1
|
Miyamoto K, Kondo S, Kondo T, Ishikawa R, Tani R, Inoue T, Matsunaga K, Minamino T, Kusaka T. Pathological features of non-alcoholic steatohepatitis in a pediatric patient with heterozygous familial hypobetalipoproteinemia: A case report. World J Hepatol 2025; 17:103299. [PMID: 40027560 PMCID: PMC11866159 DOI: 10.4254/wjh.v17.i2.103299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/26/2024] [Accepted: 01/21/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Heterozygous familial hypobetalipoproteinemia (FHBL) is a semi-autosomal disorder that is caused mainly by an APOB variant. It is usually asymptomatic and rarely leads to non-alcoholic steatohepatitis (NASH). CASE SUMMARY A 12-year-old boy was referred to our hospital after prolonged elevation of liver enzymes was observed during health checkups in Kagawa Prefecture. Abdominal ultrasound showed a bright liver, and laboratory investigations revealed low low-density lipoprotein cholesterol and apolipoprotein B protein levels. His family history included fatty liver and hypolipidemia in his father, which led to a clinical diagnosis of FHBL. A liver biopsy was performed on suspicion of liver fibrosis based on biomarkers. The liver tissue showed fatty steatosis, inflammation, hepatocyte ballooning, and fibrosis, indicating NASH. Genetic testing detected the APOB variant, and the patient was treated successfully with vitamin E. CONCLUSION It is important to assess family history and liver dysfunction severity in non-obese patients with hypolipidemia and fatty liver.
Collapse
Affiliation(s)
- Kiwako Miyamoto
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Miki 761-0793, Kagawa, Japan
| | - Sonoko Kondo
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Miki 761-0793, Kagawa, Japan.
| | - Takeo Kondo
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Miki 761-0793, Kagawa, Japan
| | - Ryou Ishikawa
- Department of Diagnostic Pathology, Faculty of Medicine, Kagawa University, Miki 761-0793, Kagawa, Japan
| | - Ryosuke Tani
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Miki 761-0793, Kagawa, Japan
| | - Tomoko Inoue
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Miki 761-0793, Kagawa, Japan
| | - Keiji Matsunaga
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Miki 761-0793, Kagawa, Japan
| | - Tetsuo Minamino
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Miki 761-0793, Kagawa, Japan
| | - Takashi Kusaka
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Miki 761-0793, Kagawa, Japan
| |
Collapse
|
2
|
Wakabayashi T, Takahashi M, Okazaki H, Okazaki S, Yokote K, Tada H, Ogura M, Ishigaki Y, Yamashita S, Harada-Shiba M. Current Diagnosis and Management of Familial Hypobetalipoproteinemia 1. J Atheroscler Thromb 2024; 31:1005-1023. [PMID: 38710625 PMCID: PMC11224688 DOI: 10.5551/jat.rv22018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 05/08/2024] Open
Abstract
Familial hypobetalipoproteinemia (FHBL) 1 is a rare genetic disorder with an autosomal codominant mode of inheritance and is caused by defects in the apolipoprotein (apo) B (APOB) gene that disable lipoprotein formation. ApoB proteins are required for the formation of very low-density lipoproteins (VLDLs), chylomicrons, and their metabolites. VLDLs transport cholesterol and triglycerides from the liver to the peripheral tissues, whereas chylomicrons transport absorbed lipids and fat-soluble vitamins from the intestine. Homozygous or compound heterozygotes of FHBL1 (HoFHBL1) are extremely rare, and defects in APOB impair VLDL and chylomicron secretion, which result in marked hypolipidemia with malabsorption of fat and fat-soluble vitamins, leading to various complications such as growth disorders, acanthocytosis, retinitis pigmentosa, and neuropathy. Heterozygotes of FHBL1 are relatively common and are generally asymptomatic, except for moderate hypolipidemia and possible hepatic steatosis. If left untreated, HoFHBL1 can cause severe complications and disabilities that are pathologically and phenotypically similar to abetalipoproteinemia (ABL) (an autosomal recessive disorder) caused by mutations in the microsomal triglyceride transfer protein (MTTP) gene. Although HoFHBL1 and ABL cannot be distinguished from the clinical manifestations and laboratory findings of the proband, moderate hypolipidemia in first-degree relatives may help diagnose HoFHBL1. There is currently no specific treatment for HoFHBL1. Palliative therapy including high-dose fat-soluble vitamin supplementation may prevent or delay complications. Registry research on HoFHBL1 is currently ongoing to better understand the disease burden and unmet needs of this life-threatening disease with few therapeutic options.
Collapse
Affiliation(s)
- Tetsuji Wakabayashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan
| | - Manabu Takahashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan
| | - Hiroaki Okazaki
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan
| | - Sachiko Okazaki
- Division for Health Service Promotion, The University of Tokyo, Tokyo, Japan
| | | | - Hayato Tada
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Masatsune Ogura
- Department of Clinical Laboratory Technology, Faculty of Medical Science, Juntendo University, Tokyo, Japan
| | - Yasushi Ishigaki
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University, Iwate, Japan
| | - Shizuya Yamashita
- Department of Cardiology, Rinku General Medical Center, Osaka, Japan
| | - Mariko Harada-Shiba
- Cardiovascular Center, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - on behalf of the Committee on Primary Dyslipidemia under the Research Program on Rare and Intractable Disease of the Ministry of Health, Labour and Welfare of Japan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan
- Division for Health Service Promotion, The University of Tokyo, Tokyo, Japan
- Chiba University, Chiba, Japan
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
- Department of Clinical Laboratory Technology, Faculty of Medical Science, Juntendo University, Tokyo, Japan
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University, Iwate, Japan
- Department of Cardiology, Rinku General Medical Center, Osaka, Japan
- Cardiovascular Center, Osaka Medical and Pharmaceutical University, Osaka, Japan
| |
Collapse
|
3
|
Stezin A, Pal PK. Treatable Ataxias: How to Find the Needle in the Haystack? J Mov Disord 2022; 15:206-226. [PMID: 36065614 DOI: 10.14802/jmd.22069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/05/2022] [Indexed: 11/24/2022] Open
Abstract
Treatable ataxias are a group of ataxic disorders with specific treatments. These disorders include genetic and metabolic disorders, immune-mediated ataxic disorders, and ataxic disorders associated with infectious and parainfectious etiology, vascular causes, toxins and chemicals, and endocrinopathies. This review provides a comprehensive overview of different treatable ataxias. The major metabolic and genetic treatable ataxic disorders include ataxia with vitamin E deficiency, abetalipoproteinemia, cerebrotendinous xanthomatosis, Niemann-Pick disease type C, autosomal recessive cerebellar ataxia due to coenzyme Q10 deficiency, glucose transporter type 1 deficiency, and episodic ataxia type 2. The treatment of these disorders includes the replacement of deficient cofactors and vitamins, dietary modifications, and other specific treatments. Treatable ataxias with immune-mediated etiologies include gluten ataxia, anti-glutamic acid decarboxylase antibody-associated ataxia, steroid-responsive encephalopathy associated with autoimmune thyroiditis, Miller-Fisher syndrome, multiple sclerosis, and paraneoplastic cerebellar degeneration. Although dietary modification with a gluten-free diet is adequate in gluten ataxia, other autoimmune ataxias are managed by short-course steroids, plasma exchange, or immunomodulation. For autoimmune ataxias secondary to malignancy, treatment of tumor can reduce ataxic symptoms. Chronic alcohol consumption, antiepileptics, anticancer drugs, exposure to insecticides, heavy metals, and recreational drugs are potentially avoidable and treatable causes of ataxia. Infective and parainfectious causes of cerebellar ataxias include acute cerebellitis, postinfectious ataxia, Whipple's disease, meningoencephalitis, and progressive multifocal leukoencephalopathy. These disorders are treated with steroids and antibiotics. Recognizing treatable disorders is of paramount importance when dealing with ataxias given that early treatment can prevent permanent neurological sequelae.
Collapse
Affiliation(s)
- Albert Stezin
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India.,Centre for Brain Research, Indian Institute of Science, Bengaluru, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| |
Collapse
|
4
|
Takahashi M, Okazaki H, Ohashi K, Ogura M, Ishibashi S, Okazaki S, Hirayama S, Hori M, Matsuki K, Yokoyama S, Harada-Shiba M. Current Diagnosis and Management of Abetalipoproteinemia. J Atheroscler Thromb 2021; 28:1009-1019. [PMID: 33994405 PMCID: PMC8560840 DOI: 10.5551/jat.rv17056] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abetalipoproteinemia (ABL) is a rare autosomal recessive disorder caused by biallelic pathogenic mutations in the
MTTP
gene. Deficiency of microsomal triglyceride transfer protein (MTTP) abrogates the assembly of apolipoprotein (apo) B-containing lipoprotein in the intestine and liver, resulting in malabsorption of fat and fat-soluble vitamins and severe hypolipidemia. Patients with ABL typically manifest steatorrhea, vomiting, and failure to thrive in infancy. The deficiency of fat-soluble vitamins progressively develops into a variety of symptoms later in life, including hematological (acanthocytosis, anemia, bleeding tendency, etc.), neuromuscular (spinocerebellar ataxia, peripheral neuropathy, myopathy, etc.), and ophthalmological symptoms (e.g., retinitis pigmentosa). If left untreated, the disease can be debilitating and even lethal by the third decade of life due to the development of severe complications, such as blindness, neuromyopathy, and respiratory failure. High dose vitamin supplementation is the mainstay for treatment and may prevent, delay, or alleviate the complications and improve the prognosis, enabling some patients to live to the eighth decade of life. However, it cannot fully prevent or restore impaired function. Novel therapeutic modalities that improve quality of life and prognosis are awaited. The aim of this review is to 1) summarize the pathogenesis, clinical signs and symptoms, diagnosis, and management of ABL, and 2) propose diagnostic criteria that define eligibility to receive financial support from the Japanese government for patients with ABL as a rare and intractable disease. In addition, our diagnostic criteria and the entry criterion of low-density lipoprotein cholesterol (LDL-C) <15 mg/dL and apoB <15 mg/dL can be useful in universal or opportunistic screening for the disease. Registry research on ABL is currently ongoing to better understand the disease burden and unmet needs of this life-threatening disease with few therapeutic options.
Collapse
Affiliation(s)
- Manabu Takahashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University
| | - Hiroaki Okazaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo
| | - Ken Ohashi
- Department of General Internal Medicine, National Cancer Center Hospital
| | - Masatsune Ogura
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute
| | - Shun Ishibashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, Jichi Medical University
| | - Sachiko Okazaki
- Division for Health Service Promotion, The University of Tokyo
| | - Satoshi Hirayama
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine
| | - Mika Hori
- Department of Endocrinology, Research Institute of Environmental Medicine, Nagoya University
| | - Kota Matsuki
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine
| | | | - Mariko Harada-Shiba
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center Research Institute
| | | |
Collapse
|
5
|
Vlasschaert C, McIntyre AD, Thomson LA, Kennedy BA, Ratko S, Prasad C, Hegele RA. Abetalipoproteinemia Due to a Novel Splicing Variant in MTTP in 3 Siblings. J Investig Med High Impact Case Rep 2021; 9:23247096211022484. [PMID: 34078172 PMCID: PMC8182224 DOI: 10.1177/23247096211022484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 11/17/2022] Open
Abstract
Abetalipoproteinemia (ABL) is a rare recessive condition caused by biallelic loss-of-function mutations in the MTTP gene encoding the microsomal triglyceride transfer protein large subunit. ABL is characterized by absence of apolipoprotein B-containing lipoproteins and deficiencies in fat-soluble vitamins leading to multisystem involvement of which neurological complications are the most serious. We present 3 siblings with ABL who were born to non-consanguineous parents of Filipino and Chinese background. Identical twin boys with long-standing failure to thrive and malabsorption were diagnosed at age 2 years. ABL therapy with vitamins and a specialized diet was initiated, replacing total parenteral nutrition at age 3 years. Their younger sister was diagnosed from a blood sample taken at birth; treatment was instituted shortly thereafter. We observed in the twins reversal and in their sister prevention of ABL systemic features following early implementation of fat restriction and high doses of oral fat-soluble vitamins. A targeted sequencing panel found that each affected sibling is homozygous for a novel MTTP intron 13 -2A>G splice acceptor site mutation, predicted to abolish splicing of intron 13. This variant brings to more than 60 the number of reported pathogenic mutations, which are summarized in this article. The twin boys and their sister are now doing well at 11 and 4 years of age, respectively. This experience underscores the importance of early initiation of targeted specialized dietary and fat-soluble vitamin replacements in ABL.
Collapse
Affiliation(s)
| | | | | | | | - Suzanne Ratko
- Children’s Hospital—London Health Sciences
Centre, London, Ontario, Canada
| | | | | |
Collapse
|
6
|
Surakka I, Hornsby WE, Farhat L, Rubenfire M, Fritsche LG, Hveem K, Chen YE, Brook RD, Willer CJ, Weinberg RL. A Novel Variant in APOB Gene Causes Extremely Low LDL-C Without Known Adverse Effects. JACC Case Rep 2020; 2:775-779. [PMID: 34317346 PMCID: PMC8301695 DOI: 10.1016/j.jaccas.2020.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/09/2020] [Accepted: 03/18/2020] [Indexed: 11/26/2022]
Abstract
A novel frameshift variant was identified in APOB that segregates in a dominant manner with low levels of low-density lipoprotein cholesterol. Affected family members show no apparent clinical complications. There is no consensus regarding clinical management, and the long-term consequences of low levels of low-density lipoprotein cholesterol remain unknown. (Level of Difficulty: Advanced.).
Collapse
Affiliation(s)
- Ida Surakka
- University of Michigan, Michigan Medicine, Ann Arbor, Michigan
- Department of Internal Medicine, Division of Cardiovascular Medicine, Michigan Medicine, Ann Arbor, Michigan
| | - Whitney E. Hornsby
- University of Michigan, Michigan Medicine, Ann Arbor, Michigan
- Department of Internal Medicine, Division of Cardiovascular Medicine, Michigan Medicine, Ann Arbor, Michigan
| | - Linda Farhat
- University of Michigan, Michigan Medicine, Ann Arbor, Michigan
- Department of Internal Medicine, Division of Cardiovascular Medicine, Michigan Medicine, Ann Arbor, Michigan
| | - Melvyn Rubenfire
- University of Michigan, Michigan Medicine, Ann Arbor, Michigan
- Department of Internal Medicine, Division of Cardiovascular Medicine, Michigan Medicine, Ann Arbor, Michigan
| | - Lars G. Fritsche
- University of Michigan, Michigan Medicine, Ann Arbor, Michigan
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology and Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Centre, Department of Public Health and General Practice, Norwegian University of Science and Technology, Levanger, Norway
| | - Y. Eugene Chen
- University of Michigan, Michigan Medicine, Ann Arbor, Michigan
- Department of Internal Medicine, Michigan Medicine, Ann Arbor, Michigan
| | - Robert D. Brook
- University of Michigan, Michigan Medicine, Ann Arbor, Michigan
- Department of Internal Medicine, Division of Cardiovascular Medicine, Michigan Medicine, Ann Arbor, Michigan
| | - Cristen J. Willer
- University of Michigan, Michigan Medicine, Ann Arbor, Michigan
- Department of Internal Medicine, Division of Cardiovascular Medicine, Michigan Medicine, Ann Arbor, Michigan
- Department of Computational Medicine and Bioinformatics and Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
| | - Richard L. Weinberg
- University of Michigan, Michigan Medicine, Ann Arbor, Michigan
- Department of Internal Medicine, Division of Cardiovascular Medicine, Michigan Medicine, Ann Arbor, Michigan
| |
Collapse
|
7
|
Kawashiri MA, Tada H, Hashimoto M, Taniyama M, Nakano T, Nakajima K, Inoue T, Mori M, Nakanishi C, Konno T, Hayashi K, Nohara A, Inazu A, Koizumi J, Ishihara H, Kobayashi J, Hirano T, Mabuchi H, Yamagishi M. Extreme Contrast of Postprandial Remnant-Like Particles Formed in Abetalipoproteinemia and Homozygous Familial Hypobetalipoproteinemia. JIMD Rep 2015; 22:85-94. [PMID: 25763510 DOI: 10.1007/8904_2015_415] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/25/2015] [Accepted: 01/27/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Familial hypobetalipoproteinemia (FHBL) and abetalipoproteinemia (ABL) are rare inherited forms of hypolipidemia. Their differential diagnosis is important for predicting of the prognosis and selecting appropriate therapy. MATERIALS AND METHODS Genetic analysis was performed in two patients with primary hypocholesterolemia born from consanguineous parents. The oral fat tolerance test (OFTT) was performed in one patient with FHBL (apoB-87.77) and one with ABL as well as in four normal control subjects. After overnight fasting, blood samples were drawn. Serum lipoprotein and remnant-like particle (RLP) fractions were determined by HPLC analysis. RESULTS Both patients with homozygous FHBL were asymptomatic probably because of preserved levels of fat-soluble vitamins, especially vitamin E. The patients with FHBL were homozygous because of novel apoB-83.52 and apoB-87.77 mutations, and although one of them (apoB-87.77) had fatty liver disease, microscopic findings suggesting nonalcoholic steatohepatitis were absent. Fasting apoB-48 and RLP-triglyceride levels in the patient with homozygous FHBL, which were similar to those in normal control subjects, increased after OFTT both in normal control subjects and the patient with FHBL but not in the patient with ABL, suggesting that the fat load administered was absorbed only in the patient with FHBL. CONCLUSION Although lipid levels in the patients with homozygous FHBL and ABL were comparable, fasting, postoral fat loading of apoB-48, as well as RLP-triglyceride levels, may help in the differential diagnosis of FHBL and ABL and provide a prompt diagnosis using genetic analysis in the future.
Collapse
Affiliation(s)
- Masa-Aki Kawashiri
- Division of Cardiovascular Medicine, Kanazawa University Graduate School of Medicine, 13-1 Takara-machi, Kanazawa, 920-8641, Japan,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|