1
|
Daems M, Ponomarev LC, Simoes-Faria R, Nobis M, Scheele CLGJ, Luttun A, Ghesquière B, Zwijsen A, Jones EAV. Smad1/5 is acetylated in the dorsal aortae of the mouse embryo before the onset of blood flow, driving early arterial gene expression. Cardiovasc Res 2024; 120:2078-2091. [PMID: 39253943 DOI: 10.1093/cvr/cvae201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 06/22/2024] [Indexed: 09/11/2024] Open
Abstract
AIMS During embryonic development, arteriovenous (AV) differentiation ensures proper blood vessel formation and maturation. Defects in arterial or venous identity cause inappropriate fusion of vessels, resulting in atypical shunts, so-called AV malformations (AVMs). Currently, the mechanism behind AVM formation remains unclear, and treatment options are fairly limited. Mammalian AV differentiation is initiated before the onset of blood flow in the embryo; however, this pre-flow mechanism is poorly understood. Here, we aimed to unravel the role of Smad1/5 signalling in pre-flow arterial identity and, in the process, uncovered an unexpected control mechanism of Smad1/5 signalling. METHODS AND RESULTS We establish that despite Notch1 being expressed in the pre-flow mouse embryo, it is not activated, nor is it necessary for the expression of the earliest arterial genes in the dorsal aortae (i.e. Hey1 and Gja4). Furthermore, interrupting blood flow by using the Ncx1 KO model completely prevents the activation of Notch1 signalling, suggesting a strong role of shear stress in maintaining arterial identity. We demonstrate that early expression of Hey1 and Gja4 requires SMAD1/5 signalling. Using embryo cultures, we show that Smad1/5 signalling is activated through the Alk1/Alk5/transforming growth factor (TGF)βR2 receptor complex, with TGFβ1 as a necessary ligand. Furthermore, our findings demonstrate that early arterial gene expression requires the acetylation of Smad1/5 proteins, rendering them more sensitive to TGFβ1 stimulation. Blocking acetyl-CoA production prevents pre-flow arterial expression of Hey1 and Gja4, while stabilizing acetylation rescues their expression. CONCLUSION Our findings highlight the importance of the acetyl-CoA production in the cell and provide a novel control mechanism of Smad1/5 signalling involving protein acetylation. As disturbed canonical Smad1/5 signalling is involved in several vascular conditions, our results offer new insights in treatment options for circumventing canonical Smad1/5 signalling.
Collapse
MESH Headings
- Animals
- Smad5 Protein/metabolism
- Smad5 Protein/genetics
- Smad1 Protein/metabolism
- Smad1 Protein/genetics
- Acetylation
- Gene Expression Regulation, Developmental
- Receptor, Notch1/metabolism
- Receptor, Notch1/genetics
- Mice, Knockout
- Regional Blood Flow
- Signal Transduction
- Aorta/metabolism
- Aorta/physiopathology
- Aorta/embryology
- Receptor, Transforming Growth Factor-beta Type I/metabolism
- Receptor, Transforming Growth Factor-beta Type I/genetics
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Protein Processing, Post-Translational
- Transforming Growth Factor beta1/metabolism
- Transforming Growth Factor beta1/genetics
- Mice, Inbred C57BL
- Receptors, Transforming Growth Factor beta/metabolism
- Receptors, Transforming Growth Factor beta/genetics
- Mice
- Sodium-Calcium Exchanger
Collapse
Affiliation(s)
- Margo Daems
- Centre for Molecular and Vascular Biology, KU Leuven, Herestraat 49, bus 911, 3000 Leuven, Belgium
| | - Ljuba C Ponomarev
- Centre for Molecular and Vascular Biology, KU Leuven, Herestraat 49, bus 911, 3000 Leuven, Belgium
| | - Rita Simoes-Faria
- Metabolomics Expertise Centre, VIB Centre for Cancer Biology, 3000 Leuven, Belgium
- Department of Cellular and Molecular Medicine, Laboratory of Applied Mass Spectrometry, KU Leuven, 3000 Leuven, Belgium
| | - Max Nobis
- Intravital Imaging Expertise Centre, VIB Centre for Cancer Biology, KU Leuven, 3000 Leuven, Belgium
| | - Colinda L G J Scheele
- Department of Oncology, Laboratory for Intravital Imaging and Dynamics of Tumour Progression, VIB Centre for Cancer Biology, KU Leuven, 3000 Leuven, Belgium
| | - Aernout Luttun
- Centre for Molecular and Vascular Biology, KU Leuven, Herestraat 49, bus 911, 3000 Leuven, Belgium
| | - Bart Ghesquière
- Metabolomics Expertise Centre, VIB Centre for Cancer Biology, 3000 Leuven, Belgium
- Department of Cellular and Molecular Medicine, Laboratory of Applied Mass Spectrometry, KU Leuven, 3000 Leuven, Belgium
| | - An Zwijsen
- Centre for Molecular and Vascular Biology, KU Leuven, Herestraat 49, bus 911, 3000 Leuven, Belgium
| | - Elizabeth A V Jones
- Centre for Molecular and Vascular Biology, KU Leuven, Herestraat 49, bus 911, 3000 Leuven, Belgium
- Department of Cardiology, Maastricht University, CARIM School for Cardiovascular Diseases, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
2
|
Ouarné M, Pena A, Ramalho D, Conchinha NV, Costa T, Enjalbert R, Figueiredo AM, Saraiva MP, Carvalho Y, Bernabeu MO, Henao Misikova L, Oh SP, Franco CA. A non-genetic model of vascular shunts informs on the cellular mechanisms of formation and resolution of arteriovenous malformations. Cardiovasc Res 2024; 120:1967-1984. [PMID: 39308243 PMCID: PMC11629978 DOI: 10.1093/cvr/cvae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 04/11/2024] [Accepted: 05/23/2024] [Indexed: 12/11/2024] Open
Abstract
AIMS Arteriovenous malformations (AVMs), a disorder characterized by direct shunts between arteries and veins, are associated with genetic mutations. However, the mechanisms leading to AV shunt formation and how shunts can be reverted are poorly understood. METHODS AND RESULTS Here, we report that oxygen-induced retinopathy (OIR) protocol leads to the consistent and stereotypical formation of AV shunts in non-genetically altered mice. OIR-induced AV shunts show all the canonical markers of AVMs. Genetic and pharmacological interventions demonstrated that changes in the volume of venous endothelial cells (EC)-hypertrophic venous cells-are the initiating step promoting AV shunt formation, whilst EC proliferation or migration played minor roles. Inhibition of the mTOR pathway prevents pathological increases in EC volume and significantly reduces the formation of AV shunts. Importantly, we demonstrate that ALK1 signalling cell-autonomously regulates EC volume in pro-angiogenic conditions, establishing a link with hereditary haemorrhagic telangiectasia-related AVMs. Finally, we demonstrate that a combination of EC volume control and EC migration is associated with the regression of AV shunts. CONCLUSION Our findings highlight that an increase in the EC volume is the key mechanism driving the initial stages of AV shunt formation, leading to asymmetric capillary diameters. Based on our results, we propose a coherent and unifying timeline leading to the fast conversion of a capillary vessel into an AV shunt. Our data advocate for further investigation into the mechanisms regulating EC volume in health and disease as a way to identify therapeutic approaches to prevent and revert AVMs.
Collapse
Affiliation(s)
- Marie Ouarné
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
| | - Andreia Pena
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
- Católica Biomedical Research Centre, Universidade Católica Portuguesa, Católica Medical School, Lisbon 1649-023, Portugal
| | - Daniela Ramalho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
- Católica Biomedical Research Centre, Universidade Católica Portuguesa, Católica Medical School, Lisbon 1649-023, Portugal
| | - Nadine V Conchinha
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
| | - Tiago Costa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
| | - Romain Enjalbert
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh EH16 4UX, UK
| | - Ana M Figueiredo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
| | - Marta Pimentel Saraiva
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
| | - Yulia Carvalho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
| | - Miguel O Bernabeu
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh EH16 4UX, UK
- The Bayes Centre, The University of Edinburgh, Edinburgh EH8 9BT, UK
| | - Lenka Henao Misikova
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
- Católica Biomedical Research Centre, Universidade Católica Portuguesa, Católica Medical School, Lisbon 1649-023, Portugal
| | - S Paul Oh
- Barrow Aneurysm & AVM Research Center, Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Cláudio A Franco
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
- Católica Biomedical Research Centre, Universidade Católica Portuguesa, Católica Medical School, Lisbon 1649-023, Portugal
| |
Collapse
|
3
|
Hume E, Cossio ML, Vargas P, Cubillos MP, Maccioni A, Lay-Son G. Another face of RASA1: Report of familial germline variant in RASA1 with dysmorphic features. Am J Med Genet A 2024; 194:e63711. [PMID: 38934655 DOI: 10.1002/ajmg.a.63711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/07/2024] [Accepted: 05/05/2024] [Indexed: 06/28/2024]
Abstract
RASopathies encompass a diverse set of disorders affecting genes that encode proteins within the RAS-MAPK pathway. RASA1 mutations are the cause of an autosomal dominant disorder called capillary malformation-arteriovenous malformation type 1 (CM-AVM1). Unlike other RASopathies, facial dysmorphism has not been described in these patients. We phenotypically delineated a large family of individuals with multifocal fast-flow capillary malformations, severe lymphatic anomalies of perinatal onset, and dysmorphic features not previously described. Sequencing studies were performed on probands and related family members, confirming the segregation of dysmorphic features in affected members of a novel heterozygous variant in RASA1 (NM_002890.3:c.2366G>A, p.(Arg789Gln)). In this work, we broaden the phenotypic spectrum of CM-AVM type 1 and propose a new RASA1 variant as likely pathogenic.
Collapse
Affiliation(s)
- Esteban Hume
- Sección de Genética y Errores Congénitos del Metabolismo, División de Pediatría, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María-Laura Cossio
- Department of Dermatology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paula Vargas
- Centro de Investigación e Innovación Materno Fetal, Complejo Asistencial Dr. Sótero del Río, Santiago, Chile
- División de Obstetricia y Ginecología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María Paz Cubillos
- Servicio de Neonatología, Complejo Asistencial Dr. Sótero del Río, Santiago, Chile
| | - Andrea Maccioni
- Servicio de Neonatología, Complejo Asistencial Dr. Sótero del Río, Santiago, Chile
- Departamento de Neonatología, División de Pediatría, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Guillermo Lay-Son
- Sección de Genética y Errores Congénitos del Metabolismo, División de Pediatría, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Unidad de Genética, Complejo Asistencial Dr. Sótero del Río, Santiago, Chile
| |
Collapse
|
4
|
Kelly C, Buscarini E, Manfredi G, Gregory S, Heneghan MA. Hepatic manifestations of hereditary haemorrhagic telangiectasia. Liver Int 2024; 44:2220-2234. [PMID: 38847503 DOI: 10.1111/liv.16008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/01/2024] [Accepted: 05/25/2024] [Indexed: 08/30/2024]
Abstract
Hereditary haemorrhagic telangiectasia is a genetic condition of abnormal blood vessel formation resulting from an imbalance of pro- and anti-angiogenic products of the transforming growth factor β/bone morphogenetic protein signalling pathway which contributes to vascular remodelling and maintenance. Hepatic vascular malformations are common although less frequently symptomatic, but may result in high-output cardiac failure, portal hypertension and biliary ischaemia. Whilst the understanding of the genetic and cell signalling pathways that are the hallmark of hereditary haemorrhagic telangiectasia have been clarified, there remain challenges in therapy for these patients. Only patients with symptomatic hepatic vascular malformations require treatment, with most (63%) responding to first-line medical therapy. For non-responders, bevacizumab is effective in reducing cardiac output in those with heart failure secondary to hepatic vascular malformations as well as other manifestations of the disease. Although liver transplantation is the only curative option, optimal timing is critical. Novel anti-angiogenetic drugs and those that target aberrant cell signalling pathway are being explored.
Collapse
Affiliation(s)
- Claire Kelly
- Institute of Liver Studies, Kings College Hospital, London, UK
| | | | - Guido Manfredi
- VASCERN HHT Reference Centre, ASST Maggiore Hospital, Crema, Italy
| | | | | |
Collapse
|
5
|
Fish A, Wang D, Knight E, Pollak J, Schlachter T. Recurrence of Pulmonary Arteriovenous Malformation after Embolization in Patients with Pulmonary Hypertension. J Vasc Interv Radiol 2024; 35:1148-1153. [PMID: 38692392 DOI: 10.1016/j.jvir.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024] Open
Abstract
PURPOSE To evaluate the correlation between pulmonary hypertension (PH) and recurrence of pulmonary arteriovenous malformation (PAVM) after embolization. MATERIALS AND METHODS With institutional review board (IRB) approval, the records of 377 patients with PAVMs evaluated at a single hereditary hemorrhagic telangiectasia (HHT) center of excellence between January 1, 2013, and September 10, 2023, were retrospectively reviewed. PAVMs embolized during this time period were evaluated for recurrence. Patients and PAVMs not treated during this time period were excluded. Growth of previously untreated PAVMs was not considered recurrence. Patients without chest computed tomography (CT) follow-up were excluded. General demographics, HHT status as defined by genetic testing or Curacao criteria, presence of PH, history of smoking, anemia, and hepatic arteriovenous malformations (AVMs) were documented. Odds ratio (OR) was calculated and stratified analysis was performed to assay the correlation between PAVM recurrence, PH, and possible confounders. RESULTS A total of 151 patients with PAVMs were treated during the study period, including 438 PAVMs, for which follow-up was available. This included 106 patients with definite, 31 with doubtful, and 14 with possible HHT. The presence of PH was significantly associated with PAVM recurrence both by patient (OR, 8.13; 95% CI, 3.50-19.67) and by lesion (OR, 4.07; 95% CI, 2.14-7.91). Multivariate analysis demonstrated that this correlation was independent of several variables including HHT status, smoking history, presence of hepatic AVMs, and anemia. CONCLUSIONS There is a high correlation between PH and PAVM recurrence, suspected to be due to high pulmonary artery pressures causing recanalization. PH may suggest the need for shorter surveillance intervals.
Collapse
Affiliation(s)
- Adam Fish
- Department of Interventional Radiology, Yale School of Medicine, New Haven, Connecticut.
| | - Daniel Wang
- Department of Interventional Radiology, Yale School of Medicine, New Haven, Connecticut
| | - Elizabeth Knight
- Department of Interventional Radiology, Yale School of Medicine, New Haven, Connecticut
| | - Jeffrey Pollak
- Department of Interventional Radiology, Yale School of Medicine, New Haven, Connecticut
| | - Todd Schlachter
- Department of Interventional Radiology, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
6
|
Al Tabosh T, Al Tarrass M, Tourvieilhe L, Guilhem A, Dupuis-Girod S, Bailly S. Hereditary hemorrhagic telangiectasia: from signaling insights to therapeutic advances. J Clin Invest 2024; 134:e176379. [PMID: 38357927 PMCID: PMC10866657 DOI: 10.1172/jci176379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Hereditary hemorrhagic telangiectsia (HHT) is an inherited vascular disorder with highly variable expressivity, affecting up to 1 in 5,000 individuals. This disease is characterized by small arteriovenous malformations (AVMs) in mucocutaneous areas (telangiectases) and larger visceral AVMs in the lungs, liver, and brain. HHT is caused by loss-of-function mutations in the BMP9-10/ENG/ALK1/SMAD4 signaling pathway. This Review presents up-to-date insights on this mutated signaling pathway and its crosstalk with proangiogenic pathways, in particular the VEGF pathway, that has allowed the repurposing of new drugs for HHT treatment. However, despite the substantial benefits of these new treatments in terms of alleviating symptom severity, this not-so-uncommon bleeding disorder still currently lacks any FDA- or European Medicines Agency-approved (EMA-approved) therapies.
Collapse
Affiliation(s)
- Tala Al Tabosh
- Biosanté Unit U1292, Grenoble Alpes University, INSERM, CEA, Grenoble, France
| | - Mohammad Al Tarrass
- Biosanté Unit U1292, Grenoble Alpes University, INSERM, CEA, Grenoble, France
| | - Laura Tourvieilhe
- Hospices Civils de Lyon, National HHT Reference Center and Genetics Department, Femme-Mère-Enfants Hospital, Bron, France
| | - Alexandre Guilhem
- Hospices Civils de Lyon, National HHT Reference Center and Genetics Department, Femme-Mère-Enfants Hospital, Bron, France
- TAI-IT Autoimmunité Unit RIGHT-UMR1098, Burgundy University, INSERM, EFS-BFC, Besancon, France
| | - Sophie Dupuis-Girod
- Biosanté Unit U1292, Grenoble Alpes University, INSERM, CEA, Grenoble, France
- Hospices Civils de Lyon, National HHT Reference Center and Genetics Department, Femme-Mère-Enfants Hospital, Bron, France
| | - Sabine Bailly
- Biosanté Unit U1292, Grenoble Alpes University, INSERM, CEA, Grenoble, France
| |
Collapse
|
7
|
Cerdà P, Castillo SD, Aguilera C, Iriarte A, Rocamora JL, Larrinaga AM, Viñals F, Graupera M, Riera-Mestre A. New genetic drivers in hemorrhagic hereditary telangiectasia. Eur J Intern Med 2024; 119:99-108. [PMID: 37689549 DOI: 10.1016/j.ejim.2023.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/11/2023]
Abstract
BACKGROUND Hereditary hemorrhagic telangiectasia (HHT) is a rare vascular disease inherited in an autosomal dominant manner. Disease-causing variants in endoglin (ENG) and activin A receptor type II-like 1 (ACVRL1) genes are detected in around 90% of the patients; also 2% of patients harbor pathogenic variants at SMAD4 and GDF2. Importantly, the genetic cause of 8% of patients with clinical HHT remains unknown. Here, we present new putative genetic drivers of HHT. METHODS To identify new HHT genetic drivers, we performed exome sequencing of 19 HHT patients and relatives with unknown HHT genetic etiology. We applied a multistep filtration strategy to catalog deleterious variants and prioritize gene candidates based on their known relevance in endothelial cell biology. Additionally, we performed in vitro validation of one of the identified variants. RESULTS We identified variants in the INHA, HIF1A, JAK2, DNM2, POSTN, ANGPTL4, FOXO1 and SMAD6 genes as putative drivers in HHT. We have identified the SMAD6 p.(Glu407Lys) variant in one of the families; this is a loss-of-function variant leading to the activation of the BMP/TGFβ signaling in endothelial cells. CONCLUSIONS Variants in these genes should be considered for genetic testing in patients with HHT phenotype and negative for ACVRL1/ENG mutations.
Collapse
Affiliation(s)
- Pau Cerdà
- HHT Unit, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Spain; Internal Medicine Department, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Sandra D Castillo
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Cinthia Aguilera
- HHT Unit, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Genetics Laboratory, Laboratori Clínic Territorial Metropolitana Sud, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Spain
| | - Adriana Iriarte
- HHT Unit, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Spain; Internal Medicine Department, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - José Luis Rocamora
- HHT Unit, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Spain; Molecular Signaling Group, Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), Institut d'Investigacio Biomedica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ane M Larrinaga
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Francesc Viñals
- Molecular Signaling Group, Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), Institut d'Investigacio Biomedica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Department of Physiological Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona (UB), L'Hospitalet de Llobregat, Spain; Program Against Cancer Therapeutic Resistance (ProCURE), Institut Catala d'Oncologia (ICO), L'Hospitalet de Llobregat, Spain
| | - Mariona Graupera
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute, Badalona, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain; ICREA, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Antoni Riera-Mestre
- HHT Unit, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Spain; Internal Medicine Department, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Department of Clinical Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona (UB), L'Hospitalet de Llobregat, Spain.
| |
Collapse
|
8
|
Engel ER, Wusik K, Bright P, Vadivelu S, Taylor JM, Hammill A. Prevalence and Predictors of Hereditary Hemorrhagic Telangiectasia and Capillary-Malformation Arteriovenous Malformation Syndrome Among Children with Neurovascular Malformations. J Pediatr 2024; 264:113761. [PMID: 37797790 DOI: 10.1016/j.jpeds.2023.113761] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/07/2023]
Abstract
OBJECTIVE To investigate the prevalence and predictors of hereditary hemorrhagic telangiectasia (HHT) and capillary-malformation arteriovenous malformation (CM-AVM) syndrome among children with no prior personal or family history of these diseases who presented with an arteriovenous shunt lesion. STUDY DESIGN A retrospective chart review was completed on patients aged 0 through 21 years with arteriovenous shunt lesions evaluated at our Cerebrovascular Center. Diagnosis of definite or suspected HHT or CM-AVM was based on clinical features and genetic testing. Associations between final diagnosis and type and number of lesions, epistaxis, telangiectasias, CM, and pulmonary AVMs were assessed. RESULTS Eighty-nine patients were included. Thirteen (14.6%) had definite HHT, 11 (12.4%) suspected HHT, and 4 (4.5%) definite CM-AVM. Having ≥2 episodes of epistaxis/year and ≥ 2 sites with telangiectasias were each associated with definite HHT (P < .001). Having ≥ 2 CM was associated with definite CM-AVM (P < .001). Pulmonary AVM was associated with increased odds of having definite HHT (OR = 6.3, 95% CI: 1.2-33.4). Multiple lesions (OR = 24.5, 95% CI: 4.5-134.8) and arteriovenous fistulas (OR = 6.2, 95% CI: 1.9-20.3) each increased the likelihood of having definite HHT or CM-AVM. Genetic testing was positive in 31% of patients tested. CONCLUSIONS We recommend that children with neurovascular shunt lesions be offered genetic testing and undergo further evaluation for HHT and CM-AVM. Awareness and early diagnosis of these conditions is a critical step toward improving long-term outcomes and preventing disease-associated complications.
Collapse
Affiliation(s)
- Elissa R Engel
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH; Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.
| | - Katie Wusik
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Philip Bright
- University of Kentucky College of Medicine, Northern Kentucky Campus, Highland Heights, KY
| | - Sudhakar Vadivelu
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH; Division of Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Division of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - J Michael Taylor
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH; Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Adrienne Hammill
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH; Division of Hematology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| |
Collapse
|
9
|
Mathavan A, Mathavan A, Reddy R, Jones K, Eagan C, Alnuaimat H, Ataya A. Pulmonary hypertension in hereditary hemorrhagic telangiectasia: A clinical review. Pulm Circ 2023; 13:e12301. [PMID: 37868718 PMCID: PMC10585978 DOI: 10.1002/pul2.12301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is a rare autosomal dominant hereditary disorder characterized by recurrent spontaneous epistaxis, mucocutaneous telangiectasias, and solid organ arteriovenous malformations (AVMs). Pulmonary hypertension (PH) is an increasingly recognized complication in patients with HHT, most often precipitated by high-output heart failure in the presence of hepatic AVMs as well as pulmonary arterial hypertension in the form of a proliferative vasculopathy. The presence of PH in patients with HHT is associated with significant elevations in rates of morbidity and mortality. Additionally, there is growing recognition of a thromboembolic propensity in this population that increases the risk of chronic thromboembolic PH, posing unique clinical considerations regarding the use of anticoagulation. Patients with HHT are also at risk of PH due to disorders commonly seen in the general population, including left-sided heart and lung disease. The etiology of PH in HHT is multifaceted and complex; the diagnostic approach and treatment strategies must consider the underlying pathophysiology of HHT. This comprehensive review summarizes current knowledge of PH in HHT, detailing the pathogenesis of known etiologies, diagnostic evaluation, and suggested treatment modalities as well as emerging therapies that may be of future interest.
Collapse
Affiliation(s)
- Akash Mathavan
- Department of Internal MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Akshay Mathavan
- Department of Internal MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Renuka Reddy
- Division of Pulmonary, Critical Care, and Sleep MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Kirk Jones
- Department of Internal MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Christina Eagan
- Division of Pulmonary, Critical Care, and Sleep MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Hassan Alnuaimat
- Respiratory Institute Pulmonary, Critical Care, and Sleep MedicineCleveland Clinic Abu DhabiAbu DhabiUnited Arab Emirates
| | - Ali Ataya
- Division of Pulmonary, Critical Care, and Sleep MedicineUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
10
|
Ola R, Hessels J, Hammill A, Friday C, Clancy M, Al-Samkari H, Meadows S, Iyer V, Akhurst R. Executive summary of the 14th HHT international scientific conference. Angiogenesis 2023; 26:27-37. [PMID: 37695357 PMCID: PMC10543799 DOI: 10.1007/s10456-023-09886-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 09/12/2023]
Abstract
Hereditary Hemorrhagic Telangiectasia (HHT) is an autosomal dominant vascular disorder characterized by small, dilated clustered vessels (telangiectasias) and by larger visceral arteriovenous malformations (AVMs), which directly connect the feeding arteries with the draining veins. These lesions are fragile, prone to rupture, and lead to recurrent epistaxis and/or internal hemorrhage among other complications. Germline heterozygous loss-of-function (LOF) mutations in Bone Morphogenic Protein 9 (BMP9) and BMP10 signaling pathway genes (endoglin-ENG, activin like kinase 1 ACVRL1 aka ALK1, and SMAD4) cause different subtypes of HHT (HHT1, HHT2 and HHT-juvenile polyposis (JP)) and have a worldwide combined incidence of about 1:5000. Expert clinicians and international scientists gathered in Cascais, Portugal from September 29th to October 2nd, 2022 to present the latest scientific research in the HHT field and novel treatment strategies for people living with HHT. During the largest HHT scientific conference yet, participants included 293 in person and 46 virtually. An impressive 209 abstracts were accepted to the meeting and 59 were selected for oral presentations. The remaining 150 abstracts were presented during judged poster sessions. This review article summarizes the basic and clinical abstracts selected as oral presentations with their new observations and discoveries as well as surrounding discussion and debate. Two discussion-based workshops were also held during the conference, each focusing on mechanisms and clinical perspectives in either AVM formation and progression or current and future therapies for HHT. Our hope is that this paper will represent the current progress and the remaining unanswered questions surrounding HHT, in order to serve as an update for those within the field and an invitation to those scientists and clinicians as yet outside of the field of HHT.
Collapse
Affiliation(s)
- Roxana Ola
- Cardiovascular Pharmacology Mannheim (EPM), European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Josefien Hessels
- Department of Pulmonology, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Adrienne Hammill
- Cancer and Blood Diseases Institute, Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Cassi Friday
- HHT Foundation International, Inc (Cure HHT), Monkton, MD, USA.
| | - Marianne Clancy
- HHT Foundation International, Inc (Cure HHT), Monkton, MD, USA
| | - Hanny Al-Samkari
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Stryder Meadows
- Cell and Molecular Biology Department, Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| | - Vivek Iyer
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| | - Rosemary Akhurst
- Helen Diller Family Comprehensive Cancer Center and Department of Anatomy, University of California, San Francisco (UCSF), San Francisco, CA, USA
| |
Collapse
|
11
|
Ielasi L, Tonnini M, Piscaglia F, Serio I. Current guidelines for diagnosis and management of hepatic involvement in hereditary hemorrhagic teleangiectasia. World J Hepatol 2023; 15:675-687. [PMID: 37305373 PMCID: PMC10251273 DOI: 10.4254/wjh.v15.i5.675] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
Hereditary hemorrhagic teleangiectasia (HHT), also known as Rendu-Osler-Weber syndrome, is the most common cause of hepatic vascular malformations in adults. Different vascular shunts (arteriovenous, arterioportal or portovenous) lead to different clinical manifestations. Even though no hepatic-related symptoms are reported in the majority of cases, the severity of liver disease could lead to refractory medical conditions, in some cases requiring liver transplantation. The aim of this manuscript is to provide an updated overview of the current evidence regarding the diagnosis and treatment of HHT liver involvement and liver-related complications.
Collapse
Affiliation(s)
- Luca Ielasi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
- Department of Internal Medicine, Ospedale per gli Infermi di Faenza, Faenza 48018, Italy
| | - Matteo Tonnini
- Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - Fabio Piscaglia
- Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - Ilaria Serio
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| |
Collapse
|
12
|
Hernandez PV, King KA, Evenson MJ, Corliss MM, Schroeder MC, Heusel JW, Neidich JA, Cao Y. High-depth next-generation sequencing panel testing in the evaluation of arteriovenous malformations. Am J Med Genet A 2023; 191:1518-1524. [PMID: 36924216 DOI: 10.1002/ajmg.a.63171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/07/2023] [Accepted: 02/21/2023] [Indexed: 03/18/2023]
Abstract
Arteriovenous malformations (AVMs) are vascular lesions in which an overgrowth of blood vessels of varying sizes develops with one or more direct connections between the arterial and venous circulation. We performed a retrospective review of a cohort of 54 patients with AVMs referred to our clinical genomic laboratory for high-depth next-generation sequencing (NGS) panel of Disorders of Somatic Mosaicism (DoSM). Thirty-seven of 54 patients were female (68.5%). Among the 54 cases, 37 (68.5%) cases had pathogenic and/or likely pathogenic (P/LP) variants identified, two cases (3.7%) had variants of uncertain clinical significance, and the remaining 15 cases (27.8%) had negative results. MAP2K1 variants were found in 12 cases, followed by eight cases with KRAS variants and seven with TEK variants, and the remainder being identified in several other genes on the panel. Among the 37 positive cases, 32 cases had somatic alterations only; the remaining five cases had at least one germline P/LP variant, including four cases with PTEN and one with RASA1. Of note, two cases had the unexpected co-existence of two P/LP variants. In summary, this study illustrated the molecular diagnostic yield (68.5%) of this cohort of patients with a clinical indication of AVMs by our high-depth DoSM NGS panel.
Collapse
Affiliation(s)
- Patricia V Hernandez
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Katherine A King
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Michael J Evenson
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Meagan M Corliss
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Molly C Schroeder
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Jonathan W Heusel
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA.,Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Julie A Neidich
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA.,Department of Pediatrics, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Yang Cao
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
13
|
Cannavicci A, Zhang Q, Kutryk MJB. The Potential Role of MiRs-139-5p and -454-3p in Endoglin-Knockdown-Induced Angiogenic Dysfunction in HUVECs. Int J Mol Sci 2023; 24:ijms24054916. [PMID: 36902347 PMCID: PMC10003543 DOI: 10.3390/ijms24054916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is a rare genetic disease characterized by aberrant angiogenesis and vascular malformations. Mutations in the transforming growth factor beta co-receptor, endoglin (ENG), account for approximately half of known HHT cases and cause abnormal angiogenic activity in endothelial cells (ECs). To date, how ENG deficiency contributes to EC dysfunction remains to be fully understood. MicroRNAs (miRNAs) regulate virtually every cellular process. We hypothesized that ENG depletion results in miRNA dysregulation that plays an important role in mediating EC dysfunction. Our goal was to test the hypothesis by identifying dysregulated miRNAs in ENG-knockdown human umbilical vein endothelial cells (HUVECs) and characterizing their potential role in EC function. We identified 32 potentially downregulated miRNAs in ENG-knockdown HUVECs with a TaqMan miRNA microarray. MiRs-139-5p and -454-3p were found to be significantly downregulated after RT-qPCR validation. While the inhibition of miR-139-5p or miR-454-3p had no effect on HUVEC viability, proliferation or apoptosis, angiogenic capacity was significantly compromised as determined by a tube formation assay. Most notably, the overexpression of miRs-139-5p and -454-3p rescued impaired tube formation in HUVECs with ENG knockdown. To our knowledge, we are the first to demonstrate miRNA alterations after the knockdown of ENG in HUVECs. Our results indicate a potential role of miRs-139-5p and -454-3p in ENG-deficiency-induced angiogenic dysfunction in ECs. Further study to examine the involvement of miRs-139-5p and -454-3p in HHT pathogenesis is warranted.
Collapse
Affiliation(s)
- Anthony Cannavicci
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Cardiology, Keenan Research Center for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada
| | - Qiuwang Zhang
- Division of Cardiology, Keenan Research Center for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada
| | - Michael J. B. Kutryk
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Cardiology, Keenan Research Center for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada
- Correspondence: ; Tel.: +1-(416)-360-4000 (ext. 6155)
| |
Collapse
|
14
|
Ma L, Peng X, Gong Q. A GDF2 missense mutation potentially involved in the pathogenesis of hereditary hemorrhagic telangiectasia: a case report. J Int Med Res 2023; 51:3000605231159545. [PMID: 36891821 PMCID: PMC10009034 DOI: 10.1177/03000605231159545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant vascular disease. ENG and ACVRL1 gene variants account for up to 96% of all cases, while the remaining cases are caused by SMAD4 or GDF2 variants, or by currently undiscovered mutations in coding or non-coding regions. Here, we report a 47-year-old man who presented with duodenal bulb bleeding and chronic anemia. Physical examination also revealed bleeding from the skin and gingiva. His parents were cousins and one brother and one sister died in infancy from anemia and bleeding. Head computed tomography angiography (CTA) revealed a complete fetal posterior cerebral artery located in the left side, and pulmonary CTA showed pulmonary arterial hypertension. The patient was diagnosed with HHT. Peripheral blood was collected for whole-exome sequencing. Sequencing revealed a mutation in the GDF2 gene, which encodes bone morphogenetic protein-9 (BMP-9). The detected variant, c.352A > T(p.Ile118Phe), was predicted to be a neutral polymorphism; however, the patient's plasma BMP-9 levels were greatly reduced; we predicted that this might be caused by the GDF2 variant and might be involved in the HHT pathogenesis. Further research in cell lines and animal models is needed to verify the correlation between this GDF2 variant and the pathogenesis of HHT.
Collapse
Affiliation(s)
- Le Ma
- Department of Hematology, Southwest Hospital, First Affiliated Hospital of the Army Medical University, Chongqing 400038, China
| | - Xi Peng
- Department of Hematology, Southwest Hospital, First Affiliated Hospital of the Army Medical University, Chongqing 400038, China
| | - Qiang Gong
- Department of Hematology, Southwest Hospital, First Affiliated Hospital of the Army Medical University, Chongqing 400038, China
| |
Collapse
|
15
|
Drapé E, Anquetil T, Larrivée B, Dubrac A. Brain arteriovenous malformation in hereditary hemorrhagic telangiectasia: Recent advances in cellular and molecular mechanisms. Front Hum Neurosci 2022; 16:1006115. [PMID: 36504622 PMCID: PMC9729275 DOI: 10.3389/fnhum.2022.1006115] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/27/2022] [Indexed: 11/25/2022] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is a genetic disorder characterized by vessel dilatation, such as telangiectasia in skin and mucosa and arteriovenous malformations (AVM) in internal organs such as the gastrointestinal tract, lungs, and brain. AVMs are fragile and tortuous vascular anomalies that directly connect arteries and veins, bypassing healthy capillaries. Mutations in transforming growth factor β (TGFβ) signaling pathway components, such as ENG (ENDOGLIN), ACVRL1 (ALK1), and SMAD4 (SMAD4) genes, account for most of HHT cases. 10-20% of HHT patients develop brain AVMs (bAVMs), which can lead to vessel wall rupture and intracranial hemorrhages. Though the main mutations are known, mechanisms leading to AVM formation are unclear, partially due to lack of animal models. Recent mouse models allowed significant advances in our understanding of AVMs. Endothelial-specific deletion of either Acvrl1, Eng or Smad4 is sufficient to induce AVMs, identifying endothelial cells (ECs) as primary targets of BMP signaling to promote vascular integrity. Loss of ALK1/ENG/SMAD4 signaling is associated with NOTCH signaling defects and abnormal arteriovenous EC differentiation. Moreover, cumulative evidence suggests that AVMs originate from venous ECs with defective flow-migration coupling and excessive proliferation. Mutant ECs show an increase of PI3K/AKT signaling and inhibitors of this signaling pathway rescue AVMs in HHT mouse models, revealing new therapeutic avenues. In this review, we will summarize recent advances and current knowledge of mechanisms controlling the pathogenesis of bAVMs, and discuss unresolved questions.
Collapse
Affiliation(s)
- Elise Drapé
- Centre de Recherche, CHU St. Justine, Montréal, QC, Canada,Département de Pharmacologie et de Physiologie, Université de Montréal, Montréal, QC, Canada
| | - Typhaine Anquetil
- Centre de Recherche, CHU St. Justine, Montréal, QC, Canada,Département De Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, QC, Canada
| | - Bruno Larrivée
- Département d’Ophtalmologie, Université de Montréal, Montréal, QC, Canada,Centre De Recherche, Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada,*Correspondence: Bruno Larrivée,
| | - Alexandre Dubrac
- Centre de Recherche, CHU St. Justine, Montréal, QC, Canada,Département De Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, QC, Canada,Département d’Ophtalmologie, Université de Montréal, Montréal, QC, Canada,Alexandre Dubrac,
| |
Collapse
|
16
|
Viteri-Noël A, González-García A, Patier JL, Fabregate M, Bara-Ledesma N, López-Rodríguez M, Gómez del Olmo V, Manzano L. Hereditary Hemorrhagic Telangiectasia: Genetics, Pathophysiology, Diagnosis, and Management. J Clin Med 2022; 11:jcm11175245. [PMID: 36079173 PMCID: PMC9457069 DOI: 10.3390/jcm11175245] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/30/2022] Open
Abstract
Hereditary hemorrhagic telangiectasia is an inherited disease related to an alteration in angiogenesis, manifesting as cutaneous telangiectasias and epistaxis. As complications, it presents vascular malformations in organs such as the lung, liver, digestive tract, and brain. Currently, diagnosis can be made using the Curaçao criteria or by identifying the affected gene. In recent years, there has been an advance in the understanding of the pathophysiology of the disease, which has allowed the use of new therapeutic strategies to improve the quality of life of patients. This article reviews some of the main and most current evidence on the pathophysiology, clinical manifestations, diagnostic approach, screening for complications, and therapeutic options, both pharmacological and surgical.
Collapse
Affiliation(s)
- Adrian Viteri-Noël
- Internal Medicine Department, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
- Faculty of Medicine and Health Sciences, Universidad de Alcalá (UAH), 28801 Alcalá de Henares, Spain
- Correspondence:
| | - Andrés González-García
- Internal Medicine Department, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
- Faculty of Medicine and Health Sciences, Universidad de Alcalá (UAH), 28801 Alcalá de Henares, Spain
| | - José Luis Patier
- Internal Medicine Department, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
- Faculty of Medicine and Health Sciences, Universidad de Alcalá (UAH), 28801 Alcalá de Henares, Spain
| | - Martin Fabregate
- Internal Medicine Department, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
| | - Nuria Bara-Ledesma
- Internal Medicine Department, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
| | - Mónica López-Rodríguez
- Internal Medicine Department, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
- Faculty of Medicine and Health Sciences, Universidad de Alcalá (UAH), 28801 Alcalá de Henares, Spain
| | - Vicente Gómez del Olmo
- Internal Medicine Department, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
| | - Luis Manzano
- Internal Medicine Department, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
- Faculty of Medicine and Health Sciences, Universidad de Alcalá (UAH), 28801 Alcalá de Henares, Spain
| |
Collapse
|
17
|
Setty BA, Wusik K, Hammill AM. How we approach genetics in the diagnosis and management of vascular anomalies. Pediatr Blood Cancer 2022; 69 Suppl 3:e29320. [PMID: 36070212 DOI: 10.1002/pbc.29320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 01/04/2023]
Abstract
Vascular anomalies are a heterogeneous group of disorders that are currently classified based on their clinical and histological characteristics. Over the past decade, there have been significant advances in molecular genetics that have led to identification of genetic alterations associated with vascular tumors, vascular malformations, and syndromes. Here, we describe known genetic alterations in vascular anomalies, discuss when and how to test, and examine how identification of causative genetic mutations provides for better management of these disorders through improved understanding of their pathogenesis and increasing use of targeted therapeutic agents in order to achieve better outcomes for our patients.
Collapse
Affiliation(s)
- Bhuvana A Setty
- Division of Hematology/Oncology/BMT, Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Katie Wusik
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Adrienne M Hammill
- Division of Hematology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
18
|
Syndromic vascular malformations related to the PIK3CA and RAS pathways: A clinical and imaging review. Clin Imaging 2022; 89:162-173. [DOI: 10.1016/j.clinimag.2022.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/08/2022] [Accepted: 06/26/2022] [Indexed: 01/19/2023]
|
19
|
Han Y, Ding B, Li M, Song X, Liu L, Zhou H. A case of hereditary hemorrhagic telangiectasia and literature review. J Clin Lab Anal 2022; 36:e24571. [PMID: 35754156 PMCID: PMC9396175 DOI: 10.1002/jcla.24571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
Background To discuss the clinical features of a patient with hereditary hemorrhagic telangiectasia (HHT). Methods The clinical data of one patient with HHT are retrospectively analysed. In addition, we review the relevant literature. Results A 32‐year‐old male patient was admitted to the hematology outpatient department of our hospital and presented with intermittent epistaxis for 24 years. In recent years, he was diagnosed with iron deficiency anemia. The nasal endoscopic examination showed telangiectasia at the front of the right‐middle turbinate and the left nasal cavity. He had ENG genetic mutation positivity. Conclusions Patients with HHT may suffer from many complications, including bleeding, anemia, iron deficiency, and high‐output heart failure. These patients may have telangiectasias and arteriovenous malformations in various organs.
Collapse
Affiliation(s)
- Yu Han
- Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, China.,Department of Hematology, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Bingjie Ding
- Department of Hematology, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengjuan Li
- Department of Hematology, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Xuewen Song
- Department of Hematology, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Liu Liu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hu Zhou
- Department of Hematology, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
20
|
Floria M, Năfureanu ED, Iov DE, Sîrbu O, Dranga M, Ouatu A, Tănase DM, Bărboi OB, Drug VL, Cobzeanu MD. Hereditary Hemorrhagic Telangiectasia and Arterio-Venous Malformations—From Diagnosis to Therapeutic Challenges. J Clin Med 2022; 11:jcm11092634. [PMID: 35566759 PMCID: PMC9105924 DOI: 10.3390/jcm11092634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
Hereditary hemorrhagic telangiectasia is a rare autosomal dominant vascular disease defined by the presence of mucosal and cutaneous telangiectasia and visceral arterio-venous malformations. The latter are abnormal capillary-free direct communications between the pulmonary and systemic circulations with the following consequences: arterial hypoxemia caused by right-to-left shunts; paradoxical embolism with transient ischemic attack or stroke and brain abscess caused by the absence of the normally filtering capillary bed; and hemoptysis or hemothorax due to the rupture of the thin-walled arterio-venous malformations (particularly during pregnancy). It is frequently underdiagnosed, commonly presenting as complications from shunting through arterio-venous malformations: dyspnea, chronic bleeding, or embolism. Arterio-venous malformations are present not only in the lungs, but can also be found in the liver, central nervous system (mainly in the brain), nasal mucosa, or the gastrointestinal tract. The first choice of therapy is embolization of the afferent arteries of the arterio-venous malformations, a minimally invasive procedure with a high efficacy, a low morbidity, and low mortality. Other therapeutic modalities are surgery (resection) or stereotactic radiosurgery (using radiation). Routine screening for arterio-venous malformations is indicated in patients diagnosed with this condition and can prevent severe complications such as acute hemorrhages, brain abscesses, or strokes. Clinicians should provide a long-term follow-up for patients with arterio-venous malformations, in an effort to detect their growth or reperfusion in case of previously treated malformations. In spite of two experts’ consensuses, it still possesses multiple therapeutic challenges for physicians, as several aspects regarding the screening and management of arterio-venous malformations still remain controversial. Multidisciplinary teams are especially useful in complex cases.
Collapse
Affiliation(s)
- Mariana Floria
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (M.F.); (E.D.N.); (O.S.); (M.D.); (A.O.); (O.B.B.); (V.L.D.)
- “Dr. Iacob Czihac” Military Emergency Hospital, 700483 Iași, Romania
| | - Elena Diana Năfureanu
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (M.F.); (E.D.N.); (O.S.); (M.D.); (A.O.); (O.B.B.); (V.L.D.)
- “Dr. Iacob Czihac” Military Emergency Hospital, 700483 Iași, Romania
| | - Diana-Elena Iov
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (M.F.); (E.D.N.); (O.S.); (M.D.); (A.O.); (O.B.B.); (V.L.D.)
- Sf. Spiridon Emergency Hospital, 700111 Iași, Romania;
- Correspondence: (D.-E.I.); (D.M.T.); Tel.: +40-232-301-600 (D.-E.I.)
| | - Oana Sîrbu
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (M.F.); (E.D.N.); (O.S.); (M.D.); (A.O.); (O.B.B.); (V.L.D.)
- Sf. Spiridon Emergency Hospital, 700111 Iași, Romania;
| | - Mihaela Dranga
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (M.F.); (E.D.N.); (O.S.); (M.D.); (A.O.); (O.B.B.); (V.L.D.)
- “Dr. Iacob Czihac” Military Emergency Hospital, 700483 Iași, Romania
| | - Anca Ouatu
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (M.F.); (E.D.N.); (O.S.); (M.D.); (A.O.); (O.B.B.); (V.L.D.)
- Sf. Spiridon Emergency Hospital, 700111 Iași, Romania;
| | - Daniela Maria Tănase
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (M.F.); (E.D.N.); (O.S.); (M.D.); (A.O.); (O.B.B.); (V.L.D.)
- Sf. Spiridon Emergency Hospital, 700111 Iași, Romania;
- Correspondence: (D.-E.I.); (D.M.T.); Tel.: +40-232-301-600 (D.-E.I.)
| | - Oana Bogdana Bărboi
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (M.F.); (E.D.N.); (O.S.); (M.D.); (A.O.); (O.B.B.); (V.L.D.)
- Sf. Spiridon Emergency Hospital, 700111 Iași, Romania;
| | - Vasile Liviu Drug
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (M.F.); (E.D.N.); (O.S.); (M.D.); (A.O.); (O.B.B.); (V.L.D.)
- Sf. Spiridon Emergency Hospital, 700111 Iași, Romania;
| | - Mihail Dan Cobzeanu
- Sf. Spiridon Emergency Hospital, 700111 Iași, Romania;
- Surgical Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| |
Collapse
|
21
|
MicroRNA-132-3p, Downregulated in Myeloid Angiogenic Cells from Hereditary Hemorrhagic Telangiectasia Patients, Is Enriched in the TGFβ and PI3K/AKT Signalling Pathways. Genes (Basel) 2022; 13:genes13040665. [PMID: 35456471 PMCID: PMC9027908 DOI: 10.3390/genes13040665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 02/04/2023] Open
Abstract
Background. Hereditary hemorrhagic telangiectasia (HHT) is a rare, autosomal dominant genetic disorder characterized by life-threatening vascular dysplasia. Myeloid angiogenic cells (MACs), alternatively called early endothelial progenitor cells or circulating angiogenic cells, do not directly incorporate into developing blood vessels, but augment angiogenesis in a paracrine manner. MAC dysfunction has been reported in HHT. MicroRNAs (miRNAs) regulate cellular function by modulating gene expression post-transcriptionally. To date, the role of miRNAs in HHT MAC dysfunction has not been documented. Objective. The goal of this study was to comparatively profile miRNAs in HHT patient and control MACs to identify dysregulated miRNAs that may be responsible for the observed MAC dysfunction in HHT. Methodology/Results. Twenty-three dysregulated miRNAs (twenty-one upregulated and two downregulated) in HHT MACs were identified with a TaqMan miRNA microarray. Pathway enrichment analysis showed that the dysregulated miRNAs were significantly enriched in pathways involved in HHT pathogenesis, such as the transforming growth factor β (TGFβ), phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT), and Hippo signalling pathways. Furthermore, miR-132-3p was determined to be significantly reduced in HHT MACs compared with controls by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Bioinformatic analysis revealed that miR-132-3p is significantly enriched in the TGFβ and PI3K/AKT signalling pathways, targeting SMAD4, an effector of the TGFβ signalling pathway and RASA1, a negative regulator of the PI3K/AKT signalling pathway, respectively. Conclusion. MiRNA dysregulation, specifically reduced expression of miR-132-3p, in HHT MACs was identified. The dysregulated miRNAs are significantly enriched in the TGFβ, PI3K/AKT, and Hippo signalling pathways. These data suggest that alteration in miRNA expression may impair these pathways and contribute to MAC dysfunction in HHT.
Collapse
|
22
|
Hammill AM. Hereditary hemorrhagic telangiectasia (HHT): a practical guide to management. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2021; 2021:469-477. [PMID: 34889398 PMCID: PMC8791148 DOI: 10.1182/hematology.2021000281] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hereditary hemorrhagic telangiectasia (HHT), the second most common inherited bleeding disorder, is associated with the development of malformed blood vessels. Abnormal blood vessels may be small and cutaneous or mucosal (telangiectasia), with frequent complications of bleeding, or large and visceral (arteriovenous malformations [AVMs]), with additional risks that can lead to significant morbidity and even mortality. HHT can present in many different ways and can be difficult to recognize, particularly in younger patients in the absence of a known family history of disease or epistaxis, its most common manifestation. HHT is commonly diagnosed using the established Curaçao clinical criteria, which include (1) family history, (2) recurrent epistaxis, (3) telangiectasia, and (4) visceral AVMs. Fulfillment of 3 or more criteria provides a definite diagnosis of HHT, whereas 2 criteria constitute a possible diagnosis of HHT. However, these criteria are insufficient in children to rule out disease due to the age-dependent development of some of these criteria. Genetic testing, when positive, can provide definitive diagnosis of HHT in all age groups. Clinical course is often complicated by significant epistaxis and/or gastrointestinal bleeding, leading to anemia in half of adult patients with HHT. The management paradigm has recently shifted from surgical approaches to medical treatments aimed at control of chronic bleeding, such as antifibrinolytic and antiangiogenic agents, combined with aggressive iron replacement with intravenous iron. Guidelines for management of HHT, including screening and treatment, were determined by expert consensus and originally published in 2009 with updates and new guidelines in 2020.
Collapse
Affiliation(s)
- Adrienne M. Hammill
- Cancer and Blood Diseases Institute, Division of Hematology, Cincinnati Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
23
|
胡 健, 王 剑, 许 敏, 来 育, 薛 涛, 陈 福, 查 定, 陈 晓. [Hereditary hemorrhagic telangiectasia: 8 case report and lirerature review]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2021; 35:1031-1034. [PMID: 34886610 PMCID: PMC10128373 DOI: 10.13201/j.issn.2096-7993.2021.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Indexed: 04/30/2023]
Affiliation(s)
- 健 胡
- 空军军医大学西京医院耳鼻咽喉头颈外科(西安,710032)
| | - 剑 王
- 空军军医大学西京医院耳鼻咽喉头颈外科(西安,710032)
| | - 敏 许
- 空军军医大学西京医院耳鼻咽喉头颈外科(西安,710032)
| | - 育斌 来
- 空军军医大学西京医院耳鼻咽喉头颈外科(西安,710032)
| | - 涛 薛
- 空军军医大学西京医院耳鼻咽喉头颈外科(西安,710032)
| | - 福权 陈
- 空军军医大学西京医院耳鼻咽喉头颈外科(西安,710032)
| | - 定军 查
- 空军军医大学西京医院耳鼻咽喉头颈外科(西安,710032)
| | - 晓栋 陈
- 空军军医大学西京医院耳鼻咽喉头颈外科(西安,710032)
- 陈晓栋,
| |
Collapse
|
24
|
Farhan A, Yuan F, Partan E, Weiss CR. Clinical manifestations of patients with GDF2 mutations associated with hereditary hemorrhagic telangiectasia type 5. Am J Med Genet A 2021; 188:199-209. [PMID: 34611981 DOI: 10.1002/ajmg.a.62522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/05/2021] [Accepted: 09/11/2021] [Indexed: 12/29/2022]
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant fibrovascular dysplasia caused by mutations in ENG, ACVRL1, and SMAD4. Increasingly, there has been an appreciation for vascular conditions with phenotypic overlap to HHT but which have distinct clinical manifestations and arise from novel or uncharacterized gene variants. This study reported on a cohort of four unrelated probands who were diagnosed with a rare form of GDF2-related HHT5, for which only five prior cases have been described. Two patients harbored heterozygous missense variants not previously annotated as pathogenic (p.Val403Ile; p.Glu355Gln). Clinically, these patients had features resembling HHT1, including cerebrovascular involvement of their disease (first report documenting cerebral involvement of HHT5), but with earlier onset of epistaxis and a unique anatomic distribution of dermal capillary lesions that involved the upper forelimbs, trunk, and head. The other two patients harbored interstitial deletions larger than five megabases between 10q11.22 and 10q11.23 that included GDF2. To our knowledge, this is the first report detailing large genomic deletions leading to HHT5. These patients also demonstrated mucocutaneous capillary dysplasias, including intranasal vascular lesions complicated by childhood-onset epistasis, with a number of extravascular findings related to their 10q11.21q11.23 deletion. In conclusion, patients with GDF2-related HHT may present with a number of unique characteristics that differ from classically reported features of HHT.
Collapse
Affiliation(s)
- Ahmed Farhan
- Division of Interventional Radiology, Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Frank Yuan
- Division of Interventional Radiology, Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Elizabeth Partan
- McKusick-Nathans Institute of Genetic Medicine, Department of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Clifford R Weiss
- Division of Interventional Radiology, Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
25
|
Endoglin deficiency impairs VEGFR2 but not FGFR1 or TIE2 activation and alters VEGF-mediated cellular responses in human primary endothelial cells. Transl Res 2021; 235:129-143. [PMID: 33894400 PMCID: PMC8328903 DOI: 10.1016/j.trsl.2021.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 03/29/2021] [Accepted: 04/14/2021] [Indexed: 01/23/2023]
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is a genetic disease characterized by vascular dysplasia. Mutations of the endoglin (ENG) gene that encodes a co-receptor of the transforming growth factor β1 signaling pathway cause type I HHT. ENG is primarily expressed in endothelial cells (ECs), but its interaction with other key angiogenic pathways to control angiogenesis has not been well addressed. The aim of this study is to investigate ENG interplay with VEGFR2, FGFR1 and TIE2 in primary human ECs. ENG was knocked-down with siRNA in human umbilical vein ECs (HUVECs) and human lung microvascular ECs (HMVEC-L). Gene expression was measured by RT-qPCR and Western blotting. Cell signaling pathway activation was analyzed by detecting phosphor-ERK and phosphor-AKT levels. Cell migration and apoptosis were assessed using the Boyden chamber assay and the CCK-8 Kit, respectively. Loss of ENG in HUVECs led to significantly reduced expression of VEGFR2 but not TIE2 or FGFR1, which was also confirmed in HMVEC-L. HUVECs lacking ENG had significantly lower levels of active Rac1 and a substantial reduction of the transcription factor Sp1, an activator of VEGFR2 transcription, in nuclei. Furthermore, VEGF- but not bFGF- or angiopoietin-1-induced phosphor-ERK and phosphor-AKT were suppressed in ENG deficient HUVECs. Functional analysis revealed that ENG knockdown inhibited cell migratory but enhanced anti-apoptotic activity induced by VEGF. In contrast, bFGF, angiopoietin-1 and -2 induced HUVEC migration and anti-apoptotic activities were not affected by ENG knockdown. In conclusion, ENG deficiency alters the VEGF/VEGFR2 pathway, which may play a role in HHT pathogenesis.
Collapse
|
26
|
Lam S, Guthrie KS, Latif MA, Weiss CR. Genetic counseling and testing for hereditary hemorrhagic telangiectasia. Clin Genet 2021; 101:275-284. [PMID: 34415050 DOI: 10.1111/cge.14050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/04/2021] [Accepted: 08/15/2021] [Indexed: 12/13/2022]
Abstract
Genetic counseling is an important means of identifying a patient's genetic risk of hereditary hemorrhagic telangiectasia (HHT) and assisting patients in making informed decisions about their health. With an increase in understanding of the genetic mechanisms underlying HHT over the last decade, genetic counseling is increasingly being incorporated into the care of patients affected by HHT. In addition to refining the diagnosis of symptomatic patients, genetic testing can help to distinguish asymptomatic, at-risk patients from those who are unaffected by HHT. The purpose of this review article is to summarize the current knowledge regarding the role of genetic counseling and genetic testing in identifying and managing HHT in at-risk populations. This article also reviews the guidelines, outcomes, risks, and challenges of genetic counseling and testing for HHT in various patient populations, and provides an algorithm for the use of genetic counseling in symptomatic and asymptomatic patients.
Collapse
Affiliation(s)
- Shravika Lam
- Russel H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Kelsey S Guthrie
- Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Muhammad A Latif
- Russel H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Clifford R Weiss
- Russel H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
27
|
Desroches-Castan A, Tillet E, Bouvard C, Bailly S. BMP9 and BMP10: two close vascular quiescence partners that stand out. Dev Dyn 2021; 251:178-197. [PMID: 34240497 DOI: 10.1002/dvdy.395] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 12/11/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are dimeric transforming growth factor ß (TGFß) family cytokines that were first described in bone and cartilage formation but have since been shown to be involved in many pleiotropic functions. In human, there are 15 BMP ligands, which initiate their cellular signaling by forming a complex with two copies of type I receptors and two copies of type II receptors, both of which are transmembrane receptors with an intracellular serine/threonine kinase domain. Within this receptor family, ALK1 (Activin receptor-Like Kinase 1), which is a type I receptor mainly expressed on endothelial cells, and BMPRII (BMP Receptor type II), a type II receptor also highly expressed on endothelial cells, have been directly linked to two rare vascular diseases: hereditary haemorrhagic telangiectasia (HHT), and pulmonary arterial hypertension (PAH), respectively. BMP9 (gene name GDF2) and BMP10, two close members of the BMP family, are the only known ligands for the ALK1 receptor. This specificity gives them a unique role in physiological and pathological angiogenesis and tissue homeostasis. The aim of this current review is to present an overview of what is known about BMP9 and BMP10 on vascular regulation with a particular emphasis on recent results and the many questions that remain unanswered regarding the roles and specificities between BMP9 and BMP10. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Emmanuelle Tillet
- Laboratory BioSanté, Univ. Grenoble Alpes, INSERM, CEA, Grenoble, France
| | - Claire Bouvard
- Laboratory BioSanté, Univ. Grenoble Alpes, INSERM, CEA, Grenoble, France
| | - Sabine Bailly
- Laboratory BioSanté, Univ. Grenoble Alpes, INSERM, CEA, Grenoble, France
| |
Collapse
|
28
|
The BMP Pathway in Blood Vessel and Lymphatic Vessel Biology. Int J Mol Sci 2021; 22:ijms22126364. [PMID: 34198654 PMCID: PMC8232321 DOI: 10.3390/ijms22126364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) were originally identified as the active components in bone extracts that can induce ectopic bone formation. In recent decades, their key role has broadly expanded beyond bone physiology and pathology. Nowadays, the BMP pathway is considered an important player in vascular signaling. Indeed, mutations in genes encoding different components of the BMP pathway cause various severe vascular diseases. Their signaling contributes to the morphological, functional and molecular heterogeneity among endothelial cells in different vessel types such as arteries, veins, lymphatic vessels and capillaries within different organs. The BMP pathway is a remarkably fine-tuned pathway. As a result, its signaling output in the vessel wall critically depends on the cellular context, which includes flow hemodynamics, interplay with other vascular signaling cascades and the interaction of endothelial cells with peri-endothelial cells and the surrounding matrix. In this review, the emerging role of BMP signaling in lymphatic vessel biology will be highlighted within the framework of BMP signaling in the circulatory vasculature.
Collapse
|
29
|
Major T, Gindele R, Balogh G, Bárdossy P, Bereczky Z. Founder Effects in Hereditary Hemorrhagic Telangiectasia. J Clin Med 2021; 10:jcm10081682. [PMID: 33919892 PMCID: PMC8070971 DOI: 10.3390/jcm10081682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 12/26/2022] Open
Abstract
A founder effect can result from the establishment of a new population by individuals from a larger population or bottleneck events. Certain alleles may be found at much higher frequencies because of genetic drift immediately after the founder event. We provide a systematic literature review of the sporadically reported founder effects in hereditary hemorrhagic telangiectasia (HHT). All publications from the ACVRL1, ENG and SMAD4 Mutation Databases and publications searched for terms “hereditary hemorrhagic telangiectasia” and “founder” in PubMed and Scopus, respectively, were extracted. Following duplicate removal, 141 publications were searched for the terms “founder” and “founding” and the etymon “ancest”. Finally, 67 publications between 1992 and 2020 were reviewed. Founder effects were graded upon shared area of ancestry/residence, shared core haplotypes, genealogy and prevalence. Twenty-six ACVRL1 and 12 ENG variants with a potential founder effect were identified. The bigger the cluster of families with a founder mutation, the more remarkable is its influence to the populational ACVRL1/ENG ratio, affecting HHT phenotype. Being aware of founder effects might simplify the diagnosis of HHT by establishing local genetic algorithms. Families sharing a common core haplotype might serve as a basis to study potential second-hits in the etiology of HHT.
Collapse
Affiliation(s)
- Tamás Major
- Division of Otorhinolaryngology and Head & Neck Surgery, Kenézy Gyula Campus, University of Debrecen Medical Center, H-4031 Debrecen, Hungary
- Correspondence: (T.M.); (Z.B.); Tel.: +36-52-511777/1756 (T.M.); +36-52-431956 (Z.B.); Fax: +36-52-511755 (T.M.); +36-52-340011 (Z.B.)
| | - Réka Gindele
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (R.G.); (G.B.)
| | - Gábor Balogh
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (R.G.); (G.B.)
| | - Péter Bárdossy
- Hungarian Heraldry and Genealogical Society, H-1014 Budapest, Hungary;
| | - Zsuzsanna Bereczky
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (R.G.); (G.B.)
- Correspondence: (T.M.); (Z.B.); Tel.: +36-52-511777/1756 (T.M.); +36-52-431956 (Z.B.); Fax: +36-52-511755 (T.M.); +36-52-340011 (Z.B.)
| |
Collapse
|
30
|
Latif MA, Sobreira NLD, Guthrie KS, Motaghi M, Robinson GM, Shafaat O, Gong AJ, Weiss CR. Clinical and molecular characterization of patients with hereditary hemorrhagic telangiectasia: Experience from an HHT Center of Excellence. Am J Med Genet A 2021; 185:1981-1990. [PMID: 33768677 DOI: 10.1002/ajmg.a.62193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/10/2020] [Accepted: 03/06/2021] [Indexed: 11/11/2022]
Abstract
In this retrospective single-center study, we evaluated whether/how pathogenic/likely pathogenic variants of three hereditary hemorrhagic telangiectasia (HHT)-associated genes (ENG, ACVRL1, and SMAD4) are associated with specific clinical presentations of HHT. We also characterized the morphological features of pulmonary arteriovenous malformations (AVMs) in patients with these variants. Pathogenic or likely pathogenic variants were detected in 64 patients. Using nonparametric statistical tests, we compared the type and prevalence of specific HHT diagnostic features associated with these three variants. Pathogenic variants in these genes resulted in gene-specific HHT clinical presentations. Epistaxis was present in 93%, 94%, and 100% of patients with ENG, ACVRL1, and SMAD4 variants, respectively (p = 0.79). Pulmonary AVMs were more common in patients with the ENG variant (p = 0.034) compared with other subgroups. ACVRL1 variant was associated with the lowest frequency of pulmonary AVMs (p = 0.034) but the highest frequency of hepatic AVMs (p = 0.015). Patients with the ACVRL1 variant did not have significantly more pancreatic AVMs compared with the other groups (p = 0.72). ENG, ACVRL1, and SMAD4 pathogenic or likely pathogenic variants are associated with gene-specific HHT presentations, which is consistent with results from other HHT centers.
Collapse
Affiliation(s)
- Muhammad A Latif
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Vascular and Interventional Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Epidemiology and Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Nara Lygia D Sobreira
- Department of Genetic Medicine, McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kelsey S Guthrie
- Department of Genetic Medicine, McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mina Motaghi
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Vascular and Interventional Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Epidemiology and Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Gina M Robinson
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Vascular and Interventional Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Omid Shafaat
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Vascular and Interventional Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anna J Gong
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Vascular and Interventional Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Clifford R Weiss
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Vascular and Interventional Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
31
|
Resolving Differential Diagnostic Problems in von Willebrand Disease, in Fibrinogen Disorders, in Prekallikrein Deficiency and in Hereditary Hemorrhagic Telangiectasia by Next-Generation Sequencing. Life (Basel) 2021; 11:life11030202. [PMID: 33807613 PMCID: PMC7999415 DOI: 10.3390/life11030202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 12/19/2022] Open
Abstract
Diagnosis of rare bleeding disorders is challenging and there are several differential diagnostics issues. Next-generation sequencing (NGS) is a useful tool to overcome these problems. The aim of this study was to demonstrate the usefulness of molecular genetic investigations by summarizing the diagnostic work on cases with certain bleeding disorders. Here we report only those, in whom NGS was indicated due to uncertainty of diagnosis or if genetic confirmation of initial diagnosis was required. Based on clinical and/or laboratory suspicion of von Willebrand disease (vWD, n = 63), hypo-or dysfibrinogenemia (n = 27), hereditary hemorrhagic telangiectasia (HHT, n = 10) and unexplained activated partial thromboplastin time (APTT) prolongation (n = 1), NGS using Illumina platform was performed. Gene panel covered 14 genes (ACVRL1, ENG, MADH4, GDF2, RASA1, F5, F8, FGA, FGB, FGG, KLKB1, ADAMTS13, GP1BA and VWF) selected on the basis of laboratory results. We identified forty-seven mutations, n = 29 (6 novel) in vWD, n = 4 mutations leading to hemophilia A, n = 10 (2 novel) in fibrinogen disorders, n = 2 novel mutations in HHT phenotype and two mutations (1 novel) leading to prekallikrein deficiency. By reporting well-characterized cases using standardized, advanced laboratory methods we add new pieces of data to the continuously developing “bleeding disorders databases”, which are excellent supports for clinical patient management.
Collapse
|
32
|
Peterson K, Coffman S, Zehri A, Anzalone A, Xiang Z, Wolfe S. Somatic Mosaicism in the Pathogenesis of de novo Cerebral Arteriovenous Malformations: A Paradigm Shift Implicating the RAS-MAPK Signaling Cascade. Cerebrovasc Dis 2021; 50:231-238. [PMID: 33556951 DOI: 10.1159/000512800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 10/28/2020] [Indexed: 11/19/2022] Open
Abstract
Cerebral arteriovenous malformations (AVMs) are leading causes of lesional hemorrhagic stroke in both the pediatric and young adult population, with sporadic AVMs accounting for the majority of cases. Recent evidence has identified somatic mosaicism in key proximal components of the RAS-MAPK signaling cascade within endothelial cells collected from human sporadic cerebral AVMs, with early preclinical models supporting a potential causal role for these mutations in the pathogenesis of these malformations. Germline mutations that predispose to deregulation of the RAS-MAPK signaling axis have also been identified in hereditary vascular malformation syndromes, highlighting the key role of this signaling axis in global AVM development. Herein, we review the most recent genomic and preclinical evidence implicating somatic mosaicism in the RAS-MAPK signaling pathway in the pathogenesis of sporadic cerebral AVMs. Also, we review evidence for RAS-MAPK dysregulation in hereditary vascular malformation syndromes and present a hypothesis suggesting that this pathway is central for the development of both sporadic and syndrome-associated AVMs. Finally, we examine the clinical implications of these recent discoveries and highlight potential therapeutic targets within this signaling pathway.
Collapse
Affiliation(s)
- Keyan Peterson
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA,
| | - Stephanie Coffman
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Aqib Zehri
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Anthony Anzalone
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Zhidan Xiang
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Stacey Wolfe
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
33
|
Ustaszewski A, Janowska-Głowacka J, Wołyńska K, Pietrzak A, Badura-Stronka M. Genetic syndromes with vascular malformations - update on molecular background and diagnostics. Arch Med Sci 2021; 17:965-991. [PMID: 34336026 PMCID: PMC8314420 DOI: 10.5114/aoms.2020.93260] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 09/09/2018] [Indexed: 11/17/2022] Open
Abstract
Vascular malformations are present in a great variety of congenital syndromes, either as the predominant or additional feature. They pose a major challenge to the clinician: due to significant phenotype overlap, a precise diagnosis is often difficult to obtain, some of the malformations carry a risk of life threatening complications and, for many entities, treatment is not well established. To facilitate their recognition and aid in differentiation, we present a selection of notable congenital disorders of vascular system development, distinguishing between the heritable germinal and sporadic somatic mutations as their causes. Clinical features, genetic background and comprehensible description of molecular mechanisms is provided for each entity.
Collapse
Affiliation(s)
- Adam Ustaszewski
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Katarzyna Wołyńska
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Pietrzak
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | | |
Collapse
|
34
|
Yang P, Troncone L, Augur ZM, Kim SSJ, McNeil ME, Yu PB. The role of bone morphogenetic protein signaling in vascular calcification. Bone 2020; 141:115542. [PMID: 32736145 PMCID: PMC8185454 DOI: 10.1016/j.bone.2020.115542] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 01/10/2023]
Abstract
Vascular calcification is associated with atherosclerosis, chronic kidney disease, and diabetes, and results from processes resembling endochondral or intramembranous ossification, or from processes that are distinct from ossification. Bone morphogenetic proteins (BMP), as well as other ligands, receptors, and regulators of the transforming growth factor beta (TGFβ) family regulate vascular and valvular calcification by modulating the phenotypic plasticity of multipotent progenitor lineages associated with the vasculature or valves. While osteogenic ligands BMP2 and BMP4 appear to be both markers and drivers of vascular calcification, particularly in atherosclerosis, BMP7 may serve to protect against calcification in chronic kidney disease. BMP signaling regulators such as matrix Gla protein and BMP-binding endothelial regulator protein (BMPER) play protective roles in vascular calcification. The effects of BMP signaling molecules in vascular calcification are context-dependent, tissue-dependent, and cell-type specific. Here we review the current knowledge on mechanisms by which BMP signaling regulates vascular calcification and the potential therapeutic implications.
Collapse
Affiliation(s)
- Peiran Yang
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Luca Troncone
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zachary M Augur
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Stephanie S J Kim
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Megan E McNeil
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Paul B Yu
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
35
|
Zhang Y, Li Y, Wang Q, Su B, Xu H, Sun Y, Sun P, Li R, Peng X, Cai J. Role of RASA1 in cancer: A review and update (Review). Oncol Rep 2020; 44:2386-2396. [PMID: 33125148 PMCID: PMC7610306 DOI: 10.3892/or.2020.7807] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/22/2020] [Indexed: 12/24/2022] Open
Abstract
Ras p21 protein activator 1 (RASA1) is a regulator of Ras GDP and GTP and is involved in numerous physiological processes such as angiogenesis, cell proliferation, and apoptosis. As a result, RASA1 also contributes to pathological processes in vascular diseases and tumour formation. This review focuses on the role of RASA1 in multiple tumours types in the lung, intestines, liver, and breast. Furthermore, we discuss the potential mechanisms of RASA1 and its downstream effects through Ras/RAF/MEK/ERK or Ras/PI3K/AKT signalling. Moreover, miRNAs are capable of regulating RASA1 and could be a novel targeted treatment strategy for tumours.
Collapse
Affiliation(s)
- Yanhua Zhang
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Yue Li
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Quanyue Wang
- Qinghai Institute of Health Sciences, Xining, Qinghai 810000, P.R. China
| | - Bo Su
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Hui Xu
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Yang Sun
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Pei Sun
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Rumeng Li
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Xiaochun Peng
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Jun Cai
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| |
Collapse
|
36
|
El Hajjam M, Mekki A, Palmyre A, Eyries M, Soubrier F, Bourgault Villada I, Ozanne A, Carlier RY, Chinet T. RASA1 phenotype overlaps with hereditary haemorrhagic telangiectasia: two case reports. J Med Genet 2020; 58:645-647. [PMID: 32900839 DOI: 10.1136/jmedgenet-2019-106792] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 07/01/2020] [Accepted: 07/05/2020] [Indexed: 11/04/2022]
Abstract
Background We report two cases of RASA1-related capillary malformation-arteriovenous malformation (CM-AVM1) syndrome mimicking hereditary haemorrhagic telangiectasia (HHT).Methods and results A 28-year-old man, previously embolised for cerebral arteriovenous malformations (AVMs), presented with epistaxis and typical nasal telangiectasias of HHT. CT scan revealed a large portocaval shunt. The second patient was a 9-year-old girl presenting with cyanosis and several mucocutaneous telangiectasias, similar to those observed in typical cases of HHT. CT scan revealed a huge and complex pulmonary AVM of the right lower lobe and a hepatic AVM within the left lobe. HHT diagnosis was considered possible according to the Curaçao criteria for the two patients, with at least two criteria for each. Genetic tests did not find any mutation in the three classic genes (Endoglin, Activin receptor-like kinase 1 or Mothers against decapentaplegic homolog 4), but identified in both cases an RASA1 mutation, known to cause CM-AVM1 syndrome.Conclusions Pulmonary AVM and portocaval shunt, usually encountered in HHT, have not yet been described in the CM-AVM1 syndrome. RASA1 screening may be considered in case of HHT suspicion, particularly when mutations are not found in the usually affected genes.
Collapse
Affiliation(s)
- Mostafa El Hajjam
- Hereditary Hemorrhagic Telangiectasia Center of Paris, AP-HP, Boulogne-Billancourt, Île-de-France, France.,DMU Smart Imaging, AP-HP, Boulogne-Billancourt, France.,Medical Imaging department, APHP, Boulogne-Billancourt, France
| | - Ahmed Mekki
- Hereditary Hemorrhagic Telangiectasia Center of Paris, AP-HP, Boulogne-Billancourt, Île-de-France, France .,DMU Smart Imaging, AP-HP, Garches, France.,Medical Imaging department, APHP, Garches, France
| | - Aurelien Palmyre
- Hereditary Hemorrhagic Telangiectasia Center of Paris, AP-HP, Boulogne-Billancourt, Île-de-France, France.,Genetics, AP-HP, Boulogne-Billancourt, Île-de-France, France
| | - Melanie Eyries
- Hereditary Hemorrhagic Telangiectasia Center of Paris, AP-HP, Boulogne-Billancourt, Île-de-France, France.,Genetics, Groupe hospitalier Pitié-Salpêtrière, AP-HP, Paris, Île-de-France, France
| | - Florent Soubrier
- Hereditary Hemorrhagic Telangiectasia Center of Paris, AP-HP, Boulogne-Billancourt, Île-de-France, France.,Genetics, Groupe hospitalier Pitié-Salpêtrière, AP-HP, Paris, Île-de-France, France
| | - Isabelle Bourgault Villada
- Hereditary Hemorrhagic Telangiectasia Center of Paris, AP-HP, Boulogne-Billancourt, Île-de-France, France.,Department of Dermatology, AP-HP, Boulogne-Billancourt, France
| | - Augustin Ozanne
- Hereditary Hemorrhagic Telangiectasia Center of Paris, AP-HP, Boulogne-Billancourt, Île-de-France, France.,Department of Interventional Neuroradiology, Bicêtre Teaching Hospital, AP-HP, Le Kremlin-Bicêtre, France
| | - Robert Yves Carlier
- Hereditary Hemorrhagic Telangiectasia Center of Paris, AP-HP, Boulogne-Billancourt, Île-de-France, France.,Assistance Publique des Hôpitaux de Paris (AP-HP), GHU Paris-Saclay University, DMU Smart Imaging, Medical Imaging Department, Raymond Poincaré Teaching Hospital, Garches, France; INSERM U 1179, University of Versailles Saint-Quentin-en-Yvelines (UVSQ) Paris-Saclay, Paris, France
| | - Thierry Chinet
- Hereditary Hemorrhagic Telangiectasia Center of Paris, AP-HP, Boulogne-Billancourt, Île-de-France, France.,Department of Respiratory Diseases and Thoracic Oncology, AP-HP, Boulogne-Billancourt, Île-de-France, France
| |
Collapse
|
37
|
Liu J, Yang J, Tang X, Li H, Shen Y, Gu W, Zhao S. Homozygous GDF2-Related Hereditary Hemorrhagic Telangiectasia in a Chinese Family. Pediatrics 2020; 146:peds.2019-1970. [PMID: 32669404 DOI: 10.1542/peds.2019-1970] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/21/2020] [Indexed: 11/24/2022] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) can be clinically diagnosed, but children often lack characteristic features. We report a family with homozygous growth differentiation factor 2 (GDF2)-related HHT diagnosed by genetic testing. A boy aged 5 years and 2 months presented with isolated hypoxemia. He was the product of a consanguineous marriage; his parents were second cousins. Physical examination revealed cyanosis of nail beds and clubbed fingers. Pulse oxygen saturation was 84% to 89%. Lung function, contrast-enhanced lung computed tomography, and noncontrast echocardiography were normal. A pulmonary perfusion scan revealed radioactivity in the brain and bilateral kidney, suggesting the existence of a intrapulmonary shunt. Whole-exome sequencing revealed a homozygous variant [c.1060_1062delinsAG (p.Tyr354ArgfsTer15)] in GDF2, which was found to be inherited from his heterozygous parents. At the age of 8 years, he developed epistaxis, and an angiogram revealed diffuse pulmonary arteriovenous malformations. At the age of 9 years, he was treated with sirolimus, and his condition improved significantly. However, his now 7-year-old sister with the same homozygous variant currently has no symptoms. Physical examinations revealed 1 pinpoint-sized telangiectasia on the chest of his mother and a vascular lesion on the forehead of his sister. Additionally, the patient's father and great-uncle had a history of mild to moderate epistaxis. Mutation in GDF2 is a rare cause of HHT. Ours is the first report of homozygous GDF2-related HHT; in addition, this variant has not been reported previously. In our report, we also confirm variable expressivity, even with the same pathogenic variant in GDF2-related HHT.
Collapse
Affiliation(s)
- Jinrong Liu
- Department of Respiratory Medicine, Beijing Children's Hospital, National Center for Children's Health and Capital Medical University, Xicheng District, Beijing, People's Republic of China
| | - Jigang Yang
- Department of Nuclear Medicine, Beijing Friendship Hospital and Capital Medical University, Xicheng District, Beijing, People's Republic of China; and
| | - Xiaolei Tang
- Department of Respiratory Medicine, Beijing Children's Hospital, National Center for Children's Health and Capital Medical University, Xicheng District, Beijing, People's Republic of China
| | - Huimin Li
- Department of Respiratory Medicine, Beijing Children's Hospital, National Center for Children's Health and Capital Medical University, Xicheng District, Beijing, People's Republic of China;
| | - Yuelin Shen
- Department of Respiratory Medicine, Beijing Children's Hospital, National Center for Children's Health and Capital Medical University, Xicheng District, Beijing, People's Republic of China
| | - Weiyue Gu
- Data and Analysis Center for Genetic Diseases, Beijing Chigene Translational Medicine Research Center Co, Ltd, Tongzhou District, Beijing, People's Republic of China
| | - Shunying Zhao
- Department of Respiratory Medicine, Beijing Children's Hospital, National Center for Children's Health and Capital Medical University, Xicheng District, Beijing, People's Republic of China;
| |
Collapse
|
38
|
Aukema SM, Ten Brinke GA, Timens W, Vos YJ, Accord RE, Kraft KE, Santing MJ, Morssink LP, Streefland E, van Diemen CC, Vrijlandt EJ, Hulzebos CV, Kerstjens-Frederikse WS. A homozygous variant in growth and differentiation factor 2 (GDF2) may cause lymphatic dysplasia with hydrothorax and nonimmune hydrops fetalis. Am J Med Genet A 2020; 182:2152-2160. [PMID: 32618121 DOI: 10.1002/ajmg.a.61743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/08/2020] [Accepted: 05/30/2020] [Indexed: 02/07/2023]
Abstract
The etiology of nonimmune hydrops fetalis is extensive and includes genetic disorders. We describe a term-born female neonate with late onset extensive nonimmune hydrops, that is, polyhydramnios, edema, and congenital bilateral chylothorax. This newborn was successfully treated with repetitive thoracocentesis, total parenteral feeding, octreotide intravenously and finally surgical pleurodesis and corticosteroids. A genetic cause seemed plausible as the maternal history revealed a fatal nonimmune hydrops fetalis. A homozygous truncating variant in GDF2 (c.451C>T, p.(Arg151*)) was detected with exome sequencing. Genetic analysis of tissue obtained from the deceased fetal sibling revealed the same homozygous variant. The parents and two healthy siblings were heterozygous for the GDF2 variant. Skin and lung biopsies in the index patient, as well as the revised lung biopsy of the deceased fetal sibling, showed lymphatic dysplasia and lymphangiectasia. To the best of our knowledge, this is the first report of an association between a homozygous variant in GDF2 with lymphatic dysplasia, hydrothorax and nonimmune hydrops fetalis.
Collapse
Affiliation(s)
- Sietse M Aukema
- Department of Clinical Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gerdien A Ten Brinke
- Beatrix Children's Hospital, University Medical Center Groningen, Groningen, The Netherlands
| | - Wim Timens
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Yvonne J Vos
- Department of Clinical Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ryan E Accord
- Department of Congenital Cardiothoracic Surgery, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Center for Congenital Heart Diseases, Groningen, The Netherlands
| | - Karianne E Kraft
- Beatrix Children's Hospital, University Medical Center Groningen, Groningen, The Netherlands
| | - Michiel J Santing
- Department of Radiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Leonard P Morssink
- Department of Obstetrics and Gynaecology, Medical Center Leeuwarden, Leeuwarden, The Netherlands
| | - Esther Streefland
- Department of Obstetrics and Gynecology/Prenatal diagnosis, University Medical Centre of Groningen, University of Groningen, Groningen, The Netherlands
| | - Cleo C van Diemen
- Department of Clinical Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Elianne Jle Vrijlandt
- Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Christian V Hulzebos
- Beatrix Children's Hospital, University Medical Center Groningen, Groningen, The Netherlands
| | | |
Collapse
|
39
|
Hodgson J, Swietlik EM, Salmon RM, Hadinnapola C, Nikolic I, Wharton J, Guo J, Liley J, Haimel M, Bleda M, Southgate L, Machado RD, Martin JM, Treacy CM, Yates K, Daugherty LC, Shamardina O, Whitehorn D, Holden S, Bogaard HJ, Church C, Coghlan G, Condliffe R, Corris PA, Danesino C, Eyries M, Gall H, Ghio S, Ghofrani HA, Gibbs JSR, Girerd B, Houweling AC, Howard L, Humbert M, Kiely DG, Kovacs G, Lawrie A, MacKenzie Ross RV, Moledina S, Montani D, Olschewski A, Olschewski H, Ouwehand WH, Peacock AJ, Pepke-Zaba J, Prokopenko I, Rhodes CJ, Scelsi L, Seeger W, Soubrier F, Suntharalingam J, Toshner MR, Trembath RC, Noordegraaf AV, Wort SJ, Wilkins MR, Yu PB, Li W, Gräf S, Upton PD, Morrell NW. Characterization of GDF2 Mutations and Levels of BMP9 and BMP10 in Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2020; 201:575-585. [PMID: 31661308 PMCID: PMC7047445 DOI: 10.1164/rccm.201906-1141oc] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Rationale: Recently, rare heterozygous mutations in GDF2 were identified in patients with pulmonary arterial hypertension (PAH). GDF2 encodes the circulating BMP (bone morphogenetic protein) type 9, which is a ligand for the BMP2 receptor.Objectives: Here we determined the functional impact of GDF2 mutations and characterized plasma BMP9 and BMP10 levels in patients with idiopathic PAH.Methods: Missense BMP9 mutant proteins were expressed in vitro and the impact on BMP9 protein processing and secretion, endothelial signaling, and functional activity was assessed. Plasma BMP9 and BMP10 levels and activity were assayed in patients with PAH with GDF2 variants and in control subjects. Levels were also measured in a larger cohort of control subjects (n = 120) and patients with idiopathic PAH (n = 260).Measurements and Main Results: We identified a novel rare variation at the GDF2 and BMP10 loci, including copy number variation. In vitro, BMP9 missense proteins demonstrated impaired cellular processing and secretion. Patients with PAH who carried these mutations exhibited reduced plasma levels of BMP9 and reduced BMP activity. Unexpectedly, plasma BMP10 levels were also markedly reduced in these individuals. Although overall BMP9 and BMP10 levels did not differ between patients with PAH and control subjects, BMP10 levels were lower in PAH females. A subset of patients with PAH had markedly reduced plasma levels of BMP9 and BMP10 in the absence of GDF2 mutations.Conclusions: Our findings demonstrate that GDF2 mutations result in BMP9 loss of function and are likely causal. These mutations lead to reduced circulating levels of both BMP9 and BMP10. These findings support therapeutic strategies to enhance BMP9 or BMP10 signaling in PAH.
Collapse
Affiliation(s)
| | - Emilia M. Swietlik
- Department of Medicine and,Royal Papworth Hospital, Papworth, United Kingdom
| | | | | | - Ivana Nikolic
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | | | | | | | - Matthias Haimel
- Department of Medicine and,Department of Haematology, University of Cambridge, Cambridge, United Kingdom,National Institute for Health Research BioResource–Rare Diseases, Cambridge, United Kingdom
| | | | - Laura Southgate
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom,Molecular and Clinical Sciences Research Institute, St. George’s University of London, London, United Kingdom
| | - Rajiv D. Machado
- Molecular and Clinical Sciences Research Institute, St. George’s University of London, London, United Kingdom
| | - Jennifer M. Martin
- Department of Medicine and,Department of Haematology, University of Cambridge, Cambridge, United Kingdom,National Institute for Health Research BioResource–Rare Diseases, Cambridge, United Kingdom
| | - Carmen M. Treacy
- Department of Medicine and,Royal Papworth Hospital, Papworth, United Kingdom
| | - Katherine Yates
- Department of Medicine and,Department of Haematology, University of Cambridge, Cambridge, United Kingdom,National Institute for Health Research BioResource–Rare Diseases, Cambridge, United Kingdom
| | - Louise C. Daugherty
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom,National Institute for Health Research BioResource–Rare Diseases, Cambridge, United Kingdom
| | - Olga Shamardina
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom,National Institute for Health Research BioResource–Rare Diseases, Cambridge, United Kingdom
| | - Deborah Whitehorn
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom,National Institute for Health Research BioResource–Rare Diseases, Cambridge, United Kingdom
| | - Simon Holden
- Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Harm J. Bogaard
- Département de Génétique, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, and UMR_S 1166-ICAN, INSERM, UPMC Sorbonne Universités, Paris, France
| | - Colin Church
- Golden Jubilee National Hospital, Glasgow, United Kingdom
| | | | - Robin Condliffe
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | | | - Cesare Danesino
- Department of Molecular Medicine, University of Pavia, Pavia, Italy,Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Mélanie Eyries
- Département de Génétique, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, and UMR_S 1166-ICAN, INSERM, UPMC Sorbonne Universités, Paris, France
| | - Henning Gall
- University of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL) and of the Excellence Cluster Cardio-Pulmonary Institute, Giessen, Germany
| | - Stefano Ghio
- Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Hossein-Ardeschir Ghofrani
- Department of Medicine and,University of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL) and of the Excellence Cluster Cardio-Pulmonary Institute, Giessen, Germany
| | - J. Simon R. Gibbs
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Barbara Girerd
- Faculté de Médecine, Université Paris-Saclay, Université Paris-Sud, Paris, France,Service de Pneumologie, Centre de Référence de l’Hypertension Pulmonaire, Assistance Publique–Hôpitaux de Paris, Paris, France,Hôpital Bicêtre, Le Kremlin-Bicêtre, INSERM UMR_S 999, Paris, France
| | - Arjan C. Houweling
- Department of Clinical Genetics, Amsterdam Universitair Medische Centra, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | | | - Marc Humbert
- Faculté de Médecine, Université Paris-Saclay, Université Paris-Sud, Paris, France,Service de Pneumologie, Centre de Référence de l’Hypertension Pulmonaire, Assistance Publique–Hôpitaux de Paris, Paris, France,Hôpital Bicêtre, Le Kremlin-Bicêtre, INSERM UMR_S 999, Paris, France
| | - David G. Kiely
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Gabor Kovacs
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria,Medical University of Graz, Graz, Austria
| | - Allan Lawrie
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | | | | | - David Montani
- Faculté de Médecine, Université Paris-Saclay, Université Paris-Sud, Paris, France,Service de Pneumologie, Centre de Référence de l’Hypertension Pulmonaire, Assistance Publique–Hôpitaux de Paris, Paris, France,Hôpital Bicêtre, Le Kremlin-Bicêtre, INSERM UMR_S 999, Paris, France
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Horst Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria,Medical University of Graz, Graz, Austria
| | - Willem H. Ouwehand
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom,National Institute for Health Research BioResource–Rare Diseases, Cambridge, United Kingdom
| | | | | | | | | | - Laura Scelsi
- Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Werner Seeger
- University of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL) and of the Excellence Cluster Cardio-Pulmonary Institute, Giessen, Germany
| | - Florent Soubrier
- Département de Génétique, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, and UMR_S 1166-ICAN, INSERM, UPMC Sorbonne Universités, Paris, France
| | | | - Mark R. Toshner
- Department of Medicine and,Royal Papworth Hospital, Papworth, United Kingdom
| | - Richard C. Trembath
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| | - Anton Vonk Noordegraaf
- Service de Pneumologie, Centre de Référence de l’Hypertension Pulmonaire, Assistance Publique–Hôpitaux de Paris, Paris, France
| | - Stephen J. Wort
- National Heart and Lung Institute, Imperial College London, London, United Kingdom,Royal Brompton Hospital, London, United Kingdom
| | | | - Paul B. Yu
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Wei Li
- Department of Medicine and
| | - Stefan Gräf
- Department of Medicine and,Department of Haematology, University of Cambridge, Cambridge, United Kingdom,National Institute for Health Research BioResource–Rare Diseases, Cambridge, United Kingdom
| | | | - Nicholas W. Morrell
- Department of Medicine and,National Institute for Health Research BioResource–Rare Diseases, Cambridge, United Kingdom
| |
Collapse
|
40
|
Guo K, Xu L, Jin L, Wang H, Ren Y, Hu Y, Yu J, Cang J. Bone morphogenetic protein 9, and its genetic variants contribute to susceptibility of idiopathic pulmonary arterial hypertension. Aging (Albany NY) 2020; 12:2123-2131. [PMID: 32031986 PMCID: PMC7041772 DOI: 10.18632/aging.102726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/02/2020] [Indexed: 12/21/2022]
Abstract
Considering the predominant role of rare variants of the Bone morphogenetic protein 9 (BMP9) gene in the occurrence of idiopathic pulmonary arterial hypertension (IPAH), here we conducted a case-control study, together with functional validation, to explore the relationships between variants of the BMP9 gene and development of IPAH. We found minor alleles of rs3740297 (OR: 0.72, 95% CI: 0.59-0.87, P=7.77×10-5) and rs7923671 (OR: 0.76, 95% CI: 0.62-0.93, P=0.009) were significantly associated with decreased risk of IPAH. Minor alleles of rs3740297 and rs7923671 were significantly associated with increased plasma level of BMP9 in both IPAH cases and controls (P<0.001). An allele of rs7923671 showed higher relative luciferase activity compared to that containing G allele (P<0.001). Mechanism exploration found that pulmonary artery smooth muscle cells (PASMC) cell line transfected with rs3740297 C allele construct, miR-149 mimic, and antagomir miR-149 showed more sensitive change of the relative luciferase activity and BMP9 expression. This means minor allele T of rs3740297 could significantly decrease susceptibility of IPAH in Chinese population, possibly by increasing BMP9 expression through losing a miR-149 binding site. Our study provides evidence for genetic associations between two specific variants in the BMP9 gene and plasma level of BMP9, occurrence of IPAH.
Collapse
Affiliation(s)
- Kefang Guo
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Liying Xu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lin Jin
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Huilin Wang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yun Ren
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yan Hu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jing Yu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jing Cang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
41
|
Robert F, Desroches-Castan A, Bailly S, Dupuis-Girod S, Feige JJ. Future treatments for hereditary hemorrhagic telangiectasia. Orphanet J Rare Dis 2020; 15:4. [PMID: 31910860 PMCID: PMC6945546 DOI: 10.1186/s13023-019-1281-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
Hereditary Hemorrhagic Telangiectasia (HHT), also known as Rendu-Osler syndrome, is a genetic vascular disorder affecting 1 in 5000–8000 individuals worldwide. This rare disease is characterized by various vascular defects including epistaxis, blood vessel dilations (telangiectasia) and arteriovenous malformations (AVM) in several organs. About 90% of the cases are associated with heterozygous mutations of ACVRL1 or ENG genes, that respectively encode a bone morphogenetic protein receptor (activin receptor-like kinase 1, ALK1) and a co-receptor named endoglin. Less frequent mutations found in the remaining 10% of patients also affect the gene SMAD4 which is part of the transcriptional complex directly activated by this pathway. Presently, the therapeutic treatments for HHT are intended to reduce the symptoms of the disease. However, recent progress has been made using drugs that target VEGF (vascular endothelial growth factor) and the angiogenic pathway with the use of bevacizumab (anti-VEGF antibody). Furthermore, several exciting high-throughput screenings and preclinical studies have identified new molecular targets directly related to the signaling pathways affected in the disease. These include FKBP12, PI3-kinase and angiopoietin-2. This review aims at reporting these recent developments that should soon allow a better care of HHT patients.
Collapse
Affiliation(s)
- Florian Robert
- Univ. Grenoble Alpes, Inserm, CEA, Laboratory Biology of Cancer and Infection, F-38000, Grenoble, France
| | - Agnès Desroches-Castan
- Univ. Grenoble Alpes, Inserm, CEA, Laboratory Biology of Cancer and Infection, F-38000, Grenoble, France
| | - Sabine Bailly
- Univ. Grenoble Alpes, Inserm, CEA, Laboratory Biology of Cancer and Infection, F-38000, Grenoble, France
| | - Sophie Dupuis-Girod
- Univ. Grenoble Alpes, Inserm, CEA, Laboratory Biology of Cancer and Infection, F-38000, Grenoble, France.,Hospices Civils de Lyon, Service de Génétique, Hôpital Femme-Mère-Enfants, F-69677, Bron, France.,Centre National de Référence pour la Maladie de Rendu-Osler, F-69677, Bron, France
| | - Jean-Jacques Feige
- Univ. Grenoble Alpes, Inserm, CEA, Laboratory Biology of Cancer and Infection, F-38000, Grenoble, France.
| |
Collapse
|
42
|
Zeng X, Hunt A, Jin SC, Duran D, Gaillard J, Kahle KT. EphrinB2-EphB4-RASA1 Signaling in Human Cerebrovascular Development and Disease. Trends Mol Med 2019; 25:265-286. [PMID: 30819650 DOI: 10.1016/j.molmed.2019.01.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/17/2019] [Accepted: 01/29/2019] [Indexed: 12/13/2022]
Abstract
Recent whole exome sequencing studies in humans have provided novel insight into the importance of the ephrinB2-EphB4-RASA1 signaling axis in cerebrovascular development, corroborating and extending previous work in model systems. Here, we aim to review the human cerebrovascular phenotypes associated with ephrinB2-EphB4-RASA1 mutations, including those recently discovered in Vein of Galen malformation: the most common and severe brain arteriovenous malformation in neonates. We will also discuss emerging paradigms of the molecular and cellular pathophysiology of disease-causing ephrinB2-EphB4-RASA1 mutations, including the potential role of somatic mosaicism. These observations have potential diagnostic and therapeutic implications for patients with rare congenital cerebrovascular diseases and their families.
Collapse
Affiliation(s)
- Xue Zeng
- Department of Genetics, Yale School of Medicine, New Haven CT, USA; Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Ava Hunt
- Department of Neurosurgery, Yale School of Medicine, New Haven CT, USA
| | - Sheng Chih Jin
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Daniel Duran
- Department of Neurosurgery, Yale School of Medicine, New Haven CT, USA
| | - Jonathan Gaillard
- Department of Neurosurgery, Yale School of Medicine, New Haven CT, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Yale School of Medicine, New Haven CT, USA; Department of Pediatrics, Yale School of Medicine, New Haven CT, USA; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven CT, USA.
| |
Collapse
|
43
|
Phenotype of CM-AVM2 caused by variants in EPHB4: how much overlap with hereditary hemorrhagic telangiectasia (HHT)? Genet Med 2019; 21:2007-2014. [PMID: 30760892 DOI: 10.1038/s41436-019-0443-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/14/2019] [Indexed: 01/27/2023] Open
Abstract
PURPOSE EPHB4 variants were recently reported to cause capillary malformation-arteriovenous malformation 2 (CM-AVM2). CM-AVM2 mimics RASA1-related CM-AVM1 and hereditary hemorrhagic telangiectasia (HHT), as clinical features include capillary malformations (CMs), telangiectasia, and arteriovenous malformations (AVMs). Epistaxis, another clinical feature that overlaps with HHT, was reported in several cases. Based on the clinical overlap of CM-AVM2 and HHT, we hypothesized that patients considered clinically suspicious for HHT with no variant detected in an HHT gene (ENG, ACVRL1, or SMAD4) may have an EPHB4 variant. METHODS Exome sequencing or a next-generation sequencing panel including EPHB4 was performed on individuals with previously negative molecular genetic testing for the HHT genes and/or RASA1. RESULTS An EPHB4 variant was identified in ten unrelated cases. Seven cases had a pathogenic EPHB4 variant, including one with mosaicism. Three cases had an EPHB4 variant of uncertain significance. The majority had epistaxis (6/10 cases) and telangiectasia (8/10 cases), as well as CMs. Two of ten cases had a central nervous system AVM. CONCLUSIONS Our results emphasize the importance of considering CM-AVM2 as part of the clinical differential for HHT and other vascular malformation syndromes. Yet, these cases highlight significant differences in the cutaneous presentations of CM-AVM2 versus HHT.
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant inherited disease characterized by telangiectasia and arteriovenous malformations (AVMs). To date, five genetic types of HHT and one combined juvenile polyposis syndrome and HHT are known. Clinical and genetic screening of patients suspected with HHT is recommended to confirm the diagnosis and to prevent complications associated with HHT. The aim of this article is to give an overview of the evidence and to formulate a recommendation for clinicians concerning screening for HHT. RECENT FINDINGS Complications of HHT such as stroke, brain abscess and intracranial hemorrhage are caused by pulmonary and cerebral AVMs (CAVMs) and can often be prevented by screening and treatment when possible. Screening and treatment of these AVMs will result in an increased life expectancy comparable with that of the general population as opposed to unscreened and untreated HHT patients. SUMMARY Screening of HHT patients and their first-degree relatives is recommended to prevent severe complications including stroke, brain abscess and intracranial hemorrhage.
Collapse
|
45
|
Abstract
We report a rare aetiology of vocal cord paralysis secondary to undiagnosed severe pulmonary hypertension from a de novo ACVRL1 variant identified by whole-genome sequencing. The patient had a partial response to intravenous treprostinil in addition to inhaled nitric oxide, bosentan, and sildenafil.
Collapse
|
46
|
Nozari A, Aghaei-Moghadam E, Zeinaloo A, Alavi A, Ghasemi Firouzabdi S, Minaee S, Eskandari Hesari M, Behjati F. A Pathogenic Homozygous Mutation in The Pleckstrin Homology Domain of RASA1 Is Responsible for Familial Tricuspid Atresia in An Iranian Consanguineous Family. CELL JOURNAL 2018; 21:70-77. [PMID: 30507091 PMCID: PMC6275424 DOI: 10.22074/cellj.2019.5734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/21/2018] [Indexed: 11/28/2022]
Abstract
Objective Tricuspid atresia (TA) is a rare life-threatening form of congenital heart defect (CHD). The genetic
mechanisms underlying TA are not clearly understood. According to previous studies, the endocardial cushioning event,
as the primary sign of cardiac valvulogenesis, is governed by several overlapping signaling pathways including Ras/
ERK pathway. RASA1, a regulator of cardiovascular development, is involved in this pathway and its haploinsufficiency
(due to heterozygous mutations) has been identified as the underlying etiology of the autosomal dominant capillary
malformation/arteriovenous malformation (CM/AVM).
Materials and Methods In this prospective study, we used whole exome sequencing (WES) followed by serial
bioinformatics filtering steps for two siblings with TA and early onset CM. Their parents were consanguineous which
had a history of recurrent abortions. Patients were carefully assessed to exclude extra-cardiac anomalies.
Results We identified a homozygous RASA1 germline mutation, c.1583A>G (p.Tyr528Cys) in the family. This mutation
lies in the pleckstrin homology (PH) domain of the gene. The parents who were heterozygous for this variant displayed
CM.
Conclusion This is the first study reporting an adverse phenotypic outcome of a RASA1 homozygous mutation.
Here, we propose that the phenotypic consequence of the homozygous RASA1 p.Tyr528Cys mutation is more serious
than the heterozygous type. This could be responsible for the TA pathogenesis in our patients. We strongly suggest
that parents with CM/AVM should be investigated for RASA1 heterozygous mutations. Prenatal diagnosis and fetal
echocardiography should also be carried out in the event of pregnancy in heterozygous parents.
Collapse
Affiliation(s)
- Ahoura Nozari
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Ehsan Aghaei-Moghadam
- Department of Pediatrics Cardiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aliakbar Zeinaloo
- Department of Pediatrics Cardiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Afagh Alavi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | - Shohre Minaee
- Department of Pediatrics Cardiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Eskandari Hesari
- Department of Pediatrics Cardiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farkhondeh Behjati
- Department of Pediatrics Cardiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran. Electronic Address:
| |
Collapse
|
47
|
Wooderchak-Donahue WL, McDonald J, Farrell A, Akay G, Velinder M, Johnson P, VanSant-Webb C, Margraf R, Briggs E, Whitehead KJ, Thomson J, Lin AE, Pyeritz RE, Marth G, Bayrak-Toydemir P. Genome sequencing reveals a deep intronic splicing ACVRL1 mutation hotspot in Hereditary Haemorrhagic Telangiectasia. J Med Genet 2018; 55:824-830. [DOI: 10.1136/jmedgenet-2018-105561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/14/2018] [Accepted: 08/23/2018] [Indexed: 01/09/2023]
Abstract
IntroductionHereditary haemorrhagic telangiectasia (HHT) is a genetically heterogeneous disorder caused by mutations in the genes ENG, ACVRL1, and SMAD4. Yet the genetic cause remains unknown for some families even after exhaustive exome analysis. We hypothesised that non-coding regions of the known HHT genes may harbour variants that disrupt splicing in these cases.MethodsDNA from 35 individuals with clinical findings of HHT and 2 healthy controls from 13 families underwent whole genome sequencing. Additionally, 87 unrelated cases suspected to have HHT were evaluated using a custom designed next-generation sequencing panel to capture the coding and non-coding regions of ENG, ACVRL1 and SMAD4. Individuals from both groups had tested negative previously for a mutation in the coding region of known HHT genes. Samples were sequenced on a HiSeq2500 instrument and data were analysed to identify novel and rare variants.ResultsEight cases had a novel non-coding ACVRL1 variant that disrupted splicing. One family had an ACVRL1intron 9:chromosome 3 translocation, the first reported case of a translocation causing HHT. The other seven cases had a variant located within a ~300 bp CT-rich ‘hotspot’ region of ACVRL1intron 9 that disrupted splicing.ConclusionsDespite the difficulty of interpreting deep intronic variants, our study highlights the importance of non-coding regions in the disease mechanism of HHT, particularly the CT-rich hotspot region of ACVRL1intron 9. The addition of this region to HHT molecular diagnostic testing algorithms will improve clinical sensitivity.
Collapse
|
48
|
Genetic testing for vascular anomalies. THE EUROBIOTECH JOURNAL 2018. [DOI: 10.2478/ebtj-2018-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Vascular anomalies (VAs) have phenotypic variability within the same entity, overlapping clinical features between different conditions, allelic and locus heterogeneity and the same disorder can be inherited in different ways. Most VAs are sporadic (paradominant inheritance or de novo somatic or germline mutations), but hereditary forms (autosomal dominant or recessive) have been described. This Utility Gene Test was developed on the basis of an analysis of the literature and existing diagnostic protocols. The genetic test is useful for confirming diagnosis, as well as for differential diagnosis, couple risk assessment and access to clinical trials.
Collapse
|
49
|
Wooderchak-Donahue WL, Johnson P, McDonald J, Blei F, Berenstein A, Sorscher M, Mayer J, Scheuerle AE, Lewis T, Grimmer JF, Richter GT, Steeves MA, Lin AE, Stevenson DA, Bayrak-Toydemir P. Expanding the clinical and molecular findings in RASA1 capillary malformation-arteriovenous malformation. Eur J Hum Genet 2018; 26:1521-1536. [PMID: 29891884 DOI: 10.1038/s41431-018-0196-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 05/15/2018] [Accepted: 05/22/2018] [Indexed: 11/09/2022] Open
Abstract
RASA1-related disorders are vascular malformation syndromes characterized by hereditary capillary malformations (CM) with or without arteriovenous malformations (AVM), arteriovenous fistulas (AVF), or Parkes Weber syndrome. The number of cases reported is relatively small; and while the main clinical features are CMs and AVMs/AVFs, the broader phenotypic spectrum caused by variants in the RASA1 gene is still being defined. Here, we report the clinical and molecular findings in 69 unrelated cases with a RASA1 variant identified at ARUP Laboratories. Sanger sequencing and multiplex ligation-dependent probe amplification were primarily used to evaluate RASA1. Several atypical cases were evaluated using next-generation sequencing (NGS) and array-comparative genomic hybridization (aCGH). Sixty individuals had a deleterious RASA1 variant of which 29 were novel. Nine individuals had a variant of uncertain significance. Five large RASA1 deletions were detected, giving an overall deletion/duplication rate of 8.3% (5/60) among positive cases. Most (75.4%) individuals with a RASA1 variant had CMs, and 44.9% had an AVM/AVF. Clinical findings in several cases expand the RASA1 phenotype. Our data suggest that screening for large RASA1 deletions and duplications in this disorder is important and suggest that NGS multi-gene panel testing is beneficial for the molecular diagnosis of cases with complex vascular phenotypes.
Collapse
Affiliation(s)
- Whitney L Wooderchak-Donahue
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, USA.,Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Peter Johnson
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, USA
| | - Jamie McDonald
- Department of Pathology, University of Utah, Salt Lake City, UT, USA.,HHT Center, Department of Radiology, University of Utah, Salt Lake City, UT, USA
| | - Francine Blei
- Vascular Anomalies Program of Lenox Hill Hospital, Northwell Health, Hofstra School of Medicine, New York City, NY, USA
| | - Alejandro Berenstein
- Pediatric Endovascular Surgery Ichan School of Medicine, Mt. Sinai Health System, New York City, NY, USA
| | - Michelle Sorscher
- Pediatric Endovascular Surgery Ichan School of Medicine, Mt. Sinai Health System, New York City, NY, USA
| | - Jennifer Mayer
- Department of Pediatric Hematology and Oncology, All Children's Hospital Johns Hopkins Medicine, St. Petersburg, FL, USA
| | - Angela E Scheuerle
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tracey Lewis
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, USA
| | - J Fredrik Grimmer
- Division of Otolaryngology, Department of Surgery, University of Utah, Salt Lake City, UT, USA
| | - Gresham T Richter
- Department of Otolaryngology-Head and Neck Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Marcie A Steeves
- Medical Genetics, Mass General Hospital for Children, Boston, MA, USA
| | - Angela E Lin
- Medical Genetics, Mass General Hospital for Children, Boston, MA, USA
| | - David A Stevenson
- Division of Medical Genetics, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Pinar Bayrak-Toydemir
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, USA. .,Department of Pathology, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
50
|
Kritharis A, Al-Samkari H, Kuter DJ. Hereditary hemorrhagic telangiectasia: diagnosis and management from the hematologist's perspective. Haematologica 2018; 103:1433-1443. [PMID: 29794143 PMCID: PMC6119150 DOI: 10.3324/haematol.2018.193003] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/14/2018] [Indexed: 12/11/2022] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT), also known as Osler-Weber-Rendu syndrome, is an autosomal dominant disorder that causes abnormal blood vessel formation. The diagnosis of hereditary hemorrhagic telangiectasia is clinical, based on the Curaçao criteria. Genetic mutations that have been identified include ENG, ACVRL1/ALK1, and MADH4/SMAD4, among others. Patients with HHT may have telangiectasias and arteriovenous malformations in various organs and suffer from many complications including bleeding, anemia, iron deficiency, and high-output heart failure. Families with the same mutation exhibit considerable phenotypic variation. Optimal treatment is best delivered via a multidisciplinary approach with appropriate diagnosis, screening and local and/or systemic management of lesions. Anti-angiogenic agents such as bevacizumab have emerged as a promising systemic therapy in reducing bleeding complications but are not curative. Other pharmacological agents include iron supplementation, antifibrinolytics and hormonal treatment. This review discusses the biology of HHT, management issues that face the practising hematologist, and considerations of future directions in HHT treatment.
Collapse
Affiliation(s)
- Athena Kritharis
- Division of Blood Disorders, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Hanny Al-Samkari
- Hematology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David J Kuter
- Hematology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|