSD), La Jolla, CA, U.S.A
| | - Victoria Quintana
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, U.S.A
- Moores Cancer Center, University of California San Diego (UCSD), La Jolla, CA, U.S.A
| | - Alejandro Rizo
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, U.S.A
- Moores Cancer Center, University of California San Diego (UCSD), La Jolla, CA, U.S.A
| | - Brolyn Zomalan
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, U.S.A
- Moores Cancer Center, University of California San Diego (UCSD), La Jolla, CA, U.S.A
| | - Fotis Asimakopoulos
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, U.S.A
- Moores Cancer Center, University of California San Diego (UCSD), La Jolla, CA, U.S.A
| |
Collapse
|
50
|
Johnson B. Targeting Myeloid-Derived Suppressor Cell Trafficking as a Novel Immunotherapeutic Approach in Microsatellite Stable Colorectal Cancer. Cancers (Basel) 2023; 15:5484. [PMID: 38001744 PMCID: PMC10670242 DOI: 10.3390/cancers15225484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a unique subset of immune cells that promote an immunosuppressive phenotype due to their impacts on CD8 and regulatory T cell function. The inhibition of MDSC trafficking to the tumor microenvironment (TME) may represent a novel target in microsatellite stable (MSS) colorectal cancer with the potential to reprogram the immune system. Here, we review the rationale of inhibiting myeloid suppressor cell trafficking in treatment-refractory MSS colorectal cancer and circulating tumor DNA (ctDNA) positive settings to determine whether this approach can serve as a backbone for promoting immunotherapy response in this difficult-to-treat disease.
Collapse
Affiliation(s)
- Benny Johnson
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|