1
|
Li W, Li Z, Ma J, Xu X, Wang B, Long P, Jiang Q, You Y, Qu J, Wang Y, Wang Y, He M, Chen W, Yuan Y, Wu T. Circulating MicroRNAs in association with urinary arsenic: A community-based multi-center study in China. ENVIRONMENTAL RESEARCH 2025; 274:121354. [PMID: 40058551 DOI: 10.1016/j.envres.2025.121354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025]
Abstract
The profile of plasma miRNAs in association with arsenic exposure remains largely unclear. We aim to identify plasma miRNAs assoicated with urinary arsenic using a two-stage design in Chinese population. The discovery group, Shimen panel, consists of 19 high vs. low arsenic-exposed pairs selected from 1095 residents in an arsenic-contaminated area. The validation group, Wuhan-Zhuhai panel, consists of 53 community-dwelling participants with moderate arsenic exposure. Plasma miRNAs were measured by microarray in the Shimen panel and by sequencing in the Wuhan-Zhuhai panel. Arsenic levels in urine and plasma were quantified using inductively coupled plasma mass spectrometry. During the discovery stage, 16 miRNAs were found to be differentially expressed between high and low urinary arsenic groups in the Shimen panel (fold change >2, P < 0.05). Seven miRNAs (miR-101-3p, miR-142-3p, miR-148a-3p, miR-15a-5p, miR-199a-3p, miR-27b-3p, and miR-340-5p) were validated to have a positive association with log-transformed urinary arsenic levels in the Wuhan-Zhuhai panel (P < 0.05). Furthermore, five of the seven miRNAs were also associated with arsenic in plasma. The identified miRNAs were primarily associated with cancer-related pathways. These identified miRNAs would serve as crucial biomarkers for arsenic exposure, elucidating the epigenetic mechanisms underlying arsenic-induced toxicity and carcinogenesis.
Collapse
Affiliation(s)
- Wending Li
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Zhaoyang Li
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jixuan Ma
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xuedan Xu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bin Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Pinpin Long
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qin Jiang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yutong You
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jingli Qu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yufei Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yaxin Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Meian He
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Yuan
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Tangchun Wu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
2
|
Wang Q, Li L, Zhao H, Dong X, Cui G, Geng Z, Xu T. The plasma-derived exosomal Gomafu levels are associated with psychopathological symptoms and symptomatic remission in drug-naïve patients with first-episode schizophrenia. Eur Arch Psychiatry Clin Neurosci 2025:10.1007/s00406-025-02023-x. [PMID: 40350522 DOI: 10.1007/s00406-025-02023-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
Long non-coding RNA (lncRNA) Gomafu has been implicated in the onset and progression of schizophrenia. In this study, we investigated the association between the plasma-derived exosomal Gomafu levels and psychopathological symptoms, as well as symptomatic remission following short-term treatment (4 weeks), in patients with drug-naïve patients with first-episode schizophrenia (DFSZ). We measured the plasma-derived exosomal Gomafu levels in 65 DFSZ schizophrenia patients and 65 healthy matched controls. All DFSZ patients received aripiprazole treatment. Positive and Negative Syndrome Scale (PANSS) assessment was performed to evaluate the psychotic symptoms. Cognitive function was assessed using the validated Chinese version of the MATRICS Consensus Cognitive Battery (MCCB). We found that the expression level of plasma-derived exosomal Gomafu in DFSZ patients was significantly higher than in the healthy control group. Receiver operating characteristic (ROC) curve analysis demonstrated a high diagnostic value for plasma-derived exosomal Gomafu in identifying DFSZ, with an area under the curve (AUC) of 0.921. Multiple linear regression analysis results showed that duration of untreated psychosis (DUP), PANSS negative score, PANSS total score, MCCB-attention and vigilance score, MCCB-social cognition score, and MCCB-total score were independent influencing factors of the expression level of plasma-derived exosomal Gomafu in patients with DFSZ. After 4 weeks of treatment with aripiprazole, the Gomafu levels significantly decreased in DFSZ patients. Moreover, the reduction in PANSS total score was positively correlated with the decrease in Gomafu levels. The Gomafu levels at baseline of remitters was lower than that of non-remitters. ROC curve analysis further suggested that baseline Gomafu levels could predict symptomatic remission, with an AUC of 0.695. The results of our study shows that plasma-derived exosomal Gomafu levels are ssociated with psychopathological symptoms (especially negative symptoms and cognitive impairment) and symptomatic remission with short-term aripiprazole treatment. Plasma-derived exosomal Gomafu may be a biological biomarker for DFSZ. Further studies are warranted to elucidate the mechanisms linking Gomafu to schizophrenia pathophysiology.
Collapse
Affiliation(s)
- Qi Wang
- Department of Psychiatry and Psychology, General Hospital of Northern Theater Command, Shenyang, 110016, Liaoning Province, China
| | - Li Li
- Department of Psychiatry and Psychology, General Hospital of Northern Theater Command, Shenyang, 110016, Liaoning Province, China
| | - Hongyan Zhao
- Department of Jingzhong Medical District, The Chinese People's Liberation Army General Hospital, Lishi Road Outpatient, Beijing, China
| | - Xiaomei Dong
- Department of Psychiatry and Psychology, General Hospital of Northern Theater Command, Shenyang, 110016, Liaoning Province, China
| | - Gang Cui
- Department of Psychiatry and Psychology, General Hospital of Northern Theater Command, Shenyang, 110016, Liaoning Province, China
| | - Zhongli Geng
- Department of Mental Health Prevention and Treatment, Shenyang Mental Health Center, Shenyang, Liaoning Province, China
| | - Tianchao Xu
- Department of Psychiatry and Psychology, General Hospital of Northern Theater Command, Shenyang, 110016, Liaoning Province, China.
| |
Collapse
|
3
|
Lei W, Zhou K, Lei Y, Li Q, Zhu H. Pathogenesis and Systemic Treatment of Hepatocellular Carcinoma: Current Status and Prospects. Mol Cancer Ther 2025; 24:692-708. [PMID: 39417575 DOI: 10.1158/1535-7163.mct-24-0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/14/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
Hepatocellular carcinoma (HCC) remains one of the major threats to human health worldwide. The emergence of systemic therapeutic options has greatly improved the prognosis of patients with HCC, particularly those with advanced stages of the disease. In this review, we discussed the pathogenesis of HCC, genetic alterations associated with the development of HCC, and alterations in the tumor immune microenvironment. Then, important indicators and emerging technologies related to the diagnosis of HCC are summarized. Also, we reviewed the major advances in treatments for HCC, offering insights into future prospects for next-generation managements.
Collapse
Affiliation(s)
- Wanting Lei
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kexun Zhou
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ye Lei
- College of Liberal Arts, Neijiang Normal University, Neijiang, China
| | - Qiu Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Zhu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Zhao W, Wen JX, Niu Y, Yan L, Wang MY, Jiao W, Wang YF, Gao WH, Yang DN, Zheng WQ, Hu ZD. Exosomal miR-182-5p is a potential diagnostic marker for malignant pleural effusion. Transl Lung Cancer Res 2025; 14:1138-1148. [PMID: 40386717 PMCID: PMC12082201 DOI: 10.21037/tlcr-2024-1205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/10/2025] [Indexed: 05/20/2025]
Abstract
Background Biomarkers in pleural fluid are the potential auxiliary diagnostic markers for malignant pleural effusion (MPE). Exosomal microRNAs (miRNAs) represent novel diagnostic markers for various diseases. The diagnostic performance of exosomal miRNAs for MPE remains unclear. Therefore, we examined the exosomal miRNAs profiles of both MPE and benign pleural effusion (BPE), aiming to study diagnostic performance of exosomal miRNAs for MPE. Methods We used next-generation sequencing (NGS) technology to analyze the pleural fluid exosomal miRNA profile in five MPE and 15 BPE cases. We analyzed the differentially expressed exosomal miRNAs by reverse transcription polymerase chain reaction (RT-PCR), with cel-miR-39 or snRNA U6 as internal references. We assessed the diagnostic accuracy of exosomal miRNA for MPE with a receiver operating characteristic (ROC) curve. We also analyzed whether exosomal miRNA could improve the diagnostic performance of pleural carcinoembryonic antigen (CEA). Results Fifty-eight miRNAs were up-regulated, and 35 miRNAs were down-regulated in MPE. We selected exosomal miR-182-5p for further study and analyzed miR-182-5p in 153 patients with undiagnosed pleural effusion. Exosomal miR-182-5p was undetectable in 32 participants. In the remaining participants with 49 MPE and 72 BPE cases, we found that the areas under the curve (AUCs) and their 95% confidence intervals (95% CIs) for exosomal miR-182-5p were 0.78 (95% CI: 0.69-0.86) when using cel-miR-39 as an internal reference, and 0.80 (95% CI: 0.73-0.88) when using snRNA U6. The combination of exosomal miR-182-5p and CEA can slightly improve the diagnostic accuracy of MPE, with an AUC of 0.91 (95% CI: 0.85-0.97). Conclusions Pleural miR-182-5p can assist in the diagnosis of MPE. Its diagnostic performance is slightly affected by internal reference.
Collapse
Affiliation(s)
- Wen Zhao
- Center for Clinical Epidemiology Research, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot, China
| | - Jian-Xun Wen
- Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot, China
- Department of Medical Experimental Center, Basic Medical College, Inner Mongolia Medical University, Hohhot, China
| | - Yan Niu
- Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot, China
- Department of Medical Experimental Center, Basic Medical College, Inner Mongolia Medical University, Hohhot, China
| | - Li Yan
- Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot, China
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Mei-Ying Wang
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot, China
| | - Wei Jiao
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Ya-Fei Wang
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot, China
| | - Wen-Hui Gao
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Dan-Ni Yang
- Center for Clinical Epidemiology Research, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot, China
| | - Wen-Qi Zheng
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot, China
| | - Zhi-De Hu
- Center for Clinical Epidemiology Research, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
5
|
Delshad M, Sanaei MJ, Mohammadi MH, Sadeghi A, Bashash D. Exosomal Biomarkers: A Comprehensive Overview of Diagnostic and Prognostic Applications in Malignant and Non-Malignant Disorders. Biomolecules 2025; 15:587. [PMID: 40305328 PMCID: PMC12024574 DOI: 10.3390/biom15040587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 05/02/2025] Open
Abstract
Exosomes are small extracellular vesicles, ranging from 30 to 150 nm, that are essential in cell biology, mediating intercellular communication and serving as biomarkers due to their origin from cells. Exosomes as biomarkers for diagnosing various illnesses have gained significant investigation due to the high cost and invasive nature of current diagnostic procedures. Exosomes have a clear advantage in the diagnosis of diseases because they include certain signals that are indicative of the genetic and proteomic profile of the ailment. This feature gives them the potential to be useful liquid biopsies for real-time, noninvasive monitoring, enabling early cancer identification for the creation of individualized treatment plans. According to our analysis, the trend toward utilizing exosomes as diagnostic and prognostic tools has raised since 2012. In this regard, the proportion of malignant indications is higher compared with non-malignant ones. To be precise, exosomes have been used the most in gastrointestinal, thoracic, and urogenital cancers, along with cardiovascular, diabetic, breathing, infectious, and brain disorders. To the best of our knowledge, this is the first research to examine all registered clinical trials that look at exosomes as a diagnostic and prognostic biomarker.
Collapse
Affiliation(s)
- Mahda Delshad
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.D.); (M.-J.S.); (M.H.M.)
- Department of Laboratory Sciences, School of Allied Medical Sciences, Zanjan University of Medical Sciences, Zanjan 1411718541, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.D.); (M.-J.S.); (M.H.M.)
| | - Mohammad Hossein Mohammadi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.D.); (M.-J.S.); (M.H.M.)
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717411, Iran;
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.D.); (M.-J.S.); (M.H.M.)
| |
Collapse
|
6
|
Petracci I, Bellini S, Goljanek-Whysall K, Quinlan LR, Fiszer A, Cakmak A, Njume CM, Borroni B, Ghidoni R. Exploring the Role of microRNAs as Blood Biomarkers in Alzheimer's Disease and Frontotemporal Dementia. Int J Mol Sci 2025; 26:3399. [PMID: 40244285 PMCID: PMC11989394 DOI: 10.3390/ijms26073399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/28/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025] Open
Abstract
Alzheimer's disease (AD) and frontotemporal dementia (FTD) are the most common forms of dementia globally. AD is characterized by the accumulation of amyloid-β (Aβ) plaques and hyperphosphorylated tau in the brain, leading to progressive memory loss and cognitive decline, significantly impairing daily life. In contrast, FTD is marked by selective degeneration of the frontal and/or temporal lobes, typically resulting in profound changes in personality and social behavior, speech disorders, and psychiatric symptoms. Numerous studies have found microRNAs (miRNAs)-small, non-coding RNA molecules that regulate gene expression post-transcriptionally-to be dysregulated in AD and FTD. As a result, miRNAs have emerged as promising novel biomarkers for these diseases. This review examines the current understanding of miRNAs in AD and FTD, emphasizing their potential as accessible, noninvasive biomarkers for diagnosing these prevalent neurodegenerative disorders.
Collapse
Affiliation(s)
- Irene Petracci
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (I.P.); (S.B.); (B.B.)
| | - Sonia Bellini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (I.P.); (S.B.); (B.B.)
| | - Katarzyna Goljanek-Whysall
- Discipline of Physiology, School of Medicine, University of Galway, H91 TH33 Galway, Ireland (L.R.Q.)
- Institute of Life Course and Medical Sciences (ILCAMS), University of Liverpool, L7 8TX Liverpool, UK
- Galway RNA Research Cluster, University of Galway, H91 TK33 Galway, Ireland
| | - Leo R. Quinlan
- Discipline of Physiology, School of Medicine, University of Galway, H91 TH33 Galway, Ireland (L.R.Q.)
| | - Agnieszka Fiszer
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland;
| | - Ali Cakmak
- Department of Computer Engineering, Ayazaga Campus, Istanbul Technical University, Reşitpaşa, Sarıyer, 34467 Istanbul, Turkey; (A.C.); (C.M.N.)
| | - Cyrille Mesue Njume
- Department of Computer Engineering, Ayazaga Campus, Istanbul Technical University, Reşitpaşa, Sarıyer, 34467 Istanbul, Turkey; (A.C.); (C.M.N.)
| | - Barbara Borroni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (I.P.); (S.B.); (B.B.)
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (I.P.); (S.B.); (B.B.)
| |
Collapse
|
7
|
Rossi T, Valgiusti M, Puccetti M, Miserocchi G, Zanoni M, Angeli D, Arienti C, Pace I, Bassi C, Vannini I, Melloni M, Bandini E, Urbini M, Negrini M, Bonafè M, Ferracin M, Gallerani G. Gastroesophageal circulating tumor cell crosstalk with peripheral immune system guides CTC survival and proliferation. Cell Death Dis 2025; 16:223. [PMID: 40157906 PMCID: PMC11954855 DOI: 10.1038/s41419-025-07530-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 02/12/2025] [Accepted: 03/12/2025] [Indexed: 04/01/2025]
Abstract
Tumor dissemination is a key event in tumor progression. During this event, a main role is played by circulating tumor cells (CTCs), immune cells, and their interaction. How the immune system supports the survival and proliferation of CTCs is not fully elucidated. In this study we established an in-vitro co-culture system consisting of immune cells and CTCs from the same patient, which increased the success rate in the establishment of CTC-derived long-term cell cultures. In this system, we characterized the immune cells of successful co-cultures and the signals they exchange with cancer cells, including cytokines and extracellular vesicle (EV) content. Using this protocol, we stabilized four CTC-derived cell lines from patients with metastatic gastroesophageal cancer, which were cultured for over a year and characterized from a genetic and molecular point of view. The four cell lines harbor shared chromosomal aberrations including the amplification at 8q24.21 containing MYC and deletion 9p21.3 containing CDKN2A/B and the IFN type I cluster. The transcriptomic profile of CTC cell lines is distinct from primary tumors, and we detected the activation of E2F, G2M and MYC pathways and the downregulation of interferon response pathway. Each cell line shows a degree of invasiveness in zebrafish in-vivo, and the most invasive ones share the same mutation in RAB14 gene. In addition, the four cell lines secrete cell-line specific EVs containing microRNAs that target YAP, BRG1-AKT1, TCF8-HDAC pathways. Overall, we highlight how the immune system plays a key role in the proliferation of CTCs through EV signaling, and how CTC cell line genomic and transcriptomic alterations make these cells less visible from the immune system and likely responsible for the survival advantage in sites distant from the microenvironment of origin.
Collapse
Affiliation(s)
- Tania Rossi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Martina Valgiusti
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | | | - Giacomo Miserocchi
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "DinoAmadori", Meldola, Italy
| | - Michele Zanoni
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Davide Angeli
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Chiara Arienti
- Immuno-Gene Therapy Factory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Ilaria Pace
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Cristian Bassi
- Department of Translational Medicine, Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA) Centre, University of Ferrara, Ferrara, Italy
| | - Ivan Vannini
- Pathology Unit, Morgagni-Pierantoni Hospital, AUSL Romagna, Forlì, Italy
| | - Mattia Melloni
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Erika Bandini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Milena Urbini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Massimo Negrini
- Department of Translational Medicine, Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA) Centre, University of Ferrara, Ferrara, Italy
| | - Massimiliano Bonafè
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Manuela Ferracin
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giulia Gallerani
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
| |
Collapse
|
8
|
Ge Y, Jiang L, Dong Q, Xu Y, Yam JWP, Zhong X. Exosome-mediated Crosstalk in the Tumor Immune Microenvironment: Critical Drivers of Hepatocellular Carcinoma Progression. J Clin Transl Hepatol 2025; 13:143-161. [PMID: 39917466 PMCID: PMC11797817 DOI: 10.14218/jcth.2024.00302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 02/09/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a significant global health issue, ranking as the sixth most prevalent malignancy and the fourth leading cause of cancer-related mortality worldwide. Despite advancements in therapeutic strategies, mortality rates for HCC remain high. The tumor immune microenvironment (TIME) plays a vital role in HCC progression by influencing tumor cell survival and growth. Recent studies highlight the essential role of exosomes in mediating intercellular communication within the TIME, particularly in interactions among tumor cells, immune cells, and fibroblasts. These interactions drive critical aspects of tumor development, including immune escape, angiogenesis, drug resistance, and metastasis. A detailed understanding of the molecular mechanisms by which exosomes modulate the TIME is essential for developing targeted therapies. This review systematically evaluated the roles and regulatory mechanisms of exosomes within the TIME of HCC, examining the impact of both HCC-derived and non-HCC-derived exosomes on various cellular components within the TIME. It emphasized their regulatory effects on cell phenotypes and functions, as well as their roles in HCC progression. The review also explored the potential applications of exosome-based immunotherapies, offering new insights into improving therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Yifei Ge
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lixue Jiang
- Department of Breast Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Qingfu Dong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Judy Wai Ping Yam
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Xiangyu Zhong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
9
|
Lai Y, Xiao W, Lei Z, Long H, Deng J, Wang Y, Tao L, Liu X, Wu J, Zhang Q, Cao D, Xiao H. Primer Exchange Reaction with Cascade RNA Transcription for Highly Specific Detection of Exosomal miRNA and Liver Cancer Diagnosis. Anal Chem 2025; 97:4151-4157. [PMID: 39939145 DOI: 10.1021/acs.analchem.4c06517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
Exosomal microRNAs (miRNAs) serve as dependable and noninvasive biomarkers for early cancer diagnosis. However, the accurate and feasible detection of exosomal miRNAs is often hindered by their low abundance and the requirement of specialized equipment for miRNA detection. In this study, we present a novel approach, termed primer exchange reaction-based fluorescence emission with cascade RNA aptamers transcription (PERFECT) for the highly sensitive detection of exosomal miRNA. The design of this method involves the selective interaction of a DNA probe with the target miRNA, leading to its activation. Once activated, isothermal signal amplification and RNA aptamer transcription are initiated, resulting in an amplified fluorescent signal within 90 min. This method achieves a detection limit of 2.2 fM at 37 °C and 2.7 fM at room temperature (25 °C). We used the PERFECT technology to analyze miR-21 expression levels in cell extracts, cell-derived exosomes, and human plasma-derived exosomes, achieving a diagnostic accuracy of 93.6% in distinguishing hepatocellular carcinoma (HCC) patients. Overall, this study highlights its broad range of detection temperature, simplicity of the detection process, and strong potential for clinical application, rendering it a promising tool for early cancer diagnosis.
Collapse
Affiliation(s)
- Yanming Lai
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Wei Xiao
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510632, China
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Zhiwei Lei
- Department of Gastroenterology, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511500, China
| | - Huiping Long
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Jiting Deng
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510632, China
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Yiyu Wang
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Lu Tao
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Xingxing Liu
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Jinjun Wu
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, United States
| | - Qiwei Zhang
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Donglin Cao
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510632, China
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Heng Xiao
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| |
Collapse
|
10
|
Bernasconi R, Kuster GM. Non-coding RNAs and their potential exploitation in cancer therapy-related cardiotoxicity. Br J Pharmacol 2025; 182:296-315. [PMID: 38802331 DOI: 10.1111/bph.16416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/28/2024] [Accepted: 03/26/2024] [Indexed: 05/29/2024] Open
Abstract
Life expectancy in cancer patients has been extended in recent years, thanks to major breakthroughs in therapeutic developments. However, this also unmasked an increased incidence of cardiovascular diseases in cancer survivors, which is in part attributable to cancer therapy-related cardiovascular toxicity. Non-coding RNAs (ncRNAs) have received much appreciation due to their impact on gene expression. NcRNAs, which include microRNAs, long ncRNAs and circular RNAs, are non-protein-coding transcripts that are involved in the regulation of various biological processes, hence shaping cell identity and behaviour. They have also been implicated in disease development, including cardiovascular diseases, cancer and, more recently, cancer therapy-associated cardiotoxicity. This review outlines key features of cancer therapy-associated cardiotoxicity, what is known about the roles of ncRNAs in these processes and how ncRNAs could be exploited as therapeutic targets for cardioprotection. LINKED ARTICLES: This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
Affiliation(s)
- Riccardo Bernasconi
- Myocardial Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Gabriela M Kuster
- Myocardial Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Cardiology, University Heart Center Basel, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
11
|
Ma Y, Zhang X, Liu C, Zhao Y. Extracellular vesicles in cancers: mechanisms, biomarkers, and therapeutic strategies. MedComm (Beijing) 2024; 5:e70009. [PMID: 39611045 PMCID: PMC11604295 DOI: 10.1002/mco2.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 11/30/2024] Open
Abstract
Extracellular vesicles (EVs) composed of various biologically active constituents, such as proteins, nucleic acids, lipids, and metabolites, have emerged as a noteworthy mode of intercellular communication. There are several categories of EVs, including exosomes, microvesicles, and apoptotic bodies, which largely differ in their mechanisms of formation and secretion. The amount of evidence indicated that changes in the EV quantity and composition play a role in multiple aspects of cancer development, such as the transfer of oncogenic signals, angiogenesis, metabolism remodeling, and immunosuppressive effects. As EV isolation technology and characteristics recognition improve, EVs are becoming more commonly used in the early diagnosis and evaluation of treatment effectiveness for cancers. Actually, EVs have sparked clinical interest in their potential use as delivery vehicles or vaccines for innovative antitumor techniques. This review will focus on the function of biological molecules contained in EVs linked to cancer progression and their participation in the intricate interrelationship within the tumor microenvironment. Furthermore, the potential efficacy of an EV-based liquid biopsy and delivery cargo for treatment will be explored. Finally, we explicitly delineate the limitations of EV-based anticancer therapies and provide an overview of the clinical trials aimed at improving EV development.
Collapse
Affiliation(s)
- Yuxi Ma
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
- Cancer CenterInstitute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaohui Zhang
- Cancer CenterHubei Key Laboratory of Cell HomeostasisCollege of Life SciencesTaiKang Center for Life and Medical SciencesWuhan UniversityWuhanChina
| | - Cuiwei Liu
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
- Cancer CenterInstitute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yanxia Zhao
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
- Cancer CenterInstitute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
12
|
Zhao J, Hu Z, Zheng X, Lin Y, Liu X, Zhang J, Peng J, Gao H. Blood biomarkers of hepatocellular carcinoma: a critical review. Front Cell Dev Biol 2024; 12:1489836. [PMID: 39650722 PMCID: PMC11621223 DOI: 10.3389/fcell.2024.1489836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/13/2024] [Indexed: 12/11/2024] Open
Abstract
Hepatocellular Carcinoma (HCC) is a malignant tumor with high morbidity and mortality worldwide, which represents a serious threat to human life, health and quality of life. Blood-based detection is essential for HCC screening, early diagnosis, prognosis evaluation, and surveillance. Current non-invasive detection strategy including serum alpha-fetoprotein (AFP), ultrasound, computerized tomography, and magnetic resonance imaging. The limited specificity of an AFP and the dependence on operator experience and diagnostic personnel for ultrasound have constrained their utility in early HCC diagnosis. In recent years, with the development of various detection technologies, there has been an increasing focus on exploring blood-based detection markers for HCC. The types of markers include protein markers, DNA mutation, DNA epigenetic modification, mRNA, miRNA, and so on. However, numerous methodological and biological factors limit the clinical sensitivity and generalization performance of these new biomarkers. In this review, we describe the state-of-the-art technologies for cfDNA analysis, and discuss outstanding biological and technical challenges that, if addressed, would substantially improve HCC diagnostics and patient care.
Collapse
Affiliation(s)
- Junsheng Zhao
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zekai Hu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Xiaoping Zheng
- Hangzhou Tongchuang Medical Laboratory, Department of pathology, Hangzhou, China
| | - Yajie Lin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Xiao Liu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Junjie Zhang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan (Hangzhou) Hospital Affiliated to Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jing Peng
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hainv Gao
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan (Hangzhou) Hospital Affiliated to Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
13
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Extracellular Vesicles in Viral Liver Diseases. Viruses 2024; 16:1785. [PMID: 39599900 PMCID: PMC11598962 DOI: 10.3390/v16111785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Extracellular vesicles (EVs) are bilayer vesicles released by cells in the microenvironment of the liver including parenchymal and non-parenchymal cells. They are the third important mechanism in the communications between cells, besides the secretion of cytokines and chemokines and the direct cell-to-cell contact. The aim of this review is to discuss the important role of EVs in viral liver disease, as there is increasing evidence that the transportation of viral proteins, all types of RNA, and viral particles including complete virions is implicated in the pathogenesis of both viral cirrhosis and viral-related hepatocellular carcinoma. The biogenesis of EVs is discussed and their role in the pathogenesis of viral liver diseases is presented. Their use as diagnostic and prognostic biomarkers is also analyzed. Most importantly, the significance of possible novel treatment strategies for liver fibrosis and hepatocellular carcinoma is presented, although available data are based on experimental evidence and clinical trials have not been reported.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Greece;
| | - Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Greece;
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Greece;
| |
Collapse
|
14
|
Wang C, Li X, Yi W, Kang J, Nuermaimaiti N, Guan Y. Differential expression of microRNAs in serum exosomes of obese and non-obese mice and analysis of their function. Gene 2024; 927:148604. [PMID: 38838872 DOI: 10.1016/j.gene.2024.148604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 06/07/2024]
Abstract
OBJECTIVE To extract exosomes from obese and non-obese mice, screen specifically expressed microRNAs by high-throughput sequencing and explore their roles. METHODS An animal obesity model was constructed, and the successful construction of the obesity model was verified by HE staining, Western Blot and RT-qPCR. In addition, exosomes were extracted and verified by Western Blot. High-throughput sequencing was performed on the extracted serum exosomes to screen for differentially expressed microRNAs. fluorescence quantitative RT-PCR (RT-qPCR) was used to validate the differentially expressed miRNAs and explore their functions. RESULTS 8 microRNAs were up-regulated and 11 microRNAs were down-regulated. mmu-miR-674-5p and X_28316 were significantly down-regulated and had the greatest impact on protein pathways. 8_13258 was significantly up-regulated and affected multiple protein pathways. GO enrichment analysis suggested that the differentially expressed microRNAs were mainly involved in the cleavage of microtubule activity, transferase activity/transferase pentameric acid. GO enrichment analysis suggested that differentially expressed microRNAs were mainly involved in the processes of cleavage microtubule activity, transferase activity/transfer pentamer, and threonine phosphatase/threonine kinase activity.KEGG pathway enrichment analysis showed that differentially expressed microRNAs were mainly involved in the processes of regulating the phosphorylation of TP53 activity, the G2/M DNA damage checkpoint, and the processing of the ends of DNA double-strand breaks. Protein interaction networks were enriched for Stat3, Fgr, Camk2b, Rac1, Asb6, and Ankfy1. Suggesting that they may be mediated by differential genes to participate in the process of insulin resistance. qRT-PCR results showed that the expression trend of mmu-miR-674-5p was consistent with the sequencing results. It suggests that it may be able to participate in the regulation of insulin resistance as a target gene. CONCLUSION microRNAs were differentially expressed in serum exosomes of obese and non-obese mice and might be involved in the specific regulation of insulin resistance. mmu-miR-674-5p was differentially expressed significantly and the validation trend was consistent with it, suggesting that it might be able to participate in the regulation of insulin resistance as a target gene.
Collapse
Affiliation(s)
- Changzan Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, 830017 Urumqi, Xinjiang, China
| | - Xianghui Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, 830017 Urumqi, Xinjiang, China
| | - Wenying Yi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, 830017 Urumqi, Xinjiang, China
| | - Jiawei Kang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, 830017 Urumqi, Xinjiang, China
| | - Nuerbiye Nuermaimaiti
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, 830017 Urumqi, Xinjiang, China.
| | - Yaqun Guan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, 830017 Urumqi, Xinjiang, China.
| |
Collapse
|
15
|
Zhu Y, Huang Z, Li C, Li C, Wei M, Deng L, Deng W, Zhou X, Wu K, Yang B, Qu Y, Liu Q, Chen X, Li D, Wang C. Blood mir-331-3p is a potential diagnostic marker for giant panda (Ailuropoda melanoleuca) testicular tumor. BMC Vet Res 2024; 20:515. [PMID: 39548579 PMCID: PMC11566409 DOI: 10.1186/s12917-024-04326-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/10/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND In recent years, several giant pandas have suffered from testicular tumor, which has seriously affected giant panda health. However, the pathogenesis of testicular tumor in giant panda is still unclear. Studies have shown that miRNAs are involved in the occurrence and development of a variety of cancers. However, the effect of miRNAs on giant panda testicular tumor has been little studied. Therefore, this study explored the pathogenesis of giant panda testicular tumor through miRNA and mRNA sequencing, and screened out diagnostic markers of testicular tumor. RESULTS Combined with phenotypic symptoms and pathological section results, three giant pandas were diagnosed with testicular tumor and divided into tumor group, and three other giant pandas were divided into normal group. A total of 29 differentially expressed miRNAs (DEmiRNAs) were screened by blood miRNA-seq, and 3149 target gene candidates were predicted. Functional enrichment analysis showed that the target genes were mainly involved in intermembrane lipid transfer and ATP-dependent chromatin remodeling. However, only 5 DEmiRNAs were screened by miRNA-seq of blood-derived exosomes and 364 target genes were predicted, which were mainly involved in antigen processing and presentation. In addition, 216 differentially expressed genes (DEGs) were screened by RNA-seq, and functional enrichment analysis showed that tumor-specific DEGs significantly enriched to protein phosphorylation. Spearman correlation analysis of miRNA-mRNA showed that the expressions of miR-331-3p and PKIG were significantly positively correlated (spearman = 0.943, p < 0.01), while the expressions of miR-331-3p and ENSAMEG00000013628 were significantly negatively correlated (spearman= -0.829, p < 0.05). RT-PCR showed that the expression of miR-331-3p was significantly decreased in giant panda with tumor (p < 0.01). CONCLUSIONS blood miRNAs and exosomal miRNAs exhibit distinct regulatory patterns concerning giant panda testicular tumor, potentially reflecting divergent biological processes in the disease's etiology. Meanwhile, miR-331-3p could be used as a potential diagnostic marker for giant panda testicular tumor. Our findings are conducive to the rapid clinical diagnosis of testicular tumor in giant pandas, and are also expected to provide scientific reference for further research on the pathogenesis of testicular tumor.
Collapse
Affiliation(s)
- Yan Zhu
- State Forestry and Grassland Administration Key Laboratory of Conservation Biology for Rare Animals of the Giant Panda State Park, China Conservation and Research Center for the Giant Panda, Chengdu, 610081, China
| | - Zhi Huang
- State Forestry and Grassland Administration Key Laboratory of Conservation Biology for Rare Animals of the Giant Panda State Park, China Conservation and Research Center for the Giant Panda, Chengdu, 610081, China
| | - Caiwu Li
- State Forestry and Grassland Administration Key Laboratory of Conservation Biology for Rare Animals of the Giant Panda State Park, China Conservation and Research Center for the Giant Panda, Chengdu, 610081, China
| | - Chengyao Li
- State Forestry and Grassland Administration Key Laboratory of Conservation Biology for Rare Animals of the Giant Panda State Park, China Conservation and Research Center for the Giant Panda, Chengdu, 610081, China
| | - Ming Wei
- State Forestry and Grassland Administration Key Laboratory of Conservation Biology for Rare Animals of the Giant Panda State Park, China Conservation and Research Center for the Giant Panda, Chengdu, 610081, China
| | - Linhua Deng
- State Forestry and Grassland Administration Key Laboratory of Conservation Biology for Rare Animals of the Giant Panda State Park, China Conservation and Research Center for the Giant Panda, Chengdu, 610081, China
| | - Wenwen Deng
- State Forestry and Grassland Administration Key Laboratory of Conservation Biology for Rare Animals of the Giant Panda State Park, China Conservation and Research Center for the Giant Panda, Chengdu, 610081, China
| | - Xiao Zhou
- State Forestry and Grassland Administration Key Laboratory of Conservation Biology for Rare Animals of the Giant Panda State Park, China Conservation and Research Center for the Giant Panda, Chengdu, 610081, China
| | - Kai Wu
- State Forestry and Grassland Administration Key Laboratory of Conservation Biology for Rare Animals of the Giant Panda State Park, China Conservation and Research Center for the Giant Panda, Chengdu, 610081, China
| | - Bo Yang
- State Forestry and Grassland Administration Key Laboratory of Conservation Biology for Rare Animals of the Giant Panda State Park, China Conservation and Research Center for the Giant Panda, Chengdu, 610081, China
| | - Yuanyuan Qu
- State Forestry and Grassland Administration Key Laboratory of Conservation Biology for Rare Animals of the Giant Panda State Park, China Conservation and Research Center for the Giant Panda, Chengdu, 610081, China
| | - Qin Liu
- State Forestry and Grassland Administration Key Laboratory of Conservation Biology for Rare Animals of the Giant Panda State Park, China Conservation and Research Center for the Giant Panda, Chengdu, 610081, China
| | - Xuemei Chen
- State Forestry and Grassland Administration Key Laboratory of Conservation Biology for Rare Animals of the Giant Panda State Park, China Conservation and Research Center for the Giant Panda, Chengdu, 610081, China
| | - Desheng Li
- State Forestry and Grassland Administration Key Laboratory of Conservation Biology for Rare Animals of the Giant Panda State Park, China Conservation and Research Center for the Giant Panda, Chengdu, 610081, China.
| | - Chengdong Wang
- State Forestry and Grassland Administration Key Laboratory of Conservation Biology for Rare Animals of the Giant Panda State Park, China Conservation and Research Center for the Giant Panda, Chengdu, 610081, China.
| |
Collapse
|
16
|
Li S, Cheng F, Zhang Z, Xu R, Shi H, Yan Y. The role of hepatocyte-derived extracellular vesicles in liver and extrahepatic diseases. Biomed Pharmacother 2024; 180:117502. [PMID: 39357327 DOI: 10.1016/j.biopha.2024.117502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
Extracellular vesicles (EVs) are vesicle-like bodies with a double membrane structure that are released from the cell membrane or secreted by cells into the extracellular environment. These include exosomes, microvesicles, and apoptotic bodies. There is growing evidence indicating that the composition of liver cell contents changes following injury. The quantity of EVs and the biologically active substances they carry vary depending on the condition of the liver cells. Hepatocytes utilize EVs to modulate the functions of different liver cells and transfer them to distant organs via the systemic circulation, thereby playing a crucial role in intercellular communication. This review provides a concise overview of the research on the effects and potential mechanisms of hepatocyte-derived EVs (Hep-EVs) on liver diseases and extrahepatic diseases under different physiological and pathological conditions. Common liver diseases discussed include non-alcoholic fatty liver disease (NAFLD), viral hepatitis, alcoholic liver disease, drug-induced liver damage, and liver cancer. Given that NAFLD is the most prevalent chronic liver disease globally, this review particularly highlights the use of hepatocyte-derived EVs in NAFLD for disease progression, diagnosis, and treatment.
Collapse
Affiliation(s)
- Shihui Li
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, China; Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Fang Cheng
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, China; Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Zhuan Zhang
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, China; Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Ruizi Xu
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, China; Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Honglei Shi
- Wujin Hospital Affiliated With Jiangsu University, Changzhou Wujin People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213004, China; Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University (Wujin Clinical College of Xuzhou Medical University), Changzhou 213017, China; Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Changzhou 213017, China.
| | - Yongmin Yan
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, China; Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University (Wujin Clinical College of Xuzhou Medical University), Changzhou 213017, China; Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Changzhou 213017, China.
| |
Collapse
|
17
|
Hetta HF, Hamed HM, Mekky MA, Abdel-Malek MO, Hassan WA. Circulating microRNA-21, microRNA-122, and microRNA-222 as diagnostic biomarkers for hepatitis c virus-related hepatocellular carcinoma. EGYPTIAN LIVER JOURNAL 2024; 14:78. [DOI: 10.1186/s43066-024-00385-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/27/2024] [Indexed: 01/03/2025] Open
Abstract
Abstract
Background and aim
MicroRNAs (miRs) are now a well-known subject in various tumor genesis and are studied as early diagnostic biomarker. Many arrays of miRs were incorporated in the pathogenesis of HCV-related hepatocellular carcinomas (HCV-HCC). In this respect, we aimed to evaluate the diagnostic role of circulating miR-21, miR-122, and miR-222 in Egyptian patients with HCV-HCC.
Patient and methods
Between June 2018 and April 2019, a cross-sectional comparative study was designed to evaluate the circulating miR-21, miR-122, and miR-222 by quantitative Real-Time PCR. For analytical purposes, patients were categorized into three groups: chronic HCV group (CHC-group, n = 22), HCV-related liver cirrhosis (LC-group, n = 22), and HCV-related hepatocellular carcinoma (HCV-HCC-group, n = 54).
Results
Serum levels of miR-21 and miR-222 increased with the progressive course from CHC to LC and HCC; p < .001. Serum levels of miR-122 in HCC patients were significantly lower than non-HCC patients (CHC and LC patients, n = 44); p < .001. However, the differences in levels of serum miR-122 between CHC and LC were not statistically significant; P = 0.8.
ROC curve analysis showed that the sensitivity and specificity of miR-21 were 61.1% and 95.5%, miR-222 were 71.7% and 93.2%, and miR-122 were 98.2% and 100%. The positive predictive value for miRNA-21, miRNA-122, and miRNA-222 were 13.4%, 93.3%, and 10.5% respectively. The Negative predictive value for miRNA-21, miRNA-122, and miRNA-222 were 94.3%, 97.8%, and 92.7% respectively.
Conclusion
MiR-21 and miR-222 could be potential markers for advanced liver damage, while miR-122 had the best diagnostic accuracy and could be a promising marker for detection of HCC.
Collapse
|
18
|
Mir R, Baba SK, Elfaki I, Algehainy N, Alanazi MA, Altemani FH, Tayeb FJ, Barnawi J, Husain E, Bedaiwi RI, Albalawi IA, Alhujaily M, Mir MM, Almotairi R, Alatwi HE, Albalawi AD. Unlocking the Secrets of Extracellular Vesicles: Orchestrating Tumor Microenvironment Dynamics in Metastasis, Drug Resistance, and Immune Evasion. J Cancer 2024; 15:6383-6415. [PMID: 39513123 PMCID: PMC11540496 DOI: 10.7150/jca.98426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/27/2024] [Indexed: 11/15/2024] Open
Abstract
Extracellular vehicles (EVs) are gaining increasing recognition as central contributors to the intricate landscape of the tumor microenvironment (TME). This manuscript provides an extensive examination of the multifaceted roles played by EVs in shaping the TME, with a particular emphasis on their involvement in metastasis, drug resistance, and immune evasion. Metastasis, the process by which cancer cells disseminate to distant sites, remains a formidable challenge in cancer management. EVs, encompassing exosomes and microvesicles, have emerged as critical participants in this cascade of events. They facilitate the epithelial-to-mesenchymal transition (EMT), foster pre-metastatic niche establishment, and enhance the invasive potential of cancer cells. This manuscript delves into the intricate molecular mechanisms underpinning these processes, underscoring the therapeutic potential of targeting EVs to impede metastasis. Drug resistance represents a persistent impediment to successful cancer treatment. EVs are instrumental in intrinsic and acquired drug resistance, acting as mediators of intercellular communication. They ferry molecules like miRNAs and proteins, which confer resistance to conventional chemotherapy and targeted therapies. This manuscript scrutinizes the diverse strategies employed by EVs in propagating drug resistance while also considering innovative approaches involving EV-based drug delivery systems to counteract this phenomenon. Immune evasion is a hallmark of cancer, and EVs are central in sculpting the immunosuppressive milieu of the TME. Tumor-derived EVs thwart immune responses through various mechanisms, including T cell dysfunction induction, the expansion of regulatory T cells (Tregs), and polarization of macrophages towards an immunosuppressive phenotype. In addition, the manuscript explores the diagnostic potential of EVs as biomarkers and their role as therapeutic agents in immune checkpoint blockade therapies. This manuscript provides a comprehensive overview of EV's pivotal role in mediating intricate interactions within the TME, ultimately influencing cancer progression and therapeutic outcomes. A profound understanding of EV-mediated processes in metastasis, drug resistance, and immune evasion opens up promising avenues for developing innovative therapeutic strategies and identifying valuable biomarkers in the ongoing battle against cancer.
Collapse
Affiliation(s)
- Rashid Mir
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Sadaf Khursheed Baba
- Watson Crick Center for Molecular Medicine, Islamic University of Science and Technology, J & K, India
| | - Imadeldin Elfaki
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Naseh Algehainy
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammad A Alanazi
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Faisal H Altemani
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Faris Jamal Tayeb
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Jameel Barnawi
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Eram Husain
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Ruqaiah I Bedaiwi
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | | | - Muhanad Alhujaily
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
| | - Mohammad Muzaffar Mir
- Department of Biochemistry, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Reema Almotairi
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Hanan E. Alatwi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | | |
Collapse
|
19
|
Boccatonda A, Piscaglia F. Predictive role of microvesicles in cirrhotic patients: A promised land or a land of confusion? A narrative review. Ann Hepatol 2024; 30:101563. [PMID: 39270982 DOI: 10.1016/j.aohep.2024.101563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 09/15/2024]
Abstract
Mammalian cells release several membrane-enclosed vesicles called extracellular vesicles. Those vesicles can contain several molecules such as proteins, DNA and various RNA. Therefore, extracellular vesicles can act as a target delivery system and exert multiple biological effects. Several works demonstrated that extracellular vesicles are increased or dysregulated in patients with cirrhosis, and they can be predictive of disease progression, complications and mortality. This review aims to summarize and highlight the role of extracellular vesicles in the cirrhotic patient and how they correlate with the degree of disease and with complications, particularly with the development of portal thrombosis and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Andrea Boccatonda
- Diagnostic and Therapeutic Interventional Ultrasound Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Italy.
| | - Fabio Piscaglia
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Italy; Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy.
| |
Collapse
|
20
|
Di Santo R, Verdelli F, Niccolini B, Varca S, Gaudio AD, Di Giacinto F, De Spirito M, Pea M, Giovine E, Notargiacomo A, Ortolani M, Di Gaspare A, Baldi A, Pizzolante F, Ciasca G. Exploring novel circulating biomarkers for liver cancer through extracellular vesicle characterization with infrared spectroscopy and plasmonics. Anal Chim Acta 2024; 1319:342959. [PMID: 39122286 DOI: 10.1016/j.aca.2024.342959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/16/2024] [Accepted: 07/07/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most common form of liver cancer, with cirrhosis being a major risk factor. Traditional blood markers like alpha-fetoprotein (AFP) demonstrate limited efficacy in distinguishing between HCC and cirrhosis, underscoring the need for more effective diagnostic methodologies. In this context, extracellular vesicles (EVs) have emerged as promising candidates; however, their practical diagnostic application is restricted by the current lack of label-free methods to accurately profile their molecular content. To address this gap, our study explores the potential of mid-infrared (mid-IR) spectroscopy, both alone and in combination with plasmonic nanostructures, to detect and characterize circulating EVs. RESULTS EVs were extracted from HCC and cirrhotic patients. Mid-IR spectroscopy in the Attenuated Total Reflection (ATR) mode was utilized to identify potential signatures for patient classification, highlighting significant changes in the Amide I-II region (1475-1700 cm-1). This signature demonstrated diagnostic performance comparable to AFP and surpassed it when the two markers were combined. Further investigations utilized a plasmonic metasurface suitable for ultrasensitive spectroscopy within this spectral range. This device consists of two sets of parallel rod-shaped gold nanoantennas (NAs); the longer NAs produced an intense near-field amplification in the Amide I-II bands, while the shorter NAs were utilized to provide a sharp reflectivity edge at 1800-2200 cm-1 for EV mass-sensing. A clinically relevant subpopulation of EVs was targeted by conjugating NAs with an antibody specific to Epithelial Cell Adhesion Molecule (EpCAM). This methodology enabled the detection of variations in the quantity of EpCAM-presenting EVs and revealed changes in the Amide I-II lineshape. SIGNIFICANCE The presented results can positively impact the development of novel laboratory methods for the label-free characterization of EVs, based on the combination between mid-IR spectroscopy and plasmonics. Additionally, data obtained by using HCC and cirrhotic subjects as a model system, suggest that this approach could be adapted for monitoring these conditions.
Collapse
Affiliation(s)
- R Di Santo
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore & Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy; Dipartimento di Scienze della Vita, della salute e delle Professioni sanitarie, Link Campus University, Rome, Italy
| | - F Verdelli
- Dutch Institute for Fundamental Energy Research (DIFFER), Eindhoven 5600 HH, The Netherlands
| | - B Niccolini
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore & Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy
| | - S Varca
- UOC of Gastroenterology, Department of Medical and Surgery Sciences, Fondazione Policlinico Universitario A.Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - A Del Gaudio
- UOC of Gastroenterology, Department of Medical and Surgery Sciences, Fondazione Policlinico Universitario A.Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - F Di Giacinto
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore & Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy
| | - M De Spirito
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore & Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy.
| | - M Pea
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche IFN-CNR, Via Del Fosso Del Cavaliere 100, 00133, Rome, Italy
| | - E Giovine
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche IFN-CNR, Via Del Fosso Del Cavaliere 100, 00133, Rome, Italy
| | - A Notargiacomo
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche IFN-CNR, Via Del Fosso Del Cavaliere 100, 00133, Rome, Italy
| | - M Ortolani
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185, Rome, Italy
| | - A Di Gaspare
- NEST, CNR - Istituto Nanoscienze and Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - A Baldi
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, Netherlands
| | - F Pizzolante
- UOC of Gastroenterology, Department of Medical and Surgery Sciences, Fondazione Policlinico Universitario A.Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - G Ciasca
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore & Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy.
| |
Collapse
|
21
|
Fekry B, Ugartemendia L, Esnaola NF, Goetzl L. Extracellular Vesicles, Circadian Rhythms, and Cancer: A Comprehensive Review with Emphasis on Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:2552. [PMID: 39061191 PMCID: PMC11274441 DOI: 10.3390/cancers16142552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
This review comprehensively explores the complex interplay between extracellular vesicles (ECVs)/exosomes and circadian rhythms, with a focus on the role of this interaction in hepatocellular carcinoma (HCC). Exosomes are nanovesicles derived from cells that facilitate intercellular communication by transporting bioactive molecules such as proteins, lipids, and RNA/DNA species. ECVs are implicated in a range of diseases, where they play crucial roles in signaling between cells and their surrounding environment. In the setting of cancer, ECVs are known to influence cancer initiation and progression. The scope of this review extends to all cancer types, synthesizing existing knowledge on the various roles of ECVs. A unique aspect of this review is the emphasis on the circadian-controlled release and composition of exosomes, highlighting their potential as biomarkers for early cancer detection and monitoring metastasis. We also discuss how circadian rhythms affect multiple cancer-related pathways, proposing that disruptions in the circadian clock can alter tumor development and treatment response. Additionally, this review delves into the influence of circadian clock components on ECV biogenesis and their impact on reshaping the tumor microenvironment, a key component driving HCC progression. Finally, we address the potential clinical applications of ECVs, particularly their use as diagnostic tools and drug delivery vehicles, while considering the challenges associated with clinical implementation.
Collapse
Affiliation(s)
- Baharan Fekry
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (L.U.); (L.G.)
| | - Lierni Ugartemendia
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (L.U.); (L.G.)
| | - Nestor F. Esnaola
- Division of Surgical Oncology and Gastrointestinal Surgery, Department of Surgery, Houston Methodist Hospital, Houston, TX 77030, USA;
| | - Laura Goetzl
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (L.U.); (L.G.)
| |
Collapse
|
22
|
Ogasawara T, Ito S, Ogashira S, Hoshino T, Sotomaru Y, Yoshiko Y, Tanimoto K. The expression of MIR125B transcripts and bone phenotypes in Mir125b2-deficient mice. PLoS One 2024; 19:e0304074. [PMID: 38976685 PMCID: PMC11230526 DOI: 10.1371/journal.pone.0304074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/06/2024] [Indexed: 07/10/2024] Open
Abstract
MIR125B, particularly its 5p strand, is apparently involved in multiple cellular processes, including osteoblastogenesis and osteoclastogenesis. Given that MIR125B is transcribed from the loci Mir125b1 and Mir125b2, three mature transcripts (MIR125B-5p, MIR125B1-3p, and MIR125B2-3p) are generated (MIR125B-5p is common to both); however, their expression profiles and roles in the bones remain poorly understood. Both primary and mature MIR125B transcripts were differentially expressed in various organs, tissues, and cells, and their expression patterns did not necessarily correlate in wild-type (WT) mice. We generated Mir125b2 knockout (KO) mice to examine the contribution of Mir125b2 to MIR125B expression profiles and bone phenotypes. Mir125b2 KO mice were born and grew normally without any changes in bone parameters. Interestingly, in WT and Mir125b2 KO, MIR125B-5p was abundant in the calvaria and bone marrow stromal cells. These results indicate that the genetic ablation of Mir125b2 does not impinge on the bones of mice, attracting greater attention to MIR125B-5p derived from Mir125b1. Future studies should investigate the conditional deletion of Mir125b1 and both Mir125b1 and Mir125b2 in mice.
Collapse
Affiliation(s)
- Tomohiro Ogasawara
- Department of Orthodontics, Division of Oral Health and Development, Hiroshima University Hospital, Hiroshima, Japan
| | - Shota Ito
- Department of Orthodontics, Division of Oral Health and Development, Hiroshima University Hospital, Hiroshima, Japan
| | - Shintaro Ogashira
- Department of Orthodontics, Division of Oral Health and Development, Hiroshima University Hospital, Hiroshima, Japan
| | - Tomonori Hoshino
- Neuroprotection Research Laboratories, Department of Neurology and Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States of America
| | - Yusuke Sotomaru
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| | | | - Kotaro Tanimoto
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
23
|
Dabral P, Bhasin N, Ranjan M, Makhlouf MM, Abd Elmageed ZY. Tumor-Derived Extracellular Vesicles as Liquid Biopsy for Diagnosis and Prognosis of Solid Tumors: Their Clinical Utility and Reliability as Tumor Biomarkers. Cancers (Basel) 2024; 16:2462. [PMID: 39001524 PMCID: PMC11240796 DOI: 10.3390/cancers16132462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Early cancer detection and accurate monitoring are crucial to ensure increased patient survival. Recent research has focused on developing non-invasive biomarkers to diagnose cancer early and monitor disease progression at low cost and risk. Extracellular vesicles (EVs), nanosized particles secreted into extracellular spaces by most cell types, are gaining immense popularity as novel biomarker candidates for liquid cancer biopsy, as they can transport bioactive cargo to distant sites and facilitate intercellular communications. A literature search was conducted to discuss the current approaches for EV isolation and the advances in using EV-associated proteins, miRNA, mRNA, DNA, and lipids as liquid biopsies. We discussed the advantages and challenges of using these vesicles in clinical applications. Moreover, recent advancements in machine learning as a novel tool for tumor marker discovery are also highlighted.
Collapse
Affiliation(s)
- Prerna Dabral
- Vitalant Research Institute, University of California San Francisco, San Francisco, CA 94105, USA;
| | - Nobel Bhasin
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Manish Ranjan
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Maysoon M. Makhlouf
- Department of Biomedical Sciences, Discipline of Pharmacology, Edward Via College of Osteopathic Medicine (VCOM), 4408 Bon Aire Drive, Monroe, LA 71203, USA;
| | - Zakaria Y. Abd Elmageed
- Department of Biomedical Sciences, Discipline of Pharmacology, Edward Via College of Osteopathic Medicine (VCOM), 4408 Bon Aire Drive, Monroe, LA 71203, USA;
| |
Collapse
|
24
|
Romanò S, Nele V, Campani V, De Rosa G, Cinti S. A comprehensive guide to extract information from extracellular vesicles: a tutorial review towards novel analytical developments. Anal Chim Acta 2024; 1302:342473. [PMID: 38580402 DOI: 10.1016/j.aca.2024.342473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/07/2024]
Abstract
In the medical field, extracellular vesicles (EVs) are gaining importance as they act as cells mediators. These are phospholipid bilayer vesicles and contain crucial biochemical information about their mother cells being carrier of different biomolecules such as small molecules, proteins, lipids, and nucleic acids. After release into the extracellular matrix, they enter the systemic circulation and can be found in all human biofluids. Since EVs reflect the state of the cell of origin, there is exponential attention as potential source of new circulating biomarkers for liquid biopsy. The use of EVs in clinical practice faces several challenges that need to be addressed: these include the standardization of lysis protocols, the availability of low-cost reagents and the development of analytical tools capable of detecting biomarkers. The process of lysis is a crucial step that can impact all subsequent analyses, towards the development of novel analytical strategies. To aid researchers to support the evolution of measurement science technology, this tutorial review evaluates and discuss the most commonly protocols used to characterize the contents of EVs, including their advantages and disadvantages in terms of experimental procedures, time and equipment. The purpose of this tutorial review is to offer practical guide to researchers which are intended to develop novel analytical approaches. Some of the most significant applications are considered, highlighting their main characteristics divided per mechanism of action. Finally, comprehensive tables which provide an overview at a glance are provided to readers.
Collapse
Affiliation(s)
- Sabrina Romanò
- Department of Pharmacy, University of Naples Federico II, Italy.
| | - Valeria Nele
- Department of Pharmacy, University of Naples Federico II, Italy
| | | | | | - Stefano Cinti
- Department of Pharmacy, University of Naples Federico II, Italy.
| |
Collapse
|
25
|
Polak M, Wieczorek J, Botor M, Auguścik-Duma A, Hoffmann A, Wnuk-Wojnar A, Gawron K, Mizia-Stec K. Principles and Limitations of miRNA Purification and Analysis in Whole Blood Collected during Ablation Procedure from Patients with Atrial Fibrillation. J Clin Med 2024; 13:1898. [PMID: 38610663 PMCID: PMC11012484 DOI: 10.3390/jcm13071898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Background: MicroRNA (miRNA) have the potential to be non-invasive and attractive biomarkers for a vast number of diseases and clinical conditions; however, a reliable analysis of miRNA expression in blood samples meets a number of methodological challenges. In this report, we presented and discussed, specifically, the principles and limitations of miRNA purification and analysis in blood plasma samples collected from the left atrium during an ablation procedure on patients with atrial fibrillation (AF). Materials and Methods: Consecutive patients hospitalized in the First Department of Cardiology for pulmonary vein ablation were included in this study (11 with diagnosed paroxysmal AF, 14 with persistent AF, and 5 without AF hospitalized for left-sided WPW ablation-control group). Whole blood samples were collected from the left atrium after transseptal puncture during the ablation procedure of AF patients. Analysis of the set of miRNA molecules was performed in blood plasma samples using the MIHS-113ZF-12 kit and miScript microRNA PCR Array Human Cardiovascular Disease. Results: The miRNS concentrations were in the following ranges: paroxysmal AF: 7-23.1 ng/µL; persistent AF: 4.9-66.8 ng/µL; controls: 6.3-10.6 ng/µL. The low A260/280 ratio indicated the protein contamination and the low A260/A230 absorbance ratio suggested the contamination by hydrocarbons. Spectrophotometric measurements also indicated low concentration of nucleic acids (<10 ng/µL). Further steps of analysis revealed that the concentration of cDNA after the Real-Time PCR (using the PAXgene RNA Blood kit) reaction was higher (148.8 ng/µL vs. 68.4 ng/µL) and the obtained absorbance ratios (A260/A280 = 2.24 and A260/A230 = 2.23) indicated adequate RNA purity. Conclusions: Although developments in miRNA sequencing and isolation technology have improved, detection of plasma-based miRNA, low RNA content, and sequencing bias introduced during library preparation remain challenging in patients with AF. The measurement of the quantity and quality of the RNA obtained is crucial for the interpretation of an efficient RNA isolation.
Collapse
Affiliation(s)
- Mateusz Polak
- First Department of Cardiology, School of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Joanna Wieczorek
- First Department of Cardiology, School of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Malwina Botor
- Department of Molecular Biology and Genetics, School of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Aleksandra Auguścik-Duma
- Department of Molecular Biology and Genetics, School of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Andrzej Hoffmann
- First Department of Cardiology, School of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Anna Wnuk-Wojnar
- First Department of Cardiology, School of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Katarzyna Gawron
- Department of Molecular Biology and Genetics, School of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Katarzyna Mizia-Stec
- First Department of Cardiology, School of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
26
|
Andre M, Caobi A, Miles JS, Vashist A, Ruiz MA, Raymond AD. Diagnostic potential of exosomal extracellular vesicles in oncology. BMC Cancer 2024; 24:322. [PMID: 38454346 PMCID: PMC10921614 DOI: 10.1186/s12885-024-11819-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 01/02/2024] [Indexed: 03/09/2024] Open
Abstract
Liquid biopsy can detect circulating cancer cells or tumor cell-derived DNA at various stages of cancer. The fluid from these biopsies contains extracellular vesicles (EVs), such as apoptotic bodies, microvesicles, exomeres, and exosomes. Exosomes contain proteins and nucleic acids (DNA/RNA) that can modify the microenvironment and promote cancer progression, playing significant roles in cancer pathology. Clinically, the proteins and nucleic acids within the exosomes from liquid biopsies can be biomarkers for the detection and prognosis of cancer. We review EVs protein and miRNA biomarkers identified for select cancers, specifically melanoma, glioma, breast, pancreatic, hepatic, cervical, prostate colon, and some hematological malignancies. Overall, this review demonstrates that EV biomolecules have great potential to expand the diagnostic and prognostic biomarkers used in Oncology; ultimately, EVs could lead to earlier detection and novel therapeutic targets. Clinical implicationsEVs represent a new paradigm in cancer diagnostics and therapeutics. The potential use of exosomal contents as biomarkers for diagnostic and prognostic indicators may facilitate cancer management. Non-invasive liquid biopsy is helpful, especially when the tumor is difficult to reach, such as in pancreatic adenocarcinoma. Moreover, another advantage of using minimally invasive liquid biopsy is that monitoring becomes more manageable. Identifying tumor-derived exosomal proteins and microRNAs would allow a more personalized approach to detecting cancer and improving treatment.
Collapse
Affiliation(s)
- Mickensone Andre
- Herbert Wertheim College of Medicine at, Department of Immunology and Nanomedicine, Florida International University, Miami, 33199, FL, USA
| | - Allen Caobi
- Herbert Wertheim College of Medicine at, Department of Immunology and Nanomedicine, Florida International University, Miami, 33199, FL, USA
| | - Jana S Miles
- Herbert Wertheim College of Medicine at, Department of Immunology and Nanomedicine, Florida International University, Miami, 33199, FL, USA
| | - Arti Vashist
- Herbert Wertheim College of Medicine at, Department of Immunology and Nanomedicine, Florida International University, Miami, 33199, FL, USA
| | - Marco A Ruiz
- Herbert Wertheim College of Medicine at, Department of Immunology and Nanomedicine, Florida International University, Miami, 33199, FL, USA
- Medical Oncology, Baptist Health Miami Cancer Institute, Miami, 33176, FL, USA
| | - Andrea D Raymond
- Herbert Wertheim College of Medicine at, Department of Immunology and Nanomedicine, Florida International University, Miami, 33199, FL, USA.
| |
Collapse
|
27
|
Bao Y, Xu S, Zhou J, Zhao C, Dai S, Zhang Y, Rao M. Exosomal miR-93 derived from hepatocellular carcinoma cell promotes the sorafenib resistance of hepatocellular carcinoma through PTEN/PI3K/Akt pathway. J Biochem Mol Toxicol 2024; 38:e23666. [PMID: 38375688 DOI: 10.1002/jbt.23666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/21/2024]
Abstract
Exosomal microRNAs (miRNAs) derived from cancer cell is an important regulatory molecule that mediates the formation of tumor drug resistance, but function and mechanisms of exosomal miRNA in sorafenib resistance of hepatocellular carcinoma (HCC) have not been studied. We detected the level and prognosis of miR-93 in HCC by using TCGA HCC database. For confirming the extracted exosome, transmission electron microscopy was used. Cy3-labeled miR-93 and quantitative reverse transcription-polymerase chain reaction were used to prove that exosomal miR-93 derived from HCC cell can be transferred to sensitive HCC cells. CCK8, EdU, and flow cytometer assay were used to confirm the function of exosomal miR-93 in sorafenib resistance of HCC. Bioinformatics software and luciferase reporter assay was used to confirm the direct targeting relationship between PTEN and miR-93. Western blot was used to validate downstream pathways. We found that miR-93 is overexpressed and a prognostic risk factor for the HCC patients. miR-93 was overexpressed in sorafenib resistant HCC cells compared with sensitive cells, and miR-93 contributed to sorafenib resistance of HCC cells through targeting PTEN. miR-93 was enriched in exosomes that secreted from sorafenib resistant cells, and these exosomal miR-93 promote the spread of sorafenib resistant through targeting PTEN to reactivate PI3K/AKT pathway. Therefore, miR-93 can act as a potential therapeutic target for advanced patients with acquired sorafenib resistance.
Collapse
Affiliation(s)
- Yuanpeng Bao
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Song Xu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Junjing Zhou
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Chongyong Zhao
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Saimin Dai
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Yong Zhang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Min Rao
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
28
|
Wang Z, Wang Q, Qin F, Chen J. Exosomes: a promising avenue for cancer diagnosis beyond treatment. Front Cell Dev Biol 2024; 12:1344705. [PMID: 38419843 PMCID: PMC10900531 DOI: 10.3389/fcell.2024.1344705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Exosomes, extracellular vesicles secreted by cells, have garnered significant attention in recent years for their remarkable therapeutic potential. These nanoscale carriers can be harnessed for the targeted delivery of therapeutic agents, such as pharmaceuticals, proteins, and nucleic acids, across biological barriers. This versatile attribute of exosomes is a promising modality for precision medicine applications, notably in the realm of cancer therapy. However, despite their substantial therapeutic potential, exosomes still confront challenges tied to standardization and scalability that impede their practice in clinical applications. Moreover, heterogeneity in isolation methodologies and limited cargo loading mechanisms pose obstacles to ensuring consistent outcomes, thereby constraining their therapeutic utility. In contrast, exosomes exhibit a distinct advantage in cancer diagnosis, as they harbor specific signatures reflective of the tumor's genetic and proteomic profile. This characteristic endows them with the potential to serve as valuable liquid biopsies for non-invasive and real-time monitoring, making possible early cancer detection for the development of personalized treatment strategies. In this review, we provide an extensive evaluation of the advancements in exosome research, critically examining their advantages and limitations in the context of cancer therapy and early diagnosis. Furthermore, we present a curated overview of the most recent technological innovations utilizing exosomes, with a focus on enhancing the efficacy of early cancer detection.
Collapse
Affiliation(s)
- Zhu Wang
- Breast Center, West China Hospital, Sichuan University, Chengdu, China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Institute for Breast Health Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qianqian Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Qin
- School of Basic Medicine, Dali University, Dali, Yunnan, China
| | - Jie Chen
- Breast Center, West China Hospital, Sichuan University, Chengdu, China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Institute for Breast Health Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
29
|
Yoo JS, Kang MK. Clinical significance of exosomal noncoding RNAs in hepatocellular carcinoma: a narrative review. JOURNAL OF YEUNGNAM MEDICAL SCIENCE 2024; 42:4. [PMID: 38325815 PMCID: PMC11812098 DOI: 10.12701/jyms.2023.01186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/20/2023] [Accepted: 12/30/2023] [Indexed: 02/09/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal malignancies worldwide, with poor prognosis owing to its high frequency of recurrence and metastasis. Moreover, most patients are diagnosed at an advanced stage owing to a lack of early detection markers. Exosomes, which are characterized by their cargos of stable intracellular messengers, such as DNA, RNA, proteins, and lipids, play a crucial role in regulating cell differentiation and HCC development. Recently, exosomal noncoding RNAs (ncRNAs), including microRNAs, long ncRNAs, and circular RNAs, have become increasingly important diagnostic, prognostic, and predictive markers of HCC. Herein, we discuss the clinical implications of exosomal ncRNAs, specifically those within the HCC regulatory network.
Collapse
Affiliation(s)
- Jae Sung Yoo
- Department of Gastroenterology and Hepatology, The Catholic University of Korea, Seoul St Mary’s Hospital, Seoul, Korea
| | - Min Kyu Kang
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Korea
| |
Collapse
|
30
|
Li Y, Sui S, Goel A. Extracellular vesicles associated microRNAs: Their biology and clinical significance as biomarkers in gastrointestinal cancers. Semin Cancer Biol 2024; 99:5-23. [PMID: 38341121 PMCID: PMC11774199 DOI: 10.1016/j.semcancer.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/26/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Gastrointestinal (GI) cancers, including colorectal, gastric, esophageal, pancreatic, and liver, are associated with high mortality and morbidity rates worldwide. One of the underlying reasons for the poor survival outcomes in patients with these malignancies is late disease detection, typically when the tumor has already advanced and potentially spread to distant organs. Increasing evidence indicates that earlier detection of these cancers is associated with improved survival outcomes and, in some cases, allows curative treatments. Consequently, there is a growing interest in the development of molecular biomarkers that offer promise for screening, diagnosis, treatment selection, response assessment, and predicting the prognosis of these cancers. Extracellular vesicles (EVs) are membranous vesicles released from cells containing a repertoire of biological molecules, including nucleic acids, proteins, lipids, and carbohydrates. MicroRNAs (miRNAs) are the most extensively studied non-coding RNAs, and the deregulation of miRNA levels is a feature of cancer cells. EVs miRNAs can serve as messengers for facilitating interactions between tumor cells and the cellular milieu, including immune cells, endothelial cells, and other tumor cells. Furthermore, recent years have witnessed considerable technological advances that have permitted in-depth sequence profiling of these small non-coding RNAs within EVs for their development as promising cancer biomarkers -particularly non-invasive, liquid biopsy markers in various cancers, including GI cancers. Herein, we summarize and discuss the roles of EV-associated miRNAs as they play a seminal role in GI cancer progression, as well as their promising translational and clinical potential as cancer biomarkers as we usher into the area of precision oncology.
Collapse
Affiliation(s)
- Yuan Li
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, USA; Department of Clinical Laboratory, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Silei Sui
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, USA; Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, USA.
| |
Collapse
|
31
|
Yu L, Zeng X, Hu X, Wen Q, Chen P. Advances and challenges in clinical applications of tumor cell-derived extracellular vesicles. Colloids Surf B Biointerfaces 2024; 234:113704. [PMID: 38113751 DOI: 10.1016/j.colsurfb.2023.113704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023]
Abstract
Extracellular vesicles (EVs) are a class of substances that feature vesicle-like structures. Initially deemed to be "biological waste", recent studies have highlighted the crucial role of EVs in mediating information communication between cells by transporting bioactive components. Specifically, tumor cell-derived extracellular vesicles (TEVs) contain components that can be utilized for disease diagnosis and as vaccines to activate the immune system. Moreover, since TEVs have a phospholipid bilayer shell and can transport exogenous substances, they are being increasingly explored as drug delivery vehicles in anti-tumor therapy. TEVs have proven highly compatible with their corresponding tumor cells, allowing for efficient drug delivery and exerting killing effects on tumor cells through various mechanisms such as domino effects, lysosomal pathways, and inhibition of drug efflux from tumor tissues. Despite these promising developments, challenges remain in the clinical applications of EVs derived from tumor cells. This paper outlines the current advances and limitations in this field, highlighting the potential of TEVs as a powerful tool for combating cancer.
Collapse
Affiliation(s)
- Li Yu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Department of Oncology, Jiangsu Cancer Hospital, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, China
| | - Xiaonan Zeng
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xiao Hu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Department of Oncology, the Second Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Qinglian Wen
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Ping Chen
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
32
|
Ihlamur M, Kelleci K, Zengin Y, Allahverdiyev MA, Abamor EŞ. Applications of Exosome Vesicles in Different Cancer Types as Biomarkers. Curr Mol Med 2024; 24:281-297. [PMID: 36941811 DOI: 10.2174/1566524023666230320120419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/11/2022] [Accepted: 01/09/2023] [Indexed: 03/23/2023]
Abstract
One of the biggest challenges in the fight against cancer is early detection. Early diagnosis is vital, but there are some barriers such as economic, cultural, and personal factors. Considering the disadvantages of radiological imaging techniques or serological analysis methods used in cancer diagnosis, such as being expensive, requiring expertise, and being time-consuming, there is a need to develop faster, more reliable, and cost-effective diagnostic methods for use in cancer diagnosis. Exosomes, which are responsible for intercellular communication with sizes ranging from 30-120 nm, are naturally produced biological nanoparticles. Thanks to the cargo contents they carry, they are a potential biomarker to be used in the diagnosis of cancer. Exosomes, defined as extracellular vesicles of endosomal origin, are effective in cancer growth, progression, metastasis, and drug resistance, and changes in microenvironmental conditions during tumor development change exosome secretion. Due to their high cellular activity, tumor cells produce much higher exosomes than healthy cells. Therefore, it is known that the number of exosomes in body fluids is significantly rich compared to other cells and can act as a stand-alone diagnostic biomarker. Cancer- derived exosomes have received great attention in recent years for the early detection of cancer and the evaluation of therapeutic response. In this article, the content, properties, and differences of exosomes detected in common types of cancer (lung, liver, pancreas, ovaries, breast, colorectal), which are the leading causes of cancer-related deaths, are reviewed. We also discuss the potential utility of exosome contents as a biomarker for early detection, which is known to be important in targeted cancer therapy.
Collapse
Affiliation(s)
- Murat Ihlamur
- Yildiz Technical University, Faculty of Chemistry and Metallurgy, Department of Bioengineering, Istanbul, Turkey
- Biruni University, Vocational School, Department of Electronics and Automation, Istanbul, Turkey
| | - Kübra Kelleci
- Yildiz Technical University, Faculty of Chemistry and Metallurgy, Department of Bioengineering, Istanbul, Turkey
- Beykoz University, Vocational School, Department of Medical Services and Techniques, Istanbul, Turkey
| | - Yağmur Zengin
- Bogazici University, Biomedical Engineering Institute, Department of Biomedical Engineering, Istanbul, Turkey
| | - M Adil Allahverdiyev
- Institute of the V. Akhundov National Scientific Research Medical Prophylactic, Baku, Azerbaijan Republic
| | - Emrah Şefik Abamor
- Yildiz Technical University, Faculty of Chemistry and Metallurgy, Department of Bioengineering, Istanbul, Turkey
| |
Collapse
|
33
|
Li X, Han Y, Meng Y, Yin L. Small RNA-big impact: exosomal miRNAs in mitochondrial dysfunction in various diseases. RNA Biol 2024; 21:1-20. [PMID: 38174992 PMCID: PMC10773649 DOI: 10.1080/15476286.2023.2293343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/21/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Mitochondria are multitasking organelles involved in maintaining the cell homoeostasis. Beyond its well-established role in cellular bioenergetics, mitochondria also function as signal organelles to propagate various cellular outcomes. However, mitochondria have a self-destructive arsenal of factors driving the development of diseases caused by mitochondrial dysfunction. Extracellular vesicles (EVs), a heterogeneous group of membranous nano-sized vesicles, are present in a variety of bodily fluids. EVs serve as mediators for intercellular interaction. Exosomes are a class of small EVs (30-100 nm) released by most cells. Exosomes carry various cargo including microRNAs (miRNAs), a class of short noncoding RNAs. Recent studies have closely associated exosomal miRNAs with various human diseases, including diseases caused by mitochondrial dysfunction, which are a group of complex multifactorial diseases and have not been comprehensively described. In this review, we first briefly introduce the characteristics of EVs. Then, we focus on possible mechanisms regarding exosome-mitochondria interaction through integrating signalling networks. Moreover, we summarize recent advances in the knowledge of the role of exosomal miRNAs in various diseases, describing how mitochondria are changed in disease status. Finally, we propose future research directions to provide a novel therapeutic strategy that could slow the disease progress mediated by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Xiaqing Li
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
- Nephrology department, The Fifth Affiliated Hospital (Heyuan Shenhe People’s Hospital), Jinan University, Heyuan, China
| | - Yi Han
- Traditional Chinese Medicine Department, People’s Hospital of Yanjiang District, Ziyang, Sichuan, China
| | - Yu Meng
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
- Nephrology department, The Fifth Affiliated Hospital (Heyuan Shenhe People’s Hospital), Jinan University, Heyuan, China
| | - Lianghong Yin
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
34
|
Zhou X, Jia Y, Mao C, Liu S. Small extracellular vesicles: Non-negligible vesicles in tumor progression, diagnosis, and therapy. Cancer Lett 2024; 580:216481. [PMID: 37972701 DOI: 10.1016/j.canlet.2023.216481] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/26/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
Small extracellular vesicles (sEVs) such as exosomes are nanoscale membranous particles (<200 nm) that have emerged as crucial targets for liquid biopsy and as promising drug delivery vehicles. They play a significant role in tumor progression as intercellular messengers. They can serve as biomarkers for tumor diagnosis and as drug carriers for cancer treatment. This article reviews recent studies on sEVs in oncology and explores their potential as biomarkers and drug delivery vehicles. Following tumorigenesis, sEVs in the tumor microenvironment (TME) and circulatory system undergo modifications to regulate various events in the TME, including angiogenesis, epithelial-mesenchymal transition (EMT), and tumor immunity, with either pro- or anti-tumor effects. sEVs have been investigated for use as diagnostic and prognostic biomarkers for a variety of tumors, including lung cancer, melanoma, breast cancer, prostate cancer, and hepatocellular carcinoma. sEVs can be used for cancer therapy by packaging drugs or proteins into them through pre- and post-isolation modification techniques. The clinical trials of sEVs as biomarkers and drug carriers are also summarized. Finally, the challenges in the use of sEVs are described and the possible approaches to tackling them are suggested. Overall, sEVs will advance the precision cancer medicine and has shown great potential in clinical applications.
Collapse
Affiliation(s)
- Xinru Zhou
- Department of Laboratory Diagnostics, Changhai Hospital, Navy Military Medical University, Shanghai, China
| | - Yin Jia
- Department of Laboratory Diagnostics, Changhai Hospital, Navy Military Medical University, Shanghai, China
| | - Chuanbin Mao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; School of Materials Science & Engineering, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Shanrong Liu
- Department of Laboratory Diagnostics, Changhai Hospital, Navy Military Medical University, Shanghai, China.
| |
Collapse
|
35
|
Tsoneva DK, Ivanov MN, Vinciguerra M. Liquid Liver Biopsy for Disease Diagnosis and Prognosis. J Clin Transl Hepatol 2023; 11:1520-1541. [PMID: 38161500 PMCID: PMC10752811 DOI: 10.14218/jcth.2023.00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/24/2023] [Accepted: 06/07/2023] [Indexed: 01/03/2024] Open
Abstract
Liver diseases are a major burden worldwide, the scope of which is expected to further grow in the upcoming years. Clinically relevant liver dysfunction-related blood markers such as alanine aminotransferase and aspartate aminotransferase have limited accuracy. Nowadays, liver biopsy remains the gold standard for several liver-related pathologies, posing a risk of complication due to its invasive nature. Liquid biopsy is a minimally invasive approach, which has shown substantial potential in the diagnosis, prognosis, and monitoring of liver diseases by detecting disease-associated particles such as proteins and RNA molecules in biological fluids. Histones are the core components of the nucleosomes, regulating essential cellular processes, including gene expression and DNA repair. Following cell death or activation of immune cells, histones are released in the extracellular space and can be detected in circulation. Histones are stable in circulation, have a long half-life, and retain their post-translational modifications. Here, we provide an overview of the current research on histone-mediated liquid biopsy methods for liver diseases, with a focus on the most common detection methods.
Collapse
Affiliation(s)
- Desislava K. Tsoneva
- Department of Medical Genetics, Medical University of Varna, Varna, Bulgaria
- Department of Stem Cell Biology and Transplantology, Research Institute, Medical University of Varna, Varna, Bulgaria
| | - Martin N. Ivanov
- Department of Stem Cell Biology and Transplantology, Research Institute, Medical University of Varna, Varna, Bulgaria
- Department of Anatomy and Cell Biology, Research Institute, Medical University of Varna, Varna, Bulgaria
| | - Manlio Vinciguerra
- Department of Stem Cell Biology and Transplantology, Research Institute, Medical University of Varna, Varna, Bulgaria
- Faculty of Health, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
36
|
Das S, Dey MK, Devireddy R, Gartia MR. Biomarkers in Cancer Detection, Diagnosis, and Prognosis. SENSORS (BASEL, SWITZERLAND) 2023; 24:37. [PMID: 38202898 PMCID: PMC10780704 DOI: 10.3390/s24010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/27/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
Biomarkers are vital in healthcare as they provide valuable insights into disease diagnosis, prognosis, treatment response, and personalized medicine. They serve as objective indicators, enabling early detection and intervention, leading to improved patient outcomes and reduced costs. Biomarkers also guide treatment decisions by predicting disease outcomes and facilitating individualized treatment plans. They play a role in monitoring disease progression, adjusting treatments, and detecting early signs of recurrence. Furthermore, biomarkers enhance drug development and clinical trials by identifying suitable patients and accelerating the approval process. In this review paper, we described a variety of biomarkers applicable for cancer detection and diagnosis, such as imaging-based diagnosis (CT, SPECT, MRI, and PET), blood-based biomarkers (proteins, genes, mRNA, and peptides), cell imaging-based diagnosis (needle biopsy and CTC), tissue imaging-based diagnosis (IHC), and genetic-based biomarkers (RNAseq, scRNAseq, and spatial transcriptomics).
Collapse
Affiliation(s)
| | | | | | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA; (S.D.); (M.K.D.); (R.D.)
| |
Collapse
|
37
|
Yun S, Kim S, Kim K. Cellular Membrane Components-Mediated Cancer Immunotherapeutic Platforms. Macromol Biosci 2023; 23:e2300159. [PMID: 37319369 DOI: 10.1002/mabi.202300159] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/13/2023] [Indexed: 06/17/2023]
Abstract
Immune cell engineering is an active field of ongoing research that can be easily applied to nanoscale biomedicine as an alternative to overcoming limitations of nanoparticles. Cell membrane coating and artificial nanovesicle technology have been reported as representative methods with an advantage of good biocompatibility for biomimetic replication of cell membrane characteristics. Cell membrane-mediated biomimetic technique provides properties of natural cell membrane and enables membrane-associated cellular/molecular signaling. Thus, coated nanoparitlces (NPs) and artificial nanovesicles can achieve effective and extended in vivo circulation, enabling execution of target functions. While coated NPs and artificial nanovesicles provide clear advantages, much work remains before clinical application. In this review, first a comprehensive overview of cell membrane coating techniques and artificial nanovesicles is provided. Next, the function and application of various immune cell membrane types are summarized.
Collapse
Affiliation(s)
- Seojeong Yun
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Sungjun Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| |
Collapse
|
38
|
Srinivas AN, Suresh D, Kaur S, Kumar DP. The promise of small particles: extracellular vesicles as biomarkers in liver pathology. J Physiol 2023; 601:4953-4971. [PMID: 35708653 DOI: 10.1113/jp283074] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/07/2022] [Indexed: 11/09/2022] Open
Abstract
Extracellular vesicles (EVs) are nanoscopic packages that are heterogeneous and bona fide players in hepatic physiology and pathology as they are involved in intercellular communication. EVs carrying bioactive cargoes rich in lipids, proteins or nucleic acids are implicated in the onset and progression of liver diseases. Liver pathology using liver biopsy has been assessed for several intricate conditions such as viral hepatitis, alcoholic and non-alcoholic fatty liver disease, hepatic malignancies and drug-induced liver injury. The lacunae, however, lie in early diagnosis and timely treatment of the above conditions, underscoring the need for non-invasive, accurate diagnostic tools that could replace the gold standard method of tissue biopsy. In this regard, EVs have emerged as promising candidates that could serve as potential biomarkers. In the last two decades, EVs, owing to their multifaceted charm in bringing out cell-free therapeutic responses and the ability of their cargoes to be applied to novel biomarkers, have drawn the great attention of researchers with the advancement and clinical application of liquid biopsy. In this review, we recapitulate the role of EVs and provide insights into the promising role of these small packages as biomarkers in liver pathology.
Collapse
Affiliation(s)
- Akshatha N Srinivas
- Department of Biochemistry, CEMR, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Diwakar Suresh
- Department of Biochemistry, CEMR, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Savneet Kaur
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences (ILBS), New Delhi, India
| | - Divya P Kumar
- Department of Biochemistry, CEMR, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| |
Collapse
|
39
|
Wang L, Wu X, Chen G, Chen Y, Xu L, Wang J, Chen J. Dual amplified electrochemical sensing coupling of ternary hybridization-based exosomal microRNA recognition and perchlorate-assisted electrocatalytic cycle. Biosens Bioelectron 2023; 243:115783. [PMID: 39492379 DOI: 10.1016/j.bios.2023.115783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/14/2023] [Accepted: 10/22/2023] [Indexed: 11/05/2024]
Abstract
Exosomal microRNA (miRNA) are important biomarkers for liquid biopsy, and display clinical molecular signatures for cancer diagnosis. Although advanced detection methods have been established to detect exosomal miRNAs, they are faced with certain challenges. Therefore, we aimed to establish a dual amplification-based electrochemical method for detecting exosomal miRNA. This method combined a two-hairpins-based ternary hybridization structure (thTHS)-initiated single-stranded DNA (ssDNA) amplification reaction (ssDAR) and sodium perchlorate (NaClO4)-assisted electrocatalytic cycle. Two DNA hairpins were designed to hybridize with target miRNA, forming thTHS. Next, ssDAR was triggered by thTHS to produce long ssDNA on magnetic beads. The long ssDNA, complementary to the signal probes, was subsequently released onto a methylene blue (MB)-labeled double-stranded DNA-modified electrode for strand displacement reaction. This led to a quantitative change in MB and a change in electrocatalytic reduction current from the electrocatalytic cycle of MB-ferricyanide. An amplified electrocatalytic reduction current was produced by adding NaClO4 to the electrocatalytic system, which substantially improved the signal response range and detection sensitivity. Ultimately, exosomal miRNA detection was achieved by recording changes in the electrocatalytic reduction current before and after miRNA addition. This electrochemical method exhibited a sensitive concentration response with a detection limit of 45 aM and selective miRNA recognition, and successfully used to detect exosomal miRNA derived from cells and serum. Additionally, this method exhibited better discrimination ability between patients with breast cancer (BC) and those people without BC (patients with benign breast disease and healthy people), providing a promising strategy for detecting and monitoring cancer biomarkers.
Collapse
Affiliation(s)
- Liangliang Wang
- Innovation Center for Cancer Research, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, 350014, China; Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, Fujian Province, 350014, China
| | - Xiufeng Wu
- Department of Breast Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, 350014, China
| | - Guanyu Chen
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350122, China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350122, China; Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province, 350122, China
| | - Yawen Chen
- Innovation Center for Cancer Research, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, 350014, China; Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, Fujian Province, 350014, China
| | - Lilan Xu
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350122, China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350122, China; Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province, 350122, China
| | - Jianmin Wang
- Innovation Center for Cancer Research, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, 350014, China; Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, Fujian Province, 350014, China.
| | - Jinghua Chen
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350122, China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350122, China; Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province, 350122, China.
| |
Collapse
|
40
|
Liu M, Lai Z, Yuan X, Jin Q, Shen H, Rao D, Huang D. Role of exosomes in the development, diagnosis, prognosis and treatment of hepatocellular carcinoma. Mol Med 2023; 29:136. [PMID: 37848835 PMCID: PMC10580543 DOI: 10.1186/s10020-023-00731-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/17/2023] [Indexed: 10/19/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer. It is characterized by occult onset resulting in most patients being diagnosed at advanced stages and with poor prognosis. Exosomes are nanoscale vesicles with a lipid bilayer envelope released by various cells under physiological and pathological conditions, which play an important role in the biological information transfer between cells. There is growing evidence that HCC cell-derived exosomes may contribute to the establishment of a favorable microenvironment that supports cancer cell proliferation, invasion, and metastasis. These exosomes not only provide a versatile platform for diagnosis but also serve as a vehicle for drug delivery. In this paper, we review the role of exosomes involved in the proliferation, migration, and metastasis of HCC and describe their application in HCC diagnosis and treatment. We also discuss the prospects of exosome application in HCC and the research challenges.
Collapse
Affiliation(s)
- Meijin Liu
- Ganzhou Jingkai District People's Hospital, Ganzhou, China
| | - Zhonghong Lai
- Department of Traumatology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaoying Yuan
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qing Jin
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Haibin Shen
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Dingyu Rao
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.
| | - Defa Huang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.
| |
Collapse
|
41
|
Baraka K, Abozahra RR, Badr E, Abdelhamid SM. Study of some potential biomarkers in Egyptian hepatitis C virus patients in relation to liver disease progression and HCC. BMC Cancer 2023; 23:938. [PMID: 37798688 PMCID: PMC10552374 DOI: 10.1186/s12885-023-11420-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/19/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Egypt has the greatest prevalence of hepatitis C worldwide according to the WHO reports, accounting for 13% of the global HCV infections. HCV is a substantial precursor for fibrosis, cirrhosis, and hepatocellular carcinoma. This study aimed to investigate the potential relevance of some cytokines, miR-122 and miR-221 for the diagnosis of liver disease progression associated to HCV infection. METHODS One hundred and twenty blood samples were collected from patients with chronic liver disease, HCC, and healthy individuals. Total bilirubin, alanine aminotransferase, aspartate aminotransferase, platelet count, albumin, and creatinine were measured. Serum level of selected cytokines was conducted by ELISA. Serum miRNA expression was detected by RT-PCR. RESULTS IL-2R was higher among HCC patients and the mean concentration of both TNF-αRII and IL-6R was higher among cirrhotic patients. The expression of miRNA-122 showed a little fold decrease in all studied groups; the highest level was observed in HCC patients. The expression of miRNA-221 showed a significant fold increase in HCC and cirrhotic groups. CONCLUSIONS This study revealed that there is no difference in liver disease progression in patients regarding sex and age. Routine liver function tests performed poorly in terms of early diagnosis of liver disease progression; however, serum total bilirubin gave somewhat useful guide for discrimination between fibrotic, cirrhotic and HCC cases. IL-2R showed a significant consistent increase in its level with disease progression. The miR-221 serum level showed significant fold increase with liver disease progression. Therefore, making miR-221 a potential non-invasive biomarker for liver disease progression in the diagnostic setting is recommended.
Collapse
Affiliation(s)
- Kholoud Baraka
- Microbiology and Immunology Department, Faculty of Pharmacy, Damanhour University, El Gomhoreya Street, Damanhour, El Behira Egypt
| | - Rania R. Abozahra
- Microbiology and Immunology Department, Faculty of Pharmacy, Damanhour University, El Gomhoreya Street, Damanhour, El Behira Egypt
| | - Eman Badr
- Microbiology and Immunology Department, Faculty of Pharmacy, Damanhour University, El Gomhoreya Street, Damanhour, El Behira Egypt
| | - Sarah M. Abdelhamid
- Microbiology and Immunology Department, Faculty of Pharmacy, Damanhour University, El Gomhoreya Street, Damanhour, El Behira Egypt
| |
Collapse
|
42
|
Fayyazpour P, Fayyazpour A, Abbasi K, Vaez-Gharamaleki Y, Zangbar MSS, Raeisi M, Mehdizadeh A. The role of exosomes in cancer biology by shedding light on their lipid contents. Pathol Res Pract 2023; 250:154813. [PMID: 37769395 DOI: 10.1016/j.prp.2023.154813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 09/30/2023]
Abstract
Exosomes are extracellular bilayer membrane nanovesicles released by cells after the fusion of multivesicular bodies (MVBs) with the plasma membrane. One of the interesting features of exosomes is their ability to carry and transfer various molecules, including lipids, proteins, nucleic acids, and therapeutic cargoes among cells. As intercellular signaling organelles, exosomes participate in various signaling processes such as tumor growth, metastasis, angiogenesis, epithelial-to-mesenchymal transition (EMT), and cell physiology such as cell-to-cell communication. Moreover, these particles are considered good vehicles to shuttle vaccines and drugs for therapeutic applications regarding cancers and tumor cells. These bioactive vesicles are also rich in various lipid molecules such as cholesterol, sphingomyelin (SM), glycosphingolipids, and phosphatidylserine (PS). These lipids play an important role in the formation, release, and function of the exosomes and interestingly, some lipids are used as biomarkers in cancer diagnosis. This review aimed to focus on exosomes lipid content and their role in cancer biology.
Collapse
Affiliation(s)
- Parisa Fayyazpour
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Fayyazpour
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Khadijeh Abbasi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yosra Vaez-Gharamaleki
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mortaza Raeisi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
43
|
Zeng Y, Hu S, Luo Y, He K. Exosome Cargos as Biomarkers for Diagnosis and Prognosis of Hepatocellular Carcinoma. Pharmaceutics 2023; 15:2365. [PMID: 37765333 PMCID: PMC10537613 DOI: 10.3390/pharmaceutics15092365] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Due to the insidiousness of HCC onset and the lack of specific early-stage markers, the early diagnosis and treatment of HCC are still unsatisfactory, leading to a poor prognosis. Exosomes are a type of extracellular vesicle containing various components, which play an essential part in the development, progression, and metastasis of HCC. A large number of studies have demonstrated that exosomes could serve as novel biomarkers for the diagnosis of HCC. These diagnostic components mainly include proteins, microRNAs, long noncoding RNAs, and circular RNAs. The exosome biomarkers showed high sensitivity and high specificity in distinguishing HCC from health controls and other liver diseases, such as chronic HBV and liver cirrhosis. The expression of these biomarkers also exhibits correlations with various clinical factors such as tumor size, TMN stage, overall survival, and recurrence rate. In this review, we summarize the function of exosomes in the development of HCC and highlight their application as HCC biomarkers for diagnosis and prognosis prediction.
Collapse
Affiliation(s)
- Yulai Zeng
- Department of Liver Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai 200127, China; (Y.Z.); (S.H.)
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai 200127, China
- Shanghai Institute of Transplantation, Shanghai 200127, China
| | - Shuyu Hu
- Department of Liver Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai 200127, China; (Y.Z.); (S.H.)
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai 200127, China
- Shanghai Institute of Transplantation, Shanghai 200127, China
| | - Yi Luo
- Department of Liver Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai 200127, China; (Y.Z.); (S.H.)
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai 200127, China
- Shanghai Institute of Transplantation, Shanghai 200127, China
| | - Kang He
- Department of Liver Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai 200127, China; (Y.Z.); (S.H.)
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai 200127, China
- Shanghai Institute of Transplantation, Shanghai 200127, China
| |
Collapse
|
44
|
De Stefano N, Calleri A, Faini AC, Navarro-Tableros V, Martini S, Deaglio S, Patrono D, Romagnoli R. Extracellular Vesicles in Liver Transplantation: Current Evidence and Future Challenges. Int J Mol Sci 2023; 24:13547. [PMID: 37686354 PMCID: PMC10488298 DOI: 10.3390/ijms241713547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Extracellular vesicles (EVs) are emerging as a promising field of research in liver disease. EVs are small, membrane-bound vesicles that contain various bioactive molecules, such as proteins, lipids, and nucleic acids and are involved in intercellular communication. They have been implicated in numerous physiological and pathological processes, including immune modulation and tissue repair, which make their use appealing in liver transplantation (LT). This review summarizes the current state of knowledge regarding the role of EVs in LT, including their potential use as biomarkers and therapeutic agents and their role in graft rejection. By providing a comprehensive insight into this emerging topic, this research lays the groundwork for the potential application of EVs in LT.
Collapse
Affiliation(s)
- Nicola De Stefano
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città Della Salute e Della Scienza Di Torino, University of Turin, Corso Bramante 88-90, 10126 Turin, Italy; (N.D.S.); (R.R.)
| | - Alberto Calleri
- Gastrohepatology Unit, Azienda Ospedaliero Universitaria Città Della Salute e Della Scienza Di Torino, University of Turin, 10126 Turin, Italy; (A.C.); (S.M.)
| | - Angelo Corso Faini
- Immunogenetics and Transplant Biology Unit, Azienda Ospedaliero Universitaria Città Della Salute e Della Scienza Di Torino, University of Turin, 10126 Turin, Italy; (A.C.F.); (S.D.)
| | - Victor Navarro-Tableros
- 2i3T, Società Per La Gestione Dell’incubatore Di Imprese e Per Il Trasferimento Tecnologico, University of Turin, 10126 Turin, Italy;
| | - Silvia Martini
- Gastrohepatology Unit, Azienda Ospedaliero Universitaria Città Della Salute e Della Scienza Di Torino, University of Turin, 10126 Turin, Italy; (A.C.); (S.M.)
| | - Silvia Deaglio
- Immunogenetics and Transplant Biology Unit, Azienda Ospedaliero Universitaria Città Della Salute e Della Scienza Di Torino, University of Turin, 10126 Turin, Italy; (A.C.F.); (S.D.)
| | - Damiano Patrono
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città Della Salute e Della Scienza Di Torino, University of Turin, Corso Bramante 88-90, 10126 Turin, Italy; (N.D.S.); (R.R.)
| | - Renato Romagnoli
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città Della Salute e Della Scienza Di Torino, University of Turin, Corso Bramante 88-90, 10126 Turin, Italy; (N.D.S.); (R.R.)
| |
Collapse
|
45
|
Todorova VK, Byrum SD, Mackintosh SG, Jamshidi-Parsian A, Gies AJ, Washam CL, Jenkins SV, Spiva T, Bowman E, Reyna NS, Griffin RJ, Makhoul I. Exosomal MicroRNA and Protein Profiles of Hepatitis B Virus-Related Hepatocellular Carcinoma Cells. Int J Mol Sci 2023; 24:13098. [PMID: 37685904 PMCID: PMC10487651 DOI: 10.3390/ijms241713098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Infection with hepatitis B virus (HBV) is a main risk factor for hepatocellular carcinoma (HCC). Extracellular vesicles, such as exosomes, play an important role in tumor development and metastasis, including regulation of HBV-related HCC. In this study, we have characterized exosome microRNA and proteins released in vitro from hepatitis B virus (HBV)-related HCC cell lines SNU-423 and SNU-182 and immortalized normal hepatocyte cell lines (THLE2 and THLE3) using microRNA sequencing and mass spectrometry. Bioinformatics, including functional enrichment and network analysis, combined with survival analysis using data related to HCC in The Cancer Genome Atlas (TCGA) database, were applied to examine the prognostic significance of the results. More than 40 microRNAs and 200 proteins were significantly dysregulated (p < 0.05) in the exosomes released from HCC cells in comparison with the normal liver cells. The functional analysis of the differentially expressed exosomal miRNAs (i.e., mir-483, mir-133a, mir-34a, mir-155, mir-183, mir-182), their predicted targets, and exosomal differentially expressed proteins (i.e., POSTN, STAM, EXOC8, SNX9, COL1A2, IDH1, FN1) showed correlation with pathways associated with HBV, virus activity and invasion, exosome formation and adhesion, and exogenous protein binding. The results from this study may help in our understanding of the role of HBV infection in the development of HCC and in the development of new targets for treatment or non-invasive predictive biomarkers of HCC.
Collapse
Affiliation(s)
- Valentina K. Todorova
- Department of Internal Medicine/Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Stephanie D. Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.D.B.); (S.G.M.); (A.J.G.); (C.L.W.)
| | - Samuel G. Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.D.B.); (S.G.M.); (A.J.G.); (C.L.W.)
| | - Azemat Jamshidi-Parsian
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (A.J.-P.); (S.V.J.); (R.J.G.)
| | - Allen J. Gies
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.D.B.); (S.G.M.); (A.J.G.); (C.L.W.)
| | - Charity L. Washam
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.D.B.); (S.G.M.); (A.J.G.); (C.L.W.)
| | - Samir V. Jenkins
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (A.J.-P.); (S.V.J.); (R.J.G.)
| | - Timothy Spiva
- Biology Department, Ouachita Baptist University, Arkadelphia, AR 71998, USA; (T.S.); (E.B.); (N.S.R.)
| | - Emily Bowman
- Biology Department, Ouachita Baptist University, Arkadelphia, AR 71998, USA; (T.S.); (E.B.); (N.S.R.)
| | - Nathan S. Reyna
- Biology Department, Ouachita Baptist University, Arkadelphia, AR 71998, USA; (T.S.); (E.B.); (N.S.R.)
| | - Robert J. Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (A.J.-P.); (S.V.J.); (R.J.G.)
| | - Issam Makhoul
- Department of Internal Medicine/Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| |
Collapse
|
46
|
Zou Z, Li H, Xu G, Hu Y, Zhang W, Tian K. Current Knowledge and Future Perspectives of Exosomes as Nanocarriers in Diagnosis and Treatment of Diseases. Int J Nanomedicine 2023; 18:4751-4778. [PMID: 37635911 PMCID: PMC10454833 DOI: 10.2147/ijn.s417422] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/29/2023] [Indexed: 08/29/2023] Open
Abstract
Exosomes, as natural nanocarriers, characterized with low immunogenicity, non-cytotoxicity and targeted delivery capability, which have advantages over synthetic nanocarriers. Recently, exosomes have shown great potential as diagnostic markers for diseases and are also considered as a promising cell-free therapy. Engineered exosomes have significantly enhanced the efficacy and precision of delivering therapeutic agents, and are currently being extensively employed in targeted therapeutic investigations for various ailments, including oncology, inflammatory disorders, and degenerative conditions. Particularly, engineered exosomes enable therapeutic agent loading, targeted modification, evasion of MPS phagocytosis, intelligent control, and bioimaging, and have been developed as multifunctional nano-delivery platforms in recent years. The utilization of bioactive scaffolds that are loaded with exosome delivery has been shown to substantially augment retention, extend exosome release, and enhance efficacy. This approach has advanced from conventional hydrogels to nanocomposite hydrogels, nanofiber hydrogels, and 3D printing, resulting in superior physical and biological properties that effectively address the limitations of natural scaffolds. Additionally, plant-derived exosomes, which can participate in gut flora remodeling via oral administration, are considered as an ideal delivery platform for the treatment of intestinal diseases. Consequently, there is great interest in exosomes and exosomes as nanocarriers for therapeutic and diagnostic applications. This comprehensive review provides an overview of the biogenesis, composition, and isolation methods of exosomes. Additionally, it examines the pathological and diagnostic mechanisms of exosomes in various diseases, including tumors, degenerative disorders, and inflammatory conditions. Furthermore, this review highlights the significance of gut microbial-derived exosomes. Strategies and specific applications of engineered exosomes and bioactive scaffold-loaded exosome delivery are further summarized, especially some new techniques such as large-scale loading technique, macromolecular loading technique, development of multifunctional nano-delivery platforms and nano-scaffold-loaded exosome delivery. The potential benefits of using plant-derived exosomes for the treatment of gut-related diseases are also discussed. Additionally, the challenges, opportunities, and prospects of exosome-based nanocarriers for disease diagnosis and treatment are summarized from both preclinical and clinical viewpoints.
Collapse
Affiliation(s)
- Zaijun Zou
- Department of Sports Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- School of Graduates, Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Han Li
- Department of Sports Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- School of Graduates, Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Gang Xu
- Department of Sports Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Disease, Dalian, Liaoning Province, 116011, People’s Republic of China
| | - Yunxiang Hu
- School of Graduates, Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Weiguo Zhang
- Department of Sports Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Disease, Dalian, Liaoning Province, 116011, People’s Republic of China
| | - Kang Tian
- Department of Sports Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Disease, Dalian, Liaoning Province, 116011, People’s Republic of China
| |
Collapse
|
47
|
Yap JYY, Goh LSH, Lim AJW, Chong SS, Lim LJ, Lee CG. Machine Learning Identifies a Signature of Nine Exosomal RNAs That Predicts Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:3749. [PMID: 37509410 PMCID: PMC10377993 DOI: 10.3390/cancers15143749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Although alpha fetoprotein (AFP) remains a commonly used serological marker of HCC, the sensitivity and specificity of AFP in detecting HCC is often limited. Exosomal RNA has emerged as a promising diagnostic tool for various cancers, but its use in HCC detection has yet to be fully explored. Here, we employed Machine Learning on 114,602 exosomal RNAs to identify a signature that can predict HCC. The exosomal expression data of 118 HCC patients and 112 healthy individuals were stratified split into Training, Validation and Unseen Test datasets. Feature selection was then performed on the initial training dataset using permutation importance, and the predictive performance of the selected features were tested on the validation dataset using Support Vector Machine (SVM) Classifier. A minimum of nine features were identified to be predictive of HCC and these nine features were then evaluated across six different models in an unseen test set. These features, mainly in the immune, platelet/neutrophil and cytoskeletal pathways, exhibited good predictive performance with ROC-AUC from 0.79-0.88 in the unseen test set. Hence, these nine exosomal RNAs have potential to be clinically useful minimally invasive biomarkers for HCC.
Collapse
Affiliation(s)
- Josephine Yu Yan Yap
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- NUS Graduate School, National University of Singapore, Singapore 119077, Singapore
| | - Laura Shih Hui Goh
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Ashley Jun Wei Lim
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Samuel S Chong
- Department of Paediatrics and Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
| | - Lee Jin Lim
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Caroline G Lee
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- NUS Graduate School, National University of Singapore, Singapore 119077, Singapore
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore 168583, Singapore
- Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
48
|
Tiyuri A, Baghermanesh SS, Davatgaran-Taghipour Y, Eslami SS, Shaygan N, Parsaie H, Barati M, Jafari D. Diagnostic accuracy of serum derived exosomes for hepatocellular carcinoma: a systematic review and meta-analysis. Expert Rev Mol Diagn 2023; 23:971-983. [PMID: 37715364 DOI: 10.1080/14737159.2023.2260306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/26/2023] [Accepted: 09/01/2023] [Indexed: 09/17/2023]
Abstract
INTRODUCTION Early and non-invasive detection of hepatocellular carcinoma (HCC), which is usually asymptomatic, can improve overall survival outcomes. The objective of this systematic review and meta-analysis was to evaluate the diagnostic accuracy of serum-derived exosomes for diagnosing HCC. METHODS PubMed, Web of Science, and Scopus databases were searched for relevant studies up to April 2023. The quality of included studies was assessed using the QUADAS-2 checklist, and data were extracted. Statistical analysis was performed on 18 studies from 3,993 records, and a diagnostic meta-analysis was conducted. Biomarkers were categorized into four groups based on their type (exosomal miRNAs, exosomal RNAs, alpha-fetoprotein (AFP), and exosomal RNAs+AFP panel), and a meta-analysis was conducted for each category separately. RESULTS The highest pooled sensitivity was 0.86 for exosomal miRNAs, and exosomal RNAs+AFP had the highest pooled specificity; (0.89). Furthermore, exosomal RNAs+AFP had the highest pooled positive likelihood ratio; (7.55), the highest pooled diagnostic odds ratio (35.96) and the highest pooled area under the curve (0.93). Exosomal miRNAs had the lowest pooled negative likelihood ratio; (0.17). CONCLUSIONS The diagnostic accuracy of exosomal biomarkers is superior to that of AFP, and combining the two in a panel yields the better results.
Collapse
Affiliation(s)
- Amir Tiyuri
- Department of Epidemiology and Biostatistics, School of Health, Birjand University of Medical Sciences, Birjand, Iran
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Shayeste Sadat Baghermanesh
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Yasamin Davatgaran-Taghipour
- Department of Medical Nanotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Sadegh Eslami
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Laval, Canada
| | - Nasibeh Shaygan
- Department of Plant Breeding and Biotechnology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Houman Parsaie
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Mahmood Barati
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Davod Jafari
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
49
|
Jiang X, Wu S, Hu C. A narrative review of the role of exosomes and caveolin-1 in liver diseases and cancer. Int Immunopharmacol 2023; 120:110284. [PMID: 37196562 DOI: 10.1016/j.intimp.2023.110284] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/16/2023] [Accepted: 05/02/2023] [Indexed: 05/19/2023]
Abstract
Exosomes are nanoscale (40-100 nm) vesicles secreted by different types of cells and have attracted extensive interest in recent years because of their unique role in disease development. It can carry related goods, such as lipids, proteins, and nucleic acids, to mediate intercellular communication. This review summarizes exosome biogenesis, release, uptake, and their role in mediating the development of liver diseases and cancer, such as viral hepatitis, drug-induced liver injury, alcohol-related liver disease, non-alcoholic fatty liver disease, hepatocellular carcinoma, and other tumors. Meanwhile, a fossa structural protein, caveolin-1(CAV-1), has also been proposed to be involved in the development of various diseases, especially liver diseases and tumors. In this review, we discuss the role of CAV-1 in liver diseases and different tumor stages (inhibition of early growth and promotion of late metastasis) and the underlying mechanisms by which CAV-1 regulates the process. In addition, CAV-1 has also been found to be a secreted protein that can be released directly through the exosome pathway or change the cargo composition of the exosomes, thus contributing to enhancing the metastasis and invasion of cancer cells during the late stage of tumor development. In conclusion, the role of CAV-1 and exosomes in disease development and the association between them remains to be one challenging uncharted area.
Collapse
Affiliation(s)
- Xiangfu Jiang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui medical university, Hefei 230032, China; Key Laboratory of anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Shuai Wu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui medical university, Hefei 230032, China; Key Laboratory of anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Chengmu Hu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui medical university, Hefei 230032, China; Key Laboratory of anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
50
|
Mahmoodpour M, Kiasari BA, Karimi M, Abroshan A, Shamshirian D, Hosseinalizadeh H, Delavari A, Mirzei H. Paper-based biosensors as point-of-care diagnostic devices for the detection of cancers: a review of innovative techniques and clinical applications. Front Oncol 2023; 13:1131435. [PMID: 37456253 PMCID: PMC10348714 DOI: 10.3389/fonc.2023.1131435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/01/2023] [Indexed: 07/18/2023] Open
Abstract
The development and rapid progression of cancer are major social problems. Medical diagnostic techniques and smooth clinical care of cancer are new necessities that must be supported by innovative diagnostic methods and technologies. Current molecular diagnostic tools based on the detection of blood protein markers are the most common tools for cancer diagnosis. Biosensors have already proven to be a cost-effective and accessible diagnostic tool that can be used where conventional laboratory methods are not readily available. Paper-based biosensors offer a new look at the world of analytical techniques by overcoming limitations through the creation of a simple device with significant advantages such as adaptability, biocompatibility, biodegradability, ease of use, large surface-to-volume ratio, and cost-effectiveness. In this review, we covered the characteristics of exosomes and their role in tumor growth and clinical diagnosis, followed by a discussion of various paper-based biosensors for exosome detection, such as dipsticks, lateral flow assays (LFA), and microfluidic paper-based devices (µPADs). We also discussed the various clinical studies on paper-based biosensors for exosome detection.
Collapse
Affiliation(s)
- Mehrdad Mahmoodpour
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Bahman Abedi Kiasari
- Virology Department, Faculty of Veterinary, The University of Tehran, Tehran, Iran
| | - Merat Karimi
- Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Iran
| | - Arezou Abroshan
- Student Research Committee, Faculty of Veterinary Medicine, Shahid Bahonar University, Kerman, Iran
| | - Danial Shamshirian
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Hosseinalizadeh
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Alireza Delavari
- Student's Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|