1
|
Ruan Z, Wang Y, Shi L, Yang XJ. Progress of research on glucose transporter proteins in hepatocellular carcinoma. World J Hepatol 2025; 17:104715. [DOI: 10.4254/wjh.v17.i3.104715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/02/2025] [Accepted: 02/17/2025] [Indexed: 03/26/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumour with high prevalence and mortality rate worldwide. Metabolic reprogramming of cancer cells may be a major factor in the process of this disease. Glucose transporter proteins (GLUTs) are members of the major facilitator superfamily of membrane transporters, playing a pivotal role in the metabolic reprogramming and tumour progression in HCC. This review discusses the advances in the study of GLUTs in HCC, including the expression patterns, functions and possibilities of GLUTs. In HCC, the expression levels of GLUTs are closely associated with tumour aggressiveness, metabolic reprogramming and prognosis. A series of inhibitors have been demonstrated efficacy in inhibiting HCC cell growth and glucose uptake in in vitro and in vivo models. These inhibitors offer a novel approach to HCC treatment by reducing the glucose metabolism of tumour cells, thereby impeding tumour growth, and concurrently enhancing the sensitivity to chemotherapeutic agents. This reminds us of the urgent need to elucidate GLUTs’ roles in HCC and to determine the most effective ways to translate these findings into clinical practice.
Collapse
Affiliation(s)
- Zheng Ruan
- The First Clinical Medical School, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Yan Wang
- Division of Personnel, Gansu Provincial People’s Hospital, Lanzhou 730000, Gansu Province, China
| | - Lei Shi
- Department of General Surgery, The Second people’s Hospital of Lanzhou, Lanzhou 730000, Gansu Province, China
| | - Xiao-Jun Yang
- Department of General Surgery, Gansu Provincial People’s Hospital, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
2
|
Wang K, Li X, Guo S, Chen J, Lv Y, Guo Z, Liu H. Metabolic reprogramming of glucose: the metabolic basis for the occurrence and development of hepatocellular carcinoma. Front Oncol 2025; 15:1545086. [PMID: 39980550 PMCID: PMC11839411 DOI: 10.3389/fonc.2025.1545086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
Primary liver cancer is a common malignant tumor of the digestive system, with hepatocellular carcinoma (HCC) being the most prevalent type. It is characterized by high malignancy, insidious onset, and a lack of specific early diagnostic and therapeutic markers, posing a serious threat to human health. The occurrence and development of HCC are closely related to its metabolic processes. Similar to other malignant tumors, metabolic reprogramming occurs extensively in tumor cells, with glucose metabolism reprogramming being particularly prominent. This is characterized by abnormal activation of glycolysis and inhibition of oxidative phosphorylation and gluconeogenesis, among other changes. Glucose metabolism reprogramming provides intermediates and energy for HCC to meet its demands for rapid growth, proliferation, and metastasis. Additionally, various enzymes and signaling molecules involved in glucose metabolism reprogramming play irreplaceable roles. Therefore, regulating key metabolic enzymes and pathways in these processes is considered an important target for the diagnosis and treatment of HCC. This paper reviews the current status and progress of glucose metabolism reprogramming in HCC, aiming to provide new insights for the diagnosis, detection, and comprehensive treatment strategies of HCC involving combined glucose metabolism intervention in clinical settings.
Collapse
Affiliation(s)
- Kai Wang
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Xiaodan Li
- Department of Pediatric Health Care, Zhangzi County Maternal and Child Health Family Planning Service Center, Changzhi, Shanxi, China
| | - Shuwei Guo
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Junsheng Chen
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Yandong Lv
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Zhiqiang Guo
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Hongzhou Liu
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| |
Collapse
|
3
|
Wu M, Feng L, Wang Y, Zhang K, Lan G, Liang J. MiRNA-455-5p regulates the growth and development of adipose tissue by targeting
IGF-1R
gene. JOURNAL OF APPLIED ANIMAL RESEARCH 2024; 52. [DOI: 10.1080/09712119.2024.2399510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/28/2024] [Indexed: 01/03/2025]
Affiliation(s)
- Min Wu
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Guangxi Nanning, People’s Republic of China
| | - Lingli Feng
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Guangxi Nanning, People’s Republic of China
| | - Yubin Wang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Guangxi Nanning, People’s Republic of China
| | - Kun Zhang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Guangxi Nanning, People’s Republic of China
| | - Ganqiu Lan
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Guangxi Nanning, People’s Republic of China
| | - Jing Liang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Guangxi Nanning, People’s Republic of China
| |
Collapse
|
4
|
Han DH, Shin MK, Sung JS, Kim M. miR-335-3p attenuates transforming growth factor beta 1-induced fibrosis by suppressing Thrombospondin 1. PLoS One 2024; 19:e0311594. [PMID: 39374214 PMCID: PMC11457990 DOI: 10.1371/journal.pone.0311594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/20/2024] [Indexed: 10/09/2024] Open
Abstract
Pulmonary fibrosis is characterized by excessive extracellular matrix (ECM) accumulation caused by detrimental stimuli. The progressive impairment in lung functions is chronic and highly fatal, presenting itself as a global health challenge. Because of the lack of efficacious treatments, the underlying mechanism should be investigated. The progression of fibrosis involves transforming growth factor-beta 1 (TGF-β1), which accelerates ECM production via epithelial-mesenchymal transition and cell invasion. As microRNAs (miRNAs) serve as regulators of disease development and progression, this study aimed to investigate the interaction of miRNAs and target genes that could contribute to pulmonary fibrosis when exposed to TGF-β1. Differentially expressed mRNA and miRNA were identified in respiratory epithelial cells via transcriptome analysis by using the constructed TGF-β1-induced fibrosis model. Our results revealed a significant increase in the expression of thrombospondin 1 (THBS1), which participates in TGF-β1 activation, where THBS1 was identified as a core gene in protein interactions analyzed through bioinformatics. The expression of miR-335-3p, which targets 3'-UTR of THBS1, substantially decreased upon TGF-β1 treatment. The TGF-β1 downstream signal was suppressed by inhibiting the interaction between TGF-β1 and THBS1, consequently alleviating fibrosis. When the miR-335-3p mimic was transfected in TGF-β1-treated respiratory epithelial cells, THBS1 and fibrosis markers were downregulated, while the introduction of miR-335-3p inhibitor exhibited a reverse phenomenon. Our findings demonstrated that TGF-β1 exposure to respiratory epithelial cells led to a decrease in miR-335-3p expression, resulting in the upregulation of THBS1 and ultimately exacerbating fibrosis. This study provides insights into TGF-β1-induced pulmonary fibrosis, suggesting new therapeutic targets and mechanisms.
Collapse
Affiliation(s)
- Dong-Hee Han
- Department of Life Science, Biomedi Campus, Dongguk University-Seoul, Goyang-si, Gyeonggi-do, Korea
| | - Min Kyoung Shin
- Department of Life Science, Biomedi Campus, Dongguk University-Seoul, Goyang-si, Gyeonggi-do, Korea
| | - Jung-Suk Sung
- Department of Life Science, Biomedi Campus, Dongguk University-Seoul, Goyang-si, Gyeonggi-do, Korea
| | - Min Kim
- Department of Life Science, Biomedi Campus, Dongguk University-Seoul, Goyang-si, Gyeonggi-do, Korea
| |
Collapse
|
5
|
Mahboobnia K, Beveridge DJ, Yeoh GC, Kabir TD, Leedman PJ. MicroRNAs in Hepatocellular Carcinoma Pathogenesis: Insights into Mechanisms and Therapeutic Opportunities. Int J Mol Sci 2024; 25:9393. [PMID: 39273339 PMCID: PMC11395074 DOI: 10.3390/ijms25179393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Hepatocellular carcinoma (HCC) presents a significant global health burden, with alarming statistics revealing its rising incidence and high mortality rates. Despite advances in medical care, HCC treatment remains challenging due to late-stage diagnosis, limited effective therapeutic options, tumor heterogeneity, and drug resistance. MicroRNAs (miRNAs) have attracted substantial attention as key regulators of HCC pathogenesis. These small non-coding RNA molecules play pivotal roles in modulating gene expression, implicated in various cellular processes relevant to cancer development. Understanding the intricate network of miRNA-mediated molecular pathways in HCC is essential for unraveling the complex mechanisms underlying hepatocarcinogenesis and developing novel therapeutic approaches. This manuscript aims to provide a comprehensive review of recent experimental and clinical discoveries regarding the complex role of miRNAs in influencing the key hallmarks of HCC, as well as their promising clinical utility as potential therapeutic targets.
Collapse
Affiliation(s)
- Khadijeh Mahboobnia
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Dianne J Beveridge
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - George C Yeoh
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Tasnuva D Kabir
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Peter J Leedman
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
6
|
Ni X, Lu CP, Xu GQ, Ma JJ. Transcriptional regulation and post-translational modifications in the glycolytic pathway for targeted cancer therapy. Acta Pharmacol Sin 2024; 45:1533-1555. [PMID: 38622288 PMCID: PMC11272797 DOI: 10.1038/s41401-024-01264-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/08/2024] [Indexed: 04/17/2024]
Abstract
Cancer cells largely rely on aerobic glycolysis or the Warburg effect to generate essential biomolecules and energy for their rapid growth. The key modulators in glycolysis including glucose transporters and enzymes, e.g. hexokinase 2, enolase 1, pyruvate kinase M2, lactate dehydrogenase A, play indispensable roles in glucose uptake, glucose consumption, ATP generation, lactate production, etc. Transcriptional regulation and post-translational modifications (PTMs) of these critical modulators are important for signal transduction and metabolic reprogramming in the glycolytic pathway, which can provide energy advantages to cancer cell growth. In this review we recapitulate the recent advances in research on glycolytic modulators of cancer cells and analyze the strategies targeting these vital modulators including small-molecule inhibitors and microRNAs (miRNAs) for targeted cancer therapy. We focus on the regulation of the glycolytic pathway at the transcription level (e.g., hypoxia-inducible factor 1, c-MYC, p53, sine oculis homeobox homolog 1, N6-methyladenosine modification) and PTMs (including phosphorylation, methylation, acetylation, ubiquitination, etc.) of the key regulators in these processes. This review will provide a comprehensive understanding of the regulation of the key modulators in the glycolytic pathway and might shed light on the targeted cancer therapy at different molecular levels.
Collapse
Affiliation(s)
- Xuan Ni
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215123, China
| | - Cheng-Piao Lu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China
| | - Guo-Qiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China.
- Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215123, China.
| | - Jing-Jing Ma
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
7
|
Zhang Y, He H, He L, Shi B. IL-6 Accelerates the Proliferation and Metastasis of Pancreatic Cancer Cells via the miR-455-5p/IGF-1R Axis. Cancer Biother Radiopharm 2024; 39:255-263. [PMID: 36595346 DOI: 10.1089/cbr.2022.0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background: Pancreatic cancer (PaC) is a highly malignant gastrointestinal tumor with invasive and metastatic characteristics. Interleukin-6 (IL-6), a negative prognostic marker, contributes to PaC progression. However, the mechanism of IL-6 in PaC is not yet fully understood. Methods: miR-455-5p levels were first tested by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in PaC tissues or cells. Subsequently, PaC cell-related functions were identified through CCK-8, Transwell, and Western blotting. Changes in miR-455-5p and IGF-1R expression were confirmed using RT-qPCR and Western blotting. miR-455-5p methylation was assessed by bisulfite sequencing PCR. Results: The authors discovered that miR-455-5p was expressed at low levels in PaC tissues and cells, and miR-455-5p expression was observably reduced by IL-6 in PaC cells. In addition, IL-6 dramatically induces miR-455-5p methylation in PaC cells. Functionally, the data revealed that IL-6 could facilitate the malignant properties of PaC cells, including proliferation, epithelial-mesenchymal transition, and metastasis. The authors found that miR-455-5p could suppress the progression of PaC cells by downregulating IGF-1R in PaC cells. Mechanistically, IL-6 downregulated miR-455-5p and upregulated IGF-1R, and miR-455-5p reduced IGF-1R expression through targeted binding. Conclusions: The authors demonstrated that the miR-455-5p/IGF-1R axis is necessary for the induction of IL-6 in PaC progression. The results here may provide a theoretical basis for the application of the IL-6/miR-455-5p/IGF-1R axis in the clinical therapy of PaC.
Collapse
Affiliation(s)
- Yuting Zhang
- Department of Gynaecology and Obstetrics, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Huan He
- Department of Gastroenterology, School of Medicine, Chongqing University Cancer Hospital, Chongqing University, Chongqing, China
| | - Lanying He
- Department of Gastroenterology, School of Medicine, Chongqing University Cancer Hospital, Chongqing University, Chongqing, China
| | - Bing Shi
- Department of Gastroenterology, School of Medicine, Chongqing University Cancer Hospital, Chongqing University, Chongqing, China
| |
Collapse
|
8
|
Zhang Q, Duan H, Yang W, Liu H, Tao X, Zhang Y. Circ_0005615 restrains the progression of multiple myeloma through modulating miR-331-3p and IGF1R regulatory cascade. J Orthop Surg Res 2023; 18:356. [PMID: 37173768 PMCID: PMC10176712 DOI: 10.1186/s13018-023-03832-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Circular RNAs are implicated in modulating the progression of various malignant tumors. However, the function and underlying mechanisms of circ_0005615 in multiple myeloma (MM) remain unclear. METHODS The expression levels of circ_0005615, miR-331-3p and IGF1R were tested by quantitative real-time polymerase chain reaction or western blot assay. Cell counting kit-8 and 5-ethynyl-2'-deoxyuridine (EdU) assay were performed for cell proliferation detection. Cell apoptosis and cell cycle were measured by flow cytometry. The protein expressions of Bax and Bcl-2 were detected by western blot assay. Glucose consumption, lactate production and ATP/ADP ratios were estimated to disclose cell glycolysis. The interaction relationship among miR-331-3p and circ_0005615 or IGF1R was proved by dual-luciferase reporter assay. RESULTS The abundance of circ_0005615 and IGF1R was increased in MM patients and cells, while the expression of miR-331-3p was decreased. Circ_0005615 inhibition retarded the proliferation and cell cycle progression, while reinforced the apoptosis of MM cells. Molecularly, circ_0005615 could sponge miR-331-3p, and the repressive trends of circ_0005615 deficiency on MM progression could be alleviated by anti-miR-331-3p introduction. Additionally, IGF1R was validated to be targeted by miR-331-3p, and IGF1R overexpression mitigated the suppressive function of miR-331-3p on MM development. Furthermore, IGF1R was mediated by circ_0005615/miR-331-3p axis in MM cells. CONCLUSION Circ_0005615 downregulation blocked MM development by targeting miR-331-3p/IGF1R axis.
Collapse
Affiliation(s)
- Qinxin Zhang
- Department of Spinal Surgery, Ordos Central Hospital, Ordos, 017000, Inner Mongolia, China
| | - Hui Duan
- Center for Local Diseases and Chronic Diseases, Dongsheng District Center for Disease Control and Preventio, Ordos, 017000, Inner Mongolia, China
| | - Wupeng Yang
- Department of Spinal Surgery, Ordos Central Hospital, Ordos, 017000, Inner Mongolia, China
| | - Hao Liu
- Department of Spinal Surgery, Ordos Central Hospital, Ordos, 017000, Inner Mongolia, China
| | - Xiaoyang Tao
- Department of Spinal Surgery, Ordos Central Hospital, Ordos, 017000, Inner Mongolia, China
| | - Yan Zhang
- Department of Medical Imaging, Ordos Central Hospital, No. 23, Yijinhuoluoxi Street, Dongsheng District, Ordos, 017000, Inner Mongolia, China.
| |
Collapse
|
9
|
Beylerli O, Sufianova G, Shumadalova A, Zhang D, Gareev I. MicroRNAs-mediated regulation of glucose transporter (GLUT) expression in glioblastoma. Noncoding RNA Res 2022; 7:205-211. [PMID: 36157351 PMCID: PMC9467858 DOI: 10.1016/j.ncrna.2022.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/23/2022] [Accepted: 09/01/2022] [Indexed: 12/01/2022] Open
Abstract
Current knowledge about the role of microRNAs (miRNAs) in tumor glucose metabolism is growing, and a number of studies regularly confirm the impact miRNAs can have on glucose metabolism reprogramming in tumors. However, there remains a lack of understanding of the broader perspective on the role of miRNAs in energy reprogramming in glioblastoma. An important role in the metabolism of glucose is played by carrier proteins that ensure its transmembrane movement. Carrier proteins in mammalian cells are glucose transporters (GLUTs). In total, 12 types of GLUTs are distinguished, differing in localization, affinity for glucose and ability to regulate. The fact of increased consumption of glucose in tumors compared to non-proliferating normal tissues is known. Tumor cells need glucose to ensure their survival and growth, so the type of transport proteins like GLUT are critical for them. Previous studies have shown that GLUT-1 and GLUT-3 may play an important role in the development of some types of malignant tumors, including glioblastoma. In addition, there is evidence of how GLUT-1 and GLUT-3 expression is regulated by miRNAs in glioblastoma. Thus, the aim of this study is to highlight the role of specific miRNAs in modulating GLUT levels in order to take into account the use of miRNAs expression modulators as a useful strategy to increase the sensitivity of glioblastoma to current therapies.
Collapse
Affiliation(s)
- Ozal Beylerli
- Рeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| | - Galina Sufianova
- Department of Pharmacology, Tyumen State Medical University, 54 Odesskaya Street, 625023, Tyumen, Russia
| | - Alina Shumadalova
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Daming Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Ilgiz Gareev
- Рeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| |
Collapse
|
10
|
Feng F, Pan L, Wu J, Liu M, He L, Yang L, Zhou W. Schisantherin A inhibits cell proliferation by regulating glucose metabolism pathway in hepatocellular carcinoma. Front Pharmacol 2022; 13:1019486. [PMID: 36425581 PMCID: PMC9679220 DOI: 10.3389/fphar.2022.1019486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/26/2022] [Indexed: 08/06/2023] Open
Abstract
Schisantherin A (STA) is a traditional Chinese medicine extracted from the plant Schisandra chinensis, which has a wide range of anti-inflammatory, antioxidant, and other pharmacological effects. This study investigates the anti-hepatocellular carcinoma effects of STA and the underlying mechanisms. STA significantly inhibits the proliferation and migration of Hep3B and HCCLM3 cells in vitro in a concentration-dependent manner. RNA-sequencing showed that 77 genes are upregulated and 136 genes are downregulated in STA-treated cells compared with untreated cells. KEGG pathway analysis showed significant enrichment in galactose metabolism as well as in fructose and mannose metabolism. Further gas chromatography-mass spectrometric analysis (GC-MS) confirmed this, indicating that STA significantly inhibits the glucose metabolism pathway of Hep3B cells. Tumor xenograft in nude mice showed that STA has a significant inhibitory effect on tumor growth in vivo. In conclusion, our results indicate that STA can inhibit cell proliferation by regulating glucose metabolism, with subsequent anti-tumor effects, and has the potential to be a candidate drug for the treatment of liver cancer.
Collapse
Affiliation(s)
- Fan Feng
- National Innovation and Attracting Talents “111” Base, Key Laboratory of Biorheological Science and Technology, College of Bioengineering, Ministry of Education, Chongqing University, Chongqing, China
| | - Lianhong Pan
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing, China
| | - Jiaqin Wu
- National Innovation and Attracting Talents “111” Base, Key Laboratory of Biorheological Science and Technology, College of Bioengineering, Ministry of Education, Chongqing University, Chongqing, China
| | - Mingying Liu
- School of Comprehensive Health Management, XiHua University, Chengdu, Sichuan, China
| | - Long He
- School of Artificial Intelligence, Chongqing University of Education, Chongqing, China
| | - Li Yang
- National Innovation and Attracting Talents “111” Base, Key Laboratory of Biorheological Science and Technology, College of Bioengineering, Ministry of Education, Chongqing University, Chongqing, China
| | - Wei Zhou
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
11
|
Temre MK, Kumar A, Singh SM. An appraisal of the current status of inhibition of glucose transporters as an emerging antineoplastic approach: Promising potential of new pan-GLUT inhibitors. Front Pharmacol 2022; 13:1035510. [PMID: 36386187 PMCID: PMC9663470 DOI: 10.3389/fphar.2022.1035510] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/18/2022] [Indexed: 07/23/2023] Open
Abstract
Neoplastic cells displayed altered metabolism with accelerated glycolysis. Therefore, these cells need a mammoth supply of glucose for which they display an upregulated expression of various glucose transporters (GLUT). Thus, novel antineoplastic strategies focus on inhibiting GLUT to intersect the glycolytic lifeline of cancer cells. This review focuses on the current status of various GLUT inhibition scenarios. The GLUT inhibitors belong to both natural and synthetic small inhibitory molecules category. As neoplastic cells express multiple GLUT isoforms, it is necessary to use pan-GLUT inhibitors. Nevertheless, it is also necessary that such pan-GLUT inhibitors exert their action at a low concentration so that normal healthy cells are left unharmed and minimal injury is caused to the other vital organs and systems of the body. Moreover, approaches are also emerging from combining GLUT inhibitors with other chemotherapeutic agents to potentiate the antineoplastic action. A new pan-GLUT inhibitor named glutor, a piperazine-one derivative, has shown a potent antineoplastic action owing to its inhibitory action exerted at nanomolar concentrations. The review discusses the merits and limitations of the existing GLUT inhibitory approach with possible future outcomes.
Collapse
Affiliation(s)
- Mithlesh Kumar Temre
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ajay Kumar
- Deparment of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sukh Mahendra Singh
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
12
|
Li H, Lin D, Wang X, Feng Z, Zhang J, Wang K. The development of a novel signature based on the m6A RNA methylation regulator-related ceRNA network to predict prognosis and therapy response in sarcomas. Front Genet 2022; 13:894080. [PMID: 36313417 PMCID: PMC9597465 DOI: 10.3389/fgene.2022.894080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background: N6 methyladenosine (m6A)-related noncoding RNAs (including lncRNAs and miRNAs) are closely related to the development of cancer. However, the gene signature and prognostic value of m6A regulators and m6A-associated RNAs in regulating sarcoma (SARC) development and progression remain largely unexplored. Therefore, further research is required. Methods: We obtained expression data for RNA sequencing (RNA-seq) and miRNAs of SARC from The Cancer Genome Atlas (TCGA) datasets. Correlation analysis and two target gene prediction databases (miRTarBase and LncBase v.2) were used to deduce m6A-related miRNAs and lncRNAs, and Cytoscape software was used to construct ceRNA-regulating networks. Based on univariate Cox regression and least absolute shrinkage and selection operator (LASSO) Cox regression analyses, an m6A-associated RNA risk signature (m6Ascore) model was established. Prognostic differences between subgroups were explored using Kaplan–Meier (KM) analysis. Risk score-related biological phenotypes were analyzed in terms of functional enrichment, tumor immune signature, and tumor mutation signature. Finally, potential immunotherapy features and drug sensitivity predictions for this model were also discussed. Results: A total of 16 miRNAs, 104 lncRNAs, and 11 mRNAs were incorporated into the ceRNA network. The risk score was obtained based on RP11-283I3.6, hsa-miR-455-3p, and CBLL1. Patients were divided into two risk groups using the risk score, with patients in the low-risk group having longer overall survival (OS) than those in the high-risk group. The receiver operating characteristic (ROC) curves indicated that risk characteristic performed well in predicting the prognosis of patients with SARC. In addition, lower m6Ascore was also positively correlated with the abundance of immune cells such as monocytes and mast cells activated, and several immune checkpoint genes were highly expressed in the low-m6Ascore group. According to our analysis, lower m6Ascore may lead to better immunotherapy response and OS outcomes. The risk signature was significantly associated with the chemosensitivity of SARC. Finally, a nomogram was constructed to predict the OS in patients with SARC. The concordance index (C-index) for the nomogram was 0.744 (95% CI: 0.707–0.784). The decision curve analysis (DCA), calibration plot, and ROC curve all showed that this nomogram had good predictive performance. Conclusion: This m6Ascore risk model based on m6A RNA methylation regulator-related RNAs may be promising for clinical prediction of prognosis and might contain potential biomarkers for treatment response prediction for SARC patients.
Collapse
Affiliation(s)
- Huling Li
- School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Dandan Lin
- School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Xiaoyan Wang
- School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Zhiwei Feng
- School of Continuing Education, Xinjiang Medical University, Urumqi, China
| | - Jing Zhang
- School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Kai Wang
- Department of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, China
- *Correspondence: Kai Wang,
| |
Collapse
|
13
|
Liao W, Du J, Wang Z, Feng Q, Liao M, Liu H, Yuan K, Zeng Y. The role and mechanism of noncoding RNAs in regulation of metabolic reprogramming in hepatocellular carcinoma. Int J Cancer 2022; 151:337-347. [PMID: 35460073 PMCID: PMC9325518 DOI: 10.1002/ijc.34040] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/24/2022] [Accepted: 04/05/2022] [Indexed: 02/05/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer. Metabolic reprogramming is considered to be an important hallmark of cancer. Emerging studies have demonstrated that noncoding RNAs (ncRNAs) are closely associated with metabolic reprogramming of HCC. NcRNAs can directly regulate the expressions or functions of metabolic enzymes or indirectly regulate the metabolism of HCC cells through some vital signaling pathways. Until now, the mechanisms of HCC development and progression remain largely unclear, and understanding the regulatory mechanism of ncRNAs on metabolic reprogramming of HCC may provide an important basis for breakthrough progress in the treatment of HCC. In this review, we summarize the ncRNAs involved in regulating metabolic reprogramming of HCC. Specifically, the regulatory roles of ncRNAs in glucose, lipid and amino acid metabolism are elaborated. In addition, we discuss the molecular mechanism of ncRNAs in regulation of metabolic reprogramming and possible therapeutic strategies that target the metabolism of cancer cells by modulating the expressions of specific ncRNAs.
Collapse
Affiliation(s)
- Wenwei Liao
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Jinpeng Du
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Zhen Wang
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Qingbo Feng
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Mingheng Liao
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Huixian Liu
- Department of Postanesthesia Care Unit & Surgical Anesthesia Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kefei Yuan
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yong Zeng
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| |
Collapse
|
14
|
Zou X, Sun P, Xie H, Fan L, Ding K, Wang J, Li Y. Knockdown of long noncoding RNA HUMT inhibits the proliferation and metastasis by regulating miR-455-5p/LRP4 axis in hepatocellular carcinoma. Bioengineered 2022; 13:8051-8063. [PMID: 35293286 PMCID: PMC9162019 DOI: 10.1080/21655979.2022.2051841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The present study aimed at investigating the effects and mechanism of long noncoding RNA highly upregulated in metastatic triple-negative breast cancer lymph node (lncRNA HUMT) in hepatocellular carcinoma (HCC). Quantitative real-time polymerase chain reaction was used to assess the expression of HUMT, microRNA (miR)-455-5p, and low-density lipoprotein receptor-related protein 4 (LRP4) in HCC tissues. Colony forming and 5-ethynyl-2′-deoxyuridine assays were performed to assess cell proliferation. Transwell assay was performed to measure cell migration and invasion. Cell cycle distribution was assessed using flow cytometry. The protein expression of LRP4, proliferating cell nuclear antigen (PCNA), matrix metallopeptidase 2 (MMP-2), and MMP-9 was detected using western blot. Luciferase reporter assay and RNA immunoprecipitation assay was used to confirm the target association between miR-455-5p and HUMT or LRP4. In our study, the level of HUMT was enhanced in HCC tissues and cells. Cell proliferation, invasion, and migration in HCC cells were repressed by knockdown of HUMT, and knockdown of HUMT arrested cells in G1 phase and decreased the levels of PCNA, MMP-2, and MMP-9. MiR-455-5p was a target of HUMT. Lowexpression of miR-455-5p reversed the inhibitive influence on HCC cells induced by of HUMT silencing. LRP4 was a target of miR-455-5p and was negatively regulated by miR-455-5p. In addition, LRP4 expression was positively modified by HUMT, and LRP4 inhibited the inhibitory effects on HCC cells induced by HUMT silencing. In conclusion, HCC cell proliferation, invasion, and migration were restrained by knockdown of HUMT, which was related to the miR-455-5p/LRP4 axis.
Collapse
Affiliation(s)
- Xianzhi Zou
- Department of Medical Interventional Oncology, Yantai Qishan Hospital, Yantai, Shandong, China
| | - Peng Sun
- Department of Medical Gastroenterology, Yantai Qishan Hospital, Yantai, Shandong, China
| | - Hui Xie
- Department of Internal Medicine, Yantai Qishan Hospital, Yantai, Shandong, China
| | - Lu Fan
- Department of Liver Diseases, Yantai Qishan Hospital, Yantai, Shandong, China
| | - Kun Ding
- Department of Internal Medicine, Yantai Qishan Hospital, Yantai, Shandong, China
| | - Jiyang Wang
- Department of Physical Examination Center, The Second Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, Shandong, China
| | - Yang Li
- General Medical Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.,Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
15
|
Wang J, Li Y, Zhang C, Chen X, Zhu L, Luo T. A hypoxia-linked gene signature for prognosis prediction and evaluating the immune microenvironment in patients with hepatocellular carcinoma. Transl Cancer Res 2022; 10:3979-3992. [PMID: 35116696 PMCID: PMC8798548 DOI: 10.21037/tcr-21-741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/30/2021] [Indexed: 12/22/2022]
Abstract
Background Previous research indicates that hypoxia critically affects the initiation and progression of hepatocellular carcinoma (HCC). Nevertheless, the molecular mechanisms responsible for HCC development are poorly understood. Herein, we purposed to build a prognostic model using hypoxia-linked genes to predict patient prognosis and investigate the relationship of hypoxia with immune status in the tumor microenvironment (TME). Methods The training cohort included transcriptome along with clinical data abstracted from The Cancer Genome Atlas (TCGA). The validation cohort was abstracted from Gene Expression Omnibus (GEO). Univariate along with multivariate Cox regression were adopted to create the prediction model. We divided all patients into low- and high-risk groups using median risk scores. The estimation power of the prediction model was determined with bioinformatic tools. Results Six hypoxia-linked genes, HMOX1, TKTL1, TPI1, ENO2, LDHA, and SLC2A1, were employed to create an estimation model. Kaplan-Meier, ROC curve, and risk plot analyses demonstrated that the estimation potential of the risk model was satisfactory. Univariate along with multivariate regression data illustrated that the risk model could independently predict the overall survival (OS). A nomogram integrating the risk signature and clinicopathological characteristics showed a good potential to estimate HCC prognosis. Gene set enrichment analysis (GSEA) revealed that genes associated with cell proliferation and metabolism cascades were abundant in high-risk group. Furthermore, the signature showed a strong ability to distinguish the two groups in terms of immune status. Conclusions A prediction model for predicting HCC prognosis using six hypoxia-linked genes was designed in this study, facilitating the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Jukun Wang
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yu Li
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Chao Zhang
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Xin Chen
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Linzhong Zhu
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Tao Luo
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| |
Collapse
|
16
|
Wu R, Yun Q, Zhang J, Wang Z, Zhang X, Bao J. Knockdown of circular RNA tousled-like kinase 1 relieves ischemic stroke in middle cerebral artery occlusion mice and oxygen-glucose deprivation and reoxygenation-induced N2a cell damage. Bioengineered 2022; 13:3434-3449. [PMID: 35067172 PMCID: PMC8973970 DOI: 10.1080/21655979.2021.2024684] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ischemic stroke (IS) is an essential contributor to the neurological morbidity and mortality throughout the world. The significance of circular RNA tousled-like kinase 1 (circTLK1) in IS has been documented. This study set out to explore the mechanism of circTLK1 in IS. Middle cerebral artery occlusion (MCAO) mouse models in vivo and oxygen-glucose deprivation and reoxygenation (OGD/R) cell models in vitro were first established, followed by evaluation of infarct volume and neurological impairment, and cell viability and apoptosis. The expression patterns of circTLK1, miR-26a-5p, phosphatase and tensin homolog (PTEN), insulin-like growth factor type 1 receptor (IGF-1 R), and glucose transporter type 1 (GLUT1) were detected by RT-qPCR and Western blotting. Co-localization of circTLK1 and miR-26a-5p in N2a cells was tested by fluorescence in situ hybridization assay. The binding relationships among circTLK1, PTEN, and miR-26a-5p were verified by dual-luciferase assay and RNA pull-down. circTLK1 and PTEN were highly expressed while miR-26a-5p was under-expressed in IS models. circTLK1 knockdown decreased infarct volume and neurological impairment in MCAO mouse models and relieved OGD/R-induced neuronal injury in vitro. circTLK1 and miR-26a-5p were co-located in the N2a cell cytoplasm. circTLK1 regulated PTEN as a sponge of miR-26a-5p. PTEN positively regulated IGF-1 R and GLUT1 expressions. miR-26a-5p inhibitor annulled the repressive effects of circTLK1 silencing on OGD/R-induced neuronal injury. sh-PTEN partially annulled the effects of the miR-26a-5p inhibitor on OGD/R-induced neuronal injury. In conclusion, circTLK1 knockdown relieved IS via the miR-26a-5p/PTEN/IGF-1 R/GLUT1 axis. These results may provide a new direction to IS potential therapeutic targets.
Collapse
Affiliation(s)
- Rile Wu
- Department of Neurosurgery, Inner Mongolia People’s Hospital, Hohhot, China
| | - Qiang Yun
- Department of Neurosurgery, Inner Mongolia People’s Hospital, Hohhot, China
| | - Jianping Zhang
- Department of Neurosurgery, Inner Mongolia People’s Hospital, Hohhot, China
| | - Zhong Wang
- Department of Neurosurgery, Inner Mongolia People’s Hospital, Hohhot, China
| | - Xiaojun Zhang
- Department of Neurosurgery, Inner Mongolia People’s Hospital, Hohhot, China
| | - Jingang Bao
- Department of Neurosurgery, Inner Mongolia People’s Hospital, Hohhot, China
| |
Collapse
|
17
|
Zhang JS, Hou PP, Shao S, Manaenko A, Xiao ZP, Chen Y, Zhao B, Jia F, Zhang XH, Mei QY, Hu Q. microRNA-455-5p alleviates neuroinflammation in cerebral ischemia/reperfusion injury. Neural Regen Res 2022; 17:1769-1775. [PMID: 35017437 PMCID: PMC8820705 DOI: 10.4103/1673-5374.332154] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Neuroinflammation is a major pathophysiological factor that results in the development of brain injury after cerebral ischemia/reperfusion. Downregulation of microRNA (miR)-455-5p after ischemic stroke has been considered a potential biomarker and therapeutic target for neuronal injury after ischemia. However, the role of miR-455-5p in the post-ischemia/reperfusion inflammatory response and the underlying mechanism have not been evaluated. In this study, mouse models of cerebral ischemia/reperfusion injury were established by transient occlusion of the middle cerebral artery for 1 hour followed by reperfusion. Agomir-455-5p, antagomir-455-5p, and their negative controls were injected intracerebroventricularly 2 hours before or 0 and 1 hour after middle cerebral artery occlusion (MCAO). The results showed that cerebral ischemia/reperfusion decreased miR-455-5p expression in the brain tissue and the peripheral blood. Agomir-455-5p pretreatment increased miR-455-5p expression in the brain tissue, reduced the cerebral infarct volume, and improved neurological function. Furthermore, primary cultured microglia were exposed to oxygen-glucose deprivation for 3 hours followed by 21 hours of reoxygenation to mimic cerebral ischemia/reperfusion. miR-455-5p reduced C-C chemokine receptor type 5 mRNA and protein levels, inhibited microglia activation, and reduced the production of the inflammatory factors tumor necrosis factor-α and interleukin-1β. These results suggest that miR-455-5p is a potential biomarker and therapeutic target for the treatment of cerebral ischemia/reperfusion injury and that it alleviates cerebral ischemia/reperfusion injury by inhibiting C-C chemokine receptor type 5 expression and reducing the neuroinflammatory response.
Collapse
Affiliation(s)
- Jian-Song Zhang
- Central Laboratory, Renji Hospital; Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pin-Pin Hou
- Central Laboratory, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuai Shao
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Anatol Manaenko
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi-Peng Xiao
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Chen
- Department of Medical Genetics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Zhao
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Jia
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Hua Zhang
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi-Yong Mei
- Department of Neurosurgery, Changzheng Hospital, the Second Military Medical University, Shanghai, China
| | - Qin Hu
- Central Laboratory, Renji Hospital; Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Zhang Y, Zhai Z, Duan J, Wang X, Zhong J, Wu L, Li A, Cao M, Wu Y, Shi H, Zhong J, Guo Z. Lactate: The Mediator of Metabolism and Immunosuppression. Front Endocrinol (Lausanne) 2022; 13:901495. [PMID: 35757394 PMCID: PMC9218951 DOI: 10.3389/fendo.2022.901495] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/27/2022] [Indexed: 11/23/2022] Open
Abstract
The Warburg effect, one of the hallmarks of tumors, produces large amounts of lactate and generates an acidic tumor microenvironment via using glucose for glycolysis. As a metabolite, lactate not only serves as a substrate to provide energy for supporting cell growth and development but also acts as an important signal molecule to affect the biochemical functions of intracellular proteins and regulate the biological functions of different kinds of cells. Notably, histone lysine lactylation (Kla) is identified as a novel post-modification and carcinogenic signal, which provides the promising and potential therapeutic targets for tumors. Therefore, the metabolism and functional mechanism of lactate are becoming one of the hot fields in tumor research. Here, we review the production of lactate and its regulation on immunosuppressive cells, as well as the important role of Kla in hepatocellular carcinoma. Lactate and Kla supplement the knowledge gap in oncology and pave the way for exploring the mechanism of oncogenesis and therapeutic targets. Research is still needed in this field.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhao Zhai
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jiali Duan
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiangcai Wang
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jinghua Zhong
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Longqiu Wu
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - An Li
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Miao Cao
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yanyang Wu
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Huaqiu Shi
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Huaqiu Shi, ; Jianing Zhong, ; Zhenli Guo,
| | - Jianing Zhong
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
- *Correspondence: Huaqiu Shi, ; Jianing Zhong, ; Zhenli Guo,
| | - Zhenli Guo
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Huaqiu Shi, ; Jianing Zhong, ; Zhenli Guo,
| |
Collapse
|
19
|
Yang H, Zhang MZH, Sun HW, Chai YT, Li X, Jiang Q, Hou J. A Novel Microcrystalline BAY-876 Formulation Achieves Long-Acting Antitumor Activity Against Aerobic Glycolysis and Proliferation of Hepatocellular Carcinoma. Front Oncol 2021; 11:783194. [PMID: 34869036 PMCID: PMC8636331 DOI: 10.3389/fonc.2021.783194] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/15/2021] [Indexed: 12/17/2022] Open
Abstract
BAY-876 is an effective antagonist of the Glucose transporter type 1 (GLUT1) receptor, a mediator of aerobic glycolysis, a biological process considered a hallmark of hepatocellular carcinoma (HCC) together with cell proliferation, drug-resistance, and metastasis. However, the clinical application of BAY-876 has faced many challenges. In the presence study, we describe the formulation of a novel microcrystalline BAY-876 formulation. A series of HCC tumor models were established to determine not only the sustained release of microcrystalline BAY-876, but also its long-acting antitumor activity. The clinical role of BAY-876 was confirmed by the increased expression of GLUT1, which was associated with the worse prognosis among advanced HCC patients. A single dose of injection of microcrystalline BAY-876 directly in the HCC tissue achieved sustained localized levels of Bay-876. Moreover, the single injection of microcrystalline BAY-876 in HCC tissues not only inhibited glucose uptake and prolonged proliferation of HCC cells, but also inhibited the expression of epithelial-mesenchymal transition (EMT)-related factors. Thus, the microcrystalline BAY-876 described in this study can directly achieve promising localized effects, given its limited diffusion to other tissues, thereby reducing the occurrence of potential side effects, and providing an additional option for advanced HCC treatment.
Collapse
Affiliation(s)
- Hua Yang
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Baoding, China
| | - Mu-Zi-He Zhang
- Department of Pharmacy, Medical Security Center of PLA General Hospital, Beijing, China
| | - Hui-Wei Sun
- Department of Infectious Disease, Institute of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yan-Tao Chai
- Department of Infectious Disease, Institute of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaojuan Li
- Department of Infectious Disease, Institute of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qiyu Jiang
- Department of Infectious Disease, Institute of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jun Hou
- Department of Infectious Disease, Institute of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
20
|
Shima T, Taniguchi K, Tokumaru Y, Inomata Y, Arima J, Lee SW, Takabe K, Yoshida K, Uchiyama K. Glucose transporter‑1 inhibition overcomes imatinib resistance in gastrointestinal stromal tumor cells. Oncol Rep 2021; 47:7. [PMID: 34738628 PMCID: PMC8600406 DOI: 10.3892/or.2021.8218] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/01/2021] [Indexed: 12/23/2022] Open
Abstract
Imatinib mesylate (imatinib) is the primary agent of choice used to treat gastrointestinal stromal tumors (GIST). However, drug resistance to imatinib poses a major obstacle to treatment efficacy. In addition, the relationship between imatinib resistance and glycolysis is poorly understood. Glucose transporter (GLUT)-1 is a key component of glycolysis. The present study aimed to assess the potential relationship between components in the glycolytic pathway and the acquisition of imatinib resistance by GIST cells, with particular focus on GLUT-1. An imatinib-resistant GIST cell line was established through the gradual and continuous imatinib treatment of the parental human GIST cell line GIST-T1. The expression of glycolysis-related molecules (GLUT-1, hexokinase 2, pyruvate kinase M2 and lactate dehydrogenase) was assessed in parental and imatinib-resistant cells by western blotting, reverse transcription-quantitative PCR and glucose and lactate measurement kits. In addition, clinical information and transcriptomic data obtained from the gene expression omnibus database (GSE15966) were used to confirm the in vitro results. The potential effects of GLUT-1 inhibition on the expression of proteins in the glycolysis (GLUT-1, hexokinase 2, pyruvate kinase M2 and lactate dehydrogenase) and apoptosis pathways (Bcl-2, cleaved PARP, caspase-3 and caspase-9) in imatinib-resistant cells were then investigated following gene silencing and treatment using the GLUT-1 inhibitor WZB117 by western blotting. For gene silencing, the mature siRNAs for SLC2A1 were used for cell transfection. Annexin V-FITC/PI double-staining followed by flow cytometry was used to measure apoptosis whereas three-dimensional culture experiments were used to create three-dimensional spheroid cells where cell viability and spheroid diameter were measured. Although imatinib treatment downregulated GLUT-1 expression and other glycolysis pathway components hexokinase 2, pyruvate kinase M2, and lactate dehydrogenase in parental GIST-T1 cells even at low concentrations. By contrast, expression of these glycolysis pathway components in imatinib-resistant cells were increased by imatinib treatment. WZB117 administration significantly downregulated AKT phosphorylation and Bcl-2 expression in imatinib-resistant cells, whereas the combined administration of imatinib and WZB117 conferred synergistic growth inhibition effects in apoptosis assay. WZB117 was found to exert additional inhibitory effects by inducing apoptosis in imatinib-resistant cells. Therefore, the present study suggests that GLUT-1 is involved in the acquisition of imatinib resistance by GIST cells, which can be overcome by combined treatment with WZB117 and imatinib.
Collapse
Affiliation(s)
- Takafumi Shima
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569‑8686, Japan
| | - Kohei Taniguchi
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569‑8686, Japan
| | - Yoshihisa Tokumaru
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Yosuke Inomata
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569‑8686, Japan
| | - Jun Arima
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569‑8686, Japan
| | - Sang-Woong Lee
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569‑8686, Japan
| | - Kazuaki Takabe
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Kazuhiro Yoshida
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, Gifu, Gifu 501‑1194, Japan
| | - Kazuhisa Uchiyama
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569‑8686, Japan
| |
Collapse
|
21
|
Nwadiugwu MC. Expression, Interaction, and Role of Pseudogene Adh6-ps1 in Cancer Phenotypes. Bioinform Biol Insights 2021; 15:11779322211040591. [PMID: 34413637 PMCID: PMC8369952 DOI: 10.1177/11779322211040591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/26/2021] [Indexed: 01/15/2023] Open
Abstract
Pseudogenes have been classified as functionless and their annotation is an ongoing problem. The Adh6-ps1-a mouse pseudogene belonging to the alcohol dehydrogenase gene complex (Adh) was analyzed to review the conservation, homology, expression, and interactions and identify any role it plays in disease phenotypes using bioinformatics databases. Results showed that Adh6-ps1 have 2 transcripts (processed and unprocessed) which may have emerged from a transposition and duplication event, respectively, and that induced inversions (Uox gene, In(3)11Rk) involving gene complexes associated with Adh6-ps1 have been implicated in a diverse range of diseases. Adh6-ps1 is highly conserved in vertebrates particularly rodents and expressed in the liver. The top 5 MirRNA targets were Mir455, Mir511, Mir1903, Mir361, and Mir669o markers. While much is unknown about Mir1903 and Mir669o, the silencing of Mir455 and Mir511 is linked with hepatocellular carcinoma (HCC), and Mir361 is implicated in endometrial cancers. Given the identified MirRNA interactions with Adh6-ps1 and its expression in HCC and reproductive systems, it may well have a role in tumorigenesis and disease phenotypes. Nonetheless, further studies are required to establish these facts to add to the growing efforts to understand pseudogenes and their potential involvement in disease conditions.
Collapse
Affiliation(s)
- Martin C Nwadiugwu
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
22
|
Shang X, Shi LE, Taule D, Zhu ZZ. A Novel miRNA-mRNA Axis Involves in Regulating Transcriptional Disorders in Pancreatic Adenocarcinoma. Cancer Manag Res 2021; 13:5989-6004. [PMID: 34377019 PMCID: PMC8349199 DOI: 10.2147/cmar.s316935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/10/2021] [Indexed: 12/11/2022] Open
Abstract
Background Currently, there is still a lack of understanding about the mechanism and therapeutic targets of pancreatic adenocarcinoma (PAAD). The potential of miRNA-mRNA networks for the identification of regulatory mechanisms involved in PAAD development remains unexplored. Methods We compared differentially expressed miRNAs (DEMIs) and differentially expressed genes (DEGs) in PAAD and normal tissues from the Gene Expression Omnibus (GEO) database. Transcription factors (TFs) were obtained from FunRich. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of DEGs and DEMIs were implemented using Database for Annotation, Visualization and Integrated Discovery (DAVID). Then, key miRNAs and targeted mRNAs were identified by assessment of their expression and prognosis in UALCAN and Kaplan-Meier plotters. In the last step, the candidate miRNA-mRNA selected was confirmed by real-time quantitative polymerase chain reaction (qRT-PCR). Results We distinguished 62 significant DEMIs, 1314 upregulated DEGs, and 1110 downregulated DEGs. The top 10 TFs were identified. In total, there were 160 hub genes obtained by intersecting the set of 2224 predicted targets with the set of significant DEGs. And we selected 8 key miRNAs. Furthermore, low expression of miR-455-3p in PAAD tissue was closely connected with poor prognosis, and only 5 target mRNAs were predicted to be increased in PAAD tissue with poor prognosis. Therefore, a novel miRNA-hub gene regulatory network in PAAD was constructed. Finally, in vitro experiments indicated that miR-455-3p expression was decreased in PAAD sample. HOXC4, DLG4, DYNLL1 and FBXO45 were validated by qRT-PCR as highly probable targets of miR-455-3p. Conclusion A novel miRNA-mRNA axis has been discovered that may be involved in the regulation of transcriptional disorders and affected the survival of PAAD patients, which would provide a novel strategy for the treatment of PAAD.
Collapse
Affiliation(s)
- Xin Shang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Lan-Er Shi
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Dina Taule
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Zhang-Zhi Zhu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
23
|
Zheng X, Rui S, Wang XF, Zou XH, Gong YP, Li ZH. circPVT1 regulates medullary thyroid cancer growth and metastasis by targeting miR-455-5p to activate CXCL12/CXCR4 signaling. J Exp Clin Cancer Res 2021; 40:157. [PMID: 33962657 PMCID: PMC8106141 DOI: 10.1186/s13046-021-01964-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/26/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Medullary thyroid cancer (MTC) represents 13.4 % of all thyroid cancers-related deaths. The treatments for MTC are very limited especially for patients with distal metastasis. Therefore, it is critical to understand the mechanisms of MTC to pursue novel therapeutic avenues. Here, we studied the function of circPVT1/miR-455-5p in MTC. METHODS Human MTC tissues and cell lines were used. qRT-PCR and Western blotting were employed to measure expression levels of miR-455-5p, circPVT1, CXCL12, and epithelial mesenchymal transformation (EMT)-related proteins. Colony formation assay, flow cytometry, transwell assay, and scratch wound healing assay were used to assess the abilities of cell proliferation, apoptosis, migration and invasion, respectively. Dual luciferase assay and RNA immunoprecipitation were employed to validate interactions of circPVT1/miR-455-5p and miR-455-5p/CXCL12. Nude mouse xenograft model was used to evaluate the effects of shcircPVT1 and miR-455-5p mimics on tumor growth and metastasis in vivo. RESULTS miR-455-5p was reduced in MTC tissues and cells while circPVT1 was elevated. Their levels were correlated with prognosis of MTC. Overexpression of miR-455-5p or sh-circPVT1 suppressed EMT and MTC cell proliferation, migration and invasion. miR-455-5p targeted CXCL12 while circPVT1 sponged miR-455-5p. Knockdown of CXCL12 or CXCL12/CXCR4 signaling inhibitor reversed the effects of circPVT1 overexpression or miR-455-5p inhibitor on EMT and MTC cell proliferation, migration and invasion. Knockdown of circPVT1 or miR-455-5p overexpression repressed MTC tumor growth and lung metastasis in vivo. CONCLUSIONS miR-455-5p suppresses MTC growth and metastasis by targeting CXCL12/CXCR4 signaling pathway while circPVT1 promotes MTC by sponging miR-455-5p. Our study sheds light on the mechanisms of MTC growth and metastasis.
Collapse
Affiliation(s)
- Xun Zheng
- Department of Thyroid and Parathyroid Surgery Center, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, 610041, Chengdu, Sichuan, China
| | - Shu Rui
- Department of Thyroid and Parathyroid Surgery Center, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, 610041, Chengdu, Sichuan, China
| | - Xiao-Fei Wang
- Department of Thyroid and Parathyroid Surgery Center, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, 610041, Chengdu, Sichuan, China
| | - Xiu-He Zou
- Department of Thyroid and Parathyroid Surgery Center, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, 610041, Chengdu, Sichuan, China
| | - Yan-Ping Gong
- Department of Thyroid and Parathyroid Surgery Center, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, 610041, Chengdu, Sichuan, China
| | - Zhi-Hui Li
- Department of Thyroid and Parathyroid Surgery Center, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, 610041, Chengdu, Sichuan, China.
| |
Collapse
|
24
|
Ghafouri-Fard S, Abak A, Mohaqiq M, Shoorei H, Taheri M. The Interplay Between Non-coding RNAs and Insulin-Like Growth Factor Signaling in the Pathogenesis of Neoplasia. Front Cell Dev Biol 2021; 9:634512. [PMID: 33768092 PMCID: PMC7985092 DOI: 10.3389/fcell.2021.634512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
The insulin-like growth factors (IGFs) are polypeptides with similar sequences with insulin. These factors regulate cell growth, development, maturation, and aging via different processes including the interplay with MAPK, Akt, and PI3K. IGF signaling participates in the pathogenesis of neoplasia, insulin resistance, diabetes mellitus, polycystic ovarian syndrome, cerebral ischemic injury, fatty liver disease, and several other conditions. Recent investigations have demonstrated the interplay between non-coding RNAs and IGF signaling. This interplay has fundamental roles in the development of the mentioned disorders. We designed the current study to search the available data about the role of IGF-associated non-coding RNAs in the evolution of neoplasia and other conditions. As novel therapeutic strategies have been designed for modification of IGF signaling, identification of the impact of non-coding RNAs in this pathway is necessary for the prediction of response to these modalities.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mohaqiq
- School of Advancement, Centennial College, Ashtonbee Campus, Toronto, ON, Canada
- Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC, United States
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Biranjd University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Yu H, Yu Z, Wang X, Wang D. Circular RNA circCLK3 promotes the progression of tongue squamous cell carcinoma via miR-455-5p/PARVA axis. Biotechnol Appl Biochem 2021; 69:431-441. [PMID: 33655541 DOI: 10.1002/bab.2120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/29/2021] [Indexed: 12/17/2022]
Abstract
A previous study has elucidated that circular RNA circCLK3 acts as an oncogenic gene in cervical cancer. However, the role and regulatory mechanism of circCLK3 in tongue squamous cell carcinoma (TSCC) remain unknown. Quantitative real-time PCR was used to examine targeted gene expression in different groups. Cell viability and proliferation were investigated by MTT and 5-ethynyl-2'-deoxyuridine assays. Cell migration and invasion were detected by Transwell assays, and cell apoptosis was measured by flow cytometry analysis. The interaction among genes was investigated using luciferase reporter assay, RNA pull-down assay, and RNA immunoprecipitation assay. In the present study, our findings revealed the upregulated expression of circCLK3 in TSCC tissues and cell lines. CircCLK3 knockdown suppressed cell proliferation, migration invasion, and induced cell cycle arrest at G0/G1 phase in TSCC. Moreover, circCLK3 acted as a molecular sponge for miR-455-5p. PARVA was the target gene of miR-455-5p. Furthermore, the negative correlation between expression of miR-455-5p and circCLK3 or PARVA in TSCC tissues was discovered. Rescue assays indicated that PARVA overexpression reversed the circCLK3 knockdown-mediated inhibitory effects on the progression of TSCC. In summary, circCLK3 exerts its carcinogenic effects on TSCC progression via absorbing miR-455-5p to upregulate PARVA, which expands our knowledge on the underlying mechanism of TSCC.
Collapse
Affiliation(s)
- Huiming Yu
- Department of Stomatology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Zhifen Yu
- Department of Stomatology, Huaian Maternal and Child Health Hospital, Huaian, China
| | - Xiaowei Wang
- Department of Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Dazhao Wang
- Department of Stomatology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, China
| |
Collapse
|
26
|
Sang K, Yi T, Huang X, Pan C, Zhou J, Yu L. MiR-370-5p inhibits the progression of breast cancer via targeting LUC7L3. J Recept Signal Transduct Res 2020; 41:442-450. [PMID: 32972267 DOI: 10.1080/10799893.2020.1819319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Breast cancer is one of the most common malignancies and one of the leading causes of cancer-induced mortality among women. Over the past decades, the occurrence of breast cancer has been a significant increase. As documented in numerous researches, microRNAs (miRNAs) play vital roles in a wide range of biological processes associated with the occurrence and development of breast cancer. Nevertheless, the role of miR-370-5p in breast cancer remains obscure, and the possible molecular regulatory mechanism needs to be further explored. In this study, our results delineated that miR-370-5p was downregulated in breast cancer tissues and cell lines. Besides, miR-370-5p overexpression suppressed cell proliferation and invasion in breast cancer. MiR-370-5p downregulation exerted an opposite result. In addition, LUC7L3 was identified as a target gene for miR-370-5p. Similar with the results induced by miR-370-5p overexpression, LUC7L3 knockdown attenuated the proliferation and invasion ability of breast cancer cells. Moreover, the alternation of LUC7L3 expression reversed the regulatory effects of miR-370-5p on cell phenotypes in breast cancer. Overall, miR-370-5p may exert antitumor effect on breast cancer. Hence, miR-370-5p may serve as a novel therapeutic marker for the treatment of patients with breast cancer.
Collapse
Affiliation(s)
- Kai Sang
- Department of Breast Surgery, Jiangsu Taizhou People's Hospital, Taizhou, China
| | - Tongbo Yi
- Department of Breast Surgery, Jiangsu Taizhou People's Hospital, Taizhou, China
| | - Xinxin Huang
- Department of Pediatrics, Taizhou Fourth People's Hospital, Taizhou, China
| | - Chi Pan
- Department of Breast Surgery, Jiangsu Taizhou People's Hospital, Taizhou, China
| | - Jian Zhou
- Department of Breast Surgery, Jiangsu Taizhou People's Hospital, Taizhou, China
| | - Lei Yu
- Department of Oncology, Jiangsu Taizhou People's Hospital, Taizhou, China
| |
Collapse
|
27
|
Chi K, Zhang J, Sun H, Liu Y, Li Y, Yuan T, Zhang F. Knockdown of lncRNA HOXA-AS3 Suppresses the Progression of Atherosclerosis via Sponging miR-455-5p. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:3651-3662. [PMID: 32982172 PMCID: PMC7490108 DOI: 10.2147/dddt.s249830] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 08/07/2020] [Indexed: 12/22/2022]
Abstract
Background Atherosclerosis can lead to multiple cardiovascular diseases, especially myocardial infarction. Long noncoding RNAs (lncRNAs) are involved in multiple diseases, including atherosclerosis. LncRNA HOXA-AS3 was found to be notably upregulated in atherosclerosis. However, the biological function of HOXA-AS3 during the occurrence and development of atherosclerosis remains unclear. Materials and Methods Human vascular endothelial cells (HUVECs) were treated with oxidized low-density lipoprotein (oxLDL) to mimic atherosclerosis in vitro. Gene and protein expressions in HUVECs were detected by RT-qPCR and Western blot, respectively. Cell proliferation was tested by CCK-8 and Ki67 staining. Cell apoptosis and cycle were measured by flow cytometry. Additionally, the correlation between HOXA-AS3 and miR-455-5p was confirmed by dual luciferase report assay and RNA pull-down. Finally, in vivo model of atherosclerosis was established to confirm the function of HOXA-AS3 during the development of atherosclerosis in vivo. Results LncRNA HOXA-AS3 was upregulated in oxLDL-treated HUVECs. In addition, oxLDL-induced growth inhibition of HUVECs was significantly reversed by knockdown of HOXA-AS3. Consistently, oxLDL notably induced G1 arrest in HUVECs, while this phenomenon was greatly reversed by HOXA-AS3 siRNA. Furthermore, downregulation of HOXA-AS3 notably inhibited the progression of atherosclerosis through mediation of miR-455-5p/p27 Kip1 axis. Besides, silencing of HOXA-AS3 notably relieved the symptom of atherosclerosis in vivo. Conclusion Downregulation of HOXA-AS3 significantly suppressed the progression of atherosclerosis via regulating miR-455-5p/p27 Kip1 axis. Thus, HOXA-AS3 might serve as a potential target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Kui Chi
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Jinwen Zhang
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Huanhuan Sun
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Yang Liu
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Ye Li
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Tao Yuan
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Feng Zhang
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| |
Collapse
|
28
|
Feng J, Li J, Wu L, Yu Q, Ji J, Wu J, Dai W, Guo C. Emerging roles and the regulation of aerobic glycolysis in hepatocellular carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:126. [PMID: 32631382 PMCID: PMC7336654 DOI: 10.1186/s13046-020-01629-4] [Citation(s) in RCA: 381] [Impact Index Per Article: 76.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022]
Abstract
Liver cancer has become the sixth most diagnosed cancer and the fourth leading cause of cancer death worldwide. Hepatocellular carcinoma (HCC) is responsible for up to 75–85% of primary liver cancers, and sorafenib is the first targeted drug for advanced HCC treatment. However, sorafenib resistance is common because of the resultant enhancement of aerobic glycolysis and other molecular mechanisms. Aerobic glycolysis was firstly found in HCC, acts as a hallmark of liver cancer and is responsible for the regulation of proliferation, immune evasion, invasion, metastasis, angiogenesis, and drug resistance in HCC. The three rate-limiting enzymes in the glycolytic pathway, including hexokinase 2 (HK2), phosphofructokinase 1 (PFK1), and pyruvate kinases type M2 (PKM2) play an important role in the regulation of aerobic glycolysis in HCC and can be regulated by many mechanisms, such as the AMPK, PI3K/Akt pathway, HIF-1α, c-Myc and noncoding RNAs. Because of the importance of aerobic glycolysis in the progression of HCC, targeting key factors in its pathway such as the inhibition of HK2, PFK or PKM2, represent potential new therapeutic approaches for the treatment of HCC.
Collapse
Affiliation(s)
- Jiao Feng
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, number 1291, Jiangning road, Putuo, Shanghai, 200060, China.,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China
| | - Jingjing Li
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, number 1291, Jiangning road, Putuo, Shanghai, 200060, China.,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China
| | - Liwei Wu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China
| | - Qiang Yu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China
| | - Jie Ji
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, number 1291, Jiangning road, Putuo, Shanghai, 200060, China.
| | - Weiqi Dai
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, number 1291, Jiangning road, Putuo, Shanghai, 200060, China. .,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China. .,Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, 200032, China. .,Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai, 200032, China. .,Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200336, China.
| | - Chuanyong Guo
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, number 1291, Jiangning road, Putuo, Shanghai, 200060, China. .,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China.
| |
Collapse
|
29
|
Zhou D, Jiang L, Jin L, Yao Y, Wang P, Zhu X. Glucose Transporter-1 Cooperating with AKT Signaling Promote Gastric Cancer Progression. Cancer Manag Res 2020; 12:4151-4160. [PMID: 32581586 PMCID: PMC7276340 DOI: 10.2147/cmar.s251596] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022] Open
Abstract
Objective High expression of GLUT1 has been observed in numerous solid cancers, facilitating glucose consumption for supporting tumor cell survival. The altered metabolic activity is regulated by series of signaling pathways, including AKT signaling that acts as a key role in glucose metabolism and shows close correlation with the malignant transformation. In this study, we aimed to elucidate the effect of GLUT1 on gastric cancer (GC) and to explore the relation between GLUT1 and AKT signaling. Materials and Methods GLUT1, p-AKT, and p-S6k1 expression were investigated by immunohistochemistry and semi-quantitative analysis in 57 paired-GC samples. The relationship of GLUT1 with clinical indexes in GC tissues was investigated. The effects of GLUT1 on the prognosis of GC patients and the underlying mechanism involved were studied by subgroup analysis. Results In GC tissues, an obvious increase in GLUT1 expression was observed when compared with that of normal tissues (P<0.001). Advanced clinicopathological factors (tumor size P=0.019, invasion depth P=0.002, lymph node metastasis P<0.001, differentiation P=0.024, neural invasion P=0.003, and TNM staging P=0.001) correlated with high GLUT1 levels. GLUT1 was an independent risk factor resulting in poor prognosis (P=0.002, HR=5.132). GLUT1 increased the activation ratio of p-AKT (P<0.01) and p-S6K1 (P<0.001) in GC. The expression of p-S6K1 and GLUT1 was positively correlated. (P=0.001, R=0.173). The survival probability of GC patients with GLUT1(+)/p-S6K1(+) was worse when compared to that of GLUT1(+)/p-S6K1(-) or GLUT1(-)/p-S6K1(+) (P<0.001). Conclusion High expression of GLUT1 facilitated GC progression, leading to poor prognosis. Overexpression of GLUT1 activated AKT-S6K1 axis, resulting in adverse outcomes of GC. GLUT1 is novel indicator of GC prognosis and GLUT1 targeted metabolic treatment that has potential therapeutic value.
Collapse
Affiliation(s)
- Diyuan Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Linhua Jiang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Lichen Jin
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Yizhou Yao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Peijie Wang
- Institute of Mental Health, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Xinguo Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| |
Collapse
|
30
|
Dou W, Yang M, Su Y, Xie R. Dysregulation of miR-3607 predicts prognosis of hepatocellular carcinoma and regulates tumor cell proliferation, migration and invasion. Diagn Pathol 2020; 15:54. [PMID: 32404179 PMCID: PMC7218512 DOI: 10.1186/s13000-020-00973-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/05/2020] [Indexed: 02/07/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common global malignancies with increasing morbidity and mortality. The purpose of this study was to investigate the expression levels and prognostic value of microRNA-3607 (miR-3607) in patients with HCC. Methods The expression of miR-3607 was estimated by quantitative real-time RT-PCR. Survival analysis using the Kaplan-Meier method and Cox regression analysis was conducted to evaluate the prognostic value of miR-3607. The functional role of miR-3607 in HCC progression was further assessed using gain- and loss-of-function experiments. Bioinformatics analysis and a dual-luciferase reporter assay were used to explore the direct targets of miR-3607. Results miR-3607 expression was found to be significantly decreased in HCC tissues and cells compared with the matched tissues and cells (P < 0.001). The decreased expression of miR-3607 was associated with the patients’ tumor size and TNM stage (all P < 0.05). According to the survival curves, patients with low miR-3607 expression had poorer overall survival than those with high levels (log-rank P = 0.012). Moreover, the Cox analysis results indicated that miR-3607 expression was an independent prognostic factor for HCC. The results of cell experiments revealed that the overexpression of miR-3607 in HCC cells led to the inhibited cell proliferation, migration, and invasion. TGFBR1 was identified as a direct target of miR-3607. Conclusion The data of this study indicated that the decreased expression of miR-3607 in HCC predicts poor prognosis and the overexpression of miR-3607 in HCC cells can suppress the tumor progression by targeting TGFBR1. This study provides a novel insight into the prognosis and treatment of HCC, and miR-3607 serves as a candidate prognostic biomarker and therapeutic target of HCC.
Collapse
Affiliation(s)
- Wenwen Dou
- Department of Infectious Diseases, Affiliated Hospital of Weifang Medical University, No. 2428, Yuhe Road, Kuiwen District, Weifang, 261031, Shandong Province, China.
| | - Min Yang
- Department of Infectious Diseases, Affiliated Hospital of Weifang Medical University, No. 2428, Yuhe Road, Kuiwen District, Weifang, 261031, Shandong Province, China
| | - Yan Su
- Department of Infectious Diseases, Affiliated Hospital of Weifang Medical University, No. 2428, Yuhe Road, Kuiwen District, Weifang, 261031, Shandong Province, China
| | - Ruizhu Xie
- Department of Infectious Diseases, Affiliated Hospital of Weifang Medical University, No. 2428, Yuhe Road, Kuiwen District, Weifang, 261031, Shandong Province, China
| |
Collapse
|