1
|
Dai L, Liu Z, Guo C, Fan H, Zhang C, Huang J, Zhang X, Zhao S, Wang H, Zhang T. Proteomic insights into metabolic dysfunction-associated steatotic disease: Identifying therapeutic targets and assessing on-target side effects. Life Sci 2025; 373:123665. [PMID: 40287056 DOI: 10.1016/j.lfs.2025.123665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 03/24/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
AIMS The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is rising sharply, yet treatment options remain inadequate. To uncover new therapeutic targets for MASLD, we conducted a comprehensive proteome-wide Mendelian randomization (MR) and phenome-wide association study (PheWAS). MATERIALS AND METHODS Discovery MR utilized protein quantitative trait loci (pQTL) data on 4907 plasma protein levels from 35,559 individuals, alongside genome-wide association study (GWAS) on MASLD from the Million Veteran Program (68,725 cases / 95,482 controls). Validation comprised five pairwise combinations of these discovery datasets with three additional datasets: pQTL data for 2923 proteins from the UK Biobank, and liver biopsy-confirmed MASLD GWAS (1483 cases/17,781 controls) and MRI-liver fat GWAS (31,377 subjects) (excluding discovery pair). Candidate proteins underwent druggability assessment and on-target side effect evaluation via PheWAS. KEY FINDINGS We identified 26 proteins associated with MASLD after Bonferroni correction (P < 1.16 × 10-5), with 19 of them showing no significant reverse association. Interleukin-6 (IL-6), alpha-1-antitrypsin (α1-antitrypsin), 5-hydroxytryptamine receptor 7 (5-HT7R), ephrin-B1 (EFNB1), and protein MENT (CA056) were replicated. Notably, IL-6 (OR = 2.02; 95 % CI 1.54-2.64), 5-HT7R (OR = 2.73; 95 % CI 1.96-3.80), and EFNB1 (OR = 1.82; 95 % CI 1.59-2.08) were positively associated with MASLD risk, whereas α1-antitrypsin (OR = 0.84; 95 % CI 0.78-0.90) and CA056 (OR = 0.90; 95 % CI 0.86-0.94) appeared protective. Among these, IL-6, 5-HT7R, and α1-antitrypsin were druggable. PheWAS identified potential cardiovascular side effects for 5-HT7R and α1-antitrypsin. SIGNIFICANCE The integrative study identified several plasma proteins associated with MASLD. IL-6, α1-antitrypsin, 5-HT7R, EFNB1 and CA056 deserve further investigation as potential drug targets for MASLD.
Collapse
Affiliation(s)
- Luojia Dai
- Department of Epidemiology, School of Public Health, Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Fudan University, Shanghai 200032, China
| | - Zhenqiu Liu
- Human Phenome Institute, Research and Innovation Center, Shanghai Pudong Hospital, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Chengnan Guo
- Department of Epidemiology, School of Public Health, Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Fudan University, Shanghai 200032, China; Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Hong Fan
- Department of Epidemiology, School of Public Health, Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Fudan University, Shanghai 200032, China
| | - Chengjun Zhang
- Department of Epidemiology, School of Public Health, Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Fudan University, Shanghai 200032, China
| | - Jiayi Huang
- Department of Epidemiology, School of Public Health, Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Fudan University, Shanghai 200032, China
| | - Xin Zhang
- Department of Epidemiology, School of Public Health, Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Fudan University, Shanghai 200032, China
| | - Shuzhen Zhao
- Department of Epidemiology, School of Public Health, Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Fudan University, Shanghai 200032, China
| | - Haili Wang
- Department of Epidemiology, School of Public Health, Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Fudan University, Shanghai 200032, China
| | - Tiejun Zhang
- Department of Epidemiology, School of Public Health, Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Fudan University, Shanghai 200032, China; Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Hakim A, Lin KH, Schwantes-An TH, Abreu M, Tan J, Guo X, Yates KP, Lotta L, Verweij N, Loomba R, Kleiner DE, Schwimmer JB, Rotter JI, Chalasani NP. A comprehensive evaluation of candidate genetic polymorphisms in a large histologically characterized MASLD cohort using a novel framework. Hepatol Commun 2025; 9:e0728. [PMID: 40434633 PMCID: PMC12122170 DOI: 10.1097/hc9.0000000000000728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 03/16/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND There is a substantial heritable component to metabolic dysfunction-associated steatotic liver disease (MASLD), and several genetic variants that promote MASLD development or associate with its severity have been reported. These associations vary in terms of their effect size and degree of replication. METHODS We developed a framework to classify previously identified MASLD genetic polymorphisms into 4 tiers based on effect size and extent of replication in the literature. We tested the association between "tier 1" single-nucleotide polymorphisms (OR ≥1.5, replicated in >2 independent studies) and biopsy measures of MASLD severity in a large, well-characterized histologic cohort of MASLD patients (n=3094). RESULTS Across 19 "tier 1" variants reflecting 11 genetic loci, only those in the PNPLA3-SAMM50-PARVB locus showed significant associations with biopsy-proven fibrosis severity and NAFLD activity score; the highest risk was for the rs738409 p.I148M variant in PNPLA3. A genetic risk score based on "tier 1" variants, as well as a previously developed genetic risk score based on variants in PNPLA3, TM6SF2, and HSD17B13, were both associated with fibrosis and NAFLD activity score, but these results were driven entirely by PNPLA3 rs738409. CONCLUSIONS Our study provides a framework to prioritize evaluation of genetic polymorphisms for future replication efforts and demonstrates that in a large case-only cohort, histologic severity of MASLD is only robustly associated with the presence of variation in PNPLA3 among known candidate genes. These findings may have implications for patient risk stratification based on the presence of PNPLA3 rs738409.
Collapse
Affiliation(s)
- Aaron Hakim
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Kung-Hung Lin
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Tae-Hwi Schwantes-An
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Marco Abreu
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jingyi Tan
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Xiuqing Guo
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Katherine P. Yates
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Luca Lotta
- Regeneron Genetics Center, Tarrytown, New York, USA
| | - Niek Verweij
- Regeneron Genetics Center, Tarrytown, New York, USA
| | - Rohit Loomba
- Department of Family Medicine and Public Health, Division of Epidemiology, University of California at San Diego, San Diego, California, USA
| | - David E. Kleiner
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| | - Jeffrey B. Schwimmer
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, University of California, San Diego School of Medicine, La Jolla, California, USA
| | - Jerome I. Rotter
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Naga P. Chalasani
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
3
|
Xiao L, Zeng L, Wang J, Hong C, Zhang Z, Wu C, Cui H, Li Y, Li R, Liang S, Deng Q, Li W, Zou X, Ma P, Liu L. Development and Validation of Machine Learning-Based Marker for Early Detection and Prognosis Stratification of Nonalcoholic Fatty Liver Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e10527. [PMID: 40432473 DOI: 10.1002/advs.202410527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 04/27/2025] [Indexed: 05/29/2025]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease and is considered the hepatic manifestation of metabolic syndrome, triggering out adverse outcomes. A stacked multimodal machine learning model is constructed and validated for early identification and prognosis stratification of NAFLD by integrating genetic and clinical data sourced from 36 490 UK Biobank and 9 007 Nanfang Hospital participants and extracted its probabilities as in-silico scores for NAFLD (ISNLD). The efficacy of ISNLD is evaluated for the early prediction of severe liver disease (SeLD) and analyzed its association with metabolism-related outcomes. The multimodal model performs satisfactorily in classifying individuals into low- and high-risk groups for NAFLD, achieving area under curves (AUCs) of 0.843, 0.840, and 0.872 within training, internal, and external test sets, respectively. Among high-risk group, ISNLD is significantly associated with intrahepatic and metabolism-related complications after lifestyle factors adjustment. Further, ISNLD demonstrates notable capability for early prediction of SeLD and further stratifies high-risk subjects into three risk subgroups of elevated risk for adverse outcomes. The findings emphasize the model's ability to integrate multimodal features to generate ISNLD, enabling early detection and prognostic prediction of NAFLD. This facilitates personalized stratification for NAFLD and metabolism-related outcomes based on digital non-invasive markers, enabling preventive interventions.
Collapse
Affiliation(s)
- Lushan Xiao
- Department of Health Management, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Lin Zeng
- Department of Health Management, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, 518133, China
| | - Jiaren Wang
- Department of Health Management, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chang Hong
- Department of Health Management, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ziyong Zhang
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chengkai Wu
- School of Public Health, Southern Medical University, Guangzhou, 510515, China
- School of Health Management, Southern Medical University, Guangzhou, 510515, China
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hao Cui
- Department of Health Management, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yan Li
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ruining Li
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shengxing Liang
- School of Public Health, Southern Medical University, Guangzhou, 510515, China
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qijie Deng
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wenyuan Li
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xuejing Zou
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Pengcheng Ma
- School of Public Health, Southern Medical University, Guangzhou, 510515, China
- School of Health Management, Southern Medical University, Guangzhou, 510515, China
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Li Liu
- Department of Health Management, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
4
|
Wang J, Ding D, Shao X, Ma L, Xu J, Melehani J, Boyette L, Watkins TR, Jia C, Malkov VA, Billin AN, Iqbal S. Antidiabetic and lipid-lowering medication use inversely linked with serum biomarkers of liver fibrosis. Diabetes Obes Metab 2025. [PMID: 40370077 DOI: 10.1111/dom.16443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/12/2025] [Accepted: 04/23/2025] [Indexed: 05/16/2025]
Abstract
AIMS The impact of antidiabetic and lipid-lowering medications on fibrosis in patients with metabolic dysfunction-associated steatohepatitis (MASH) is poorly understood. We evaluated associations between the use of these medications and serum liver fibrosis biomarkers, and whether they vary by genetic factors. MATERIALS AND METHODS This cross-sectional study used baseline medication and fibrosis biomarker (aspartate aminotransferase-to-platelet ratio index [APRI], Enhanced Liver Fibrosis [ELF], Fibrosis-4 Index (FIB-4) and FibroSure/FibroTest) data from two phase 3 trials (N = 1649) of MASH with bridging fibrosis (NCT03053050, N = 785) or compensated cirrhosis (NCT03053063, N = 864). A weighted polygenic risk score (wPRS) for MASH was derived for participants of European ancestry (N = 742) using six genetic variants. Least-squares means and 95% confidence interval (CIs) were derived using multivariable linear regression. RESULTS Combined use of antidiabetic and lipid-lowering medications was associated with statistically significantly lower adjusted mean ELF (-0.34 [95% CI: -0.47, -0.20] or - 3.2%), FIB-4 (-0.53 [95% CI: -0.74, -0.32] or - 18.0%), APRI (-0.27 [95% CI: -0.37, -0.18] or - 23.1%) and FibroSure/FibroTest scores (-0.08 [95% CI: -0.11, -0.06] or - 14.7%) compared with nonuse. Among participants of European ancestry, the inverse association for FIB-4 (interaction p = 0.01) or APRI (interaction p = 0.004) was stronger in participants with high (>median) versus low (≤median) wPRS; no significant interactions were observed for ELF or FibroSure/FibroTest. CONCLUSIONS Antidiabetic and lipid-lowering medication use was associated with lower serum liver fibrosis biomarkers. Among participants with European ancestry, associations between combined use of these medications and lower FIB-4 or APRI scores were stronger in those at high genetic risk of MASH. Longitudinal studies are warranted to extend upon these potentially clinically important findings.
Collapse
Affiliation(s)
- Jun Wang
- Gilead Sciences, Inc, Foster City, California, USA
| | - Dora Ding
- Gilead Sciences, Inc, Foster City, California, USA
| | | | - Lily Ma
- Gilead Sciences, Inc, Foster City, California, USA
| | - Jun Xu
- Gilead Sciences, Inc, Foster City, California, USA
| | | | - Lisa Boyette
- Gilead Sciences, Inc, Foster City, California, USA
| | | | | | | | | | - Shahed Iqbal
- Gilead Sciences, Inc, Foster City, California, USA
| |
Collapse
|
5
|
Zhao Y, Wang Y, Chen L, Chen H, Tang Y, He Y, Yao P. Accelerated Biological Aging, Genetic Susceptibility, and Non-Alcoholic Fatty Liver Disease: Two Prospective Cohort Studies. Nutrients 2025; 17:1618. [PMID: 40431359 PMCID: PMC12113898 DOI: 10.3390/nu17101618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Revised: 05/05/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Background: Biological aging is considered a vital risk factor for age-related diseases, but its role in non-alcoholic fatty liver disease (NAFLD) remains uncertain. This study aimed to evaluate the associations of biological aging with NAFLD and the modified effect of genetic susceptibility. Methods: This study included 329,040 participants from the UK Biobank and 6783 participants from the Dongfeng-Tongji Cohort in China. We calculated the chronological age-adjusted biological age as a surrogate measure for biological aging. Accelerated aging was defined as biological age that exceeded chronological age. The association between biological aging and the risk of NAFLD was assessed in the two cohorts. Polygenic risk scores (PRSs) were used to determine genetic susceptibility for NAFLD in the UK Biobank and further analyze the interaction with biological aging. Results: In the UK Biobank, one year older in age-adjusted biological age increased prevalent NAFLD risk by 6%. The hazard ratios (HRs) and 95% confidence intervals (95% CIs) of NAFLD by accelerated aging were 1.35 (1.17, 1.56) and 1.69 (1.54, 1.85) compared to non-aging. In the Dongfeng-Tongji Cohort, biological aging was prospectively associated with NAFLD (accelerated aging: odds ratio (OR) (95% CI) = 1.18 (1.03, 1.36)). In the UK Biobank, high genetic risk was significantly associated with higher NAFLD risk compared to low genetic risk (HRs (95% CIs) = 1.65 (1.40, 1.95)). Analyses of joint effects showed that participants with high PRS and accelerated aging had the highest risk of NAFLD [2.66 (2.98, 3.57) and 2.06 (2.36, 3.96)]. However, biological aging was prospectively associated with NAFLD among participants regardless of genetic risk. There was no significant interaction between genetic risk and biological aging. Conclusions: Accelerated biological aging was associated with a higher risk of NAFLD independent of genetic susceptibility. Identifying populations with accelerated biological aging by the use of surrogate measures and timely intervention may be beneficial for the prevention of NAFLD.
Collapse
Affiliation(s)
- Ying Zhao
- School of Public Health, Kunming Medical University, Kunming 650500, China;
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.W.); (H.C.); (Y.T.)
| | - Yu Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.W.); (H.C.); (Y.T.)
| | - Li Chen
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China;
| | - Huimin Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.W.); (H.C.); (Y.T.)
| | - Yuhan Tang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.W.); (H.C.); (Y.T.)
| | - Yuefeng He
- School of Public Health, Kunming Medical University, Kunming 650500, China;
| | - Ping Yao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.W.); (H.C.); (Y.T.)
| |
Collapse
|
6
|
Chen C, Qi J, Zhang K, Meng J, Lu Y, Wang F, Zhu X. Metabolic Dysfunction-associated Steatotic Liver Disease Increases the Risk of Primary Open-Angle Glaucoma. Ophthalmol Glaucoma 2025; 8:266-274. [PMID: 39755370 DOI: 10.1016/j.ogla.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/14/2024] [Accepted: 12/20/2024] [Indexed: 01/06/2025]
Abstract
PURPOSE Liver disease is associated with a range of extrahepatic complications, which have recently been expanded to include ophthalmic conditions. However, evidence is lacking regarding its impact on primary open-angle glaucoma (POAG). This study aimed to investigate whether major liver diseases, including metabolic dysfunction-associated steatotic liver disease (MASLD), alcoholic liver disease (ALD), viral hepatitis, and liver fibrosis and cirrhosis, were associated with POAG. DESIGN A prospective study based on the UK Biobank cohort with a 2-sample Mendelian randomization (MR) analysis for inferring causality. PARTICIPANTS A total of 332 345 UK Biobank participants free of glaucoma recruited between 2006 and 2010. METHODS The exposures of interest were severe liver diseases defined as hospital admission, including MASLD, ALD, viral hepatitis, and liver fibrosis and cirrhosis. The Cox proportional hazard models were used with each liver disease treated as a time-varying exposure. The MR analysis was further conducted based on the genome-wide association studies of a histologically characterized cohort for MASLD (n = 19 264) and the International Glaucoma Genetics Consortium cohort for POAG (n = 216 257). MAIN OUTCOME MEASURES The risk of POAG estimated by hazard ratio (HR) and 95% confidence interval (CI) in observational analysis and odds ratio (OR) and 95% CI in MR analysis. RESULTS Severe MASLD was associated with a 45% increased risk of POAG (HR, 1.45; 95% CI, 1.12-1.87; P = 0.005), whereas no association was identified between ALD, viral hepatitis, or liver fibrosis and cirrhosis and incident POAG. Subgroup analysis showed that the risk of POAG in relation to MASLD was higher in individuals having more physical activity (HR, 1.53; 95% CI, 1.04-2.25 vs. HR, 1.39; 95% CI, 0.99-1.95, P for interaction = 0.033). Mendelian randomization analysis provided evidence that MASLD was causally associated with a greater risk of POAG (inverse-variance weighted model: OR, 1.035; 95% CI, 1.010-1.061; P = 0.005). CONCLUSIONS Severe MASLD was longitudinally associated with an increased risk of incident POAG, with MR analyses suggesting a potential causal link. These findings suggest that a POAG examination should be considered in the holistic management of MASLD and further underscore the impact of the liver on eye health. FINANCIAL DISCLOSURE(S) The authors have no proprietary or commercial interest in any materials discussed in this article.
Collapse
Affiliation(s)
- Chao Chen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jiao Qi
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Keke Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jiaqi Meng
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yi Lu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Fei Wang
- Division of Gastroenterology, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.
| | - Xiangjia Zhu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Liu XR, Yin SC, Chen YT, Lee MH. Metabolic dysfunction-associated steatotic liver disease and its associated health risks. J Chin Med Assoc 2025; 88:343-351. [PMID: 40128159 DOI: 10.1097/jcma.0000000000001230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/26/2025] Open
Abstract
This article synthesizes the current knowledge on the epidemiology of metabolic dysfunction-associated steatotic liver disease (MASLD), its associated risks, and its genetic determinants. The findings presented in this article can be used to develop clinical strategies to reduce MASLD's growing global burden. MASLD has become a major global health concern due to increasing rates of obesity, sedentary lifestyles, and metabolic disorders. MASLD is a leading cause of end-stage liver diseases, including cirrhosis and hepatocellular carcinoma (HCC), and MASLD also significantly increases the risk of cardiovascular disease (CVD), thereby exerting dual effects on liver and cardiovascular health. MASLD was once referred to as nonalcoholic fatty liver disease, and this change in nomenclature reflects a growing focus on its metabolic underpinnings, facilitating the more precise diagnosis and clinical management of this disease. Epidemiological studies have demonstrated that the prevalence of MASLD is increasing worldwide, although the prevalence varies across regions and populations. Noninvasive diagnostic tools such as ultrasound and fatty liver indices along with biomarkers such as alanine aminotransferase (ALT) are crucial for early detection and risk stratification. Genetic research has identified key gene variants, including PNPLA3 (rs738409) and TM6SF2 (rs58542926), that influence MASLD susceptibility and progression, and these findings have created opportunities for improving precision medicine with respect to treating MASLD. Research has revealed an association between MASLD and major adverse cardiovascular events and increased mortality, which highlights the importance of integrating cardiovascular risk management into treatment strategies for MASLD. Future research should focus on advancing noninvasive diagnostics, leveraging genetic insights to provide tailored care, and implementing population-specific interventions to address regional variations.
Collapse
Affiliation(s)
- Xia-Rong Liu
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Szu-Ching Yin
- Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung, Taiwan, ROC
| | - Yi-Ting Chen
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Mei-Hsuan Lee
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung, Taiwan, ROC
- Advanced Therapeutics Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| |
Collapse
|
8
|
Iakovleva V, de Jong YP. Gene-based therapies for steatotic liver disease. Mol Ther 2025:S1525-0016(25)00298-9. [PMID: 40254880 DOI: 10.1016/j.ymthe.2025.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/26/2025] [Accepted: 04/16/2025] [Indexed: 04/22/2025] Open
Abstract
Advances in nucleic acid delivery have positioned the liver as a key target for gene therapy, with adeno-associated virus vectors showing long-term effectiveness in treating hemophilia. Steatotic liver disease (SLD), the most common liver condition globally, primarily results from metabolic dysfunction-associated and alcohol-associated liver diseases. In some individuals, SLD progresses from simple steatosis to steatohepatitis, cirrhosis, and eventually hepatocellular carcinoma, driven by a complex interplay of genetic, metabolic, and environmental factors. Genetic variations in various lipid metabolism-related genes, such as patatin-like phospholipase domain-containing protein 3 (PNPLA3), 17β-hydroxysteroid dehydrogenase type 13 (HSD17B13), and mitochondrial amidoxime-reducing component 1 (MTARC1), impact the progression of SLD and offer promising therapeutic targets. This review largely focuses on genes identified through clinical association studies, as they are more likely to be effective and safe for therapeutic intervention. While preclinical research continues to deepen our understanding of genetic factors, early-stage clinical trials involving gene-based SLD therapies, including transient antisense and small-molecule approaches, are helping prioritize therapeutic targets. Meanwhile, hepatocyte gene editing technologies are advancing rapidly, offering alternatives to transient methods. As such, gene-based therapies show significant potential for preventing the progression of SLD and enhancing long-term liver health.
Collapse
Affiliation(s)
- Viktoriia Iakovleva
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ype P de Jong
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
9
|
Chen Q, Hu Q, Zhang F, Lu W, Yuan Z, Qiao F. Mechanistic evaluation of Jiu Wei Qing Zhi Gao in non-alcoholic fatty liver disease: insights from network Pharmacology and experimental validation. Hereditas 2025; 162:59. [PMID: 40221773 PMCID: PMC11992867 DOI: 10.1186/s41065-025-00427-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025] Open
Abstract
CONTEXT Jiu Wei Qing Zhi Gao (JWQZG), a traditional Chinese medicine (TCM) formulation, is widely utilized in China for managing non-alcoholic fatty liver disease (NAFLD). OBJECTIVE This study aimed to elucidate the therapeutic mechanisms of JWQZG in the management of NAFLD. MATERIALS AND METHODS Network pharmacology was employed to predict the potential mechanisms of JWQZG in NAFLD management. In vivo experiments were conducted using C57BL/6J mice fed a high-fat diet (HFD) for 16 weeks, followed by treatment with JWQZG at three dosages (1.85, 3.7, and 7.4 g/kg/day) or metformin (150 mg/kg/day) for 8 weeks. In vitro studies utilized HepG2 cells exposed to 0.5 mM palmitic acid (PA) for 24 h to establish an NAFLD model, followed by exposure to JWQZG-containing serum at three concentrations for an additional 24 h. Western blot analysis was used to analyze the expression levels of key signaling pathway components. RESULTS Results of network pharmacology analysis identified the insulin signaling pathway as a potential mediator of the protective effects of JWQZG in NAFLD. Treatment with JWQZG markedly reduced hepatic steatosis and improved insulin resistance. This was accompanied by enhanced expression of key components in the insulin signaling pathway, including insulin receptor substrate 1 (IRS1), phosphorylated PI3K (p-PI3K), phosphorylated AKT (p-AKT), and phosphorylated GSK3β (p-GSK3β), compared to the NAFLD model group. CONCLUSIONS These findings provide robust evidence supporting the therapeutic potential of JWQZG in NAFLD and its modulation of the insulin signaling pathway. Furthermore, the study offers valuable insights for the discovery of anti-NAFLD compounds derived from TCM formulations.
Collapse
Affiliation(s)
- Qinlei Chen
- Department of Infectious Diseases, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210001, China
| | - Qianfeng Hu
- Nanjing University of Chinese Medicine, Nanjing, China, 210046
| | - Fan Zhang
- Department of Infectious Diseases, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210001, China
| | - Weiting Lu
- Department of Infectious Diseases, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210001, China
| | - Zheng Yuan
- Department of Infectious Diseases, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210001, China.
| | - Fei Qiao
- Department of Infectious Diseases, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210001, China.
| |
Collapse
|
10
|
Priego-Parra BA, Gallego-Durán R, Román-Calleja BM, Velarde-Ruiz Velasco JA, Romero-Gómez M, Gracia-Sancho J. Advancing precision medicine in metabolic dysfunction-associated steatotic liver disease. Trends Endocrinol Metab 2025:S1043-2760(25)00052-9. [PMID: 40221323 DOI: 10.1016/j.tem.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 03/11/2025] [Accepted: 03/17/2025] [Indexed: 04/14/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease (NAFLD), has become a pressing global health concern. The complexity of MASLD and the lack of universally effective treatments expose the limitations of current interventions, which focus mainly on lifestyle modifications. Here, we explore the multilayered nature of MASLD, emphasizing its pathophysiology in shaping future medical and lifestyle interventions from a personalized medicine perspective, based on individual molecular profiles. Additionally, we address the limitations of current animal models in reflecting human metabolic syndrome and sex-specific differences. We argue that a holistic approach, integrating social determinants of health, patient preferences, and adherence patterns, is essential for advancing MASLD management effectively.
Collapse
Affiliation(s)
- Bryan A Priego-Parra
- Instituto de Investigaciones Médico-Biológicas, Universidad Veracruzana, Veracruz, Mexico; Centro de Investigaciones Biomédicas, Universidad Veracruzana, Veracruz, Mexico
| | - Rocío Gallego-Durán
- UCM Digestive Diseases, Virgen del Rocío University Hospital. SeLiver Group, Instituto de Biomedicina de Sevilla (HUVR/CSIC/US), Department of Medicine, University of Seville, Seville, Spain; Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Berenice M Román-Calleja
- División de Hepatología, Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | | | - Manuel Romero-Gómez
- UCM Digestive Diseases, Virgen del Rocío University Hospital. SeLiver Group, Instituto de Biomedicina de Sevilla (HUVR/CSIC/US), Department of Medicine, University of Seville, Seville, Spain; Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Jordi Gracia-Sancho
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain; Liver Vascular Biology Lab, IDIBAPS - Hospital Clínic de Barcelona, Spain; Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| |
Collapse
|
11
|
Boulos M, Mousa RS, Jeries N, Simaan E, Alam K, Bulus B, Assy N. Hidden in the Fat: Unpacking the Metabolic Tango Between Metabolic Dysfunction-Associated Steatotic Liver Disease and Metabolic Syndrome. Int J Mol Sci 2025; 26:3448. [PMID: 40244398 PMCID: PMC11989262 DOI: 10.3390/ijms26073448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/25/2025] [Accepted: 03/30/2025] [Indexed: 04/18/2025] Open
Abstract
Metabolic syndrome (MetS) and metabolic dysfunction-associated steatotic liver disease (MASLD) are closely related, with rapidly increasing prevalence globally, driving significant public health concerns. Both conditions share common pathophysiological mechanisms such as insulin resistance (IR), adipose tissue dysfunction, oxidative stress, and gut microbiota dysbiosis, which contribute to their co-occurrence and progression. While the clinical implications of this overlap, including increased cardiovascular, renal, and hepatic risk, are well recognized, current diagnostic and therapeutic approaches remain insufficient due to the clinical and individuals' heterogeneity and complexity of these diseases. This review aims to provide an in-depth exploration of the molecular mechanisms linking MetS and MASLD, identify critical gaps in our understanding, and highlight existing challenges in early detection and treatment. Despite advancements in biomarkers and therapeutic interventions, the need for a comprehensive, integrated approach remains. The review also discusses emerging therapies targeting specific pathways, the potential of precision medicine, and the growing role of artificial intelligence in enhancing research and clinical management. Future research is urgently needed to combine multi-omics data, precision medicine, and novel biomarkers to better understand the complex interactions between MetS and MASLD. Collaborative, multidisciplinary efforts are essential to develop more effective diagnostic tools and therapies to address these diseases on a global scale.
Collapse
Affiliation(s)
- Mariana Boulos
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Rabia S. Mousa
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
| | - Nizar Jeries
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
| | - Elias Simaan
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
| | - Klode Alam
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
| | - Bulus Bulus
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
| | - Nimer Assy
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| |
Collapse
|
12
|
Zhou Y, Chen D, Zhu W, Liang Z, Zhao L, Zeng H, Wu L, Ye X, Ao C, Diao K. Causal Relationships between Iron Status and Nonalcoholic Fatty Liver Disease: Two-Sample, Multivariable, and Two-Step Mendelian Randomization. INT J VITAM NUTR RES 2025; 95:26773. [PMID: 40298154 DOI: 10.31083/ijvnr26773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/08/2024] [Accepted: 01/20/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) was clinically documented to be accompanied by iron homeostasis imbalances, however, the causal relationship between them remains unclear. Therefore, this study aimed to examine the relationship between iron homeostasis indicators (serum iron, ferritin, transferrin, total iron binding capacity (TIBC), and transferrin saturation (TSAT)) and NAFLD risk. METHODS We applied two-sample Mendelian randomization (MR) to assess the effects of genetic liability to iron homeostasis indicators (N = 43,220-246,139) on NAFLD risk (N = 377,988) in individuals of European ancestry. Reverse direction MR, multivariable MR, and two-step MR were performed to estimate reverse association, causal effects independent of smoking or drinking, and the mediating effect of lipid metabolism, respectively. Smoking and drinking as confounders were considered confounders. RESULTS Genetically predicted serum iron, ferritin, and TSAT were significantly associated with a higher risk of NAFLD (odds ratio (OR): 1.286, 95% confidence interval (CI): 1.075-1.539; p = 0.0059; OR: 1.260, 95% CI: 1.050-1.500, p = 0.0195; and OR: 1.223, 95% CI: 1.067-1.402; p = 0.0039, respectively). Reverse direction MR analysis suggested that genetic liability to NAFLD had no significant causal effect on iron homeostasis. Sex-specific MR exhibited a stronger effect size for the association of elevated ferritin with NAFLD risk in males (OR: 1.723, 95% CI: 1.338-2.219; p = 2.48 × 10-5). Two-step MR revealed that elevated triglycerides (TGs) mediated approximately 3%-5% of the observed effect of serum iron and TSAT on NAFLD risk, while decreased low-density lipoprotein cholesterol (LDL-C) mediated 9%-10%. CONCLUSION Genetic liability to iron status imbalance may causally affect NAFLD. This evidence may support the clinical treatment of NAFLD in the target population.
Collapse
Affiliation(s)
- Yi Zhou
- Shenzhen Health Development Research and Data Management Center, 518028 Shenzhen, China
| | - Dongze Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital & Institute, 100142 Beijing, China
| | - Weilin Zhu
- Shenzhen Health Development Research and Data Management Center, 518028 Shenzhen, China
| | - Zhisheng Liang
- Department of Global Health, School of Public Health, Peking University, 100091 Beijing, China
| | - Liang Zhao
- Shenzhen Health Development Research and Data Management Center, 518028 Shenzhen, China
| | - Huatang Zeng
- Shenzhen Health Development Research and Data Management Center, 518028 Shenzhen, China
| | - Liqun Wu
- Shenzhen Health Development Research and Data Management Center, 518028 Shenzhen, China
| | - Xin Ye
- Institute for Global Public Policy, Fudan University, 200433 Shanghai, China
- LSE-Fudan Research Center for Global Public Policy, Fudan University, 200433 Shanghai, China
| | - Chaoqun Ao
- Shenzhen Health Development Research and Data Management Center, 518028 Shenzhen, China
| | - Kaichuan Diao
- Shenzhen Center for Chronic Disease Control, 518038 Shenzhen, Guangdong, China
| |
Collapse
|
13
|
Lindén D, Tesz G, Loomba R. Targeting PNPLA3 to Treat MASH and MASH Related Fibrosis and Cirrhosis. Liver Int 2025; 45:e16186. [PMID: 39605307 PMCID: PMC11907219 DOI: 10.1111/liv.16186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/24/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is caused by metabolic triggers and genetic predisposition. Among the genetic MASLD risk variants identified today, the common PNPLA3 148M variant exerts the largest effect size of MASLD heritability. The PNPLA3 148M protein is causatively linked to the development of liver steatosis, inflammation and fibrosis in experimental studies and is therefore an appealing target for therapeutic approaches to treat this disease. Several PNPLA3 targeted approaches are currently being evaluated in clinical trials for the treatment of metabolic dysfunction-associated steatohepatitis (MASH), the most severe form of MASLD and promising proof of principle data with reduced liver fat content in homozygous PNPLA3 148M risk allele carriers has been reported from phase 1 trials following hepatic silencing of PNPLA3. Thus, targeting PNPLA3, the strongest genetic determinant of MASH may hold promise as the first precision medicine for the treatment of this disease. A histological endpoint-based phase 2b study has been initiated and several more are expected to be initiated to evaluate treatment effects on histological MASH and liver fibrosis in participants being homozygous for the PNPLA3 148M risk allele variant. The scope of this mini-review is to briefly describe the PNPLA3 148M genetics, function and preclinical experimental evidence with therapeutic approaches targeting PNPLA3 as well as to summarise the PNPLA3 based therapies currently in clinical development.
Collapse
Affiliation(s)
- Daniel Lindén
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism (CVRM)BioPharmaceuticals R&D, AstraZenecaGothenburgSweden
- Division of Endocrinology, Department of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Gregory Tesz
- Internal Medicine Research Unit, Discovery & Early DevelopmentPfizer Inc.CambridgeMassachusettsUSA
| | - Rohit Loomba
- MASLD Research Center, Division of Gastroenterology and HepatologyUniversity of California San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
14
|
Zhang X, Wang H, Guo C, Zhao S, Li Y, Liu Z, Zhang T. Genetic risk amplifies lifestyle effects on hepatic steatosis and its progression: Insights from a population-based cohort. Dig Liver Dis 2025; 57:893-901. [PMID: 39837741 DOI: 10.1016/j.dld.2025.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025]
Abstract
BACKGROUND Steatotic liver disease (SLD) is influenced by both genetics and lifestyle factors, with lifestyle effects varying by genetic susceptibility. We aimed to evaluate gene-lifestyle interactions on SLD risk. METHODS We included 28,215 UK Biobank participants with available data. Predictors were healthy lifestyle patterns, PNPLA3-rs738409, TM6SF2-rs58542926, a 16-variant hepatic steatosis polygenic risk score (PRS), and gene-environment interactions. Primary outcome was liver fat content (LFC); secondary outcomes were cT1 (a measure of liver inflammation/fibrosis) and SLD-related events. RESULTS Lifestyle predictors, except smoking, reduced LFC, while genetic predictors increased it. Genetic predictors significantly interacted with healthy lifestyle patterns, sedentary behavior and social connection. Lifestyle effects on lower LFC were up to 6.3-fold stronger in PNPLA3-rs738409-GG vs. -CC individuals, and 1.5-7.0 times higher in the top vs. bottom PRS quartile. PRS and PNPLA3 also interacted with alcohol consumption, diet, and PNPLA3 further interacted with physical activity. These interactions were more pronounced in overweight participants. Genetic factors and physical activity interacted to influence cT1, while PRS, PNPLA3 and sleep duration were associated with cardiovascular events. CONCLUSIONS Lifestyle effects on LFC, cT1 and cardiovascular events were accentuated in individuals at higher SLD genetic risk, implying lifestyle interventions may be more impactful in these populations.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, PR China; Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, PR China
| | - Haili Wang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, PR China; Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, PR China
| | - Chengnan Guo
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, PR China; Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, PR China
| | - Shuzhen Zhao
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, PR China; Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, PR China
| | - Yi Li
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, PR China; Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, PR China
| | - Zhenqiu Liu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences, Fudan University, PR China; Fudan University Taizhou Institute of Health Sciences, Taizhou, PR China
| | - Tiejun Zhang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, PR China; Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, PR China; Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, 200032, PR China; Yiwu Research Institute, Fudan University, Yiwu, PR China.
| |
Collapse
|
15
|
Chen VL, Kuppa A, Oliveri A, Chen Y, Ponnandy P, Patel PB, Palmer ND, Speliotes EK. Human genetics of metabolic dysfunction-associated steatotic liver disease: from variants to cause to precision treatment. J Clin Invest 2025; 135:e186424. [PMID: 40166930 PMCID: PMC11957700 DOI: 10.1172/jci186424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by increased hepatic steatosis with cardiometabolic disease and is a leading cause of advanced liver disease. We review here the genetic basis of MASLD. The genetic variants most consistently associated with hepatic steatosis implicate genes involved in lipoprotein input or output, glucose metabolism, adiposity/fat distribution, insulin resistance, or mitochondrial/ER biology. The distinct mechanisms by which these variants promote hepatic steatosis result in distinct effects on cardiometabolic disease that may be best suited to precision medicine. Recent work on gene-environment interactions has shown that genetic risk is not fixed and may be exacerbated or attenuated by modifiable (diet, exercise, alcohol intake) and nonmodifiable environmental risk factors. Some steatosis-associated variants, notably those in patatin-like phospholipase domain-containing 3 (PNPLA3) and transmembrane 6 superfamily member 2 (TM6SF2), are associated with risk of developing adverse liver-related outcomes and provide information beyond clinical risk stratification tools, especially in individuals at intermediate to high risk for disease. Future work to better characterize disease heterogeneity by combining genetics with clinical risk factors to holistically predict risk and develop therapies based on genetic risk is required.
Collapse
Affiliation(s)
- Vincent L. Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Annapurna Kuppa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Antonino Oliveri
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Yanhua Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Prabhu Ponnandy
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Puja B. Patel
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Nicholette D. Palmer
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Elizabeth K. Speliotes
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
16
|
Uchinuma H, Matsushita M, Tanahashi M, Suganami H, Utsunomiya K, Kaku K, Tsuchiya K. Post-hoc analysis of the tofogliflozin post-marketing surveillance study (J-STEP/LT): Tofogliflozin improves liver function in type 2 diabetes patients regardless of BMI. J Diabetes Investig 2025; 16:615-628. [PMID: 39823131 PMCID: PMC11970296 DOI: 10.1111/jdi.14402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/05/2024] [Accepted: 12/27/2024] [Indexed: 01/19/2025] Open
Abstract
AIMS/INTRODUCTION Patients with type 2 diabetes are at high risk of developing steatotic liver disease (SLD). Weight loss has proven effective in treating metabolic dysfunction-associated steatotic liver disease (MASLD) in obese patients with type 2 diabetes, with sodium-glucose cotransporter 2 (SGLT2) inhibitors showing promising results. However, lean MASLD is more prevalent in Japan, necessitating alternative approaches to body weight reduction. MATERIALS AND METHODS We used the J-STEP/LT dataset including up to 3-year treatment data to analyze the effects of the SGLT2 inhibitor tofogliflozin on liver function and treatment safety and conducted a subgroup analysis based on body mass index (BMI; kg/m2, <20, 20-<23, 23-<25, 25-<30, and ≥30). RESULTS This study included 4,208 participants. Tofogliflozin significantly reduced alanine aminotransferase (ALT) levels in participants with baseline ALT levels >30 U/L across all BMI groups, with median changes of -12, -16, -13, -15, and -15 U/L, respectively (P = 0.9291 for trends). However, median changes in body weight with tofogliflozin were -2.00, -2.75, -2.00, -3.00, and -3.80 kg, respectively (P < 0.0001 for trends), with no significant weight loss observed in the BMI <20 group. ALT levels were also significantly decreased in participants who did not lose weight. Safety assessments according to BMI and age categories revealed no clear differences in the frequency of adverse events. CONCLUSIONS Tofogliflozin reduced ALT levels without substantial body weight reduction among lean participants. These findings suggest that SGLT2 inhibitors may be a viable treatment option for non-obese patients with type 2 diabetes and SLD.
Collapse
Affiliation(s)
- Hiroyuki Uchinuma
- Department of Diabetes and EndocrinologyUniversity of Yamanashi HospitalYamanashiJapan
| | | | | | | | | | - Kohei Kaku
- Division of Diabetes, Metabolism and EndocrinologyKawasaki Medical SchoolOkayamaJapan
| | - Kyoichiro Tsuchiya
- Department of Diabetes and EndocrinologyUniversity of Yamanashi HospitalYamanashiJapan
| |
Collapse
|
17
|
Zhang J, Liu X, Jin X, Mao X, Xu X, Zhang X, Shang K, Xu Y, Zhang Y, Meng G, Yue M, Cai G, Yang S, Huang J, Fang J, Pan L, Jiang L, Shi S, Shou J. Liver-specific inactivation of Cideb improves metabolic profiles and ameliorates steatohepatitis and fibrosis in animal models for MASH. Pharmacol Res 2025; 214:107664. [PMID: 39984006 DOI: 10.1016/j.phrs.2025.107664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
Germline mutations of CIDEB, a lipid droplets (LDs)-associated protein, confer protection against various liver diseases in humans. It remains to be determined whether liver-specific inhibition of CIDEB will bring clinical benefits. We aim to establish pharmacological proof of concept by testing GalNAc-conjugated Cideb surrogate siRNAs in respective animal models of obesity and MASH and to develop siRNA drug candidates for clinical investigations. Surrogate siRNAs targeting mouse Cideb were designed and evaluated via a panel of assays. Concurrently, humanized CIDEB knock-in mice were generated as a research tool to facilitate human therapeutic siRNA discovery. In vivo administration of the surrogate siRNAs was conducted in the diet-induced obesity (DIO) model and CDAA-HFD model of MASH. In the DIO model, Cideb knockdown led to significant reductions of serum total cholesterol (TC) and triglyceride (TG) levels, a significant decrease in hepatic macro-steatosis and notable weight loss. In the CDAA-HFD model, Cideb siRNA treatment significantly reduced liver TC and TG levels. Furthermore, remarkable reductions of hepatic steatosis and the composite NAS score were observed with a concomitant amelioration of liver fibrosis. Transcriptome analyses revealed that integrin pathways may contribute to the major pharmacological activities upon Cideb inactivation beyond lipid metabolism. CIDEB exhibits significant potential as a therapeutic target for the treatment of MASH. Liver-targeting siRNA candidates are under development for therapeutic hypothesis testing in humans.
Collapse
Affiliation(s)
- Jianhua Zhang
- EnnovaBio Pharmaceuticals, Shanghai 201206, China; Ennovabio (ZheJiang) Pharmaceuticals, Shaoxing, Zhejiang 312366, China
| | - Xujie Liu
- Shanghai Rona Therapeutics, Shanghai 201315, China
| | - Xian Jin
- EnnovaBio Pharmaceuticals, Shanghai 201206, China; Ennovabio (ZheJiang) Pharmaceuticals, Shaoxing, Zhejiang 312366, China
| | - Xudong Mao
- EnnovaBio Pharmaceuticals, Shanghai 201206, China
| | - Xueli Xu
- EnnovaBio Pharmaceuticals, Shanghai 201206, China
| | - Xing Zhang
- EnnovaBio Pharmaceuticals, Shanghai 201206, China
| | - Ke Shang
- EnnovaBio Pharmaceuticals, Shanghai 201206, China; Ennovabio (ZheJiang) Pharmaceuticals, Shaoxing, Zhejiang 312366, China
| | - Yuan Xu
- EnnovaBio Pharmaceuticals, Shanghai 201206, China; Ennovabio (ZheJiang) Pharmaceuticals, Shaoxing, Zhejiang 312366, China
| | | | - Guofeng Meng
- Shanghai Rona Therapeutics, Shanghai 201315, China
| | - Ming Yue
- Shanghai Rona Therapeutics, Shanghai 201315, China
| | - Guoqing Cai
- Shanghai Rona Therapeutics, Shanghai 201315, China
| | - Song Yang
- Shanghai Rona Therapeutics, Shanghai 201315, China
| | - Jinyu Huang
- Shanghai Rona Therapeutics, Shanghai 201315, China
| | - Jianwu Fang
- Shanghai Rona Therapeutics, Shanghai 201315, China
| | - Ling Pan
- Shanghai Rona Therapeutics, Shanghai 201315, China
| | - Lei Jiang
- EnnovaBio Pharmaceuticals, Shanghai 201206, China; Ennovabio (ZheJiang) Pharmaceuticals, Shaoxing, Zhejiang 312366, China
| | - Stella Shi
- Shanghai Rona Therapeutics, Shanghai 201315, China
| | - Jianyong Shou
- EnnovaBio Pharmaceuticals, Shanghai 201206, China; Ennovabio (ZheJiang) Pharmaceuticals, Shaoxing, Zhejiang 312366, China.
| |
Collapse
|
18
|
Yan R, Liu L, Tzoulaki I, Fan J, Targher G, Yuan Z, Zhao J. Genetic Evidence for GLP-1 and GIP Receptors as Targets for Treatment and Prevention of MASLD/MASH. Liver Int 2025; 45:e16150. [PMID: 39487684 DOI: 10.1111/liv.16150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/19/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND AND AIMS Glucagon-like peptide-1 receptor (GLP1R) agonists and glucose-dependent insulinotropic polypeptide receptor (GIPR) agonists may help treat metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH). However, their definitive effects are still unclear. Our study aims to clarify this uncertainty. METHODS We utilised conventional Mendelian randomisation (MR) analysis to explore potential causal links between plasma GLP-1/GIP concentrations and MASLD and its related traits. Next, we conducted drug-target MR analysis using highly expressed tissue data to assess the effects of corresponding drug perturbation on these traits. Finally, mediation analysis was performed to ascertain whether the potential causal effect is direct or mediated by other MASLD-related traits. RESULTS Circulating 2-h GLP-1 and GIP concentrations measured during an oral glucose tolerance test showed hepatoprotective effects on MASLD risk (ORGLP-1 = 0.168 [95% CI 0.033-0.839], p = 0.030; ORGIP = 0.331 [95% CI 0.222-0.494], p = 6.31 × 10-8). GLP1R expression in the blood had a minimal causal effect on MASLD risk, whereas GIPR expression significantly affected MASLD risk (OR = 0.671 [95% CI 0.531-0.849], p = 9.07 × 10-4). Expression levels of GLP1R or GIPR in the blood significantly influenced MASLD-related clinical traits. Mediation analysis revealed that GIPR expression protected against MASLD, even after adjusting for type 2 diabetes or body mass index. CONCLUSIONS GLP-1/GIP receptor agonists offer promise in lowering MASLD/MASH risk. GIP receptor agonists can exert direct and indirect effects on MASLD mediated by weight reduction or glycemic control improvement.
Collapse
Affiliation(s)
- Ran Yan
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Institute for Medical Dataology, Shandong University, Jinan, Shandong, China
| | - Lu Liu
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
- Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Ioanna Tzoulaki
- Centre for Systems Biology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Jiangao Fan
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy
- Metabolic Diseases Research Unit, IRCCS Sacro Cuore-Don Calabria, Negrar di Valpolicella, Verona, Italy
| | - Zhongshang Yuan
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Institute for Medical Dataology, Shandong University, Jinan, Shandong, China
| | - Jian Zhao
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, Guangdong, China
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| |
Collapse
|
19
|
Jain P, Jain A, Deshmukh R, Samal P, Satapathy T, Ajazuddin. Metabolic dysfunction-associated steatotic liver disease (MASLD): Exploring systemic impacts and innovative therapies. Clin Res Hepatol Gastroenterol 2025; 49:102584. [PMID: 40157567 DOI: 10.1016/j.clinre.2025.102584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 04/01/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), which includes the inflammatory subtype metabolic dysfunction-associated steatohepatitis, is a prominent cause of chronic liver disease with systemic effects. Insulin resistance, obesity, and dyslipidaemia produce MASLD in over 30 % of adults. It is a global health issue. From MASLD to MASH, hepatic inflammation and fibrosis grow, leading to cirrhosis, hepatocellular cancer, and extrahepatic complications such CVD, CKD, and sarcopenia. Effects of MASLD to MASH are mediated through mechanisms that include inflammation, oxidative stress, dysbiosis, and predisposition through genetic makeup. Advances in diagnostic nomenclature in the past few years have moved the emphasis away from NAFLD to MASLD, focusing on the metabolic etiology and away from the stigma of an alcoholic-related condition. Epidemiological data show a large geographical variability and increasing prevalence in younger populations, particularly in regions with high carbohydrate-rich diets and central adiposity. Lifestyle modification is considered as the main management of MASLD currently. This may include dietary intervention, exercise, and weight loss management. Pharmaceutical management is primarily aimed at metabolic dysfunction with promising findings for GLP-1 receptor agonists, pioglitazone and SGLT-2 inhibitors, which can correct both hepatic and systemic outcome. However, it still depends on well-integrated multidisciplinary care models by considering complex relationships between MASLD and its effects on extrahepatic organs. Determining complications at an early stage; developing precision medicine strategies; exploring new therapeutic targets will represent crucial factors in improving their outcomes. This review discuss the systemic nature of MASLD and calls for multiple collaborations to reduce its far-reaching health impacts and our quest for understanding its pathological mechanisms. Thus, collective efforts that are required to address MASLD are under the public health, clinical care, and research angles toward effectively containing its rapidly increasing burden.
Collapse
Affiliation(s)
- Parag Jain
- Department of Pharmacology, Rungta College of Pharmaceutical Sciences and Research, Bhilai, C.G., India, 490024.
| | - Akanksha Jain
- Department of Biotechnology, Bharti University, Durg, C.G., India
| | - Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura, India, 281406
| | - Pradeep Samal
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur, C.G., India
| | - Trilochan Satapathy
- Department of Pharmacy, Columbia Institute of Pharmaceutical Sciences, Raipur, C.G., India, 493111
| | - Ajazuddin
- Department of Pharmacology, Rungta College of Pharmaceutical Sciences and Research, Bhilai, C.G., India, 490024
| |
Collapse
|
20
|
Wang JJ, Chen XY, Zhang YR, Shen Y, Zhu ML, Zhang J, Zhang JJ. Role of genetic variants and DNA methylation of lipid metabolism-related genes in metabolic dysfunction-associated steatotic liver disease. Front Physiol 2025; 16:1562848. [PMID: 40166716 PMCID: PMC11955510 DOI: 10.3389/fphys.2025.1562848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), is one of the most common chronic liver diseases, which encompasses a spectrum of diseases, from metabolic dysfunction-associated steatotic liver (MASL) to metabolic dysfunction-associated steatohepatitis (MASH), and may ultimately progress to MASH-related cirrhosis and hepatocellular carcinoma (HCC). MASLD is a complex disease that is influenced by genetic and environmental factors. Dysregulation of hepatic lipid metabolism plays a crucial role in the development and progression of MASLD. Therefore, the focus of this review is to discuss the links between the genetic variants and DNA methylation of lipid metabolism-related genes and MASLD pathogenesis. We first summarize the interplay between MASLD and the disturbance of hepatic lipid metabolism. Next, we focus on reviewing the role of hepatic lipid related gene loci in the onset and progression of MASLD. We summarize the existing literature around the single nucleotide polymorphisms (SNPs) associated with MASLD identified by genome-wide association studies (GWAS) and candidate gene analyses. Moreover, based on recent evidence from human and animal studies, we further discussed the regulatory function and associated mechanisms of changes in DNA methylation levels in the occurrence and progression of MASLD, with a particular emphasis on its regulatory role of lipid metabolism-related genes in MASLD and MASH. Furthermore, we review the alterations of hepatic DNA and blood DNA methylation levels associated with lipid metabolism-related genes in MASLD and MASH patients. Finally, we introduce potential value of the genetic variants and DNA methylation profiles of lipid metabolism-related genes in developing novel prognostic biomarkers and therapeutic targets for MASLD, intending to provide references for the future studies of MASLD.
Collapse
Affiliation(s)
- Jun-Jie Wang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Xiao-Yuan Chen
- Department of Publication Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Yi-Rong Zhang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Yan Shen
- Department of Publication Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Meng-Lin Zhu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Jun Zhang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Jun-Jie Zhang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| |
Collapse
|
21
|
Zhang Z, Su V, Wiese CB, Cheng L, Wang D, Cui Y, Kallapur A, Kim J, Wu X, Tran PH, Zhou Z, Casero D, Li W, Hevener AL, Reue K, Sallam T. A genome-wide ATLAS of liver chromatin accessibility reveals that sex dictates diet-induced nucleosome dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.13.623052. [PMID: 40161732 PMCID: PMC11952359 DOI: 10.1101/2024.11.13.623052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The three-dimensional organization of the genome plays an important role in cellular function. Alterations between open and closed chromatin states contributes to DNA binding, collaborative transcriptional activities and informs post-transcriptional processing. The liver orchestrates systemic metabolic control and has the ability to mount a rapid adaptive response to environmental challenges. We interrogated the chromatin architecture in liver under different dietary cues. Using ATAC-seq, we mapped over 120,000 nucleosome peaks, revealing a remarkably preserved hepatic chromatin landscape across feeding conditions. Stringent analysis of nucleosome rearrangements in response to diet revealed that sex is the dominant factor segregating changes in chromatin accessibility. A lipid-rich diet led to a more accessible chromatin confirmation at promoter regions in female mice along with enrichment of promoter binding CCAAT-binding domain proteins. Male liver exhibited stronger binding for nutrient sensing nuclear receptors. Integrative analysis with gene expression corroborated a role for chromatin states in informing functional differences in metabolic traits. We distinguished the impact of gonadal sex and chromosomal sex as determinants of chromatin modulation by diet using the Four Core Genotypes mouse model. Our data provide mechanistic evidence underlying the regulation for the critical sex-dimorphic GWAS gene, Pnpla3 . In summary, we provide a comprehensive epigenetic resource in murine liver that uncovers the complexity of chromatin dynamics in response to diet and sex. Highlights ATAC-Seq, RNA-Seq, and FCG model-integrated analysis unravel sex differences in chromatin accessibility and transcriptome responses to dietary challenges.Lipid-rich diet led to sex-biased chromatin confirmation at promoter regions.Gonadal sex emerged as the most prevalent determinant of the sex bias hepatic chromatin modulation by lipid-rich diets. The critical sex-dimorphic GWAS gene Pnpla3 is suppressed by testosterone, which underlies hepatic differences in expression between the sexes.
Collapse
|
22
|
Ivashkin VT, Drapkina OM, Maevskaya MV, Raikhelson KL, Okovityi SV, Zharkova MS, Grechishnikova VR, Abdulganieva DI, Alekseenko SA, Ardatskaya MD, Bakulin IG, Bakulina NV, Bogomolov PO, Breder VV, Vinnitskaya EV, Geyvandova NI, Golovanova EV, Grinevich VB, Doshchitsin VL, Dudinskaya EN, Ershova EV, Kodzoeva KB, Kozlova IV, Komshilova KA, Konev YV, Korochanskaya NV, Kotovskaya YV, Kravchuk YA, Loranskaya ID, Maev IV, Martynov AI, Mekhtiev SN, Mishina EE, Nadinskaia MY, Nikitin IG, Osipenko MF, Ostroumova OD, Pavlov CS, Pogosova NV, Radchenko VG, Roytberg GE, Saifutdinov RG, Samsonov AA, Seliverstov PV, Sitkin SI, Tarasova LV, Tarzimanova AI, Tkacheva ON, Tkachenko EI, Troshina EA, Turkina SV, Uspenskiy YP, Fominykh YA, Khlynova OV, Tsyganova YV, Shamkhalova MS, Sharkhun OO, Shestakova MV. Clinical Guidelines of the Russian Society for the Study of the Liver, Russian Gastroenterological Association, Russian Society for the Prevention of Non-Communicable Diseases, Russian Association of Endocrinologists, Russian Scientific Medical Society of Therapists, National Society of Preventive Cardiology, Russian Association of Gerontologists and Geriatricians on Non-Alcoholic Fatty Liver Disease. RUSSIAN JOURNAL OF GASTROENTEROLOGY, HEPATOLOGY, COLOPROCTOLOGY 2025; 35:94-152. [DOI: 10.22416/1382-4376-2025-35-1-94-152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2025]
Abstract
Aim. The clinical guidelines are intended to provide information support for making decisions by gastroenterologists, general practitioners and internists that will improve the quality of medical care for patients with non-alcoholic fatty liver disease, taking into account the latest clinical data and principles of evidence-based medicine. Key points. Clinical guidelines contain information about current views on etiology, risk factors and pathogenesis of nonalcoholic fatty liver disease, peculiarities of its clinical course. Also given recommendations provide information on current methods of laboratory and instrumental diagnostics, invasive and non-invasive tools for nonalcoholic fatty liver disease and its clinical phenotypes assessment, approaches to its treatment, considering the presence of comorbidities, features of dispensary monitoring and prophylaxis. The information is illustrated with algorithms of differential diagnosis and physician's actions. In addition, there is information for the patient and criteria for assessing the quality of medical care. Conclusion. Awareness of specialists in the issues of diagnosis, treatment and follow-up of patients with nonalcoholic fatty liver disease contributes to the timely diagnosis and initiation of treatment, which in the long term will significantly affect their prognosis and quality of life.
Collapse
Affiliation(s)
- V. T. Ivashkin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - O. M. Drapkina
- National Medical Research Center for Therapy and Preventive Medicine
| | - M. V. Maevskaya
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - K. L. Raikhelson
- Saint Petersburg State University;
Academician I.P. Pavlov First Saint Petersburg State Medical University
| | - S. V. Okovityi
- Saint Petersburg State Chemical Pharmaceutical University
| | - M. S. Zharkova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | | | | | | | - M. D. Ardatskaya
- Central State Medical Academy of the Department of Presidential Affairs
| | - I. G. Bakulin
- North-Western State Medical University named after I.I. Mechnikov
| | - N. V. Bakulina
- North-Western State Medical University named after I.I. Mechnikov
| | - P. O. Bogomolov
- Russian University of Medicine;
Moscow Regional Research Clinical Institute
| | - V. V. Breder
- National Medical Research Center of Oncology named after N.N. Blokhin
| | | | | | | | | | | | | | | | - K. B. Kodzoeva
- National Medical Research Center for Transplantology and Artificial Organs named after Academician V.I. Shumakov
| | - I. V. Kozlova
- Saratov State Medical University named after V.I. Razumovsky
| | | | | | | | | | | | | | | | | | - S. N. Mekhtiev
- Academician I.P. Pavlov First Saint Petersburg State Medical University
| | | | - M. Yu. Nadinskaia
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - I. G. Nikitin
- N.I. Pirogov Russian National Research Medical University;
National Medical Research Center “Treatment and Rehabilitation Center”
| | | | | | - Ch. S. Pavlov
- I.M. Sechenov First Moscow State Medical University (Sechenov University);
Moscow Multidisciplinary Scientific and Clinical Center named after S.P. Botkin
| | - N. V. Pogosova
- National Medical Research Center of Cardiology named after Academician E.I. Chazov
| | | | - G. E. Roytberg
- N.I. Pirogov Russian National Research Medical University
| | - R. G. Saifutdinov
- Kazan State Medical Academy — Branch Campus of the Russian Medical Academy of Continuous Professional Education
| | | | | | - S. I. Sitkin
- North-Western State Medical University named after I.I. Mechnikov;
V.A. Almazov National Medical Research Center
| | | | - A. I. Tarzimanova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - O. N. Tkacheva
- N.I. Pirogov Russian National Research Medical University
| | | | | | | | - Yu. P. Uspenskiy
- Academician I.P. Pavlov First Saint Petersburg State Medical University;
Saint Petersburg State Pediatric Medical University
| | - Yu. A. Fominykh
- V.A. Almazov National Medical Research Center; Saint Petersburg State Pediatric Medical University
| | - O. V. Khlynova
- Perm State Medical University named after Academician E.A. Wagner
| | | | | | - O. O. Sharkhun
- N.I. Pirogov Russian National Research Medical University
| | | |
Collapse
|
23
|
Cheng CW, Pedicini L, Alcala CM, Deligianni F, Smith J, Murray RD, Todd HJ, Forde N, McKeown L. RNA-seq analysis reveals transcriptome changes in livers from Efcab4b knockout mice. Biochem Biophys Rep 2025; 41:101944. [PMID: 40034259 PMCID: PMC11872658 DOI: 10.1016/j.bbrep.2025.101944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 03/05/2025] Open
Abstract
EFCAB4B is an evolutionarily conserved protein that encodes for the Rab GTPase Rab46, and the CRAC channel modulator, CRACR2A. Previous genome wide association studies have demonstrated the association of EFCAB4B variants in the progression of non-alcoholic fatty liver disease (NAFLD). In this study we show that mice with global depletion of Efcab4b -/- have significantly larger livers than their wild-type (WT) counterparts. We performed RNA-sequencing (RNA-seq) analysis of liver tissues to investigate differential global gene expression among Efcab4b -/- and WT mice. Of the 69 differentially expressed genes (DEGs), analyses of biological processes found significant enrichment in liver and bile development, with 6 genes (Pck1, Aacs, Onecut1, E2f8, Xbp1, and Hes1) involved in both processes. Specific consideration of possible roles of DEGs or their products in NAFLD progression to (NASH) and hepatocarcinoma (HCC), demonstrated DEGs in the livers of Efcab4b -/- mice had roles in molecular pathways including lipid metabolism, inflammation, ER stress and fibrosis. The results in this study provide additional insights into molecular mechanisms responsible for increasing susceptibility of liver injuries associated with EFCAB4B.
Collapse
Affiliation(s)
- Chew W. Cheng
- University of Leeds, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, LS2 9JT, UK
| | - Lucia Pedicini
- University of Leeds, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, LS2 9JT, UK
| | - Cintli Morales Alcala
- University of Leeds, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, LS2 9JT, UK
| | - Fenia Deligianni
- University of Leeds, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, LS2 9JT, UK
| | - Jessica Smith
- University of Leeds, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, LS2 9JT, UK
| | - Ryan D. Murray
- University of Leeds, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, LS2 9JT, UK
| | - Harriet J. Todd
- University of Leeds, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, LS2 9JT, UK
| | - Niamh Forde
- University of Leeds, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, LS2 9JT, UK
| | - Lynn McKeown
- University of Leeds, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, LS2 9JT, UK
| |
Collapse
|
24
|
Do A, Zahrawi F, Mehal WZ. Therapeutic landscape of metabolic dysfunction-associated steatohepatitis (MASH). Nat Rev Drug Discov 2025; 24:171-189. [PMID: 39609545 DOI: 10.1038/s41573-024-01084-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 11/30/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) and its severe subgroup metabolic dysfunction-associated steatohepatitis (MASH) have become a global epidemic and are driven by chronic overnutrition and multiple genetic susceptibility factors. The physiological outcomes include hepatocyte death, liver inflammation and cirrhosis. The first therapeutic for MASLD and MASH, resmetirom, has recently been approved for clinical use and has energized this therapeutic space. However, there is still much to learn in clinical studies of MASH, such as the scale of placebo responses, optimal trial end points, the time required for fibrosis reversal and side effect profiles. This Review introduces aspects of disease pathogenesis related to drug development and discusses two main therapeutic approaches. Thyroid hormone receptor-β agonists, such as resmetirom, as well as fatty acid synthase inhibitors, target the liver and enable it to function within a toxic metabolic environment. In parallel, incretin analogues such as semaglutide improve metabolism, allowing the liver to self-regulate and reversing many aspects of MASH. We also discuss how combinations of therapeutics could potentially be used to treat patients.
Collapse
Affiliation(s)
- Albert Do
- Section of Digestive Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Division of Gastroenterology, University of California, Davis, Davis, USA
| | - Frhaan Zahrawi
- Section of Digestive Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Wajahat Z Mehal
- Section of Digestive Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA.
- West Haven Veterans Hospital, West Haven, CT, USA.
| |
Collapse
|
25
|
Petta S, Armandi A, Bugianesi E. Impact of PNPLA3 I148M on Clinical Outcomes in Patients With MASLD. Liver Int 2025; 45:e16133. [PMID: 39412170 PMCID: PMC11815615 DOI: 10.1111/liv.16133] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/23/2024] [Accepted: 10/02/2024] [Indexed: 01/03/2025]
Abstract
BACKGROUND AND AIMS Metabolic dysfunction-associated steatotic liver disease (MASLD) is a heterogenous clinical and histopathological entity, where multiple metabolic co-factors are intertwined with high interindividual variability. The impact and severity of each factor (including obesity and type 2 diabetes) define a systemic dysmetabolism that can lead to either advanced liver disease and its complication (including hepatocellular carcinoma and clinical events related to portal hypertension) or extrahepatic events: incident cardiovascular disease, chronic kidney disease and extrahepatic cancers. The balance between environmental factors and genetic susceptibility has unique implications in MASLD: the intermittent injury of metabolic co-factors, their fluctuation over time and their specific management, are counterbalanced by the presence of gene variants that can significantly impact the disease at multiple levels. The I148M variant in the PNPLA3 gene is the most investigated genetic susceptibility that induces a more severe steatohepatitis, enhanced fibrogenesis and can shape the incidence of long-term clinical events regardless of, or worsened by, other metabolic risk factors. METHODS AND RESULTS In this review, we will summarise the updated evidence on the natural history of MASLD accounting for classical metabolic risk factors, the role of PNPLA3 in clinical sub-phenotyping (e.g., 'lean MASLD'), impact on disease severity and fibrosis progression, as well as its role for prognostication, alone or in combination with non-invasive tools into polygenic risk scores.
Collapse
Affiliation(s)
- Salvatore Petta
- Sezione di Gastroenterologia, Di.Bi.M.I.SUniversity of PalermoPalermoItaly
| | - Angelo Armandi
- Division of Gastroenterology and Hepatology, Department of Medical SciencesUniversity of TurinTurinItaly
| | - Elisabetta Bugianesi
- Division of Gastroenterology and Hepatology, Department of Medical SciencesUniversity of TurinTurinItaly
| |
Collapse
|
26
|
Kim D, Shah M, Kim JH, Kim J, Baek YH, Jeong JS, Han SY, Lee YS, Park G, Cho JH, Roh YH, Lee SW, Choi GB, Park JH, Yoo KH, Seong RH, Lee YS, Woo HG. Integrative transcriptomic and genomic analyses unveil the IFI16 variants and expression as MASLD progression markers. Hepatology 2025; 81:962-975. [PMID: 38385945 DOI: 10.1097/hep.0000000000000805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/05/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND AND AIMS Metabolic dysfunction-associated steatotic liver disease (MASLD) encompasses a broad and continuous spectrum of liver diseases ranging from fatty liver to steatohepatitis. The intricate interactions of genetic, epigenetic, and environmental factors in the development and progression of MASLD remain elusive. Here, we aimed to achieve an integrative understanding of the genomic and transcriptomic alterations throughout the progression of MASLD. APPROACH AND RESULTS RNA-Seq profiling (n = 146) and whole-exome sequencing (n = 132) of MASLD liver tissue samples identified 3 transcriptomic subtypes (G1-G3) of MASLD, which were characterized by stepwise pathological and molecular progression of the disease. Macrophage-driven inflammatory activities were identified as a key feature for differentiating these subtypes. This subtype-discriminating macrophage interplay was significantly associated with both the expression and genetic variation of the dsDNA sensor IFI16 (rs6940, A>T, T779S), establishing it as a fundamental molecular factor in MASLD progression. The in vitro dsDNA-IFI16 binding experiments and structural modeling revealed that the IFI16 variant exhibited increased stability and stronger dsDNA binding affinity compared to the wild-type. Further downstream investigation suggested that the IFI16 variant exacerbated DNA sensing-mediated inflammatory signals through mitochondrial dysfunction-related signaling of the IFI16-PYCARD-CASP1 pathway. CONCLUSIONS This study unveils a comprehensive understanding of MASLD progression through transcriptomic classification, highlighting the crucial roles of IFI16 variants. Targeting the IFI16-PYCARD-CASP1 pathway may pave the way for the development of novel diagnostics and therapeutics for MASLD.
Collapse
Affiliation(s)
- Doyoon Kim
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Science, Graduate School, Ajou University, Suwon, Republic of Korea
| | - Masaud Shah
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jang Hyun Kim
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Science, Graduate School, Ajou University, Suwon, Republic of Korea
| | - JungMo Kim
- Ajou Translational Omics Center (ATOC), Research Institute for Innovative Medicine, Ajou University Medical Center, Suwon, Republic of Korea
| | - Yang-Hyun Baek
- Department of Internal Medicine, Liver Center, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Jin-Sook Jeong
- Pathology and Laboratory Medicine, St Mary's Hospital, Busan, Republic of Korea
| | | | - Yong Sun Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Republic of Korea
| | - Gaeul Park
- Division of Rare Cancer, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Jin-Han Cho
- Department of Diagnostic Radiology, Dong-A University Medical Center, Busan, Republic of Korea
| | - Young-Hoon Roh
- Department of Surgery, Dong-A University Medical Center, Busan, Republic of Korea
| | - Sung-Wook Lee
- Department of Internal Medicine, Liver Center, Dong-A University Medical Center, Busan, Republic of Korea
| | - Gi-Bok Choi
- Department of Radiology, On Hospital, Busan, Republic of Korea
| | - Jong Hoon Park
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Kyung Hyun Yoo
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Rho Hyun Seong
- Department of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
| | - Yeon-Su Lee
- Division of Rare Cancer, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Hyun Goo Woo
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Science, Graduate School, Ajou University, Suwon, Republic of Korea
- Ajou Translational Omics Center (ATOC), Research Institute for Innovative Medicine, Ajou University Medical Center, Suwon, Republic of Korea
| |
Collapse
|
27
|
Zhang X, Lau HCH, Yu J. Pharmacological treatment for metabolic dysfunction-associated steatotic liver disease and related disorders: Current and emerging therapeutic options. Pharmacol Rev 2025; 77:100018. [PMID: 40148030 DOI: 10.1016/j.pharmr.2024.100018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD; formerly known as nonalcoholic fatty liver disease) is a chronic liver disease affecting over a billion individuals worldwide. MASLD can gradually develop into more severe liver pathologies, including metabolic dysfunction-associated steatohepatitis (MASH), cirrhosis, and liver malignancy. Notably, although being a global health problem, there are very limited therapeutic options against MASLD and its related diseases. While a thyroid hormone receptor agonist (resmetirom) is recently approved for MASH treatment, other efforts to control these diseases remain unsatisfactory. Given the projected rise in MASLD and MASH incidence, it is urgent to develop novel and effective therapeutic strategies against these prevalent liver diseases. In this article, the pathogenic mechanisms of MASLD and MASH, including insulin resistance, dysregulated nuclear receptor signaling, and genetic risk factors (eg, patatin-like phospholipase domain-containing 3 and hydroxysteroid 17-β dehydrogenase-13), are introduced. Various therapeutic interventions against MASH are then explored, including approved medication (resmetirom), drugs that are currently in clinical trials (eg, glucagon-like peptide 1 receptor agonist, fibroblast growth factor 21 analog, and PPAR agonist), and those failed in previous trials (eg, obeticholic acid and stearoyl-CoA desaturase 1 antagonist). Moreover, given that the role of gut microbes in MASLD is increasingly acknowledged, alterations in the gut microbiota and microbial mechanisms in MASLD development are elucidated. Therapeutic approaches that target the gut microbiota (eg, dietary intervention and probiotics) against MASLD and related diseases are further explored. With better understanding of the multifaceted pathogenic mechanisms, the development of innovative therapeutics that target the root causes of MASLD and MASH is greatly facilitated. The possibility of alleviating MASH and achieving better patient outcomes is within reach. SIGNIFICANCE STATEMENT: Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease worldwide, and it can progress to more severe pathologies, including steatohepatitis, cirrhosis, and liver cancer. Better understanding of the pathogenic mechanisms of these diseases has facilitated the development of innovative therapeutic strategies. Moreover, increasing evidence has illustrated the crucial role of gut microbiota in the pathogenesis of MASLD and related diseases. It may be clinically feasible to target gut microbes to alleviate MASLD in the future.
Collapse
Affiliation(s)
- Xiang Zhang
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Harry Cheuk-Hay Lau
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jun Yu
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
28
|
Bayram S, Ülger Y. Association of PNPLA3 rs738409 C > G and rs2896019 T > G Polymorphisms with Nonalcoholic Fatty Liver Disease in a Turkish Population from Adıyaman Province. Genet Test Mol Biomarkers 2025; 29:63-73. [PMID: 40101239 DOI: 10.1089/gtmb.2024.0481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
Objectives: The purpose of this study was to investigate the effect of patatin-like phospholipase domain-containing protein 3 (PNPLA3) rs738409 C > G and rs2896019 T > G polymorphisms on genetic susceptibility to nonalcoholic fatty liver disease (NAFLD) in a Turkish population from Adıyaman province, located in the Southeast Anatolia Region of Turkey. Materials and Methods: This hospital-based molecular epidemiological case-control study analyzed the PNPLA3 rs738409 C > G and rs2896019 T > G polymorphisms in 335 NAFLD cases and 410 healthy controls. Genotype frequencies were determined using real-time polymerase chain reaction with the TaqMan assay. The association with NAFLD susceptibility was evaluated by calculating odds ratios (ORs) and 95% confidence intervals (CIs) using an unconditional logistic regression model. Results: We found that the PNPLA3 rs738409 C > G (CC vs. GG: OR = 1.90, 95% CI = 1.05-3.44) and rs2896019 T > G (TT vs. GG: OR = 3.24, 95% CI = 1.44-7.27) polymorphisms were linked to an increased risk of NAFLD in almost all genetic models (p < 0.05). In addition, the PNPLA3 Grs738409/Grs2896019 haplotype was associated with NAFLD development (p < 0.05). Significant differences in alanine aminotransferase and aspartate aminotransferase enzyme levels were observed across the genotypes of these polymorphisms (p < 0.05). Conclusion: This is the first study on PNPLA3 single nucleotide polymorphisms (SNPs) and NAFLD in the Turkish population of Adıyaman Province, Southeast Anatolia. Our findings suggest that the PNPLA3 rs738409 C > G and rs2896019 T > G polymorphisms, along with their haplotypes, may influence NAFLD susceptibility. Further independent studies with larger sample sizes and diverse populations are needed to confirm these results.
Collapse
Affiliation(s)
- Süleyman Bayram
- Faculty of Health Sciences, Department of Public Health Nursing, Adıyaman University, Adıyaman, Turkey
| | - Yakup Ülger
- Faculty of Medicine, Department of Gastroenterology, Çukurova University, Adana, Turkey
| |
Collapse
|
29
|
Theel WB, de Jong VD, Castro Cabezas M, Grobbee DE, Jukema JW, Trompet S. Risk of cardiovascular disease in elderly subjects with obesity and liver fibrosis and the potential benefit of statin treatment. Eur J Clin Invest 2025; 55:e14368. [PMID: 39636216 PMCID: PMC11810556 DOI: 10.1111/eci.14368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Liver fibrosis progression is influenced by older age and cardiometabolic risk factors such as obesity and is associated with an increased risk of cardiovascular events. While statins may protect against cardiovascular complications, their effects in elderly individuals with obesity and liver fibrosis are unclear. METHOD The PROspective Study of Pravastatin in the Elderly at Risk (PROSPER) database was used to evaluate the effect of pravastatin on major adverse cardiovascular events in an elderly population (>70 years). Subjects were categorized by BMI: lean (<25 kg/m2), overweight (25-29.9 kg/m2) and obese (≥30 kg/m2). Liver fibrosis was assessed using the FIB-4 index: low risk (<2.0), intermediate risk (2.0-2.66) and high risk (≥2.67). Time-to-event data were analysed using the Cox proportional hazards model, adjusted for confounders and compared the placebo and pravastatin groups. RESULTS A total of 5.804 subjects were included. In the placebo group, the highest risk group (high FIB-4 and obesity) had a significantly higher hazard ratio for (non-)fatal stroke (HR 2.74; 95% CI 1.19-6.29) compared to the low FIB-4, lean BMI group. This risk disappeared in the same pravastatin group. Pravastatin did not affect other cardiovascular endpoints. All-cause mortality was significantly higher in subjects with lean weight and high FIB-4 on placebo (HR 1.88; 95% CI 1.14-3.11), but not on pravastatin (HR .58; 95% CI .28-1.20). CONCLUSION Elderly individuals with obesity and liver fibrosis are at higher risk for (non-)fatal stroke, which is reduced with pravastatin. Pravastatin also potentially lowers all-cause mortality in subjects with lean weight and liver fibrosis.
Collapse
Affiliation(s)
- Willy B. Theel
- Department of Internal medicineFranciscus Gasthuis & VlietlandRotterdamThe Netherlands
- Obesity Center CGGRotterdamThe Netherlands
| | - Vivian D. de Jong
- Julius Global Health, Julius Center for Health Sciences and Primary CareUniversity Medical Center UtrechtUtrechtThe Netherlands
- Julius ClinicalZeistThe Netherlands
| | - Manuel Castro Cabezas
- Department of Internal medicineFranciscus Gasthuis & VlietlandRotterdamThe Netherlands
- Julius ClinicalZeistThe Netherlands
- Department of CardiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Diederick E. Grobbee
- Julius Global Health, Julius Center for Health Sciences and Primary CareUniversity Medical Center UtrechtUtrechtThe Netherlands
- Julius ClinicalZeistThe Netherlands
| | - Johan W. Jukema
- Department of CardiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Stella Trompet
- Department of CardiologyLeiden University Medical CenterLeidenThe Netherlands
- Department of Internal Medicine, Section of Gerontology & GeriatricsLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
30
|
Liu Z, Jiang Y, Suo C, Yuan H, Yuan Z, Zhang T, Jin L, Chen X. Cohort Profile: Taizhou Study of Liver Diseases (T-SOLID). Int J Epidemiol 2025; 54:dyaf030. [PMID: 40199566 DOI: 10.1093/ije/dyaf030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 03/07/2025] [Indexed: 04/10/2025] Open
Affiliation(s)
- Zhenqiu Liu
- Human Phenome Institute, Research and Innovation Center, Shanghai Pudong Hospital, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Yanfeng Jiang
- Human Phenome Institute, Research and Innovation Center, Shanghai Pudong Hospital, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Chen Suo
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Shanghai, China
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Huangbo Yuan
- Human Phenome Institute, Research and Innovation Center, Shanghai Pudong Hospital, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Ziyu Yuan
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Tiejun Zhang
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Shanghai, China
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Li Jin
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
- State Key Laboratory of Genetic Engineering and Human Phenome Institute, Fudan University, Shanghai, China
| | - Xingdong Chen
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
- State Key Laboratory of Genetic Engineering and Human Phenome Institute, Fudan University, Shanghai, China
| |
Collapse
|
31
|
Geng W, Liao W, Cao X, Yang Y. Therapeutic Targets and Approaches to Manage Inflammation of NAFLD. Biomedicines 2025; 13:393. [PMID: 40002806 PMCID: PMC11853636 DOI: 10.3390/biomedicines13020393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and its advanced form, non-alcoholic steatohepatitis (NASH), are the leading causes of chronic liver disease globally. They are driven by complex mechanisms where inflammation plays a pivotal role in disease progression. Current therapies, including lifestyle changes and pharmacological agents, are limited in efficacy, particularly in addressing the advanced stages of the disease. Emerging approaches targeting inflammation, metabolic dysfunction, and fibrosis offer promising new directions, though challenges such as treatment complexity and heterogeneity persist. This review concludes the main therapeutic targets and approaches to manage inflammation currently and emphasizes the critical need for future drug development and combination therapy for NAFLD/NASH management.
Collapse
Affiliation(s)
- Wanying Geng
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China;
- Department of Gastroenterology, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China; (W.L.); (X.C.)
| | - Wanying Liao
- Department of Gastroenterology, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China; (W.L.); (X.C.)
| | - Xinyuan Cao
- Department of Gastroenterology, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China; (W.L.); (X.C.)
| | - Yingyun Yang
- Department of Gastroenterology, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China; (W.L.); (X.C.)
| |
Collapse
|
32
|
Liang B, Fu L, Liu P. Regulation of lipid droplet dynamics and lipid homeostasis by hydroxysteroid dehydrogenase proteins. Trends Cell Biol 2025; 35:153-165. [PMID: 39603915 DOI: 10.1016/j.tcb.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
The superfamily of hydroxysteroid dehydrogenases (HSDs) has been well-characterized as enzymes in lipid metabolism, and especially in steroid hormone metabolism from bacteria to mammals. Recently, a subset of HSDs members, including 3β-HSD, 11β-HSD, and 17β-HSD, have been shown to be lipid droplet (LD)-associated proteins that are involved in LD dynamics beyond their canonical functions. This review summarizes current understanding of these LD-associated HSD proteins, focusing on how they regulate different LDs with respect to distinct neutral lipids including triacylglycerols (TAGs), cholesterol esters (CEs), and retinyl esters (REs), the evolutionally conserved role of some LD-associated 17β-HSDs in preventing lipolysis, and specific targeting of HSDs for the treatment of metabolic diseases and viral infections.
Collapse
Affiliation(s)
- Bin Liang
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming 650500, China; Southwest United Graduate School, Kunming 650092, China.
| | - Lin Fu
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming 650500, China; Key Laboratory of Tumor Immunological Prevention and Treatment in Yunnan Province, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, China.
| | - Pingsheng Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
33
|
Dileo E, Saba F, Parasiliti-Caprino M, Rosso C, Bugianesi E. Impact of Sexual Dimorphism on Therapy Response in Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease: From Conventional and Nutritional Approaches to Emerging Therapies. Nutrients 2025; 17:477. [PMID: 39940335 PMCID: PMC11821005 DOI: 10.3390/nu17030477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a spectrum of liver disease ranging from hepatic fat accumulation to steatohepatitis (metabolic dysfunction-associated steatohepatitis, MASH), fibrosis, cirrhosis, and potentially hepatocellular carcinoma in the absence of excessive alcohol consumption. MASLD is characterized by substantial inter-individual variability in terms of severity and rate of progression, with a prevalence that is generally higher in men than in women. Steroids metabolism is characterized by sexual dimorphism and may have an impact on liver disease progression; indeed, several therapeutic strategies targeting hormone receptors are under phase 2/3 development. Despite the fact that the importance of sexual dimorphism in the setting of MASLD is well recognized, the underlying molecular mechanisms that can potentially drive the disease toward progression are not clear. The aim of this review is to delve into the crosstalk between sexual dimorphism and steroid hormone perturbation under nutritional and pharmacological intervention.
Collapse
Affiliation(s)
| | | | | | - Chiara Rosso
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (E.D.); (F.S.); (M.P.-C.)
| | - Elisabetta Bugianesi
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (E.D.); (F.S.); (M.P.-C.)
| |
Collapse
|
34
|
Khan F, Dsouza S, Khamis AH, Abdul F, Farooqi MH, Sulaiman F, Mulla F, Al Awadi F, Hassanein M, Bayoumi R. Noninvasive Assessment of the Severity of Liver Fibrosis in MASLD Patients with Long-Standing Type 2 Diabetes. J Gen Intern Med 2025:10.1007/s11606-025-09348-2. [PMID: 39841343 DOI: 10.1007/s11606-025-09348-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/30/2024] [Indexed: 01/23/2025]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) and metabolic dysfunction-associated steatotic liver disease (MASLD), which have a reciprocal relationship compounded by obesity, are highly prevalent in the Middle East affecting morbidity, mortality, and healthcare costs. OBJECTIVE This study aimed to assess the severity of MASLD and liver fibrosis among adult Emirati patients with long-standing T2DM. DESIGN AND PARTICIPANTS This cross-sectional study used noninvasive methods to assess the severity of MASLD and fibrosis progression in an adult cohort of Emirati patients (N = 546) with a mean T2DM duration of 16 years. MAIN MEASURES Fatty liver infiltration was assessed by hepatic steatosis index (HSI), while fibrosis was assessed by the fibrosis-4 (FIB-4) index and aspartate aminotransferase/platelet ratio index (APRI). Of those, 108 patients were randomly subjected to ultrasound-based FibroScan® to assess controlled attenuation parameter (CAP) and liver stiffness measurement (LSM). KEY RESULTS All patients had fatty liver with ~ 83% being categorized as having severe steatosis. Serum-based fibrosis biomarker panels detected significant liver fibrosis in ~ 2.5% of these patients. The APRI appeared to be more restrictive in detecting moderate fibrosis (1.5%) than the FIB-4 index (25.5%). CAP significantly correlated with the LSM, indicating that the two methods contributed to the same underlying pathophysiology. Liver steatosis was more severe in female patients, who were older and had a higher body mass index (BMI) than those with moderate or no significant fibrosis. They also had higher serum liver enzymes and were more likely to have age-related changes in kidney function. Interestingly, severity of both steatosis and fibrosis remained unaffected by age and duration of T2D except for fibrosis severity detected by FibroScan®. CONCLUSIONS This study highlights the critical need for routine screening of MASLD among Emirati patients with long-standing T2DM, given the high point prevalence of severe steatosis (~ 83%), predominantly among women in this population.
Collapse
Affiliation(s)
- Farooq Khan
- Hepatology, King's College Hospital London, Dubai, United Arab Emirates
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Stafny Dsouza
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Amar Hassan Khamis
- Hamdan Bin Mohammed College of Dental Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Fatima Abdul
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | | | - Fatima Sulaiman
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Fahad Mulla
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Fatheya Al Awadi
- Endocrinology Department, Dubai Hospital, Dubai Health, Dubai, United Arab Emirates
| | - Mohammed Hassanein
- Endocrinology Department, Dubai Hospital, Dubai Health, Dubai, United Arab Emirates
| | - Riad Bayoumi
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.
| |
Collapse
|
35
|
Zhang G, Jiang W, He F, Fu J, Xu X, Luo X, Cao Z. LDL-C and TC Mediate the Risk of PNPLA3 Inhibition in Cardiovascular Diseases. J Clin Endocrinol Metab 2025; 110:e231-e238. [PMID: 38636099 DOI: 10.1210/clinem/dgae264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
CONTEXT PNPLA3 is a promising target for the treatment of metabolic dysfunction-associated steatotic liver disease. ARO-PNPLA3 is a drug that efficiently lowers PNPLA3 expression in hepatocytes at the mRNA level, resulting in a significant reduction in liver fat in Phase I clinical trials. However, the long-term effects and potential side effects of ARO-PNPLA3 are not well understood. OBJECTIVE We conducted a 2-sample, 2-step Mendelian randomization analysis to investigate the association between PNPLA3 inhibition and 10 cardiovascular diseases (CVDs), as well as the role of lipid traits as mediators. METHODS We identified genetic variants near the PNPLA3 gene, which are linked to liver fat percentage, as instrumental variables for inhibiting PNPLA3. Additionally, positive control analyses on liver diseases were conducted to validate the selection of the genetic instruments. RESULTS Genetically predicted PNPLA3 inhibition significantly increased the risk of coronary atherosclerosis (1.14, 95% CI 1.06, 1.23), coronary heart disease (1.14, 95% CI 1.08, 1.21), and myocardial infarction (1.16, 95% CI 1.08, 1.26). Suggestive associations were observed for increased risk of heart failure (1.09, 95% CI 1.02, 1.17, P = .0143) and atrial fibrillation (1.17, 95% CI 1.00, 1.36, P = .0468). Blood low-density lipoprotein cholesterol (LDL-C) and total cholesterol (TC) mediated approximately 16% to 25%, 16% to 30%, and 14% to 22% of the associations between PNPLA3 inhibition and coronary atherosclerosis, myocardial infarction, and coronary heart disease, respectively. CONCLUSION This study suggests that PNPLA3 inhibition increases the risk of major CVDs. Moreover, blood LDL-C and TC may mediate a significant proportion of the associations between PNPLA3 inhibition and coronary atherosclerosis, coronary heart disease, or myocardial infarction.
Collapse
Affiliation(s)
- Genshan Zhang
- Department of Gastrointestinal Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Wei Jiang
- Department of Gastrointestinal Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Fangxun He
- Department of Gastrointestinal Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Jie Fu
- Department of Nursing, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Xiangshang Xu
- Department of Gastrointestinal Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Xuelai Luo
- Department of Gastrointestinal Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Zhixin Cao
- Department of Gastrointestinal Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| |
Collapse
|
36
|
Armisen J, Rauschecker M, Sarv J, Liljeblad M, Wernevik L, Niazi M, Knöchel J, Eklund O, Sandell T, Sherwood J, Bergenholm L, Hallén S, Wang S, Kamble P, Bhat M, Maxvall I, Wang Y, Lee RG, Bhanot S, Guo S, Romeo S, Lawitz E, Fjellström O, Lindén D, Blau JE, Loomba R. AZD2693, a PNPLA3 antisense oligonucleotide, for the treatment of MASH in 148M homozygous participants: Two randomized phase I trials. J Hepatol 2025:S0168-8278(25)00003-0. [PMID: 39798707 DOI: 10.1016/j.jhep.2024.12.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/15/2025]
Abstract
BACKGROUND & AIMS A common genetic variant (rs738409) encoding an isoleucine to methionine substitution at position 148 in the PNPLA3 protein is a determinant of hepatic steatosis, inflammation, fibrosis, cirrhosis, and liver-related mortality. AZD2693 is a liver-targeted antisense oligonucleotide against PNPLA3 mRNA. We evaluated the safety, tolerability, pharmacokinetics, and pharmacodynamics in single and multiple ascending dose studies. METHODS AZD2693 was assessed in 3D cultures of homozygous PNPLA3 148M primary human hepatocytes and mice expressing human PNPLA3. The single ascending dose study investigated 2-110 mg doses in overweight/mildly obese but otherwise healthy volunteers. The multiple ascending dose study investigated three monthly doses (25 mg, 50 mg and 80 mg) in participants with MRI-proton density fat fraction (MRI-PDFF) ≥7%. Changes in liver fat content were assessed at baseline, weeks 8 and 12 by MRI-PDFF. PNPLA3 mRNA and protein knockdown levels were evaluated for the 80 mg dose. RESULTS AZD2693 potently reduced PNPLA3 expression in human hepatocytes and livers of mice. Clinically, AZD2693 was generally well tolerated (no adverse events leading to discontinuation or treatment-related serious adverse events). Half-life was 14-33 days across investigated doses. A least-square mean liver PNPLA3 mRNA knockdown of 89% and reduction of protein levels demonstrated target engagement. Changes in hepatic steatosis at week 12 were -7.6% and -12.2% (placebo-corrected least-square means) for the 25 mg and 50 mg doses, respectively. There was a dose-dependent increase of polyunsaturated fatty acids in serum triglycerides and decreases vs. placebo in high-sensitivity C-reactive protein and interleukin 6. CONCLUSIONS AZD2693 reduced liver PNPLA3 with an acceptable safety and tolerability profile. These findings support the continued development of AZD2693. IMPACT AND IMPLICATIONS Clinical treatment options for metabolic dysfunction-associated steatohepatitis (MASH) are limited. The genetic risk factor with the largest effect size for progressing to poor liver-related outcomes in MASH is a single-nucleotide polymorphism in the gene PNPLA3 (p.I148M). In phase I single and multiple ascending dose studies, AZD2693, a liver-targeted antisense oligonucleotide, was well tolerated, reduced liver PNPLA3 mRNA and protein levels, and dose-dependently reduced liver fat content in homozygous PNPLA3 148M risk allele carriers. These data support continued development of AZD2693 as a potential precision medicine treatment for MASH. The phase IIb FORTUNA study is now ongoing. CLINICAL TRIAL NUMBER NCT04142424, NCT04483947.
Collapse
Affiliation(s)
- Javier Armisen
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals, R&D, AstraZeneca, Cambridge, UK
| | - Mitra Rauschecker
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Janeli Sarv
- Late Stage Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals, R&D, AstraZeneca, Gothenburg, Sweden
| | - Mathias Liljeblad
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals, R&D, AstraZeneca, Gothenburg, Sweden
| | - Linda Wernevik
- Clinical Operations, Cardiovascular, Renal and Metabolism, BioPharmaceuticals, R&D, AstraZeneca, Gothenburg, Sweden
| | - Mohammad Niazi
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Jane Knöchel
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Olof Eklund
- Global Patient Safety, Cardiovascular, Renal and Metabolism, BioPharmaceuticals, R&D, AstraZeneca, Gothenburg, Sweden
| | - Therése Sandell
- Global Patient Safety, Cardiovascular, Renal and Metabolism, BioPharmaceuticals, R&D, AstraZeneca, Gothenburg, Sweden
| | - James Sherwood
- Precision Medicine and Biosamples, Diagnostic and HBS Science, Biopharma Diagnostics, Oncology, R&D, AstraZeneca, Cambridge, UK
| | - Linnéa Bergenholm
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Stefan Hallén
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Shan Wang
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Prasad Kamble
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Maria Bhat
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals, R&D, AstraZeneca, Gothenburg, Sweden
| | - Ingela Maxvall
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals, R&D, AstraZeneca, Gothenburg, Sweden
| | - Yixin Wang
- Image Analysis & Platform, Pathology, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | | | | - Shuling Guo
- Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden; Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Eric Lawitz
- Texas Liver Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Ola Fjellström
- Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Daniel Lindén
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jenny E Blau
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals, R&D, AstraZeneca, Gaithersburg, MD, USA.
| | - Rohit Loomba
- MASLD Research Center, Division of Gastroenterology and Hepatology, University of California at San Diego, La Jolla, CA, USA
| |
Collapse
|
37
|
Huang HYR, Vitali C, Zhang D, Hand NJ, Phillips MC, Creasy KT, Scorletti E, Park J, Regeneron Centre, Schneider KM, Rader DJ, Schneider CV. Deep metabolic phenotyping of humans with protein-altering variants in TM6SF2 using a genome-first approach. JHEP Rep 2025; 7:101243. [PMID: 39687601 PMCID: PMC11647476 DOI: 10.1016/j.jhepr.2024.101243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/28/2024] [Accepted: 10/07/2024] [Indexed: 12/18/2024] Open
Abstract
Background & Aim An unbiased genome-first approach can expand the molecular understanding of specific genes in disease-agnostic biobanks for deeper phenotyping. TM6SF2 represents a good candidate for this approach due to its known association with steatotic liver disease (SLD). Methods We screened participants with whole-exome sequences in the Penn Medicine Biobank (PMBB, n >40,000) and the UK Biobank (UKB, n >200,000) for protein-altering variants in TM6SF2 and evaluated their association with liver phenotypes and clinical outcomes. Results Missense variants in TM6SF2 (E167K, L156P, P216L) were associated with an increased risk of clinically diagnosed and imaging-proven steatosis, independent of the PNPLA3 I48M risk allele and hepatitis B/C (p <0.001). E167K homozygotes had significantly increased risk of SLD (odds ratio [OR] 5.38, p <0.001), steatohepatitis (OR 5.76, p <0.05) and hepatocellular carcinoma (OR 11.22, p <0.0001), while heterozygous carriers of L156P and P216L were also at an increased risk of steatohepatitis. In addition, carriers of E167K are at a 3-fold increased risk of at-risk MASH (OR 2.75, p <0.001). CT-derived liver fat scores were higher in E167K and L156P in an allele-dose manner (p <0.05). This corresponded with the UKB nuclear magnetic resonance-derived lipidomic analyses (n = 105,348), revealing all carriers to exhibit lower total cholesterol, triglycerides and total choline. In silico predictions suggested that these missense variants cause structural disruptions in the EXPERA domain, leading to reduced protein function. This hypothesis was supported by the association of rare loss-of-function variants in TM6SF2 with an increased risk of SLD (OR 4.9, p <0.05), primarily driven by a novel rare stop-gain variant (W35X) with the same directionality. Conclusion The functional genetic study of protein-altering variants provides insights on the association between loss of TM6SF2 function and SLD and provides the basis for future mechanistic studies. Impact and implications The genome-first approach expands insights into genetic risk factors for steatotic liver disease with TM6SF2 being a focal point due to its known association with plasma lipid traits. Our findings validated the association of two missense variants (E167K and L156P) with increased risk of hepatic steatosis on CT and MRI scans, as well as the risk of clinically diagnosed hepatocellular carcinoma independent of the common PNPLA3 I48M risk variant. Notably, we also identified a predicted deleterious missense variant (P216L) linked to steatotic risk and demonstrated that an aggregated gene burden of rare putative loss-of-function variants was associated with the risk of hepatic steatosis. Combined, this study sets the stage for future mechanistic investigations into the functional consequences of TM6SF2 variants in metabolic dysfunction-associated steatotic liver disease.
Collapse
Affiliation(s)
- Helen Ye Rim Huang
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cecilia Vitali
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David Zhang
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas J. Hand
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael C. Phillips
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kate Townsend Creasy
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eleonora Scorletti
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Institute for Translational Medicine and Therapeutics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph Park
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- NewYork-Presbyterian, Weill Cornell Medical Center, New York, NY 10065, USA
| | | | - Kai Markus Schneider
- Department of Medicine III, Gastroenterology, Metabolic diseases and Intensive Care, University Hospital RWTH Aachen, 52074 Aachen, Germany
- Medical Department 1, Technische Universität, Dresden, Germany
| | - Daniel J. Rader
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Institute for Translational Medicine and Therapeutics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Carolin Victoria Schneider
- The Institute for Translational Medicine and Therapeutics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine III, Gastroenterology, Metabolic diseases and Intensive Care, University Hospital RWTH Aachen, 52074 Aachen, Germany
| |
Collapse
|
38
|
Castañé H, Jiménez-Franco A, Hernández-Aguilera A, Martínez-Navidad C, Cambra-Cortés V, Onoiu AI, Jiménez-Aguilar JM, París M, Hernández M, Parada D, Guilarte C, Zorzano A, Hernández-Alvarez MI, Camps J, Joven J. Multi-omics profiling reveals altered mitochondrial metabolism in adipose tissue from patients with metabolic dysfunction-associated steatohepatitis. EBioMedicine 2025; 111:105532. [PMID: 39731853 PMCID: PMC11743550 DOI: 10.1016/j.ebiom.2024.105532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) and its more severe form steatohepatitis (MASH) contribute to rising morbidity and mortality rates. The storage of fat in humans is closely associated with these diseases' progression. Thus, adipose tissue metabolic homeostasis could be key in both the onset and progression of MASH. METHODS We conducted a case-control observational research using a systems biology-based approach to analyse liver, abdominal subcutaneous adipose tissue (SAT), omental visceral adipose tissue (VAT), and blood of n = 100 patients undergoing bariatric surgery (NCT05554224). MASH was diagnosed through histologic assessment. Whole-slide image analysis, lipidomics, proteomics, and transcriptomics were performed on tissue samples. Lipidomics and proteomics profiles were determined on plasma samples. FINDINGS Liver transcriptomics, proteomics, and lipidomics revealed interconnected pathways associated with inflammation, mitochondrial dysfunction, and lipotoxicity in MASH. Paired adipose tissue biopsies had larger adipocyte areas in both fat depots in MASH. Enrichment analyses of proteomics and lipidomics data confirmed the association of liver lesions with mitochondrial dysfunction in VAT. Plasma lipidomics identified candidates with high diagnostic accuracy (AUC = 0.919, 95% CI 0.840-0.979) for screening MASH. INTERPRETATION Mitochondrial dysfunction is also present in VAT in patients with obesity-associated MASH. This may cause a disruption in the metabolic equilibrium of lipid processing and storage, which impacts the liver and accelerates detrimental adaptative responses. FUNDING The project leading to these results has received funding from 'la Caixa' Foundation (HR21-00430), and from the Instituto de Salud Carlos III (ISCIII) (PI21/00510) and co-funded by the European Union.
Collapse
Affiliation(s)
- Helena Castañé
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain; Department of Medicine and Surgery, Faculty of Medicine, Universitat Rovira i Virgili, Reus, Spain.
| | - Andrea Jiménez-Franco
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain; Department of Medicine and Surgery, Faculty of Medicine, Universitat Rovira i Virgili, Reus, Spain
| | | | - Cristian Martínez-Navidad
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain
| | - Vicente Cambra-Cortés
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain
| | - Alina-Iuliana Onoiu
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain
| | - Juan Manuel Jiménez-Aguilar
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain
| | - Marta París
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain; Department of Surgery, Hospital Universitari de Sant Joan, Reus, Spain
| | - Mercè Hernández
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain; Department of Surgery, Hospital Universitari de Sant Joan, Reus, Spain
| | - David Parada
- Department of Pathology, Hospital Universitari de Sant Joan, Reus, Spain
| | - Carmen Guilarte
- Department of Pathology, Hospital Universitari de Sant Joan, Reus, Spain
| | - Antonio Zorzano
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - María Isabel Hernández-Alvarez
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Institut de Biomedicina de la Universitat de Barcelona IBUB, Barcelona, Spain
| | - Jordi Camps
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain; Department of Medicine and Surgery, Faculty of Medicine, Universitat Rovira i Virgili, Reus, Spain.
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain; Department of Medicine and Surgery, Faculty of Medicine, Universitat Rovira i Virgili, Reus, Spain; The Campus of International Excellence Southern Catalonia, Tarragona, Spain.
| |
Collapse
|
39
|
Zhang X, Chang KM, Yu J, Loomba R. Unraveling Mechanisms of Genetic Risks in Metabolic Dysfunction-Associated Steatotic Liver Diseases: A Pathway to Precision Medicine. ANNUAL REVIEW OF PATHOLOGY 2025; 20:375-403. [PMID: 39854186 DOI: 10.1146/annurev-pathmechdis-111523-023430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing global health problem, affecting ∼1 billion people. This condition is well established to have a heritable component with strong familial clustering. With the extraordinary breakthroughs in genetic research techniques coupled with their application to large-scale biobanks, the field of genetics in MASLD has expanded rapidly. In this review, we summarize evidence regarding genetic predisposition to MASLD drawn from family and twin studies. Significantly, we delve into detailed genetic variations associated with diverse pathogenic mechanisms driving MASLD. We highlight the interplay between these genetic variants and their connections with metabolic factors, the gut microbiome, and metabolites, which collectively influence MASLD progression. These discoveries are paving the way for precise medicine, including noninvasive diagnostics and therapies. The promising landscape of novel genetically informed drug targets such as RNA interference is explored. Many of these therapies are currently under clinical validation, raising hopes for more effective MASLD treatment.
Collapse
Affiliation(s)
- Xiang Zhang
- MASLD Research Center, Division of Gastroenterology, University of California at San Diego, La Jolla, California, USA;
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease and Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kyong-Mi Chang
- Corporal Michael J. Crescenz VA Medical Center and University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jun Yu
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease and Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Rohit Loomba
- MASLD Research Center, Division of Gastroenterology, University of California at San Diego, La Jolla, California, USA;
- Division of Epidemiology, Department of Family Medicine and Public Health, University of California at San Diego, La Jolla, California, USA
| |
Collapse
|
40
|
Chen VL, Brady GF. Recent advances in MASLD genetics: Insights into disease mechanisms and the next frontiers in clinical application. Hepatol Commun 2025; 9:e0618. [PMID: 39774697 PMCID: PMC11717516 DOI: 10.1097/hc9.0000000000000618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 11/14/2024] [Indexed: 01/11/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease in the world and a growing cause of liver-related morbidity and mortality. Yet, at the same time, our understanding of the pathophysiology and genetic underpinnings of this increasingly common yet heterogeneous disease has increased dramatically over the last 2 decades, with the potential to lead to meaningful clinical interventions for patients. We have now seen the first pharmacologic therapy approved for the treatment of MASLD, and multiple other potential treatments are currently under investigation-including gene-targeted RNA therapies that directly extend from advances in MASLD genetics. Here we review recent advances in MASLD genetics, some of the key pathophysiologic insights that human genetics has provided, and the ways in which human genetics may inform our clinical practice in the field of MASLD in the near future.
Collapse
|
41
|
Chang CW, Chen YS, Huang CH, Lin CH, Ng WV, Chu LJ, Trépo E, Zucman-Rossi J, Siao K, Maher JJ, Chiew MY, Chou CH, Huang HD, Teo WH, Lee IS, Lo JF, Wang XW. A genetic basis of mitochondrial DNAJA3 in nonalcoholic steatohepatitis-related hepatocellular carcinoma. Hepatology 2025; 81:60-76. [PMID: 37870291 PMCID: PMC11035488 DOI: 10.1097/hep.0000000000000637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/08/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND AND AIMS NAFLD is the most common form of liver disease worldwide, but only a subset of individuals with NAFLD may progress to NASH. While NASH is an important etiology of HCC, the underlying mechanisms responsible for the conversion of NAFLD to NASH and then to HCC are poorly understood. We aimed to identify genetic risk genes that drive NASH and NASH-related HCC. APPROACH AND RESULTS We searched genetic alleles among the 24 most significant alleles associated with body fat distribution from a genome-wide association study of 344,369 individuals and validated the top allele in 3 independent cohorts of American and European patients (N=1380) with NAFLD/NASH/HCC. We identified an rs3747579-TT variant significantly associated with NASH-related HCC and demonstrated that rs3747579 is expression quantitative trait loci of a mitochondrial DnaJ Heat Shock Protein Family (Hsp40) Member A3 ( DNAJA3 ). We also found that rs3747579-TT and a previously identified PNPLA3 as a functional variant of NAFLD to have significant additional interactions with NASH/HCC risk. Patients with HCC with rs3747579-TT had a reduced expression of DNAJA3 and had an unfavorable prognosis. Furthermore, mice with hepatocyte-specific Dnaja3 depletion developed NASH-dependent HCC either spontaneously under a normal diet or enhanced by diethylnitrosamine. Dnaja3 -deficient mice developed NASH/HCC characterized by significant mitochondrial dysfunction, which was accompanied by excessive lipid accumulation and inflammatory responses. The molecular features of NASH/HCC in the Dnaja3 -deficient mice were closely associated with human NASH/HCC. CONCLUSIONS We uncovered a genetic basis of DNAJA3 as a key player of NASH-related HCC.
Collapse
Affiliation(s)
- Ching-Wen Chang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110301, Taiwan
| | - Yu-Syuan Chen
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Chen-Hua Huang
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Chao-Hsiung Lin
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Wailap Victor Ng
- Department of Biotechnology and Lab Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Biochemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Lichieh Julie Chu
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Otolaryngology - Head & Neck Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Eric Trépo
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Paris, France; Department of Gastroenterology, Hepatopancreatology and Digestive Oncology, CUB Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium; Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Paris, France; Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Kevin Siao
- Liver Center and Department of Medicine, University of California, San Francisco, CA 94143
| | - Jacquelyn J. Maher
- Liver Center and Department of Medicine, University of California, San Francisco, CA 94143
| | - Men Yee Chiew
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu City 300093, Taiwan
| | - Chih-Hung Chou
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu City 300093, Taiwan
- Department of Biological Science and Technology, Center for Intelligent Drug Systems and Smart Bio-devices, National Yang Ming Chiao Tung University, Hsinchu City 300093, Taiwan
| | - Hsien-Da Huang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu City 300093, Taiwan
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172
| | - Wan-Huai Teo
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - I-Shan Lee
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Jeng-Fan Lo
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Dentistry, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| |
Collapse
|
42
|
Ahmadizar F, Younossi ZM. Exploring Biomarkers in Nonalcoholic Fatty Liver Disease Among Individuals With Type 2 Diabetes Mellitus. J Clin Gastroenterol 2025; 59:36-46. [PMID: 39352015 PMCID: PMC11630663 DOI: 10.1097/mcg.0000000000002079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/02/2024] [Indexed: 10/03/2024]
Abstract
Integrating biomarkers into a comprehensive strategy is crucial for precise patient management, especially considering the significant healthcare costs associated with diseases. Current studies emphasize the urgent need for a paradigm shift in conceptualizing nonalcoholic fatty liver disease (NAFLD), now renamed metabolic dysfunction-associated steatotic liver disease (MASLD). Biomarkers are emerging as indispensable tools for accurate diagnosis, risk stratification, and monitoring disease progression. This review classifies biomarkers into conventional and novel categories, such as lipids, insulin resistance, hepatic function, and cutting-edge imaging/omics, and evaluates their potential to transform the approach to MASLD among individuals with type 2 diabetes mellitus (T2D). It focuses on the critical role of biomarkers in early MASLD detection, enhancing predictive accuracy, and discerning responses to interventions (pharmacological or lifestyle modifications). Amid this discussion, the complexities of the relationship between T2D and MASLD are explored, considering factors like age, gender, genetics, ethnicity, and socioeconomic background. Biomarkers enhance the effectiveness of interventions and support global initiatives to reduce the burden of MASLD, thereby improving public health outcomes. This review recognizes the promising potential of biomarkers for diagnostic precision while candidly addressing the challenges in implementing these advancements in clinical practice. The transformative role of biomarkers emerges as a central theme, promising to reshape our understanding of disease trajectories, prognosis, and the customization of personalized therapeutic strategies for improved patient outcomes. From a future perspective, identifying early-stage biomarkers, understanding environmental impact through exposomes, and applying a multiomics approach may reveal additional insight into MASLD development.
Collapse
Affiliation(s)
- Fariba Ahmadizar
- Data Science and Biostatistics Department, Julius Global Health, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Beatty Liver and Obesity Research Program Center for Liver Diseases, Inova Health System, Falls Church, VA
| | - Zobair M. Younossi
- The Global NASH Council, Center for Outcomes Research in Liver Disease, Washington, DC
| |
Collapse
|
43
|
Misceo D, Mocciaro G, D'Amore S, Vacca M. Diverting hepatic lipid fluxes with lifestyles revision and pharmacological interventions as a strategy to tackle steatotic liver disease (SLD) and hepatocellular carcinoma (HCC). Nutr Metab (Lond) 2024; 21:112. [PMID: 39716321 DOI: 10.1186/s12986-024-00871-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/13/2024] [Indexed: 12/25/2024] Open
Abstract
Steatotic liver disease (SLD) and Hepatocellular Carcinoma (HCC) are characterised by a substantial rewiring of lipid fluxes caused by systemic metabolic unbalances and/or disrupted intracellular metabolic pathways. SLD is a direct consequence of the interaction between genetic predisposition and a chronic positive energy balance affecting whole-body energy homeostasis and the function of metabolically-competent organs. In this review, we discuss how the impairment of the cross-talk between peripheral organs and the liver stalls glucose and lipid metabolism, leading to unbalances in hepatic lipid fluxes that promote hepatic fat accumulation. We also describe how prolonged metabolic stress builds up toxic lipid species in the liver, and how lipotoxicity and metabolic disturbances drive disease progression by promoting a chronic activation of wound healing, leading to fibrosis and HCC. Last, we provide a critical overview of current state of the art (pre-clinical and clinical evidence) regarding mechanisms of action and therapeutic efficacy of candidate SLD treatment options, and their potential to interfere with SLD/HCC pathophysiology by diverting lipids away from the liver therefore improving metabolic health.
Collapse
Affiliation(s)
- Davide Misceo
- Department of Interdisciplinary Medicine, Clinica Medica "C. Frugoni", "Aldo Moro" University of Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Gabriele Mocciaro
- Roger Williams Institute of Liver Studies, Foundation for Liver Research, London, SE5 9NT, UK
| | - Simona D'Amore
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Clinica Medica "G. Baccelli", "Aldo Moro" University of Bari, 70124, Bari, Italy.
| | - Michele Vacca
- Department of Interdisciplinary Medicine, Clinica Medica "C. Frugoni", "Aldo Moro" University of Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy.
- Roger Williams Institute of Liver Studies, Foundation for Liver Research, London, SE5 9NT, UK.
| |
Collapse
|
44
|
Xu X, Lu F, Wang Y, Liu S. Investigation on the mechanism of hepatotoxicity of dictamnine on juvenile zebrafish by integrating metabolomics and transcriptomics. Gene 2024; 930:148826. [PMID: 39154970 DOI: 10.1016/j.gene.2024.148826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
Dictamnine(DIC), as the key pharmacological component of the classical Chinese herbal medicine cortex dictamni, possesses multiple pharmacological activities such as anti-microbial, anti-allergic, anti-cancer, and anti-inflammatory activities, however it is also the main toxicant of cortex dictamni induced hepatic damage, yet the underlying molecular mechanisms causing hepatic damage are still largely unknown. With the purpose of explore possibilities hepatotoxicity of dictamnine in zebrafish and to identify the key regulators and metabolites involved in the biological process, we administered zebrafish to dictamnine at a sub-lethal dose (
Collapse
Affiliation(s)
- Xiaomin Xu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| | - Fang Lu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| | - Yu Wang
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| | - Shumin Liu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China.
| |
Collapse
|
45
|
Xie K, Chen M, An H, Gao J, Tang C, Huang Z. Causal associations of immunophenotypes with metabolic dysfunction-associated fatty liver disease and mediating pathways: a Mendelian randomization study. Ther Adv Chronic Dis 2024; 15:20406223241303649. [PMID: 39669435 PMCID: PMC11635899 DOI: 10.1177/20406223241303649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 11/13/2024] [Indexed: 12/14/2024] Open
Abstract
Background Increasing evidence suggests that immunophenotypes play a crucial role in Metabolic dysfunction-associated fatty liver disease (MAFLD), but the specific immunophenotypes contributing to its pathogenesis remain unclear. Objectives This study aimed to elucidate the causal associations between immunophenotypes and MAFLD and identify the underlying mediation pathways involved. Design Mendelian randomization (MR) study. Methods This study is a quasi-causal inference analysis using univariable and multivariable MR (UVMR and MVMR). Five MAFLD genome-wide association studies (GWASs) and the largest immunophenotype GWAS were analyzed to assess their causal associations. Two-step MR identified potential mediators and quantified their mediation proportions. Comprehensive MR methods, multiple sensitivity analyses, meta-analyses, and false discovery rate (FDR) further enhanced the robustness of our findings. Results Pooled inverse-variance weighted (IVW) estimates in UVMR identified 47 immunophenotypes having a suggestive causal association with MAFLD. After adjusting for FDR, three lymphocyte phenotypes remained significant: CD20 on IgD-CD24- B cells (OR: 1.035, p fdr: 0.006), terminally differentiated CD8+ T cells %T cells (OR: 1.052, p fdr: 0.006), and CD4 on CD39+ secreting CD4+ regulatory T cells (OR: 1.036, p fdr: 0.046). Meta-analysis of IVW MVMR estimates with confounders adjustment confirmed that CD20 on IgD-CD24- B cells and terminally differentiated CD8+ T cells %T cells had significant direct causal associations on MAFLD (p fdr < 0.05). Additionally, two-step MR analysis identified the waist-to-hip ratio as a mediator, accounting for 42.64% of the causal association between CD20 on IgD-CD24- B cells and MAFLD. Conclusion The causal associations of three lymphocyte phenotypes with increased MAFLD risk were identified in this study. CD20 on IgD-CD24- B cells may both directly and indirectly elevate MAFLD risk, while terminally differentiated CD8+ T cells have a direct causal relationship with MAFLD. These findings suggest new possibilities for targeted therapies and underscore the potential for personalized immunotherapy in managing MAFLD.
Collapse
Affiliation(s)
- Kexin Xie
- Laboratory of Gastroenterology & Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Chen
- Laboratory of Gastroenterology & Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
| | - Hongjin An
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinhang Gao
- Laboratory of Gastroenterology & Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Chengwei Tang
- Laboratory of Gastroenterology & Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiyin Huang
- Laboratory of Gastroenterology & Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, No. 37, Guoxue Xiang, Chengdu 610041, China
| |
Collapse
|
46
|
Burra P, Zanetto A, Schnabl B, Reiberger T, Montano-Loza AJ, Asselta R, Karlsen TH, Tacke F. Hepatic immune regulation and sex disparities. Nat Rev Gastroenterol Hepatol 2024; 21:869-884. [PMID: 39237606 DOI: 10.1038/s41575-024-00974-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 09/07/2024]
Abstract
Chronic liver disease is a major cause of morbidity and mortality worldwide. Epidemiology, clinical phenotype and response to therapies for gastrointestinal and liver diseases are commonly different between women and men due to sex-specific hormonal, genetic and immune-related factors. The hepatic immune system has unique regulatory functions that promote the induction of intrahepatic tolerance, which is key for maintaining liver health and homeostasis. In liver diseases, hepatic immune alterations are increasingly recognized as a main cofactor responsible for the development and progression of chronic liver injury and fibrosis. In this Review, we discuss the basic mechanisms of sex disparity in hepatic immune regulation and how these mechanisms influence and modify the development of autoimmune liver diseases, genetic liver diseases, portal hypertension and inflammation in chronic liver disease. Alterations in gut microbiota and their crosstalk with the hepatic immune system might affect the progression of liver disease in a sex-specific manner, creating potential opportunities for novel diagnostic and therapeutic approaches to be evaluated in clinical trials. Finally, we identify and propose areas for future basic, translational and clinical research that will advance our understanding of sex disparities in hepatic immunity and liver disease.
Collapse
Affiliation(s)
- Patrizia Burra
- Gastroenterology and Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padua University Hospital, Padua, Italy.
| | - Alberto Zanetto
- Gastroenterology and Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padua University Hospital, Padua, Italy
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Aldo J Montano-Loza
- Division of Gastroenterology and Liver Unit, Department of Medicine, University of Alberta Hospital, Edmonton, Alberta, Canada
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Tom Hemming Karlsen
- Department of Transplantation Medicine, Clinic of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital and University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Clinic of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| |
Collapse
|
47
|
Gao Y, Li Q, Yang L, Zhao H, Wang D, Pesola AJ. Causal Association Between Sedentary Behaviors and Health Outcomes: A Systematic Review and Meta-Analysis of Mendelian Randomization Studies. Sports Med 2024; 54:3051-3067. [PMID: 39218828 DOI: 10.1007/s40279-024-02090-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Different types of sedentary behavior are associated with several health outcomes, but the causality of these associations remains unclear. OBJECTIVES To conduct a systematic review and meta-analysis of Mendelian randomization (MR) studies investigating the associations between sedentary behaviors and health outcomes. METHODS A systematic search on PubMed, Embase, Web of Science, Scopus, and PsycINFO up to August 2023 was conducted to identify eligible MR studies. We selected studies that assessed associations of genetically determined sedentary behaviors and health outcomes. A meta-analysis was conducted to examine the causal associations when two or more MR studies were available. We graded the evidence level of each MR association based on the results of the main method and sensitivity analyses in MR studies. RESULTS A total of 31 studies with 168 MR associations between six types of sedentary behavior and 47 health outcomes were included. Results from meta-analyses suggested a total of 47 significant causal associations between sedentary behaviors and health outcomes. Notably, more leisure TV watching is robustly correlated with increased risks of myocardial infarction, coronary artery disease, all-cause ischemic stroke, and type 2 diabetes. Conversely, robust inverse associations were observed between leisure computer use and risks of rheumatoid arthritis, Alzheimer's disease, and gastroesophageal reflux disease. CONCLUSION These findings suggest that different types of sedentary behavior have distinct causal effects on health outcomes. Therefore, interventions should focus not only on reducing sedentary time but also on promoting healthier types of sedentary behavior. PROSPERO REGISTRATION CRD42023453828.
Collapse
Affiliation(s)
- Ying Gao
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou, China
| | - Qingyang Li
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou, China
| | - Luyao Yang
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou, China
| | - Hanhua Zhao
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou, China
| | - Di Wang
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou, China.
| | - Arto J Pesola
- Active Life Lab, South-Eastern Finland University of Applied Sciences, Mikkeli, Finland
| |
Collapse
|
48
|
Lan T, Tacke F. Diagnostics and omics technologies for the detection and prediction of metabolic dysfunction-associated steatotic liver disease-related malignancies. Metabolism 2024; 161:156015. [PMID: 39216799 DOI: 10.1016/j.metabol.2024.156015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) continues to rise, making it the leading etiology of chronic liver diseases and a prime cause of liver-related mortality. MASLD can progress into steatohepatitis (termed MASH), fibrosis, cirrhosis, and ultimately cancer. MASLD is associated with increased risks of hepatocellular carcinoma (HCC) and also extrahepatic malignancies, which can develop in both cirrhotic and non-cirrhotic patients, emphasizing the importance of identifying patients with MASLD at risk of developing MASLD-associated malignancies. However, the optimal screening, diagnostic, and risk stratification strategies for patients with MASLD at risk of cancer are still under debate. Individuals with MASH-associated cirrhosis are recommended to undergo surveillance for HCC (e.g. by ultrasound and biomarkers) every six months. No specific screening approaches for MASLD-related malignancies in non-cirrhotic cases are established to date. The rapidly developing omics technologies, including genetics, metabolomics, and proteomics, show great potential for discovering non-invasive markers to fulfill this unmet need. This review provides an overview on the incidence and mortality of MASLD-associated malignancies, current strategies for HCC screening, surveillance and diagnosis in patients with MASLD, and the evolving role of omics technologies in the discovery of non-invasive markers for the prediction and risk stratification of MASLD-associated HCC.
Collapse
Affiliation(s)
- Tian Lan
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany; Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany.
| |
Collapse
|
49
|
Mendoza YP, Tsouka S, Semmler G, Seubnooch P, Freiburghaus K, Mandorfer M, Bosch J, Masoodi M, Berzigotti A. Metabolic phenotyping of patients with advanced chronic liver disease for better characterization of cirrhosis regression. J Hepatol 2024; 81:983-994. [PMID: 38944391 DOI: 10.1016/j.jhep.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND & AIMS Regression of cirrhosis has been observed in patients with viral and non-viral etiologies of liver disease in whom the underlying cause of liver injury was effectively suppressed. However, the understanding of the factors contributing to reversibility of fibrosis and cirrhosis is limited. Our aims were to assess clinical factors, perform genotyping of known variants, and comprehensive metabolic phenotyping to characterize the regression of fibrosis in patients with compensated advanced chronic liver disease (cACLD). METHODS In a case-control pilot study of 81 patients with cACLD, we compared individuals exhibiting histological or clinical evidence of cACLD regression ("regressors"; n = 44) with those showing no improvement ("non-regressors"; n = 37) after a minimum of 24 months of successful treatment of the cause of liver disease. Data were validated using an external validation cohort (n = 30). RESULTS Regardless of the cause of cACLD, the presence of obesity (odds ratio [OR] 0.267 95% CI 0.072-0.882; p = 0.049), high liver stiffness (OR 0.960, 95% CI 0.925-0.995; p = 0.032), and carriage of GCKR variant rs1260326 (OR 0.148, 95% CI 0.030-0.773; p = 0.019) are associated with a reduced likelihood of fibrosis regression in a subgroup of 60 patients with ACLD genotyped for known genetic variants. Using liver tissue transcriptomics, we identified metabolic pathways differentiating regressors from non-regressors, with top pathways associated with lipid metabolism - especially fatty acids, bile acids, phospholipids, triacylglycerides (biosynthesis), and the carnitine shuttle. In the entire discovery cohort, we further measured metabolites within the defined pathways, which led to the identification of 33 circulating markers differentiating regressors from non-regressors after etiological therapy. The validation cohort confirmed 14 of the differentially expressed markers. CONCLUSIONS We identified and validated a group of lipid biomarkers associated with regression of fibrosis that could be used as non-invasive biomarkers for detecting regression of fibrosis in cACLD. IMPACT AND IMPLICATIONS Regression of cirrhosis/advanced chronic liver disease (ACLD) after removal of the underlying cause of liver injury has been observed in human cirrhosis. However, detailed characterization of ACLD regression remains an unmet need. In this study, we provide a comprehensive phenotyping of individuals likely to experience ACLD regression. While obesity, carriage of GCKR variant rs1260326 and high liver stiffness were associated with lower likelihood of regression of ACLD, a signature of circulating lipid metabolites enabled differentiation of regressors from non-regressors after effective etiologic therapy. The lipid signature we discovered and externally validated could be used as non-invasive biomarker to detect regression of fibrosis in patients with compensated ACLD.
Collapse
Affiliation(s)
- Yuly P Mendoza
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland; Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Switzerland; Graduate School for Health Sciences (GHS), University of Bern, Switzerland
| | - Sofia Tsouka
- Institute of Clinical Chemistry, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Georg Semmler
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Patcharamon Seubnooch
- Institute of Clinical Chemistry, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Katrin Freiburghaus
- Institute of Clinical Chemistry, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Mattias Mandorfer
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Jaime Bosch
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland; Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Switzerland
| | - Mojgan Masoodi
- Institute of Clinical Chemistry, Bern University Hospital, University of Bern, Bern, Switzerland.
| | - Annalisa Berzigotti
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland; Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Switzerland.
| |
Collapse
|
50
|
Makino K, Ishii T, Ogiso S, Nakakura A, Nishio T, Fukumitsu K, Uebayashi EY, Munekage F, Horie H, Iwaki K, Ito T, Hatano E. Combination of risk alleles of PNPLA3, TM6SF2, and HSD17B13 of donors can predict recurrence of steatotic liver disease after liver transplantation. Hepatol Res 2024; 54:1148-1157. [PMID: 39031833 DOI: 10.1111/hepr.14086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/25/2024] [Accepted: 06/05/2024] [Indexed: 07/22/2024]
Abstract
AIMS This study aimed to identify the genetic risk factors from donors or recipients that contribute to postliver transplantation (LT) steatotic liver disease (SLD), focusing on the genetic risk score (GRS) based on single nucleotide polymorphisms (SNPs) in SLD patients. METHODS This retrospective study included 55 Japanese SLD recipients and their respective donors. Genotyping of PNPLA3, TM6SF2, and HSD17B13 was undertaken, and the combined GRS was calculated. The relationship between the GRS and the incidence of posttransplant SLD was also evaluated. RESULTS The SLD recipients had a high prevalence of post-LT graft steatosis/steatohepatitis (76.4% and 58.2%, respectively). Although the recipients had a high frequency of risk alleles, there was no relationship between the number of risk alleles for each SNP and the incidence of posttransplant SLD. In contrast, an increased number of risk alleles for any SNP in the donor was correlated with high incidence rates of both post-LT steatosis and steatohepatitis. A multivariable analysis showed that a high donor GRS was an independent risk factor for graft steatosis (odds ratio 8.77; 95% CI, 1.94-52.94; p = 0.009). Similarly, a high donor GRS was an independent risk factor (odds ratio 6.76; 95% CI, 1.84-30.78; p = 0.007) for post-LT graft steatohepatitis. CONCLUSIONS Donor risk alleles of PNPLA3, TM6SF2, and HSD17B13, rather than recipient risk alleles, have been implicated in the development of posttransplant SLD. The combination of these donor risk alleles into a GRS could predict the development of posttransplant SLD.
Collapse
Affiliation(s)
- Kenta Makino
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takamichi Ishii
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoshi Ogiso
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akiyoshi Nakakura
- Department of Biomedical Statistics and Bioinformatics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahiro Nishio
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ken Fukumitsu
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Fumiaki Munekage
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Horie
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kentaro Iwaki
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Ito
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Etsuro Hatano
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|