1
|
Silva H, Daia AM. Exploring the Cardiovascular Potential of Artichoke-A Comprehensive Review. BIOLOGY 2025; 14:397. [PMID: 40282262 PMCID: PMC12024969 DOI: 10.3390/biology14040397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025]
Abstract
Cardiovascular disease remains a leading cause of morbidity and mortality worldwide, requiring both pharmacological and lifestyle-based preventive strategies. Artichoke (Cynara cardunculus L. var. scolymus) has gained attention for its health benefits, including choleretic and lipid-lowering activities. However, its cardiovascular effects remain underdiscussed. This paper provides a critical review of the current literature on the cardiovascular effects of artichoke, with a focus on its underlying mechanisms of action and clinical efficacy. Experimental studies assessing artichoke's effects on endothelial function, vascular smooth muscle relaxation, and modulation of the renin-angiotensin-aldosterone axis were assessed. Additionally, clinical studies, systematic reviews, and meta-analyses investigating its antihypertensive effects were reviewed. Artichoke and its bioactive components, particularly flavonoids and caffeoylquinic acids, enhance endothelial-dependent and -independent vasorelaxation and inhibit angiotensin-converting enzyme activity. Although clinical studies indicate improvements in flow-mediated dilation, they report only modest reductions in blood pressure, with high variability in formulations, dosages, and patient populations. While artichoke supplementation may support blood pressure regulation and endothelial health, current evidence suggests it should be considered an adjunct rather than a replacement for conventional antihypertensive therapy. Standardized formulations and well-controlled clinical studies will be required to clarify its therapeutic role.
Collapse
Affiliation(s)
- Henrique Silva
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
- Department of Pharmacy, Pharmacology and Health Technologies, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
- Biophysics and Biomedical Engineering Institute (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Avina Mahendra Daia
- Department of Pharmacy, Pharmacology and Health Technologies, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
2
|
Deylaghian S, Nikooee E, Habibagahi G, Nagel T. Inulin biopolymer as a novel material for sustainable soil stabilization. Sci Rep 2024; 14:31078. [PMID: 39730738 DOI: 10.1038/s41598-024-82289-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/04/2024] [Indexed: 12/29/2024] Open
Abstract
The development of new urban areas necessitates building on increasingly scarce land, often overlaid on weak soil layers. Furthermore, climate change has exacerbated the extent of global arid lands, making it imperative to find sustainable soil stabilization and erosion mitigation methods. Thus, scientists have strived to find a plant-based biopolymer that favors several agricultural waste sources and provides high strength and durability for sustainable soil stabilization. This contribution is one of the first studies assessing the feasibility of using inulin to stabilize soil and mitigate erosion. Inulin has several agricultural waste sources, making it a sustainable alternative to traditional additives. Soil samples susceptible to wind erosion were collected from a dust-prone area in southwest Iran and treated with inulin at 0%, 0.5%, 1%, and 2% by weight. Their mechanical strength was evaluated using unconfined compressive strength tests and a penetrometer. In addition, wind tunnel tests (at 16 m/s) were performed to investigate inulin's wind erosion mitigation potential. The durability of treated samples was evaluated after ten wetting-drying cycles to assess the effect of environmental stressors. The results indicated a 40-fold increase in the unconfined compressive strength (up to 8 MPa) of the samples treated with 2% inulin and only 0.22% weight loss after ten wetting-drying cycles. SEM images revealed the formation of biopolymer-induced particle-to-particle bonds. Moreover, Raman spectroscopy indicated molecular (hydrogen) bonding of the biopolymer hydrogel-soil particles facilitated by the hydroxyl groups of inulin. The deterioration in stiffness and strength of treated samples was less noticeable after 3rd dry-wet cycle, indicating the durability of the samples. The durability of samples against wet-dry cycles was attributed to molecular bonding of soil-biopolymer hydrogel, as revealed by FTIR analysis.
Collapse
Affiliation(s)
- Sajjad Deylaghian
- Department of Civil and Environmental Engineering, Shiraz University, Shiraz, Iran
| | - Ehsan Nikooee
- Department of Civil and Environmental Engineering, Shiraz University, Shiraz, Iran.
| | - Ghassem Habibagahi
- Department of Civil and Environmental Engineering, Shiraz University, Shiraz, Iran.
| | - Thomas Nagel
- Geotechnical Institute, TU Bergakademie Freiberg, Freiberg, Germany
- Department of Environmental Informatics, Helmholtz Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| |
Collapse
|
3
|
Buzzanca C, Di Stefano V, D'Amico A, Gallina A, Melilli MG. A systematic review on Cynara cardunculus L.: bioactive compounds, nutritional properties and food-industry applications of a sustainable food. Nat Prod Res 2024:1-20. [PMID: 39488850 DOI: 10.1080/14786419.2024.2423046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/09/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
The cardoon (Cynara cardunculus L.), is a perennial plant belonging to the Asteraceae family, and its cultivated species are widely used in the Mediterranean diet. This review provides an overview of cardoons' chemical composition, bioactive properties and multiple industrial and food applications. Thanks to its nutritional composition, the use of cardoon has increased in food, cosmetic and industrial sectors, such as the energy industry or in the production of paper pulp or bio-packaging. An application in the food industry has involved using of cardoon as a vegetable coagulant for gourmet cheeses-making, as the flowers are rich in aspartic proteases. Cardoon by-products are also rich in bioactive compounds with important health benefits. Most of these nutritional activities are due to the presence of phenolic compounds, minerals, inulin, fibre and sesquiterpene lactones with interesting antioxidant and antimicrobial, anti-inflammatory, anti-tumour, lipid-lowering, cytotoxic and anti-diabetic activities.
Collapse
Affiliation(s)
- Carla Buzzanca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Vita Di Stefano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Angela D'Amico
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Alessandro Gallina
- National Council of Research, Institute of Biomolecular Chemistry (CNR-ICB), Catania, Italy
| | - Maria Grazia Melilli
- National Council of Research, Institute of Biomolecular Chemistry (CNR-ICB), Catania, Italy
| |
Collapse
|
4
|
Görgüç A, Erdoğdu Ö, Demirci K, Bayraktar B, Yilmaz FM. Cryoprotective role of vacuum infused inulin on the quality of artichoke: Interactive effects of freezing, thawing and storage period. Cryobiology 2024; 116:104914. [PMID: 38821389 DOI: 10.1016/j.cryobiol.2024.104914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/02/2024]
Abstract
Freezing of artichoke is a promising alternative to storing it in brine and canning. The perishable vegetable was vacuum infused with inulin to improve freezing tolerance. Artichokes with and without inulin were frozen by static, air blast and individual quick freezing (IQF) methods and thawed by microwave, 25 °C and 4 °C temperature levels at each month of 6-months storage. Process conditions were evaluated by multivariate analysis of variance (MANOVA) and were found significant on the quality parameters. Inulin infusion better conserved the aw, color, texture, ascorbic acid and overall integrity of artichokes during frozen storage. Inulin incorporation and IQF showed mutual positive effect on drip loss. Polyphenol oxidase (PPO) activity values fitted to 2nd order kinetic and the highest residuals were determined in static freezing. PPO showed alleviating effect on total phenolic content. Vacuum impregnation caused a color difference prior to freezing, but was found effective for maintaining color during storage. As a result, the use of quick freezing techniques together with the addition of cryoprotectant was effective in the preservation of artichoke quality attributes during frozen storage.
Collapse
Affiliation(s)
- Ahmet Görgüç
- Aydın Adnan Menderes University, Faculty of Engineering, Food Engineering Department, 09010-Efeler, Aydın, Türkiye
| | - Özlem Erdoğdu
- Aydın Adnan Menderes University, Faculty of Engineering, Food Engineering Department, 09010-Efeler, Aydın, Türkiye; Aydın Adnan Menderes University, Graduate School of Natural and Applied Sciences, Food Engineering Program, 09010-Efeler, Aydın, Türkiye
| | - Kardelen Demirci
- Aydın Adnan Menderes University, Graduate School of Natural and Applied Sciences, Food Engineering Program, 09010-Efeler, Aydın, Türkiye
| | - Beyzanur Bayraktar
- Aydın Adnan Menderes University, Graduate School of Natural and Applied Sciences, Food Engineering Program, 09010-Efeler, Aydın, Türkiye
| | - Fatih Mehmet Yilmaz
- Aydın Adnan Menderes University, Faculty of Engineering, Food Engineering Department, 09010-Efeler, Aydın, Türkiye.
| |
Collapse
|
5
|
Canli Tasar O, Tasar GE. Coproduction of inulinase and invertase by Galactomyces geotrichum in whey-based medium and evaluation of additional nutrients. Prep Biochem Biotechnol 2024; 54:974-981. [PMID: 38346212 DOI: 10.1080/10826068.2024.2313630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The purpose of this research was to evaluate the suitability of whey as an effective medium for the coproduction of inulinase and invertase by an oleaginous yeast Galactomyces geotrichum and to investigate the effects of some additional carbon and nitrogen sources. The nutritional factors and composition of the medium have a great impact on the production pathways of microbial enzymes. To deepen the research, a Taguchi design was employed to quickly scan the best conditions. First, the cheese whey was partly deproteinized and investigated as the sole medium for the yeast. The next step was performed to study the effects of inulin, sucrose and lactose as carbon sources and ammonium sulfate, yeast extract and casein as nitrogen sources. All analyses (Taguchi and ANOVA) were performed using Minitab software. Whey-based medium without any additional carbon and nitrogen sources gave inulinase and invertase activities as 54.6 U/mL and 47.4 U/mL, respectively. Maximum inulinase activity was obtained as 77.9 U/mL using inulin as the carbon source without any nitrogen source. The highest I/S ratio was found as 2.08. On the other hand, the highest invertase activity was carried out as 50.85 U/mL in whey-based medium using lactose as carbon source without any additional nitrogen source. This is the first report about partly deproteinized whey-based medium utilization for simultaneous inulinase and invertase production by G. geotrichum TS-61. Moreover, the effects of carbon and nitrogen sources were investigated in detail.
Collapse
Affiliation(s)
- Ozden Canli Tasar
- High Technology Application and Research Centre (YUTAM), Erzurum Technical University, Erzurum, Türkiye
| | | |
Collapse
|
6
|
Spanò R, Gena P, Linsalata V, Sini V, D’Antuono I, Cardinali A, Cotugno P, Calamita G, Mascia T. Spotlight on Secondary Metabolites Produced by an Early-Flowering Apulian Artichoke Ecotype Sanitized from Virus Infection by Meristem-Tip-Culture and Thermotherapy. Antioxidants (Basel) 2024; 13:852. [PMID: 39061920 PMCID: PMC11274115 DOI: 10.3390/antiox13070852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Globe artichoke (Cynara cardunculus L. subsp. scolymus) is an important crop of the Mediterranean basin characterized by many properties, like hepatoprotective, anticarcinogenic, antioxidant, antibacterial, and beneficial to human health. The high bioactive compounds (BACs) content, as polyphenols, has attracted the research interest in artichoke extracts. We analysed the changes in polyphenol transcriptome profile between sanitized (S) virus-free and non-sanitized (NS) artichoke plants, focusing on genes involved in phenylpropanoid metabolic pathway and flavonoid biosynthesis. A total of 2458 upregulated and 2154 downregulated differentially expressed genes (DEGs) were functionally characterized. Among them, 31 and 35 KEGG orthology entries characterized by upregulated and downregulated DEGs, respectively, were involved in the biosynthesis of other secondary metabolites. A downregulation of PAL, C4H, 4CL, HST/HQT, C3'H, CCoAMT, CCR1, and F5H, was observed in S artichoke compared to NS one, whereas the CSE, CHS, and CHI genes were upregulated in S samples. Transcriptome results were compared to the polyphenols accumulation in S and NS artichoke leaves. A higher content of total polyphenols was observed in older leaves of NS samples, compared to extracts obtained from young leaves or from S plants, and this result was associated with the presence of viral infections in NS plants. In all the conditions tested, the most represented compound was chlorogenic acid, followed by luteolin-7-O-glucoside. The different composition of each extract was evaluated by a polyphenol dose-response treatment on the rodent hepatoma FaO cell line to the accumulation of reactive oxygen species (ROS). A significant reduction in ROS content ranging between -40% and -48% was observed when 10-20 mg/L of polyphenols from NS or S plants were used, characterized by a specific profile of compounds. To reduce MetOH residues in polyphenol extracts, a supercritical fluid CO2 extraction was evaluated to propose a sustainable green extraction.
Collapse
Affiliation(s)
- Roberta Spanò
- Department of Soil, Plant and Food Sciences, University of Bari “Aldo Moro”, Via Amendola 165/A, 70126 Bari, Italy;
| | - Patrizia Gena
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, Via E. Orabona 4, 70125 Bari, Italy; (P.G.); (V.S.); (G.C.)
| | - Vito Linsalata
- Institute of Science of Foods Production (ISPA)–CNR Via Amendola 122/O, 70126 Bari, Italy; (V.L.); (I.D.); (A.C.)
| | - Valeria Sini
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, Via E. Orabona 4, 70125 Bari, Italy; (P.G.); (V.S.); (G.C.)
| | - Isabella D’Antuono
- Institute of Science of Foods Production (ISPA)–CNR Via Amendola 122/O, 70126 Bari, Italy; (V.L.); (I.D.); (A.C.)
| | - Angela Cardinali
- Institute of Science of Foods Production (ISPA)–CNR Via Amendola 122/O, 70126 Bari, Italy; (V.L.); (I.D.); (A.C.)
| | - Pietro Cotugno
- Department of Chemistry, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy;
| | - Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, Via E. Orabona 4, 70125 Bari, Italy; (P.G.); (V.S.); (G.C.)
| | - Tiziana Mascia
- Department of Soil, Plant and Food Sciences, University of Bari “Aldo Moro”, Via Amendola 165/A, 70126 Bari, Italy;
| |
Collapse
|
7
|
Lin X, Zhang X, Xu B. Differences in physicochemical, rheological, and prebiotic properties of inulin isolated from five botanical sources and their potential applications. Food Res Int 2024; 180:114048. [PMID: 38395565 DOI: 10.1016/j.foodres.2024.114048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
This study compares the physicochemical and prebiotic properties of inulin isolated from five botanical sources. The average degree of polymerization (DP) for inulin ranged from 5.00 to 13.33. Notably, inulin from Dahlia tubers (DP = 13) and Platycodonis Radix (DP = 8) demonstrated granular, clustered morphology under SEM, semi-crystalline structures via X-ray diffraction, and exhibited shear-thinning behaviors from shear rate 1 s-1 to 500 s-1. In contrast, inulin from Jerusalem artichoke (DP = 5), chicory root (DP = 7), and Asparagi Radix (DP = 5) showcased rough flake morphologies under SEM, amorphous structures in X-ray patterns, and similar shear-thinning behaviors. All inulin types showed acid stability at pH levels below 2.0, with a reducing sugar conversion ratio (RRS) under 1 %. Furthermore, the isolated inulin from the different sources presented prebiotic capacity when added as a sole carbon source in the culture media of the probiotics Lactobacillus paracasei and Bifidobacterium longum. This study provides the properties of inulin from various sources, thereby offering a reference for the selection of appropriate inulin in industrial applications based on the desired characteristics of the final product.
Collapse
Affiliation(s)
- Xiaojun Lin
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| | - Xuanyi Zhang
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
8
|
Strich S, Azehaf H, Neut C, Lellouche-Jacob Y, Medkour N, Penning M, Karrout Y. Film Coatings Based on Aqueous Shellac Ammonium Salt "Swanlac ® ASL 10" and Inulin for Colon Targeting. AAPS PharmSciTech 2023; 24:205. [PMID: 37789211 DOI: 10.1208/s12249-023-02652-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/05/2023] [Indexed: 10/05/2023] Open
Abstract
Over the past decades, increasing interests took place in the realm of drug delivery systems. Beyond treating intestinal diseases such as inflammatory bowel disease, colon targeting can provide possible applications for oral administration of proteins as well as vaccines due to the lower enzymatic activity in the distal part of GIT. To date, many strategies are employed to reach the colon. This article encompasses different biomaterials tested as film coatings and highlights appropriate formulations for colonic drug delivery. A comparison of different films was made to display the most interesting drug release profiles. These films contained ethylcellulose, as a thermoplastic polymer, blended with an aqueous shellac ammonium salt solution. Different blend ratios were selected as well for thin films as for coated mini-tablets, mainly varying as follows: (80:20); (75:25); (60:40). The impact of blend ratio and coating level was examined as well as the addition of natural polysaccharide "inulin" to target the colon. In vitro drug release was measured in 0.1 M HCl for 2 h followed by phosphate buffer saline pH 6.8 to simulate gastric and intestinal fluids, respectively. Coated mini-tablets were exposed to fresh fecal samples of humans in order to simulate roughly colonic content. Several formulations were able to fully protect theophylline as a model drug up to 8 h in the upper GIT, but allowing for prolonged release kinetics in the colon. These very interesting colonic release profiles were related to the amount of the natural polysaccharide added into the system.
Collapse
Affiliation(s)
- S Strich
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000, Lille, France
| | - H Azehaf
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000, Lille, France
| | - C Neut
- Univ. Lille, Inserm, CHU Lille, U1286_INFINITE, F-59000, Lille, France
| | | | - N Medkour
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000, Lille, France
| | - M Penning
- PennConsult, Wormser Straße 28, 55276, Oppenheim, Germany
| | - Y Karrout
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000, Lille, France.
| |
Collapse
|
9
|
Wang Y, He B, Zhang L, Zhu R, Huang L. Physicochemical properties of superfine grinding-microwave modified artichoke soluble dietary fiber and their alleviation of alcoholic fatty liver in mice. Front Nutr 2023; 10:1253963. [PMID: 37662596 PMCID: PMC10473878 DOI: 10.3389/fnut.2023.1253963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
The effects of superfine grinding (SG) and microwave treatment (MT) on the structure and physicochemical properties of artichoke soluble dietary fiber (ASDF) and its protective effects on mice with alcoholic fatty liver (AFL) were studied. We compared the changes in structural characteristics and physicochemical properties of ASDF, SG-ASDF (ASDF treated by SG), MT-ASDF (ASDF treated by MT), and CM-ASDF (ASDF treated by SG and MT). Moreover, we evaluated the effects of the obtained ASDF on the growth characteristics, blood lipid levels, and liver of mice with AFL. Our results of the study showed that CM-ASDF had a more concentrated and uniform particle size, a higher extraction rate of ASDF and significantly improved water-holding capacity (WHC), oil-holding capacity (OHC) and water swelling capacity (WSC) of ASDF (p < 0.05). After the ASDF intervention, mice with AFL exhibited a significant improvement in body lipid levels and reduce liver inflammation. Specifically, aspartate aminotransferase (AST), alanine aminotransferase (ALT), malonaldehyde (MDA), Tumor necrosis factor-α (TNF-α) and Interleukin-6 (IL-6) were significantly decreased, while superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) were significantly increased (p < 0.05). And the hematoxylin-eosin (HE) staining results showed significant improvement of hepatic steatosis in mice with AFL. In summary, our study found that both SG and MT could improve the structure and physicochemical properties of ASDF, with CM-ASDF being the most effective. Additionally, CM-ASDF was selected to continue the investigation and demonstrated an excellent protective effect on mice with AFL, with the high dose group (H-ASDF) showing the greatest benefit. These findings provided some new insights for future comprehensive utilization of ASDF and drug development for the treatment of AFL.
Collapse
Affiliation(s)
- Yayi Wang
- School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha, China
| | - Bian He
- School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha, China
| | - Linwei Zhang
- School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha, China
| | - Renwei Zhu
- School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha, China
| | - Liang Huang
- School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha, China
| |
Collapse
|
10
|
Sudesh, Maurya DK, Jamdar SN. Gamma-irradiation of inulin improves its biological functionality and feasibility as a functional ingredient in synbiotic food. Food Chem 2023; 408:135217. [PMID: 36563623 DOI: 10.1016/j.foodchem.2022.135217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/28/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Inulin, a dietary fibre, is widely used as a prebiotic, sugar replacer, and texture modifier in the food industry. In this study, we have shown that irradiation affects the physicochemical properties of inulin, which in turn improves its biological functionality and feasibility as a functional ingredient in synbiotic foods. The biological functionality of 25 kGy-irradiated inulin (IRI) was assessed in terms of antioxidant capacity, protective action against intracellular ROS, and prebiotic activity. Antioxidant assays revealed that irradiated inulin had improved antioxidant activity, which was even greater than that of fructooligosaccharides. Furthermore, IRI was found to be comparatively more effective in maintaining low intracellular ROS levels. The in vitro fermentation studies showed that IRI had higher bifidogenic efficacy than fructooligosaccharides and unirradiated inulin. A synbiotic low-fat yogurt containing IRI (8.5 %) was prepared. In terms of sensory attributes, the developed product was comparable to a commercially available non-synbiotic and high-fat containing product.
Collapse
Affiliation(s)
- Sudesh
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Dharmendra K Maurya
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Sahayog N Jamdar
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, India.
| |
Collapse
|
11
|
By-products of dates, cherries, plums and artichokes: A source of valuable bioactive compounds. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Canli Tasar O, Tasar GE. Optimization of inulinase production using Jerusalem artichoke ( Helianthus tuberosus) as cheap substrate and comparison with pure chicory inulin. Prep Biochem Biotechnol 2022; 53:101-107. [PMID: 36264232 DOI: 10.1080/10826068.2022.2134148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Jerusalem artichoke (JA) is a nutritional vegetable for human diet depending on its natural structure, especially high inulin content and it is the second inulin source for commercial production in the world, after chicory. It was aimed to investigate the inulinase production capability of Galactomyces geotrichum TS61 (GenBank accession: MN749818) using JA as an economical and effective substrate comparing with the pure chicory inulin and to optimize the fermentation using Taguchi design of experiment (DOE) in this study. Besides, the effects of sucrose on inulinase production either combined with JA or in its absence were also studied. Taguchi L16 orthogonal array was employed for optimization. Both of inulinase activities obtained from JA and pure inulin gave the maximum result at the 10th experimental run as 40.21 U/mL and 57.35 U/mL, respectively. The optimum levels were detected for each factor as, 30 g/L JA, 30 g/L sucrose, pH 5.5, and four days for time. The predicted value was found as 41.63 U/mL that was similar to the obtained result as 41.17 U/mL. Finally, inulinase activity was increased approximately 8-folds after optimization. The sucrose-free medium had similar effects with higher concentrations of JA at long incubation time. This is the first investigation about inulinase production by G. geotrichum.
Collapse
Affiliation(s)
- Ozden Canli Tasar
- High Technology Application and Research Centre, Erzurum Technical University, Erzurum, Turkey
| | | |
Collapse
|
13
|
Inulin from Globe Artichoke Roots: A Promising Ingredient for the Production of Functional Fresh Pasta. Foods 2022; 11:foods11193032. [PMID: 36230108 PMCID: PMC9562900 DOI: 10.3390/foods11193032] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 12/31/2022] Open
Abstract
Globe artichoke roots represent an alternative and sustainable source for inulin extraction and are well-noted for their technological and functional properties. Therefore, the aim of our study was to exploit inulin with high degree of polymerization as a replacement of durum wheat semolina for the production of functional fresh pasta. The effect of increased level of substitution (5, 10, 15%) on cooking, structural, sensory, and nutritional properties were evaluated and compared with a control sample consisting exclusively of durum wheat semolina. Inulin addition caused changes to internal structure as evaluated by scanning electron microscopy. The enriched samples showed a lower swelling index, an increasing cooking time, and values of cooking loss (2.37–3.62%), mainly due to the leaching of inulin into the cooking water. Cooked and raw enriched pasta was significantly darker and firmer than the control, but the sensory attributes were not negatively affected, especially at 5 and 10% of substitution levels. The increase of dietary fiber content in enriched pasta (3.44–12.41 g/100 g) resulted in a significant reduction of glycaemic index (pGI) and starch hydrolysis (HI). After gastrointestinal digestion, inulin-enriched pasta increased prebiotic growth able to significantly reduce E. coli cell density.
Collapse
|
14
|
Sun Z, Yue Z, Liu E, Li X, Li C. Assessment of the bifidogenic and antibacterial activities of xylooligosaccharide. Front Nutr 2022; 9:858949. [PMID: 36091239 PMCID: PMC9453197 DOI: 10.3389/fnut.2022.858949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Xylooligosaccharide (XOS) is an attractive prebiotic mainly due to its bifidogenic effect. However, commercial XOS with different compositions is often applied in the food industry at different doses without specifications. In this study, we evaluated the bifidogenic activity of XOS at different doses with either mixtures or pure fractions with different degrees of polymerization (DP), using three strains of Bifidobacterium spp., including B. breve ATCC 15700, B. bifidum ATCC 29521, and B. animalis subsp. lactis HN019. Three growth indicators showed strain-specific bifidogenic activity of XOS, and the activity was both dose- and fraction-dependent as only certain fractions stimulated significant growth. Adding 0.25% XOS (w/v) also promoted increase in total bifidobacterial population of rat fecal samples fermented in vitro. Albeit the antibacterial activity of XOS fractions can be demonstrated, significant growth inhibition can only be achieved when 4.0% XOS mixture was added in Staphylococcus aureus ATCC 6538 pure culture. In contrast, in the presence of B. lactis HN019, 1.0% XOS showed significant antibacterial activity against S. aureus ATCC 6538 in milk. In addition, RNA sequencing suggested downregulation of genes involved in S. aureus ATCC 6538 infection, pathogenesis, and quorum sensing, by XOS. In conclusion, the report urges scientific specifications on XOS chemistry for its effective application as a novel food ingredient or functional food and provides novel insights into its bifidogenic and antibacterial activities.
Collapse
Affiliation(s)
- Zhongke Sun
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Institute of Food and Drug Inspection, Zhoukou Normal University, Zhoukou, China
- *Correspondence: Zhongke Sun,
| | - Zonghao Yue
- Institute of Food and Drug Inspection, Zhoukou Normal University, Zhoukou, China
| | - Erting Liu
- Henan Heagreen Bio-technology Co., Ltd., Zhoukou, China
| | - Xianfeng Li
- Henan Heagreen Bio-technology Co., Ltd., Zhoukou, China
| | - Chengwei Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Chengwei Li,
| |
Collapse
|
15
|
Brunetti L, Leuci R, Colonna MA, Carrieri R, Celentano FE, Bozzo G, Loiodice F, Selvaggi M, Tufarelli V, Piemontese L. Food Industry Byproducts as Starting Material for Innovative, Green Feed Formulation: A Sustainable Alternative for Poultry Feeding. Molecules 2022; 27:4735. [PMID: 35897911 PMCID: PMC9332232 DOI: 10.3390/molecules27154735] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 12/03/2022] Open
Abstract
Rising global populations and enhanced standards of living in so-called developing countries have led to an increased demand of food, in particular meat, worldwide. While increasing the production of broiler meat could be a potential solution to this problem, broiler meat is plagued by health concerns, such as the development of antimicrobial resistance and lower meat quality. For this reason, the supplementation of poultry feed with vitamins and antioxidant compounds, such as polyphenols, has become an attractive prospect for research in this sector. Such supplements could be obtained by extraction of agricultural byproducts (in particular, grape pomaces and artichoke leaves and bracts), thus contributing to reductions in the total amount of waste biomass produced by the agricultural industry. In this review, the effects of poultry feed supplementation with bioactive extracts from grape pomace (skins and/or seeds), as well as extracts from artichoke leaves and bracts, were explored. Moreover, the various methods that have been employed to obtain extracts from these and other agricultural byproducts were listed and described, with a particular focus on novel, eco-friendly extraction methods (using, for example, innovative and biocompatible solvents like Deep Eutectic Solvents (DESs)) that could reduce the costs and energy consumption of these procedures, with similar or higher yields compared to standard methods.
Collapse
Affiliation(s)
- Leonardo Brunetti
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (L.B.); (R.L.); (R.C.); (F.L.)
| | - Rosalba Leuci
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (L.B.); (R.L.); (R.C.); (F.L.)
| | - Maria Antonietta Colonna
- Department of Agricultural and Environmental Science (DISAAT), University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (M.A.C.); (M.S.)
| | - Rossana Carrieri
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (L.B.); (R.L.); (R.C.); (F.L.)
| | | | - Giancarlo Bozzo
- Department of Veterinary Medicine, University of Bari Aldo Moro, Strada Provinciale per Casamassima, km 3, 70010 Valenzano, Italy;
| | - Fulvio Loiodice
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (L.B.); (R.L.); (R.C.); (F.L.)
| | - Maria Selvaggi
- Department of Agricultural and Environmental Science (DISAAT), University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (M.A.C.); (M.S.)
| | - Vincenzo Tufarelli
- Department of DETO, Section of Veterinary Science and Animal Production, University of Study of Bari “Aldo Moro”, Strada Provinciale per Casamassima, km 3, 70010 Valenzano, Italy;
| | - Luca Piemontese
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (L.B.); (R.L.); (R.C.); (F.L.)
| |
Collapse
|
16
|
Characterization of inulin, a prebiotic fiber sourced from okra (Abelmoschus esculentus L.) pod and its quality compared to chicory (Cichorium intybus L.) inulin. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01520-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
17
|
Sakr EA. Structural characterization and health benefits of a novel fructan produced by fermentation of an Asparagus sprengeri extract by Lactobacillus plantarum DMS 20174. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Qiu Z, Qiao Y, Zhang B, Sun-Waterhouse D, Zheng Z. Bioactive polysaccharides and oligosaccharides from garlic (Allium sativum L.): Production, physicochemical and biological properties, and structure-function relationships. Compr Rev Food Sci Food Saf 2022; 21:3033-3095. [PMID: 35765769 DOI: 10.1111/1541-4337.12972] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 02/08/2022] [Accepted: 04/11/2022] [Indexed: 02/06/2023]
Abstract
Garlic is a common food, and many of its biological functions are attributed to its components including functional carbohydrates. Garlic polysaccharides and oligosaccharides as main components are understudied but have future value due to the growing demand for bioactive polysaccharides/oligosaccharides from natural sources. Garlic polysaccharides have molecular weights of 1 × 103 to 2 × 106 Da, containing small amounts of pectins and fructooligosaccharides and large amounts of inulin-type fructans ((2→1)-linked β-d-Fruf backbones alone or with attached (2→6)-linked β-d-Fruf branched chains). This article provides a detailed review of research progress and identifies knowledge gaps in extraction, production, composition, molecular characteristics, structural features, physicochemical properties, bioactivities, and structure-function relationships of garlic polysaccharides/oligosaccharides. Whether the extraction processes, synthesis approaches, and modification methods established for other non-garlic polysaccharides are also effective for garlic polysaccharides/oligosaccharides (to preserve their desired molecular structures and bioactivities) requires verification. The metabolic processes of ingested garlic polysaccharides/oligosaccharides (as food ingredients/dietary supplements), their modes of action in healthy humans or populations with chronic conditions, and molecular/chain organization-bioactivity relationships remain unclear. Future research directions related to garlic polysaccharides/oligosaccharides are discussed.
Collapse
Affiliation(s)
- Zhichang Qiu
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Yiteng Qiao
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bin Zhang
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Dongxiao Sun-Waterhouse
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China.,School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Zhenjia Zheng
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
19
|
Mudannayake DC, Jayasena DD, Wimalasiri KM, Ranadheera CS, Ajlouni S. Inulin fructans as functional food ingredients‐ food applications and alternative plant sources: a review. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Deshani C. Mudannayake
- Department of Animal Science, Faculty of Animal Science and Export Agriculture Uva Wellassa University Badulla Sri Lanka
| | - Dinesh D. Jayasena
- Department of Animal Science, Faculty of Animal Science and Export Agriculture Uva Wellassa University Badulla Sri Lanka
| | - Kuruppu M.S. Wimalasiri
- Department of Food Science and Technology, Faculty of Agriculture University of Peradeniya Peradeniya Sri Lanka
| | - C. S. Ranadheera
- School of Agriculture & Food, Faculty of Veterinary and Agricultural Sciences The University of Melbourne VIC 3010 Australia
| | - Said Ajlouni
- School of Agriculture & Food, Faculty of Veterinary and Agricultural Sciences The University of Melbourne VIC 3010 Australia
| |
Collapse
|
20
|
Xu H, Gunenc A, Hosseinian F. Ultrasound affects physical and chemical properties of Jerusalem artichoke and chicory inulin. J Food Biochem 2022; 46:e13934. [PMID: 34569628 DOI: 10.1111/jfbc.13934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/09/2021] [Accepted: 08/17/2021] [Indexed: 11/28/2022]
Abstract
Jerusalem artichoke (Helianthus tuberosus L.) and Chicory (Cichorium intybus L.) have a heterogeneous collection of fructose polymers, known as inulin. This study was aimed to explore the effects of ultrasound (US) and autoclave (AC) on inulin physico-chemical properties as well as investigate structural characterizations and relationships with inulin physico-chemical properties. More specifically, Jerusalem artichoke powder (JA, 69.99% inulin in dry basis), purified inulin from Jerusalem artichoke (PJAI) and chicory inulin (CI) were studied to determine the effects of both treatments on reducing sugar contents, degree of polymerization (DP), water-holding capacity (WHC) and particle size. US (90 W, 20 KHZ) treatments had increased reducing sugar content up to 12.27% for PJAI, 10.86% for JA powder and 2.18% for CI. HPLC analysis showed that the DP of inulin decreased for PJAI after 2 min US treatment. WHC analysis showed that both treatments did not have significant effects (p > .05) on WHC for JA powder. This study suggests that US can be a preferable treatment for reducing the DP of inulin from JA for designing variety of food formulations. PRACTICAL APPLICATIONS: Ultrasound treatments could result in more inulin breaking down into reducing sugars, and in the decrease of inulin DP. This research suggested that the DP of inulin might be a very important factor in ultrasound treatment for their affect in the absorption of energy from ultrasound. Therefore, ultrasound can be a desirable treatment for changing the degree of polymerization of inulin from JA for designing different food products. Future studies need to investigate the relationship between the viscosity of inulin solution and the de-polymerization of inulin caused by ultrasound treatment.
Collapse
Affiliation(s)
- Hengguang Xu
- Food Science and Nutrition, Chemistry Department, Carleton University, Ottawa, Ontario, Canada
| | - Aynur Gunenc
- Food Science and Nutrition, Chemistry Department, Carleton University, Ottawa, Ontario, Canada
| | - Farah Hosseinian
- Food Science and Nutrition, Chemistry Department, Carleton University, Ottawa, Ontario, Canada
- Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
21
|
Blanco E, Musio B, Todisco S, Mastrorilli P, Gallo V, Sonnante G. Non-targeted NMR approach to unveil and promote the biodiversity of globe artichoke in the Mediterranean area. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Viera-Alcaide I, Hamdi A, Guillén-Bejarano R, Rodríguez-Arcos R, Espejo-Calvo JA, Jiménez-Araujo A. Asparagus Roots: From an Agricultural By-Product to a Valuable Source of Fructans. Foods 2022; 11:652. [PMID: 35267287 PMCID: PMC8909794 DOI: 10.3390/foods11050652] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/15/2022] Open
Abstract
Asparagus roots are by-products from asparagus cultivation and they could be considered one of the best sources of fructans. These polymers are interesting food ingredients for their prebiotic and immuno-stimulating characteristics. The aim of this work is to characterize the fructan profile from the roots of several asparagus varieties grown at different locations and pickled at three vegetative statuses in order to valorize these by-products as fructan source. Fructans were extracted with hot water and fractionated into three pools according to their molecular weight (MW). Their average MW was studied by HPSEC and their degree of polymerization by HPAEC. The fructan content was up to 12.5% on fresh weight basis, depending on variety and sampling date. The relative abundance of the three pools also depended on the picking moment as after the spear harvest period their total content and MW increased. The average MW of the three fractions was similar among varieties with 4.8, 8.4 and 9 sugar units, although fructans up to 30 units were identified by HPAEC. These characteristics make them similar to the commercialized Orafti®-GR inulin, a common additive to food products. Therefore, the concept of asparagus roots as cultivation waste must be changed to a new feedstock for sustainable agriculture and industry.
Collapse
Affiliation(s)
- Isabel Viera-Alcaide
- Food Phytochemistry Department, Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Pablo de Olavide University Campus, Building 46, Carretera de Utrera Km 1, 41013 Seville, Spain;
| | - Amel Hamdi
- Phytochemicals and Food Quality Group, Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Pablo de Olavide University Campus, Building 46, Carretera de Utrera Km 1, 41013 Seville, Spain; (A.H.); (R.G.-B.); (R.R.-A.)
| | - Rafael Guillén-Bejarano
- Phytochemicals and Food Quality Group, Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Pablo de Olavide University Campus, Building 46, Carretera de Utrera Km 1, 41013 Seville, Spain; (A.H.); (R.G.-B.); (R.R.-A.)
| | - Rocío Rodríguez-Arcos
- Phytochemicals and Food Quality Group, Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Pablo de Olavide University Campus, Building 46, Carretera de Utrera Km 1, 41013 Seville, Spain; (A.H.); (R.G.-B.); (R.R.-A.)
| | | | - Ana Jiménez-Araujo
- Phytochemicals and Food Quality Group, Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Pablo de Olavide University Campus, Building 46, Carretera de Utrera Km 1, 41013 Seville, Spain; (A.H.); (R.G.-B.); (R.R.-A.)
| |
Collapse
|
23
|
Jayarathna GN, Jayasena DD, Mudannayake DC. Garlic inulin as a fat replacer in vegetable fat incorporated low-fat
chicken sausages. Food Sci Anim Resour 2022; 42:295-312. [PMID: 35310567 PMCID: PMC8907788 DOI: 10.5851/kosfa.2022.e5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 11/29/2022] Open
Abstract
Inulin is a non-digestible carbohydrate and a prebiotic that can also act as a
fat replacer in various foods. This study examined the effect of replacing
vegetable oil with garlic inulin on the quality traits of chicken sausages.
Water-based inulin gels were prepared using garlic inulin or commercial inulin
to imitate fats in chicken sausages. Chicken sausages were prepared separately
replacing vegetable oil with water-based inulin gels to reach final inulin
percentages of 1, 2, and 3 (w/w). The control was prepared using 3% (w/w)
vegetable oil with no inulin. The physicochemical properties and thiobarbituric
acid reactive substance (TBARS) value of prepared sausages were analyzed over
28-d frozen storage. Sausages with 2% garlic inulin recorded higher
flavour and overall acceptability scores (p<0.05). Ash, moisture, and
protein contents of the sausages were increased with increasing levels of inulin
while fat content was reduced from 13.67% (control) to
4.47%–4.85% (p<0.05) in 3%
inulin-incorporated products. Sausages incorporated with 2% inulin had
lower lightness (L*) values than the control (p<0.05). Water holding
capacity (WHC) was similar (p>0.05) among the samples. During storage L*
value, pH, and WHC decreased while redness (a*) and yellowness (b*) values
increased in all the samples. In addition, TBARS values were increased during
the storage in all samples within the acceptable limits. In conclusion, garlic
inulin can be used successfully as a fat substitute in sausages without altering
meat quality parameters.
Collapse
Affiliation(s)
| | | | - Deshani Chirajeevi Mudannayake
- Department of Animal Science, Uva Wellassa
University, Badulla 90000, Sri
Lanka
- Corresponding author : Deshani
Chirajeevi Mudannayake, Department of Animal Science, Uva Wellassa University,
Badulla 90000, Sri Lanka, Tel: +94-55-2226580, Fax:
+94-55-2226672, E-mail:
| |
Collapse
|
24
|
Bioactive Compounds from Cardoon as Health Promoters in Metabolic Disorders. Foods 2022; 11:foods11030336. [PMID: 35159487 PMCID: PMC8915173 DOI: 10.3390/foods11030336] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/14/2022] Open
Abstract
Cardoon (Cynara cardunculus L.) is a Mediterranean plant and member of the Asteraceae family that includes three botanical taxa, the wild perennial cardoon (C. cardunculus L. var. sylvestris (Lamk) Fiori), globe artichoke (C. cardunculus L. var. scolymus L. Fiori), and domesticated cardoon (C. cardunculus L. var. altilis DC.). Cardoon has been widely used in the Mediterranean diet and folk medicine since ancient times. Today, cardoon is recognized as a plant with great industrial potential and is considered as a functional food, with important nutritional value, being an interesting source of bioactive compounds, such as phenolics, minerals, inulin, fiber, and sesquiterpene lactones. These bioactive compounds have been vastly described in the literature, exhibiting a wide range of beneficial effects, such as antimicrobial, anti-inflammatory, anticancer, antioxidant, lipid-lowering, cytotoxic, antidiabetic, antihemorrhoidal, cardiotonic, and choleretic activity. In this review, an overview of the cardoon nutritional and phytochemical composition, as well as its biological potential, is provided, highlighting the main therapeutic effects of the different parts of the cardoon plant on metabolic disorders, specifically associated with hepatoprotective, hypolipidemic, and antidiabetic activity.
Collapse
|
25
|
Pyle S. Human Gut Microbiota and the Influence of Probiotics, Prebiotics, and Micronutrients. COMPREHENSIVE GUT MICROBIOTA 2022:271-288. [DOI: 10.1016/b978-0-12-819265-8.00076-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
26
|
Perović J, Kojić J, Krulj J, Pezo L, Tumbas Šaponjac V, Ilić N, Bodroža-Solarov M. Inulin Determination by an Improved HPLC-ELSD Method. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02140-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
LIMA ECDS, MANHÃES LRT, SANTOS ERD, FEIJÓ MBDS, SABAA-SRUR AUDO. Optimization of the inulin aqueous extraction process from the açaí (Euterpe oleracea, Mart.) seed. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.24920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
28
|
Investigation of the possibility of producing synbiotic herbal tea based on chicory, garlic and Jerusalem artichoke by probiotic bacteria. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.52547/fsct.18.118.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Quintero Ruiz NA, Paolucci M, Siano F, Mamone G, Picariello G, Puppo MC, Cascone G, Volpe MG. Characterization of soluble and insoluble fibers in artichoke by-products by ATR-FTIR spectroscopy coupled with chemometrics. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2021.1995409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- N. A. Quintero Ruiz
- Centro de Investigación en Criotecnología de Alimentos (CIDCA - UNLP - CONICET - CIC), La Plata, Argentina
| | - M. Paolucci
- Department of Science and Technologies, University of Sannio, Benevento, Italy
- Istituto di Scienze dell’Alimentazione, Consiglio Nazionale delle Ricerche (CNR), Avellino, Italy
| | - F. Siano
- Istituto di Scienze dell’Alimentazione, Consiglio Nazionale delle Ricerche (CNR), Avellino, Italy
| | - G. Mamone
- Istituto di Scienze dell’Alimentazione, Consiglio Nazionale delle Ricerche (CNR), Avellino, Italy
| | - G. Picariello
- Istituto di Scienze dell’Alimentazione, Consiglio Nazionale delle Ricerche (CNR), Avellino, Italy
| | - M. C. Puppo
- Centro de Investigación en Criotecnología de Alimentos (CIDCA - UNLP - CONICET - CIC), La Plata, Argentina
| | - G. Cascone
- Istituto di Scienze dell’Alimentazione, Consiglio Nazionale delle Ricerche (CNR), Avellino, Italy
| | - M. G. Volpe
- Istituto di Scienze dell’Alimentazione, Consiglio Nazionale delle Ricerche (CNR), Avellino, Italy
| |
Collapse
|
30
|
Afinjuomo F, Abdella S, Youssef SH, Song Y, Garg S. Inulin and Its Application in Drug Delivery. Pharmaceuticals (Basel) 2021; 14:ph14090855. [PMID: 34577554 PMCID: PMC8468356 DOI: 10.3390/ph14090855] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 02/06/2023] Open
Abstract
Inulin’s unique and flexible structure, stabilization/protective effects, and organ targeting ability make it an excellent drug delivery carrier compared to other biodegradable polysaccharides. The three hydroxyl groups attached to each fructose unit serve as an anchor for chemical modification. This, in turn, helps in increasing bioavailability, improving cellular uptake, and achieving targeted, sustained, and controlled release of drugs and biomolecules. This review focuses on the various types of inulin drug delivery systems such as hydrogel, conjugates, nanoparticles, microparticles, micelles, liposomes, complexes, prodrugs, and solid dispersion. The preparation and applications of the different inulin drug delivery systems are further discussed. This work highlights the fact that modification of inulin allows the use of this polymer as multifunctional scaffolds for different drug delivery systems.
Collapse
Affiliation(s)
| | | | | | | | - Sanjay Garg
- Correspondence: ; Tel.: +61-88-302-1575; Fax: +61-88-302-2389
| |
Collapse
|
31
|
|
32
|
Li S, Lei D, Zhu Z, Cai J, Manzoli M, Jicsinszky L, Grillo G, Cravotto G. Complexation of maltodextrin-based inulin and green tea polyphenols via different ultrasonic pretreatment. ULTRASONICS SONOCHEMISTRY 2021; 74:105568. [PMID: 33915483 PMCID: PMC8093945 DOI: 10.1016/j.ultsonch.2021.105568] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 05/07/2023]
Abstract
Ultrasound has been applied in food processing for various purpose, showing potential to advance the physical and chemical modification of natural compounds. In order to explore the effect of ultrasonic pretreatment on the complexation of inulin and tea polyphenols (TPP), different frequencies (25, 40, 80 kHz) and output power (40, 80, 120 W) were carried out. According to the comparison in particle size distribution and phenolic content of different inulin-TPP complexes, it was indicated that high-intensity ultrasonic (HIU) treatment (25 kHz, 40 W, 10 min) could accelerate the interaction of polysaccharides and polyphenols. Moreover, a series of spectral analysis including UV-Vis, FT-IR and NMR jointly evidenced the formation of hydrogen bond between saccharides and phenols. However, the primary structure of inulin and the polysaccharide skeleton were not altered by the combination. Referring to field emission scanning electron microscopy (FESEM), the morphology of ultrasound treated-complex presented a slight agglomeration in the form of bent sheets, compared to non-treated sample. The inulin-TPP complex also revealed better stability based on thermogravimetric analysis (TGA). Thus, it can be speculated from the identifications that proper ultrasonic treatment is promising to promote the complexation of some food components during processing.
Collapse
Affiliation(s)
- Shuyi Li
- National R&D Center for Se-rich Agricultural Products Processing Technology, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
| | - Dan Lei
- National R&D Center for Se-rich Agricultural Products Processing Technology, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zhenzhou Zhu
- National R&D Center for Se-rich Agricultural Products Processing Technology, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China.
| | - Jie Cai
- National R&D Center for Se-rich Agricultural Products Processing Technology, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
| | - Maela Manzoli
- Department of Drug Science and Technology, University of Turin, Turin 10125, Italy
| | - Laszlo Jicsinszky
- Department of Drug Science and Technology, University of Turin, Turin 10125, Italy
| | - Giorgio Grillo
- Department of Drug Science and Technology, University of Turin, Turin 10125, Italy
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, Turin 10125, Italy.
| |
Collapse
|
33
|
Zazzali I, Gabilondo J, Peixoto Mallmann L, Rodrigues E, Perullini M, Santagapita PR. Overall evaluation of artichoke leftovers: Agricultural measurement and bioactive properties assessed after green and low-cost extraction methods. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Inulin Content in Chipped and Whole Roots of Cardoon after Six Months Storage under Natural Conditions. SUSTAINABILITY 2021. [DOI: 10.3390/su13073902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Industries currently rely on chicory and Jerusalem artichoke for inulin extraction but also cardoon is proved to synthetize and store high quantity of inulin in roots as well. Cardoon is a multipurpose crop, well adapted to marginal lands, whose main residues at the end of cropping cycle consist of roots. However, cardoon roots are a suitable source of inulin, that is of high interest for new generation biodegradable bioplastics production. On the other hand, a sustainable supply chain for inulin production from cardoon roots has not been developed yet. In particular, in the inulin supply chain the most critical part is storage, which can negatively affect both cost and inulin quantity. In the present study the effect on inulin content in cardoon roots stored as dried chipped roots (CRt) and dried whole roots (WRt) was investigated in a 6-month storage trial. Our findings suggest that chipping before storage did not affect the inulin content during the storage. Furthermore, it reduced the time needed for drying by 33.3% and increased the bulk density by 154.9% with the consequent reduction of direct cost for drying, transportation and storage.
Collapse
|
35
|
Solarte DA, Ruiz-Matute AI, Chito-Trujillo DM, Rada-Mendoza M, Sanz ML. Microwave Assisted Extraction of Bioactive Carbohydrates from Different Morphological Parts of Alfalfa ( Medicago sativa L.). Foods 2021; 10:foods10020346. [PMID: 33562045 PMCID: PMC7915009 DOI: 10.3390/foods10020346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/23/2021] [Accepted: 02/02/2021] [Indexed: 11/27/2022] Open
Abstract
Despite the nutritional properties of alfalfa, its production is mainly for animal feed and it is undervalued as a food source. In this study, the valorization of alfalfa as a potential source of bioactive carbohydrates [inositols, α-galactooligosaccharides (α-GOS)] is presented. A Box–Behnken experimental design was used to optimize the extraction of these carbohydrates from leaves, stems, and seeds of alfalfa by solid–liquid extraction (SLE) and microwave-assisted extraction (MAE). Optimal extraction temperatures were similar for both treatments (40 °C leaves, 80 °C seeds); however, SLE required longer times (32.5 and 60 min vs. 5 min). In general, under similar extraction conditions, MAE provided higher yields of inositols (up to twice) and α-GOS (up to 7 times); hence, MAE was selected for their extraction from 13 alfalfa samples. Pinitol was the most abundant inositol of leaves and stems (24.2–31.0 mg·g−1 and 15.5–22.5 mg·g−1, respectively) while seed extracts were rich in α-GOS, mainly in stachyose (48.8–84.7 mg·g−1). In addition, inositols and α-GOS concentrations of lyophilized MAE extracts were stable for up to 26 days at 50 °C. These findings demonstrate that alfalfa is a valuable source of bioactive carbohydrates and MAE a promising alternative technique to obtain functional extracts.
Collapse
Affiliation(s)
- Daniela Alejandra Solarte
- Grupo de Investigación Biotecnología, Calidad Medioambiental y Seguridad Agroalimentaria (BICAMSA), Universidad del Cauca, Popayán 190003, Colombia; (D.A.S.); (D.M.C.-T.); (M.R.-M.)
| | - Ana Isabel Ruiz-Matute
- Instituto de Química Orgánica General (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain;
| | - Diana M. Chito-Trujillo
- Grupo de Investigación Biotecnología, Calidad Medioambiental y Seguridad Agroalimentaria (BICAMSA), Universidad del Cauca, Popayán 190003, Colombia; (D.A.S.); (D.M.C.-T.); (M.R.-M.)
| | - Maite Rada-Mendoza
- Grupo de Investigación Biotecnología, Calidad Medioambiental y Seguridad Agroalimentaria (BICAMSA), Universidad del Cauca, Popayán 190003, Colombia; (D.A.S.); (D.M.C.-T.); (M.R.-M.)
| | - María Luz Sanz
- Instituto de Química Orgánica General (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain;
- Correspondence:
| |
Collapse
|
36
|
Artichoke Biorefinery: From Food to Advanced Technological Applications. Foods 2021; 10:foods10010112. [PMID: 33430385 PMCID: PMC7827807 DOI: 10.3390/foods10010112] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 12/05/2022] Open
Abstract
A sequential extraction process has been designed for valorizing globe artichoke plant residues and waste (heads, leaves, stalks, and roots left in the field) by means of green extraction techniques according to a biorefinery approach. We investigated two cascading extractions based on microwave-assisted extractions (MAE) and green solvents (water and ethanol) that have been optimized for varying temperature, solvent and extraction time. In the first step, phenols were extracted with yields that ranged between 6.94 mg g−1 dw (in leaves) and 3.28 mg g−1 dw (in roots), and a phenols productivity of 175.74 kg Ha−1. In the second step, inulin was extracted with impressive yields (42% dw), higher than other conventional inulin sources, corresponding to an inulin productivity of 4883.58 kg Ha−1. The remaining residues were found to be valuable feedstocks both for bioenergy production and green manure (back to the field), closing the loop according to the Circular Economy paradigm.
Collapse
|
37
|
Castellino M, Renna M, Leoni B, Calasso M, Difonzo G, Santamaria P, Gambacorta G, Caponio F, De Angelis M, Paradiso VM. Conventional and unconventional recovery of inulin rich extracts for food use from the roots of globe artichoke. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105975] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
38
|
Soto-Maldonado C, Zúñiga-Hansen ME, Olivares A. Data of co-extraction of inulin and phenolic compounds from globe artichoke discards, using different conditioning conditions of the samples and extraction by maceration. Data Brief 2020; 31:105986. [PMID: 32695856 PMCID: PMC7363658 DOI: 10.1016/j.dib.2020.105986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 11/13/2022] Open
Abstract
The current data presented correspond to the determination of inulin recovery from globe artichoke canned industry wastes. The discard was composed mainly by bracts with a small percentage of stems and receptacles. Artichoke discards (AD) were dehydrated by lyophilization or convective drying at different temperatures (40°C to 100°C). Inulin amount in extracts obtained using hydroalcoholic solvents (ethanol:water 75:25), which are applied for polyphenols recovery, was determined. After that, the sequential extraction of inulin with water and then with hydroalcoholic solvent was done. Finally, inulin content in lyophilized samples using different ethanol:water mixtures was determined. Inulin was determined by vanillin method and total phenolic compounds (TPC) by Folin-Ciocalteu method. From the lyophilized sample it is possible to obtain 3938.7 ± 169.1 mg inulin / 100 g AD dry basis (d.b.) and 2086.3 ± 120.7 mg TPC / 100 g AD d.b. While, from conventionally dried samples, the recovery of inulin can reach 4391.1 ± 208.2 mg inulin / 100 g AD d.b for samples dried at 60°C, but only 337.2 ± 25.9 mg TPC / 100 g AD d.b. was recovered at the same condition. Sequential extraction of lyophilized samples with water (95°C, 30 minutes) and ethanol:water 75:25 (40°C, 60 minutes) recovers in total 10907.3 mg inulin / 100 g AD and 2687.7 mg TPC / 100 g AD d.b. If the ethanol concentration decreases at 50% and the extraction is done only with the hydroalcoholic solvent, the inulin increases up to 5251.2 ± 257.4 mg inulin / 100 g AD d.b. This Data in Brief corresponds to an accompanying work to the article titled “Valorization of Globe Artichoke (Cynara scolymus) Agro-Industrial Discards, Obtaining an Extract with a Selective Effect on Viability of Cancer Cell Lines” published at Processes journal [1].
Collapse
Affiliation(s)
- Carmen Soto-Maldonado
- Regional Center for the Study of Healthy Foods. Av. Universidad 330, Valparaíso, Chile. GORE-CONIYCT R17A10001
| | - María Elvira Zúñiga-Hansen
- School of Biochemical Engineering, Pontifical Catholic University of Valparaíso, Av. Brasil 2085, Valparaiso, Chile
| | - Araceli Olivares
- Regional Center for the Study of Healthy Foods. Av. Universidad 330, Valparaíso, Chile. GORE-CONIYCT R17A10001
| |
Collapse
|
39
|
Zaeim D, Sarabi-Jamab M, Ghorani B, Kadkhodaee R, Liu W, Tromp RH. Microencapsulation of probiotics in multi-polysaccharide microcapsules by electro-hydrodynamic atomization and incorporation into ice-cream formulation. FOOD STRUCTURE-NETHERLANDS 2020. [DOI: 10.1016/j.foostr.2020.100147] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
40
|
Valorization of Globe Artichoke (Cynara scolymus) Agro-Industrial Discards, Obtaining an Extract with a Selective Effect on Viability of Cancer Cell Lines. Processes (Basel) 2020. [DOI: 10.3390/pr8060715] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Globe artichoke (Cynara scolymus L.) is considered one of the most significant sources of phenolic antioxidants in nature. However, more than 60% of its total volume is discarded for consumption purposes, making available an abundant, inexpensive and profitable source of natural antioxidants in the discarded fractions. Polyphenolic antioxidants from a South American variety of artichoke agro-industrial discards (external bracts and stems) were obtained by mild extraction processes. Best results were achieved at 40 °C, 75% of ethanol and 10 min of reaction, obtaining 2.16 g gallic acid equivalent (GAE)/100 g of total phenolic compounds (TPC) and 55,472.34 µmol Trolox equivalent (TE)/100 g of antioxidant capacity (oxygen radical absorbance capacity (ORAC)). High-performance liquid chromatography (HPLC) analyses determined that caffeoylquinic acids comprise up to 85% of the total polyphenolic content, and only around 5% are flavonoids. Inulin content in the artichokes residues was recovered (48.4% dry weight (dw)), resulting in an extract with 28% of inulin in addition to the aforementioned antioxidant capacity. The artichoke discard extract in a concentration of 500 mg/L produced a strong decrease in Caco-2 and MCF-7 cancer cell lines viability, whereas healthy fibroblasts maintained their viability when the extract was concentrated at 1500 mg/L. These results suggest that the artichoke extract presents a good anti-proliferative potential effect on Caco-2 and MCF-7 cells.
Collapse
|
41
|
Cynara cardunculus L.: Outgoing and potential trends of phytochemical, industrial, nutritive and medicinal merits. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103937] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
42
|
Chikkerur J, Samanta AK, Kolte AP, Dhali A, Roy S. Production of Short Chain Fructo-oligosaccharides from Inulin of Chicory Root Using Fungal Endoinulinase. Appl Biochem Biotechnol 2020; 191:695-715. [PMID: 31845198 DOI: 10.1007/s12010-019-03215-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/05/2019] [Indexed: 11/28/2022]
Abstract
Short chain fructo-oligosaccharides (SC-FOS) are the potential prebiotics possessing diverse applications in both food and feed industries. The present study was aimed to extract inulin from chicory roots followed by its conversion into SC-FOS applying endoinulinase from Aspergillus fumigatus. The inulin was extracted from chicory roots through boiling in hot water, followed by precipitation with ethanol at room temperature or freezing condition. Maximum yield (42%) of inulin was obtained with three volumes of chilled absolute ethanol at room temperature. HPLC analysis of enzymatic hydrolysate detected kestose (GF2), nystose (GF3), and other FOS having higher degree of polymerization (DP). Maximum GF2 (5.79 mg/ml) was detected at temperature 50 °C, pH 5.5 with 2 U of enzyme dose after 6 h of hydrolysis; while maximum GF3 (4.33 mg/ml) was recorded at 60 °C, 5.5 pH with 0.5 U enzyme dose after 2 h of hydrolysis. Nevertheless, complete hydrolysis of inulin was noticed with 99% total oligosaccharide yield at 55 °C, 5.5 pH with 0.5 U enzyme dose after 4 h of hydrolysis with negligible amount of mono- and di-saccharides. The present finding demonstrated the process for higher yield of inulin from chicory roots followed by its conversion into SC-FOS applying fungal endoinulinase.
Collapse
Affiliation(s)
- Jayaram Chikkerur
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Hosur road, Bengaluru, Karnataka, 560030, India
- Department of Microbiology, School of Sciences, Jain University, Bengaluru, Karnataka, 560011, India
| | - Ashis Kumar Samanta
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Hosur road, Bengaluru, Karnataka, 560030, India.
- SAARC Agriculture Centre, BARC Complex, Farmgate, Dhaka, 1215, Bangladesh.
| | - Atul P Kolte
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Hosur road, Bengaluru, Karnataka, 560030, India
| | - Arindam Dhali
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Hosur road, Bengaluru, Karnataka, 560030, India
| | - Sohini Roy
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Hosur road, Bengaluru, Karnataka, 560030, India
- Department of Microbiology, School of Sciences, Jain University, Bengaluru, Karnataka, 560011, India
| |
Collapse
|
43
|
Thumann TA, Pferschy-Wenzig EM, Moissl-Eichinger C, Bauer R. The role of gut microbiota for the activity of medicinal plants traditionally used in the European Union for gastrointestinal disorders. JOURNAL OF ETHNOPHARMACOLOGY 2019; 245:112153. [PMID: 31408679 DOI: 10.1016/j.jep.2019.112153] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/09/2019] [Accepted: 08/09/2019] [Indexed: 05/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Many medicinal plants have been traditionally used for the treatment of gastrointestinal disorders. According to the monographs published by the Committee on Herbal Medicinal Products (HMPC) at the European Medicines Agency, currently 44 medicinal plants are recommended in the European Union for the treatment of gastrointestinal disorders based on traditional use. The main indications are functional and chronic gastrointestinal disorders, such as functional dyspepsia and irritable bowel syndrome (IBS), and typical effects of these plants are stimulation of gastric secretion, spasmolytic and carminative effects, soothing effects on the gastrointestinal mucosa, laxative effects, adstringent or antidiarrheal activities, and anti-inflammatory effects. A possible interaction with human gut microbiota has hardly been considered so far, although it is quite likely. AIM OF THE STUDY In this review, we aimed to identify and evaluate published studies which have investigated interactions of these plants with the gut microbiome. RESULTS According to this survey, only a minor portion of the 44 medicinal plants considered in EMA monographs for the treatment of gastrointestinal diseases has been studied so far with regard to potential interactions with gut microbiota. We could identify eight relevant in vitro studies that have been performed with six of these medicinal plants, 17 in vivo studies performed in experimental animals involving seven of the medicinal plants, and three trials in humans performed with two of the plants. The most robust evidence exists for the use of inulin as a prebiotic, and in this context also the prebiotic activity of chicory root has been investigated quite intensively. Flaxseed dietary fibers are also known to be fermented by gut microbiota to short chain fatty acids, leading to prebiotic effects. This could cause a health-beneficial modulation of gut microbiota by flaxseed supplementation. In flaxseed, also other compound classes like lignans and polyunsaturated fatty acids are present, that also have been shown to interact with gut microbiota. Drugs rich in tannins and anthocyanins also interact intensively with gut microbiota, since these compounds reach the colon at high levels in unchanged form. Tannins and anthocyanins are intensively metabolized by certain gut bacteria, leading to the generation of small, bioavailable and potentially bioactive metabolites. Moreover, interaction with these compounds may exert a prebiotic-like effect on gut microbiota. Gut microbial metabolization has also been shown for certain licorice constituents, but their potential effects on gut microbiota still need to be investigated in detail. Only a limited amount of studies investigated the interactions of essential oil- and secoiridoid-containing drugs with human gut microbiota. However, other constituents present in some of these drugs, like curcumin (curcuma), shogaol (ginger), and rosmarinic acid have been shown to be metabolized by human gut microbiota, and preliminary data also indicate potential gut microbiome modulatory effects. To conclude, the interaction with gut microbiota is still not fully investigated for many herbal drugs traditionally used for gastrointestinal disorders, which offers a vast field for future research.
Collapse
Affiliation(s)
- Timo A Thumann
- Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 4, 8010, Graz, Austria; BioTechMed, Mozartgasse 12, 8010, Graz, Austria.
| | - Eva-Maria Pferschy-Wenzig
- Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 4, 8010, Graz, Austria; BioTechMed, Mozartgasse 12, 8010, Graz, Austria.
| | - Christine Moissl-Eichinger
- BioTechMed, Mozartgasse 12, 8010, Graz, Austria; Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria.
| | - Rudolf Bauer
- Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 4, 8010, Graz, Austria; BioTechMed, Mozartgasse 12, 8010, Graz, Austria.
| |
Collapse
|
44
|
Barracosa P, Barracosa M, Pires E. Cardoon as a Sustainable Crop for Biomass and Bioactive Compounds Production. Chem Biodivers 2019; 16:e1900498. [PMID: 31778035 DOI: 10.1002/cbdv.201900498] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/22/2019] [Indexed: 01/12/2023]
Abstract
Cardoon is a multi-purpose and versatile Mediterranean crop, adapted to climate change, with a wide spectrum of potential applications due its added value as a rich source of fibers, oils and bioactive compounds. The Cynara species are a component of the Mediterranean diet and have been used as food and medicine since ancient times. The important role of cardoon in human nutrition, as a functional food, is due to its high content of nutraceutical and bioactive compounds such as oligofructose inulin, caffeoylquinic acids, flavonoids, anthocyanins, sesquiterpenes lactones, triterpenes, fatty acids and aspartic proteases. The present review highlights the characteristics and functions of cardoon biomass which permits the development of innovative products in food and nutrition, pharmaceutics and cosmetics, plant protection and biocides, oils and energy, lignocellulose materials, and healthcare industries following the actual trends of a circular economy.
Collapse
Affiliation(s)
- Paulo Barracosa
- Escola Superior Agrária de Viseu - Instituto Politécnico de Viseu, 3500-606, Viseu, Portugal.,CI&DETS - Centro de Estudos em Educação, Tecnologias e Saúde, 3504-510, Viseu, Portugal.,Centro de Investigação e de Tecnologias Agroambientais e Biológicas (CITAB), Universidade de Trás-os-Montes e Alto Douro, 5001-801, Vila Real, Portugal
| | - Mariana Barracosa
- Faculdade de Ciências da Nutrição e Alimentação -, Universidade do Porto, 4200-465, Porto, Portugal
| | - Euclides Pires
- Departamento Ciências da Vida - FCTUC, Universidade de Coimbra, 3000-456, Coimbra, Portugal
| |
Collapse
|
45
|
Extraction and Characterization of Inulin-Type Fructans from Artichoke Wastes and Their Effect on the Growth of Intestinal Bacteria Associated with Health. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1083952. [PMID: 31662964 PMCID: PMC6778948 DOI: 10.1155/2019/1083952] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/19/2019] [Accepted: 08/06/2019] [Indexed: 02/08/2023]
Abstract
Globe artichoke is an intriguing source of indigestible sugar polymers such as inulin-type fructans. In this study, the effect of ultrasound in combination with ethanol precipitation to enhance the extraction of long chain fructans from artichoke wastes has been evaluated. The inulin-type fructans content both from bracts and stems was measured using an enzymatic fructanase-based assay, while its average degree of polymerization (DP) was determined by HPLC-RID analysis. Results show that this method provides artichoke extracts with an inulin-type fructans content of 70% with an average DP between 32 and 42 both in bracts and in stems. The prebiotic effect of long chain inulins from artichoke extract wastes was demonstrated by its ability to support the growth of five Lactobacillus and four Bifidobacterium species, previously characterized as probiotics. Besides, we considered the possibility to industrialize the process developing a simpler method for the production of inulin-type fructans from the artichoke wastes so that the artichoke inulin preparation could be suitable for its use in synbiotic formulations in combination with different probiotics for further studies including in vivo trials.
Collapse
|
46
|
Ardalani H, Jandaghi P, Meraji A, Hassanpour Moghadam M. The Effect of Cynara scolymus on Blood Pressure and BMI in Hypertensive Patients: A Randomized, Double-Blind, Placebo-Controlled, Clinical Trial. Complement Med Res 2019; 27:40-46. [DOI: 10.1159/000502280] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 07/22/2019] [Indexed: 11/19/2022]
Abstract
Background: Recent studies have suggested that artichoke (Cynara scolymus L.) may reduce certain biochemical blood factors but the efficacy of this plant on blood pressure (BP) has not yet been investigated. In this study, we determined the clinical efficacy of C. scolymuson BP and body mass index (BMI) in hypertensive patients as an adjunctive to captopril for the first time. Methods: The total phenolic content and gas chromatography-mass spectrometry metabolite profiling in leaves of C. scolymus have been evaluated. A clinical trial was subsequently carried out on 40 patients to determine the effect of C. scolymus on BP and BMI in hypertensive patients. The treatment group received capsules containing C. scolymus(500 mg twice daily) and the placebo group received starch powder for 8 weeks. Systolic blood pressure (SBP), diastolic blood pressure, and BMI were determined before and after the study. Results: A significant improvement of the BMI was seen in the C. scolymus group compared with the placebo group (p = 0.04). Conclusions: Our findings demonstrated that the consumption of C. scolymus powder as a rich source of phenolic and antioxidant compounds could potentially improve BMI and SBP in hypertensive patients. Therefore, more trials are needed to confirm or reject the antihypertensive impact of artichoke.
Collapse
|
47
|
Jiménez-Moreno N, Cimminelli MJ, Volpe F, Ansó R, Esparza I, Mármol I, Rodríguez-Yoldi MJ, Ancín-Azpilicueta C. Phenolic Composition of Artichoke Waste and its Antioxidant Capacity on Differentiated Caco-2 Cells. Nutrients 2019; 11:nu11081723. [PMID: 31349733 PMCID: PMC6723629 DOI: 10.3390/nu11081723] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/22/2022] Open
Abstract
Artichoke waste represents a huge amount of discarded material. This study presents the by-products (bracts, exterior leaves, and stalks) of the "Blanca de Tudela" artichoke variety as a potential source of phenolic compounds with promising antioxidant properties. Artichoke residues were subjected to different extraction processes, and the antioxidant capacity and phenolic composition of the extracts were analyzed by spectrophotometric methods and high performance liquid chromatography (HPLC) analyses, respectively. The most abundant polyphenols in artichoke waste were chlorogenic acid, luteolin-7-O-rutinoside, and luteolin-7-O-glucoside. Minor quantities of cynarin, luteolin, apigenin-7-O-glucoside, apigenin-7-O-rutinoside, and naringenin-7-O-glucoside were also found. The antioxidant activity of the obtained extracts determined by ABTS [2, 2'-azinobis (3-ethylbenzothiazoline-6-sulphonic acid)], DPPH (2,2-diphenyl-1-pycrilhydracyl), and FRAP (Ferric Ion Reducing Antioxidant Power) was highly correlated with the total concentration of phenolic compounds. Chlorogenic acid, luteolin-7-O-glucoside, and luteolin-7-O-rutinoside, the most abundant compounds in 60% methanol extracts, are the components most responsible for the antioxidant activity of the artichoke waste extracts. The extract with the best antioxidant capacity was selected to assay its antioxidant potential on a model intestinal barrier. This action of the hydroxycinnamic acids on intestinal cells (Caco-2) was confirmed. In summary, artichoke waste may be considered a very interesting ingredient for food functionalization and for therapeutic purposes.
Collapse
Affiliation(s)
- Nerea Jiménez-Moreno
- Department of Sciences, InaMat, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006 Pamplona, Spain
| | - María José Cimminelli
- Department of Sciences, InaMat, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006 Pamplona, Spain
| | - Francesca Volpe
- Department of Sciences, InaMat, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006 Pamplona, Spain
| | - Raul Ansó
- Department of Sciences, InaMat, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006 Pamplona, Spain
| | - Irene Esparza
- Department of Sciences, InaMat, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006 Pamplona, Spain
| | - Inés Mármol
- Department. of Pharmacology and Physiology, Veterinary Faculty, C/ Miguel Servet 177, University of Zaragoza, 50013 Zaragoza, CIBERobn (ISCIII), IIS Aragón, IA2 Zaragoza, Spain
| | - María Jesús Rodríguez-Yoldi
- Department. of Pharmacology and Physiology, Veterinary Faculty, C/ Miguel Servet 177, University of Zaragoza, 50013 Zaragoza, CIBERobn (ISCIII), IIS Aragón, IA2 Zaragoza, Spain
| | - Carmen Ancín-Azpilicueta
- Department of Sciences, InaMat, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006 Pamplona, Spain.
| |
Collapse
|
48
|
Tripodo G, Mandracchia D. Inulin as a multifaceted (active) substance and its chemical functionalization: From plant extraction to applications in pharmacy, cosmetics and food. Eur J Pharm Biopharm 2019; 141:21-36. [PMID: 31102649 DOI: 10.1016/j.ejpb.2019.05.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 01/09/2023]
Abstract
This review is aimed at critically discussing a collection of research papers on Inulin (INU) in different scientific fields. The first part of this work gives an overview on the main characteristics of native INU, including production, applications in food or cosmetics industries, its benefits on human health as well as its main nutraceutical properties. A particular focus is dedicated to the extraction techniques and to the specific effects of INU on intestinal microbiota. Other than in food industry, the number of INU applications increases dramatically in the pharmaceutical field especially due to its simple chemical functionalization. Thus, aim of this review is also to give practical examples of chemical functionalization performed on INU also by including critical comments based on the direct experience of the Authors. With this aim, a full paragraph is dedicated to practical chemical experiences useful to reduce the efforts when establishing new experimental conditions. Moreover, the pharmaceutical technology is also taken in special consideration by underlining the aspects leading at the preparation of formulations based on INU. At the end of the review, a critical paragraph is intended to feed the scientists' curiosity on this versatile polysaccharide.
Collapse
Affiliation(s)
- Giuseppe Tripodo
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Delia Mandracchia
- Department of Pharmacy-Drug Science, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy.
| |
Collapse
|
49
|
Villanueva-Suárez MJ, Mateos-Aparicio I, Pérez-Cózar ML, Yokoyama W, Redondo-Cuenca A. Hypolipidemic effects of dietary fibre from an artichoke by-product in Syrian hamsters. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.03.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
50
|
|