1
|
Lin A, Jiang A, Huang L, Li Y, Zhang C, Zhu L, Mou W, Liu Z, Zhang J, Cheng Q, Wei T, Luo P. From chaos to order: optimizing fecal microbiota transplantation for enhanced immune checkpoint inhibitors efficacy. Gut Microbes 2025; 17:2452277. [PMID: 39826104 DOI: 10.1080/19490976.2025.2452277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/22/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
The integration of fecal microbiota transplantation (FMT) with immune checkpoint inhibitors (ICIs) presents a promising approach for enhancing cancer treatment efficacy and overcoming therapeutic resistance. This review critically examines the controversial effects of FMT on ICIs outcomes and elucidates the underlying mechanisms. We investigate how FMT modulates gut microbiota composition, microbial metabolite profiles, and the tumor microenvironment, thereby influencing ICIs effectiveness. Key factors influencing FMT efficacy, including donor selection criteria, recipient characteristics, and administration protocols, are comprehensively discussed. The review delineates strategies for optimizing FMT formulations and systematically monitoring post-transplant microbiome dynamics. Through a comprehensive synthesis of evidence from clinical trials and preclinical studies, we elucidate the potential benefits and challenges of combining FMT with ICIs across diverse cancer types. While some studies report improved outcomes, others indicate no benefit or potential adverse effects, emphasizing the complexity of host-microbiome interactions in cancer immunotherapy. We outline critical research directions, encompassing the need for large-scale, multi-center randomized controlled trials, in-depth microbial ecology studies, and the integration of multi-omics approaches with artificial intelligence. Regulatory and ethical challenges are critically addressed, underscoring the imperative for standardized protocols and rigorous long-term safety assessments. This comprehensive review seeks to guide future research endeavors and clinical applications of FMT-ICIs combination therapy, with the potential to improve cancer patient outcomes while ensuring both safety and efficacy. As this rapidly evolving field advances, maintaining a judicious balance between openness to innovation and cautious scrutiny is crucial for realizing the full potential of microbiome modulation in cancer immunotherapy.
Collapse
Affiliation(s)
- Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
| | - Aimin Jiang
- Department of Urology, Changhai hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Lihaoyun Huang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
| | - Yu Li
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
| | - Chunyanx Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
| | - Lingxuan Zhu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
| | - Weiming Mou
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, China
| | - Ting Wei
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| |
Collapse
|
2
|
Hoops SL, Moutsoglou D, Vaughn BP, Khoruts A, Knights D. Metagenomic source tracking after microbiota transplant therapy. Gut Microbes 2025; 17:2487840. [PMID: 40229213 PMCID: PMC12005403 DOI: 10.1080/19490976.2025.2487840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/07/2025] [Accepted: 03/28/2025] [Indexed: 04/16/2025] Open
Abstract
Reliable engraftment assessment of donor microbial communities and individual strains is an essential component of characterizing the pharmacokinetics of microbiota transplant therapies (MTTs). Recent methods for measuring donor engraftment use whole-genome sequencing and reference databases or metagenome-assembled genomes (MAGs) to track individual bacterial strains but lack the ability to disambiguate DNA that matches both donor and patient microbiota. Here, we describe a new, cost-efficient analytic pipeline, MAGEnTa, which compares post-MTT samples to a database comprised MAGs derived directly from donor and pre-treatment metagenomic data, without relying on an external database. The pipeline uses Bayesian statistics to determine the likely sources of ambiguous reads that align with both the donor and pre-treatment samples. MAGEnTa recovers engrafted strains with minimal type II error in a simulated dataset and is robust to shallow sequencing depths in a downsampled dataset. Applying MAGEnTa to a dataset from a recent MTT clinical trial for ulcerative colitis, we found the results to be consistent with 16S rRNA gene SourceTracker analysis but with added MAG-level specificity. MAGEnTa is a powerful tool to study community and strain engraftment dynamics in the development of MTT-based treatments that can be integrated into frameworks for functional and taxonomic analysis.
Collapse
Affiliation(s)
- Susan L. Hoops
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA
- Biotechnology Institute, University of Minnesota, Minneapolis, MN, USA
| | - Daphne Moutsoglou
- Gastroenterology Section, Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Byron P. Vaughn
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
- Division of Gastroenterology, University of Minnesota, Minneapolis, MN, USA
| | - Alexander Khoruts
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
- Division of Gastroenterology, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Dan Knights
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA
- Biotechnology Institute, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
3
|
Faith JJ. Assessing live microbial therapeutic transmission. Gut Microbes 2025; 17:2447836. [PMID: 39746875 DOI: 10.1080/19490976.2024.2447836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/09/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025] Open
Abstract
The development of fecal microbiota transplantation and defined live biotherapeutic products for the treatment of human disease has been an empirically driven process yielding a notable success of approved drugs for the treatment of recurrent Clostridioides difficile infection. Assessing the potential of this therapeutic modality in other indications with mixed clinical results would benefit from consistent quantitative frameworks to characterize drug potency and composition and to assess the impact of dose and composition on the frequency and duration of strain engraftment. Monitoring these drug properties and engraftment outcomes would help identify minimally sufficient sets of microbial strains to treat disease and provide insights into the intersection between microbial function and host physiology. Broad and correct usage of strain detection methods is essential to this advancement. This article describes strain detection approaches, where they are best applied, what data they require, and clinical trial designs that are best suited to their application.
Collapse
Affiliation(s)
- Jeremiah J Faith
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
4
|
Zain NMM, Merrick B, Martin-Lilley T, Edwards LA, Ter Linden D, Tsoka S, Mason AJ, Hatton GB, Allen E, Royall PG, Lilley AK, Bruce KD, Shawcross DL, Goldenberg SD, Forbes B. Bacterial diversity, viability and stability in lyophilised faecal microbiota capsules support ongoing clinical use. Int J Pharm 2025:125703. [PMID: 40354906 DOI: 10.1016/j.ijpharm.2025.125703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 05/06/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
Lyophilised encapsulated faecal microbiota provides a practical and cost-effective treatment option to patients with recurrent Clostridioides difficile infection. This study focused on quality assurance of an enteric-coated capsule formulation of FMT as a medicinal product by evaluating bacterial composition, diversity and viability through manufacturing steps and upon product storage at a range of temperatures. Faecal donations from pre-screened healthy individuals (n = 5) were processed according to a published protocol into one or more treatments; 5 capsules = 1 treatment dose/patient. Culture-independent next-generation 16S rRNA gene sequencing was used to speciate and quantify bacteria using a live-dead cell separation method to discriminate the viable cell load. Species diversity in donor stools aligned with other healthy gut microbiome and remained unchanged through the manufacturing process and after storage at -80 °C for 36 weeks. While diversity indices were consistent, a notable difference was observed between viable and total microbiome, particularly in species richness, which decreased when non-viable or compromised cells were excluded from analysis. Anaerobic species exhibited minimal viability loss despite processing in an aerobic environment. Furthermore, capsules were stable with storage at -20 °C and 2-8 °C, with no significant reduction of total live bacterial load after 24 weeks. In summary, 'live-dead' culture-independent analysis was used to characterise the viable faecal microbiome, which retained a diversity of bacterial species, including anaerobes, through manufacture and after storage in capsules for up to 36 weeks. These data support the comparable effectiveness of lyophilised encapsulated FMT to other formulations and delivery methods.
Collapse
Affiliation(s)
- Nur Masirah M Zain
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Blair Merrick
- Centre for Clinical Infection and Diagnostics Research, Guy's and St Thomas' NHS Foundation Trust and King's College, London, United Kingdom
| | - Thomas Martin-Lilley
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Lindsey A Edwards
- Institute of Liver Studies, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom; Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, Guy's Tower, Guy's Hospital, King's College London, London, United Kingdom
| | - Daniëlle Ter Linden
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Sophia Tsoka
- Department of Informatics, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, United Kingdom
| | - A James Mason
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Grace B Hatton
- Institute of Liver Studies, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Elizabeth Allen
- Early Clinical Development Centre of Excellence, IQVIA, Reading, United Kingdom
| | - Paul G Royall
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Andrew K Lilley
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Kenneth D Bruce
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Debbie L Shawcross
- Institute of Liver Studies, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Simon D Goldenberg
- Centre for Clinical Infection and Diagnostics Research, Guy's and St Thomas' NHS Foundation Trust and King's College, London, United Kingdom
| | - Ben Forbes
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom.
| |
Collapse
|
5
|
Kamath S, Bryant RV, Costello SP, Day AS, Forbes B, Haifer C, Hold G, Kelly CR, Li A, Pakuwal E, Stringer A, Tucker EC, Wardill HR, Joyce P. Translational strategies for oral delivery of faecal microbiota transplantation. Gut 2025:gutjnl-2025-335077. [PMID: 40301116 DOI: 10.1136/gutjnl-2025-335077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/09/2025] [Indexed: 05/01/2025]
Abstract
Faecal microbiota transplantation (FMT) has emerged as a transformative therapy for Clostridioides difficile infections and shows promise for various GI and systemic diseases. However, the poor patient acceptability and accessibility of 'conventional' FMT, typically administered via colonoscopies or enemas, hinders its widespread clinical adoption, particularly for chronic conditions. Oral administration of FMT (OralFMT) overcomes these limitations, yet faces distinct challenges, including a significant capsule burden, palatability concerns and poor microbial viability during gastric transit. This review provides a comprehensive analysis of emerging strategies that aim to advance OralFMT by: (1) refining processing technologies (eg, lyophilisation) that enable manufacturing of low-volume FMT formulations for reducing capsule burden and (2) developing delivery technologies that improve organoleptic acceptability and safeguard the microbiota for targeted colonic release. These advancements present opportunities for OralFMT to expand its therapeutic scope, beyond C. difficile infections, towards chronic GI conditions requiring frequent dosing regimens. While this review primarily focuses on optimising OralFMT delivery, it is important to contextualise these advancements within the broader shift towards defined microbial consortia. Live biotherapeutic products (LBPs) offer an alternative approach, yet the interplay between OralFMT and LBPs in clinical practice remains unresolved. We postulate that continued innovation in OralFMT and LBPs via a multidisciplinary approach can further increase therapeutic efficacy and scalability by enabling disease site targeting, co-delivery of therapeutic compounds and overcoming colonisation resistance. Realising these goals positions OralFMT as a cornerstone of personalised care across a range of diseases rooted in microbiome health.
Collapse
Affiliation(s)
- Srinivas Kamath
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Robert V Bryant
- Department of Gastroenterology and Hepatology, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
- Faculty of Health Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Samuel P Costello
- Department of Gastroenterology and Hepatology, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
- The University of Adelaide, Adelaide, South Australia, Australia
| | - Alice S Day
- Faculty of Health Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- Gastroenterology, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | | | - Craig Haifer
- Department of Gastroenterology, St Vincent's Hospital Sydney, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Georgina Hold
- Microbiome Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Colleen R Kelly
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Anna Li
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Evance Pakuwal
- Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Andrea Stringer
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Emily C Tucker
- Faculty of Health Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- Infectious Diseases Unit, Central Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - Hannah Rose Wardill
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Paul Joyce
- University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
6
|
Khoruts A, Staley C. FMT for Recurrent Clostridioides difficile Infection. Clin Infect Dis 2025:ciaf138. [PMID: 40260548 DOI: 10.1093/cid/ciaf138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025] Open
Affiliation(s)
- Alexander Khoruts
- Department of Medicine, Division of Gastroenterology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Christopher Staley
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
7
|
Zou B, Liu S, Dong C, Shen H, Lv Y, He J, Li X, Ruan M, Huang Z, Shu S. Fecal microbiota transplantation restores gut microbiota diversity in children with active Crohn's disease: a prospective trial. J Transl Med 2025; 23:288. [PMID: 40050917 PMCID: PMC11887145 DOI: 10.1186/s12967-024-05832-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/31/2024] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Clinical data on oral fecal microbiota transplantation (FMT), a promising therapy for Crohn's disease (CD), are limited. Herein, we determined the short-term safety and feasibility of FMT for pediatric patients with active CD. METHODS In this open-label, parallel-group, single-center prospective trial, patients with active CD were treated with oral FMT capsules combined with partial enteral nutrition (PEN) (80%). The control group comprised pediatric patients with active CD treated with PEN (80%) and immunosuppressants. Thirty-three patients (11.6 ± 1.82 years)-17 in the capsule and 16 in the control groups-were analyzed. Data regarding the adverse events, clinical reactions, intestinal microbiome composition, and biomarker parameters were collected and compared post-treatment. RESULTS At week 10, the clinical and endoscopic remission rates did not differ between the two groups. By week 10, the mean fecal calprotectin level, C-reactive protein level, erythrocyte sedimentation rate, simple endoscopic score for CD, and pediatric CD activity index decreased significantly in the capsule group (all P < 0.05). The main adverse event was mild-to-moderate constipation. Core functional genera, Agathobacter, Akkermansia, Roseburia, Blautia, Subdoligranulum, and Faecalibacterium, were lacking pre-treatment. Post-treatment, the implantation rates of these core functional genera increased significantly, which positively correlated with the anti-inflammatory factor, interleukin (IL)-10, and negatively correlated with the pro-inflammatory factor, IL-6. The combination of these six functional genera distinguished healthy children from those with CD (area under the curve = 0.96). CONCLUSIONS Oral FMT capsules combined with PEN (80%) could be an effective therapy for children with active CD. The six core functional genera identified here may be candidate biomarkers for identifying children with CD. TRIAL REGISTRATION ClinicalTrials.gov, retrospectively registered, ID# NCT05321758, NCT05321745, date of registration: 2022-04-04.
Collapse
Affiliation(s)
- Biao Zou
- Pediatric Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Road, Wuhan, 430030, Hubei, China
| | - Shengxuan Liu
- Pediatric Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Road, Wuhan, 430030, Hubei, China
| | - Chen Dong
- Pediatric Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Road, Wuhan, 430030, Hubei, China
| | - Hexiao Shen
- School of Life Science, Hubei University, Wuhan, 430030, Hubei, China
| | - Yongling Lv
- School of Life Science, Hubei University, Wuhan, 430030, Hubei, China
| | - Jiayi He
- Pediatric Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Road, Wuhan, 430030, Hubei, China
| | - Xuesong Li
- Pediatric Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Road, Wuhan, 430030, Hubei, China
| | - Mengling Ruan
- Pediatric Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Road, Wuhan, 430030, Hubei, China
| | - Zhihua Huang
- Pediatric Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Road, Wuhan, 430030, Hubei, China
| | - Sainan Shu
- Pediatric Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Road, Wuhan, 430030, Hubei, China.
| |
Collapse
|
8
|
Shaheen M, McDougall C, Chan L, Franz R, Wong K, Giebelhaus RT, Nguyen G, Nam SL, de la Mata AP, Yeo S, Harynuk JJ, Pakpour S, Xu H, Kao D. Impact of Fecal Microbiota Transplant Formulations, Storage Conditions, and Duration on Bacterial Viability, Functionality, and Clinical Outcomes in Patients with Recurrent Clostridioides difficile Infection. Microorganisms 2025; 13:587. [PMID: 40142480 PMCID: PMC11945259 DOI: 10.3390/microorganisms13030587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/27/2025] [Accepted: 02/27/2025] [Indexed: 03/28/2025] Open
Abstract
Fecal microbiota transplantation (FMT) is the most effective therapy for preventing recurrent Clostridioides difficile infection (rCDI). However, the impact of FMT formulations and storage conditions on bacterial viability, community structure, functionality, and clinical efficacy remains under-investigated. We studied the effect of different storage conditions on the bacterial viability (live/dead staining and cell sorting), community structure (16S rDNA analysis), and metabolic functionality (fermentation) of frozen and lyophilized FMT formulations. The clinical success rates of rCDI patients were correlated retrospectively with FMT formulations, storage durations, and host factors using the Edmonton FMT program database. Bacterial viability remained at 10-20% across various storage conditions and formulations and was comparable to that of fresh FMT. Live and dead bacterial fractions in both frozen and lyophilized FMT preparations exhibited distinct community structures. Storage durations, but not temperatures, negatively affected bacterial diversity. More short-chain fatty acids were found in the metabolomic profiling of in vitro fermentation products using lyophilized than frozen FMT. Clinical success rates in 537 rCDI patients receiving a single dose of FMT were not significantly different among the three formulations. However, longer storage durations and advanced recipient age negatively impacted clinical efficacy. Together, our findings suggest that FMT formulations and storage durations should be considered when establishing guidelines for product shelf life for optimal treatment outcomes.
Collapse
Affiliation(s)
- Mohamed Shaheen
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB T6G 2X8, Canada; (M.S.); (C.M.); (L.C.); (R.F.); (K.W.)
| | - Chelsea McDougall
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB T6G 2X8, Canada; (M.S.); (C.M.); (L.C.); (R.F.); (K.W.)
| | - Leona Chan
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB T6G 2X8, Canada; (M.S.); (C.M.); (L.C.); (R.F.); (K.W.)
| | - Rose Franz
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB T6G 2X8, Canada; (M.S.); (C.M.); (L.C.); (R.F.); (K.W.)
| | - Karen Wong
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB T6G 2X8, Canada; (M.S.); (C.M.); (L.C.); (R.F.); (K.W.)
| | - Ryland T. Giebelhaus
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (R.T.G.); (G.N.); (S.L.N.); (A.P.d.l.M.); (J.J.H.)
| | - Gwen Nguyen
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (R.T.G.); (G.N.); (S.L.N.); (A.P.d.l.M.); (J.J.H.)
| | - Seo Lin Nam
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (R.T.G.); (G.N.); (S.L.N.); (A.P.d.l.M.); (J.J.H.)
| | - A. Paulina de la Mata
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (R.T.G.); (G.N.); (S.L.N.); (A.P.d.l.M.); (J.J.H.)
| | - Sam Yeo
- School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada; (S.Y.); (S.P.)
| | - James J. Harynuk
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (R.T.G.); (G.N.); (S.L.N.); (A.P.d.l.M.); (J.J.H.)
| | - Sepideh Pakpour
- School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada; (S.Y.); (S.P.)
| | - Huiping Xu
- Biostatstics & Health Data Sciences, School of Public Health, Indiana University, Indianapolis, IN 46202, USA;
| | - Dina Kao
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB T6G 2X8, Canada; (M.S.); (C.M.); (L.C.); (R.F.); (K.W.)
| |
Collapse
|
9
|
Facchin S, Cardin R, Patuzzi I, Carlotto C, Minotto M, Barberio B, Zingone F, Besutti VM, Castagliuolo I, Cattelan A, Savarino EV. Long-term stability and efficacy of frozen fecal microbiota transplant (FMT) product at 24 months. Dig Liver Dis 2025; 57:702-706. [PMID: 39672770 DOI: 10.1016/j.dld.2024.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/15/2024]
Abstract
BACKGROUND Freezing donor fecal microbiota has improved fecal microbiota transplantation (FMT) for recurrent C. difficile infection (CDI), achieving short-term effectiveness similar to fresh-samples. Research shows frozen fecal matter remains effective for up to 12-months at -80 °C. OBJECTIVE To assess how long-term-freezing and thawing affect the viability, microbial composition, and clinical efficacy of frozen-stools for FMT. METHODS Stool samples from three donors were processed into 18 aliquots, thawed at intervals over two years, and analyzed for cell viability and microbial load. Microbiota composition was assessed through 16S-sequencing, with diversity evaluated using the Shannon-index and Principal-Coordinates-Analysis based on Bray-Curtis-distance (α/β-diversity). The same donors provided fecal material for a total of 23 FMT procedures, including 15 for CDI and 8 off-label. RESULTS We found that donor stools frozen for two years contained viable bacteria comparable to fresh samples, with anaerobic and aerobic species remaining viable for 24 months. Despite a reduction in colony-forming-units, FMT was successful in 71.4 % and 100 % of the cases at one year and at the end of follow-up, respectively. Most bacterial changes occurred among anaerobic species (Blautia producta and Bifidobacterium adolescentis), increasing post-thawing. Notably, specific taxa, (C. aerofaciens and Erysipelotrichaceae_Cc115), showed significant unexplained increase. CONCLUSION Long-term-stool-storage enhances FMT accessibility without compromising its success, despite taxonomic changes after 24 months.
Collapse
Affiliation(s)
- Sonia Facchin
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padua, Padua, Italy; Gastroenterology Unit, Azienda Ospedale Università di Padova, Padova, Italy
| | - Romilda Cardin
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padua, Padua, Italy; Gastroenterology Unit, Azienda Ospedale Università di Padova, Padova, Italy
| | - Ilaria Patuzzi
- Research & Development Division, EuBiome S.r.l., 35131 Padova, Italy
| | - Chiara Carlotto
- Gastroenterology Unit, Azienda Ospedale Università di Padova, Padova, Italy
| | - Milena Minotto
- Gastroenterology Unit, Azienda Ospedale Università di Padova, Padova, Italy
| | - Brigida Barberio
- Gastroenterology Unit, Azienda Ospedale Università di Padova, Padova, Italy
| | - Fabiana Zingone
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padua, Padua, Italy; Gastroenterology Unit, Azienda Ospedale Università di Padova, Padova, Italy
| | - Valeria M Besutti
- Microbiology Unit, Azienda Ospedale Università di Padova, Padova, Italy
| | | | - Annanaria Cattelan
- Infectious and Tropical Diseases Unit, Padova University Hospital, Padua, Italy
| | - Edoardo V Savarino
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padua, Padua, Italy; Gastroenterology Unit, Azienda Ospedale Università di Padova, Padova, Italy.
| |
Collapse
|
10
|
Sedeek SA, Farowski F, Youssafi S, Tsakmaklis A, Brodesser S, El-Attar MM, Abdelmalek MO, Vehreschild MJGT. In vitro validation concept for lyophilized fecal microbiota products with a focus on bacterial viability. World J Microbiol Biotechnol 2025; 41:83. [PMID: 40011318 PMCID: PMC11865215 DOI: 10.1007/s11274-025-04291-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/11/2025] [Indexed: 02/28/2025]
Abstract
Fecal microbiota transplantation (FMT) effectively treats recurrent Clostridioides difficile infection (rCDI), typically administered as a fresh or frozen stool suspension through colonoscopy, nasojejunal tube, or oral capsules. Lyophilized fecal microbiota (LFM) are an alternative to frozen FM products. We aimed to assess whether lyophilization affects bacterial viability and metabolite levels and to develop LFM capsules for clinical use in Germany. Fecal donations from pre-screened volunteers were aliquoted and analyzed through microbial cell counting, bacterial culture, 16S rRNA gene amplicon sequencing, and bile acid assays. Results showed higher counts of viable bacterial cells and cultured anaerobes in unprocessed stool compared to freshly processed stool (p = 0.012 and p < 0.001, respectively). No significant difference in viable bacterial counts was found between freshly processed (day 0), lyophilized (day 3) and frozen FM (day 3) (p = 0.15), nor between freshly processed (day 0), lyophilized (days 30 and 90) and frozen FM (day 30) (p = 0.07). lyophilization did not significantly impact bile acid and 16S rRNA profiling. Encapsulation of lyophilized powder required fewer capsules (10-14) than frozen capsules (30). LFM products are a practical, viable alternative to frozen and fresh FM products, potentially improving storage and patient acceptance.
Collapse
Affiliation(s)
- Sara A Sedeek
- Department of Internal Medicine II, Infectious Diseases, Goethe University Frankfurt, University Hospital Frankfurt, Frankfurt am Main, Germany
- Department of Tropical Medicine and Gastroenterology, Assiut University, Assiut, Egypt
| | - Fedja Farowski
- Department of Internal Medicine II, Infectious Diseases, Goethe University Frankfurt, University Hospital Frankfurt, Frankfurt am Main, Germany
- Faculty of Medicine, Department I of Internal Medicine, Centre for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, University Hospital Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Stella Youssafi
- Faculty of Medicine, Department I of Internal Medicine, Centre for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, University Hospital Cologne, Cologne, Germany
| | - Anastasia Tsakmaklis
- Faculty of Medicine, Department I of Internal Medicine, Centre for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, University Hospital Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Susanne Brodesser
- Faculty of Medicine, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, University Hospital of Cologne, Cologne, Germany
| | - Madiha M El-Attar
- Department of Tropical Medicine and Gastroenterology, Assiut University, Assiut, Egypt
| | | | - Maria J G T Vehreschild
- Department of Internal Medicine II, Infectious Diseases, Goethe University Frankfurt, University Hospital Frankfurt, Frankfurt am Main, Germany.
- Faculty of Medicine, Department I of Internal Medicine, Centre for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, University Hospital Cologne, Cologne, Germany.
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany.
| |
Collapse
|
11
|
Rågård N, Baumwall SMD, Paaske SE, Hansen MM, Høyer KL, Mikkelsen S, Erikstrup C, Dahlerup JF, Hvas CL. Validation methods for encapsulated faecal microbiota transplantation: a scoping review. Therap Adv Gastroenterol 2025; 18:17562848251314820. [PMID: 39926318 PMCID: PMC11806493 DOI: 10.1177/17562848251314820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/03/2025] [Indexed: 02/11/2025] Open
Abstract
Faecal microbiota transplantation (FMT) is increasingly used for diseases associated with a disrupted intestinal microbiome, mainly Clostridioides difficile infection. Encapsulated FMT is a patient-friendly application method that improves accessibility and convenience. Capsule processing may be standardised, but validation protocols are warranted. This review aimed to describe published validation methods for encapsulated FMT. Original studies reporting using encapsulated faecal formulations were included, regardless of indication. Studies were excluded if they did not address processing and validation or used non-donor-derived content. We conducted a comprehensive scoping review, implementing a systematic search strategy in PubMed, Embase and Web of Science. Processing data and validation methods were registered during full-text analysis and combined to create an overview of approaches for assessing quality in encapsulated FMT processing. The searches identified 324 unique studies, of which 44 were included for data extraction and analysis. We identified eight validation covariables: donor selection, pre-processing, preservation, oxygen-sparing processing, microbial count, viability, engraftment and clinical effect outcomes, from which we constructed a model for quality assessment of encapsulated FMT that exhaustively categorised processing details and validation measures. Our model comprised three domains: (1) Processing (donor selection and processing protocol), (2) Content analysis (microbiota measures and dose measures) and (3) Clinical effect (engraftment and clinical outcomes). No studies presented a reproducible capsule protocol; their validation strategies were sparse and divergent. The validation of FMT capsules is heterogeneous, and processing requires relevant standardisation protocols, mainly focusing on capsule content. Future studies should report validation covariables to enable accurate comparative assessments of clinical effects.
Collapse
Affiliation(s)
- Nina Rågård
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Sara Ellegaard Paaske
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mette Mejlby Hansen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Katrine Lundby Høyer
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Susan Mikkelsen
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Christian Erikstrup
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Frederik Dahlerup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Christian Lodberg Hvas
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 35, DK-8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
12
|
Drekonja DM, Shaukat A, Huang Y, Zhang JH, Reinink AR, Nugent S, Dominitz JA, Davis-Karim A, Gerding DN, Kyriakides TC. A Randomized Controlled Trial of Efficacy and Safety of Fecal Microbiota Transplant for Preventing Recurrent Clostridioides difficile Infection. Clin Infect Dis 2025; 80:52-60. [PMID: 39271107 DOI: 10.1093/cid/ciae467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/16/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Clostridioides difficile infection (CDI) is the most common cause of healthcare-associated infections in US hospitals, with 15%-30% of patients experiencing recurrence. The aim of our randomized, double-blind clinical trial was to assess the efficacy of capsule-delivered fecal microbiota transplant (FMT) versus placebo in reducing recurrent diarrhea and CDI recurrence. The secondary aim was FMT safety assessment. METHODS Between 2018 and 2022, Veterans across the Veterans Health Administration system with recurrent CDI who responded to antibiotic treatment were randomized in a 1:1 ratio to oral FMT or placebo capsules. Randomization was stratified by number of prior CDI recurrences (1 or ≥2). The primary endpoint was clinical recurrence by day 56, defined as >3 unformed stools daily for ≥2 days with or without laboratory confirmation of C. difficile, or death within 56 days. RESULTS The study was stopped due to futility after meeting prespecified criteria. Of 153 participants (76 FMT, 77 placebo) with an average age of 66.5 years, 25 participants (32.9%) in the FMT arm and 23 (29.9%) in the placebo arm experienced the primary endpoint of diarrhea and possible or definite CDI recurrence or death within 56 days of capsule administration (absolute difference, 3.0% [95% confidence interval, -11.7% to 17.7%]). Stratification by number of recurrences revealed no statistically significant differences. There were no clinically important differences in adverse events. CONCLUSIONS FMT therapy versus placebo did not reduce CDI recurrence or death at 56 days. There were no meaningful differences in adverse events between treatment groups. CLINICAL TRIALS REGISTRATION NCT03005379.
Collapse
Affiliation(s)
- Dimitri M Drekonja
- Division of Infectious Diseases, Department of Medicine, Minneapolis Veterans Affairs Health Care System, Minnesota, USA
| | - Aasma Shaukat
- Division of Gastroenterology, Department of Medicine, New York Harbor Veterans Affairs Healthcare System, New York, USA
| | - Yuan Huang
- Veterans Affair Cooperative Studies Program Coordinating Center-West Haven, West Haven, Connecticut, USA
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
| | - Jane H Zhang
- Veterans Affair Cooperative Studies Program Coordinating Center-West Haven, West Haven, Connecticut, USA
| | - Andrew R Reinink
- Division of Infectious Diseases, Department of Medicine, Minneapolis Veterans Affairs Health Care System, Minnesota, USA
| | - Sean Nugent
- Division of Infectious Diseases, Department of Medicine, Minneapolis Veterans Affairs Health Care System, Minnesota, USA
| | - Jason A Dominitz
- Division of Gastroenterology, Department of Medicine, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
| | - Anne Davis-Karim
- Veterans Affairs Cooperative Studies Program Clinical Research Pharmacy Coordinating Center, Albuquerque, New Mexico, USA
| | - Dale N Gerding
- Division of Infectious Diseases, Department of Medicine, Edward Hines Jr Veterans Affairs Hospital, Hines, Illinois, USA
| | - Tassos C Kyriakides
- Veterans Affair Cooperative Studies Program Coordinating Center-West Haven, West Haven, Connecticut, USA
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
| |
Collapse
|
13
|
Moutsoglou D, Syal A, Lopez S, Nelson EC, Chen L, Kabage AJ, Fischer M, Khoruts A, Vaughn BP, Staley C. Novel Microbial Engraftment Trajectories Following Microbiota Transplant Therapy in Ulcerative Colitis. J Crohns Colitis 2025; 19:jjae142. [PMID: 39240145 DOI: 10.1093/ecco-jcc/jjae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND AND AIMS Microbiota transplant therapy (MTT) is an emerging treatment for ulcerative colitis (UC). One proposed mechanism for the benefit of MTT is through engraftment of donor microbiota; however, engraftment kinetics are unknown. We identified SourceTracker as an efficient method both to determine engraftment and for the kinetic study of engrafting donor taxa to aid in determining the mechanism of how this therapy may treat UC. METHODS Ulcerative colitis patients received either encapsulated (drug name MTP-101C) or placebo capsules daily for 8 weeks followed by a 4-week washout period. Amplicon sequence data from donors and patients were analyzed using the Bayesian algorithm SourceTracker. RESULTS Twenty-seven patients were enrolled, 14 to placebo and 13 to MTT. Baseline Shannon and Chao1 indices negatively correlated with week 12 donor engraftment for patients treated with active drug capsules but not for placebo patients. SourceTracker engraftment positively correlated with the week 12 distance from donors measured using the Bray-Curtis similarity metric in treated patients but not with placebo. Engraftment at week 12 was significantly higher in the MTT group than in the placebo group. We identified engrafting taxa from donors in our patients and quantified the proportion of donor similarity or engraftment during weeks 1 through 8 (active treatment) and week 12, 4 weeks after the last dose. CONCLUSION SourceTracker can be used as a simple and reliable method to quantify donor microbial community engraftment and donor taxa contribution in patients with UC and other inflammatory conditions treated with MTT.
Collapse
Affiliation(s)
- Daphne Moutsoglou
- Department of Gastroenterology, Minneapolis VA Health Care System, MN 55417, USA
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Aneesh Syal
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Sharon Lopez
- Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, Minneapolis, MN 55355, USA
| | - Elizabeth C Nelson
- Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, Minneapolis, MN 55355, USA
| | - Lulu Chen
- Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, Minneapolis, MN 55355, USA
| | - Amanda J Kabage
- Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, Minneapolis, MN 55355, USA
| | - Monika Fischer
- Division of Gastroenterology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Alexander Khoruts
- Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, Minneapolis, MN 55355, USA
| | - Byron P Vaughn
- Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, Minneapolis, MN 55355, USA
| | - Christopher Staley
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
14
|
Vázquez-Cuesta S, Olmedo M, Kestler M, Álvarez-Uría A, De la Villa S, Alcalá L, Marín M, Rodríguez-Fernández S, Sánchez-Martínez C, Muñoz P, Bouza E, Reigadas E. Prospective analysis of biomarkers associated with successful faecal microbiota transplantation in recurrent Clostridioides difficile infection. Clin Microbiol Infect 2025:S1198-743X(25)00034-5. [PMID: 39870349 DOI: 10.1016/j.cmi.2025.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 01/29/2025]
Abstract
OBJECTIVES Faecal microbiota transplantation (FMT) is an established treatment for recurrent Clostridioides difficile infection (CDI). This study aimed to identify calprotectin and microbiome characteristics as potential biomarkers of FMT success. METHODS We conducted a prospective study of patients who underwent oral FMT (single dose of 4-5 capsules) for recurrent CDI (January 2018 to December 2022). Samples were collected at three time points: at CDI diagnosis, within 24 hours before FMT administration, and 30 days post-FMT. Calprotectin levels were assessed and the V4 region of the 16S rRNA gene was sequenced to analyse the microbiota composition. Sequencing data analysis and statistical analysis were performed using MOTHUR and R. RESULTS Ninety-seven patients underwent FMT (totalling 105 procedures). A total of 221 samples were processed, including 21 donor samples, 24 capsule contents, and 176 patient faecal samples (39 at diagnosis, 63 pre-FMT, and 74 post-FMT). FMT achieved an overall success rate of 85.1% (86/101 cases). The abundance of Bacteroides, Ruminococcus, Megamonas, and certain Prevotella operational taxonomic units was significantly higher in capsules associated with 100% success compared with less effective capsules. FMT engraftment was observed in 95% of patients with favourable outcomes versus 62% of those with recurrences (p 0.006). Additionally, a negative correlation was found between calprotectin levels and specific microbial genera, suggesting an association with successful outcomes. DISCUSSION This study highlights differences in the evolution of faecal microbiota, bacterial engraftment, and inflammation markers (e.g. calprotectin) between patients with varying FMT outcomes. Potential biomarkers for successful FMT were identified, providing valuable insights for optimizing FMT strategies.
Collapse
Affiliation(s)
- Silvia Vázquez-Cuesta
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Biochemistry and Molecular Biology Department, School of Biology, Universidad Complutense de Madrid (UCM), Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - María Olmedo
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Martha Kestler
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Medicine Department, School of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Ana Álvarez-Uría
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Sofía De la Villa
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Luis Alcalá
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Centro de investigación biomédica en red de Enfermedades Respiratorias (CIBERES CB06/06/0058), Madrid, Spain
| | - Mercedes Marín
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Medicine Department, School of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain; Centro de investigación biomédica en red de Enfermedades Respiratorias (CIBERES CB06/06/0058), Madrid, Spain
| | - Sara Rodríguez-Fernández
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Celia Sánchez-Martínez
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Patricia Muñoz
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Medicine Department, School of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain; Centro de investigación biomédica en red de Enfermedades Respiratorias (CIBERES CB06/06/0058), Madrid, Spain
| | - Emilio Bouza
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Medicine Department, School of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain; Centro de investigación biomédica en red de Enfermedades Respiratorias (CIBERES CB06/06/0058), Madrid, Spain
| | - Elena Reigadas
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Medicine Department, School of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain.
| |
Collapse
|
15
|
Bajaj JS, Fagan A, Gavis EA, Sterling RK, Gallagher ML, Lee H, Matherly SC, Siddiqui MS, Bartels A, Mousel T, Davis BC, Puri P, Fuchs M, Moutsoglou DM, Thacker LR, Sikaroodi M, Gillevet PM, Khoruts A. Microbiota transplant for hepatic encephalopathy in cirrhosis: The THEMATIC trial. J Hepatol 2025:S0168-8278(25)00005-4. [PMID: 39800192 DOI: 10.1016/j.jhep.2024.12.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/12/2024] [Accepted: 12/27/2024] [Indexed: 01/15/2025]
Abstract
BACKGROUND & AIMS Preventing hepatic encephalopathy (HE) recurrence in cirrhosis, which is associated with an altered gut-liver-brain axis, is an unmet need. Benefits of fecal microbiota transplantation (FMT) have been shown in phase I studies, but route and dose-related questions remain. METHODS We performed a phase II randomized, placebo-controlled, double-blind, clinical trial of capsule and enema FMT in patients with cirrhosis and HE on lactulose and rifaximin. Participants were randomized into four groups (3 active doses; 2 active and 1 placebo dose; 1 active and 2 placebo doses; 3 placebo doses). Each patient received two capsules and one enema (either placebo or FMT) and were followed for 6 months. The primary outcome was FMT-related (serious) adverse events ([s]AEs)/AEs using intention-to-treat analysis. Secondary outcomes were HE recurrence, all-cause hospitalizations, death, donor engraftment, and quality-of-life. FMT was from a vegan or omnivorous donor. RESULTS We enrolled 60 patients (15/group) with similar baseline characteristics. FMT was safe without any FMT-related SAEs/AEs. Overall SAEs (p = 0.96) or death (p = 1.0) were similar. There were significant differences in HE recurrence between groups (p = 0.035, Cramer's V = 0.39). On post hoc analysis, recurrence was highest in the all-placebo vs. any FMT group (40% vs. 9%; odds ratio 0.15, 95% CI 0.04-0.64). Within the FMT groups, HE recurrence rates were similar regardless of route, doses, or donor type. Quality of life improved in FMT-recipient groups. Engraftment was highest in those with high pre-FMT Lachnospiraceae and lower in those whose HE recurred. CONCLUSIONS In patients with cirrhosis and HE on maximal therapy, FMT regardless of dose, route, or donor was safe without any FMT-related AEs. On post hoc analysis, HE recurrence was highest in the placebo-only group and linked with lower baseline Lachnospiraceae and reduced donor engraftment. IMPACT AND IMPLICATIONS Patients with hepatic encephalopathy (HE) already on maximal therapy could have recurrences, which worsen prognosis and are not prioritized for liver transplant. In this phase II, double-blind, randomized, placebo-controlled trial in patients with cirrhosis and prior overt HE, we found that fecal microbiota transplant (FMT) was safe and well tolerated regardless of route of delivery (oral or enema), number of doses (1 through 3), or donor type (vegan or omnivorous). HE recurrence, which was a key secondary endpoint, was different between groups and, on post hoc analysis, lowest in groups that received any FMT. Donor engraftment was higher in those with higher relative abundance of Lachnospiraceae, which was associated with lower HE recurrence.
Collapse
Affiliation(s)
- Jasmohan S Bajaj
- Division of Gastroenterology, Hepatology, and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia, USA.
| | - Andrew Fagan
- Division of Gastroenterology, Hepatology, and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia, USA
| | - Edith A Gavis
- Division of Gastroenterology, Hepatology, and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia, USA
| | - Richard K Sterling
- Division of Gastroenterology, Hepatology, and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia, USA
| | - Mary Leslie Gallagher
- Division of Gastroenterology, Hepatology, and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia, USA
| | - Hannah Lee
- Division of Gastroenterology, Hepatology, and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia, USA
| | - Scott C Matherly
- Division of Gastroenterology, Hepatology, and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia, USA
| | - Mohammed S Siddiqui
- Division of Gastroenterology, Hepatology, and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia, USA
| | - Amy Bartels
- Division of Gastroenterology, Hepatology, and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia, USA
| | - Travis Mousel
- Division of Gastroenterology, Hepatology, and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia, USA
| | - Brian C Davis
- Division of Gastroenterology, Hepatology, and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia, USA
| | - Puneet Puri
- Division of Gastroenterology, Hepatology, and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia, USA
| | - Michael Fuchs
- Division of Gastroenterology, Hepatology, and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia, USA
| | - Daphne M Moutsoglou
- Gastroenterology, Minneapolis VA Medical Center, Minneapolis, Minnesota, USA; Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Leroy R Thacker
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Masoumeh Sikaroodi
- Microbiome Analysis Center, George Mason University, Manassas, Virginia, USA
| | - Patrick M Gillevet
- Microbiome Analysis Center, George Mason University, Manassas, Virginia, USA
| | - Alexander Khoruts
- Division of Gastroenterology and Hepatology and Center for Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
16
|
Augustijn QJJ, Grefhorst A, de Groen P, Wortelboer K, Seegers JFM, Gül IS, Suenaert P, Verheij J, de Vos WM, Herrema H, Nieuwdorp M, Holleboom AG. Randomised double-blind placebo-controlled trial protocol to evaluate the therapeutic efficacy of lyophilised faecal microbiota capsules amended with next-generation beneficial bacteria in individuals with metabolic dysfunction-associated steatohepatitis. BMJ Open 2025; 15:e088290. [PMID: 39788762 PMCID: PMC11784342 DOI: 10.1136/bmjopen-2024-088290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 12/12/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND The spectrum of metabolic dysfunction-associated steatotic liver disease (MASLD) is highly prevalent, affecting 30% of the world's population, with a significant risk of hepatic and cardiometabolic complications. Different stages of MASLD are accompanied by distinct gut microbial profiles, and several microbial components have been implicated in MASLD pathophysiology. Indeed, earlier studies demonstrated that hepatic necroinflammation was reduced in individuals with MASLD after allogenic faecal microbiota transplantation (FMT) from healthy donors on a vegan diet. Here, we further investigate the therapeutic potential of gut microbiome modulation using a syntrophic combination of next-generation beneficial bacteria with FMT in individuals with advanced MASLD. METHODS AND ANALYSIS This trial is a randomised, double-blind, placebo-controlled study investigating the therapeutic potential of lyophilised faecal microbiota capsules (LFMCs) in individuals with metabolic dysfunction-associated steatohepatitis. In this study, 48 participants will be randomised 1:1 to receive either healthy vegan donor LFMCs or placebo for 24 weeks. In addition, all participants will be supplemented with a set of next-generation beneficial bacteria, including Anaerobutyricum soehngenii, pasteurised Akkermansia muciniphila and Bifidobacterium animalis subsp. lactis, as well as fructo-oligosaccharides. A liver biopsy will be performed at baseline and at the end of the trial. In addition, participants will be assessed through MRI, FibroScan, blood tests, faecal samples and continuous glucose monitoring. The first participant was enrolled on 25 April 2023. ETHICS AND DISSEMINATION Ethical approval was obtained from the Medical Ethics Committee of the University Medical Centre of Amsterdam. The results of this study will be disseminated through peer-reviewed journals. TRIAL REGISTRATION NUMBER The trial is registered on clinicaltrials.gov (NCT05821010).
Collapse
Affiliation(s)
- Quinten J J Augustijn
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centres, Amsterdam, Netherlands
- University of Amsterdam, Amsterdam, Netherlands
| | - Aldo Grefhorst
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centres, Amsterdam, Netherlands
- University of Amsterdam, Amsterdam, Netherlands
| | - Pleun de Groen
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centres, Amsterdam, Netherlands
- University of Amsterdam, Amsterdam, Netherlands
| | - Koen Wortelboer
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centres, Amsterdam, Netherlands
- University of Amsterdam, Amsterdam, Netherlands
| | | | | | | | | | | | - Hilde Herrema
- Amsterdam University Medical Centres, Amsterdam, Netherlands
| | - Max Nieuwdorp
- Department of Internal Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Academisch Medisch Centrum, Amsterdam, Netherlands
| | | |
Collapse
|
17
|
Cantón R, De Lucas Ramos P, García-Botella A, García-Lledó A, Hernández-Sampelayo T, Gómez-Pavón J, González Del Castillo J, Martín-Delgado MC, Martín Sánchez FJ, Martínez-Sellés M, Molero García JM, Moreno Guillén S, Rodríguez-Artalejo FJ, Reigadas E, Del Campo R, Serrano S, Ruiz-Galiana J, Bouza E. Human intestinal microbiome: Role in health and disease. REVISTA ESPANOLA DE QUIMIOTERAPIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE QUIMIOTERAPIA 2024; 37:438-453. [PMID: 38978509 PMCID: PMC11578434 DOI: 10.37201/req/056.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
The study of the microbiota and the microbiome, and specifically the intestinal one, has determined great interest due to the possible association of their alterations with numerous diseases. These include entities as diverse as Crohn's disease, autism, diabetes, cancer or situations as prevalent today as obesity. In view of this situation, different recommendations have been performed regarding the use of probiotics, prebiotics, and postbiotics as modulators of the microbiota and the microbiome, seeking both preventive and therapeutic effects, and faecal material transfer (FMT) is proposed as an alternative. The latter has emerged as the only proven beneficial intervention on the intestinal microbiome, specifically in the treatment of recurrent colitis associated with Clostridioides difficile (R-CDI). In the rest of the entities, the lowering of laboratory costs has favored the study of the microbiome, which is resolved by delivering reports with catalogs of microorganisms, metabolites or supposed biomarkers without consensus on their composition associated with healthy or diseased microbiota and the disease. There is still insufficient evidence in any disease for interventions on the microbiome beyond FMT and R-CDI. Multi- and multi-disciplinary work with extensive research and the application of artificial intelligence in this field may shed light on the questions raised currently. Ethical issues must also be resolved in light of possible interventions within the umbrella of personalized medicine.
Collapse
Affiliation(s)
- R Cantón
- Rafael Cantón. Servicio de Microbiología. Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria. CIBER de Enfermedades Infecciosas (CIBERINFEC). Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Tafader A, Bajaj JS. Present and future of fecal microbiome transplantation in cirrhosis. Liver Transpl 2024:01445473-990000000-00519. [PMID: 39591377 DOI: 10.1097/lvt.0000000000000542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024]
Abstract
Over the last few decades, there have been tremendous advances in our understanding of the role of the gut microbiome in cirrhosis and the clinical sequelae that follow. Progressive dysbiosis and immune dysregulation occur in patients with cirrhosis. In fact, alterations in the gut microbiome occur long before a diagnosis of cirrhosis is made. Understandably, our attention has recently been diverted toward potential modulators of the gut microbiome and the gut-liver axis as targets for treatment. The goal of this review is to highlight the utility of manipulating the gut microbiome with a focus on fecal microbiome transplantation (FMT) in patients with cirrhosis. In addition, we will provide an overview of disease-specific microbial alterations and the resultant impact this has on cirrhosis-related complications.
Collapse
Affiliation(s)
- Asiya Tafader
- Department of Medicine, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia, USA
| | | |
Collapse
|
19
|
Islam J, Ohtani N, Shimizu Y, Tanimizu M, Goto Y, Sato M, Makino E, Shimada T, Ueda C, Matsuo A, Suyama Y, Sakai Y, Karrow NA, Yoneyama H, Hirakawa R, Furukawa M, Tanaka H, Nochi T. Freeze-dried fecal microorganisms as an effective biomaterial for the treatment of calves suffering from diarrhea. Sci Rep 2024; 14:28078. [PMID: 39543390 PMCID: PMC11564888 DOI: 10.1038/s41598-024-79267-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024] Open
Abstract
Fecal microbiota transplantation (FMT) is a therapeutic modality for treating neonatal calf diarrhea. Several practical barriers, including donor selection, fecal collection, and a limited timeframe for FMT, are the main constraints to using fresh feces for implementing on-farm FMT. We report the utility of FMT with pretreated ready-to-use frozen (F) or freeze-dried (FD) microorganisms for treating calf diarrhea. In total, 19 FMT (F-FMT, n = 10 and FD-FMT, n = 9) treatments were conducted. Both FMT treatments were 100% clinically effective; however, multi-omics analysis showed that FD-FMT was superior to F-FMT. Machine learning analysis with SourceTracker confirmed that donor microbiota was retained four times better in the recipient calves treated with FD-FMT than F-FMT. A predictive model based on receiver operating characteristic curve analysis and area under the curve showed that FD-FMT was more discriminative than F-FMT of the observed changes in microbiota and metabolites during disease recovery. These results provide new insights into establishing methods for preparing fecal microorganisms to increase the quality of FMT in animals and may contribute to FMT in humans.
Collapse
Affiliation(s)
- Jahidul Islam
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-Ku, Sendai, Miyagi, 980-8572, Japan
- Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan
- Laboratory of Animal Mucosal Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan
| | - Natsuki Ohtani
- Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan
- Laboratory of Animal Mucosal Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan
- Chiba Prefectural Federation of Agricultural Mutual Aid Association, Chiba, 299-0126, Japan
| | - Yu Shimizu
- Chiba Prefectural Federation of Agricultural Mutual Aid Association, Chiba, 299-0126, Japan
| | - Masae Tanimizu
- Chiba Prefectural Federation of Agricultural Mutual Aid Association, Chiba, 299-0126, Japan
| | - Yoshiaki Goto
- Chiba Prefectural Federation of Agricultural Mutual Aid Association, Chiba, 299-0126, Japan
| | - Masumi Sato
- Chiba Prefectural Federation of Agricultural Mutual Aid Association, Chiba, 299-0126, Japan
| | - Eiji Makino
- Chiba Prefectural Federation of Agricultural Mutual Aid Association, Chiba, 299-0126, Japan
| | - Toru Shimada
- Chiba Prefectural Federation of Agricultural Mutual Aid Association, Chiba, 299-0126, Japan
| | - Chise Ueda
- Chiba Prefectural Federation of Agricultural Mutual Aid Association, Chiba, 299-0126, Japan
| | - Ayumi Matsuo
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-Ku, Sendai, Miyagi, 980-8572, Japan
| | - Yoshihisa Suyama
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-Ku, Sendai, Miyagi, 980-8572, Japan
| | - Yoshifumi Sakai
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-Ku, Sendai, Miyagi, 980-8572, Japan
| | - Niel A Karrow
- Ontario Agricultural College, University of Guelph, Ontario, N1G 2W1, Canada
| | - Hiroshi Yoneyama
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-Ku, Sendai, Miyagi, 980-8572, Japan
| | - Ryota Hirakawa
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-Ku, Sendai, Miyagi, 980-8572, Japan
- Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan
- Laboratory of Animal Mucosal Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan
| | - Mutsumi Furukawa
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-Ku, Sendai, Miyagi, 980-8572, Japan
- Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan
- Laboratory of Animal Mucosal Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan
| | - Hidekazu Tanaka
- Chiba Prefectural Federation of Agricultural Mutual Aid Association, Chiba, 299-0126, Japan.
- West Veterinary Clinical Center, Chiba Prefectural Federation of Agricultural Mutual Aid Association, 2-5-12 Midorigaoka, Yachiyo, Chiba, 276-0049, Japan.
| | - Tomonori Nochi
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-Ku, Sendai, Miyagi, 980-8572, Japan.
- Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan.
- Laboratory of Animal Mucosal Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan.
- Ontario Agricultural College, University of Guelph, Ontario, N1G 2W1, Canada.
- Division of Mucosal Vaccines, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.
- Center for Professional Development, Institute for Excellence in Higher Education, Tohoku University, Miyagi, 980-8576, Japan.
| |
Collapse
|
20
|
Jochumsen EA, Kragsnaes MS, Nilsson AC, Rasmussen KF, Ellingsen T, Juul MA, Kjeldsen J, Holm DK. 'Does this fecal microbiota transplant work?' Quality assurance of capsule based fecal microbiota transplant production. Scand J Gastroenterol 2024; 59:1234-1239. [PMID: 39350740 DOI: 10.1080/00365521.2024.2401460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/07/2024] [Accepted: 09/02/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND Fecal Microbiota Transplant (FMT) is an effective treatment for recurring Clostridioides Difficile Infections (rCDI). FMT administered via oral capsules (caFMT) offers several practical advantages to conventional liquid FMT. We began using caFMT in 2021 imported from an external institution. Based on similar production methods, we began our own caFMT production in 2022. We aimed to evaluate the quality of our caFMT. STUDY DESIGN AND METHODS We created a database of all FMT treatments (n = 180) provided by our institution. Quality of all FMT was evaluated by treatment success rates. We compared our caFMT to the imported caFMT. RESULTS Our caFMT yielded similar success rates compared to that of the imported caFMT, 65% (CI 95% 58-72%) and 72% (CI 95% 66-79%) respectively. FMT administered via colonoscopy had a significantly higher success rate, 79% (CI 95% 73-85%) than own our caFMT and other routes of administration. The combined success rate of treatments increased notably for all routes of administration when repeating FMT after prior failure. DISCUSSION The fact that our caFMT compared similarly to the imported caFMT was viewed as a success in terms of quality assurance. Our caFMT had a slightly lower success rates compared to data from other studies, but could be affected by several other factors than our FMT-production methods. A lower success rate of caFMT compared to FMT via colonoscopy is acceptable due to the practical advantages offed by caFMT. Our study serves as a practical example, proving that of the standardization of caFMT production is indeed viable.
Collapse
Affiliation(s)
| | | | | | | | - Torkell Ellingsen
- Department of Rheumatology, Odense University Hospital, Odense, Denmark
| | - Mie Agerbaek Juul
- Department of Gastroenterology, Hospital South West Jutland, Esbjerg, Denmark
| | - Jens Kjeldsen
- Department of Gastroenterology, Odense University Hospital, Odense, Denmark
| | | |
Collapse
|
21
|
Hansen MM, Rågård N, Andreasen PW, Paaske SE, Dahlerup JF, Mikkelsen S, Erikstrup C, Baunwall SMD, Hvas CL. Encapsulated donor faeces for faecal microbiota transplantation: the Glyprotect protocol. Therap Adv Gastroenterol 2024; 17:17562848241289065. [PMID: 39421003 PMCID: PMC11483698 DOI: 10.1177/17562848241289065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Background Faecal microbiota transplantation (FMT) is a highly effective treatment for Clostridioides difficile infection. Its use is backed by solid evidence, but application methods differ. Encapsulated FMT is a non-invasive, patient-friendly and scalable application method that may be preferred over colonoscopy or nasoduodenal tube application. Objectives We describe a detailed protocol, the Glyprotect protocol, for producing glycerol-based capsules to increase FMT accessibility. Design Using iterative quality improvement methods, we developed and validated the Glyprotect protocol as a reproducible protocol for cryopreserving minimally processed donor faeces in a standard hospital laboratory setting. Methods We describe detailed standard operating procedures for producing glycerol-based capsules, including all necessary materials and troubleshooting guidelines. Capsule integrity was tested at various temperatures and pH levels. Flow cytometry was used to measure microbiota counts and dose accuracy. Results The Glyprotect protocol has been used for more than 2500 capsule-based FMT treatments and complies with European tissue and cell standards. The protocol is optimised to preserve microbes and minimise modulation of the donated microbiota by removing debris and water, which also reduces the number of capsules needed per FMT treatment. The intestinal microbiota is preserved in glycerol for cryoprotection and to prevent capsule leakage. Each capsule contains 650 µL microbe-glycerol mass, estimated to contain an average of 2.5 × 108 non-specified bacteria. Conclusion The Glyprotect protocol enables hospitals and tissue establishments to set up capsule production in a standard laboratory, improving patients' access to FMT. The protocol facilitates the scalability of FMT services because capsule FMT is less time-consuming and less expensive than liquid-suspension FMT applied by colonoscopy or nasojejunal tube. Trial registration Not applicable.
Collapse
Affiliation(s)
- Mette Mejlby Hansen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Nina Rågård
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Pia Winther Andreasen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Sara Ellegaard Paaske
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jens Frederik Dahlerup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Susan Mikkelsen
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Christian Lodberg Hvas
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 35, Aarhus N, DK-8200, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
22
|
Corrie L, Singh H, Gulati M, Vishwas S, Chellappan DK, Gupta G, Paiva-Santos AC, Veiga F, Alotaibi F, Alam A, Eri RD, Prasher P, Adams J, Paudel KR, Dua K, Singh SK. Polysaccharide-fecal microbiota-based colon-targeted self-nanoemulsifying drug delivery system of curcumin for treating polycystic ovarian syndrome. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6721-6743. [PMID: 38507103 DOI: 10.1007/s00210-024-03029-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024]
Abstract
The gut microbiome is involved in the pathogenesis of many diseases including polycystic ovarian syndrome (PCOS). Modulating the gut microbiome can lead to eubiosis and treatment of various metabolic conditions. However, there is no proper study assessing the delivery of microbial technology for the treatment of such conditions. The present study involves the development of guar gum-pectin-based solid self-nanoemulsifying drug delivery system (S-SNEDDS) containing curcumin (CCM) and fecal microbiota extract (FME) for the treatment of PCOS. The optimized S-SNEDDS containing FME and CCM was prepared by dissolving CCM (25 mg) in an isotropic mixture consisting of Labrafil M 1944 CS, Transcutol P, and Tween-80 and solidified using lactose monohydrate, aerosil-200, guar gum, and pectin (colon-targeted CCM solid self-nanoemulsifying drug delivery system [CCM-CT-S-SNEDDS]). Pharmacokinetic and pharmacodynamic evaluation was carried out on letrozole-induced female Wistar rats. The results of pharmacokinetic studies indicated about 13.11 and 23.48-fold increase in AUC of CCM-loaded colon-targeted S-SNEDDS without FME (CCM-CT-S-SNEDDS (WFME)) and CCM-loaded colon-targeted S-SNEDDS with FME [(CCM-CT-S-SNEDDS (FME)) as compared to unprocessed CCM. The pharmacodynamic study indicated excellent recovery/reversal in the rats treated with CCM-CT-S-SNEDDS low and high dose containing FME (group 13 and group 14) in a dose-dependent manner. The developed formulation showcasing its improved bioavailability, targeted action, and therapeutic activity in ameliorating PCOS can be utilized as an adjuvant therapy for developing a dosage form, scale-up, and technology transfer.
Collapse
Affiliation(s)
- Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Hardeep Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Faisal Alotaibi
- Department of Pharmacology, College of Pharmacy (Al-Duwadimi Campus), Shaqra University, Shaqra, Saudi Arabia
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al Kharj, Saudi Arabia
| | - Rajaraman D Eri
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun, 248007, India
| | - Jon Adams
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Keshav Raj Paudel
- Centre of Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
23
|
Singh J, Vanlallawmzuali, Singh A, Biswal S, Zomuansangi R, Lalbiaktluangi C, Singh BP, Singh PK, Vellingiri B, Iyer M, Ram H, Udey B, Yadav MK. Microbiota-brain axis: Exploring the role of gut microbiota in psychiatric disorders - A comprehensive review. Asian J Psychiatr 2024; 97:104068. [PMID: 38776563 DOI: 10.1016/j.ajp.2024.104068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/28/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Mental illness is a hidden epidemic in modern science that has gradually spread worldwide. According to estimates from the World Health Organization (WHO), approximately 10% of the world's population suffers from various mental diseases each year. Worldwide, financial and health burdens on society are increasing annually. Therefore, understanding the different factors that can influence mental illness is required to formulate novel and effective treatments and interventions to combat mental illness. Gut microbiota, consisting of diverse microbial communities residing in the gastrointestinal tract, exert profound effects on the central nervous system through the gut-brain axis. The gut-brain axis serves as a conduit for bidirectional communication between the two systems, enabling the gut microbiota to affect emotional and cognitive functions. Dysbiosis, or an imbalance in the gut microbiota, is associated with an increased susceptibility to mental health disorders and psychiatric illnesses. Gut microbiota is one of the most diverse and abundant groups of microbes that have been found to interact with the central nervous system and play important physiological functions in the human gut, thus greatly affecting the development of mental illnesses. The interaction between gut microbiota and mental health-related illnesses is a multifaceted and promising field of study. This review explores the mechanisms by which gut microbiota influences mental health, encompassing the modulation of neurotransmitter production, neuroinflammation, and integrity of the gut barrier. In addition, it emphasizes a thorough understanding of how the gut microbiome affects various psychiatric conditions.
Collapse
Affiliation(s)
- Jawahar Singh
- Department of Psychiatry, All India Institute of Medical Sciences (AIIMS), Bathinda, Punjab, India
| | - Vanlallawmzuali
- Department of Biotechnology, Mizoram Central University, Pachhunga University College Campus, Aizawl, Mizoram, India
| | - Amit Singh
- Department of Microbiology Central University of Punjab, Bathinda 151401, India
| | - Suryanarayan Biswal
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Ruth Zomuansangi
- Department of Microbiology Central University of Punjab, Bathinda 151401, India
| | - C Lalbiaktluangi
- Department of Microbiology Central University of Punjab, Bathinda 151401, India
| | - Bhim Pratap Singh
- Department of Agriculture and Environmental Sciences (AES), National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonepat, Haryana, India
| | - Prashant Kumar Singh
- Department of Biotechnology, Pachhunga University College Campus, Mizoram University (A Central University), Aizawl 796001, Mizoram, India
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda, Punjab 151401, India
| | - Mahalaxmi Iyer
- Department of Microbiology Central University of Punjab, Bathinda 151401, India
| | - Heera Ram
- Department of Zoology, Jai Narain Vyas University, Jodhpur, Rajasthan 342001, India
| | - Bharat Udey
- Department of Psychiatry, All India Institute of Medical Sciences (AIIMS), Bathinda, Punjab, India
| | - Mukesh Kumar Yadav
- Department of Microbiology Central University of Punjab, Bathinda 151401, India.
| |
Collapse
|
24
|
Di Bella S, Sanson G, Monticelli J, Zerbato V, Principe L, Giuffrè M, Pipitone G, Luzzati R. Clostridioides difficile infection: history, epidemiology, risk factors, prevention, clinical manifestations, treatment, and future options. Clin Microbiol Rev 2024; 37:e0013523. [PMID: 38421181 PMCID: PMC11324037 DOI: 10.1128/cmr.00135-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
SUMMARYClostridioides difficile infection (CDI) is one of the major issues in nosocomial infections. This bacterium is constantly evolving and poses complex challenges for clinicians, often encountered in real-life scenarios. In the face of CDI, we are increasingly equipped with new therapeutic strategies, such as monoclonal antibodies and live biotherapeutic products, which need to be thoroughly understood to fully harness their benefits. Moreover, interesting options are currently under study for the future, including bacteriophages, vaccines, and antibiotic inhibitors. Surveillance and prevention strategies continue to play a pivotal role in limiting the spread of the infection. In this review, we aim to provide the reader with a comprehensive overview of epidemiological aspects, predisposing factors, clinical manifestations, diagnostic tools, and current and future prophylactic and therapeutic options for C. difficile infection.
Collapse
Affiliation(s)
- Stefano Di Bella
- Clinical Department of
Medical, Surgical and Health Sciences, Trieste
University, Trieste,
Italy
| | - Gianfranco Sanson
- Clinical Department of
Medical, Surgical and Health Sciences, Trieste
University, Trieste,
Italy
| | - Jacopo Monticelli
- Infectious Diseases
Unit, Trieste University Hospital
(ASUGI), Trieste,
Italy
| | - Verena Zerbato
- Infectious Diseases
Unit, Trieste University Hospital
(ASUGI), Trieste,
Italy
| | - Luigi Principe
- Microbiology and
Virology Unit, Great Metropolitan Hospital
“Bianchi-Melacrino-Morelli”,
Reggio Calabria, Italy
| | - Mauro Giuffrè
- Clinical Department of
Medical, Surgical and Health Sciences, Trieste
University, Trieste,
Italy
- Department of Internal
Medicine (Digestive Diseases), Yale School of Medicine, Yale
University, New Haven,
Connecticut, USA
| | - Giuseppe Pipitone
- Infectious Diseases
Unit, ARNAS Civico-Di Cristina
Hospital, Palermo,
Italy
| | - Roberto Luzzati
- Clinical Department of
Medical, Surgical and Health Sciences, Trieste
University, Trieste,
Italy
| |
Collapse
|
25
|
Yadegar A, Bar-Yoseph H, Monaghan TM, Pakpour S, Severino A, Kuijper EJ, Smits WK, Terveer EM, Neupane S, Nabavi-Rad A, Sadeghi J, Cammarota G, Ianiro G, Nap-Hill E, Leung D, Wong K, Kao D. Fecal microbiota transplantation: current challenges and future landscapes. Clin Microbiol Rev 2024; 37:e0006022. [PMID: 38717124 PMCID: PMC11325845 DOI: 10.1128/cmr.00060-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
SUMMARYGiven the importance of gut microbial homeostasis in maintaining health, there has been considerable interest in developing innovative therapeutic strategies for restoring gut microbiota. One such approach, fecal microbiota transplantation (FMT), is the main "whole gut microbiome replacement" strategy and has been integrated into clinical practice guidelines for treating recurrent Clostridioides difficile infection (rCDI). Furthermore, the potential application of FMT in other indications such as inflammatory bowel disease (IBD), metabolic syndrome, and solid tumor malignancies is an area of intense interest and active research. However, the complex and variable nature of FMT makes it challenging to address its precise functionality and to assess clinical efficacy and safety in different disease contexts. In this review, we outline clinical applications, efficacy, durability, and safety of FMT and provide a comprehensive assessment of its procedural and administration aspects. The clinical applications of FMT in children and cancer immunotherapy are also described. We focus on data from human studies in IBD in contrast with rCDI to delineate the putative mechanisms of this treatment in IBD as a model, including colonization resistance and functional restoration through bacterial engraftment, modulating effects of virome/phageome, gut metabolome and host interactions, and immunoregulatory actions of FMT. Furthermore, we comprehensively review omics technologies, metagenomic approaches, and bioinformatics pipelines to characterize complex microbial communities and discuss their limitations. FMT regulatory challenges, ethical considerations, and pharmacomicrobiomics are also highlighted to shed light on future development of tailored microbiome-based therapeutics.
Collapse
Affiliation(s)
- Abbas Yadegar
- Foodborne and
Waterborne Diseases Research Center, Research Institute for
Gastroenterology and Liver Diseases, Shahid Beheshti University of
Medical Sciences, Tehran,
Iran
| | - Haggai Bar-Yoseph
- Department of
Gastroenterology, Rambam Health Care
Campus, Haifa,
Israel
- Rappaport Faculty of
Medicine, Technion-Israel Institute of
Technology, Haifa,
Israel
| | - Tanya Marie Monaghan
- National Institute for
Health Research Nottingham Biomedical Research Centre, University of
Nottingham, Nottingham,
United Kingdom
- Nottingham Digestive
Diseases Centre, School of Medicine, University of
Nottingham, Nottingham,
United Kingdom
| | - Sepideh Pakpour
- School of Engineering,
Faculty of Applied Sciences, UBC, Okanagan
Campus, Kelowna,
British Columbia, Canada
| | - Andrea Severino
- Department of
Translational Medicine and Surgery, Università Cattolica del
Sacro Cuore, Rome,
Italy
- Department of Medical
and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato
Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico
Universitario Gemelli IRCCS,
Rome, Italy
- Department of Medical
and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico
Universitario Agostino Gemelli IRCCS,
Rome, Italy
| | - Ed J. Kuijper
- Center for
Microbiota Analysis and Therapeutics (CMAT), Leiden University Center
for Infectious Diseases, Leiden University Medical
Center, Leiden, The
Netherlands
| | - Wiep Klaas Smits
- Center for
Microbiota Analysis and Therapeutics (CMAT), Leiden University Center
for Infectious Diseases, Leiden University Medical
Center, Leiden, The
Netherlands
| | - Elisabeth M. Terveer
- Center for
Microbiota Analysis and Therapeutics (CMAT), Leiden University Center
for Infectious Diseases, Leiden University Medical
Center, Leiden, The
Netherlands
| | - Sukanya Neupane
- Division of
Gastroenterology, Department of Medicine, University of
Alberta, Edmonton,
Alberta, Canada
| | - Ali Nabavi-Rad
- Foodborne and
Waterborne Diseases Research Center, Research Institute for
Gastroenterology and Liver Diseases, Shahid Beheshti University of
Medical Sciences, Tehran,
Iran
| | - Javad Sadeghi
- School of Engineering,
Faculty of Applied Sciences, UBC, Okanagan
Campus, Kelowna,
British Columbia, Canada
| | - Giovanni Cammarota
- Department of
Translational Medicine and Surgery, Università Cattolica del
Sacro Cuore, Rome,
Italy
- Department of Medical
and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato
Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico
Universitario Gemelli IRCCS,
Rome, Italy
- Department of Medical
and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico
Universitario Agostino Gemelli IRCCS,
Rome, Italy
| | - Gianluca Ianiro
- Department of
Translational Medicine and Surgery, Università Cattolica del
Sacro Cuore, Rome,
Italy
- Department of Medical
and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato
Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico
Universitario Gemelli IRCCS,
Rome, Italy
- Department of Medical
and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico
Universitario Agostino Gemelli IRCCS,
Rome, Italy
| | - Estello Nap-Hill
- Department of
Medicine, Division of Gastroenterology, St Paul’s Hospital,
University of British Columbia,
Vancouver, British Columbia, Canada
| | - Dickson Leung
- Division of
Gastroenterology, Department of Medicine, University of
Alberta, Edmonton,
Alberta, Canada
| | - Karen Wong
- Division of
Gastroenterology, Department of Medicine, University of
Alberta, Edmonton,
Alberta, Canada
| | - Dina Kao
- Division of
Gastroenterology, Department of Medicine, University of
Alberta, Edmonton,
Alberta, Canada
| |
Collapse
|
26
|
Rashidi A, Ebadi M, Rehman TU, Elhusseini H, Kazadi D, Halaweish H, Khan MH, Hoeschen A, Cao Q, Luo X, Kabage AJ, Lopez S, Ramamoorthy S, Holtan SG, Weisdorf DJ, Khoruts A, Staley C. Multi-omics Analysis of a Fecal Microbiota Transplantation Trial Identifies Novel Aspects of Acute GVHD Pathogenesis. CANCER RESEARCH COMMUNICATIONS 2024; 4:1454-1466. [PMID: 38767452 PMCID: PMC11164016 DOI: 10.1158/2767-9764.crc-24-0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/23/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
Acute GVHD (aGVHD) is a major complication of allogeneic hematopoietic cell transplantation (alloHCT) associated with gut microbiota disruptions. However, whether therapeutic microbiota modulation prevents aGVHD is unknown. We conducted a randomized, placebo-controlled trial of third-party fecal microbiota transplantation (FMT) administered at the peak of microbiota injury in 100 patients with acute myeloid leukemia receiving induction chemotherapy and alloHCT recipients. Despite improvements in microbiome diversity, expansion of commensals, and shrinkage of potential pathogens, aGVHD occurred more frequently after FMT than placebo. Although this unexpected finding could be explained by clinical differences between the two arms, we asked whether a microbiota explanation might be also present. To this end, we performed multi-omics analysis of preintervention and postintervention gut microbiome and serum metabolome. We found that postintervention expansion of Faecalibacterium, a commensal genus with gut-protective and anti-inflammatory properties under homeostatic conditions, predicted a higher risk for aGVHD. Faecalibacterium expansion occurred predominantly after FMT and was due to engraftment of unique donor taxa, suggesting that donor Faecalibacterium-derived antigens might have stimulated allogeneic immune cells. Faecalibacterium and ursodeoxycholic acid (an anti-inflammatory secondary bile acid) were negatively correlated, offering an alternative mechanistic explanation. In conclusion, we demonstrate context dependence of microbiota effects where a normally beneficial bacteria may become detrimental in disease. While FMT is a broad, community-level intervention, it may need precision engineering in ecologically complex settings where multiple perturbations (e.g., antibiotics, intestinal damage, alloimmunity) are concurrently in effect. SIGNIFICANCE Post-FMT expansion of Faecalibacterium, associated with donor microbiota engraftment, predicted a higher risk for aGVHD in alloHCT recipients. Although Faecalibacterium is a commensal genus with gut-protective and anti-inflammatory properties under homeostatic conditions, our findings suggest that it may become pathogenic in the setting of FMT after alloHCT. Our results support a future trial with precision engineering of the FMT product used as GVHD prophylaxis after alloHCT.
Collapse
Affiliation(s)
- Armin Rashidi
- Clinical Research Division, Fred Hutchinson Cancer Center; and Division of Oncology, University of Washington, Seattle, Washington
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Maryam Ebadi
- Department of Radiation Oncology, University of Washington and Fred Hutchinson Cancer Center, Seattle, Washington
| | - Tauseef U. Rehman
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Heba Elhusseini
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - David Kazadi
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Hossam Halaweish
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota
| | - Mohammad H. Khan
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota
| | - Andrea Hoeschen
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Qing Cao
- Biostatistics Core, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Xianghua Luo
- Biostatistics Core, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Division of Biostatistics and Health Data Science, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Amanda J. Kabage
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Sharon Lopez
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | | | - Shernan G. Holtan
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Daniel J. Weisdorf
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Alexander Khoruts
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
- Biotechnology Institute, University of Minnesota, St. Paul, Minnesota
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota
| | | |
Collapse
|
27
|
Wang Y, Hunt A, Danziger L, Drwiega EN. A Comparison of Currently Available and Investigational Fecal Microbiota Transplant Products for Recurrent Clostridioides difficile Infection. Antibiotics (Basel) 2024; 13:436. [PMID: 38786164 PMCID: PMC11117328 DOI: 10.3390/antibiotics13050436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Clostridioides difficile infection (CDI) is an intestinal infection that causes morbidity and mortality and places significant burden and cost on the healthcare system, especially in recurrent cases. Antibiotic overuse is well recognized as the leading cause of CDI in high-risk patients, and studies have demonstrated that even short-term antibiotic exposure can cause a large and persistent disturbance to human colonic microbiota. The recovery and sustainability of the gut microbiome after dysbiosis have been associated with fewer CDI recurrences. Fecal microbiota transplantation (FMT) refers to the procedure in which human donor stool is processed and transplanted to a patient with CDI. It has been historically used in patients with pseudomembranous colitis even before the discovery of Clostridioides difficile. More recent research supports the use of FMT as part of the standard therapy of recurrent CDI. This article will be an in-depth review of five microbiome therapeutic products that are either under investigation or currently commercially available: Rebyota (fecal microbiota, live-jslm, formerly RBX2660), Vowst (fecal microbiota spores, live-brpk, formerly SER109), VE303, CP101, and RBX7455. Included in this review is a comparison of the products' composition and dosage forms, available safety and efficacy data, and investigational status.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Pharmacy Practice, University of Illinois at Chicago College of Pharmacy, Chicago, IL 60612, USA
| | - Aaron Hunt
- Department of Pharmacy Practice, University of Illinois at Chicago College of Pharmacy, Chicago, IL 60612, USA
| | - Larry Danziger
- Department of Pharmacy Practice, University of Illinois at Chicago College of Pharmacy, Chicago, IL 60612, USA
- Division of Infectious Diseases, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA
| | - Emily N. Drwiega
- Department of Pharmacy Practice, University of Illinois at Chicago College of Pharmacy, Chicago, IL 60612, USA
| |
Collapse
|
28
|
Sadowsky MJ, Matson M, Mathai PP, Pho M, Staley C, Evert C, Weldy M, Khoruts A. Successful Treatment of Recurrent Clostridioides difficile Infection Using a Novel, Drinkable, Oral Formulation of Fecal Microbiota. Dig Dis Sci 2024; 69:1778-1784. [PMID: 38457115 DOI: 10.1007/s10620-024-08351-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/09/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Fecal microbiota transplants can be administered orally in encapsulated form or require invasive procedures to administer liquid formulations. There is a need for an oral liquid formulation of fecal microbiota for patients who are unable to swallow capsules, especially if they require multiple, repeated administrations. AIMS These studies were conducted to develop a protocol to manufacture an organoleptically acceptable powdered fecal microbiota formulation that can be suspended in a liquid carrier and used for fecal microbiota transplantation. METHODS Several processing steps were investigated, including extra washes of microbiota prior to lyophilization and an addition of a flavoring agent. The viability of bacteria in the transplant formulation was tested using live/dead microscopy staining and engraftment into antibiotic-treated mice. After development of a clinical protocol for suspension of the powdered microbiota, the new formulation was tested in three elderly patients with recurrent Clostridioides difficile infections and who have difficulties in swallowing capsules. Changes in the microbial community structure in one of the patients were characterized using 16S rRNA gene profiling and engraftment analysis. RESULTS The processing steps used to produce an organoleptically acceptable suspension of powdered fecal microbiota did not result in loss of its viability. The powder could be easily suspended in a liquid carrier. The use of the new formulation was associated with abrogation of the cycle of C. difficile infection recurrences in the three patients. CONCLUSION We developed a novel organoleptically acceptable liquid formulation of fecal microbiota that is suitable for use in clinical trials for patients with difficulties in swallowing capsules.
Collapse
Affiliation(s)
- Michael J Sadowsky
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA
- Department of Soil, Water, and Climate, Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, 3-184 Wallin Medical BioSciences Building, 2101 6th St. S.E., Minneapolis, MN, 55416, USA
| | - Michael Matson
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, 3-184 Wallin Medical BioSciences Building, 2101 6th St. S.E., Minneapolis, MN, 55416, USA
| | - Prince P Mathai
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA
| | - Maradi Pho
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, 3-184 Wallin Medical BioSciences Building, 2101 6th St. S.E., Minneapolis, MN, 55416, USA
| | - Christopher Staley
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA
- Department of Surgery, Division of Basic and Translational Research, University of Minnesota, Minneapolis, MN, USA
| | - Clayton Evert
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, 3-184 Wallin Medical BioSciences Building, 2101 6th St. S.E., Minneapolis, MN, 55416, USA
| | - Melissa Weldy
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, 3-184 Wallin Medical BioSciences Building, 2101 6th St. S.E., Minneapolis, MN, 55416, USA
| | - Alexander Khoruts
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA.
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, 3-184 Wallin Medical BioSciences Building, 2101 6th St. S.E., Minneapolis, MN, 55416, USA.
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
29
|
Bethlehem L, Estevinho MM, Grinspan A, Magro F, Faith JJ, Colombel JF. Microbiota therapeutics for inflammatory bowel disease: the way forward. Lancet Gastroenterol Hepatol 2024; 9:476-486. [PMID: 38604201 DOI: 10.1016/s2468-1253(23)00441-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 04/13/2024]
Abstract
Microbiota therapeutics that transplant faecal material from healthy donors to people with mild-to-moderate ulcerative colitis have shown the potential to induce remission in about 30% of participants in small, phase 2 clinical trials. Despite this substantial achievement, the field needs to leverage the insights gained from these trials and progress towards phase 3 clinical trials and drug approval, while identifying the distinct clinical niche for this new therapeutic modality within inflammatory bowel disease (IBD) therapeutics. We describe the lessons that can be learned from past studies of microbiota therapeutics, from full spectrum donor stool to defined products manufactured in vitro. We explore the actionable insights these lessons provide on the design of near-term studies and future trajectories for the integration of microbiota therapeutics in the treatment of IBD. If successful, microbiota therapeutics will provide a powerful orthogonal approach (complementing or in combination with existing immunomodulatory drugs) to raise the therapeutic ceiling for the many non-responders and partial responders within the IBD patient population.
Collapse
Affiliation(s)
- Lukas Bethlehem
- Department of Genomics and Genetic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria Manuela Estevinho
- Department of Gastroenterology, Vila Nova de Gaia Espinho Hospital Center, Vila Nova de Gaia, Portugal; Unit of Pharmacology and Therapeutics, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Ari Grinspan
- Dr Henry D Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fernando Magro
- Unit of Pharmacology and Therapeutics, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal; CINTESIS@RISE, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal; Department of Gastroenterology, São João Hospital Center, Porto, Portugal
| | - Jeremiah J Faith
- Department of Genomics and Genetic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean-Frederic Colombel
- Dr Henry D Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
30
|
Porcari S, Fusco W, Spivak I, Fiorani M, Gasbarrini A, Elinav E, Cammarota G, Ianiro G. Fine-tuning the gut ecosystem: the current landscape and outlook of artificial microbiome therapeutics. Lancet Gastroenterol Hepatol 2024; 9:460-475. [PMID: 38604200 DOI: 10.1016/s2468-1253(23)00357-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 04/13/2024]
Abstract
The gut microbiome is acknowledged as a key determinant of human health, and technological progress in the past two decades has enabled the deciphering of its composition and functions and its role in human disorders. Therefore, manipulation of the gut microbiome has emerged as a promising therapeutic option for communicable and non-communicable disorders. Full exploitation of current therapeutic microbiome modulators (including probiotics, prebiotics, and faecal microbiota transplantation) is hindered by several factors, including poor precision, regulatory and safety issues, and the impossibility of providing reproducible and targeted treatments. Artificial microbiota therapeutics (which include a wide range of products, such as microbiota consortia, bacteriophages, bacterial metabolites, and engineered probiotics) have appeared as an evolution of current microbiota modulators, as they promise safe and reproducible effects, with variable levels of precision via different pathways. We describe the landscape of artificial microbiome therapeutics, from those already on the market to those still in the pipeline, and outline the major challenges for positioning these therapeutics in clinical practice.
Collapse
Affiliation(s)
- Serena Porcari
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; UOC Gastroenterologia and UOC CEMAD Medicina Interna e Gastroenterologia, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - William Fusco
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; UOC Gastroenterologia and UOC CEMAD Medicina Interna e Gastroenterologia, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Igor Spivak
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel; Medical Clinic III, University Hospital Aachen, Aachen, Germany
| | - Marcello Fiorani
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; UOC Gastroenterologia and UOC CEMAD Medicina Interna e Gastroenterologia, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; UOC Gastroenterologia and UOC CEMAD Medicina Interna e Gastroenterologia, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Eran Elinav
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel; Microbiome and Cancer Division, DKFZ, Heidelberg, Germany
| | - Giovanni Cammarota
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; UOC Gastroenterologia and UOC CEMAD Medicina Interna e Gastroenterologia, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; UOC Gastroenterologia and UOC CEMAD Medicina Interna e Gastroenterologia, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
31
|
Linnehan BK, Kodera SM, Allard SM, Brodie EC, Allaband C, Knight R, Lutz HL, Carroll MC, Meegan JM, Jensen ED, Gilbert JA. Evaluation of the safety and efficacy of fecal microbiota transplantations in bottlenose dolphins (Tursiops truncatus) using metagenomic sequencing. J Appl Microbiol 2024; 135:lxae026. [PMID: 38305096 PMCID: PMC10853691 DOI: 10.1093/jambio/lxae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/28/2023] [Accepted: 01/31/2024] [Indexed: 02/03/2024]
Abstract
AIMS Gastrointestinal disease is a leading cause of morbidity in bottlenose dolphins (Tursiops truncatus) under managed care. Fecal microbiota transplantation (FMT) holds promise as a therapeutic tool to restore gut microbiota without antibiotic use. This prospective clinical study aimed to develop a screening protocol for FMT donors to ensure safety, determine an effective FMT administration protocol for managed dolphins, and evaluate the efficacy of FMTs in four recipient dolphins. METHODS AND RESULTS Comprehensive health monitoring was performed on donor and recipient dolphins. Fecal samples were collected before, during, and after FMT therapy. Screening of donor and recipient fecal samples was accomplished by in-house and reference lab diagnostic tests. Shotgun metagenomics was used for sequencing. Following FMT treatment, all four recipient communities experienced engraftment of novel microbial species from donor communities. Engraftment coincided with resolution of clinical signs and a sustained increase in alpha diversity. CONCLUSION The donor screening protocol proved to be safe in this study and no adverse effects were observed in four recipient dolphins. Treatment coincided with improvement in clinical signs.
Collapse
Affiliation(s)
| | - Sho M Kodera
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, United States
| | - Sarah M Allard
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, United States
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA 92093, United States
| | - Erin C Brodie
- National Marine Mammal Foundation, San Diego, CA 92106, United States
| | - Celeste Allaband
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA 92093, United States
| | - Rob Knight
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA 92093, United States
- Center for Microbiome Innovation, Joan and Irwin Jacobs School of Engineering, University of California San Diego, La Jolla, CA 92093, United States
- Department of Medicine, University of California San Diego, La Jolla, CA 92161, United States
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA 92093, United States
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, United States
| | - Holly L Lutz
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, United States
| | | | - Jennifer M Meegan
- National Marine Mammal Foundation, San Diego, CA 92106, United States
| | - Eric D Jensen
- U.S. Navy Marine Mammal Program, Naval Information Warfare Center Pacific, San Diego, CA 92106, United States
| | - Jack A Gilbert
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, United States
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA 92093, United States
- Center for Microbiome Innovation, Joan and Irwin Jacobs School of Engineering, University of California San Diego, La Jolla, CA 92093, United States
| |
Collapse
|
32
|
Rashidi A, Ebadi M, Rehman TU, Elhusseini H, Kazadi D, Halaweish H, Khan MH, Hoeschen A, Cao Q, Luo X, Kabage AJ, Lopez S, Holtan SG, Weisdorf DJ, Liu C, Ishii S, Khoruts A, Staley C. Long- and short-term effects of fecal microbiota transplantation on antibiotic resistance genes: results from a randomized placebo-controlled trial. Gut Microbes 2024; 16:2327442. [PMID: 38478462 PMCID: PMC10939144 DOI: 10.1080/19490976.2024.2327442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/04/2024] [Indexed: 03/17/2024] Open
Abstract
In small series, third-party fecal microbiota transplantation (FMT) has been successful in decolonizing the gut from clinically relevant antibiotic resistance genes (ARGs). Less is known about the short- and long-term effects of FMT on larger panels of ARGs. We analyzed 226 pre- and post-treatment stool samples from a randomized placebo-controlled trial of FMT in 100 patients undergoing allogeneic hematopoietic cell transplantation or receiving anti-leukemia induction chemotherapy for 47 ARGs. These patients have heavy antibiotic exposure and a high incidence of colonization with multidrug-resistant organisms. Samples from each patient spanned a period of up to 9 months, allowing us to describe both short- and long-term effects of FMT on ARGs, while the randomized design allowed us to distinguish between spontaneous changes vs. FMT effect. We find an overall bimodal pattern. In the first phase (days to weeks after FMT), low-level transfer of ARGs largely associated with commensal healthy donor microbiota occurs. This phase is followed by long-term resistance to new ARGs as stable communities with colonization resistance are formed after FMT. The clinical implications of these findings are likely context-dependent and require further research. In the setting of cancer and intensive therapy, long-term ARG decolonization could translate into fewer downstream infections.
Collapse
Affiliation(s)
- Armin Rashidi
- Clinical Research Division, Fred Hutchinson Cancer Center and Division of Oncology, University of Washington, Seattle, WA, USA
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Maryam Ebadi
- Department of Radiation Oncology, University of Washington and Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Tauseef Ur Rehman
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Heba Elhusseini
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - David Kazadi
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Hossam Halaweish
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Mohammad H. Khan
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Andrea Hoeschen
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Qing Cao
- Biostatistics Core, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Xianghua Luo
- Biostatistics Core, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Amanda J. Kabage
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Sharon Lopez
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Shernan G. Holtan
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Daniel J. Weisdorf
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Chang Liu
- Department of Soil, Water, and Climate, BioTechnology Institute, University of Minnesota, MN, USA
| | - Satoshi Ishii
- Department of Soil, Water, and Climate, BioTechnology Institute, University of Minnesota, MN, USA
| | - Alexander Khoruts
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
- Biotechnology Institute, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
33
|
Porcari S, Maida M, Bibbò S, McIlroy J, Ianiro G, Cammarota G. Fecal Microbiota Transplantation as Emerging Treatment in European Countries 2.0. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:85-99. [PMID: 38175472 DOI: 10.1007/978-3-031-42108-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Clostridioides difficile infection (CDI) is one of the most common healthcare-associated infections and one of the leading causes of morbidity and mortality in hospitalized patients in the world. Although several antibiotics effectively treat CDI, some individuals may not respond to these drugs and may be cured by transplanting stool from healthy donors. FMT has demonstrated extraordinary cure rates for the cure of CDI recurrences.Moreover, FMT has also been investigated in other disorders associated with the alteration of gut microbiota, such as inflammatory bowel disease (IBD), where the alterations of the gut microbiota ecology have been theorized to play a causative role. Although FMT is currently not recommended to cure IBD patients in clinical practice, several studies have been recently carried out with the ultimate goal to search new therapeutic options to patients.This review summarizes data on the use of FMT for the treatment of both CDI and IBD, with a special attention to highlight studies conducted in European countries.
Collapse
Affiliation(s)
- Serena Porcari
- Department of Medical and Surgical Sciences, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marcello Maida
- Gastroenterology and Endoscopy Unit, S. Elia-Raimondi Hospital, Caltanissetta, Italy
| | - Stefano Bibbò
- Department of Medical and Surgical Sciences, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - James McIlroy
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Gianluca Ianiro
- Department of Medical and Surgical Sciences, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovanni Cammarota
- Department of Medical and Surgical Sciences, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
34
|
Kim DY, Lee SY, Lee JY, Whon TW, Lee JY, Jeon CO, Bae JW. Gut microbiome therapy: fecal microbiota transplantation vs live biotherapeutic products. Gut Microbes 2024; 16:2412376. [PMID: 39377231 PMCID: PMC11469438 DOI: 10.1080/19490976.2024.2412376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 08/28/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024] Open
Abstract
The human intestine hosts a complex ecosystem of various microorganisms, collectively known as the gut microbiome, which significantly impacts human health. Disruptions in the gut microbiome are linked to various disorders, including gastrointestinal diseases, such as Clostridioides difficile infection and inflammatory bowel disease, as well as metabolic, neurological, oncologic conditions. Fecal microbiota transplantation (FMT) and live biotherapeutic products (LBPs) have emerged as prospective therapeutic procedures to restore microbial and metabolic balance in the gut. This review assesses the latest advancements, challenges, and therapeutic efficacy of FMT and LBPs, highlighting the need for standardization, safety, and long-term evaluation to optimize their clinical application.
Collapse
Affiliation(s)
- Do-Yeon Kim
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Korea
| | - So-Yeon Lee
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Korea
| | - Jae-Yun Lee
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Korea
| | - Tae Woong Whon
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju, Korea
| | - June-Young Lee
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Korea
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Jin-Woo Bae
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Korea
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Korea
| |
Collapse
|
35
|
Masquelier J, Segers C, Jacobs B, Van Nieuwenhuysen T, Delbrassinne L, Van Hoeck E. Validation of a Targeted LC-MS/MS Method for Cereulide and Application in Food and Faeces. Toxins (Basel) 2023; 16:13. [PMID: 38251230 PMCID: PMC10819378 DOI: 10.3390/toxins16010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Cereulide is an emetic toxin produced by some strains of Bacillus cereus. This bacterial toxin, a cyclic 1.2 kDa dodecadepsipeptide, is stable to heat and acids and causes nausea and vomiting when ingested via contaminated food. This work aimed to develop and validate a targeted analytical method applying liquid chromatography-tandem mass spectrometry (LC-MS/MS) to quantify this toxin in food and human faeces. Samples were extracted with acetonitrile in the presence of 13C6-cereulide, a labelled internal standard, and purified by centrifugation and filtration. The limits of quantification were 0.5 and 0.3 µg kg-1 for food and faeces, respectively. The linearity of the method was very good, with calculated R2 values above 0.995. The mean recovery of the method was within the acceptable range of 70.0%-120.0%, the repeatability was not higher than 7.3%, and the highest intra-laboratory reproducibility was 8.9%. The estimated range for the expanded measurement uncertainty was between 5.1% and 18.0%. The LC-MS/MS method was used to analyse one food sample (rice) from a Belgian foodborne outbreak and five faecal samples from patients with clinical symptoms after consumption of the contaminated rice. The levels of cereulide were 12.22 µg g-1 for food and between 6.32 and 773.37 ng g-1 for faecal samples.
Collapse
Affiliation(s)
- Julien Masquelier
- Organic Contaminants and Additives, Sciensano, Scientific Institute of Public Health, 1050 Brussels, Belgium
| | - Céline Segers
- Organic Contaminants and Additives, Sciensano, Scientific Institute of Public Health, 1050 Brussels, Belgium
| | - Bram Jacobs
- Food Pathogens, Sciensano, Scientific Institute of Public Health, 1050 Brussels, Belgium
| | - Tom Van Nieuwenhuysen
- Food Pathogens, Sciensano, Scientific Institute of Public Health, 1050 Brussels, Belgium
| | - Laurence Delbrassinne
- Food Pathogens, Sciensano, Scientific Institute of Public Health, 1050 Brussels, Belgium
| | - Els Van Hoeck
- Organic Contaminants and Additives, Sciensano, Scientific Institute of Public Health, 1050 Brussels, Belgium
| |
Collapse
|
36
|
Kelly CR, Allegretti JR. Review Article: Gastroenterology and Clostridium difficile Infection: Past, Present, and Future. Clin Infect Dis 2023; 77:S463-S470. [PMID: 38051967 DOI: 10.1093/cid/ciad644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
Research and innovation around Clostridium difficile infection (CDI) has been a multidisciplinary endeavor since discovery of the organism in 1978. The field of gastroenterology has contributed to our understanding of CDI as a disease caused by disruptions in the gut microbiome and led to advances in therapeutic manipulation of gut microbiota, including fecal microbiota transplantation. The high incidence of CDI in patients with inflammatory bowel disease and treatment of the infection in this population have been of particular interest to gastroenterologists. The emergence of standardized, approved live biotherapeutic products for treatment of recurrent CDI is an inflection point in our management of this difficult clinical problem, and real-world performance of these therapies will inform optimal treatment algorithms.
Collapse
Affiliation(s)
- Colleen R Kelly
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Jessica R Allegretti
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
37
|
Rashidi A, Ebadi M, Rehman TU, Elhusseini H, Kazadi D, Halaweish H, Khan MH, Hoeschen A, Cao Q, Luo X, Kabage AJ, Lopez S, Holtan SG, Weisdorf DJ, Khoruts A, Staley C. Randomized Double-Blind Phase II Trial of Fecal Microbiota Transplantation Versus Placebo in Allogeneic Hematopoietic Cell Transplantation and AML. J Clin Oncol 2023; 41:5306-5319. [PMID: 37235836 PMCID: PMC10691796 DOI: 10.1200/jco.22.02366] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 04/03/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
PURPOSE Gut microbiota injury in allogeneic hematopoietic cell transplantation (HCT) recipients and patients with AML has been associated with adverse clinical outcomes. Previous studies in these patients have shown improvements in various microbiome indices after fecal microbiota transplantation (FMT). However, whether microbiome improvements translate into improved clinical outcomes remains unclear. We examined this question in a randomized, double-blind, placebo-controlled phase II trial. METHODS Two independent cohorts of allogeneic HCT recipients and patients with AML receiving induction chemotherapy were randomly assigned in a 2:1 ratio to receive standardized oral encapsulated FMT versus placebo upon neutrophil recovery. After each course of antibacterial antibiotics, patients received a study treatment. Up to three treatments were administered within 3 months. The primary end point was 4-month all-cause infection rate. Patients were followed for 9 months. RESULTS In the HCT cohort (74 patients), 4-month infection density was 0.74 and 0.91 events per 100 patient-days in FMT and placebo arms, respectively (infection rate ratio, 0.83; 95% CI, 0.48 to 1.42; P = .49). In the AML cohort (26 patients), 4-month infection density was 0.93 in the FMT arm and 1.25 in the placebo arm, with an infection rate ratio of 0.74 (95% CI, 0.32 to 1.71; P = .48). Unique donor bacterial sequences comprised 25%-30% of the fecal microbiota after FMT. FMT improved postantibiotic recovery of microbiota diversity, restored several depleted obligate anaerobic commensals, and reduced the abundance of expanded genera Enterococcus, Streptococcus, Veillonella, and Dialister. CONCLUSION In allogeneic HCT recipients and patients with AML, third-party FMT was safe and ameliorated intestinal dysbiosis, but did not decrease infections. Novel findings from this trial will inform future development of FMT trials.
Collapse
Affiliation(s)
- Armin Rashidi
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
- Clinical Research Division, Fred Hutchinson Cancer Center; and Division of Oncology, University of Washington, Seattle, WA
| | - Maryam Ebadi
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
- Department of Radiation Oncology, University of Washington, Seattle, WA
| | - Tauseef Ur Rehman
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Heba Elhusseini
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - David Kazadi
- Department of Medicine, University of Minnesota, Minneapolis, MN
| | | | | | - Andrea Hoeschen
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Qing Cao
- Biostatistics Core, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Xianghua Luo
- Biostatistics Core, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN
| | | | - Sharon Lopez
- Center for Immunology, University of Minnesota, Minneapolis, MN
| | - Shernan G. Holtan
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Daniel J. Weisdorf
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Alexander Khoruts
- Center for Immunology, University of Minnesota, Minneapolis, MN
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Minnesota, Minneapolis, MN
- Biotechnology Institute, University of Minnesota, St Paul, MN
| | | |
Collapse
|
38
|
Chen H, Wang C, Bai J, Song J, Bu L, Liang M, Suo H. Targeting microbiota to alleviate the harm caused by sleep deprivation. Microbiol Res 2023; 275:127467. [PMID: 37549451 DOI: 10.1016/j.micres.2023.127467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023]
Abstract
Sleep deprivation has become a common health hazard, affecting 37-58% of the population and promoting the occurrence and development of many diseases. To date, effective treatment strategies are still elusive. Accumulating evidence indicates that modulating the intestinal microbiota harbors significant potential for alleviating the deleterious impacts of sleep deprivation. This paper first reviews the effects of sleep deprivation on gastrointestinal diseases, metabolic diseases, and neuropsychiatric diseases, discussing its specific mechanisms of influence. We then focus on summarizing existing interventions, including probiotics, melatonin, prebiotics, diet, and fecal microbiota transplantation (FMT). Finally, we have discussed the advantages and limitations of each strategy. Compared with other strategies, probiotics showed a high potential in alleviating sleep deprivation-related hazards due to their reduced risk and high security. We suggest that future research should focus on the specific mechanisms by which probiotics mitigate the harms of sleep deprivation, such insights may unveil novel pathways for treating diseases exacerbated by insufficient sleep.
Collapse
Affiliation(s)
- Hongyu Chen
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing 400715, China; Food Industry Innovation Research Institute of Modern Sichuan Cuisine & Chongqing Flavor, Chongqing 400715, China
| | - Junying Bai
- Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing 400715, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing 400715, China; Food Industry Innovation Research Institute of Modern Sichuan Cuisine & Chongqing Flavor, Chongqing 400715, China
| | - Linli Bu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Ming Liang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China; Food Industry Innovation Research Institute of Modern Sichuan Cuisine & Chongqing Flavor, Chongqing 400715, China.
| |
Collapse
|
39
|
Baunwall SMD, Hansen MM, Andreasen SE, Eriksen MK, Rågård N, Kelsen J, Grosen AK, Mikkelsen S, Erikstrup C, Dahlerup JF, Hvas CL. Donor, patient age and exposure to antibiotics are associated with the outcome of faecal microbiota transplantation for recurrent Clostridioides difficile infection: A prospective cohort study. Aliment Pharmacol Ther 2023; 58:503-515. [PMID: 37482926 DOI: 10.1111/apt.17642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/16/2023] [Accepted: 07/04/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND Faecal microbiota transplantation (FMT) is effective for recurrent Clostridioides difficile infection (rCDI), but its effect varies inexplicably. AIMS To optimise the effectiveness of FMT for rCDI and validate determinants for effect METHODS: We conducted a cohort study, including all patients treated with FMT for rCDI between October 2018 and June 2020. Statistical process control was used to evaluate the impact of prospective quality improvement on the effect of single FMT treatments per 10-11 patients. Targeting an 80% effect, optimisations included changes to processing procedures, preparation and clinical application of FMT. The primary outcome was the resolution of Clostridioides difficile-associated diarrhoea at week 8. If CDI recurred, FMT was repeated. All patients were followed for 8 weeks after their latest FMT. RESULTS 183 patients with rCDI received 290 FMT treatments. A single FMT achieved resolution at week 8 in 127 (69%, 95% CI: 62%-76%), while repeated FMT cumulatively achieved resolution in 167/183 (91%, 95% CI: 86%-95%). The single FMT effect varied between 36% and 100% over time. In a mixed-effect model, patient age above 65 years, non-rCDI antibiotics at week 1 post-FMT, and donor were associated with effect. Neither increasing the dosages of faecal microbes nor standardising the processing improved outcomes. CONCLUSION FMT has a high cumulative effectiveness in patients with rCDI following multiple administrations, but the single FMT effect is variable and may be optimised using statistical process control. Optimising FMT by considering patient age, post-FMT antibiotics, donor and multiple administrations may improve the treatment outcomes. CLINICALTRIALS gov (Study identifier: NCT03712722).
Collapse
Affiliation(s)
- Simon M D Baunwall
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mette M Hansen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Sara E Andreasen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Marcel K Eriksen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Nina Rågård
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Kelsen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Anne K Grosen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Susan Mikkelsen
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Christian Erikstrup
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Jens F Dahlerup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Christian L Hvas
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
40
|
Jenior ML, Leslie JL, Kolling GL, Archbald-Pannone L, Powers DA, Petri WA, Papin JA. Systems-ecology designed bacterial consortium protects from severe Clostridioides difficile infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.08.552483. [PMID: 37609255 PMCID: PMC10441344 DOI: 10.1101/2023.08.08.552483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Fecal Microbiota Transplant (FMT) is an emerging therapy that has had remarkable success in treatment and prevention of recurrent Clostridioides difficile infection (rCDI). FMT has recently been associated with adverse outcomes such as inadvertent transfer of antimicrobial resistance, necessitating development of more targeted bacteriotherapies. To address this challenge, we developed a novel systems biology pipeline to identify candidate probiotic strains that would be predicted to interrupt C. difficile pathogenesis. Utilizing metagenomic characterization of human FMT donor samples, we identified those metabolic pathways most associated with successful FMTs and reconstructed the metabolism of encoding species to simulate interactions with C. difficile . This analysis resulted in predictions of high levels of cross-feeding for amino acids in species most associated with FMT success. Guided by these in silico models, we assembled consortia of bacteria with increased amino acid cross-feeding which were then validated in vitro . We subsequently tested the consortia in a murine model of CDI, demonstrating total protection from severe CDI through decreased toxin levels, recovered gut microbiota, and increased intestinal eosinophils. These results support the novel framework that amino acid cross-feeding is likely a critical mechanism in the initial resolution of CDI by FMT. Importantly, we conclude that our predictive platform based on predicted and testable metabolic interactions between the microbiota and C. difficile led to a rationally designed biotherapeutic framework that may be extended to other enteric infections.
Collapse
|
41
|
Vaughn BP, Khoruts A. Reply. Clin Gastroenterol Hepatol 2023; 21:2433. [PMID: 36435357 DOI: 10.1016/j.cgh.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Byron P Vaughn
- Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, Minneapolis, Minnesota
| | - Alexander Khoruts
- Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
42
|
Ejtahed HS, Parsa M, Larijani B. Ethical challenges in conducting and the clinical application of human microbiome research. J Med Ethics Hist Med 2023; 16:5. [PMID: 37753524 PMCID: PMC10518636 DOI: 10.18502/jmehm.v16i5.13313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/19/2023] [Indexed: 09/28/2023] Open
Abstract
The Article Abstract is not available.
Collapse
Affiliation(s)
- Hanieh Sadat Ejtahed
- AssistantProfessor, Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran;Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mojtaba Parsa
- AssistantProfessor, Medical Ethics and History of Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Research Center for War-affected People, Tehran University of Medical Sciences, Tehran, Iran.
| | - Bagher Larijani
- Professor, Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran;Medical Ethics and History of Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
43
|
Vaughn BP, Fischer M, Kelly CR, Allegretti JR, Graiziger C, Thomas J, McClure E, Kabage AJ, Khoruts A. Effectiveness and Safety of Colonic and Capsule Fecal Microbiota Transplantation for Recurrent Clostridioides difficile Infection. Clin Gastroenterol Hepatol 2023; 21:1330-1337.e2. [PMID: 36126907 DOI: 10.1016/j.cgh.2022.09.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Fecal microbiota transplantation (FMT) emerged as rescue treatment for multiply recurrent Clostridioides difficile infections (rCDIs) nonresponsive to standard therapy. However, estimation of FMT efficacy varies among different protocols and formulations, while placebo-controlled clinical trials have excluded most rCDI patients because of medical comorbidities. This study aimed to determine the safety and effectiveness of capsule FMT (cap-FMT) and colonoscopy FMT (colo-FMT) for rCDI using standardized products in a large, multicenter, prospective, real-world cohort. METHODS Clinical outcomes and adverse events after FMT performed for rCDI at 6 sites were captured in a prospective registry. FMT was performed using 1 of 2 standardized formulations of microbiota manufactured by the University of Minnesota Microbiota Therapeutics Program, freeze-dried/encapsulated or frozen-thawed/liquid. The FMT administration route was determined by the treating physician. The rCDI cure rate was assessed at 1 and 2 months. Safety data were collected within the first 72 hours and at 1 and 2 months. Logistic regression was used to investigate factors associated with FMT failure. RESULTS A total of 301 FMTs were performed in 269 unique patients. Two-thirds were cap-FMT. CDI cure rates were 86% (95% CI, 82%-90%) at 1 month and 81% (95% CI, 75%-86%) at 2 months. There was no difference in the 1-month or 2-month cure rate between cap-FMT and colo-FMT. Cap-FMT recipients were older and less likely to be immunosuppressed or have inflammatory bowel disease. Patient factors of older age and hemodialysis were associated with FMT failure by 2 months on multivariate logistic regression. In addition, post-FMT antibiotic use was associated with FMT failure at 2 months. One serious adverse event was related to colonoscopy (aspiration pneumonia), otherwise no new safety signals were identified. CONCLUSIONS Cap-FMT using freeze-dried capsules has a similar safety and effectiveness profile compared with colo-FMT, without the procedural risks of colonoscopy. Although highly effective overall, patient selection is a key factor to optimizing FMT success.
Collapse
Affiliation(s)
- Byron P Vaughn
- Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, Minneapolis, Minnesota.
| | - Monika Fischer
- Division of Gastroenterology and Hepatology, Indiana University, Indianapolis, Indiana
| | - Colleen R Kelly
- Division of Gastroenterology, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Jessica R Allegretti
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Carolyn Graiziger
- Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, Minneapolis, Minnesota
| | - Juana Thomas
- Division of Gastroenterology, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Emma McClure
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Amanda J Kabage
- Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, Minneapolis, Minnesota
| | - Alexander Khoruts
- Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, Minneapolis, Minnesota; Center for Immunology, University of Minnesota, Minneapolis, Minnesota; BioTechnology Institute, University of Minnesota, St. Paul, Minnesota
| |
Collapse
|
44
|
Rakotonirina A, Galperine T, Audry M, Kroemer M, Baliff A, Carrez L, Sadeghipour F, Schrenzel J, Guery B, Allémann É. Dry alginate beads for fecal microbiota transplantation: from model strains to fecal samples. Int J Pharm 2023; 639:122961. [PMID: 37075927 DOI: 10.1016/j.ijpharm.2023.122961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
Clostridioides difficile infection (CDI) is a critical nosocomial infection with more than 124,000 cases per year in Europe and a mortality rate of 15-17%. The standard of care (SoC) is antibiotic treatment. Unfortunately, the relapse rate is high (∼35%) and SoC is significantly less effective against recurrent infection (rCDI). Fecal microbiota transplantation (FMT) is a recommended treatment against rCDI from the second recurrence episode and has an efficacy of 90%. The formulation of diluted donor stool deserves innovation because its actual administration routes deserve optimization (naso-duodenal/jejunal tubes, colonoscopy, enema or several voluminous oral capsules). Encapsulation of model bacteria strains in gel beads were first investigated. Then, the encapsulation method was applied to diluted stools. Robust spherical gel beads were obtained. The mean particle size was around 2 mm. A high loading of viable microorganisms was obtained for model strains and fecal samples. For plate-counting, values ranged from 1015 to 1017 CFU/g for single and mixed model strains, and 106 to 108 CFU/g for fecal samples. This corresponded to a viability of 30% to 60% as assessed by flow cytometry. This novel formulation is promising as the technology is applicable to both model strains and bacteria contained in the gut microbiota.
Collapse
Affiliation(s)
- Adèle Rakotonirina
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| | - Tatiana Galperine
- Infectious Diseases Service, Department of Medicine, University Hospital and University of Lausanne, 1011 & 1015 Lausanne, Switzerland; French Group of Faecal Microbiota Transplantation, Paris, France
| | - Maxime Audry
- Service of Pharmacy, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Marie Kroemer
- Service of Pharmacy, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Aurélie Baliff
- Infectious Diseases Service, Department of Medicine, University Hospital and University of Lausanne, 1011 & 1015 Lausanne, Switzerland
| | - Laurent Carrez
- Service of Pharmacy, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Farshid Sadeghipour
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland; Service of Pharmacy, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Jacques Schrenzel
- Genomic Research Lab, Service of Infectious Diseases, Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland
| | - Benoît Guery
- Infectious Diseases Service, Department of Medicine, University Hospital and University of Lausanne, 1011 & 1015 Lausanne, Switzerland
| | - Éric Allémann
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
45
|
Tuniyazi M, Wang W, Zhang N. A Systematic Review of Current Applications of Fecal Microbiota Transplantation in Horses. Vet Sci 2023; 10:vetsci10040290. [PMID: 37104445 PMCID: PMC10141098 DOI: 10.3390/vetsci10040290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/07/2023] [Accepted: 04/09/2023] [Indexed: 04/28/2023] Open
Abstract
Fecal microbiota transplantation (FMT) is a technique involving transferring fecal matter from a healthy donor to a recipient, with the goal of reinstating a healthy microbiome in the recipient's gut. FMT has been used in horses to manage various gastrointestinal disorders, such as colitis and diarrhea. To evaluate the current literature on the use of FMT in horses, including its efficacy, safety, and potential applications, the authors conducted an extensive search of several databases, including PubMed, MEDLINE, Web of Science, and Google Scholar, published up to 11 January 2023. The authors identified seven studies that met their inclusion criteria, all of which investigated the FMT application as a treatment for gastrointestinal disorders such as colitis and diarrhea. The authors demonstrated that FMT was generally effective in treating these conditions. However, the authors noted that the quality of the studies was generally suboptimal and characterized by small sample sizes and a lack of control groups. The authors concluded that FMT is a promising treatment option for certain gastrointestinal disorders in horses. Nevertheless, more research is required to determine the optimal donor selection, dosing, and administration protocols, as well as the long-term safety and efficacy of FMT in horses.
Collapse
Affiliation(s)
- Maimaiti Tuniyazi
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Wenqing Wang
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
46
|
Yuzefpolskaya M, Bohn B, Ladanyi A, Khoruts A, Colombo PC, Demmer RT. Oral and gut microbiome alterations in heart failure: Epidemiology, pathogenesis and response to advanced heart failure therapies. J Heart Lung Transplant 2023; 42:291-300. [PMID: 36586790 DOI: 10.1016/j.healun.2022.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/18/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Despite significant advances in therapies, heart failure (HF) remains a progressive disease that, once advanced, is associated with significant death and disability. Cardiac replacement therapies with left ventricular assist device (LVAD) and heart transplantation (HT) are the only treatment options for advanced HF, while lifesaving they can also be lifespan limiting due to the associated complications. Systemic inflammation is mechanistically important in HF pathophysiology and progression. However, directly targeting inflammation in HF has not been beneficial thus far. These failed attempts at therapeutics might be related to our limited understanding of the factors that cause inflammation in HF, and, therefore, to our inability to investigate these triggers in interventional studies. Observational studies have consistently demonstrated associations between alterations in the digestive (gut and oral) microbiome, inflammation and HF risk and progression. Additionally, recent data indicate that these microbial perturbations persist following LVAD and HT, along with residual inflammation and oxidative stress. Furthermore, there is rising recognition of the critical contribution of the microbiome to the metabolism of immunosuppressive drugs after HT. Cumulatively, these findings might posit a mechanistic link between microbiome alterations, systemic inflammation, and adverse outcomes in HF patients before and after cardiac replacement therapies. This review (1) provides an update on available data linking changes in digestive tract microbiota, inflammation, and oxidative stress, to HF pathogenesis and progression; (2) describes evolution of these relationships following LVAD and HT; and (3) outlines present and future intervention strategies that can manipulate the microbiome and possibly modify HF disease trajectory.
Collapse
Affiliation(s)
- Melana Yuzefpolskaya
- Division of Cardiovascular Medicine, Columbia University Irving Medical Center, New York City, New York.
| | - Bruno Bohn
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Annamaria Ladanyi
- Division of Cardiovascular Medicine, Columbia University Irving Medical Center, New York City, New York
| | - Alexander Khoruts
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine University of Minnesota, Minneapolis, Minnesota
| | - Paolo C Colombo
- Division of Cardiovascular Medicine, Columbia University Irving Medical Center, New York City, New York
| | - Ryan T Demmer
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota; Division of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
47
|
Emerging Options for the Prevention and Management of Clostridioides difficile Infection. Drugs 2023; 83:105-116. [PMID: 36645620 PMCID: PMC9841950 DOI: 10.1007/s40265-022-01832-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 01/17/2023]
Abstract
Agents in development for the prevention or treatment of Clostridioides difficile infection can be split into three broad categories: antibiotics, microbiome restoration, and vaccines. Given the extensive list of agents currently in development, this narrative review will focus on agents that have progressed into late-stage clinical trials, defined as having a Phase III clinical trial registered on ClinicalTrials.gov. These agents include one antibiotic (ridinilazole), three live biotherapeutic products (LBPs) (CP101, RBX2660, and SER109), and two toxoid vaccines (PF06425090 and a second toxoid vaccine). As new prevention and treatment strategies enter the market, clinicians and administrators will need knowledge of these products to make rational decisions on how best to adopt them into clinical practice.
Collapse
|
48
|
Gonzales-Luna AJ, Carlson TJ, Garey KW. Gut microbiota changes associated with Clostridioides difficile infection and its various treatment strategies. Gut Microbes 2023; 15:2223345. [PMID: 37318134 DOI: 10.1080/19490976.2023.2223345] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023] Open
Abstract
Human gut microbiota are critical to both the development of and recovery from Clostridioides difficile infection (CDI). Antibiotics are the mainstay of CDI treatment, yet inherently cause further imbalances in the gut microbiota, termed dysbiosis, complicating recovery. A variety of microbiota-based therapeutic approaches are in use or in development to limit disease- and treatment-associated dysbiosis and improve rates of sustained cure. These include the recently FDA-approved fecal microbiota, live-jslm (formerly RBX2660) and fecal microbiota spores, live-brpk (formerly SER-109), which represent a new class of live biotherapeutic products (LBPs), traditional fecal microbiota transplantation (FMT), and ultra-narrow-spectrum antibiotics. Here, we aim to review the microbiome changes associated with CDI as well as a variety of microbiota-based treatment approaches.
Collapse
Affiliation(s)
- Anne J Gonzales-Luna
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX, USA
| | - Travis J Carlson
- Department of Clinical Sciences, High Point University Fred Wilson School of Pharmacy, High Point, NC, USA
| | - Kevin W Garey
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX, USA
| |
Collapse
|
49
|
van Lingen EE, Baunwall SSMD, Lieberknecht SSC, Benech NN, Ianiro GG, Sokol HH, Gasbarrini AA, Cammarota GG, Eriksen MMK, van der Meulen-de Jong AAE, Terveer EEM, Verspaget HHW, Vehreschild MM, Hvas CCL, Keller JJJ. Short- and long-term follow-up after fecal microbiota transplantation as treatment for recurrent Clostridioides difficile infection in patients with inflammatory bowel disease. Therap Adv Gastroenterol 2023; 16:17562848231156285. [PMID: 36910163 PMCID: PMC9998411 DOI: 10.1177/17562848231156285] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 01/09/2023] [Indexed: 03/14/2023] Open
Abstract
Background Patients with inflammatory bowel disease (IBD) are at an increased risk of developing Clostridioides difficile infection (CDI). Treatment of CDI in patients with IBD is challenging due to higher failure rates and concomitant IBD activity. Objectives We performed a multicentre cohort study in patients with IBD who received fecal microbiota transplantation (FMT) for recurrent CDI (rCDI), to further investigate factors that influence the clinical outcome and course of both rCDI and IBD. Design This is a multicentre cohort study conducted in five European FMT centres. Methods Adult IBD patients treated with FMT for rCDI were studied. Cure was defined as clinical resolution of diarrhoea or diarrhoea with a negative C. difficile test. The definition of an IBD flare was record based. Long-term follow-up data were collected including new episodes of CDI, IBD flares, infections, hospital admissions, and death. Results In total, 113 IBD patients underwent FMT because of rCDI. Mean age of the patients was 48 years; 64% had ulcerative colitis. Concomitant rCDI was associated with an IBD flare in 54%, of whom 63% had received IBD remission-induction therapy prior to FMT. All FMT procedures were preceded by vancomycin treatment, 40% of patients received FMT via colonoscopy. CDI cure rate was 71%. Long-term follow-up data were available in 90 patients with a median follow-up of 784 days (402-1251). IBD activity decreased in 39% of patients who had active IBD at baseline, whereas an IBD flare occurred in only 5%. During follow-up of up to 2 years, 27% of the patients had infections, 39% were hospitalized, 5% underwent colectomy, and 10% died (median age of these latter patients: 72 years). Conclusion FMT for rCDI in IBD patients is safe and effective, and IBD exacerbation after FMT is infrequent. Further studies should investigate the effects on IBD course following FMT.
Collapse
Affiliation(s)
- Emilie E van Lingen
- Department of Gastroenterology and Hepatology, Leiden University Medical Center (LUMC), Albinusdreef 2, Leiden, ZA 2333, The Netherlands.,Netherlands Donor Feces Bank, LUMC, Leiden, The Netherlands
| | - Simon S M D Baunwall
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Simone S C Lieberknecht
- Department of Internal Medicine, Infectious Diseases, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Nicolas N Benech
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology département, F-75012 Paris, France
| | - Gianluca G Ianiro
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Gemelli IRCCS, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Harry H Sokol
- Gastroenterology Département, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Sorbonne Université, Paris, France.,Paris Center for Microbiome Médicine (PaCeMM) FHU, Paris, France.,French Group of Fecal Microbiota Transplantation (GFTF; www.gftf.f), Paris, France
| | - Alessandro A Gasbarrini
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Gemelli IRCCS, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Giovanni G Cammarota
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Gemelli IRCCS, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Marcel M K Eriksen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Elizabeth E M Terveer
- Department of Medical Microbiology, LUMC, Leiden, The Netherlands.,Netherlands Donor Feces Bank, LUMC, Leiden, The Netherlands
| | - Hein H W Verspaget
- Department of Gastroenterology and Hepatology, Leiden University Medical Center (LUMC), Leiden, The Netherlands.,Netherlands Donor Feces Bank, LUMC, Leiden, The Netherlands
| | - Maria M Vehreschild
- Department of Internal Medicine, Infectious Diseases, Goethe University Frankfurt, Frankfurt am Main, Germany.,Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Faculty of Medicine and University Hospital Cologne, Partner site Bonn-Cologne, Cologne, Germany.,German Centre for Infection Research (DZIF), Partner site Bonn-Cologne, Cologne, Germany
| | - Christian C L Hvas
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Josbert J J Keller
- Department of Gastroenterology and Hepatology, Leiden University Medical Center (LUMC), Albinusdreef 2, Leiden, ZA 2333, The Netherlands.,Department of Gastroenterology and Hepatology, Haaglanden Medical Center (HMC), The Hague, The Netherlands.,Netherlands Donor Feces Bank, LUMC, Leiden, The Netherlands
| |
Collapse
|
50
|
Tun KM, Hsu M, Batra K, Lo CH, Laeeq T, Vongsavath T, Mohammed S, Hong AS. Efficacy and Safety of Fecal Microbiota Transplantation in Treatment of Clostridioides difficile Infection among Pediatric Patients: A Systematic Review and Meta-Analysis. Microorganisms 2022; 10:2450. [PMID: 36557703 PMCID: PMC9781859 DOI: 10.3390/microorganisms10122450] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/28/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Background and Aims: Cases of Clostridioides difficile infection have been rising among the pediatric and adolescent population. Fecal microbiota transplantation (FMT) has emerged as an alternative therapy for recurrent C. difficile infection. We aim to perform the first systematic review and meta-analysis investigating the safety and efficacy of fecal microbiota transplantation for C. difficile infection in children and adolescents. Methods: A literature search was performed using variations of the keywords “pediatrics”, “C. difficile infection”, and “fecal microbiota transplantation” in PubMed, EMBASE, CINAHL, Cochrane, and Google Scholar from inception to 30 June 2022. The resulting 575 articles were independently screened by three authors. Fourteen studies that satisfied the eligibility criteria were included in the meta-analysis. Results: The pooled success rate of FMT in the overall cohort was 86% (95% confidence interval: 77−95%; p < 0.001; I2 = 70%). There were 38 serious adverse events in 36 patients with a pooled rate of 2.0% (95% confidence interval: 0.0−3.0%; p = 0.1; I2 = 0.0%) and 47 adverse events in 45 patients with a pooled rate of 15% (95% confidence interval: 5.0−25.0%; p = 0.02; I2 = 54.0%). There was no death associated with FMT. Conclusions: FMT was concluded to be an effective and safe therapy in pediatric and adolescent patients with C. difficile infection. Underlying comorbidities may impede the efficacy. A rigorous screening process of the donors is recommended prior to embarking on FMT. There is no universal and cost-effective way to monitor the long-term outcomes of FMT. While promising, metagenomic sequencing may not be available in settings with limited resources. Robust data from randomized clinical trials is warranted.
Collapse
Affiliation(s)
- Kyaw Min Tun
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at UNLV, University of Nevada, Las Vegas, NV 89102, USA
| | - Mark Hsu
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at UNLV, University of Nevada, Las Vegas, NV 89102, USA
| | - Kavita Batra
- Department of Medical Education, Kirk Kerkorian School of Medicine at UNLV, University of Nevada, Las Vegas, NV 89102, USA
- Office of Research, Kirk Kerkorian School of Medicine at UNLV, University of Nevada, Las Vegas, NV 89102, USA
| | - Chun-Han Lo
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at UNLV, University of Nevada, Las Vegas, NV 89102, USA
| | - Tooba Laeeq
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at UNLV, University of Nevada, Las Vegas, NV 89102, USA
| | - Tahne Vongsavath
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at UNLV, University of Nevada, Las Vegas, NV 89102, USA
| | - Salman Mohammed
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at UNLV, University of Nevada, Las Vegas, NV 89102, USA
| | - Annie S. Hong
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kirk Kerkorian School of Medicine at UNLV, University of Nevada, Las Vegas, NV 89102, USA
| |
Collapse
|