1
|
Sultana R, Kamihira M. Multifaceted Heparin: Diverse Applications beyond Anticoagulant Therapy. Pharmaceuticals (Basel) 2024; 17:1362. [PMID: 39459002 PMCID: PMC11510354 DOI: 10.3390/ph17101362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Heparin, a naturally occurring polysaccharide, has fascinated researchers and clinicians for nearly a century due to its versatile biological properties and has been used for various therapeutic purposes. Discovered in the early 20th century, heparin has been a key therapeutic anticoagulant ever since, and its use is now implemented as a life-saving pharmacological intervention in the management of thrombotic disorders and beyond. In addition to its known anticoagulant properties, heparin has been found to exhibit anti-inflammatory, antiviral, and anti-tumorigenic activities, which may lead to its widespread use in the future as an essential drug against infectious diseases such as COVID-19 and in various medical treatments. Furthermore, recent advancements in nanotechnology, including nano-drug delivery systems and nanomaterials, have significantly enhanced the intrinsic biofunctionalities of heparin. These breakthroughs have paved the way for innovative applications in medicine and therapy, expanding the potential of heparin research. Therefore, this review aims to provide a creation profile of heparin, space for its utilities in therapeutic complications, and future characteristics such as bioengineering and nanotechnology. It also discusses the challenges and opportunities in realizing the full potential of heparin to improve patient outcomes and elevate therapeutic interventions.
Collapse
Affiliation(s)
- Razia Sultana
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan;
- Department of Biotechnology and Genetic Engineering, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Masamichi Kamihira
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan;
| |
Collapse
|
2
|
Huang R, He Y, Zhang C, Luo Y, Chen C, Tan N, Ren Y, Xu K, Yuan L, Yang J. The mutation of Japanese encephalitis virus envelope protein residue 389 attenuates viral neuroinvasiveness. Virol J 2024; 21:128. [PMID: 38840203 PMCID: PMC11151615 DOI: 10.1186/s12985-024-02398-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024] Open
Abstract
The envelope (E) protein of the Japanese encephalitis virus (JEV) is a key protein for virus infection and adsorption of host cells, which determines the virulence of the virus and regulates the intensity of inflammatory response. The mutation of multiple aa residues in the E protein plays a critical role in the attenuated strain of JEV. This study demonstrated that the Asp to Gly, Ser, and His mutation of the E389 site, respectively, the replication ability of the viruses in cells was significantly reduced, and the viral neuroinvasiveness was attenuated to different degrees. Among them, the mutation at E389 site enhanced the E protein flexibility contributed to the attenuation of neuroinvasiveness. In contrast, less flexibility of E protein enhanced the neuroinvasiveness of the strain. Our results indicate that the mechanism of attenuation of E389 aa mutation attenuates neuroinvasiveness is related to increased flexibility of the E protein. In addition, the increased flexibility of E protein enhanced the viral sensitivity to heparin inhibition in vitro, which may lead to a decrease in the viral load entering brain. These results suggest that E389 residue is a potential site affecting JEV virulence, and the flexibility of the E protein of aa at this site plays an important role in the determination of neuroinvasiveness.
Collapse
Affiliation(s)
- Rong Huang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637100, China
| | - Yajing He
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637100, China
| | - Chenghua Zhang
- School of Pharmacy, North Sichuan Medical College, Nanchong, 637100, China
| | - Yue Luo
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637100, China
| | - Chen Chen
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637100, China
| | - Ning Tan
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637100, China
| | - Yang Ren
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637100, China
| | - Kui Xu
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637100, China
| | - Lei Yuan
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637100, China
| | - Jian Yang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637100, China.
| |
Collapse
|
3
|
Wang Y, Zhang Y, Wang P, Jing T, Hu Y, Chen X. Research Progress on Antiviral Activity of Heparin. Curr Med Chem 2024; 31:7-24. [PMID: 36740803 DOI: 10.2174/0929867330666230203124032] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 11/06/2022] [Accepted: 11/17/2022] [Indexed: 02/07/2023]
Abstract
Heparin, as a glycosaminoglycan, is known for its anticoagulant and antithrombotic properties for several decades. Heparin is a life-saving drug and is widely used for anticoagulation in medical practice. In recent years, there have been extensive studies that heparin plays an important role in non-anticoagulant diseases, such as anti-inflammatory, anti-viral, anti-angiogenesis, anti-neoplastic, anti-metastatic effects, and so on. Clinical observation and in vitro experiments indicate that heparin displays a potential multitarget effect. In this brief review, we will summarize heparin and its derivative's recently studied progress for the treatment of various viral infections. The aim is to maximize the benefits of drugs through medically targeted development, to meet the unmet clinical needs of serious viral diseases.
Collapse
Affiliation(s)
- Yi Wang
- Chinese Materia Medica Pharmacology, Shandong Academy of Chinese Medicine, Jinan 250014, China
| | - Yanqing Zhang
- Shandong VeriSign Test Detection Co., LTD, Jinan, China
| | - Ping Wang
- Chinese Materia Medica Pharmacology, Shandong Academy of Chinese Medicine, Jinan 250014, China
| | - Tianyuan Jing
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanan Hu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiushan Chen
- Zhenjiang Runjing High Purity Chemical Technology Co., Ltd., Zhenjiang, Jiangsu, China
| |
Collapse
|
4
|
Ramírez-López P, Martínez C, Merchán A, Perona A, Hernaiz MJ. Expanding the synthesis of a library of potent glucuronic acid glycodendrons for Dengue virus inhibition. Bioorg Chem 2023; 141:106913. [PMID: 37852115 DOI: 10.1016/j.bioorg.2023.106913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/28/2023] [Accepted: 10/08/2023] [Indexed: 10/20/2023]
Abstract
Multivalent glycodendrons are valuable tools to mimic many structural and functional features of cell-surface glycoconjugates and its focal position scaffolds represent important components to increase specificity and affinity. Previous work in our group described the preparation of a tetravalent glucuronic acid dendron that binds with good affinity to Dengue virus envelope protein (KD = 22 μM). Herein, the chemical synthesis and binding analysis of a new library of potent glucuronic acid dendrons bearing different functional group at the focal position and different level of multivalency are described. Their chemical synthesis was performed sequentially in three stages and with good yields. Namely a) the chemical synthesis of the oligo and polyalkynyl scaffolds, b) assembling with fully protected glucuronic acid-based azide units by using a microwave assisted copper-catalysed azide-alkyne cycloaddition reaction and c) sequential deprotection of hydroxyl and carboxylic acid groups. Surface Plasmon Resonance studies have demonstrated that the valency and the focal position functional group exert influence on the interaction with Dengue virus envelope protein. Molecular modelling studies were carried out in order to understand the binding observed. This work reports an efficient glycodendrons chemical synthesis that provides appropriate focal position functional group and multivalence, that offer an easy and versatile strategy to find new active compounds against Dengue virus.
Collapse
Affiliation(s)
- Pedro Ramírez-López
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plz. Ramón y Cajal s/n, Madrid C.P. 28040, Spain
| | - Carlos Martínez
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plz. Ramón y Cajal s/n, Madrid C.P. 28040, Spain
| | - Alejandro Merchán
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plz. Ramón y Cajal s/n, Madrid C.P. 28040, Spain
| | - Almudena Perona
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plz. Ramón y Cajal s/n, Madrid C.P. 28040, Spain
| | - María J Hernaiz
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plz. Ramón y Cajal s/n, Madrid C.P. 28040, Spain.
| |
Collapse
|
5
|
Goldufsky JW, Daniels P, Williams MD, Gupta K, Lyday B, Chen T, Singh G, Kaufman HL, Zloza A, Marzo AL. Attenuated Dengue virus PV001-DV induces oncolytic tumor cell death and potent immune responses. J Transl Med 2023; 21:483. [PMID: 37468934 PMCID: PMC10357599 DOI: 10.1186/s12967-023-04344-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Viral therapies developed for cancer treatment have classically prioritized direct oncolytic effects over their immune activating properties. However, recent clinical insights have challenged this longstanding prioritization and have shifted the focus to more immune-based mechanisms. Through the potential utilization of novel, inherently immune-stimulating, oncotropic viruses there is a therapeutic opportunity to improve anti-tumor outcomes through virus-mediated immune activation. PV001-DV is an attenuated strain of Dengue virus (DEN-1 #45AZ5) with a favorable clinical safety profile that also maintains the potent immune stimulatory properties characterstic of Dengue virus infection. METHODS In this study, we utilized in vitro tumor killing and immune multiplex assays to examine the anti-tumor effects of PV001-DV as a potential novel cancer immunotherapy. RESULTS In vitro assays demonstrated that PV001-DV possesses the ability to directly kill human melanoma cells lines as well as patient melanoma tissue ex vivo. Importantly, further work demonstrated that, when patient peripheral blood mononuclear cells (PBMCs) were exposed to PV001-DV, a substantial induction in the production of apoptotic factors and immunostimulatory cytokines was detected. When tumor cells were cultured with the resulting soluble mediators from these PBMCs, rapid cell death of melanoma and breast cancer cell lines was observed. These soluble mediators also increased dengue virus binding ligands and immune checkpoint receptor, PD-L1 expression. CONCLUSIONS The direct in vitro tumor-killing and immune-mediated tumor cytotoxicity facilitated by PV001-DV contributes support of its upcoming clinical evaluation in patients with advanced melanoma who have failed prior therapy.
Collapse
Affiliation(s)
- Josef W Goldufsky
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Preston Daniels
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Michael D Williams
- Department of Surgery, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Kajal Gupta
- Department of Surgery, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Bruce Lyday
- Primevax Immuno-Oncology, Inc, Orange, CA, 92868, USA
| | - Tony Chen
- Primevax Immuno-Oncology, Inc, Orange, CA, 92868, USA
| | - Geeta Singh
- Primevax Immuno-Oncology, Inc, Orange, CA, 92868, USA
| | - Howard L Kaufman
- Department of Surgery, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Andrew Zloza
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Amanda L Marzo
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, 60612, USA.
| |
Collapse
|
6
|
Zhu Y, Chen S, Lurong Q, Qi Z. Recent Advances in Antivirals for Japanese Encephalitis Virus. Viruses 2023; 15:v15051033. [PMID: 37243122 DOI: 10.3390/v15051033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Culex mosquitoes are the primary vectors of the Japanese encephalitis virus (JEV). Since its discovery in 1935, Japanese encephalitis (JE), caused by JEV, has posed a significant threat to human health. Despite the widespread implementation of several JEV vaccines, the transmission chain of JEV in the natural ecosystem has not changed, and the vector of transmission cannot be eradicated. Therefore, JEV is still the focus of attention for flaviviruses. At present, there is no clinically specific drug for JE treatment. JEV infection is a complex interaction between the virus and the host cell, which is the focus of drug design and development. An overview of antivirals that target JEV elements and host factors is presented in this review. In addition, drugs that balance antiviral effects and host protection by regulating innate immunity, inflammation, apoptosis, or necrosis are reviewed to treat JE effectively.
Collapse
Affiliation(s)
- Yongzhe Zhu
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Shenglin Chen
- Department of Clinic Laboratory Diagnostics, General Hospital of Tibet Military Area Command of PLA, Lhasa 850007, China
| | - Qilin Lurong
- Department of Geriatrics, General Hospital of Tibet Military Area Command of PLA, Lhasa 850007, China
| | - Zhongtian Qi
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
7
|
Low Molecular Weight Heparin, Anti-inflammatory/Immunoregulatory and Antiviral Effects, a Short Update. Cardiovasc Drugs Ther 2023; 37:277-281. [PMID: 34460031 PMCID: PMC8403694 DOI: 10.1007/s10557-021-07251-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/25/2021] [Indexed: 01/19/2023]
Abstract
Low molecular weight heparin (LMWH) is a glycosaminoglycan long known for its anticoagulant properties. In recent times, recent evidence has associated this drug with extra pleiotropic anticoagulant effects that have also proven useful in the management of the treatment of COVID-19 infection indicating that heparin may play other roles in the management of the disease in addition to the prevention of thrombosis. Clinical observations and in vitro studies support that heparin has a potential multi-target effect. To date, the molecular mechanisms of these pleiotropic effects are not fully understood. This brief review presents some of the evidence from clinical and animal studies and describes the potential molecular mechanisms by which heparin may exert its anti-inflammatory/immunoregulatory and antiviral effects.
Collapse
|
8
|
Stolarek M, Pycior A, Bonarek P, Opydo M, Kolaczkowska E, Kamiński K, Mogielnicki A, Szczubiałka K. Biological Properties of Heparins Modified with an Arylazopyrazole-Based Photoswitch. J Med Chem 2023; 66:1778-1789. [PMID: 36657057 PMCID: PMC9923745 DOI: 10.1021/acs.jmedchem.2c01616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Unfractionated heparin (UFH) and enoxaparin (Enox) were substituted with a photoswitch (PS) showing quantitative trans-cis and cis-trans photoisomerizations. Long half-life of the cis photoisomer enabled comparison of the properties of heparins substituted with both PS photoisomers. Hydrodynamic diameter, Dh, of UFH-PS decreased upon trans-cis photoisomerization, the change being more pronounced for UFH-PS with a higher degree of substitution (DS), while Dh of Enox-PS did not significantly change. The anticoagulative properties of substituted heparins were significantly attenuated compared to non-substituted compounds. The interaction of UFH-PS with HSA, lysozyme, and protamine was studied with ITC. Under serum-free conditions, UFH-PS-trans with a high DS stimulated proliferation of murine fibroblasts, while UFH-PS-cis decreased the viability of these cells. Under serum conditions, both UFH-PS-cis and UFH-PS-trans decreased cell viability, the reduction for UFH-PS-cis being higher than that for UFH-PS-trans. Neither Enox-PS-trans nor Enox-PS-cis influenced the viability at concentrations prolonging aPTT, while at higher concentrations their cytotoxicity did not differ.
Collapse
Affiliation(s)
- Marta Stolarek
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Aleksandra Pycior
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Piotr Bonarek
- Faculty
of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Małgorzata Opydo
- Laboratory
of Experimental Hematology, Institute of Zoology and Biomedical Research,
Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Elzbieta Kolaczkowska
- Laboratory
of Experimental Hematology, Institute of Zoology and Biomedical Research,
Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Kamil Kamiński
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Andrzej Mogielnicki
- Department
of Pharmacodynamics, Medical University
of Bialystok, Mickiewicza 2c, 15-089 Bialystok, Poland
| | - Krzysztof Szczubiałka
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland,
| |
Collapse
|
9
|
Heparin Protects Human Neural Progenitor Cells from Zika Virus-Induced Cell Death While Preserving Their Differentiation into Mature Neuroglial Cells. J Virol 2022; 96:e0112222. [PMID: 36121298 PMCID: PMC9555206 DOI: 10.1128/jvi.01122-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Zika virus (ZIKV) is an arbovirus member of the Flaviviridae family that causes severe congenital brain anomalies in infected fetuses. The key target cells of ZIKV infection, human neural progenitor cells (hNPCs), are highly permissive to infection that causes the inhibition of cell proliferation and induces cell death. We have previously shown that pharmaceutical-grade heparin inhibits virus-induced cell death with negligible effects on in vitro virus replication in ZIKV-infected hNPCs at the “high” multiplicity of infection (MOI) of 1. Here, we show that heparin inhibits formation of ZIKV-induced intracellular vacuoles, a signature of paraptosis, and inhibits necrosis and apoptosis of hNPCs grown as neurospheres (NS). To test whether heparin preserved the differentiation of ZIKV-infected hNPCs into neuroglial cells, hNPCs were infected at the MOI of 0.001. In this experimental condition, heparin inhibited ZIKV replication by ca. 2 log10, mostly interfering with virion attachment, while maintaining its protective effect against ZIKV-induced cytopathicity. Heparin preserved differentiation into neuroglial cells of hNPCs that were obtained from either human-induced pluripotent stem cells (hiPSC) or by fetal tissue. Quite surprisingly, multiple additions of heparin to hNPCs enabled prolonged virus replication while preventing virus-induced cytopathicity. Collectively, these results highlight the potential neuroprotective effect of heparin that could serve as a lead compound to develop novel agents for preventing the damage of ZIKV infection on the developing brain. IMPORTANCE ZIKV is a neurotropic virus that invades neural progenitor cells (NPCs), causing inhibition of their proliferation and maturation into neurons and glial cells. We have shown previously that heparin, an anticoagulant also used widely during pregnancy, prevents ZIKV-induced cell death with negligible inhibition of virus replication. Here, we demonstrate that heparin also exerts antiviral activity against ZIKV replication using a much lower infectious inoculum. Moreover, heparin interferes with different modalities of virus-induced cell death. Finally, heparin-induced prevention of virus-induced NPC death allows their differentiation into neuroglial cells despite the intracellular accumulation of virions. These results highlight the potential use of heparin, or pharmacological agents derived from it, in pregnant women to prevent the devastating effects of ZIKV infection on the developing brain of their fetuses.
Collapse
|
10
|
Jan MW, Chiu CY, Chen JJ, Chang TH, Tsai KJ. Human Platelet Lysate Induces Antiviral Responses against Parechovirus A3. Viruses 2022; 14:v14071499. [PMID: 35891479 PMCID: PMC9316291 DOI: 10.3390/v14071499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/27/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Human platelet lysate (hPL) contains abundant growth factors for inducing human cell proliferation and may be a suitable alternative to fetal bovine serum (FBS) as a culture medium supplement. However, the application of hPL in virological research remains blank. Parechovirus type-A3 (PeV-A3) belongs to Picornaviridae, which causes meningoencephalitis in infants and young children. To understand the suitability of hPL-cultured cells for PeV-A3 infection, the infection of PeV-A3 in both FBS- and hPL-cultured glioblastoma (GBM) cells were compared. Results showed reduced PeV-A3 infection in hPL-cultured cells compared with FBS-maintained cells. Mechanistic analysis revealed hPL stimulating type I interferon (IFN) antiviral pathway, through which phospho-signal transducer and activator of transcription 1 (STAT1), STAT2, interferon regulatory factor 3 (IRF3) were activated and antiviral genes, such as IFN-α, IFN-β, and Myxovirus resistance protein 1 (MxA), were also detected. In addition, an enhanced PeV-A3 replication was detected in the hPL-cultured GBM cells treated with STAT-1 inhibitor (fludarabine) and STAT1 shRNA. These results in vitro suggested an unexpected effect of hPL-activated type I IFN pathway response to restrict virus replication and that hPL may be a potential antiviral bioreagent.
Collapse
Affiliation(s)
- Ming-Wei Jan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Chih-Yun Chiu
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 114, Taiwan;
| | - Jih-Jung Chen
- Department of Pharmacy, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| | - Tsung-Hsien Chang
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 114, Taiwan;
- Correspondence: (T.-H.C.); (K.-J.T.)
| | - Kuen-Jer Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
- Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Correspondence: (T.-H.C.); (K.-J.T.)
| |
Collapse
|
11
|
Heparin: An old drug for new clinical applications. Carbohydr Polym 2022; 295:119818. [DOI: 10.1016/j.carbpol.2022.119818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 12/23/2022]
|
12
|
Sundar S, Piramanayagam S, Natarajan J. A review on structural genomics approach applied for drug discovery against three vector-borne viral diseases: Dengue, Chikungunya and Zika. Virus Genes 2022; 58:151-171. [PMID: 35394596 DOI: 10.1007/s11262-022-01898-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/22/2022] [Indexed: 12/22/2022]
Abstract
Structural genomics involves the advent of three-dimensional structures of the genome encoded proteins through various techniques available. Numerous structural genomics research groups have been developed across the globe and they contribute enormously to the identification of three-dimensional structures of various proteins. In this review, we have discussed the applications of the structural genomics approach towards the discovery of potential lead-like molecules against the genomic drug targets of three vector-borne diseases, namely, Dengue, Chikungunya and Zika. Currently, all these three diseases are associated with the most important global public health problems and significant economic burden in tropical countries. Structural genomics has accelerated the identification of novel drug targets and inhibitors for the treatment of these diseases. We start with the current development status of the drug targets and antiviral drugs against these three diseases and conclude by describing challenges that need to be addressed to overcome the shortcomings in the process of drug discovery.
Collapse
Affiliation(s)
- Shobana Sundar
- Computational Biology Lab, Department of Bioinformatics, Bharathiar University, Coimbatore, India
| | | | - Jeyakumar Natarajan
- Data Mining and Text Mining Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, Tamil Nadu, India.
| |
Collapse
|
13
|
Ling J, Li J, Khan A, Lundkvist Å, Li JP. Is heparan sulfate a target for inhibition of RNA virus infection? Am J Physiol Cell Physiol 2022; 322:C605-C613. [PMID: 35196165 PMCID: PMC8977144 DOI: 10.1152/ajpcell.00028.2022] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Heparan sulfate (HS) is a linear polysaccharide attached to a core protein, forming heparan sulfate proteoglycans (HSPGs) that are ubiquitously expressed on the surface of almost all mammalian cells and the extracellular matrix. HS orchestrates the binding of various signal molecules to their receptors, thus, regulating many biological processes, including homeostasis, metabolism, and various pathological processes. Due to its wide distribution and negatively charged properties, HS is exploited by many viruses as a co-factor to attach to host cells. Therefore, inhibition of the interaction between virus and HS is proposed as a promising approach to mitigate viral infection, including SARS-CoV-2. In this review, we summarize the interaction manners of HS with viruses with focus on significant pathogenic RNA viruses, including alphaviruses, flaviviruses, and coronaviruses. We also provide an overview of the challenges we may face when using HS-mimetics as antivirals for clinical treatment. More studies are needed to provide a further understanding of the interplay between HS and viruses both in vitro and in vivo, which will favor the development of specific antiviral inhibitors.
Collapse
Affiliation(s)
- Jiaxin Ling
- Department of Medical Biochemistry and Microbiology & The Biomedical Center; Zoonosis Science Center, University of Uppsala, Uppsala, Sweden.,Zoonosis Science Center, University of Uppsala, Uppsala, Sweden
| | - Jinlin Li
- Department of Medical Biochemistry and Microbiology & The Biomedical Center; Zoonosis Science Center, University of Uppsala, Uppsala, Sweden
| | - Asifa Khan
- Department of Medical Biochemistry and Microbiology & The Biomedical Center; Zoonosis Science Center, University of Uppsala, Uppsala, Sweden
| | - Åke Lundkvist
- Department of Medical Biochemistry and Microbiology & The Biomedical Center; Zoonosis Science Center, University of Uppsala, Uppsala, Sweden.,Zoonosis Science Center, University of Uppsala, Uppsala, Sweden
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology & The Biomedical Center; Zoonosis Science Center, University of Uppsala, Uppsala, Sweden.,SciLifeLab Uppsala, University of Uppsala, Uppsala, Sweden
| |
Collapse
|
14
|
Ai X, Wang D, Honko A, Duan Y, Gavrish I, Fang RH, Griffiths A, Gao W, Zhang L. Surface Glycan Modification of Cellular Nanosponges to Promote SARS-CoV-2 Inhibition. J Am Chem Soc 2021; 143:17615-17621. [PMID: 34647745 PMCID: PMC8525344 DOI: 10.1021/jacs.1c07798] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Indexed: 12/24/2022]
Abstract
Cellular binding and entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are mediated by its spike glycoprotein (S protein), which binds with not only the human angiotensin-converting enzyme 2 (ACE2) receptor but also glycosaminoglycans such as heparin. Cell membrane-coated nanoparticles ("cellular nanosponges") mimic the host cells to attract and neutralize SARS-CoV-2 through natural cellular receptors, leading to a broad-spectrum antiviral strategy. Herein, we show that increasing surface heparin density on the cellular nanosponges can promote their inhibition against SARS-CoV-2. Specifically, cellular nanosponges are made with azido-expressing host cell membranes followed by conjugating heparin to the nanosponge surfaces. Cellular nanosponges with a higher heparin density have a larger binding capacity with viral S proteins and a significantly higher inhibition efficacy against SARS-CoV-2 infectivity. Overall, surface glycan engineering of host-mimicking cellular nanosponges is a facile method to enhance SARS-CoV-2 inhibition. This approach can be readily generalized to promote the inhibition of other glycan-dependent viruses.
Collapse
Affiliation(s)
- Xiangzhao Ai
- Department of NanoEngineering, Chemical Engineering
Program, Moores Cancer Center, University of California San
Diego, La Jolla, California 92093, United States
| | - Dan Wang
- Department of NanoEngineering, Chemical Engineering
Program, Moores Cancer Center, University of California San
Diego, La Jolla, California 92093, United States
| | - Anna Honko
- Department of Microbiology and National Emerging
Infectious Diseases Laboratories, Boston University School of
Medicine, Boston, Massachusetts 02118, United
States
| | - Yaou Duan
- Department of NanoEngineering, Chemical Engineering
Program, Moores Cancer Center, University of California San
Diego, La Jolla, California 92093, United States
| | - Igor Gavrish
- Department of Microbiology and National Emerging
Infectious Diseases Laboratories, Boston University School of
Medicine, Boston, Massachusetts 02118, United
States
| | - Ronnie H. Fang
- Department of NanoEngineering, Chemical Engineering
Program, Moores Cancer Center, University of California San
Diego, La Jolla, California 92093, United States
| | - Anthony Griffiths
- Department of Microbiology and National Emerging
Infectious Diseases Laboratories, Boston University School of
Medicine, Boston, Massachusetts 02118, United
States
| | - Weiwei Gao
- Department of NanoEngineering, Chemical Engineering
Program, Moores Cancer Center, University of California San
Diego, La Jolla, California 92093, United States
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering
Program, Moores Cancer Center, University of California San
Diego, La Jolla, California 92093, United States
| |
Collapse
|
15
|
Wu SY, Chen YL, Lee YR, Lin CF, Lan SH, Lan KY, Chu ML, Lin PW, Yang ZL, Chen YH, Wang WH, Liu HS. The Autophagosomes Containing Dengue Virus Proteins and Full-Length Genomic RNA Are Infectious. Viruses 2021; 13:v13102034. [PMID: 34696464 PMCID: PMC8540618 DOI: 10.3390/v13102034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 02/04/2023] Open
Abstract
Autophagic machinery is involved in selective and non-selective recruitment as well as degradation or exocytosis of cargoes, including pathogens. Dengue virus (DENV) infection induces autophagy that enhances virus replication and vesicle release to evade immune system surveillance. This study reveals that DENV2 induces autophagy in lung and liver cancer cells and showed that DENV2 capsid, envelope, NS1, NS3, NS4B and host cell proinflammatory high mobility group box 1 (HMGB1) proteins associated with autophagosomes which were purified by gradient centrifugation. Capsid, NS1 and NS3 proteins showing high colocalization with LC3 protein in the cytoplasm of the infected cells were detected in the purified double-membrane autophagosome by immunogold labeling under transmission electron microscopy. In DENV infected cells, the levels of capsid, envelope, NS1 and HMGB1 proteins are not significantly changed compared to the dramatic accumulation of LC3-II and p62/SQSTM1 proteins when autophagic degradation was blocked by chloroquine, indicating that these proteins are not regulated by autophagic degradation machinery. We further demonstrated that purified autophagosomes were infectious when co-cultured with uninfected cells. Notably, these infectious autophagosomes contain DENV2 proteins, negative-strand and full-length genomic RNAs, but no viral particles. It is possible that the infectivity of the autophagosome originates from the full-length DENV RNA. Moreover, we reveal that DENV2 promotes HMGB1 exocytosis partially through secretory autophagy. In conclusion, we are the first to report that DENV2-induced double-membrane autophagosomes containing viral proteins and full-length RNAs are infectious and not undergoing autophagic degradation. Our novel finding warrants further validation of whether these intracellular vesicles undergo exocytosis to become infectious autophagic vesicles.
Collapse
Affiliation(s)
- Shan-Ying Wu
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (S.-Y.W.); (C.-F.L.)
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yu-Lun Chen
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
| | - Ying-Ray Lee
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Chiou-Feng Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (S.-Y.W.); (C.-F.L.)
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Core Laboratory of Immune Monitoring, Office of Research & Development, Taipei Medical University, Taipei 110, Taiwan
- Center of Infectious Diseases and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan
| | - Sheng-Hui Lan
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (S.-H.L.); (K.-Y.L.); (Z.-L.Y.)
| | - Kai-Ying Lan
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (S.-H.L.); (K.-Y.L.); (Z.-L.Y.)
| | - Man-Ling Chu
- Center for Cancer Research, Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (M.-L.C.); (P.-W.L.)
| | - Pei-Wen Lin
- Center for Cancer Research, Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (M.-L.C.); (P.-W.L.)
| | - Zong-Lin Yang
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (S.-H.L.); (K.-Y.L.); (Z.-L.Y.)
| | - Yen-Hsu Chen
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-H.C.); (W.-H.W.)
- Sepsis Research Center, Center of Tropical Medicine and Infectious Diseases, Graduate Institute of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, HsinChu 300, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Wen-Hung Wang
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-H.C.); (W.-H.W.)
- Sepsis Research Center, Center of Tropical Medicine and Infectious Diseases, Graduate Institute of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hsiao-Sheng Liu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
- Center for Cancer Research, Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (M.-L.C.); (P.-W.L.)
- Master of Science Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-7-3121101 (ext. 2378); Fax: +886-7-3222461
| |
Collapse
|
16
|
Ghildiyal R, Gabrani R. Computational analysis of human host binding partners of chikungunya and dengue viruses during coinfection. Pathog Dis 2021; 79:6373922. [PMID: 34550340 DOI: 10.1093/femspd/ftab046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/20/2021] [Indexed: 12/31/2022] Open
Abstract
Mosquito-borne viral diseases like chikungunya and dengue infections can cause severe illness and have become major public health concerns. Chikungunya virus (CHIKV) and dengue virus (DENV) infections share similar primary clinical manifestations and are transmitted by the same vector. Thus, the probability of their coinfection gets increased with more severe clinical complications in the patients. The present study was undertaken to elucidate the common human interacting partners of CHIKV and DENV proteins during coinfection. The viral-host protein-protein interactome was constructed using Cytoscape. Subsequently, significant host interactors were identified during coinfection. The network analysis elucidated 57 human proteins interacting with both CHIKV and DENV, represented as hub-bottlenecks. The functional and biological analyses of the 40 hub-bottlenecks revealed that they are associated with phosphoinositide 3-kinases (PI3K)/AKT, p53 signaling pathways, regulation of cell cycle and apoptosis during coinfection. Moreover, the molecular docking analysis uncovered the tight and robust binding of selected hub-bottlenecks with CHIKV/DENV proteins. Additionally, 23 hub-bottlenecks were predicted as druggable candidates that could be targeted to eradicate the host-viral interactions. The elucidated common host binding partners during DENV and CHIKV coinfection as well as indicated approved drugs can support the therapeutics development.
Collapse
Affiliation(s)
- Ritu Ghildiyal
- Center for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP 201309, India
| | - Reema Gabrani
- Center for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP 201309, India
| |
Collapse
|
17
|
Litov L, Petkov P, Rangelov M, Ilieva N, Lilkova E, Todorova N, Krachmarova E, Malinova K, Gospodinov A, Hristova R, Ivanov I, Nacheva G. Molecular Mechanism of the Anti-Inflammatory Action of Heparin. Int J Mol Sci 2021; 22:10730. [PMID: 34639073 PMCID: PMC8509397 DOI: 10.3390/ijms221910730] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 12/18/2022] Open
Abstract
Our objective is to reveal the molecular mechanism of the anti-inflammatory action of low-molecular-weight heparin (LMWH) based on its influence on the activity of two key cytokines, IFNγ and IL-6. The mechanism of heparin binding to IFNγ and IL-6 and the resulting inhibition of their activity were studied by means of extensive molecular-dynamics simulations. The effect of LMWH on IFNγ signalling inside stimulated WISH cells was investigated by measuring its antiproliferative activity and the translocation of phosphorylated STAT1 in the nucleus. We found that LMWH binds with high affinity to IFNγ and is able to fully inhibit the interaction with its cellular receptor. It also influences the biological activity of IL-6 by binding to either IL-6 or IL-6/IL-6Rα, thus preventing the formation of the IL-6/IL-6Rα/gp130 signalling complex. These findings shed light on the molecular mechanism of the anti-inflammatory action of LMWH and underpin its ability to influence favourably conditions characterised by overexpression of these two cytokines. Such conditions are not only associated with autoimmune diseases, but also with inflammatory processes, in particular with COVID-19. Our results put forward heparin as a promising means for the prevention and suppression of severe CRS and encourage further investigations on its applicability as an anti-inflammatory agent.
Collapse
Affiliation(s)
- Leandar Litov
- Faculty of Physics, Sofia University “St. Kl. Ohridski”, 5, James Bourchier Blvd, 1164 Sofia, Bulgaria;
| | - Peicho Petkov
- Faculty of Physics, Sofia University “St. Kl. Ohridski”, 5, James Bourchier Blvd, 1164 Sofia, Bulgaria;
| | - Miroslav Rangelov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 9, Acad. G. Bonchev Str., 1113 Sofia, Bulgaria;
| | - Nevena Ilieva
- Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, 25A, Acad. G. Bonchev Str., 1113 Sofi, Bulgaria; (N.I.); (E.L.)
| | - Elena Lilkova
- Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, 25A, Acad. G. Bonchev Str., 1113 Sofi, Bulgaria; (N.I.); (E.L.)
| | - Nadezhda Todorova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2, Gagarin Street, 1113 Sofia, Bulgaria;
| | - Elena Krachmarova
- Institute of Molecular Biology “Roumen Tsanev”,Bulgarian Academy of Sciences, 21, Acad. G. Bonchev Str., 1113 Sofia, Bulgaria; (E.K.); (K.M.); (A.G.); (R.H.); (I.I.); (G.N.)
| | - Kristina Malinova
- Institute of Molecular Biology “Roumen Tsanev”,Bulgarian Academy of Sciences, 21, Acad. G. Bonchev Str., 1113 Sofia, Bulgaria; (E.K.); (K.M.); (A.G.); (R.H.); (I.I.); (G.N.)
| | - Anastas Gospodinov
- Institute of Molecular Biology “Roumen Tsanev”,Bulgarian Academy of Sciences, 21, Acad. G. Bonchev Str., 1113 Sofia, Bulgaria; (E.K.); (K.M.); (A.G.); (R.H.); (I.I.); (G.N.)
| | - Rossitsa Hristova
- Institute of Molecular Biology “Roumen Tsanev”,Bulgarian Academy of Sciences, 21, Acad. G. Bonchev Str., 1113 Sofia, Bulgaria; (E.K.); (K.M.); (A.G.); (R.H.); (I.I.); (G.N.)
| | - Ivan Ivanov
- Institute of Molecular Biology “Roumen Tsanev”,Bulgarian Academy of Sciences, 21, Acad. G. Bonchev Str., 1113 Sofia, Bulgaria; (E.K.); (K.M.); (A.G.); (R.H.); (I.I.); (G.N.)
| | - Genoveva Nacheva
- Institute of Molecular Biology “Roumen Tsanev”,Bulgarian Academy of Sciences, 21, Acad. G. Bonchev Str., 1113 Sofia, Bulgaria; (E.K.); (K.M.); (A.G.); (R.H.); (I.I.); (G.N.)
| |
Collapse
|
18
|
Mese K, Bunz O, Volkwein W, Vemulapalli SPB, Zhang W, Schellhorn S, Heenemann K, Rueckner A, Sing A, Vahlenkamp TW, Severing AL, Gao J, Aydin M, Jung D, Bachmann HS, Zänker KS, Busch U, Baiker A, Griesinger C, Ehrhardt A. Enhanced Antiviral Function of Magnesium Chloride-Modified Heparin on a Broad Spectrum of Viruses. Int J Mol Sci 2021; 22:10075. [PMID: 34576237 PMCID: PMC8466540 DOI: 10.3390/ijms221810075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
Previous studies reported on the broad-spectrum antiviral function of heparin. Here we investigated the antiviral function of magnesium-modified heparin and found that modified heparin displayed a significantly enhanced antiviral function against human adenovirus (HAdV) in immortalized and primary cells. Nuclear magnetic resonance analyses revealed a conformational change of heparin when complexed with magnesium. To broadly explore this discovery, we tested the antiviral function of modified heparin against herpes simplex virus type 1 (HSV-1) and found that the replication of HSV-1 was even further decreased compared to aciclovir. Moreover, we investigated the antiviral effect against the new severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) and measured a 55-fold decreased viral load in the supernatant of infected cells associated with a 38-fold decrease in virus growth. The advantage of our modified heparin is an increased antiviral effect compared to regular heparin.
Collapse
Affiliation(s)
- Kemal Mese
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58453 Witten, Germany; (K.M.); (O.B.); (W.Z.); (S.S.); (J.G.); (A.B.)
| | - Oskar Bunz
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58453 Witten, Germany; (K.M.); (O.B.); (W.Z.); (S.S.); (J.G.); (A.B.)
- Department of Prosthodontics, School of Dentistry, Faculty of Health, Witten/Herdecke University, 58455 Witten, Germany
| | - Wolfram Volkwein
- Bavarian Health and Food Safety Authority (LGL), 85764 Oberschleissheim, Germany; (W.V.); (A.S.); (U.B.)
| | - Sahithya P. B. Vemulapalli
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany;
| | - Wenli Zhang
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58453 Witten, Germany; (K.M.); (O.B.); (W.Z.); (S.S.); (J.G.); (A.B.)
| | - Sebastian Schellhorn
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58453 Witten, Germany; (K.M.); (O.B.); (W.Z.); (S.S.); (J.G.); (A.B.)
| | - Kristin Heenemann
- Center for Infectious Diseases, Institute of Virology, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany; (K.H.); (A.R.); (T.W.V.)
| | - Antje Rueckner
- Center for Infectious Diseases, Institute of Virology, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany; (K.H.); (A.R.); (T.W.V.)
| | - Andreas Sing
- Bavarian Health and Food Safety Authority (LGL), 85764 Oberschleissheim, Germany; (W.V.); (A.S.); (U.B.)
| | - Thomas W. Vahlenkamp
- Center for Infectious Diseases, Institute of Virology, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany; (K.H.); (A.R.); (T.W.V.)
| | - Anna-Lena Severing
- Centre for Biomedical Education and Research (ZBAF), Institute for Translational Wound Research, Witten/Herdecke University, 58453 Witten, Germany;
| | - Jian Gao
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58453 Witten, Germany; (K.M.); (O.B.); (W.Z.); (S.S.); (J.G.); (A.B.)
| | - Malik Aydin
- Center for Child and Adolescent Medicine, Center for Clinical and Translational Research (CCTR), Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany;
| | - Dominik Jung
- Centre for Biomedical Education and Research, Institute of Pharmacology and Toxicology, Witten/Herdecke University, 58453 Witten, Germany; (D.J.); (H.S.B.)
| | - Hagen S. Bachmann
- Centre for Biomedical Education and Research, Institute of Pharmacology and Toxicology, Witten/Herdecke University, 58453 Witten, Germany; (D.J.); (H.S.B.)
| | - Kurt S. Zänker
- Center for Biomedical Education and Research (ZBAF), Institute of Immunology, Witten/Herdecke University, 58453 Witten, Germany;
| | - Ulrich Busch
- Bavarian Health and Food Safety Authority (LGL), 85764 Oberschleissheim, Germany; (W.V.); (A.S.); (U.B.)
| | - Armin Baiker
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58453 Witten, Germany; (K.M.); (O.B.); (W.Z.); (S.S.); (J.G.); (A.B.)
- Bavarian Health and Food Safety Authority (LGL), 85764 Oberschleissheim, Germany; (W.V.); (A.S.); (U.B.)
| | - Christian Griesinger
- Centre for Biomedical Education and Research, Institute of Pharmacology and Toxicology, Witten/Herdecke University, 58453 Witten, Germany; (D.J.); (H.S.B.)
| | - Anja Ehrhardt
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58453 Witten, Germany; (K.M.); (O.B.); (W.Z.); (S.S.); (J.G.); (A.B.)
| |
Collapse
|
19
|
Andrade AS, Ferreira RS, Guedes MIMC, Dias J, Pinheiro MA, Arias NEC, Reis EVS, de Souza FG, Kroon EG. Dengue virus 3 genotype I shows natural changes in heparan sulphate binding sites, cell interactions, and neurovirulence in a mouse model. J Gen Virol 2021; 102. [PMID: 34342561 DOI: 10.1099/jgv.0.001630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dengue virus (DENV) is the most prevalent pathogen of the Flaviviridae family. Due to the considerable increase in DENV incidence and spread, symptoms such as CNS involvement have increased. Heparan sulphate (HS) was the first molecule identified as an adhesion factor for DENV in mammalian cells. Viral phenotypes with different HS interactions are associated with various clinical symptoms, including neurological alterations. Here, using in silico analyses, in vitro studies, and the in vivo mouse model, we characterized two natural circulating DENV3 genotype I (GI) lineage 1 (L1) in Brazil-DENV3 MG-20 (from Minas Gerais) and DENV3 PV_BR (from Rondônia) that present divergent neurovirulent profiles and sensitivity to sulphated molecules. We identified substitutions at the viral envelope (E) in positions 62 and 123 as likely responsible for the differences in neurovirulence. The E62K and E123Q substitutions in DENV3 MG-20 and DENV3 PV_BR, respectively, greatly influenced in silico electrostatic density and heparin docking results. In vivo, mice inoculated with DENV3 MG-20 died, but not those infected with DENV3 PV_BR. The clinical symptoms, such as paralysis of the lower limbs and meningoencephalitis, and histopathology, also differed between the inoculated groups. In vitro heparin and heparinases assays further demonstrated the biological impact of these substitutions. Other characteristics that have been previously associated with alterations in cell tropism and neurovirulence, such as changes in the size of lysis plaques and differences in cytopathic effects in glioblastoma cells, were also observed.
Collapse
Affiliation(s)
- Adriana S Andrade
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rafaela S Ferreira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maria Isabel M C Guedes
- Laboratório de Pesquisa em Virologia Animal, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jamile Dias
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mariana A Pinheiro
- Laboratório de Pesquisa em Virologia Animal, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Nidia Esther C Arias
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Erik V S Reis
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda G de Souza
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Erna G Kroon
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
20
|
Gupta Y, Maciorowski D, Zak SE, Kulkarni CV, Herbert AS, Durvasula R, Fareed J, Dye JM, Kempaiah P. Heparin: A simplistic repurposing to prevent SARS-CoV-2 transmission in light of its in-vitro nanomolar efficacy. Int J Biol Macromol 2021; 183:203-212. [PMID: 33915212 PMCID: PMC8074525 DOI: 10.1016/j.ijbiomac.2021.04.148] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/23/2021] [Accepted: 04/23/2021] [Indexed: 02/08/2023]
Abstract
The world is currently facing a novel coronavirus (SARS-CoV-2) pandemic. The greatest threat that is disrupting the normal functioning of society is the exceptionally high species independent transmission. Drug repurposing is understood to be the best strategy to immediately deploy well-characterized agents against new pathogens. Several repurposable drugs are already in evaluation for determining suitability to treat COVID-19. One such promising compound includes heparin, which is widely used in reducing thrombotic events associated with COVID-19 induced pathology. As part of identifying target-specific antiviral compounds among FDA and world-approved libraries using high-throughput virtual screening (HTVS), we previously evaluated top hits for anti-SARS-CoV-2 activity. Here, we report results of highly efficacious viral entry blocking properties of heparin (IC50 = 12.3 nM) in the complete virus assay, and further, propose ways to use it as a potential transmission blocker. Exploring further, our in-silico analysis indicated that the heparin interacts with post-translational glycoconjugates present on spike proteins. The patterns of accessible spike-glycoconjugates in open and closed states are completely contrasted by one another. Heparin-binding to the open conformation of spike structurally supports the state and may aid ACE2 binding as reported with cell surface-bound heparan sulfate. We also studied spike protein mutant variants' heparin interactions for possible resistance. Based on available data and optimal absorption properties by the skin, heparin could potentially be used to block SARS-CoV-2 transmission. Studies should be designed to exploit its nanomolar antiviral activity to formulate heparin as topical or inhalation-based formulations, particularly on exposed areas and sites of primary viremia e.g. ACE2 rich epithelia of the eye (conjunctiva/lids), nasal cavity, and mouth.
Collapse
Affiliation(s)
- Yash Gupta
- Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA
| | | | - Samantha E Zak
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA; The Geneva Foundation, 917 Pacific Avenue, Tacoma, WA, USA
| | | | - Andrew S Herbert
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | | | - Jawed Fareed
- Department of Molecular Pharmacology & Neuroscience, Loyola University Chicago, Chicago, IL, USA
| | - John M Dye
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA; The Geneva Foundation, 917 Pacific Avenue, Tacoma, WA, USA
| | | |
Collapse
|
21
|
S AH, Pujar GV, Sethu AK, Bhagyalalitha M, Singh M. Dengue structural proteins as antiviral drug targets: Current status in the drug discovery & development. Eur J Med Chem 2021; 221:113527. [PMID: 34020338 DOI: 10.1016/j.ejmech.2021.113527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/30/2021] [Accepted: 04/20/2021] [Indexed: 01/04/2023]
Abstract
Dengue virus belongs to the class of RNA viruses and subclass of enveloped single-stranded positive-sense RNA virus. It causes dengue fever (DF), dengue hemorrhagic fever (DHF), or dengue shock syndrome (DSS), where DHF and DSS are life-threatening. Even though dengue is an age-old disease, it is still a mystery and continues to be a global threat. Numerous attempts have been carried out in the past few decades to eradicate the virus through vaccine and antiviral drugs, but still battle continues. In this review, the possible drug targets for discovery and development of potential antiviral drugs against structural proteins of dengue virus, the current development status of the antiviral drugs against dengue around the world, and challenges that need to be addressed to overcome the shortcomings in the process of drug discovery have been discussed.
Collapse
Affiliation(s)
- Akshatha H S
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015, India
| | - Gurubasavaraj V Pujar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015, India.
| | - Arun Kumar Sethu
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015, India
| | - Meduri Bhagyalalitha
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015, India
| | - Manisha Singh
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015, India
| |
Collapse
|
22
|
Antiviral strategies should focus on stimulating the biosynthesis of heparan sulfates, not their inhibition. Life Sci 2021; 277:119508. [PMID: 33865880 PMCID: PMC8046744 DOI: 10.1016/j.lfs.2021.119508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 12/23/2022]
Abstract
Antiviral strategies for viruses that utilize proteoglycan core proteins (syndecans and glypicans) as receptors should focus on heparan sulfate (HS) biosynthesis rather than on inhibition of these sugar chains. Here, we show that heparin and certain xylosides, which exhibit in vitro viral entry inhibitory properties against HSV-1, HSV-2, HPV-16, HPV-31, HVB, HVC, HIV-1, HTLV-1, SARS-CoV-2, HCMV, DENV-1, and DENV-2, stimulated HS biosynthesis at the cell surface 2- to 3-fold for heparin and up to 10-fold for such xylosides. This is consistent with the hypothesis from a previous study that for core protein attachment, viruses are glycosylated at HS attachment sites (i.e., serine residues intended to receive the D-xylose molecule for initiating HS chains). Heparanase overexpression, endocytic entry, and syndecan shedding enhancement, all of which are observed during viral infection, lead to glycocalyx deregulation and appear to be direct consequences of this hypothesis. In addition to the appearance of type 2 diabetes and the degradation of HS observed during viral infection, we linked this hypothesis to that proposed in a previous publication.
Collapse
|
23
|
Hassler L, Wysocki J, Gelarden I, Tomatsidou A, Gula H, Nicoleascu V, Randall G, Henkin J, Yeldandi A, Batlle D. A novel soluble ACE2 protein totally protects from lethal disease caused by SARS-CoV-2 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33758841 DOI: 10.1101/2021.03.12.435191] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) uses full-length angiotensin converting enzyme 2 (ACE2), which is membrane bound, as its initial cell contact receptor preceding viral entry. Here we report a human soluble ACE2 variant fused with a 5kD albumin binding domain (ABD) and bridged via a dimerization motif hinge-like 4-cysteine dodecapeptide, which we term ACE2 1-618-DDC-ABD. This protein is enzymatically active, has increased duration of action in vivo conferred by the ABD-tag, and displays 20-30-fold higher binding affinity to the SARS-CoV-2 receptor binding domain than its des-DDC monomeric form (ACE2 1-618-ABD) due to DDC-linked dimerization. ACE2 1-618-DDC-ABD was administered for 3 consecutive days to transgenic k18-hACE2 mice, a model that develops lethal SARS-CoV-2 infection, to evaluate the preclinical preventative/ therapeutic value for COVID-19. Mice treated with ACE2 1-618-DDC-ABD developed a mild to moderate disease for the first few days assessed by a clinical score and modest weight loss. The untreated control animals, by contrast, became severely ill and had to be sacrificed by day 6/7 and lung histology revealed extensive pulmonary alveolar hemorrhage and mononuclear infiltrates. At 6 days, mortality was totally prevented in the treated group, lung histopathology was improved and viral titers markedly reduced. This demonstrates for the first time in vivo the preventative/ therapeutic potential of a novel soluble ACE2 protein in a preclinical animal model.
Collapse
|
24
|
Dong S, Dimopoulos G. Antiviral Compounds for Blocking Arboviral Transmission in Mosquitoes. Viruses 2021; 13:v13010108. [PMID: 33466915 PMCID: PMC7830659 DOI: 10.3390/v13010108] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Mosquito-borne arthropod-borne viruses (arboviruses) such as the dengue virus (DENV), Zika virus (ZIKV), and chikungunya virus (CHIKV) are important human pathogens that are responsible for significant global morbidity and mortality. The recent emergence and re-emergence of mosquito-borne viral diseases (MBVDs) highlight the urgent need for safe and effective vaccines, therapeutics, and vector-control approaches to prevent MBVD outbreaks. In nature, arboviruses circulate between vertebrate hosts and arthropod vectors; therefore, disrupting the virus lifecycle in mosquitoes is a major approach for combating MBVDs. Several strategies were proposed to render mosquitoes that are refractory to arboviral infection, for example, those involving the generation of genetically modified mosquitoes or infection with the symbiotic bacterium Wolbachia. Due to the recent development of high-throughput screening methods, an increasing number of drugs with inhibitory effects on mosquito-borne arboviruses in mammalian cells were identified. These antivirals are useful resources that can impede the circulation of arboviruses between arthropods and humans by either rendering viruses more vulnerable in humans or suppressing viral infection by reducing the expression of host factors in mosquitoes. In this review, we summarize recent advances in small-molecule antiarboviral drugs in mammalian and mosquito cells, and discuss how to use these antivirals to block the transmission of MBVDs.
Collapse
|
25
|
Antibody-independent and dependent infection of human myeloid cells with dengue virus is inhibited by carrageenan. Virus Res 2020; 290:198150. [DOI: 10.1016/j.virusres.2020.198150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/13/2020] [Accepted: 08/25/2020] [Indexed: 11/18/2022]
|
26
|
Kongmanas K, Punyadee N, Wasuworawong K, Songjaeng A, Prommool T, Pewkliang Y, Manocheewa S, Thiemmeca S, Sa-ngiamsuntorn K, Puttikhunt C, Faull KF, Hongeng S, Avirutnan P. Immortalized stem cell-derived hepatocyte-like cells: An alternative model for studying dengue pathogenesis and therapy. PLoS Negl Trop Dis 2020; 14:e0008835. [PMID: 33216752 PMCID: PMC7717553 DOI: 10.1371/journal.pntd.0008835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 12/04/2020] [Accepted: 09/29/2020] [Indexed: 12/31/2022] Open
Abstract
Suitable cell models are essential to advance our understanding of the pathogenesis of liver diseases and the development of therapeutic strategies. Primary human hepatocytes (PHHs), the most ideal hepatic model, are commercially available, but they are expensive and vary from lot-to-lot which confounds their utility. We have recently developed an immortalized hepatocyte-like cell line (imHC) from human mesenchymal stem cells, and tested it for use as a substitute model for hepatotropic infectious diseases. With a special interest in liver pathogenesis of viral infection, herein we determined the suitability of imHC as a host cell target for dengue virus (DENV) and as a model for anti-viral drug testing. We characterized the kinetics of DENV production, cellular responses to DENV infection (apoptosis, cytokine production and lipid droplet metabolism), and examined anti-viral drug effects in imHC cells with comparisons to the commonly used hepatoma cell lines (HepG2 and Huh-7) and PHHs. Our results showed that imHC cells had higher efficiencies in DENV replication and NS1 secretion as compared to HepG2 and Huh-7 cells. The kinetics of DENV infection in imHC cells showed a slower rate of apoptosis than the hepatoma cell lines and a certain similarity of cytokine profiles to PHHs. In imHC, DENV-induced alterations in levels of lipid droplets and triacylglycerols, a major component of lipid droplets, were more apparent than in hepatoma cell lines, suggesting active lipid metabolism in imHC. Significantly, responses to drugs with DENV inhibitory effects were greater in imHC cells than in HepG2 and Huh-7 cells. In conclusion, our findings suggest superior suitability of imHC as a new hepatocyte model for studying mechanisms underlying viral pathogenesis, liver diseases and drug effects. A model system resembling normal human liver cells is needed for advancement of hepatotropic infectious disease research. Here we show that immortalized cells (imHC) derived from human stem cells have a higher efficiency of DENV replication and a lower rate of cell death in response to DENV infection than the cancer cell-derived model systems currently used. The imHC also have active fat metabolism and respond well to anti-viral drug treatment, making them an attractive model for the initial stage of drug discovery and testing.
Collapse
Affiliation(s)
- Kessiri Kongmanas
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nuntaya Punyadee
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kasima Wasuworawong
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Adisak Songjaeng
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Tanapan Prommool
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, Thailand
| | - Yongyut Pewkliang
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Siriphan Manocheewa
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Somchai Thiemmeca
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Chunya Puttikhunt
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, Thailand
| | - Kym Francis Faull
- Pasarow Mass Spectrometry Laboratory, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, California, United States of America
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Panisadee Avirutnan
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
27
|
Tresnaningtyas SA, Sjatha F, Dewi BE. Infectivity and viability of dengue virus infected hepatocytes cocultured with peripheral blood mononuclear cells from a healthy subject. MEDICAL JOURNAL OF INDONESIA 2020. [DOI: 10.13181/mji.oa.203433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND Dengue virus (DENV) can infect and replicate in monocytes, resulting in antibody-dependent enhancement. The liver is the main target of DENV, and the infection mechanisms of DENV include direct cytopathic effects (CPEs) of the virus, mitochondrial dysfunction, and effect of cellular and humoral immune factors in the liver. This study was aimed to explore the infectivity of DENV and viability of human hepatocytes using Huh 7it-1 cells cocultured with peripheral blood mononuclear cells (PBMCs).
METHODS Huh 7it-1 cells were infected with dengue virus serotype-2 (DENV-2) New Guinea C strain at multiplicity of infection of 0.5 and 1 FFU/cell, and cocultured in vitro with and without adherent PBMCs. The infectivity of DENV was assessed by immunoperoxidase staining. The viability of Huh 7it-1 cells was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT, a tetrazole) assay and trypan blue staining. Data were statistically analyzed by ShapiroWilk and analysis of variance for normality significances.
RESULTS The result showed that addition of PBMCs to DENV-2 infected Huh 7it-1 cells decreased the infectivity of DENV (1537%). DENV-2 infection decreased the viability of Huh 7it-1 cells (15.520.8%). Despite the decrease in infectivity of DENV, the addition of PBMCs increased the Huh 7it-1 cells viability (4.510.2%).
CONCLUSIONS Addition of PBMCs to Huh 7it-1 cells that are infected with DENV-2 decreased the infectivity of DENV and increased Huh 7it-1 cells viability.
Collapse
|
28
|
Pong LY, Yew PN, Lee WL, Lim YY, Sharifah SH. Anti-dengue virus serotype 2 activity of tannins from porcupine dates. Chin Med 2020; 15:49. [PMID: 32467721 PMCID: PMC7238553 DOI: 10.1186/s13020-020-00329-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/12/2020] [Indexed: 11/10/2022] Open
Abstract
Background Dengue fever is currently endemic in tropical and subtropical countries worldwide and effective drug against DENV infection is still unavailable. Porcupine dates, which are traditionally used to treat dengue fever, might contain potential anti-dengue compounds. Two porcupine dates, black date (BD) and powdery date (PD) from Himalayan porcupine (Hystrix brachyura), were investigated for their antiviral activities against DENV-2 in vitro. Methods The methanol crude extracts (MBD and MPD) were prepared from the raw material of porcupine dates. The tannin-rich fractions (BDTF and PDTF) were isolated from their methanol crude extracts using column chromatography. The presence of tannins in BDTF and PDTF extracts was determined by fourier-transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR) analyses. The cytotoxicity and anti-DENV-2 activities including virus yield inhibition, virucidal, virus attachment and pre-treatment assays of the extracts were examined in Vero cells. Results Our findings revealed that all the extracts of porcupine dates exhibited antiviral activity against DENV-2 in Vero cells. The IC50 of BDTF and PDTF were 25 µg/mL and 11 µg/mL respectively, while their methanol crude extracts demonstrated lower antiviral efficacy (IC50 ≈ 101–107 µg/mL). BDTF and PDTF also exerted a similar higher virucidal effect (IC50 of 11 µg/mL) than methanol crude extracts (IC50 ≈ 52–66 µg/mL). Furthermore, all the extracts inhibited the attachment of DENV-2 by at least 80%. Pre-treatments of cells with BDTF and PDTF markedly prevented DENV-2 infection when compared to methanol crude extracts. Conclusion This study suggests that porcupine dates possess antiviral properties against DENV-2, which is attributed to its tannin compounds.
Collapse
Affiliation(s)
- Lian Yih Pong
- 1Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan Malaysia.,2Infectious Diseases and Health Cluster, Tropical Medicine and Biology Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan Malaysia
| | - Peng Nian Yew
- 3School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan Malaysia.,4Present Address: Department of Bioscience, Faculty of Applied Science, Tunku Abdul Rahman University College, Jalan Genting Kelang, 53300 Kuala Lumpur, Malaysia
| | - Wai Leng Lee
- 3School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan Malaysia
| | - Yau Yan Lim
- 3School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan Malaysia
| | - Syed Hassan Sharifah
- 1Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan Malaysia.,2Infectious Diseases and Health Cluster, Tropical Medicine and Biology Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan Malaysia
| |
Collapse
|
29
|
Basic Amino Acid Substitution at Residue 367 of the Envelope Protein of Tembusu Virus Plays a Critical Role in Pathogenesis. J Virol 2020; 94:JVI.02011-19. [PMID: 32024774 DOI: 10.1128/jvi.02011-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/24/2020] [Indexed: 02/07/2023] Open
Abstract
Tembusu virus (TMUV) is a flavivirus responsible for panzootic outbreaks of severe egg-drop and fatal encephalitis of domestic waterfowl in China. Although TMUV can be attenuated by in vitro passaging, experimental evidence supporting the role of specific genetic changes in virulence attenuation is currently lacking. Here, we performed site-directed mutagenesis on five envelope (E) protein amino acid residues in accordance with the attenuated TMUV generated in our recent study. Our results showed that the Thr-to-Lys mutation of residue 367 in E protein (E367) plays a predominant role in viral cell adaptation and virulence attenuation in ducks compared with mutations in other residues. We further demonstrated that the positively charged basic amino acid substitution at E367 enhanced the viral binding affinity for glycosaminoglycans (GAGs) and reduced viremia levels and the efficiency of replication in major target organs in subcutaneously inoculated ducks. Interestingly, the T367K mutation increased viral neutralization sensitivity to the early immune sera. Together, our findings provide the first evidence that a basic amino acid substitution at E367 strongly impacts the in vitro and in vivo infection of TMUV.IMPORTANCE Outbreaks of Tembusu virus (TMUV) infection have caused huge economic losses in the production of domestic waterfowl since the virus was first recognized in China in 2010. To control TMUV infection, a live-attenuated vaccine candidate of TMUV was developed in our previous study, but the mechanisms of virulence attenuation are not fully understood. Here, we found that the Thr-to-Lys substitution at E367 is a crucial determinant of TMUV virulence attenuation in ducks. We demonstrated that the T367K mutation attenuates TMUV through reducing viral replication in the blood, brain, heart (ducklings), and ovaries. These data provide new insights into understanding the pathogenesis of TMUV and the rational development of novel TMUV vaccines.
Collapse
|
30
|
Zhang C, Tang F, Zhang J, Cao J, Li H, Liu C. Uncovering the detailed mode of cleavage of heparinase I toward structurally defined heparin oligosaccharides. Int J Biol Macromol 2019; 141:756-764. [PMID: 31479666 DOI: 10.1016/j.ijbiomac.2019.08.260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/30/2019] [Accepted: 08/30/2019] [Indexed: 10/26/2022]
Abstract
For a more insightful investigation into the specificity of bacterial heparinase I, a series of structurally well-defined heparin oligosaccharides was synthesized using a highly efficient chemoenzymatic strategy. Apart from the primary cleavage site, five glycosidic linkages of oligosaccharides with varying modifications to obtain secondary cleavage sites were degraded by a high concentration of heparinase I. The reactivity of linkages toward heparinase I was not entirely dependent on the 2-O-sulfated iduronic acid being cleaved or the neighboring 6-O-sulfated glucosamine residues, but it was dependent on higher degrees of sulfation of oligosaccharides and indispensable N-substituted glucosamine adjacent to the cleavable linkage. Moreover, the enzyme demonstrated less preferential cleavage toward glycosidic linkages containing glucuronic acid than those containing iduronic acid of the counterpart oligosaccharides. Biolayer interferometry revealed differences in reactivity that are not completely consistent with different affinities of substrates to enzyme. Our study presented accurate information on the cleavage promiscuity of heparinase I that is crucial for heparin depolymerization.
Collapse
Affiliation(s)
- Chengying Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, PR China
| | - Fengyan Tang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, PR China
| | - Jingjing Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, PR China
| | - Jichao Cao
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, PR China
| | - Huijuan Li
- Department of Bioengineering, College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, PR China
| | - Chunhui Liu
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, PR China; National Glycoengineering Research Center, Shandong University, Jinan 250012, Shandong, PR China.
| |
Collapse
|
31
|
Trujillo-Correa AI, Quintero-Gil DC, Diaz-Castillo F, Quiñones W, Robledo SM, Martinez-Gutierrez M. In vitro and in silico anti-dengue activity of compounds obtained from Psidium guajava through bioprospecting. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:298. [PMID: 31694638 PMCID: PMC6836419 DOI: 10.1186/s12906-019-2695-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 09/25/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND For decades, bioprospecting has proven to be useful for the identification of compounds with pharmacological potential. Considering the great diversity of Colombian plants and the serious worldwide public health problem of dengue-a disease caused by the dengue virus (DENV)-in the present study, we evaluated the anti-DENV effects of 12 ethanolic extracts derived from plants collected in the Colombian Caribbean coast, and 5 fractions and 5 compounds derived from Psidium guajava. METHODS The cytotoxicity and antiviral effect of 12 ethanolic extracts derived from plants collected in the Colombian Caribbean coast was evaluated in epithelial VERO cells. Five fractions were obtained by open column chromatography from the ethanolic extract with the highest selectivity index (SI) (derived from P. guajava, SI: 128.2). From the fraction with the highest selectivity (Pg-YP-I-22C, SI: 35.5), five compounds were identified by one- and two-dimensional nuclear magnetic resonance spectroscopy. The antiviral effect in vitro of the fractions and compounds was evaluated by different experimental strategies (Pre- and post-treatment) using non-toxic concentrations calculated by MTT method. The DENV inhibition was evaluated by plate focus assay. The results were analyzed by means of statistical analysis using Student's t-test. Finally the antiviral effect in Silico was evaluated by molecular docking. RESULTS In vitro evaluation of these compounds showed that three of them (gallic acid, quercetin, and catechin) were promising antivirals as they inhibit the production of infectious viral particles via different experimental strategies, with the best antiviral being catechin (100% inhibition with a pre-treatment strategy and 91.8% with a post-treatment strategy). When testing the interactions of these compounds with the viral envelope protein in silico by docking, only naringin and hesperidin had better scores than the theoretical threshold of - 7.0 kcal/mol (- 8.0 kcal/mol and - 8.2 kcal/mol, respectively). All ligands tested except gallic acid showed higher affinity to the NS5 protein than the theoretical threshold. CONCLUSION Even though bioprospecting has recently been replaced by more targeted tools for identifying compounds with pharmacological potential, our results show it is still useful for this purpose. Additionally, combining in vitro and in silico evaluations allowed us to identify promising antivirals as well as their possible mechanisms of action.
Collapse
|
32
|
Decoy Receptor Interactions as Novel Drug Targets against EKC-Causing Human Adenovirus. Viruses 2019; 11:v11030242. [PMID: 30870979 PMCID: PMC6466251 DOI: 10.3390/v11030242] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 01/30/2023] Open
Abstract
Epidemic keratoconjunctivitis (EKC) is a severe ocular disease and can lead to visual impairment. Human adenovirus type-37 (HAdV-D37) is one of the major causative agents of EKC and uses sialic acid (SA)-containing glycans as cellular receptors. Currently, there are no approved antivirals available for the treatment of EKC. Recently, we have reported that sulfated glycosaminoglycans (GAGs) bind to HAdV-D37 via the fiber knob (FK) domain of the viral fiber protein and function as decoy receptors. Based on this finding, we speculated that GAG-mimetics may act as artificial decoy receptors and inhibit HAdV-D37 infection. Repurposing of approved drugs to identify new antivirals has drawn great attention in recent years. Here, we report the antiviral effect of suramin, a WHO-approved drug and a widely known GAG-mimetic, against HAdV-D37. Commercially available suramin analogs also show antiviral effects against HAdV-D37. We demonstrate that suramin exerts its antiviral activity by inhibiting the attachment of HAdV-D37 to cells. We also reveal that the antiviral effect of suramin is HAdV species-specific. Collectively, in this proof of concept study, we demonstrate for the first time that virus binding to a decoy receptor constitutes a novel and an unexplored target for antiviral drug development.
Collapse
|
33
|
Lê BV, Jandrot-Perrus M, Couture C, Checkmahomed L, Venable MC, Hamelin MÈ, Boivin G. Evaluation of anticoagulant agents for the treatment of human metapneumovirus infection in mice. J Gen Virol 2018; 99:1367-1380. [PMID: 30102144 DOI: 10.1099/jgv.0.001135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Thrombin has been demonstrated to be involved in several viral diseases including human metapneumovirus (hMPV) infections. We previously showed that immediate administration of thrombin inhibitor argatroban post-infection protected mice against hMPV disease. This current work aims at determining whether warfarin and heparin, two other anticoagulants inhibiting thrombin formation and activities, may also be used for treatment against hMPV in vivo. We found that immediate injections of argatroban, warfarin or heparin after virus challenge protected mice against hMPV infection, as evidenced by decreased or no mortality, less weight loss, reduced viral load and attenuated inflammation. However, delayed treatments starting 1 day post-infection with argatroban or warfarin almost did not impact the survival whereas delayed treatment with heparin induced an increased mortality during infection. Moreover, these treatments also did not reduce weight loss, viral replication and inflammation. In agreement with these results, thrombin generation was decreased upon immediate anticoagulant treatments but was unaltered upon delayed treatments. Thus, thrombin generation occurs at the onset of hMPV infection and thrombin inhibition may be only useful for the treatment of this disease when initiated in the early stage. In this case, heparin is not recommended because of its reduced efficacy on mortality in infected mice whereas argatroban and warfarin appear as safe and effective drugs for the treatment of hMPV disease. The antiviral and anti-inflammatory effects of argatroban occur via thrombin-dependent pathways whereas the mechanisms by which warfarin exerts its beneficial effects against hMPV infection were not elucidated and need to be further studied.
Collapse
Affiliation(s)
- Ba Vuong Lê
- 1Infectious Disease Research Centre, Laval University, Quebec City, Quebec, Canada
| | | | - Christian Couture
- 3Quebec Heart and Lung Institute, Laval University, Quebec City, Quebec, Canada
| | - Liva Checkmahomed
- 1Infectious Disease Research Centre, Laval University, Quebec City, Quebec, Canada
| | | | - Marie-Ève Hamelin
- 1Infectious Disease Research Centre, Laval University, Quebec City, Quebec, Canada
| | - Guy Boivin
- 1Infectious Disease Research Centre, Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
34
|
Kuadkitkan A, Wikan N, Smith DR. Induced pluripotent stem cells: A new addition to the virologists armamentarium. J Virol Methods 2017; 235:191-195. [PMID: 27544025 DOI: 10.1016/j.jviromet.2016.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/23/2016] [Accepted: 03/23/2016] [Indexed: 12/01/2022]
Abstract
A significant amount of our understanding of the molecular events occurring during viral replication has originated from studies utilizing cell lines. These cell lines are normally obtained by the culture of samples from spontaneously occurring tumors or are derived by genetic manipulation of primary cells. The genetic events inducing immortalization and/or transformation to allow continual passage in culture can have profound effects resulting in a marked loss of cell type fidelity. The development of induced pluripotent stem cells (iPSCs) has revolutionized the field of developmental biology and is ushering in an era of personalized medicine for a wide range of inherited genetic diseases. Previously, development of iPSCs required dedicated facilities as well as highly detailed technical knowledge. The pace of development in this field however has been so rapid, that iPSCs are moving into an era of "off the shelf" use, whereby the use and manipulation of these cells is well within the ability of the majority of laboratories with standard tissue culture facilities. The introduction of iPSCs to studies in the field of virology is still in its infancy, and so far has been largely confined to viruses that are difficult to propagate in other experimental systems, but it is likely that this technology will become a standard methodology in the virologists armamentarium.
Collapse
Affiliation(s)
- Atichat Kuadkitkan
- Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand
| | - Nitwara Wikan
- Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand
| | - Duncan R Smith
- Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand; Center for Emerging and Neglected Infectious Diseases, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
35
|
Lima M, Rudd T, Yates E. New Applications of Heparin and Other Glycosaminoglycans. Molecules 2017; 22:molecules22050749. [PMID: 28481236 PMCID: PMC6154012 DOI: 10.3390/molecules22050749] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 04/24/2017] [Accepted: 04/28/2017] [Indexed: 11/20/2022] Open
Abstract
Heparin, the widely used pharmaceutical anticoagulant, has been in clinical use for well over half a century. Its introduction reduced clotting risks substantially and subsequent developments, including the introduction of low-molecular-weight heparin, made possible many major surgical interventions that today make heparin an indispensable drug. There has been a recent burgeoning of interest in heparin and related glycosaminoglycan (GAG) polysaccharides, such as chondroitin sulfates, heparan sulfate, and hyaluronate, as potential agents in various applications. This ability arises mainly from the ability of GAGs to interact with, and alter the activity of, a wide range of proteins. Here, we review new developments (since 2010) in the application of heparin and related GAGs across diverse fields ranging from thrombosis and neurodegenerative disorders to microbiology and biotechnology.
Collapse
Affiliation(s)
- Marcelo Lima
- Department of Biochemistry, Federal University of São Paulo (UNIFESP), Vila Clementino, São Paulo, S.P. 04044-020, Brazil.
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.
| | - Timothy Rudd
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.
- National Institute of Biological Standards and Controls (NIBSC), Blanche Lane, Potters Bar, Herts EN6 3QG, UK.
| | - Edwin Yates
- Department of Biochemistry, Federal University of São Paulo (UNIFESP), Vila Clementino, São Paulo, S.P. 04044-020, Brazil.
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.
| |
Collapse
|
36
|
Vongchan P, Linhardt RJ. Characterization of a new monoclonal anti-glypican-3 antibody specific to the hepatocellular carcinoma cell line, HepG2. World J Hepatol 2017; 9:368-384. [PMID: 28321273 PMCID: PMC5340992 DOI: 10.4254/wjh.v9.i7.368] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/19/2016] [Accepted: 01/14/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To characterize the antigen on HepG2 cell that is specifically recognized by a new monoclonal antibody raised against human liver heparan sulfate proteoglycan (HSPG), clone 1E4-1D9.
METHODS The antigen recognized by mAb 1E4-1D9 was immunoprecipitated and its amino acid sequence was analyzed LC/MS. The transmembrane domain, number of cysteine residues, and glycosylation sites were predicted from these entire sequences. Data from amino acid analysis was aligned with glypican-3 (https://www.ebi.ac.uk/Tools/msa/clustalo/). The competitive reaction of mAb 1E4-1D9 and anti-glypican-3 on HepG2 cells was demonstrated by indirect immunofluorescence and analyzed by flow cytometry. Moreover, co-immunoprecipitation of mAb 1E4-1D9 and anti-glypican-3 was performed in HepG2 cells by Western immunoblotting. The recognition by mAb 1E4-1D9 of a specific epitope on solid tumor and hematopoietic cell lines was studied using indirect immunofluorescence and analyzed by flow cytometry.
RESULTS Monoclonal antibody 1E4-1D9 reacted with an HSPG isolated from human liver and a band of 67 kD was detected under both reducing and non-reducing conditions. The specific antigen pulled down by mAb 1E4-1D9, having a MW of 135 kD, was analyzed. The results showed two sequences of interest, gi30722350 (1478 amino acid) and gi60219551 (1378 amino acid). In both sequences no transmembrane regions were observed. Sequence number gi30722350 was 99.7% showed a match to FYCO1, a molecule involved in induction of autophagy. Sequence number gi60219551 contained 15 cysteines and 11 putative glycosylation sites with 6 predicted N-glycosylation sites. It was also matched with all PDZ domain proteins. Moreover, it showed an 85.7% match to glypican-3. Glypican-3 on HepG2 cells competitively reacted with both phycoerythrin-conjugated anti-glypican-3 and mAb 1E4-1C2 and resulted in an increase of double-stained cell population when higher concentration of mAb 1E4-1D9 was used. Moreover, antigens precipitated from HepG2 cell by anti-glypican-3 could be detected by mAb 1E4-1D9 and vice versa. The recognition of antigens, on other solid tumor cell lines, by mAb 1E4-1D9 was studied. The results demonstrated that mAb 1E4-1D9 reacted with Huh7, HepG2, HT29, MCF7, SW620, Caco2, B16F1, U937, K562 and Molt4 cells. It was also found to be weakly positive to SW1353 and HL60 and negative to H460 and Hela cell lines.
CONCLUSION All findings show that mAb 1E4-1D9 specifically recognizes glypican-3. Moreover, a new partner molecule of glypican-3, FYCO1 is proposed based on the results from co-precipitation studies.
Collapse
|
37
|
Li Q, Zeng Y, Wang L, Guan H, Li C, Zhang L. The heparin-like activities of negatively charged derivatives of low-molecular-weight polymannuronate and polyguluronate. Carbohydr Polym 2017; 155:313-320. [DOI: 10.1016/j.carbpol.2016.08.084] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/29/2016] [Accepted: 08/26/2016] [Indexed: 11/16/2022]
|
38
|
Troupin A, Shirley D, Londono-Renteria B, Watson AM, McHale C, Hall A, Hartstone-Rose A, Klimstra WB, Gomez G, Colpitts TM. A Role for Human Skin Mast Cells in Dengue Virus Infection and Systemic Spread. THE JOURNAL OF IMMUNOLOGY 2016; 197:4382-4391. [PMID: 27799312 DOI: 10.4049/jimmunol.1600846] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/04/2016] [Indexed: 12/20/2022]
Abstract
Dengue virus (DENV) is a mosquito-borne flavivirus that causes serious global human disease and mortality. Skin immune cells are an important component of initial DENV infection and systemic spread. Here, we show that mast cells are a target of DENV in human skin and that DENV infection of skin mast cells induces degranulation and alters cytokine and growth factor expression profiles. Importantly, to our knowledge, we also demonstrate for the first time that DENV localizes within secretory granules in infected skin mast cells. In addition, DENV within extracellular granules was infectious in vitro and in vivo, trafficking through lymph to draining lymph nodes in mice. We demonstrate an important role for human skin mast cells in DENV infection and identify a novel mechanism for systemic spread of DENV infection from the initial peripheral mosquito injection site.
Collapse
Affiliation(s)
- Andrea Troupin
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209
| | - Devon Shirley
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209
| | - Berlin Londono-Renteria
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209
| | - Alan M Watson
- Department of Microbiology and Molecular Genetics, Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15260; and
| | - Cody McHale
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209
| | - Alex Hall
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209
| | - Adam Hartstone-Rose
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209
| | - William B Klimstra
- Department of Microbiology and Molecular Genetics, Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15260; and
| | - Gregorio Gomez
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209
| | - Tonya M Colpitts
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209;
| |
Collapse
|
39
|
Cellufine sulfate column chromatography as a simple, rapid, and effective method to purify dengue virus. J Virol Methods 2016; 234:174-7. [DOI: 10.1016/j.jviromet.2016.04.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/09/2016] [Accepted: 04/09/2016] [Indexed: 11/20/2022]
|
40
|
Assunção-Miranda I, Cruz-Oliveira C, Neris R, Figueiredo C, Pereira L, Rodrigues D, Araujo D, Da Poian A, Bozza M. Inactivation of Dengue and Yellow Fever viruses by heme, cobalt-protoporphyrin IX and tin-protoporphyrin IX. J Appl Microbiol 2016; 120:790-804. [DOI: 10.1111/jam.13038] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/16/2015] [Accepted: 12/22/2015] [Indexed: 12/25/2022]
Affiliation(s)
- I. Assunção-Miranda
- Instituto de Microbiologia Paulo de Góes; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| | - C. Cruz-Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| | - R.L.S. Neris
- Instituto de Microbiologia Paulo de Góes; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| | - C.M. Figueiredo
- Instituto de Microbiologia Paulo de Góes; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| | - L.P.S. Pereira
- Instituto de Bioquímica Médica Leopoldo de Meis; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| | - D. Rodrigues
- Instituto de Microbiologia Paulo de Góes; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| | - D.F.F. Araujo
- Instituto de Microbiologia Paulo de Góes; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| | - A.T. Da Poian
- Instituto de Bioquímica Médica Leopoldo de Meis; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| | - M.T. Bozza
- Instituto de Microbiologia Paulo de Góes; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| |
Collapse
|
41
|
Antiviral and Antioxidant Activities of Sulfated Galactomannans from Plants of Caatinga Biome. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:591214. [PMID: 26257815 PMCID: PMC4516832 DOI: 10.1155/2015/591214] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/11/2015] [Accepted: 06/16/2015] [Indexed: 11/26/2022]
Abstract
Dengue represents a serious social and economic public health problem; then trying to contribute to improve its control, the objective of this research was to develop phytoterapics for dengue treatment using natural resources from Caatinga biome. Galactomannans isolated from Adenanthera pavonina L., Caesalpinia ferrea Mart., and Dimorphandra gardneriana Tull were chemically sulfated in order to evaluate the antioxidant, and antiviral activities and the role in the inhibition of virus DENV-2 in Vero cells. A positive correlation between the degree of sulfation, antioxidant and antiviral activities was observed. The sulfated galactomannans showed binding to the virus surface, indicating that they interact with DENV-2. The sulfated galactomannans from C. ferrea showed 96% inhibition of replication of DENV-2 followed by D. gardneriana (94%) and A. pavonina (77%) at 25 µg/mL and all sulfated galactomannans also showed antioxidant activity. This work is the first report of the antioxidant and antiviral effects of sulfated galactomannans against DENV-2. The results are very promising and suggest that these sulfated galactomannans from plants of Caatinga biome act in the early step of viral infection. Thus, sulfated galactomannans may act as an entry inhibitor of DENV-2.
Collapse
|
42
|
Yasamut U, Tongmuang N, Yenchitsomanus PT, Junking M, Noisakran S, Puttikhunt C, Chu JJH, Limjindaporn T. Adaptor Protein 1A Facilitates Dengue Virus Replication. PLoS One 2015; 10:e0130065. [PMID: 26090672 PMCID: PMC4474434 DOI: 10.1371/journal.pone.0130065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/15/2015] [Indexed: 11/23/2022] Open
Abstract
Rearrangement of membrane structure induced by dengue virus (DENV) is essential for replication, and requires host cellular machinery. Adaptor protein complex (AP)-1 is a host component, which can be recruited to components required for membrane rearrangement. Therefore, dysfunction of AP-1 may affect membrane organization, thereby decreasing replication of virus in infected cells. In the present study, AP-1-dependent traffic inhibitor inhibited DENV protein expression and virion production. We further clarified the role of AP-1A in the life cycle of DENV by RNA interference. AP-1A was not involved in DENV entry into cells. However, it facilitated DENV RNA replication. Viral RNA level was reduced significantly in Huh7 cells transfected with AP-1A small interfering RNA (siRNA) compared with control siRNA. Transfection of naked DENV viral RNA into Huh7 cells transfected with AP-1A siRNA resulted in less viral RNA and virion production than transfection into Huh7 cells transfected with control siRNA. Huh7 cells transfected with AP-1A siRNA showed greater modification of membrane structures and fewer vesicular packets compared with cells transfected with control siRNA. Therefore, AP-1A may partly control DENV-induced rearrangement of membrane structures required for viral replication.
Collapse
Affiliation(s)
- Umpa Yasamut
- Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nopprarat Tongmuang
- Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pa-thai Yenchitsomanus
- Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Mutita Junking
- Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sansanee Noisakran
- Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, Thailand
| | - Chunya Puttikhunt
- Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, Thailand
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore
| | - Thawornchai Limjindaporn
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
43
|
Castilla V, Piccini LE, Damonte EB. Dengue virus entry and trafficking: perspectives as antiviral target for prevention and therapy. Future Virol 2015. [DOI: 10.2217/fvl.15.35] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
ABSTRACT Dengue virus (DENV) is the etiological agent of the most important human viral infection transmitted by mosquitoes in the world. In spite of the serious health threat that dengue represents, at present there are no vaccine or antiviral agents available and treatment of patients consists of supportive therapy. This review will focus on the process of DENV entry into the host cell as a potential target for antiviral therapy. The recent advances in the knowledge of viral and cellular molecules and mechanisms involved in binding, internalization and trafficking of DENV into the host cell until virion uncoating are discussed, together with an overview of the strategies and compounds evaluated for development of antiviral agents targeted to DENV entry.
Collapse
Affiliation(s)
- Viviana Castilla
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Ciudad Universitaria, Pabellón 2, Piso 4, 1428 Buenos Aires, Argentina
| | - Luana E Piccini
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Ciudad Universitaria, Pabellón 2, Piso 4, 1428 Buenos Aires, Argentina
| | - Elsa B Damonte
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Ciudad Universitaria, Pabellón 2, Piso 4, 1428 Buenos Aires, Argentina
| |
Collapse
|
44
|
Calvert JK, Helbig KJ, Dimasi D, Cockshell M, Beard MR, Pitson SM, Bonder CS, Carr JM. Dengue Virus Infection of Primary Endothelial Cells Induces Innate Immune Responses, Changes in Endothelial Cells Function and Is Restricted by Interferon-Stimulated Responses. J Interferon Cytokine Res 2015; 35:654-65. [PMID: 25902155 DOI: 10.1089/jir.2014.0195] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although endothelial cell (EC) infection is not widespread during dengue virus (DENV) infection in vivo, the endothelium is the site of the pathogenic effects seen in severe DENV disease. In this study, we investigated DENV infection of primary EC and defined factors that influence infection in this cell type. Consistent with in vivo findings where EC infection is infrequent, only 3%-15% of EC became productively DENV-2-infected in vitro. This low level infection could not be attributed to inhibition by heparin, EC donor variation, heterogeneity, or biological source. DENV-infection of EC was associated with induction of innate immune responses, including increased STAT1 protein, STAT1- phosphorylation, interferon (IFN)-β, OAS-1, IFIT-1/ISG56, and viperin mRNA. Antibody blocking of IFN-β inhibited the induction of OAS1, IFIT1/ISG56, and viperin while shRNA knockdown of viperin enhanced DENV-infection in EC. DENV-infection of EC resulted in increased activity of sphingosine kinase 1, a factor important in maintaining vascular integrity, and altered basal and stimulated changes in barrier integrity of DENV-infected EC monolayers. Thus, DENV productively infects only a small percentage of primary EC but this has a major influence on induction of IFN-β driven innate immune responses that can restrict infection while the EC themselves are functionally altered. These changes may have important consequences for the endothelium and are reflective of pathogenic changes associated with vascular leakage, as seen in DENV disease.
Collapse
Affiliation(s)
- Julie K Calvert
- 1 Microbiology and Infectious Diseases, School of Medicine, Flinders University , Adelaide, South Australia
| | - Karla J Helbig
- 2 School of Molecular and Biomedical Science, University of Adelaide , Adelaide, South Australia
| | - David Dimasi
- 3 Centre for Cancer Biology, University of South Australia and SA Pathology , Adelaide, South Australia
| | - Michaelia Cockshell
- 3 Centre for Cancer Biology, University of South Australia and SA Pathology , Adelaide, South Australia
| | - Michael R Beard
- 2 School of Molecular and Biomedical Science, University of Adelaide , Adelaide, South Australia.,3 Centre for Cancer Biology, University of South Australia and SA Pathology , Adelaide, South Australia
| | - Stuart M Pitson
- 3 Centre for Cancer Biology, University of South Australia and SA Pathology , Adelaide, South Australia
| | - Claudine S Bonder
- 3 Centre for Cancer Biology, University of South Australia and SA Pathology , Adelaide, South Australia
| | - Jillian M Carr
- 1 Microbiology and Infectious Diseases, School of Medicine, Flinders University , Adelaide, South Australia
| |
Collapse
|
45
|
Skidmore MA, Kajaste-Rudnitski A, Wells NM, Guimond SE, Rudd TR, Yates EA, Vicenzi E. Inhibition of influenza H5N1 invasion by modified heparin derivatives. MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00516c] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemically modified heparin derivatives offer a potential source of effective inhibitors of viral attachment, which are suitable for further optimisation.
Collapse
Affiliation(s)
- Mark A. Skidmore
- Department of Biochemistry
- Institute of Integrative Biology
- University of Liverpool
- UK
- School of Life Sciences
| | - Anna Kajaste-Rudnitski
- San Raffaele Telethon Institute for Gene Therapy (TIGET)
- and Division of Regenerative Medicine, Stem Cells and Gene Therapy
- Milan
- Italy
| | - Nicola M. Wells
- Department of Biochemistry
- Institute of Integrative Biology
- University of Liverpool
- UK
| | - Scott E. Guimond
- Department of Biochemistry
- Institute of Integrative Biology
- University of Liverpool
- UK
| | - Timothy R. Rudd
- Diamond Light Source Ltd
- Didcot
- UK
- Department of Biochemistry
- Institute of Integrative Biology
| | - Edwin A. Yates
- Department of Biochemistry
- Institute of Integrative Biology
- University of Liverpool
- UK
| | - Elisa Vicenzi
- Viral Pathogens and Biosafety Unit
- Division of Immunology, Transplantation and Infectious Diseases
- San Raffaele Scientific Institute
- Milano
- Italy
| |
Collapse
|
46
|
Cruz-Oliveira C, Freire JM, Conceição TM, Higa LM, Castanho MARB, Da Poian AT. Receptors and routes of dengue virus entry into the host cells. FEMS Microbiol Rev 2014; 39:155-70. [PMID: 25725010 DOI: 10.1093/femsre/fuu004] [Citation(s) in RCA: 226] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dengue is the most prevalent arthropod-borne viral disease, caused by dengue virus, a member of the Flaviviridae family. Its worldwide incidence is now a major health problem, with 2.5 billion people living in risk areas. In this review, we integrate the structural rearrangements of each viral protein and their functions in all the steps of virus entry into the host cells. We describe in detail the putative receptors and attachment factors in mammalian and mosquito cells, and the recognition of viral immunocomplexes via Fcγ receptor in immune cells. We also discuss that virus internalization might occur through distinct entry pathways, including clathrin-mediated or non-classical clathrin-independent endocytosis, depending on the host cell and virus serotype or strain. The implications of viral maturation in virus entry are also explored. Finally, we discuss the mechanisms of viral genome access to the cytoplasm. This includes the role of low pH-induced conformational changes in the envelope protein that mediate membrane fusion, and original insights raised by our recent work that supports the hypothesis that capsid protein would also be an active player in this process, acting on viral genome translocation into the cytoplasm.
Collapse
Affiliation(s)
- Christine Cruz-Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - João Miguel Freire
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Thaís M Conceição
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Luiza M Higa
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Miguel A R B Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Andrea T Da Poian
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| |
Collapse
|
47
|
Dalrymple NA, Mackow ER. Virus interactions with endothelial cell receptors: implications for viral pathogenesis. Curr Opin Virol 2014; 7:134-40. [PMID: 25063986 PMCID: PMC4206553 DOI: 10.1016/j.coviro.2014.06.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 06/10/2014] [Accepted: 06/27/2014] [Indexed: 01/14/2023]
Abstract
The endothelial lining of the vasculature performs a vital role in maintaining fluid barrier functions despite balancing nutrient and fluid content of tissues, repairing localized damage, coordinating responses of a plethora of factors, immune cells and platelets through a multitude of endothelial cell surface receptors. Viruses that nonlytically cause lethal hemorrhagic or edematous diseases engage receptors on vascular and lymphatic endothelial cells, altering normal cellular responses that control capillary leakage and fluid clearance functions with lethal consequences. Recent studies indicate that receptors directing dengue virus and hantavirus infection of the endothelium contribute to the dysregulation of normal endothelial cell signaling responses that control capillary permeability and immune responses that contribute to pathogenesis. Here we present recent studies of virally altered endothelial functions that provide new insight into targeting barrier functions of the endothelium as a potential therapeutic approach.
Collapse
|
48
|
Abstract
Dengue virus (DENV) is an emerging mosquito-borne human pathogen that affects millions of individuals each year by causing severe and potentially fatal syndromes. Despite intense research efforts, no approved vaccine or antiviral therapy is yet available. Overcoming this limitation requires detailed understanding of the intimate relationship between the virus and its host cell, providing the basis to devise optimal prophylactic and therapeutic treatment options. With the advent of novel high-throughput technologies including functional genomics, transcriptomics, proteomics, and lipidomics, new important insights into the DENV replication cycle and the interaction of this virus with its host cell have been obtained. In this chapter, we provide a comprehensive overview on the current status of the DENV research field, covering every step of the viral replication cycle with a particular focus on virus-host cell interaction. We will also review specific chemical inhibitors targeting cellular factors and processes of relevance for the DENV replication cycle and their possible exploitation for the development of next generation antivirals.
Collapse
|
49
|
Roy S, El Hadri A, Richard S, Denis F, Holte K, Duffner J, Yu F, Galcheva-Gargova Z, Capila I, Schultes B, Petitou M, Kaundinya GV. Synthesis and biological evaluation of a unique heparin mimetic hexasaccharide for structure-activity relationship studies. J Med Chem 2014; 57:4511-20. [PMID: 24786387 DOI: 10.1021/jm4016069] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To date, the structure-activity relationship studies of heparin/heparan sulfate with their diverse binding partners such as growth factors, cytokines, chemokines, and extracellular matrix proteins have been limited yet provide early insight that specific sequences contribute to this manifold biological role. This has led to an impetus for the chemical synthesis of oligosaccharide fragments of these complex polysaccharides, which can provide an effective tool for this goal. The synthesis of three heparin mimetic hexasaccharides with distinct structural patterns is described herein, and the influence of the targeted substitution on their bioactivity profiles is studied using in vitro affinity and/or inhibition toward different growth factors and proteins. Additionally, the particularly challenging synthesis of an irregular hexasaccharide is reported, which, interestingly, in spite of being considerably structurally similar with its two counterparts, displayed a unique and remarkably distinct profile in the test assays.
Collapse
Affiliation(s)
- Sucharita Roy
- Momenta Pharmaceuticals Inc. , 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Acosta EG, Piccini LE, Talarico LB, Castilla V, Damonte EB. Changes in antiviral susceptibility to entry inhibitors and endocytic uptake of dengue-2 virus serially passaged in Vero or C6/36 cells. Virus Res 2014; 184:39-43. [DOI: 10.1016/j.virusres.2014.02.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 01/24/2014] [Accepted: 02/17/2014] [Indexed: 12/11/2022]
|