1
|
Liang Z, Ye Y, Deng Z, Lan H, Liu C, Xu Y, Fan M, Liu Z, Wu P, An L, Wang C. CHPF2 as a novel biomarker and ponicidin as a potential therapeutic agent in hepatocellular carcinoma. Pharmacol Res 2025; 215:107698. [PMID: 40107635 DOI: 10.1016/j.phrs.2025.107698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
Hepatocellular carcinoma (HCC) was associated with high morbidity and mortality, representing a significant health challenge. Chondroitin sulfate (CS), a glycosaminoglycan composed of glucuronic acid and N-acetylgalactosamine, is implicated in HCC progression through its role in cancer cell migration and proliferation as well as interactions with cell surface receptors integrin β-1 and CD44. Chondroitin polymerization factor 2 (CHPF2), the key to CS synthesis, has an undefined role in HCC. Our study aims to demonstrate that decreasing CHPF2 enzyme activity can inhibit the migration and proliferation of HCC cells. Bioinformatics analysis and in vitro experiments on clinical HCC samples confirmed the knockdown of CHPF2 inhibited HCC cell proliferation and migration. We further explored Rabdosia rubescens, a plant used in cancer therapy, for its potential to modulate CHPF2. Structural biology and ligand fishing identified ponicidin, a compound that significantly suppresses HCC cell growth and migration in both in vitro and in vivo models. These findings propose CHPF2 as a novel biomarker and ponicidin as a potential therapeutic agent for HCC management.
Collapse
Affiliation(s)
- Zuhui Liang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Chinese Medicine Guangdong Laboratory, Hengqin, Guangdong, China
| | - Yingyi Ye
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Chinese Medicine Guangdong Laboratory, Hengqin, Guangdong, China
| | - Zhihong Deng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Chinese Medicine Guangdong Laboratory, Hengqin, Guangdong, China
| | - Huan Lan
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Chinese Medicine Guangdong Laboratory, Hengqin, Guangdong, China
| | - Caihong Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Chinese Medicine Guangdong Laboratory, Hengqin, Guangdong, China
| | - Yuanhang Xu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Chinese Medicine Guangdong Laboratory, Hengqin, Guangdong, China
| | - Minqi Fan
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Chinese Medicine Guangdong Laboratory, Hengqin, Guangdong, China
| | - Zhongqiu Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Chinese Medicine Guangdong Laboratory, Hengqin, Guangdong, China
| | - Peng Wu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Chinese Medicine Guangdong Laboratory, Hengqin, Guangdong, China.
| | - Lin An
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Chinese Medicine Guangdong Laboratory, Hengqin, Guangdong, China.
| | - Caiyan Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Chinese Medicine Guangdong Laboratory, Hengqin, Guangdong, China.
| |
Collapse
|
2
|
Zhang DD. Thirty years of NRF2: advances and therapeutic challenges. Nat Rev Drug Discov 2025:10.1038/s41573-025-01145-0. [PMID: 40038406 DOI: 10.1038/s41573-025-01145-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2025] [Indexed: 03/06/2025]
Abstract
Over the last 30 years, NRF2 has evolved from being recognized as a transcription factor primarily involved in redox balance and detoxification to a well-appreciated master regulator of cellular proteostasis, metabolism and iron homeostasis. NRF2 plays a pivotal role in diverse pathologies, including cancer, and metabolic, inflammatory and neurodegenerative disorders. It exhibits a Janus-faced duality, safeguarding cellular integrity in normal cells against environmental insults to prevent disease onset, whereas in certain cancers, constitutively elevated NRF2 levels provide a tumour survival advantage, promoting progression, therapy resistance and metastasis. Advances in understanding the mechanistic regulation of NRF2 and its roles in human pathology have propelled the investigation of NRF2-targeted therapeutic strategies. This Review dissects the mechanistic intricacies of NRF2 signalling, its cross-talk with biological processes and its far-reaching implications for health and disease, highlighting key discoveries that have shaped innovative therapeutic approaches targeting NRF2.
Collapse
Affiliation(s)
- Donna D Zhang
- Department of Molecular Medicine, Center for Inflammation Science and Systems Medicine, UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, USA.
- University of Florida Health Cancer Center, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
3
|
Zhang L, Huang W, Ma T, Shi X, Chen J, Hu YL, Liu YX, Liu ZX, Lu CH. Targeting CFTR restoring aggrephagy to suppress HSC activation and alleviate liver fibrosis. Int Immunopharmacol 2025; 145:113754. [PMID: 39667045 DOI: 10.1016/j.intimp.2024.113754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND AND AIMS Multiple studies have shown that hepatic fibrosis, a progressive condition that represents the endpoint of various chronic liver diseases, is primarily marked by the extensive activation of hepatic stellate cells (HSCs). However, the exact impact of cystic fibrosis transmembrane conductance regulator (CFTR) on HSCs during the development of hepatic fibrosis remains unclear. METHODS In our study, we measured CFTR levels in tissue samples and in HSCs activated by TGF-β stimulation. We established mouse models of liver fibrosis using carbon tetrachloride (CCl4) and bile duct ligation (BDL). In vitro, we investigated the specific mechanisms of CFTR action in HSCs by exploring aggrephagy. We employed co-immunoprecipitation (co-IP) experiments to identify potential downstream targets of CFTR. Finally, through rescue experiments, we examined the impact of GTPase-activating protein - binding protein 1 (G3BP1) on CFTR-mediated activation of hepatic stellate cells. RESULT In activated HSCs induced by TGF-β, the reduction of CFTR, various liver fibrosis models, and fibrotic tissue samples were identified. In vitro functional experiments confirmed that CFTR promoted the expression of fibrosis-related markers and aggrephagy in HSCs. Mechanistically, we found that CFTR directly interacts with G3BP1, thereby further promoting the TGF-β/Smad2/3 pathway. The inhibition of G3BP1 caused by CFTR knockdown reduced extracellular matrix deposition, contributing to alleviating liver fibrosis. CONCLUSION We emphasize that CFTR activates aggrephagy and promotes HSC activation and hepatic fibrosis by targeting G3BP1, participating in the TGF-β/Smad2/3 signaling pathway. Overall, CFTR has been identified as a potential therapeutic target for liver fibrosis.
Collapse
Affiliation(s)
- Lu Zhang
- Department Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001 China
| | - Wei Huang
- Department Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001 China
| | - Tao Ma
- Department Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001 China
| | - Xiang Shi
- Department Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001 China
| | - Jing Chen
- Department Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001 China
| | - Yi-Lin Hu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001 China
| | - Yong-Xia Liu
- Department of Gastroenterology, Tongzhou District Traditional Chinese Medicine Hospital, Nantong, China
| | - Zhao-Xiu Liu
- Department Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001 China.
| | - Cui-Hua Lu
- Department Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001 China.
| |
Collapse
|
4
|
Gilgenkrantz H, Paradis V, Lotersztajn S. Cell metabolism-based therapy for liver fibrosis, repair, and hepatocellular carcinoma. Hepatology 2025; 81:269-287. [PMID: 37212145 PMCID: PMC11643143 DOI: 10.1097/hep.0000000000000479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/21/2023] [Indexed: 05/23/2023]
Abstract
Progression of chronic liver injury to fibrosis, abnormal liver regeneration, and HCC is driven by a dysregulated dialog between epithelial cells and their microenvironment, in particular immune, fibroblasts, and endothelial cells. There is currently no antifibrogenic therapy, and drug treatment of HCC is limited to tyrosine kinase inhibitors and immunotherapy targeting the tumor microenvironment. Metabolic reprogramming of epithelial and nonparenchymal cells is critical at each stage of disease progression, suggesting that targeting specific metabolic pathways could constitute an interesting therapeutic approach. In this review, we discuss how modulating intrinsic metabolism of key effector liver cells might disrupt the pathogenic sequence from chronic liver injury to fibrosis/cirrhosis, regeneration, and HCC.
Collapse
Affiliation(s)
- Hélène Gilgenkrantz
- Paris-Cité University, INSERM, Center for Research on Inflammation, Paris, France
| | - Valérie Paradis
- Paris-Cité University, INSERM, Center for Research on Inflammation, Paris, France
- Pathology Department, Beaujon Hospital APHP, Paris-Cité University, Clichy, France
| | - Sophie Lotersztajn
- Paris-Cité University, INSERM, Center for Research on Inflammation, Paris, France
| |
Collapse
|
5
|
Hamamoto K, Liang X, Ito A, Lanza M, Bui V, Zhang J, Opozda DM, Hattori T, Chen L, Haddock D, Imamura F, Wang HG, Takahashi Y. Unveiling the physiological impact of ESCRT-dependent autophagosome closure by targeting the VPS37A ubiquitin E2 variant-like domain. Cell Rep 2024; 43:115016. [PMID: 39607828 PMCID: PMC11748760 DOI: 10.1016/j.celrep.2024.115016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 09/05/2024] [Accepted: 11/11/2024] [Indexed: 11/30/2024] Open
Abstract
Macroautophagy (autophagy) involves the formation of phagophores that mature into autophagosomes. The impact of inhibiting autophagosome closure remains unclear. Here, we report the generation and analysis of mice with impaired autophagosome closure by targeting the ubiquitin E2 variant-like (UEVL) β strands of the endosomal sorting complex required for transport (ESCRT) I subunit VPS37A. The VPS37A UEVL mutation (Δ43-139) impairs bulk autophagic flux without disrupting ESCRT-I complex assembly and endosomal function. Homozygous mutant mice exhibit signs of autophagy impairment, including p62/SQSTM1 and ubiquitinated protein accumulation, neuronal dysfunction, growth retardation, antioxidant gene upregulation, and tissue abnormalities. However, about half of the mutant neonates survive to adulthood without severe liver injury. LC3 proximity proteomics reveals that the VPS37A UEVL mutation leads to active TANK-binding kinase 1 (TBK1) accumulation on phagophores, resulting in increased p62 phosphorylation and inclusion formation. These findings reveal a previously unappreciated role of LC3-conjugated phagophores in facilitating protein aggregation and sequestration, potentially alleviating proteotoxicity.
Collapse
Affiliation(s)
- Kouta Hamamoto
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Xinwen Liang
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Ayako Ito
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Matthew Lanza
- Department of Comparative Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Van Bui
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Jiawen Zhang
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - David M Opozda
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Tatsuya Hattori
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Longgui Chen
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - David Haddock
- Department of Pathology and Biochemistry, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Fumiaki Imamura
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Hong-Gang Wang
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Yoshinori Takahashi
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
6
|
Al Saihati HA, Badr OA, Dessouky AA, Mostafa O, Samir Farid A, Aborayah NH, Abdullah Aljasir M, Baioumy B, Mahmoud Taha N, El-Sherbiny M, Hamed Al-Serwi R, Ramadan MM, Salim RF, Shaheen D, E M Ali F, Ebrahim N. Exploring the cytoprotective role of mesenchymal stem Cell-Derived exosomes in chronic liver Fibrosis: Insights into the Nrf2/Keap1/p62 signaling pathway. Int Immunopharmacol 2024; 141:112934. [PMID: 39178516 DOI: 10.1016/j.intimp.2024.112934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/03/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
Hepatic fibrosis is a common pathology present in most chronic liver diseases. Autophagy is a lysosome-mediated intracellular catabolic and recycling process that plays an essential role in maintaining normal hepatic functions. Nuclear factor erythroid 2-like 2 (Nrf2) is a transcription factor responsible for the regulation of cellular anti-oxidative stress response. This study was designed to assess the cytoprotective effect of mesenchymal stem cell-derived exosomes (MSC-exos) on endothelial-mesenchymal transition (EMT) in Carbon Tetrachloride (CCL4) induced liver fibrosis. Rats were treated with 0.1 ml of CCL4 twice weekly for 8 weeks, followed by administration of a single dose of MSC-exos. Rats were then sacrificed after 4 weeks, and liver samples were collected for gene expression analyses, Western blot, histological studies, immunohistochemistry, and transmission electron microscopy. Our results showed that MSC-exos administration decreased collagen deposition, apoptosis, and inflammation. Exosomes modulate the Nrf2/Keap1/p62 pathway, restoring autophagy and Nrf2 levels through modulation of the non-canonical pathway of Nrf2/Keap1/p62. Additionally, MSC-exos regulated miR-153-3p, miR-27a, miR-144 and miRNA-34a expression. In conclusion, the present study shed light on MSC-exos as a cytoprotective agent against EMT and tumorigenesis in chronic liver inflammation.
Collapse
Affiliation(s)
- Hajir A Al Saihati
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Albatin, Saudi Arabia.
| | - Omnia A Badr
- Department of Genetics and Genetic Engineering, Faculty of Agriculture, Benha University, Egypt.
| | - Arigue A Dessouky
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, 44519 Zagazig, Egypt.
| | - Ola Mostafa
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Egypt.
| | - Ayman Samir Farid
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Qalyubia, Egypt.
| | - Nashwa H Aborayah
- Department of Clinical Pharmacology, Faculty of Medicine, Benha University, Egypt, Department of Pharmacology, Mutah University, Mutah 61710, Jordan.
| | - Mohammad Abdullah Aljasir
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia.
| | - Bodour Baioumy
- Department of Anatomy and Embryology, Faculty of Medicine, Benha University, Egypt.
| | | | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Mansoura University, Egypt.
| | - Rasha Hamed Al-Serwi
- Department of Basic Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Mahmoud M Ramadan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah City, United Arab Emirates; Department of Cardiology, Faculty of Medicine, Mansoura University, Mansoura City, Egypt.
| | - Rabab F Salim
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha Universit, Egypt.
| | - Dalia Shaheen
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Nesrine Ebrahim
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Stem Cell Unit, Egypt.
| |
Collapse
|
7
|
Baral K, Joshi S, Lopez A, Mugon G, Chanda A, Chandrasheker AA, Hinton C, Thapa K, Mercer A, Spade L, Liu G, Bhetwal BP, Fang J, Khambu B. Transcriptional changes impact hepatic proteome in autophagy-impaired liver. FEBS Open Bio 2024; 14:1851-1863. [PMID: 39284785 PMCID: PMC11532973 DOI: 10.1002/2211-5463.13898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/09/2024] [Accepted: 09/09/2024] [Indexed: 11/05/2024] Open
Abstract
Hepatic proteomes are intricately controlled through biosynthesis, extracellular secretion, and intrahepatic degradation. Autophagy governs lysosome-mediated intrahepatic degradation and the hepatic proteome. When autophagy is impaired, it leads to the accumulation of intrahepatic proteins, causing proteinopathy. This study investigates whether autophagy can modulate the hepatic proteome non-degradatively. Utilizing conditional, inducible, and hepatotoxin models of hepatic autophagy impairment, we assessed the overall hepatic proteome expression using Coomassie brilliant blue (CBB) staining and liquid chromatography-tandem mass spectrometry (LC/MS). We pinpointed and confirmed four specific hepatic proteins-Cps1, Ahcy, Ca3, and Gstm1-that were selectively modified in autophagy-deficient livers. Expression of Cps1, Ahcy, and Ca3 were significantly reduced, while Gstm1 expression increased in livers with autophagy impairment. Interestingly, these changes in hepatic protein levels were not due to defective autophagic degradation but were associated with alterations in mRNA transcript levels. Moreover, as a result of autophagic dysfunction, sustained activation of the nuclear erythroid-derived 2-like 2 (Nrf2) transcription factor, transcriptionally regulated the mRNA levels of these proteins. Our findings indicate that autophagy can influence hepatic proteins not solely via traditional degradative routes but also through non-degradative transcriptional processes by modulating Nrf2.
Collapse
Affiliation(s)
- Kamal Baral
- Department of Pathology and Laboratory MedicineTulane University School of MedicineNew OrleansLAUSA
| | | | - Adriana Lopez
- Department of Pathology and Laboratory MedicineTulane University School of MedicineNew OrleansLAUSA
| | - Gavisha Mugon
- Department of Biochemistry and Molecular BiologyTulane University School of MedicineNew OrleansLAUSA
| | - Aroma Chanda
- Department of Pathology and Laboratory MedicineTulane University School of MedicineNew OrleansLAUSA
| | - Arya A. Chandrasheker
- Department of Pathology and Laboratory MedicineTulane University School of MedicineNew OrleansLAUSA
| | - Cameron Hinton
- Department of Pathology and Laboratory MedicineTulane University School of MedicineNew OrleansLAUSA
| | - Kapil Thapa
- Department of Cell and Molecular BiologySchool of Science and EngineeringNew OrleansLAUSA
| | - Arissa Mercer
- Department of Pathology and Laboratory MedicineTulane University School of MedicineNew OrleansLAUSA
| | - Leah Spade
- Department of Pathology and Laboratory MedicineTulane University School of MedicineNew OrleansLAUSA
| | - Gang Liu
- Department of Pathology and Laboratory MedicineTulane University School of MedicineNew OrleansLAUSA
| | | | - Jia Fang
- Department of Biochemistry and Molecular BiologyTulane University School of MedicineNew OrleansLAUSA
| | - Bilon Khambu
- Department of Pathology and Laboratory MedicineTulane University School of MedicineNew OrleansLAUSA
| |
Collapse
|
8
|
Mohammed WH, Sulaiman GM, Abomughaid MM, Klionsky DJ, Abu-Alghayth MH. The dual role of autophagy in suppressing and promoting hepatocellular carcinoma. Front Cell Dev Biol 2024; 12:1472574. [PMID: 39463763 PMCID: PMC11502961 DOI: 10.3389/fcell.2024.1472574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/25/2024] [Indexed: 10/29/2024] Open
Abstract
The 5-year survival rate for hepatocellular carcinoma (HCC), a deadly form of liver cancer, is quite low. Although drug therapy is successful, patients with advanced liver cancer frequently develop resistance because of the significant phenotypic and genetic heterogeneity of these cells. The overexpression of drug efflux transporters, downstream adaptive responses, malfunctioning DNA damage repair, epigenetic modification, the tumor microenvironment, and the extracellular matrix can all be linked to drug resistance. The evolutionary process of autophagy, which is in charge of intracellular breakdown, is intimately linked to medication resistance in HCC. Autophagy is involved in both the promotion and suppression of cancer by influencing treatment resistance, metastasis, carcinogenesis, and the viability of stem cells. Certain autophagy regulators are employed in anticancer treatment; however, because of the dual functions of autophagy, their use is restricted, and therapeutic failure is increased. By focusing on autophagy, it is possible to reduce HCC expansion and metastasis, and enhance tumor cell reactivity to treatment. Macroautophagy, the best-characterized type of autophagy, involves the formation of a sequestering compartment termed a phagophore, which surrounds and encloses aberrant or superfluous components. The phagophore matures into a double-membrane autophagosome that delivers the cargo to the lysosome; lysosomes and autophagosomes fuse to degrade and recycle the cargo. Macroautophagy plays dual functions in both promoting and suppressing cancer in a variety of cancer types.
Collapse
Affiliation(s)
- Wasnaa H. Mohammed
- Department of Biotechnology, College of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Ghassan M. Sulaiman
- Department of Biotechnology, College of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Mosleh M. Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
| | - Daniel J. Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States
| | - Mohammed H. Abu-Alghayth
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
| |
Collapse
|
9
|
Duan H, Song S, Li R, Hu S, Zhuang S, Liu S, Li X, Gao W. Strategy for treating MAFLD: Electroacupuncture alleviates hepatic steatosis and fibrosis by enhancing AMPK mediated glycolipid metabolism and autophagy in T2DM rats. Diabetol Metab Syndr 2024; 16:218. [PMID: 39261952 PMCID: PMC11389443 DOI: 10.1186/s13098-024-01432-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/24/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Recent studies have highlighted type 2 diabetes (T2DM) as a significant risk factor for the development of metabolic dysfunction-associated fatty liver disease (MAFLD). This investigation aimed to assess electroacupuncture's (EA) impact on liver morphology and function in T2DM rats, furnishing experimental substantiation for its potential to stall MAFLD progression in T2DM. METHODS T2DM rats were induced by a high-fat diet and a single intraperitoneal injection of streptozotocin, and then randomly assigned to five groups: the T2DM group, the electroacupuncture group, the metformin group, combination group of electroacupuncture and metformin, combination group of electroacupuncture and Compound C. The control group received a standard diet alongside intraperitoneal citric acid - sodium citrate solution injections. After a 6-week intervention, the effects of each group on fasting blood glucose, lipids, liver function, morphology, lipid droplet infiltration, and fibrosis were evaluated. Techniques including Western blotting, qPCR, immunohistochemistry, and immunofluorescence were employed to gauge the expression of key molecules in AMPK-associated glycolipid metabolism, insulin signaling, autophagy, and fibrosis pathways. Additionally, transmission electron microscopy facilitated the observation of liver autophagy, lipid droplets, and fibrosis. RESULTS Our studies indicated that hyperglycemia, hyperlipidemia and IR promoted lipid accumulation, pathological and functional damage, and resulting in hepatic steatosis and fibrosis. Meanwhile, EA enhanced the activation of AMPK, which in turn improved glycolipid metabolism and autophagy through promoting the expression of PPARα/CPT1A and AMPK/mTOR pathway, inhibiting the expression of SREBP1c, PGC-1α/PCK2 and TGFβ1/Smad2/3 signaling pathway, ultimately exerting its effect on ameliorating hepatic steatosis and fibrosis in T2DM rats. The above effects of EA were consistent with metformin. The combination of EA and metformin had significant advantages in increasing hepatic AMPK expression, improving liver morphology, lipid droplet infiltration, fibrosis, and reducing serum ALT levels. In addition, the ameliorating effects of EA on the progression of MAFLD in T2DM rats were partly disrupted by Compound C, an inhibitor of AMPK. CONCLUSIONS EA upregulated hepatic AMPK expression, curtailing gluconeogenesis and lipogenesis while boosting fatty acid oxidation and autophagy levels. Consequently, it mitigated blood glucose, lipids, and insulin resistance in T2DM rats, thus impeding liver steatosis and fibrosis progression and retarding MAFLD advancement.
Collapse
Affiliation(s)
- Haoru Duan
- School of Acupuncture - Moxibustion, and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, China
- Department of Acupuncture and Moxibustion, Chaoyang District Traditional Chinese Medicine Hospital, Beijing, 100026, China
| | - Shanshan Song
- School of Acupuncture - Moxibustion, and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, China
- Department of Acupuncture and Moxibustion, China- Japan Friendship Hospital, Beijing, 100029, China
| | - Rui Li
- School of Acupuncture - Moxibustion, and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Suqin Hu
- Department of Gastroenterology, Henan Province Hospital of Traditional Chinese Medicine, Henan University of Chinese Medicine, Henan, 450002, China
| | - Shuting Zhuang
- School of Acupuncture - Moxibustion, and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Shaoyang Liu
- School of Acupuncture - Moxibustion, and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaolu Li
- School of Acupuncture - Moxibustion, and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wei Gao
- School of Acupuncture - Moxibustion, and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, China
| |
Collapse
|
10
|
Hinz K, Niu M, Ni HM, Ding WX. Targeting Autophagy for Acetaminophen-Induced Liver Injury: An Update. LIVERS 2024; 4:377-387. [PMID: 39301093 PMCID: PMC11412313 DOI: 10.3390/livers4030027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Acetaminophen (APAP) overdose can induce hepatocyte necrosis and acute liver failure in experimental rodents and humans. APAP is mainly metabolized via hepatic cytochrome P450 enzymes to generate the highly reactive metabolite N-acetyl-p-benzoquinone imine (NAPQI), which forms acetaminophen protein adducts (APAP-adducts) and damages mitochondria, triggering necrosis. APAP-adducts and damaged mitochondria can be selectively removed by autophagy. Increasing evidence implies that the activation of autophagy may be beneficial for APAP-induced liver injury (AILI). In this minireview, we briefly summarize recent progress on autophagy, in particular, the pharmacological targeting of SQSTM1/p62 and TFEB in AILI.
Collapse
Affiliation(s)
- Kaitlyn Hinz
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Mengwei Niu
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
11
|
Li W, Lv R, Zou T, Chen M. Tricetin protects against liver fibrosis through promoting autophagy and Nrf2 signaling in hepatic stellate cells. Life Sci 2024; 351:122798. [PMID: 38852802 DOI: 10.1016/j.lfs.2024.122798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/07/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
AIMS The study aims to investigate the role and underlying mechanisms of tricetin in regulating hepatic stellate cells (HSCs) activation. MAIN METHODS We treated human hepatic stellate cells line LX-2 and freshly isolated primary mouse hepatic stellate cells (mHSCs) with tricetin, pharmacological inhibitors and siRNAs, western blot, immunofluorescence, quantitative PCR were used to evaluate the expression of fibrotic markers, autophagy levels and Nrf2 (nuclear factor E2-related factor 2) signaling. KEY FINDINGS Herein, we demonstrated that tricetin strongly attenuated the proliferation, migration, lipid droplets (LDs) loss and fibrotic markers Col 1a1 (type I α 1 collagen) and α-SMA (α-smooth muscle actin) expression in LX-2 cells. Moreover, tricetin time- and dose-dependently provoked autophagic formation in LX-2 cells. Autophagy inhibition by pharmacological intervention or genetic ATG5 (autophagy related 5) silencing facilitated tricetin-induced downregulation of profibrotic markers in LX-2 cells. Additionally, tricetin treatment reduced reactive oxygen species (ROS) accumulation, promoted Nrf2 signaling in LX-2 cells and pretreatment with ROS scavenger NAC partially reversed tricetin-induced autophagy and enhanced tricetin-mediated HSCs inactivation. Nrf2 silencing partially reversed tricetin-mediated inhibition of α-SMA expression. Finally, utilizing primary mouse hepatic stellate cells (mHSCs), we demonstrated that tricetin also induced autophagy activation, repressed TGF-β1-induced LDs loss and fibrotic marker expression and pretreatment with CQ further sensitized these effects. SIGNIFICANCE Our study indicates that tricetin's actions may represent an effective strategy to treat liver fibrosis and help identify novel therapeutic targets, especially in combination with autophagy inhibitors.
Collapse
Affiliation(s)
- Wanzhi Li
- Department of Nutrition, School of Public Health, Guangdong Medical University, No.1 Xincheng Avenue, Songshan Lake Science & Technologic Industry Park, Dongguan, China
| | - Ruyue Lv
- Department of Nutrition, School of Public Health, Guangdong Medical University, No.1 Xincheng Avenue, Songshan Lake Science & Technologic Industry Park, Dongguan, China
| | - Tangbin Zou
- Department of Nutrition, School of Public Health, Guangdong Medical University, No.1 Xincheng Avenue, Songshan Lake Science & Technologic Industry Park, Dongguan, China; Dongguan Key Laboratory of Chronic Inflammatory Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, No. 42 Jiaoping Road, Tangxia Town, Dongguan, China.
| | - Ming Chen
- Department of Nutrition, School of Public Health, Guangdong Medical University, No.1 Xincheng Avenue, Songshan Lake Science & Technologic Industry Park, Dongguan, China.
| |
Collapse
|
12
|
Shen W, Yang M, Chen H, He C, Li H, Yang X, Zhuo J, Lin Z, Hu Z, Lu D, Xu X. FGF21-mediated autophagy: Remodeling the homeostasis in response to stress in liver diseases. Genes Dis 2024; 11:101027. [PMID: 38292187 PMCID: PMC10825283 DOI: 10.1016/j.gendis.2023.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/23/2023] [Accepted: 05/09/2023] [Indexed: 02/01/2024] Open
Abstract
Liver diseases are worldwide problems closely associated with various stresses, such as endoplasmic reticulum stress. The exact interplay between stress and liver diseases remains unclear. Autophagy plays an essential role in maintaining homeostasis, and recent studies indicate tight crosstalk between stress and autophagy in liver diseases. Once the balance between damage and autophagy is broken, autophagy can no longer resist injury or maintain homeostasis. In recent years, FGF21 (fibroblast growth factor 21)-induced autophagy has attracted much attention. FGF21 is regarded as a stress hormone and can be up-regulated by an abundance of signaling pathways in response to stress. Also, increased FGF21 activates autophagy by a complicated signaling network in which mTOR plays a pivotal role. This review summarizes the mechanism of FGF21-mediated autophagy and its derived application in the defense of stress in liver diseases and offers a glimpse into its promising prospect in future clinical practice.
Collapse
Affiliation(s)
- Wei Shen
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Modan Yang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Hao Chen
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Chiyu He
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Huigang Li
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Xinyu Yang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Jianyong Zhuo
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Zuyuan Lin
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Zhihang Hu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Di Lu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
- National Center for Healthcare Quality Management in Liver Transplant, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
13
|
Gadallah MS, Kandil M, Holah NS, Sobhy GA, Ahmed MM, El-Gammal SS, Ehsan NA. Does Autophagy have a Role in the Pathogenesis of Pediatric Hepatic Steatosis? Asian Pac J Cancer Prev 2024; 25:1753-1761. [PMID: 38809648 PMCID: PMC11318833 DOI: 10.31557/apjcp.2024.25.5.1753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024] Open
Abstract
Hepatic steatosis has become the most common cause of chronic liver disease among children worldwide. Lipophagy has been considered as a pathway affecting steatosis development and progression. OBJECTIVE this study aimed to evaluate the immunohistochemical expression of Beclin1 and LC3A in pediatric hepatic tissues with steatosis and to correlate their expression with clinicopathological parameters. METHODS this study included 81 Egyptian pediatric patients with hepatic steatosis and 21 pediatric cases without hepatic steatosis. All specimens were stained by Beclin1 and LC3A antibodies. According to final diagnosis obtained from Pediatric Hepatology department, patients were divided into two groups: chronic liver disease (CLD) group that included 45 cases and inborn error of metabolism (IEM) group that included 36 cases. RESULTS higher beclin1 expression was significantly correlated with higher stages of fibrosis and distorted liver architecture in CLD group, (P=0.043) for both. The control group showed higher positivity, percentage, as well as the median values of the H score of LC3A expression than did the CLD group or the IEM group (P=0.055, 0.001, and 0.008, respectively). Higher positivity of LC3A was significantly associated with higher stages of fibrosis and distorted liver architecture in the studied IEM group (P=0.021) for both. CONCLUSIONS Varying intensity grades of LC3A and Beclin 1 immunohistochemical expression demonstrate the variation of autophagy at different phases of pediatric hepatic steatosis and varied disease etiology.
Collapse
Affiliation(s)
- Marwa Salah Gadallah
- Pathology Department, Faculty of Medicine, Menoufia University, Shebin El-Kom, Egypt.
| | - Mona Kandil
- Pathology Department, Faculty of Medicine, Menoufia University, Shebin El-Kom, Egypt.
| | - Nanis Shawky Holah
- Pathology Department, Faculty of Medicine, Menoufia University, Shebin El-Kom, Egypt.
| | - Gihan Ahmed Sobhy
- Pediatric Department, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt.
| | | | | | - Nermine Ahmed Ehsan
- Department of Pathology, National Liver Institute, Menoufia University, Egypt.
| |
Collapse
|
14
|
Dashti Z, Yousefi Z, Kiani P, Taghizadeh M, Maleki MH, Borji M, Vakili O, Shafiee SM. Autophagy and the unfolded protein response shape the non-alcoholic fatty liver landscape: decoding the labyrinth. Metabolism 2024; 154:155811. [PMID: 38309690 DOI: 10.1016/j.metabol.2024.155811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/23/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
The incidence of nonalcoholic fatty liver disease (NAFLD) is on the rise, mirroring a global surge in diabetes and metabolic syndrome, as its major leading causes. NAFLD represents a spectrum of liver disorders, ranging from nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH), which can potentially progress to cirrhosis and hepatocellular carcinoma (HCC). Mechanistically, we know the unfolded protein response (UPR) as a protective cellular mechanism, being triggered under circumstances of endoplasmic reticulum (ER) stress. The hepatic UPR is turned on in a broad spectrum of liver diseases, including NAFLD. Recent data also defines molecular mechanisms that may underlie the existing correlation between UPR activation and NAFLD. More interestingly, subsequent studies have demonstrated an additional mechanism, i.e. autophagy, to be involved in hepatic steatosis, and thus NAFLD pathogenesis, principally by regulating the insulin sensitivity, hepatocellular injury, innate immunity, fibrosis, and carcinogenesis. All these findings suggest possible mechanistic roles for autophagy in the progression of NAFLD and its complications. Both UPR and autophagy are dynamic and interconnected fluxes that act as protective responses to minimize the harmful effects of hepatic lipid accumulation, as well as the ER stress during NAFLD. The functions of UPR and autophagy in the liver, together with findings of decreased hepatic autophagy in correlation with conditions that predispose to NAFLD, such as obesity and aging, suggest that autophagy and UPR, alone or combined, may be novel therapeutic targets against the disease. In this review, we discuss the current evidence on the interplay between autophagy and the UPR in connection to the NAFLD pathogenesis.
Collapse
Affiliation(s)
- Zahra Dashti
- Department of Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zeynab Yousefi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Pouria Kiani
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Motahareh Taghizadeh
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hasan Maleki
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Borji
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran; Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Sayed Mohammad Shafiee
- Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
15
|
Gu L, Du Y, Chen J, Hasan MN, Clayton YD, Matye DJ, Friedman JE, Li T. Cullin 3 RING E3 ligase inactivation causes NRF2-dependent NADH reductive stress, hepatic lipodystrophy, and systemic insulin resistance. Proc Natl Acad Sci U S A 2024; 121:e2320934121. [PMID: 38630726 PMCID: PMC11046679 DOI: 10.1073/pnas.2320934121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/25/2024] [Indexed: 04/19/2024] Open
Abstract
Cullin RING E3 ligases (CRL) have emerged as key regulators of disease-modifying pathways and therapeutic targets. Cullin3 (Cul3)-containing CRL (CRL3) has been implicated in regulating hepatic insulin and oxidative stress signaling. However, CRL3 function in liver pathophysiology is poorly defined. Here, we report that hepatocyte Cul3 knockout results in rapid resolution of steatosis in obese mice. However, the remarkable resistance of hepatocyte Cul3 knockout mice to developing steatosis does not lead to overall metabolic improvement but causes systemic metabolic disturbances. Liver transcriptomics analysis identifies that CRL3 inactivation causes persistent activation of the nuclear factor erythroid 2-related factor 2 (NRF2) antioxidant defense pathway, which also reprograms the lipid transcriptional network to prevent TG storage. Furthermore, global metabolomics reveals that NRF2 activation induces numerous NAD+-consuming aldehyde dehydrogenases to increase the cellular NADH/NAD+ ratio, a redox imbalance termed NADH reductive stress that inhibits the glycolysis-citrate-lipogenesis axis in Cul3 knockout livers. As a result, this NRF2-induced cellular lipid storage defect promotes hepatic ceramide accumulation, elevates circulating fatty acids, and worsens systemic insulin resistance in a vicious cycle. Hepatic lipid accumulation is restored, and liver injury and hyperglycemia are attenuated when NRF2 activation and NADH reductive stress are abolished in hepatocyte Cul3/Nrf2 double-knockout mice. The resistance to hepatic steatosis, hyperglycemia, and NADH reductive stress are observed in hepatocyte Keap1 knockout mice with NRF2 activation. In summary, our study defines a critical role of CRL3 in hepatic metabolic regulation and demonstrates that the CRL3 downstream NRF2 overactivation causes hepatic metabolic maladaptation to obesity and insulin resistance.
Collapse
Affiliation(s)
- Lijie Gu
- Harold Hamm Diabetes Center, Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104
| | - Yanhong Du
- Harold Hamm Diabetes Center, Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104
| | - Jianglei Chen
- Harold Hamm Diabetes Center, Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104
| | - Mohammad Nazmul Hasan
- Harold Hamm Diabetes Center, Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104
| | - Yung Dai Clayton
- Harold Hamm Diabetes Center, Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104
| | - David J. Matye
- Harold Hamm Diabetes Center, Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104
| | - Jacob E. Friedman
- Harold Hamm Diabetes Center, Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104
| | - Tiangang Li
- Harold Hamm Diabetes Center, Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104
| |
Collapse
|
16
|
Kim HK, Jeong H, Jeong MG, Won HY, Lee G, Bae SH, Nam M, Lee SH, Hwang GS, Hwang ES. TAZ deficiency impairs the autophagy-lysosomal pathway through NRF2 dysregulation and lysosomal dysfunction. Int J Biol Sci 2024; 20:2592-2606. [PMID: 38725855 PMCID: PMC11077375 DOI: 10.7150/ijbs.88897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
Transcriptional coactivator with a PDZ-binding motif (TAZ) plays a key role in normal tissue homeostasis and tumorigenesis through interaction with several transcription factors. In particular, TAZ deficiency causes abnormal alveolarization and emphysema, and persistent TAZ overexpression contributes to lung cancer and pulmonary fibrosis, suggesting the possibility of a complex mechanism of TAZ function. Recent studies suggest that nuclear factor erythroid 2-related factor 2 (NRF2), an antioxidant defense system, induces TAZ expression during tumorigenesis and that TAZ also activates the NRF2-mediated antioxidant pathway. We thus thought to elucidate the cross-regulation of TAZ and NRF2 and the underlying molecular mechanisms and functions. TAZ directly interacted with NRF2 through the N-terminal domain and suppressed the transcriptional activity of NRF2 by preventing NRF2 from binding to DNA. In addition, the return of NRF2 to basal levels after signaling was inhibited in TAZ deficiency, resulting in sustained nuclear NRF2 levels and aberrantly increased expression of NRF2 targets. TAZ deficiency failed to modulate optimal NRF2 signaling and concomitantly impaired lysosomal acidification and lysosomal enzyme function, accumulating the abnormal autophagy vesicles and reactive oxygen species and causing protein oxidation and cellular damage in the lungs. TAZ restoration to TAZ deficiency normalized dysregulated NRF2 signaling and aberrant lysosomal function and triggered the normal autophagy-lysosomal pathway. Therefore, TAZ is indispensable for the optimal regulation of NRF2-mediated autophagy-lysosomal pathways and for preventing pulmonary damage caused by oxidative stress and oxidized proteins.
Collapse
Affiliation(s)
- Hyo Kyeong Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Hana Jeong
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Mi Gyeong Jeong
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Hee Yeon Won
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Gibbeum Lee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Soo Han Bae
- College of Medicine, Severance Biomedical Science Institute, Yonsei University, Seoul 03722, Korea
| | - Miso Nam
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Korea
| | - Sung Hoon Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Korea
| | - Eun Sook Hwang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
17
|
Lu H. Inflammatory liver diseases and susceptibility to sepsis. Clin Sci (Lond) 2024; 138:435-487. [PMID: 38571396 DOI: 10.1042/cs20230522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/09/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
Patients with inflammatory liver diseases, particularly alcohol-associated liver disease and metabolic dysfunction-associated fatty liver disease (MAFLD), have higher incidence of infections and mortality rate due to sepsis. The current focus in the development of drugs for MAFLD is the resolution of non-alcoholic steatohepatitis and prevention of progression to cirrhosis. In patients with cirrhosis or alcoholic hepatitis, sepsis is a major cause of death. As the metabolic center and a key immune tissue, liver is the guardian, modifier, and target of sepsis. Septic patients with liver dysfunction have the highest mortality rate compared with other organ dysfunctions. In addition to maintaining metabolic homeostasis, the liver produces and secretes hepatokines and acute phase proteins (APPs) essential in tissue protection, immunomodulation, and coagulation. Inflammatory liver diseases cause profound metabolic disorder and impairment of energy metabolism, liver regeneration, and production/secretion of APPs and hepatokines. Herein, the author reviews the roles of (1) disorders in the metabolism of glucose, fatty acids, ketone bodies, and amino acids as well as the clearance of ammonia and lactate in the pathogenesis of inflammatory liver diseases and sepsis; (2) cytokines/chemokines in inflammatory liver diseases and sepsis; (3) APPs and hepatokines in the protection against tissue injury and infections; and (4) major nuclear receptors/signaling pathways underlying the metabolic disorders and tissue injuries as well as the major drug targets for inflammatory liver diseases and sepsis. Approaches that focus on the liver dysfunction and regeneration will not only treat inflammatory liver diseases but also prevent the development of severe infections and sepsis.
Collapse
Affiliation(s)
- Hong Lu
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
| |
Collapse
|
18
|
Oravecz-Wilson K, Lauder E, Taylor A, Maneix L, Van Nostrand JL, Sun Y, Li L, Zhao D, Liu C, Reddy P. Autophagy differentially regulates tissue tolerance of distinct target organs in graft-versus-host disease models. J Clin Invest 2024; 134:e167369. [PMID: 38426503 PMCID: PMC10904048 DOI: 10.1172/jci167369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/11/2024] [Indexed: 03/02/2024] Open
Abstract
Tissue-intrinsic mechanisms that regulate severity of systemic pathogenic immune-mediated diseases, such as acute graft-versus-host disease (GVHD), remain poorly understood. Following allogeneic hematopoietic stem cell transplantation, autophagy, a cellular stress protective response, is induced in host nonhematopoietic cells. To systematically address the role of autophagy in various host nonhematopoietic tissues, both specific classical target organs of acute GVHD (intestines, liver, and skin) and organs conventionally not known to be targets of GVHD (kidneys and heart), we generated mice with organ-specific knockout of autophagy related 5 (ATG5) to specifically and exclusively inhibit autophagy in the specific organs. When compared with wild-type recipients, animals that lacked ATG5 in the gastrointestinal tract or liver showed significantly greater tissue injury and mortality, while autophagy deficiency in the skin, kidneys, or heart did not affect mortality. Treatment with the systemic autophagy inducer sirolimus only partially mitigated GVHD mortality in intestine-specific autophagy-deficient hosts. Deficiency of autophagy increased MHC class I on the target intestinal epithelial cells, resulting in greater susceptibility to damage by alloreactive T cells. Thus, autophagy is a critical cell-intrinsic protective response that promotes tissue tolerance and regulates GVHD severity.
Collapse
Affiliation(s)
- Katherine Oravecz-Wilson
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, Michigan, USA
| | - Emma Lauder
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, Michigan, USA
- Dan L. Duncan Comprehensive Cancer Center and
| | - Austin Taylor
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, Michigan, USA
| | | | - Jeanine L. Van Nostrand
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Yaping Sun
- Dan L. Duncan Comprehensive Cancer Center and
| | - Lu Li
- Dan L. Duncan Comprehensive Cancer Center and
| | | | - Chen Liu
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Pavan Reddy
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, Michigan, USA
- Dan L. Duncan Comprehensive Cancer Center and
| |
Collapse
|
19
|
Wang X, Tian H, Chen J, Huang D, Ding F, Ma T, Xi J, Wu C, Zhang Y. Isobavachalcone attenuates liver fibrosis via activation of the Nrf2/HO-1 pathway in rats. Int Immunopharmacol 2024; 128:111398. [PMID: 38171054 DOI: 10.1016/j.intimp.2023.111398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024]
Abstract
Liver fibrosis, a progression of chronic liver disease, is a significant concern worldwide due to the lack of effective treatment modalities. Recent studies have shown that natural products play a crucial role in preventing and treating liver fibrosis. Isobavachalcone (IBC) is a chalcone compound with anti-inflammatory, antioxidant, and anti-cancer properties. However, its potential antifibrotic effects remain to be elucidated. This study aimed to investigate the antifibrotic effects of IBC on liver fibrosis and its underlying mechanisms in rats. The results showed that IBC significantly ameliorated the pathological damage and collagen deposition in liver tissues; it also reduced the levels of hydroxyproline (HYP), alanine aminotransferase (ALT), and aspartate aminotransferase (AST). In addition, IBC activated Nuclear factor E2-associated factor 2/Hemeoxygenase-1 (Nrf2/HO-1) signaling, leading to the nuclear translocation of Nrf2. This translocation subsequently increased the levels of superoxide dismutase (SOD) and glutathione (GSH) and decreased the levels of malondialdehyde (MDA) and reactive oxygen species (ROS), thereby alleviating oxidative stress-induced damage. Moreover, it inhibited the expression of nuclear factor kappa B (NF-κB), which further reduced the levels of downstream inflammatory factors, such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and IL-1 beta (IL-1β), thereby suppressing the activation of HSCs and weakening liver fibrosis. In HSC-T6 cell experiments, changes observed in inflammatory responses, oxidative stress indicators, and protein expression were consistent with the in vivo results. Furthermore, the Nrf2 inhibitor (ML385) attenuated the effect of IBC on inhibiting the activation of quiescent HSCs. Consequently, IBC could alleviate liver fibrosis by activating Nrf2/ HO-1 signaling.
Collapse
Affiliation(s)
- Xiangshu Wang
- School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui Province, China; Anhui Key Laboratory of Tissue Transplantation at Bengbu Medical College, Bengbu, Anhui Province, China
| | - Haozhe Tian
- School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui Province, China; Anhui Key Laboratory of Tissue Transplantation at Bengbu Medical College, Bengbu, Anhui Province, China
| | - Jie Chen
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Di Huang
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Feng Ding
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Tao Ma
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Jin Xi
- Anhui Key Laboratory of Tissue Transplantation at Bengbu Medical College, Bengbu, Anhui Province, China
| | - Chengzhu Wu
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical College, Bengbu, Anhui Province, China.
| | - Yuxin Zhang
- School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui Province, China; Anhui Key Laboratory of Tissue Transplantation at Bengbu Medical College, Bengbu, Anhui Province, China.
| |
Collapse
|
20
|
Li Q, Huang D, Liao W, Su X, Li J, Zhang J, Fang M, Liu Y. Tanshinone IIA regulates CCl 4 induced liver fibrosis in C57BL/6J mice via the PI3K/Akt and Nrf2/HO-1 signaling pathways. J Biochem Mol Toxicol 2024; 38:e23648. [PMID: 38348705 DOI: 10.1002/jbt.23648] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 08/31/2023] [Accepted: 01/10/2024] [Indexed: 02/15/2024]
Abstract
Chronic liver diseases caused by various factors may develop into liver fibrosis (LF). Early stage of LF could be reversible. Tanshinone IIA (Tan IIA), an extract from Salvia miltiorrhiza, has been reported to be hepatoprotective. However, the potential targets and mechanism of Tan IIA in the treatment of LF are still unclear. Our study aims at the anti-LF mechanism of Tan IIA through network pharmacological analysis combined with LF-related experiments. Serum biochemical indicators and histopathological examination showed that Tan IIA could ameliorate the process of LF in the CCl4 -induced mouse model. Western blot and immunohistochemical assays showed that Tan IIA decreased the expression of Kirsten rat sarcoma viral oncogene homolog (KRAS), phosphatidylinositide 3-kinases/protein kinase B (PI3K/Akt), and nuclear factor erythroid 2-related factor/heme oxygenase-1 (Nrf2/HO-1). Compared with the model group, the Tan IIA groups increased the decreased superoxide dismutase activity and glutathione content, while decreasing the increased malondialdehyde content. These results indicate that Tan IIA may play an antioxidant role by inhibiting the expression of KRAS, PI3K/Akt, and Nrf2/HO-1 to ameliorate the progression of LF, which to some extent explains the pharmacological mechanism of Tan IIA in LF. In conclusion, our study demonstrates that Tan IIA could regulate LF via PI3K/Akt and Nrf2/HO-1 signaling pathways. It may be an effective therapeutic compound for the treatment of LF.
Collapse
Affiliation(s)
- Qingqing Li
- School of Medicine, Jianghan University, Wuhan, China
| | - Dongrui Huang
- School of Medicine, Jianghan University, Wuhan, China
| | - Wenjing Liao
- School of Medicine, Jianghan University, Wuhan, China
| | - Xinyue Su
- School of Medicine, Jianghan University, Wuhan, China
| | - Jin Li
- School of Medicine, Jianghan University, Wuhan, China
| | - Jinwei Zhang
- School of Medicine, Jianghan University, Wuhan, China
| | - Meng Fang
- School of Medicine, Jianghan University, Wuhan, China
| | - Yuwei Liu
- School of Medicine, Jianghan University, Wuhan, China
| |
Collapse
|
21
|
Chao X, Niu M, Wang S, Ma X, Yang X, Sun H, Hu X, Wang H, Zhang L, Huang R, Xia M, Ballabio A, Jaeschke H, Ni HM, Ding WX. High-throughput screening of novel TFEB agonists in protecting against acetaminophen-induced liver injury in mice. Acta Pharm Sin B 2024; 14:190-206. [PMID: 38261809 PMCID: PMC10793101 DOI: 10.1016/j.apsb.2023.10.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 01/25/2024] Open
Abstract
Macroautophagy (referred to as autophagy hereafter) is a major intracellular lysosomal degradation pathway that is responsible for the degradation of misfolded/damaged proteins and organelles. Previous studies showed that autophagy protects against acetaminophen (APAP)-induced injury (AILI) via selective removal of damaged mitochondria and APAP protein adducts. The lysosome is a critical organelle sitting at the end stage of autophagy for autophagic degradation via fusion with autophagosomes. In the present study, we showed that transcription factor EB (TFEB), a master transcription factor for lysosomal biogenesis, was impaired by APAP resulting in decreased lysosomal biogenesis in mouse livers. Genetic loss-of and gain-of function of hepatic TFEB exacerbated or protected against AILI, respectively. Mechanistically, overexpression of TFEB increased clearance of APAP protein adducts and mitochondria biogenesis as well as SQSTM1/p62-dependent non-canonical nuclear factor erythroid 2-related factor 2 (NRF2) activation to protect against AILI. We also performed an unbiased cell-based imaging high-throughput chemical screening on TFEB and identified a group of TFEB agonists. Among these agonists, salinomycin, an anticoccidial and antibacterial agent, activated TFEB and protected against AILI in mice. In conclusion, genetic and pharmacological activating TFEB may be a promising approach for protecting against AILI.
Collapse
Affiliation(s)
- Xiaojuan Chao
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Mengwei Niu
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Shaogui Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Xiaowen Ma
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Xiao Yang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hua Sun
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, China
| | - Xujia Hu
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Hua Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, China
| | - Li Zhang
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, Naples 80131, Italy
- Medical Genetics, Department of Translational Medicine, Federico II University, Naples 80131, Italy
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Internal Medicine, Division of Gastroenterology, Hepatology & Motility, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
22
|
Etemadi Y, Akakpo JY, Ramachandran A, Jaeschke H. Nrf2 as a therapeutic target in acetaminophen hepatotoxicity: A case study with sulforaphane. J Biochem Mol Toxicol 2023; 37:e23505. [PMID: 37598316 PMCID: PMC10842847 DOI: 10.1002/jbt.23505] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/24/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023]
Abstract
Acetaminophen (APAP) overdose can cause severe liver injury and acute liver failure. The only clinically approved antidote, N-acetylcysteine (NAC), is highly effective but has a narrow therapeutic window. In the last 2 decades, activation of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), which regulates acute phase proteins and antioxidant defense genes, has emerged as a putative new therapeutic target against APAP hepatotoxicity. However, virtually all studies that propose Nrf2 activation as mechanism of protection used prolonged pretreatment, which is not a clinically feasible approach to treat a drug overdose. Therefore, the objective of this study was to assess if therapeutic activation of Nrf2 is a viable approach to treat liver injury after APAP overdose. We used the water-soluble Nrf2 activator sulforaphane (SFN; 5 mg/kg) in a murine model of APAP hepatotoxicity (300 mg/kg). Our results indicate that short-term treatment (≤3 h) with SFN alone did not activate Nrf2 or its target genes. However, posttreatment with SFN after APAP partially protected at 6 h likely due to more rapid activation of the Nrf2-target gene heme oxygenase-1. A direct comparison of SFN with NAC given at 1 h after APAP showed a superior protection with NAC, which was maintained at 24 h unlike with SFN. Thus, Nrf2 activators have inherent problems like the need to create a cellular stress to activate Nrf2 and delayed adaptive responses which may hamper sustained protection against APAP hepatotoxicity. Thus, compared to the more direct acting antidote NAC, Nrf2 activators are less suitable for this indication.
Collapse
Affiliation(s)
- Yasaman Etemadi
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jephte Y Akakpo
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
23
|
Zhang YW, Hou LS, Xing JH, Zhang TR, Zhou SY, Zhang BL. Two-Membrane Hybrid Nanobiomimetic Delivery System for Targeted Autophagy Inhibition of Activated Hepatic Stellate Cells To Synergistically Treat Liver Fibrosis. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37899504 DOI: 10.1021/acsami.3c11046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Liver fibrosis is one of the most common and highly prevalent chronic liver diseases caused by multiple pathogenic factors, and there is still no effective therapeutic drugs up to now. The activated hepatic stellate cells (aHSCs) are the main executor in liver fibrosis, and the autophagy plays a key role in the proliferation and differentiation of aHSCs, which promotes the development of liver fibrosis. However, autophagy has the opposite effect on the different kinds of liver cells in the development of liver fibrosis, and the clinical treatment has been limited by the poor selectivity and inefficient drug delivery to aHSCs. Therefore, in this study, a liposome (Lip) and exosome (Exo) two-membrane hybrid nanobiomimetic delivery system HCQ@VA-Lip-Exo was designed, which was modified by vitamin A (VA) to target the aHSCs and carried the autophagy inhibitor hydroxychloroquine (HCQ). The experimental results in vitro and in vivo revealed that the constructed aHSC-targeted hybrid delivery system HCQ@VA-Lip-Exo combined with the benefits of HCQ and exosomes derived from bone marrow mesenchymal stem cells. HCQ@VA-Lip-Exo had good aHSC-targeted delivery ability, effective autophagy inhibition, and synergistical anti-liver fibrosis performance, thus reducing the production and deposition of the extracellular matrix to inhibit the liver fibrosis. This combined strategy provided a potential idea for the construction and clinical application of a two-membrane hybrid delivery system as an effective targeted therapy of liver fibrosis.
Collapse
Affiliation(s)
- Yao-Wen Zhang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, People's Republic of China
| | - Li-Shuang Hou
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, People's Republic of China
| | - Jie-Hua Xing
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, People's Republic of China
| | - Tang-Rui Zhang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, People's Republic of China
| | - Si-Yuan Zhou
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, People's Republic of China
- Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, People's Republic of China
| | - Bang-Le Zhang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, People's Republic of China
- Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, People's Republic of China
| |
Collapse
|
24
|
Qian H, Ding WX. SQSTM1/p62 and Hepatic Mallory-Denk Body Formation in Alcohol-Associated Liver Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1415-1426. [PMID: 36906265 PMCID: PMC10642158 DOI: 10.1016/j.ajpath.2023.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 03/12/2023]
Abstract
Sequestosome 1 (SQSTM1/p62; hereafter p62) is an autophagy receptor protein for selective autophagy primarily due to its direct interaction with the microtubule light chain 3 protein that specifically localizes on autophagosome membranes. As a result, impaired autophagy leads to the accumulation of p62. p62 is also a common component of many human liver disease-related cellular inclusion bodies, such as Mallory-Denk bodies, intracytoplasmic hyaline bodies, α1-antitrypsin aggregates, as well as p62 bodies and condensates. p62 also acts as an intracellular signaling hub, and it involves multiple signaling pathways, including nuclear factor erythroid 2-related factor 2, NF-κB, and the mechanistic target of rapamycin, which are critical for oxidative stress, inflammation, cell survival, metabolism, and liver tumorigenesis. This review discusses the recent insights of p62 in protein quality control, including the role of p62 in the formation and degradation of p62 stress granules and protein aggregates as well as regulation of multiple signaling pathways in the pathogenesis of alcohol-associated liver disease.
Collapse
Affiliation(s)
- Hui Qian
- Department of Pharmacology, Toxicology, and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology, and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas; Department of Internal Medicine, The University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
25
|
Bresciani G, Manai F, Davinelli S, Tucci P, Saso L, Amadio M. Novel potential pharmacological applications of dimethyl fumarate-an overview and update. Front Pharmacol 2023; 14:1264842. [PMID: 37745068 PMCID: PMC10512734 DOI: 10.3389/fphar.2023.1264842] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
Dimethyl fumarate (DMF) is an FDA-approved drug for the treatment of psoriasis and multiple sclerosis. DMF is known to stabilize the transcription factor Nrf2, which in turn induces the expression of antioxidant response element genes. It has also been shown that DMF influences autophagy and participates in the transcriptional control of inflammatory factors by inhibiting NF-κB and its downstream targets. DMF is receiving increasing attention for its potential to be repurposed for several diseases. This versatile molecule is indeed able to exert beneficial effects on different medical conditions through a pleiotropic mechanism, in virtue of its antioxidant, immunomodulatory, neuroprotective, anti-inflammatory, and anti-proliferative effects. A growing number of preclinical and clinical studies show that DMF may have important therapeutic implications for chronic diseases, such as cardiovascular and respiratory pathologies, cancer, eye disorders, neurodegenerative conditions, and systemic or organ specific inflammatory and immune-mediated diseases. This comprehensive review summarizes and highlights the plethora of DMF's beneficial effects and underlines its repurposing opportunities in a variety of clinical conditions.
Collapse
Affiliation(s)
- Giorgia Bresciani
- Section of Pharmacology, Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Federico Manai
- Department of Biology and Biotechnology L. Spallanzani, University of Pavia, Pavia, Italy
| | - Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology Vittorio Erspamer, Sapienza University, Rome, Italy
| | - Marialaura Amadio
- Section of Pharmacology, Department of Drug Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
26
|
Wang F, Dezfouli AB, Khosravi M, Sievert W, Stangl S, Schwab M, Wu Z, Steiger K, Ma H, Multhoff G. Cannabidiol-induced crosstalk of apoptosis and macroautophagy in colorectal cancer cells involves p53 and Hsp70. Cell Death Discov 2023; 9:286. [PMID: 37542074 PMCID: PMC10403543 DOI: 10.1038/s41420-023-01578-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 07/12/2023] [Accepted: 07/25/2023] [Indexed: 08/06/2023] Open
Abstract
Although it has been established that cannabidiol (CBD), the major non-psychoactive constituent of cannabis, exerts antitumoral activities, the exact mechanism(s) via which tumor cells are killed by CBD are not well understood. This study provides new insights into the potential mechanisms of CBD-induced mutual antagonism of apoptosis and macroautophagy using wild type (HCT116 p53wt, LS174T p53wt), knockout (HCT116 p53-/-) and mutant (SW480 p53mut) human colorectal cancer cells (CRC). CBD causes a more pronounced loss in the viability of p53wt cells than p53-/- and p53mut cells, and a 5-week treatment with CBD reduced the volume of HCT116 p53wt xenografts in mice, but had no effect on the volume of HCT116 p53-/- tumors. Mechanistically, we demonstrate that CBD only significantly elevates ROS production in cells harboring wild-type p53 (HCT116, LS174T) and that this is associated with an accumulation of PARP1. CBD-induced elevated ROS levels trigger G0/G1 cell cycle arrest, a reduction in CDK2, a p53-dependent caspase-8/9/3 activation and macroautophagy in p53wt cells. The ROS-induced macroautophagy which promotes the activation of keap1/Nrf2 pathway might be positively regulated by p53wt, since inhibition of p53 by pifithrin-α further attenuates autophagy after CBD treatment. Interestingly, an inhibition of heat shock protein 70 (Hsp70) expression significantly enhances caspase-3 mediated programmed cell death in p53wt cells, whereas autophagy-which is associated with a nuclear translocation of Nrf2-was blocked. Taken together, our results demonstrate an intricate interplay between apoptosis and macroautophagy in CBD-treated colorectal cancer cells, which is regulated by the complex interactions of p53wt and Hsp70.
Collapse
Affiliation(s)
- Fei Wang
- Radiation Immuno-Oncology Project Group, TranslaTUM-Central Institute for Translational Cancer Research, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Ali Bashiri Dezfouli
- Radiation Immuno-Oncology Project Group, TranslaTUM-Central Institute for Translational Cancer Research, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Mohammad Khosravi
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Wolfgang Sievert
- Radiation Immuno-Oncology Project Group, TranslaTUM-Central Institute for Translational Cancer Research, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stefan Stangl
- Radiation Immuno-Oncology Project Group, TranslaTUM-Central Institute for Translational Cancer Research, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Melissa Schwab
- Radiation Immuno-Oncology Project Group, TranslaTUM-Central Institute for Translational Cancer Research, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Zhiyuan Wu
- Radiation Immuno-Oncology Project Group, TranslaTUM-Central Institute for Translational Cancer Research, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Katja Steiger
- Institute for General Pathology and Pathological Anatomy, Technische Universität München, Munich, Germany
| | - Hu Ma
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Gabriele Multhoff
- Radiation Immuno-Oncology Project Group, TranslaTUM-Central Institute for Translational Cancer Research, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
27
|
Tao H, Liu Q, Zeng A, Song L. Unlocking the potential of Mesenchymal stem cells in liver Fibrosis: Insights into the impact of autophagy and aging. Int Immunopharmacol 2023; 121:110497. [PMID: 37329808 DOI: 10.1016/j.intimp.2023.110497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/30/2023] [Accepted: 06/11/2023] [Indexed: 06/19/2023]
Abstract
Liver fibrosis is a chronic liver disease characterized by extracellular matrix protein accumulation, potentially leading to cirrhosis or hepatocellular carcinoma. Liver cell damage, inflammatory responses, and apoptosis due to various reasons induce liver fibrosis. Although several treatments, such as antiviral drugs and immunosuppressive therapies, are available for liver fibrosis, they only provide limited efficacy. Mesenchymal stem cells (MSCs) have become a promising therapeutic option for liver fibrosis, because they can modulate the immune response, promote liver regeneration, and inhibit the activation of hepatic stellate cells that contribute to disease development. Recent studies have suggested that the mechanisms through which MSCs gain their antifibrotic properties involve autophagy and senescence. Autophagy, a vital cellular self-degradation process, is critical for maintaining homeostasis and protecting against nutritional, metabolic, and infection-mediated stress. The therapeutic effects of MSCs depend on appropriate autophagy levels, which can improve the fibrotic process. Nonetheless, aging-related autophagic damage is associated with a decline in MSC number and function, which play a crucial role in liver fibrosis development. This review summarizes the recent advancements in the understanding of autophagy and senescence in MSC-based liver fibrosis treatment, presenting the key findings from relevant studies.
Collapse
Affiliation(s)
- Hongxia Tao
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Qianglin Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Anqi Zeng
- Institute of Translational Pharmacology and Clinical Application, Sichuan Academy of Chinese Medical Science, Chengdu, Sichuan 610041, PR China.
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China.
| |
Collapse
|
28
|
Chen X, Qin W, Wang L, Jin Y, Tu J, Yuan X. Autophagy gene Atg7 regulates the development of radiation-induced skin injury and fibrosis of skin. Skin Res Technol 2023; 29:e13337. [PMID: 37357660 PMCID: PMC10230157 DOI: 10.1111/srt.13337] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/17/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND Radiation-induced skin injury, which may progress to fibrosis, is a severe side effect of radiotherapy in patients with cancer. However, currently, there is a lack of preventive or curative treatments for this injury. Meanwhile, the mechanisms underlying this injury remain poorly understood. Here, we elucidated whether autophagy is essential for the development of radiation-induced skin injury and the potential molecular pathways and mechanisms involved. METHODS AND RESULTS We used the myofibroblast-specific Atg7 knockout (namely, conditional Atg7 knockout) mice irradiated with a single electron beam irradiation dose of 30 Gy. Vaseline-based 0.2% rapamycin ointment was topically applied once daily from the day of irradiation for 30 days. On day 30 post irradiation, skin tissues were harvested for further analysis. In vitro, human foreskin fibroblast cells were treated with rapamycin (100 nM) for 24 h and pretreated with 3-MA (5 mM) for 12 h. Macroscopic skin manifestations, histological changes, and fibrosis markers at the mRNA and protein expression levels were measured. Post irradiation, the myofibroblast-specific autophagy-deficient (Atg7Flox/Flox Cre+ ) mice had increased fibrosis marker (COL1A1, CTGF, TGF-β1, and α-SMA) levels in the irradiated area and had more severe macroscopic skin manifestations than the control group (Atg7Flox/Flox Cre- ) mice. Treatment with an autophagy agonist rapamycin attenuated macroscopic skin injury scores and skin fibrosis marker levels with decreased epidermal thickness and dermal collagen deposition in Atg7Flox/Flox Cre+ mice compared with the vehicle control. Moreover, in vitro experiment results were consistent with the in vivo results. Together with studies at the molecular level, we found that these changes involved the Akt/mTOR pathway. In addition, this phenomenon might also relate to Nrf2-autophagy signaling pathway under oxidative stress conditions. CONCLUSION In conclusion, Atg7 and autophagy-related mechanisms confer radioprotection, and reactivation of the autophagy process can be a novel therapeutic strategy to reduce and prevent the occurrence of radiodermatitis, particularly skin fibrosis, in patients with cancer.
Collapse
Affiliation(s)
- Xinyi Chen
- Department of OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Wan Qin
- Department of OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Lu Wang
- Department of OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Yu Jin
- Department of OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Jingyao Tu
- Department of OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Xianglin Yuan
- Department of OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
29
|
Guo HY, Yu XN, Zhang GC, Yin J, Dong L, Liu TT, Qian ZP, Zhu JM, Shen XZ. Increased expression of autophagy-related gene 5 indicates poor prognosis in patients with hepatocellular carcinoma. J Dig Dis 2023; 24:399-407. [PMID: 37596850 DOI: 10.1111/1751-2980.13220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 08/20/2023]
Abstract
OBJECTIVES As a critical component of the autophagic machinery, autophagy-related gene 5 (ATG5) is essential for autophagosome formation. Autophagy participates in the transformation and progression of various malignant tumors, but the role of ATG5 in hepatocellular carcinoma (HCC) remains to be illustrated. In this study we aimed to investigate the prognostic significance of ATG5 in HCC. METHODS ATG5 expression was evaluated in 89 pairs of HCC tissues and adjacent non-tumor tissues. The relationship between ATG5 expression and patients' clinicopathological characteristics and prognosis were evaluated. Moreover, subgroup analyses were performed regarding patients' age and number of tumors. Nomograms estimating overall survival (OS) and disease-free survival (DFS) were conducted. RESULTS ATG5 expression was increased in HCC specimens rather than adjacent non-tumor tissues. The upregulated ATG5 expression was positively associated with serum α-fetoprotein (AFP) level. Moreover, cases with a strong ATG5 expression had a poorer disease-free survival (DFS) and overall survival (OS) than those with a weak ATG5 expression. Multivariate analysis showed that a strong expression of ATG5 was related to a poor OS and DFS in patients with HCC. Further analysis indicated that cases with a higher ATG5 expression had a poorer OS and DFS in the young patients (≤55 years) and those with solitary tumor. The nomogram suggested that there was a coherence between nomogram prediction and the actual situation of patient survival related to ATG5. CONCLUSION ATG5 promotes tumor progression in HCC, making it a potential biomarker in the diagnosis and a therapeutic target of HCC.
Collapse
Affiliation(s)
- Hong Ying Guo
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Severe Hepatitis, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiang Nan Yu
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guang Cong Zhang
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Yin
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ling Dong
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tao Tao Liu
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhi Ping Qian
- Department of Severe Hepatitis, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Ji Min Zhu
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xi Zhong Shen
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
30
|
He Q, Cai Y, Huang J, He X, Han W, Chen W. Impairment of autophagy promotes human conjunctival fibrosis and pterygium occurrence via enhancing the SQSTM1-NF-κB signaling pathway. J Mol Cell Biol 2023; 15:mjad009. [PMID: 36792067 PMCID: PMC10320757 DOI: 10.1093/jmcb/mjad009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/03/2022] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Pterygium is a common ocular disease with a high recurrence rate, characterized by hyperplasia of subconjunctival fibrovascular tissue. Autophagy, an important process to maintain cellular homeostasis, participates in the pathogenic fibrosis of different organs. However, the exact role of autophagy in pterygium pathogenesis remains unknown. Here, we found that autophagic activity was decreased in human pterygium tissues compared with adjacent normal conjunctival tissues. The in vitro model of fibrosis was successfully established using human primary conjunctival fibroblasts (ConFB) treated with transforming growth factor-β1 (TGF-β1), evidenced by increased fibrotic level and strong proliferative and invasive capabilities. The autophagic activity was suppressed during TGF-β1- or ultraviolet-induced fibrosis of ConFB. Activating autophagy dramatically retarded the fibrotic progress of ConFB, while blocking autophagy exacerbated this process. Furthermore, SQSTM1, the main cargo receptor of selective autophagy, was found to significantly promote the fibrosis of ConFB through activating the PKCι-NF-κB signaling pathway. Knockdown of SQSTM1, PKCι, or p65 in ConFB delayed TGF-β1-induced fibrosis. Overexpression of SQSTM1 drastically abrogated the inhibitory effect of rapamycin or serum starvation on TGF-β1-induced fibrosis. Collectively, our data suggested that autophagy impairment of human ConFB facilitates fibrosis via activating the SQSTM1-PKCι-NF-κB signaling cascades. This work was contributory to elucidating the mechanism of autophagy underlying pterygium occurrence.
Collapse
Affiliation(s)
- Qin He
- Department of Ophthalmology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yiting Cai
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jiani Huang
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Xiaoying He
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Wei Han
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Wei Chen
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
31
|
Yum YJ, Yoo J, Bang K, Jun JE, Jeong IK, Ahn KJ, Chung HY, Hwang YC. Peroxisome proliferator-activated receptor γ activation ameliorates liver fibrosis-differential action of transcription factor EB and autophagy on hepatocytes and stellate cells. Hepatol Commun 2023; 7:e0154. [PMID: 37204406 PMCID: PMC10538880 DOI: 10.1097/hc9.0000000000000154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/07/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Peroxisome proliferator-activated receptor γ (PPARγ) activation suppresses HSC activation and liver fibrosis. Moreover, autophagy is implicated in hepatic lipid metabolism. Here, we determined whether PPARγ activation ameliorates HSC activation by downregulating transcription factor EB (TFEB)-mediated autophagy. METHODS AND RESULTS Atg7 or Tfeb knockdown in human HSC line LX-2 cells downregulated the expression of fibrogenic markers including α smooth muscle actin, glial fibrillary acidic protein, and collagen type 1. Conversely, Atg7 or Tfeb overexpression upregulated fibrogenic marker expression. Rosiglitazone (RGZ)-mediated PPARγ activation and/or overexpression in LX-2 cells and primary HSCs decreased autophagy, as indicated by LC3B conversion, total and nuclear-TFEB contents, mRFP-LC3 and BODIPY 493/503 colocalization, and GFP-LC3 and LysoTracker colocalization. RGZ treatment decreased liver fat content, liver enzyme levels, and fibrogenic marker expression in high-fat high-cholesterol diet-fed mice. Electron microscopy showed that RGZ treatment restored the high-fat high-cholesterol diet-mediated lipid droplet decrease and autophagic vesicle induction in primary HSCs and liver tissues. However, TFEB overexpression in LX-2 cells offset the aforementioned effects of RGZ on autophagic flux, lipid droplets, and fibrogenic marker expression. CONCLUSIONS Activation of PPARγ with RGZ ameliorated liver fibrosis and downregulation of TFEB and autophagy in HSCs may be important for the antifibrotic effects of PPARγ activation.
Collapse
|
32
|
Abeliovich H, Debnath J, Ding WX, Jackson WT, Kim DH, Klionsky DJ, Ktistakis N, Margeta M, Münz C, Petersen M, Sadoshima J, Vergne I. Where is the field of autophagy research heading? Autophagy 2023; 19:1049-1054. [PMID: 36628432 PMCID: PMC10012950 DOI: 10.1080/15548627.2023.2166301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In this editors' corner, the section editors were asked to indicate where they see the autophagy field heading and to suggest what they consider to be key unanswered questions in their specialty area.
Collapse
Affiliation(s)
- Hagai Abeliovich
- Department of Biochemistry, Food Science and Nutrition, Hebrew University of Jerusalem, Rehovot, Israel
| | - Jayanta Debnath
- Department of Pathology, USCF School of Medicine, San Francisco, CA, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - William T. Jackson
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Do-Hyung Kim
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minn, USA
| | | | | | - Marta Margeta
- Department of Pathology, USCF School of Medicine, San Francisco, CA, USA
| | - Christian Münz
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Morten Petersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Isabelle Vergne
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, University of Toulouse III-Paul Sabatier, Toulouse, France
| |
Collapse
|
33
|
Decreased Paneth cell α-defensins promote fibrosis in a choline-deficient L-amino acid-defined high-fat diet-induced mouse model of nonalcoholic steatohepatitis via disrupting intestinal microbiota. Sci Rep 2023; 13:3953. [PMID: 36894646 PMCID: PMC9998432 DOI: 10.1038/s41598-023-30997-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a chronic liver disease characterized by fibrosis that develops from fatty liver. Disruption of intestinal microbiota homeostasis, dysbiosis, is associated with fibrosis development in NASH. An antimicrobial peptide α-defensin secreted by Paneth cells in the small intestine is known to regulate composition of the intestinal microbiota. However, involvement of α-defensin in NASH remains unknown. Here, we show that in diet-induced NASH model mice, decrease of fecal α-defensin along with dysbiosis occurs before NASH onset. When α-defensin levels in the intestinal lumen are restored by intravenous administration of R-Spondin1 to induce Paneth cell regeneration or by oral administration of α-defensins, liver fibrosis is ameliorated with dissolving dysbiosis. Furthermore, R-Spondin1 and α-defensin improved liver pathologies together with different features in the intestinal microbiota. These results indicate that decreased α-defensin secretion induces liver fibrosis through dysbiosis, further suggesting Paneth cell α-defensin as a potential therapeutic target for NASH.
Collapse
|
34
|
Wu Y, Tan HWS, Lin JY, Shen HM, Wang H, Lu G. Molecular mechanisms of autophagy and implications in liver diseases. LIVER RESEARCH 2023; 7:56-70. [PMID: 39959698 PMCID: PMC11792062 DOI: 10.1016/j.livres.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/03/2022] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
Autophagy is a highly conserved process in which cytosolic contents are degraded by the lysosome, which plays an important role in energy and nutrient balance, and protein or organelle quality control. The liver is the most important organ for metabolism. Studies to date have revealed a significant role of autophagy in the maintenance of liver homeostasis under basal and stressed conditions, and the impairment of autophagy has been closely linked to various liver diseases. Therefore, a comprehensive understanding of the roles of autophagy in liver diseases may help in the development of therapeutic strategies via targeting autophagy. In this review, we will summarize the latest understanding of the molecular mechanisms of autophagy and systematically discuss its implications in various liver diseases, including alcohol-related liver disease, non-alcoholic fatty liver disease, viral hepatitis, hepatocellular carcinoma, and acetaminophen-induced liver injury.
Collapse
Affiliation(s)
- Yuankai Wu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hayden Weng Siong Tan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jin-Yi Lin
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Han-Ming Shen
- Department of Biomedical Sciences, Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Haihe Wang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Guang Lu
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
35
|
Impaired hepatic autophagy exacerbates hepatotoxin induced liver injury. Cell Death Discov 2023; 9:71. [PMID: 36810855 PMCID: PMC9944334 DOI: 10.1038/s41420-023-01368-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Hepatotoxins activate the hepatic survival pathway, but it is unclear whether impaired survival pathways contribute to liver injury caused by hepatotoxins. We investigated the role of hepatic autophagy, a cellular survival pathway, in cholestatic liver injury driven by a hepatotoxin. Here we demonstrate that hepatotoxin contained DDC diet impaired autophagic flux, resulting in the accumulation of p62-Ub-intrahyaline bodies (IHBs) but not the Mallory Denk-Bodies (MDBs). An impaired autophagic flux was associated with a deregulated hepatic protein-chaperonin system and significant decline in Rab family proteins. Additionally, p62-Ub-IHB accumulation activated the NRF2 pathway rather than the proteostasis-related ER stress signaling pathway and suppressed the FXR nuclear receptor. Moreover, we demonstrate that heterozygous deletion of Atg7, a key autophagy gene, aggravated the IHB accumulation and cholestatic liver injury. Conclusion: Impaired autophagy exacerbates hepatotoxin-induced cholestatic liver injury. The promotion of autophagy may represent a new therapeutic approach for hepatotoxin-induced liver damage.
Collapse
|
36
|
Ding Q, Pi A, Hao L, Xu T, Zhu Q, Shu L, Yu X, Wang W, Si C, Li S. Genistein Protects against Acetaldehyde-Induced Oxidative Stress and Hepatocyte Injury in Chronic Alcohol-Fed Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1930-1943. [PMID: 36653166 DOI: 10.1021/acs.jafc.2c05747] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Alcohol-related liver disease (ALD) is one of the most prevalent forms of liver disease in the world. Acetaldehyde, an intermediate product of alcohol catabolism, is a cause of liver injury caused by alcohol. This study was designed to evaluate the protective role and mechanism(s) of genistein against acetaldehyde-induced liver injury in the pathological process of ALD. We found that genistein administration significantly ameliorated alcohol-induced hepatic steatosis, injury, and inflammation in mice. Genistein supplementation markedly reversed hepatic oxidative stress, endoplasmic reticulum stress, mitochondrial dysfunction, and hepatocellular apoptosis in both alcohol-fed mice liver and acetaldehyde-treated hepatocytes. The mechanistic experiments revealed that the restoration of genistein administration rescued heme oxygenase-1 (HO-1) reduction at both transcriptional and protein levels in either alcohol-fed mice liver or acetaldehyde-treated hepatocytes, and the beneficial aspects derived from genistein were abolished in antioxidase heme oxygenase-1 (HO-1)-deficient hepatocytes. Moreover, we confirmed that genistein administration-restored hepatic nuclear factor erythroid 2-related factor 2 (NRF2), a key transcriptional regulator of HO-1, was involved in the protective role of genistein in ALD. This study demonstrated that genistein ameliorated acetaldehyde-induced oxidative stress and liver injury by restoring the hepatic NRF2-HO-1 signaling pathway in response to chronic alcohol consumption. Therefore, genistein may serve as a potential therapeutic choice for the treatment of ALD.
Collapse
Affiliation(s)
- Qinchao Ding
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, P. R. China
- College of Animal Science, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China
| | - Aiwen Pi
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, P. R. China
| | - Liuyi Hao
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, P. R. China
| | - Tiantian Xu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, P. R. China
| | - Qin Zhu
- Department of Clinical Nutrition, Affiliated Zhejiang Hospital, School of Medicine, Zhejiang University, Hangzhou 310013, Zhejiang, P. R. China
| | - Long Shu
- Department of Clinical Nutrition, Affiliated Zhejiang Hospital, School of Medicine, Zhejiang University, Hangzhou 310013, Zhejiang, P. R. China
| | - Xiaolong Yu
- Department of Clinical Nutrition, Affiliated Zhejiang Hospital, School of Medicine, Zhejiang University, Hangzhou 310013, Zhejiang, P. R. China
| | - Weiguang Wang
- Department of Clinical Nutrition, Affiliated Zhejiang Hospital, School of Medicine, Zhejiang University, Hangzhou 310013, Zhejiang, P. R. China
| | - Caijuan Si
- Department of Clinical Nutrition, Affiliated Zhejiang Hospital, School of Medicine, Zhejiang University, Hangzhou 310013, Zhejiang, P. R. China
| | - Songtao Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, P. R. China
- Department of Clinical Nutrition, Affiliated Zhejiang Hospital, School of Medicine, Zhejiang University, Hangzhou 310013, Zhejiang, P. R. China
| |
Collapse
|
37
|
Yang H, Ping X, Cui Y, Zheng S, Shentu X. Role of Rapamycin and 3-MA in oxidative damage of HLECs caused by two doses of UVB radiation. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2023; 3:15-22. [PMID: 37846426 PMCID: PMC10577839 DOI: 10.1016/j.aopr.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/15/2022] [Accepted: 09/16/2022] [Indexed: 10/18/2023]
Abstract
Background This study compared the role of autophagy regulators Rapamycin and 3-MA in oxidative damage and apoptosis of human lens epithelial cells (HLECs) caused by two doses of Ultraviolet Radiation B (UVB). Methods HLECs were irradiated with UVB, and two doses of UVB damage models were constructed. After treatment with autophagy regulators, cell damage tests such as CCK-8, LDH activity, and Ros detection were performed. Western blotting was used to detect the levels of autophagy-related proteins and apoptosis-related proteins. Quantitative real-time PCR (RT-qPCR) was used to detect the mRNA leve of secondary antioxidant enzymes.Flow cytometry was used to examine cell viability and apoptosis. Finally, the proportion of autophagy and apoptosis was observed by electron microscope. Results Autophagy inhibitor 3-MA promoted oxidative damage and apoptosis of HLECs at low doses of UVB (5 mJ/cm2), which corresponds to 1.3 h of exposure to sunlight in human eyes. Under the high dose of UVB (50mJ/cm2), which is equivalent to 13 h of exposure to sunlight in human eyes, the autophagy inducer Rapamycin caused more extensive oxidative damage and apoptosis of HLECs. 3-MA was able to reduce this damage, indicating that moderate autophagy is necessary for HLECs to cope with mild oxidative stress. For high dose UVB-induced oxidative stress, the use of 3-MA inhibiting autophagy is more beneficial to reduce cell damage and apoptosis. The mechanisms include degradation of damaged organelles, regulation of the expression of antioxidant enzymes HO-1, NQO1, GCS and regulation of apoptosis-related proteins. Conclusions Autophagy played different roles in HLECs oxidative stress induced by two doses of UVB. It provides new ideas for reducing oxidative damage and apoptosis of HLECs to prevent or delay the progression of age-related cataract (ARC).
Collapse
Affiliation(s)
- Hao Yang
- Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang University School of Medicine; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, China
| | - Xiyuan Ping
- Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang University School of Medicine; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, China
| | - Yilei Cui
- Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang University School of Medicine; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, China
| | - Sifan Zheng
- GKT School of Medical Education, King's College London, London, UK
| | - Xingchao Shentu
- Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang University School of Medicine; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, China
| |
Collapse
|
38
|
Gao H, Zhong Y, Zhou L, Lin S, Hou X, Ding Z, Li Y, Yao Q, Cao H, Zou X, Chen D, Bai X, Xiao G. Kindlin-2 inhibits TNF/NF-κB-Caspase 8 pathway in hepatocytes to maintain liver development and function. eLife 2023; 12:e81792. [PMID: 36622102 PMCID: PMC9848388 DOI: 10.7554/elife.81792] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/08/2023] [Indexed: 01/10/2023] Open
Abstract
Inflammatory liver diseases are a major cause of morbidity and mortality worldwide; however, underlying mechanisms are incompletely understood. Here we show that deleting the focal adhesion protein Kindlin-2 expression in hepatocytes using the Alb-Cre transgenic mice causes a severe inflammation, resulting in premature death. Kindlin-2 loss accelerates hepatocyte apoptosis with subsequent compensatory cell proliferation and accumulation of the collagenous extracellular matrix, leading to massive liver fibrosis and dysfunction. Mechanistically, Kindlin-2 loss abnormally activates the tumor necrosis factor (TNF) pathway. Blocking activation of the TNF signaling pathway by deleting TNF receptor or deletion of Caspase 8 expression in hepatocytes essentially restores liver function and prevents premature death caused by Kindlin-2 loss. Finally, of translational significance, adeno-associated virus mediated overexpression of Kindlin-2 in hepatocytes attenuates the D-galactosamine and lipopolysaccharide-induced liver injury and death in mice. Collectively, we establish that Kindlin-2 acts as a novel intrinsic inhibitor of the TNF pathway to maintain liver homeostasis and may define a useful therapeutic target for liver diseases.
Collapse
Affiliation(s)
- Huanqing Gao
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and TechnologyShenzhenChina
| | - Yiming Zhong
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and TechnologyShenzhenChina
| | - Liang Zhou
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen UniversityGuangzhouChina
| | - Sixiong Lin
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and TechnologyShenzhenChina
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhouChina
| | - Xiaoting Hou
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and TechnologyShenzhenChina
| | - Zhen Ding
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and TechnologyShenzhenChina
| | - Yan Li
- Department of Biology, Southern University of Science and TechnologyShenzhenChina
| | - Qing Yao
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and TechnologyShenzhenChina
| | - Huiling Cao
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and TechnologyShenzhenChina
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhouChina
| | - Di Chen
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Xiaochun Bai
- Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical UniversityGuangzhouChina
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and TechnologyShenzhenChina
| |
Collapse
|
39
|
Dodson M, Chen J, Shakya A, Anandhan A, Zhang DD. The dark side of NRF2 in arsenic carcinogenesis. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 96:47-69. [PMID: 36858779 DOI: 10.1016/bs.apha.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Arsenic is an environmental toxicant that significantly enhances the risk of developing disease, including several cancers. While the epidemiological evidence supporting increased cancer risk due to chronic arsenic exposure is strong, therapies tailored to treat exposed populations are lacking. This can be accredited in large part to the chronic nature and pleiotropic pathological effects associated with prolonged arsenic exposure. Despite this fact, several putative mediators of arsenic promotion of cancer have been identified. Among these, the critical transcription factor NRF2 has been shown to be a key mediator of arsenic's pro-carcinogenic effects. Importantly, the dependence of arsenic-transformed cancer cells on NRF2 upregulation exposes a targetable liability that could be utilized to treat arsenic-promoted cancers. In this chapter, we briefly introduce the "light" vs "dark" side of the NRF2 pathway. We then give a brief overview of arsenic metabolism, and discuss the epidemiological and experimental evidence that support arsenic promotion of different cancers, with a specific emphasis on mechanisms mediated by chronic, non-canonical activation of NRF2 (i.e., the "dark" side). Finally, we briefly highlight how the non-canonical NRF2 pathway plays a role in other arsenic-promoted diseases, as well as research directions that warrant further investigation.
Collapse
Affiliation(s)
- Matthew Dodson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States
| | - Jinjing Chen
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States
| | - Aryatara Shakya
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States
| | - Annadurai Anandhan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States; Arizona Cancer Center, University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
40
|
Chen A, Ding WX, Ni HM. Scramblases as Regulators of Autophagy and Lipid Homeostasis: Implications for NAFLD. AUTOPHAGY REPORTS 2022; 1:143-160. [PMID: 35509327 PMCID: PMC9066413 DOI: 10.1080/27694127.2022.2055724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Equilibration of phospholipids between the two monolayers of the lipid bilayer of cellular membranes is mediated by scramblases acting as phospholipid shuttling proteins that are critical for cellular function, particularly during inter-organelle contact. Recent work has identified several protein scramblases, including TMEM41B, VMP1 and ATG9 that are critical in autophagy. More recently, ATG9, TMEM41B, and VMP1 have also been discovered to be important regulators of cellular lipid homeostasis. In vivo mouse models involving ablation of TMEM41B in liver have shown that knockout of these proteins can lead to rapid development of non-alcoholic steatohepatitis (NASH) and systemic dyslipidemia, though this has not been explored yet with ATG9. The resulting phenotype is likely due to the combined effects of a severe lipid secretion defect caused by stalled neutral lipids export from the endoplasmic reticulum (ER) membrane bilayer coupled with increased lipogenesis. Here we briefly discuss recent exciting findings on the topic of scramblases in autophagy, their relevance to human non-alcoholic fatty liver disease (NAFLD)/NASH, as well as future directions in this research.
Collapse
Affiliation(s)
- Allen Chen
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Internal Medicine, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
41
|
Mainz L, Sarhan MAFE, Roth S, Sauer U, Kalogirou C, Eckstein M, Gerhard-Hartmann E, Seibert HD, Voelker HU, Geppert C, Rosenwald A, Eilers M, Schulze A, Diefenbacher M, Rosenfeldt MT. Acute systemic knockdown of Atg7 is lethal and causes pancreatic destruction in shRNA transgenic mice. Autophagy 2022; 18:2880-2893. [PMID: 35343375 PMCID: PMC9673934 DOI: 10.1080/15548627.2022.2052588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The notion that macroautophagy/autophagy is a potentially attractive therapeutic target for a variety of diseases, including cancer, largely stems from pre-clinical mouse studies. Most of these examine the effects of irreversible and organ confined autophagy deletion using site specific Cre-loxP recombination of the essential autophagy regulating genes Atg7 or Atg5. Model systems with the ability to impair autophagy systemically and reversibly at all disease stages would allow a more realistic approach to evaluate the consequences of authophagy inhibition as a therapeutic concept and its potential side effects. Here, we present shRNA transgenic mice that via doxycycline (DOX) regulable expression of a highly efficient miR30-E-based shRNA enabled knockdown of Atg7 simultaneously in the majority of organs, with the brain and spleen being noteable exceptions. Induced animals deteriorated rapidly and experienced profound destruction of the exocrine pancreas, severe hypoglycemia and depletion of hepatic glycogen storages. Cessation of DOX application restored apparent health, glucose homeostasis and pancreatic integrity. In a similar Atg5 knockdown model we neither observed loss of pancreatic integrity nor diminished survival after DOX treatment, but identified histological changes consistent with steatohepatitis and hepatic fibrosis in the recovery period after termination of DOX. Regulable Atg7-shRNA mice are valuable tools that will enable further studies on the role of autophagy impairment at various disease stages and thereby help to evaluate the consequences of acute autophagy inhibition as a therapeutic concept.Abbreviations: ACTB: actin, beta; AMY: amylase complex; ATG4B: autophagy related 4B, cysteine peptidase; ATG5: autophagy related 5; ATG7: autophagy related 7; Cag: CMV early enhancer/chicken ACTB promoter; Col1a1: collagen, type I, alpha 1; Cre: cre recombinase; DOX: doxycycline; GCG: glucagon; GFP: green fluorescent protein; INS: insulin; LC3: microtubule-associated protein 1 light chain 3; miR30-E: optimized microRNA backbone; NAFLD: non-alcoholic fatty liver disease; NASH: non-alcoholic steatohepatitis; PNLIP: pancreatic lipase; rtTA: reverse tetracycline transactivator protein; SQSTM1/p62: sequestome 1; TRE: tetracycline responsive element.
Collapse
Affiliation(s)
- Laura Mainz
- Institute of Pathology, Julius-Maximilians-University of Würzburg, Würzburg, Germany,Comprehensive Cancer Center Mainfranke, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Mohamed A. F. E. Sarhan
- Institute of Pathology, Julius-Maximilians-University of Würzburg, Würzburg, Germany,Comprehensive Cancer Center Mainfranke, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Sabine Roth
- Institute of Pathology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Ursula Sauer
- Institute of Pathology, Julius-Maximilians-University of Würzburg, Würzburg, Germany,Comprehensive Cancer Center Mainfranke, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Charis Kalogirou
- Department of Urology and Pediatric Urology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Markus Eckstein
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Elena Gerhard-Hartmann
- Institute of Pathology, Julius-Maximilians-University of Würzburg, Würzburg, Germany,Comprehensive Cancer Center Mainfranke, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Helen-Desiree Seibert
- Institute of Pathology, Julius-Maximilians-University of Würzburg, Würzburg, Germany,Comprehensive Cancer Center Mainfranke, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Hans-Ulrich Voelker
- Department of Pathology, Leopoldina Medizinisches Versorgungszentrum, Schweinfurt, Germany
| | - Carol Geppert
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Rosenwald
- Institute of Pathology, Julius-Maximilians-University of Würzburg, Würzburg, Germany,Comprehensive Cancer Center Mainfranke, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Martin Eilers
- Biocenter, Department of Biochemistry and Molecular Biology, Julius-Maximilians-University of Würzburg, Germany
| | - Almut Schulze
- Division of Metabolism and Microenvironment, Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), Germany
| | - Markus Diefenbacher
- Biocenter, Department of Biochemistry and Molecular Biology, Julius-Maximilians-University of Würzburg, Germany
| | - Mathias T. Rosenfeldt
- Institute of Pathology, Julius-Maximilians-University of Würzburg, Würzburg, Germany,Comprehensive Cancer Center Mainfranke, Julius-Maximilians-University of Würzburg, Würzburg, Germany,CONTACT Mathias T. Rosenfeldt Institute of Pathology – University of Würzburg, Josef-Schneider-Str. 2,97080Würzburg, Germany
| |
Collapse
|
42
|
Proteome expression profiling of red blood cells during the tumorigenesis of hepatocellular carcinoma. PLoS One 2022; 17:e0276904. [DOI: 10.1371/journal.pone.0276904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 10/14/2022] [Indexed: 11/10/2022] Open
Abstract
The early diagnosis of hepatocellular carcinoma (HCC) has not been clinically elucidated, leading to an increased mortality rate in patients with HCC. HCC is a systemic disease related to disorders of blood homeostasis, and the association between red blood cells (RBCs) and HCC tumorigenesis remains elusive. We performed data-independent acquisition proteomic analyses of 72 clinical RBC samples, including HCC (n = 30), liver cirrhosis (LC, n = 17), and healthy controls (n = 25), and characterized the clinical relevance of RBCs and tumorigenesis in HCC. We observed dynamic changes in RBCs during HCC tumorigenesis, and our findings indicate that, based on the protein expression profiles of RBCs, LC is a developmental stage closely approaching HCC. The expression of hemoglobin (HbA and HbF) in peripheral blood dynamically changed during HCC tumorigenesis, suggesting that immature erythroid cells exist in peripheral blood of HCC patients and that erythropoiesis is influenced by the onset of LC. We also identified the disrupted autophagy pathway in RBCs at the onset of LC, which persisted during HCC tumorigenesis. The oxytocin and GnRH pathways were disrupted and first identified during the development of LC into HCC. Significantly differentially expressed SMIM1, ANXA7, HBA1, and HBE1 during tumorigenesis were verified as promising biomarkers for the early diagnosis of HCC using parallel reaction monitoring technology. This study may enhance the understanding of HCC tumorigenesis from a different point of view and aid the early diagnosis of HCC.
Collapse
|
43
|
Lack of hepatic autophagy promotes severity of liver injury but not steatosis. J Hepatol 2022; 77:1458-1459. [PMID: 35643205 PMCID: PMC10046991 DOI: 10.1016/j.jhep.2022.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 12/20/2022]
|
44
|
Reply to: "Lack of hepatic autophagy promotes severity of liver injury but not steatosis": ATG7 genetic variants behave as fatty liver disease progression modifiers. J Hepatol 2022; 77:1459-1461. [PMID: 35985546 DOI: 10.1016/j.jhep.2022.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 07/28/2022] [Indexed: 12/04/2022]
|
45
|
Wang L, Feng J, Deng Y, Yang Q, Wei Q, Ye D, Rong X, Guo J. CCAAT/Enhancer-Binding Proteins in Fibrosis: Complex Roles Beyond Conventional Understanding. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9891689. [PMID: 36299447 PMCID: PMC9575473 DOI: 10.34133/2022/9891689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/18/2022] [Indexed: 07/29/2023]
Abstract
CCAAT/enhancer-binding proteins (C/EBPs) are a family of at least six identified transcription factors that contain a highly conserved basic leucine zipper domain and interact selectively with duplex DNA to regulate target gene expression. C/EBPs play important roles in various physiological processes, and their abnormal function can lead to various diseases. Recently, accumulating evidence has demonstrated that aberrant C/EBP expression or activity is closely associated with the onset and progression of fibrosis in several organs and tissues. During fibrosis, various C/EBPs can exert distinct functions in the same organ, while the same C/EBP can exert distinct functions in different organs. Modulating C/EBP expression or activity could regulate various molecular processes to alleviate fibrosis in multiple organs; therefore, novel C/EBPs-based therapeutic methods for treating fibrosis have attracted considerable attention. In this review, we will explore the features of C/EBPs and their critical functions in fibrosis in order to highlight new avenues for the development of novel therapies targeting C/EBPs.
Collapse
Affiliation(s)
- Lexun Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiaojiao Feng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanyue Deng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qianqian Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Quxing Wei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dewei Ye
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xianglu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
46
|
Nrf2 Pathway and Autophagy Crosstalk: New Insights into Therapeutic Strategies for Ischemic Cerebral Vascular Diseases. Antioxidants (Basel) 2022; 11:antiox11091747. [PMID: 36139821 PMCID: PMC9495910 DOI: 10.3390/antiox11091747] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Cerebrovascular disease is highly prevalent and has a complex etiology and variable pathophysiological activities. It thus poses a serious threat to human life and health. Currently, pathophysiological research on cerebrovascular diseases is gradually improving, and oxidative stress and autophagy have been identified as important pathophysiological activities that are gradually attracting increasing attention. Many studies have found some effects of oxidative stress and autophagy on cerebrovascular diseases, and studies on the crosstalk between the two in cerebrovascular diseases have made modest progress. However, further, more detailed studies are needed to determine the specific mechanisms. This review discusses nuclear factor erythroid 2-related factor 2 (Nrf2) molecules, which are closely associated with oxidative stress and autophagy, and the crosstalk between them, with the aim of providing clues for studying the two important pathophysiological changes and their crosstalk in cerebrovascular diseases as well as exploring new target treatments.
Collapse
|
47
|
Jiang X, Fulte S, Deng F, Chen S, Xie Y, Chao X, He XC, Zhang Y, Li T, Li F, McCoin C, Morris EM, Thyfault J, Liu W, Li L, Davidson NO, Ding WX, Ni HM. Lack of VMP1 impairs hepatic lipoprotein secretion and promotes non-alcoholic steatohepatitis. J Hepatol 2022; 77:619-631. [PMID: 35452693 PMCID: PMC9449865 DOI: 10.1016/j.jhep.2022.04.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Vacuole membrane protein 1 (VMP1) is an endoplasmic reticulum (ER) transmembrane protein that regulates the formation of autophagosomes and lipid droplets. Recent evidence suggests that VMP1 plays a critical role in lipoprotein secretion in zebra fish and cultured cells. However, the pathophysiological roles and mechanisms by which VMP1 regulates lipoprotein secretion and lipid accumulation in non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are unknown. METHODS Liver-specific and hepatocyte-specific Vmp1 knockout mice as well as Vmp1 knock-in mice were generated by crossing Vmp1flox or Vmp1KI mice with albumin-Cre mice or by injecting AAV8-TBG-cre, respectively. Lipid and energy metabolism in these mice were characterized by metabolomic and transcriptome analyses. Mice with hepatic overexpression of VMP1 who were fed a NASH diet were also characterized. RESULTS Hepatocyte-specific deletion of Vmp1 severely impaired VLDL secretion resulting in massive hepatic steatosis, hepatocyte death, inflammation and fibrosis, which are hallmarks of NASH. Mechanistically, loss of Vmp1 led to decreased hepatic levels of phosphatidylcholine and phosphatidylethanolamine as well as to changes in phospholipid composition. Deletion of Vmp1 in mouse liver also led to the accumulation of neutral lipids in the ER bilayer and impaired mitochondrial beta-oxidation. Overexpression of VMP1 ameliorated steatosis in diet-induced NASH by improving VLDL secretion. Importantly, we also showed that decreased liver VMP1 is associated with NAFLD/NASH in humans. CONCLUSIONS Our results provide novel insights on the role of VMP1 in regulating hepatic phospholipid synthesis and lipoprotein secretion in the pathogenesis of NAFLD/NASH. LAY SUMMARY Non-alcoholic fatty liver disease and its more severe form, non-alcoholic steatohepatitis, are associated with a build-up of fat in the liver (steatosis). However, the exact mechanisms that underly steatosis in patients are not completely understood. Herein, the authors identified that the lack of a protein called VMP1 impairs the secretion and metabolism of fats in the liver and could therefore contribute to the development and progression of non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Xiaoxiao Jiang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Sam Fulte
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Fengyan Deng
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Shiyuan Chen
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Yan Xie
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaojuan Chao
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Xi C He
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Yuxia Zhang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Tiangang Li
- Department of Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Feng Li
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Colin McCoin
- Department of Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - E Matthew Morris
- Department of Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - John Thyfault
- Department of Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Wanqing Liu
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA
| | - Linheng Li
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Pathology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Nicholas O Davidson
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
48
|
Morishita H, Komatsu M. Role of autophagy in liver diseases. CURRENT OPINION IN PHYSIOLOGY 2022. [DOI: 10.1016/j.cophys.2022.100594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Increased Levels of Phosphorylated ERK Induce CTGF Expression in Autophagy-Deficient Mouse Hepatocytes. Cells 2022; 11:cells11172704. [PMID: 36078110 PMCID: PMC9454551 DOI: 10.3390/cells11172704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Autophagy performs essential cell functions in the liver through an intracellular lysosomal degradation process. Several studies have reported that autophagy deficiency can lead to liver injury, including hepatic fibrosis; however, the mechanisms underlying the relationship between autophagy deficiency and liver pathology are unclear. In this study, we examined the expression levels of fibrosis-associated genes in hepatocyte-specific ATG7-deficient mice. The expression levels of the connective tissue growth factor (CTGF) and phosphorylated ERK (phospho-ERK) proteins were increased significantly in primary hepatocytes isolated from hepatocyte-specific ATG7-deficient mice compared to those isolated from control mice. In addition, the inhibition of autophagy in cultured mammalian hepatic AML12 and LX2 cells increased CTGF and phospho-ERK protein levels without altering CTGF mRNA expression. In addition, the autophagy deficiency-mediated enhancement of CTGF expression was attenuated when ERK was inhibited. Overall, these results suggest that the inhibition of autophagy in hepatocytes increases phospho-ERK expression, which in turn increases the expression of CTGF, a biomarker of fibrosis.
Collapse
|
50
|
Liang S, Wu YS, Li DY, Tang JX, Liu HF. Autophagy and Renal Fibrosis. Aging Dis 2022; 13:712-731. [PMID: 35656109 PMCID: PMC9116923 DOI: 10.14336/ad.2021.1027] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/27/2021] [Indexed: 12/11/2022] Open
Abstract
Renal fibrosis is a common process of almost all the chronic kidney diseases progressing to end-stage kidney disease. As a highly conserved lysosomal protein degradation pathway, autophagy is responsible for degrading protein aggregates, damaged organelles, or invading pathogens to maintain intracellular homeostasis. Growing evidence reveals that autophagy is involved in the progression of renal fibrosis, both in the tubulointerstitial compartment and in the glomeruli. Nevertheless, the specific role of autophagy in renal fibrosis has still not been fully understood. Therefore, in this review we will describe the characteristics of autophagy and summarize the recent advances in understanding the functions of autophagy in renal fibrosis. Moreover, the problem existing in this field and the possibility of autophagy as the potential therapeutic target for renal fibrosis have also been discussed.
Collapse
Affiliation(s)
- Shan Liang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Yun-Shan Wu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Dong-Yi Li
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Ji-Xin Tang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
- Shunde Women and Children's Hospital, Guangdong Medical University (Foshan Shunde Maternal and Child Healthcare Hospital), Foshan, Guangdong, China.
| | - Hua-Feng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| |
Collapse
|