1
|
Carbone F, Després JP, Ioannidis JPA, Neeland IJ, Garruti G, Busetto L, Liberale L, Ministrini S, Vilahur G, Schindler TH, Macedo MP, Di Ciaula A, Krawczyk M, Geier A, Baffy G, Faienza MF, Farella I, Santoro N, Frühbeck G, Yárnoz-Esquiroz P, Gómez-Ambrosi J, Chávez-Manzanera E, Vázquez-Velázquez V, Oppert JM, Kiortsis DN, Sbraccia P, Zoccali C, Portincasa P, Montecucco F. Bridging the gap in obesity research: A consensus statement from the European Society for Clinical Investigation. Eur J Clin Invest 2025:e70059. [PMID: 40371883 DOI: 10.1111/eci.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/12/2025] [Indexed: 05/16/2025]
Abstract
BACKGROUND Most forms of obesity are associated with chronic diseases that remain a global public health challenge. AIMS Despite significant advancements in understanding its pathophysiology, effective management of obesity is hindered by the persistence of knowledge gaps in epidemiology, phenotypic heterogeneity and policy implementation. MATERIALS AND METHODS This consensus statement by the European Society for Clinical Investigation identifies eight critical areas requiring urgent attention. Key gaps include insufficient long-term data on obesity trends, the inadequacy of body mass index (BMI) as a sole diagnostic measure, and insufficient recognition of phenotypic diversity in obesity-related cardiometabolic risks. Moreover, the socio-economic drivers of obesity and its transition across phenotypes remain poorly understood. RESULTS The syndemic nature of obesity, exacerbated by globalization and environmental changes, necessitates a holistic approach integrating global frameworks and community-level interventions. This statement advocates for leveraging emerging technologies, such as artificial intelligence, to refine predictive models and address phenotypic variability. It underscores the importance of collaborative efforts among scientists, policymakers, and stakeholders to create tailored interventions and enduring policies. DISCUSSION The consensus highlights the need for harmonizing anthropometric and biochemical markers, fostering inclusive public health narratives and combating stigma associated with obesity. By addressing these gaps, this initiative aims to advance research, improve prevention strategies and optimize care delivery for people living with obesity. CONCLUSION This collaborative effort marks a decisive step towards mitigating the obesity epidemic and its profound impact on global health systems. Ultimately, obesity should be considered as being largely the consequence of a socio-economic model not compatible with optimal human health.
Collapse
Affiliation(s)
- Federico Carbone
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Genoa, Italy
| | - Jean-Pierre Després
- Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, Québec, Canada
- VITAM - Centre de Recherche en santé Durable, Centre intégré Universitaire de santé et de Services Sociaux de la Capitale-Nationale, Québec, Québec, Canada
| | - John P A Ioannidis
- Department of Medicine, Stanford Cardiovascular Institute, and Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, California, USA
- Department of Epidemiology and Population Health, Stanford Cardiovascular Institute, and Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, California, USA
- Department of Biomedical Science, Stanford Cardiovascular Institute, and Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, California, USA
| | - Ian J Neeland
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Cardiovascular Disease, Harrington Heart and Vascular Institute, Cleveland, Ohio, USA
| | - Gabriella Garruti
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro", Bari, Italy
| | - Luca Busetto
- Department of Medicine, University of Padua, Padua, Italy
| | - Luca Liberale
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Genoa, Italy
| | - Stefano Ministrini
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
- Cardiology Department, Luzerner Kantonspital, Lucerne, Switzerland
| | - Gemma Vilahur
- Research Institute, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, IIB-Sant Pau, Barcelona, Spain
- CiberCV, Institute Carlos III, Madrid, Spain
| | - Thomas H Schindler
- Washington University in St. Louis, Mallinckrodt Institute of Radiology, Division of Nuclear Medicine, Cardiovascular Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Maria Paula Macedo
- APDP - Diabetes Portugal, Education and Research Center, Lisbon, Portugal
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS | FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Agostino Di Ciaula
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro", Bari, Italy
| | - Marcin Krawczyk
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Essen, Germany
- Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver Surgery, Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Andreas Geier
- Interdisciplinary Amyloidosis Center of Northern Bavaria, University Hospital of Würzburg, Würzburg, Germany
- Department of Internal Medicine II, Hepatology, University Hospital of Würzburg, Würzburg, Germany
| | - Gyorgy Baffy
- Department of Medicine, VA Boston Healthcare System, Harvard Medical School, Boston, Massachusetts, USA
| | - Maria Felicia Faienza
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro", Bari, Italy
| | - Ilaria Farella
- Department of Medicine and Surgery, LUM University, Casamassima, Italy
| | - Nicola Santoro
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Medicine and Health Sciences, "V. Tiberio" University of Molise, Campobasso, Italy
| | - Gema Frühbeck
- Department of Endocrinology and Nutrition, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- IdiSNA (Instituto de Investigación en la Salud de Navarra), Pamplona, Spain
- CIBERObn (CIBER Fisiopatología de la Obesidad y Nutrición), Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia Yárnoz-Esquiroz
- Department of Endocrinology and Nutrition, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- IdiSNA (Instituto de Investigación en la Salud de Navarra), Pamplona, Spain
- CIBERObn (CIBER Fisiopatología de la Obesidad y Nutrición), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Gómez-Ambrosi
- Department of Endocrinology and Nutrition, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- IdiSNA (Instituto de Investigación en la Salud de Navarra), Pamplona, Spain
- CIBERObn (CIBER Fisiopatología de la Obesidad y Nutrición), Instituto de Salud Carlos III, Madrid, Spain
| | - Emma Chávez-Manzanera
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | - Jean-Michel Oppert
- Department of Nutrition, Pitié-Salpêtrière Hospital (AP-HP), Human Nutrition Research Center Ile-de-France (CRNH IdF), Sorbonne University, Paris, France
| | - Dimitrios N Kiortsis
- Atherothrombosis Research Centre, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Paolo Sbraccia
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carmine Zoccali
- Renal Research Institute, New York, New York, USA
- Institute of Molecular Biology and Genetics (Biogem), Ariano Irpino, Italy
- Associazione Ipertensione Nefrologia Trapianto Renale (IPNET), c/o Nefrologia, Grande Ospedale Metropolitano, Reggio Calabria, Italy
| | - Piero Portincasa
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro", Bari, Italy
| | - Fabrizio Montecucco
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Genoa, Italy
| |
Collapse
|
2
|
Tsakiridis EE, Ahmadi E, Gautam J, Hannah She YR, Fayyazi R, Lally JS, Wang S, Di Pastena F, Valvano CM, Del Rosso D, Biziotis OD, Meyers B, Muti P, Tsakiridis T, Steinberg GR. Salsalate improves the anti-tumor efficacy of lenvatinib in MASH-driven hepatocellular carcinoma. JHEP Rep 2025; 7:101354. [PMID: 40276482 PMCID: PMC12018114 DOI: 10.1016/j.jhepr.2025.101354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 01/23/2025] [Accepted: 02/06/2025] [Indexed: 04/26/2025] Open
Abstract
Background & Aims Metabolic dysfunction-associated steatohepatitis (MASH) is a growing cause of hepatocellular carcinoma (HCC) worldwide. The complex microenvironment of these tumors, characterized by metabolic dysfunction, hypoxia, steatosis, and fibrosis, limits the effectiveness of standard-of-care therapies, such as the multi-tyrosine kinase inhibitor lenvatinib (LEN). Salsalate (SAL), is a rheumatoid arthritis therapy that enhances fatty acid oxidation and reduces de novo lipogenesis, fibrosis and cell proliferation pathways. We hypothesize that addition of SAL could improve the efficacy of LEN in MASH-HCC. Methods We assessed the efficacy of combination therapy using clinically relevant concentrations of LEN and SAL in human HCC cell models, orthotopic xenograft and MASH-HCC mouse models. In addition, assays assessing fatty acid oxidation and lipogenesis, protein immunoblotting and RNA-sequencing were used to understand mechanisms involved. Results LEN + SAL synergistically suppressed the proliferation and clonogenic survival of cells (p ≤0.0001), prolonged survival in an orthotopic xenograft model (p = 0.02), and reduced angiogenesis, fibrosis, and steatosis (p ≤0.05) in a MASH-HCC model. These effects were associated with activation of AMPK and inhibition of the mTOR-HIF1α and Erk1/2 signaling pathways. RNA-sequencing analysis in both Hep3B cells and livers of the MASH-HCC mouse model revealed that SAL enhanced fatty acid oxidation and suppressed fibrosis and cell cycle progression, while LEN reduced angiogenesis with regulatory network analysis, suggesting a potential role for activating transcription factor 3 (ATF3) and ETS-proto-oncogene-1 (ETS-1). Conclusions These data indicate that combining LEN and SAL, which exert distinct effects leading to improvements in the liver microenvironment (steatosis, angiogenesis, and fibrosis) and inhibition of tumor proliferation, may have therapeutic potential for MASH-driven HCC. Impact and implications Although rates of MASH-HCC are on the rise globally, standard-of-care multi-tyrosine kinase inhibitors and immunotherapy have limited efficacy in this HCC etiology. Metabolic targeting with SAL inhibits cancer growth kinetics while also alleviating drivers of MASH by increasing fatty acid oxidation and reducing de novo lipogenesis and fibrosis. Combined LEN and SAL improved survival and MASH-HCC pathology in mouse models without adverse effects. Given that SAL is a safe, economical, and approved medication, this concept holds great translational potential that could provide a new treatment avenue for patients with unresected MASH-HCC.
Collapse
Affiliation(s)
- Evangelia E. Tsakiridis
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
| | - Elham Ahmadi
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Juravinski Cancer Center, Hamilton Health Sciences, 699 Concession Street, Hamilton, ONT, L8V 5CV, Canada
| | - Jaya Gautam
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
| | - Yi Ran Hannah She
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
| | - Russta Fayyazi
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
| | - James S.V. Lally
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
| | - Simon Wang
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Juravinski Cancer Center, Hamilton Health Sciences, 699 Concession Street, Hamilton, ONT, L8V 5CV, Canada
- Department of Oncology, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
| | - Fiorella Di Pastena
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
| | - Celina M. Valvano
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
| | - Daniel Del Rosso
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Department of Oncology, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
| | - Olga-Demetra Biziotis
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Juravinski Cancer Center, Hamilton Health Sciences, 699 Concession Street, Hamilton, ONT, L8V 5CV, Canada
- Department of Oncology, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
| | - Brandon Meyers
- Juravinski Cancer Center, Hamilton Health Sciences, 699 Concession Street, Hamilton, ONT, L8V 5CV, Canada
- Department of Oncology, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
| | - Paola Muti
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Department of Oncology, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
| | - Theodoros Tsakiridis
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Juravinski Cancer Center, Hamilton Health Sciences, 699 Concession Street, Hamilton, ONT, L8V 5CV, Canada
- Department of Oncology, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
| | - Gregory R. Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
| |
Collapse
|
3
|
Pannala VR, Hari A, AbdulHameed MDM, Balik-Meisner MR, Mav D, Phadke DP, Scholl EH, Shah RR, Auerbach SS, Wallqvist A. Quantifying liver-toxic responses from dose-dependent chemical exposures using a rat genome-scale metabolic model. Toxicol Sci 2025; 204:154-168. [PMID: 39821420 PMCID: PMC11939075 DOI: 10.1093/toxsci/kfaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025] Open
Abstract
Because the liver plays a vital role in the clearance of exogenous chemical compounds, it is susceptible to chemical-induced toxicity. Animal-based testing is routinely used to assess the hepatotoxic potential of chemicals. Although large-scale high-throughput sequencing data can indicate the genes affected by chemical exposures, we need system-level approaches to interpret these changes. To this end, we developed an updated rat genome-scale metabolic model to integrate large-scale transcriptomics data and utilized a chemical structure similarity-based ToxProfiler tool to identify chemicals that bind to specific toxicity targets to understand the mechanisms of toxicity. We used high-throughput transcriptomics data from a 5-day in vivo study where rats were exposed to different non-toxic and hepatotoxic chemicals at increasing concentrations and investigated how liver metabolism was differentially altered between the non-toxic and hepatotoxic chemical exposures. Our analysis indicated that the genes identified via toxicity target analysis and those mapped to the metabolic model showed a distinct gene expression pattern, with the majority showing upregulation for hepatotoxicants compared with non-toxic chemicals. Similarly, when we mapped the metabolic genes at the pathway level, we identified several pathways in carbohydrate, amino acid, and lipid metabolism that were significantly upregulated for hepatotoxic chemicals. Furthermore, using our system-level integration of gene expression data with the rat metabolic model, we could differentiate metabolites in these pathways that were systematically elevated or suppressed due to hepatotoxic versus non-toxic chemicals. Thus, using our combined approach, we were able to identify a set of potential gene signatures that clearly differentiated liver toxic responses from non-toxic chemicals, which helped us identify potential metabolic pathways and metabolites that are systematically associated with the toxicant exposure.
Collapse
Affiliation(s)
- Venkat R Pannala
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD 21702, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, United States
| | - Archana Hari
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD 21702, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, United States
| | - Mohamed Diwan M AbdulHameed
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD 21702, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, United States
| | | | - Deepak Mav
- Sciome LLC, Research Triangle Park, NC 27709, United States
| | | | | | - Ruchir R Shah
- Sciome LLC, Research Triangle Park, NC 27709, United States
| | - Scott S Auerbach
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, United States
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD 21702, United States
| |
Collapse
|
4
|
Song BG, Park G, Goh MJ, Kang W, Gwak GY, Paik YH, Choi MS, Lee JH, Sinn DH. A Risk Prediction Model for Hepatocellular Carcinoma in the General Population Without Traditional Risk Factors for Liver Disease. J Gastroenterol Hepatol 2025; 40:979-986. [PMID: 39887796 DOI: 10.1111/jgh.16893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/22/2024] [Accepted: 01/17/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND AND AIM Existing hepatocellular carcinoma (HCC) prediction models for the general population without traditional risk factors for chronic liver disease are limited. This study aimed to develop an HCC prediction model for individuals lacking these traditional risk factors. METHODS The total of 138 452 adult participants without chronic viral hepatitis or significant alcohol intake who underwent regular health checkup at a tertiary hospital in South Korea were followed up for the development of HCC. Risk factors for HCC development were analyzed using Cox regression analysis, and prediction model was developed using the risk factors. RESULTS Significant predictors of HCC development included older age, male sex, higher body mass index, presence of diabetes mellitus, and levels of aspartate aminotransferase, total cholesterol, and platelet count. A new HCC prediction model using these variables was developed. Harrell's concordance index and Heagerty's integrated area under the receiver operating characteristics (AUROC) curve of the model were 0.88 (95% confidence interval [CI] 0.85-0.91) and 0.89 (95% CI 0.86-0.91), respectively. The 5- and 10-year AUROC were 0.89 (95% CI 0.88-0.89) and 0.87 (95% CI 0.87-0.88), respectively. This model significantly outperformed the FIB-4 scoring model in predicting HCC and effectively stratified individuals into low-, intermediate-, and high-risk groups with significantly different cumulative incidences of HCC. CONCLUSIONS The new model, based on clinical parameters, provides a valuable tool for clinicians to stratify HCC risk in the general population without risk factors for chronic liver disease.
Collapse
Affiliation(s)
- Byeong Geun Song
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - GoEun Park
- Biomedical Statistics Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea
| | - Myung Ji Goh
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Wonseok Kang
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Geum-Youn Gwak
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Yong-Han Paik
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Moon Seok Choi
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Joon Hyeok Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Dong Hyun Sinn
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
5
|
Jiang X, Washington MK, Izzy MJ, Lu M, Yan X, Zu Z, Gore JC, Xu J. Distinguishing Hepatocellular Carcinoma from Cirrhotic Regenerative Nodules Using MR Cytometry. Cancers (Basel) 2025; 17:1204. [PMID: 40227785 PMCID: PMC11987932 DOI: 10.3390/cancers17071204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/28/2025] [Accepted: 03/29/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Current guidelines recommend contrast-enhanced CT/MRI as confirmatory imaging tests for diagnosing hepatocellular carcinoma (HCC). However, these modalities are not always able to differentiate HCC from benign/dysplastic nodules that are commonly observed in cirrhotic livers. Consequently, many lesions require either pathological confirmation via invasive biopsy or surveillance imaging after 3-6 months, which results in delayed diagnosis and treatment. We aimed to develop noninvasive imaging biomarkers of liver cell size and cellularity, using magnetic resonance imaging (MRI), and to assess their utility in identifying HCC. METHODS MR cytometry combines measurements of water diffusion rates over different times corresponding to probing cellular microstructure at different spatial scales. Maps of microstructural properties, such as cell size and cellularity, are derived by fitting voxel values in multiple diffusion-weighted images to a three-compartment (blood, intra-, and extracellular water) model of the MRI signal. This method was validated in two phases: (1) histology-driven simulations, utilizing segmented histological images of different liver pathologies, and (2) ex vivo MR cytometry performed on fixed human liver specimens. RESULTS Both simulations and ex vivo MR cytometry of fixed human liver specimens demonstrated that HCC exhibits significantly smaller cell sizes and higher cellularities compared to normal liver and cirrhotic regenerative nodules. CONCLUSION This study highlights the potential of MR cytometry to differentiate HCC from non-HCC lesions by quantifying cell size and cellularity in liver tissues. Our findings provide a strong foundation for further research into the role of MR cytometry in the noninvasive early diagnosis of HCC.
Collapse
Affiliation(s)
- Xiaoyu Jiang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (M.L.); (X.Y.); (Z.Z.); (J.C.G.); (J.X.)
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mary Kay Washington
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN 37232, USA;
| | - Manhal J. Izzy
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Ming Lu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (M.L.); (X.Y.); (Z.Z.); (J.C.G.); (J.X.)
| | - Xinqiang Yan
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (M.L.); (X.Y.); (Z.Z.); (J.C.G.); (J.X.)
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (M.L.); (X.Y.); (Z.Z.); (J.C.G.); (J.X.)
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - John C. Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (M.L.); (X.Y.); (Z.Z.); (J.C.G.); (J.X.)
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232, USA
| | - Junzhong Xu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (M.L.); (X.Y.); (Z.Z.); (J.C.G.); (J.X.)
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
6
|
Corey KE, Dudzinski DM, Guimaraes AR, Mino-Kenudson M. Case 9-2025: A 59-Year-Old Man with Hepatocellular Carcinoma. N Engl J Med 2025; 392:1216-1227. [PMID: 40138556 DOI: 10.1056/nejmcpc1909622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Affiliation(s)
- Kathleen E Corey
- Department of Medicine, Massachusetts General Hospital, Boston
- Department of Medicine, Harvard Medical School, Boston
| | - David M Dudzinski
- Department of Medicine, Massachusetts General Hospital, Boston
- Department of Medicine, Harvard Medical School, Boston
| | - Alexander R Guimaraes
- Department of Radiology, Massachusetts General Hospital, Boston
- Department of Radiology, Harvard Medical School, Boston
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital, Boston
- Department of Pathology, Harvard Medical School, Boston
| |
Collapse
|
7
|
Li J, Chen X, Song S, Jiang W, Geng T, Wang T, Xu Y, Zhu Y, Lu J, Xia Y, Wang R. Hexokinase 2-mediated metabolic stress and inflammation burden of liver macrophages via histone lactylation in MASLD. Cell Rep 2025; 44:115350. [PMID: 40014451 DOI: 10.1016/j.celrep.2025.115350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/07/2025] [Accepted: 02/04/2025] [Indexed: 03/01/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by metabolic dysfunction and inflammation burden, involving a significant enhancement of cellular glycolytic activity. Here, we elucidate how a positive feedback loop in liver macrophages drives MASLD pathogenesis and demonstrate that disrupting this cycle mitigates metabolic stress and macrophage M1 activation during MASLD. We detect elevated expression of hexokinase 2 (HK2) and H3K18la in liver macrophages from patients with MASLD and MASLD mice. This lactate-dependent histone lactylation promotes glycolysis and liver macrophage M1 polarization by enriching the promoters of glycolytic genes and activating transcription. Ultimately, the HK2/glycolysis/H3K18la positive feedback loop exacerbates the vicious cycle of enhancing metabolic dysregulation and histone lactylation and the inflammatory phenotype of liver macrophages. Myeloid-specific deletion of Hk2 or pharmacological inhibition of the transcription factor HIF-1α significantly disrupts this deleterious cycle. Therefore, our study illustrates that targeting this amplified pathogenic loop may offer a promising therapeutic strategy for MASLD.
Collapse
Affiliation(s)
- Jinyang Li
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu 210046, China; Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu 210029, China; NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiancheng Chen
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210029, China
| | - Shiyu Song
- Nanjing Lupine (YuShanDou) Biomedical Research Institute, Nanjing, Jiangsu 210046, China
| | - Wangjie Jiang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu 210029, China; NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Tianjiao Geng
- Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Tiantian Wang
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu 210046, China
| | - Yan Xu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu 210046, China
| | - Yongqiang Zhu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu 210046, China.
| | - Jun Lu
- Department of Intensive Care Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, China.
| | - Yongxiang Xia
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu 210029, China; NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| | - Rong Wang
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu 210046, China; Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, Hunan 410219, China.
| |
Collapse
|
8
|
Antwi SO, Jnr. Siaw AD, Armasu SM, Frank JA, Yan IK, Ahmed FY, Izquierdo-Sanchez L, Boix L, Rojas A, Banales JM, Reig M, Stål P, Gómez MR, Wangensteen KJ, Singal AG, Roberts LR, Patel T. Genome-Wide DNA Methylation Markers Associated With Metabolic Liver Cancer. GASTRO HEP ADVANCES 2025; 4:100621. [PMID: 40275933 PMCID: PMC12019016 DOI: 10.1016/j.gastha.2025.100621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/17/2025] [Indexed: 04/26/2025]
Abstract
Background and Aims Metabolic liver disease is the fastest-rising cause of hepatocellular carcinoma (HCC), but the underlying molecular processes that drive HCC development in the setting of metabolic perturbations are unclear. We investigated the role of aberrant DNA methylation in metabolic HCC development in a multicenter international study. Methods We used a case-control design, frequency-matched on age, sex, and study site. Genome-wide profiling of peripheral blood leukocyte DNA was performed using the 850k EPIC array. The study sample was split 80% and 20% for training and validation. Cell type proportions were estimated from the methylation data. Differential methylation analysis was performed adjusting for cell type, generating area under the receiver-operating characteristic curves (AUC-ROC). Results We enrolled 272 metabolic HCC patients and 316 control patients with metabolic liver disease from 6 sites. Fifty-five differentially methylated CpGs were identified; 33 hypermethylated and 22 hypomethylated in cases vs controls. The panel of 55 CpGs discriminated between the cases and controls with AUC = 0.79 (95% confidence interval [CI] = 0.71-0.87), sensitivity = 0.77 (95% CI = 0.66-0.89), and specificity = 0.74 (95% CI = 0.64-0.85). The 55-CpG classifier panel performed better than a base model that comprised age, sex, race, and diabetes mellitus (AUC = 0.65, 95% CI = 0.55-0.75; sensitivity = 0.62, 95% CI = 0.49-0.75; and specificity = 0.64, 95% CI = 0.52-0.75). A multifactorial model that combined the 55 CpGs with age, sex, race, and diabetes yielded AUC = 0.78 (95% CI = 0.70-0.86), sensitivity = 0.81 (95% CI = 0.71-0.92), and specificity = 0.67 (95% CI = 0.55-0.78). Conclusion A panel of 55 blood leukocyte DNA methylation markers differentiates patients with metabolic HCC from control patients with benign metabolic liver disease, with a slightly higher sensitivity when combined with demographic and clinical information.
Collapse
Affiliation(s)
- Samuel O. Antwi
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, Florida
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Jacksonville, Florida
| | - Ampem Darko Jnr. Siaw
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, Florida
| | - Sebastian M. Armasu
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Jacob A. Frank
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Irene K. Yan
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida
| | - Fowsiyo Y. Ahmed
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Laura Izquierdo-Sanchez
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute-Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Loreto Boix
- BCLC Group, Liver Unit, ICMDM, IDIBAPS, Hospital Clinic of Barcelona, University of Barcelona. Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD); Barcelona University, Barcelona, Spain
| | - Angela Rojas
- SeLiver Group, UCM Digestive Diseases, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, Seville, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Madrid, Spain
| | - Jesus M. Banales
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute-Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Maria Reig
- BCLC Group, Liver Unit, ICMDM, IDIBAPS, Hospital Clinic of Barcelona, University of Barcelona. Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD); Barcelona University, Barcelona, Spain
| | - Per Stål
- Department of Upper GI Diseases, Karolinska University Hospital, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Manuel Romero Gómez
- SeLiver Group, UCM Digestive Diseases, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, Seville, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Madrid, Spain
| | - Kirk J. Wangensteen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Amit G. Singal
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Lewis R. Roberts
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Tushar Patel
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida
- Department of Transplantation, Mayo Clinic, Jacksonville, Florida
| |
Collapse
|
9
|
Bekki T, Ohira M, Imaoka Y, Hattori M, Nakano R, Sakai H, Kuroda S, Tahara H, Ide K, Kobayashi T, Ohdan H. The steatosis-associated fibrosis estimator score is a useful indicator of recurrence and survival after initial curative hepatectomy for hepatocellular carcinoma. Ann Gastroenterol Surg 2025; 9:178-187. [PMID: 39759992 PMCID: PMC11693554 DOI: 10.1002/ags3.12846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/19/2024] [Accepted: 07/07/2024] [Indexed: 01/07/2025] Open
Abstract
Aims Liver fibrosis predisposes patients to liver failure and hepatocellular carcinoma. Various markers, which can be calculated easily from serum parameters, have been reported to predict liver fibrosis accurately. This study investigated the prognostic factors, including blood-based markers for liver fibrosis of patients with hepatocellular carcinoma following initial curative hepatectomy. Methods This retrospective study included 407 patients with hepatocellular carcinoma who underwent initial curative hepatectomy between April 2010 and December 2017. We investigated prognosis-associated variables in these patients. Results Among the blood-based markers for liver fibrosis examined in this study, the steatosis-associated fibrosis estimator score demonstrated the best predictive capabilities. This score was revealed as a poor prognostic factor for both overall survival and recurrence-free survival in patients with hepatocellular carcinoma following initial curative hepatectomy. A high steatosis-associated fibrosis estimator score was independently associated with poor overall survival and recurrence-free survival. After propensity score-matching to minimize bias between high- and low-steatosis-associated fibrosis estimator score groups, the high steatosis-associated fibrosis estimator score remained associated with poor overall survival and recurrence-free survival. Conclusions The steatosis-associated fibrosis estimator score is an independent predictor of long-term prognosis in patients with hepatocellular carcinoma following initial curative hepatectomy.
Collapse
Affiliation(s)
- Tomoaki Bekki
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Masahiro Ohira
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical ResearchHiroshima University HospitalHiroshimaJapan
| | - Yuki Imaoka
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Minoru Hattori
- Medical Education CenterHiroshima UniversityHiroshimaJapan
| | - Ryosuke Nakano
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Hiroshi Sakai
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Shintaro Kuroda
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Hiroyuki Tahara
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Kentaro Ide
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Tsuyoshi Kobayashi
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| |
Collapse
|
10
|
Khare T, Liu K, Chilambe LO, Khare S. NAFLD and NAFLD Related HCC: Emerging Treatments and Clinical Trials. Int J Mol Sci 2025; 26:306. [PMID: 39796162 PMCID: PMC11720452 DOI: 10.3390/ijms26010306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 12/26/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), recently renamed metabolic-associated fatty liver disease (MAFLD), is the most prevalent liver disease worldwide. It is associated with an increased risk of developing hepatocellular carcinoma (HCC) in the background of cirrhosis or without cirrhosis. The prevalence of NAFLD-related HCC is increasing all over the globe, and HCC surveillance in NAFLD cases is not that common. In the present review, we attempt to summarize promising treatments and clinical trials focused on NAFLD, nonalcoholic steatohepatitis (NASH), and HCC in the past five to seven years. We categorized the trials based on the type of intervention. Most of the trials are still running, with only a few completed and with conclusive results. In clinical trial NCT03942822, 25 mg/day of milled chia seeds improved NAFLD condition. Completed trial NCT03524365 concluded that Rouxen-Y gastric bypass (RYGB) or sleeve gastrectomy (SG) results in histological resolution of NASH without worsening of fibrosis, while NCT04677101 validated sensitivity/accuracy of blood biomarkers in predicting NASH and fibrosis stage. Moreover, trials with empagliflozin (NCT05694923), curcuvail (NCT06256926), and obeticholic acid (NCT03439254) were completed but did not provide conclusive results. However, trial NCT03900429 reported effective improvement in fibrosis by at least one stage, without worsening of NAFLD activity score (NAS), as well as improvement in lipid profile of the NASH patients by 80 or 100 mg MGL-3196 (resmetirom). Funded by Madrigal Pharmaceuticals, Rezdiffra (resmetirom), used in the clinical trial NCT03900429, is the first FDA-approved drug for the treatment of NAFLD/NASH.
Collapse
Affiliation(s)
- Tripti Khare
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO 65212, USA;
- Harry S Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
| | - Karina Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA;
| | | | - Sharad Khare
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO 65212, USA;
- Harry S Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
| |
Collapse
|
11
|
Ahmadizar F, Younossi ZM. Exploring Biomarkers in Nonalcoholic Fatty Liver Disease Among Individuals With Type 2 Diabetes Mellitus. J Clin Gastroenterol 2025; 59:36-46. [PMID: 39352015 PMCID: PMC11630663 DOI: 10.1097/mcg.0000000000002079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/02/2024] [Indexed: 10/03/2024]
Abstract
Integrating biomarkers into a comprehensive strategy is crucial for precise patient management, especially considering the significant healthcare costs associated with diseases. Current studies emphasize the urgent need for a paradigm shift in conceptualizing nonalcoholic fatty liver disease (NAFLD), now renamed metabolic dysfunction-associated steatotic liver disease (MASLD). Biomarkers are emerging as indispensable tools for accurate diagnosis, risk stratification, and monitoring disease progression. This review classifies biomarkers into conventional and novel categories, such as lipids, insulin resistance, hepatic function, and cutting-edge imaging/omics, and evaluates their potential to transform the approach to MASLD among individuals with type 2 diabetes mellitus (T2D). It focuses on the critical role of biomarkers in early MASLD detection, enhancing predictive accuracy, and discerning responses to interventions (pharmacological or lifestyle modifications). Amid this discussion, the complexities of the relationship between T2D and MASLD are explored, considering factors like age, gender, genetics, ethnicity, and socioeconomic background. Biomarkers enhance the effectiveness of interventions and support global initiatives to reduce the burden of MASLD, thereby improving public health outcomes. This review recognizes the promising potential of biomarkers for diagnostic precision while candidly addressing the challenges in implementing these advancements in clinical practice. The transformative role of biomarkers emerges as a central theme, promising to reshape our understanding of disease trajectories, prognosis, and the customization of personalized therapeutic strategies for improved patient outcomes. From a future perspective, identifying early-stage biomarkers, understanding environmental impact through exposomes, and applying a multiomics approach may reveal additional insight into MASLD development.
Collapse
Affiliation(s)
- Fariba Ahmadizar
- Data Science and Biostatistics Department, Julius Global Health, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Beatty Liver and Obesity Research Program Center for Liver Diseases, Inova Health System, Falls Church, VA
| | - Zobair M. Younossi
- The Global NASH Council, Center for Outcomes Research in Liver Disease, Washington, DC
| |
Collapse
|
12
|
Antwi SO, Siaw ADJ, Armasu SM, Frank JA, Yan IK, Ahmed FY, Izquierdo-Sanchez L, Boix L, Rojasti A, Banales JM, Reig M, Stål P, Romero Gómez M, Wangensteen KJ, Singal AG, Roberts LR, Patel T. Genome-wide DNA methylation markers associated with metabolic liver cancer. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.15.24317378. [PMID: 39606355 PMCID: PMC11601684 DOI: 10.1101/2024.11.15.24317378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Background and Aims Metabolic liver disease is the fastest rising cause of hepatocellular carcinoma (HCC) worldwide, but the underlying molecular processes that drive HCC development in the setting of metabolic perturbations are unclear. We investigated the role of aberrant DNA methylation in metabolic HCC development in a multicenter international study. Methods We used a case-control design, frequency-matched on age, sex, and study site. Genome-wide profiling of peripheral blood leukocyte DNA was performed using the 850k EPIC array. Cell type proportions were estimated from the methylation data. The study samples were split 80% and 20% for training and validation. Differential methylation analysis was performed with adjustment for cell type, and we generated area under the receiver-operating curves (ROC-AUC). Results We enrolled 272 metabolic HCC patients and 316 control patients with metabolic liver disease from six sites. Fifty-five differentially methylated CpGs were identified; 33 hypermethylated and 22 hypomethylated in cases versus controls. The panel of 55 CpGs discriminated between cases and controls with AUC=0.79 (95%CI=0.71-0.87), sensitivity=0.77 (95%CI=0.66-0.89), and specificity=0.74 (95%CI=0.64-0.85). The 55-CpG classifier panel performed better than a base model that comprised age, sex, race, and diabetes mellitus (AUC=0.65, 95%CI=0.55-0.75, sensitivity=0.62 (95%CI=0.49-0.75) and specificity=0.64 (95%CI=0.52-0.75). A multifactorial model that combined the 55 CpGs with age, sex, race, and diabetes, yielded AUC=0.78 (95%CI=0.70-0.86), sensitivity=0.81 (95%CI=0.71-0.92), and specificity=0.67 (95%CI=0.55-0.78). Conclusions A panel of 55 blood leukocyte DNA methylation markers differentiates patients with metabolic HCC from control patients with benign metabolic liver disease, with a slightly higher sensitivity when combined with demographic and clinical information.
Collapse
Affiliation(s)
- Samuel O. Antwi
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Ampem Darko Jnr. Siaw
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Sebastian M. Armasu
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Jacob A. Frank
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Irene K. Yan
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Fowsiyo Y. Ahmed
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Laura Izquierdo-Sanchez
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute-Donostia University Hospital, University of the Basque Country (UPV/EHU), CIBERehd, San Sebastian, Spain
| | - Loreto Boix
- BCLC Group, Liver Unit, ICMDM, IDIBAPS, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain. Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain; Barcelona University, Barcelona, Spain
| | - Angela Rojasti
- SeLiver Group, UCM Digestive Diseases, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, Seville, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Madrid, Spain
| | - Jesus M. Banales
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute-Donostia University Hospital, University of the Basque Country (UPV/EHU), CIBERehd, San Sebastian, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Maria Reig
- BCLC Group, Liver Unit, ICMDM, IDIBAPS, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain. Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain; Barcelona University, Barcelona, Spain
| | - Per Stål
- Department of Upper GI Diseases, Karolinska University Hospital, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Manuel Romero Gómez
- SeLiver Group, UCM Digestive Diseases, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, Seville, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Madrid, Spain
| | - Kirk J. Wangensteen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Amit G. Singal
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lewis R. Roberts
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Tushar Patel
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
- Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
13
|
Carpi S, Daniele S, de Almeida JFM, Gabbia D. Recent Advances in miRNA-Based Therapy for MASLD/MASH and MASH-Associated HCC. Int J Mol Sci 2024; 25:12229. [PMID: 39596297 PMCID: PMC11595301 DOI: 10.3390/ijms252212229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), is a growing health concern worldwide, affecting more than 1 billion adults. It may progress to metabolic dysfunction-associated steatohepatitis (MASH), cirrhosis, and ultimately hepatocellular carcinoma (HCC). Emerging evidence has demonstrated the role in this transition of microRNAs (miRNAs), which regulate the expression of genes associated with lipid metabolism, inflammation, fibrosis, and cell proliferation. Specific miRNAs have been identified to exacerbate or mitigate fibrotic and carcinogenic processes in hepatic cells. The modulation of these miRNAs through synthetic mimics or inhibitors represents a promising therapeutic strategy. Preclinical models have demonstrated that miRNA-based therapies can attenuate liver inflammation, reduce fibrosis, and inhibit tumorigenesis, thus delaying or preventing the onset of HCC. However, challenges such as delivery mechanisms, off-target effects, and long-term safety remain to be addressed. This review, focusing on recently published preclinical and clinical studies, explores the pharmacological potential of miRNA-based interventions to prevent MASLD/MASH and progression toward HCC.
Collapse
Affiliation(s)
- Sara Carpi
- Department of Health Sciences, University ‘Magna Græcia’ of Catanzaro, 88100 Catanzaro, Italy
- NEST (National Enterprise for nanoScience and nanoTechnology), Istituto Nanoscienze-CNR and Scuola Normale Superiore, 41125 Modena, Italy
| | - Simona Daniele
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (S.D.); (J.F.M.d.A.)
| | | | - Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
14
|
Li Z, Cui C, Xu L, Ding M, Wang Y. Metformin suppresses metabolic dysfunction-associated fatty liver disease by ferroptosis and apoptosis via activation of oxidative stress. Free Radic Res 2024; 58:686-701. [PMID: 39422606 DOI: 10.1080/10715762.2024.2417279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/16/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
Metformin is known for its antioxidant properties and ability to ameliorate metabolic dysfunction-associated fatty liver disease (MAFLD) and is the focus of this study. Lipoprotein-associated phospholipase A2 (Lp-PLA2) is linked to MAFLD risk. This study investigated the effects of metformin on ferroptosis in free fatty acid (FFA)-treated Huh7 hepatoma cells and its association with MAFLD risk. Using Western blot, immunofluorescence, and ELISA, this study revealed that FFA treatment led to increased intracellular fat and iron accumulation, heightened Lp-PLA2 expression, reduced levels of the cysteine transporter SLC7A11 and glutathione peroxidase 4 (GPX4), altered glutathione (GSH)/oxidized glutathione (GSSG) ratios, generation of reactive oxygen species (ROS), and initiation of lipid peroxidation, which ultimately resulted in cell ferroptosis. Importantly, metformin reversed FFA-induced iron accumulation, and this effect was attenuated by ferrostatin-1 but enhanced by erastin, RSL3, and si-GPX4. Additionally, metformin activated antioxidant and antiapoptotic mechanisms, which reduced lipid peroxidation and suppressed Lp-PLA2 expression in FFA-treated Huh7 cells. In conclusion, our findings indicate that metformin may protect against MAFLD by inhibiting iron accumulation and Lp-PLA2 expression through the ROS, ferroptosis, and apoptosis signaling pathways. This study highlights potential therapeutic strategies for managing MAFLD-related risks and emphasizes the diverse roles of metformin in maintaining hepatocyte balance.
Collapse
Affiliation(s)
- Zhiyu Li
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Chao Cui
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Liang Xu
- Department of Cardiology, The Second Hospital of Harbin, Harbin, Heilongjiang, China
| | - Mingfeng Ding
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yinghui Wang
- Department of Physical Examination Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
15
|
Jin G, Liu K, Guo Z, Dong Z. Precision therapy for cancer prevention by targeting carcinogenesis. Mol Carcinog 2024; 63:2045-2062. [PMID: 39140807 DOI: 10.1002/mc.23798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024]
Abstract
Cancer represents a major global public health burden, with new cases estimated to increase from 14 million in 2012 to 24 million by 2035. Primary prevention is an effective strategy to reduce the costs associated with cancer burden. For example, measures to ban tobacco consumption have dramatically decreased lung cancer incidence and vaccination against human papillomavirus can prevent cervical cancer development. Unfortunately, the etiological factors of many cancer types are not completely clear or are difficult to actively control; therefore, the primary prevention of such cancers is not practical. In this review, we update the progress on precision therapy by targeting the whole carcinogenesis process, especially for three high-risk groups: (1) those with chronic inflammation, (2) those with inherited germline mutations, and (3) those with precancerous lesions like polyps, gastritis, actinic keratosis or dysplasia. We believe that attenuating chronic inflammation, treating precancerous lesions, and removing high-risk tissues harboring germline mutations are precision methods for cancer prevention.
Collapse
Affiliation(s)
- Guoguo Jin
- Henan Key Laboratory of Chronic Disease Management, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Kangdong Liu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhiping Guo
- Henan Key Laboratory of Chronic Disease Management, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, China
| | - Zigang Dong
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
16
|
Sharma H, Anand A, Halagali P, Inamdar A, Pathak R, Taghizadeh‐Hesary F, Ashique S. Advancement of Nanoengineered Flavonoids for Chronic Metabolic Diseases. ROLE OF FLAVONOIDS IN CHRONIC METABOLIC DISEASES 2024:459-510. [DOI: 10.1002/9781394238071.ch13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
17
|
Hayashi T, Oe S, Miyagawa K, Kusanaga M, Ogino N, Honma Y, Harada M. Excess glucose alone induces hepatocyte damage due to oxidative stress and endoplasmic reticulum stress. Exp Cell Res 2024; 442:114264. [PMID: 39313175 DOI: 10.1016/j.yexcr.2024.114264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/17/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Type 2 diabetes mellitus (DM) is a significant risk factor for metabolic dysfunction-associated steatotic liver disease (MASLD) and hepatocellular carcinoma (HCC). With the increasing prevalence of type 2 DM and MASLD due to lifestyle changes, understanding their impact on liver health is crucial. However, the hepatocellular damage caused by glucose alone is unknown. This study investigates the effect of excess glucose on hepatocytes, focusing on oxidative stress, endoplasmic reticulum stress (ER stress), apoptosis, autophagy, and cell proliferation. We treated an immortalized-human hepatocyte cell line with excess glucose and analyzed. Excess glucose induced oxidative stress and ER stress in a time- and concentration-dependent manner, leading to apoptosis. Oxidative stress and ER stress were independently induced by excess glucose. Proteasome inhibitors and palmitic acid exacerbated glucose-induced stress, leading to the formation of Mallory-Denk body-like inclusion bodies. Despite these stresses, autophagic flux was not altered. Excess glucose also caused DNA damage but did not affect cell proliferation. This suggests that glucose itself can contribute to the progression of metabolic dysfunction-associated steatohepatitis (MASH) and carcinogenesis of HCC in patients with type 2 DM. Managing blood glucose levels is crucial to prevent hepatocyte damage and associated complications.
Collapse
Affiliation(s)
- Tsuguru Hayashi
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan.
| | - Shinji Oe
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan.
| | - Koichiro Miyagawa
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan.
| | - Masashi Kusanaga
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan.
| | - Noriyoshi Ogino
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan.
| | - Yuichi Honma
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan.
| | - Masaru Harada
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan.
| |
Collapse
|
18
|
Yu Q, Zhang Y, Ni J, Shen Y, Hu W. Identification and analysis of significant genes in nonalcoholic steatohepatitis-hepatocellular carcinoma transformation: Bioinformatics analysis and machine learning approach. Mol Immunol 2024; 174:18-31. [PMID: 39142007 DOI: 10.1016/j.molimm.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 07/15/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024]
Abstract
PURPOSE Nonalcoholic steatohepatitis (NASH) has been an increasingly significant contributor to hepatocellular carcinoma (HCC). Understanding the progression from NASH to HCC is critical to early diagnosis and elucidating the underlying mechanisms. RESULTS 5 significant prognostic genes related to NASH-HCC transformation were identified through algorithm selection, which were ME1, TP53I3, SOCS2, GADD45G and CYP7A1. A diagnostic model for NASH prediction was established (AUC=0.988). TP53I3 and SOCS2 were selected as potential critical genes in the progression of NASH-HCC by external dataset validation and in vitro experiments on NASH and HCC cell lines. Immune infiltration analysis illustrated the correlation between 5 significant prognostic genes and immune cells. Single-cell analysis identified hepatocytes related to NASH-HCC transformation markers, revealing their promoting role in the transformation from NASH to HCC. CONCLUSION With bulk-seq analysis and single-cell analysis, 5 significant prognostic genes related to NASH-HCC transformation were identified and validated at both dataset and in vitro experiment level. Among them, TP53I3 and SOCS2 might be potential critical genes in NASH-HCC progression. Single-cell analysis identified and revealed the critical role that NASH-HCC related hepatocytes play in NASH-HCC tansformation. Our research may introduce a new perspective to the diagnosis, treatment of NASH-related HCC.
Collapse
Affiliation(s)
- Qiyi Yu
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Yidong Zhang
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Jiaping Ni
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Yumeng Shen
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China.
| | - Weiwei Hu
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Lingang Laboratory, Shanghai 200032, China.
| |
Collapse
|
19
|
Jung YH, Lee YJ, Dao T, Jung KH, Yu J, Oh AR, Jeong Y, Gi H, Kim YU, Ryu D, Carrer M, Pajvani UB, Lee SB, Hong SS, Kim K. KCTD17-mediated Ras stabilization promotes hepatocellular carcinoma progression. Clin Mol Hepatol 2024; 30:895-913. [PMID: 39098817 PMCID: PMC11540369 DOI: 10.3350/cmh.2024.0364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND/AIMS Potassium channel tetramerization domain containing 17 (KCTD17) protein, an adaptor for the cullin3 (Cul3) ubiquitin ligase complex, has been implicated in various human diseases; however, its role in hepatocellular carcinoma (HCC) remains elusive. Here, we aimed to elucidate the clinical features of KCTD17, and investigate the mechanisms by which KCTD17 affects HCC progression. METHODS We analyzed transcriptomic data from patients with HCC. Hepatocyte-specific KCTD17 deficient mice were treated with diethylnitrosamine (DEN) to assess its effect on HCC progression. Additionally, we tested KCTD17-directed antisense oligonucleotides for their therapeutic potential in vivo. RESULTS Our investigation revealed the upregulation of KCTD17 expression in both tumors from patients with HCC and mouse models of HCC, in comparison to non-tumor controls. We identified the leucine zipper-like transcriptional regulator 1 (Lztr1) protein, a previously identified Ras destabilizer, as a substrate for KCTD17-Cul3 complex. KCTD17-mediated Lztr1 degradation led to Ras stabilization, resulting in increased proliferation, migration, and wound healing in liver cancer cells. Hepatocyte-specific KCTD17 deficient mice or liver cancer xenograft models were less susceptible to carcinogenesis or tumor growth. Similarly, treatment with KCTD17-directed antisense oligonucleotides (ASO) in a mouse model of HCC markedly lowered tumor volume as well as Ras protein levels, compared to those in control ASO-treated mice. CONCLUSION KCTD17 induces the stabilization of Ras and downstream signaling pathways and HCC progression and may represent a novel therapeutic target for HCC.
Collapse
Affiliation(s)
- Young Hoon Jung
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Korea
- Program in Biomedical Science & Engineering, College of Medicine, Inha University, Incheon, Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, Korea
| | - Yun Ji Lee
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Korea
- Program in Biomedical Science & Engineering, College of Medicine, Inha University, Incheon, Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, Korea
| | - Tam Dao
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Kyung Hee Jung
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, Korea
| | - Junjie Yu
- Department of Medicine, Columbia University, New York, NY, USA
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, China
| | - Ah-Reum Oh
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Korea
- Program in Biomedical Science & Engineering, College of Medicine, Inha University, Incheon, Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, Korea
| | - Yelin Jeong
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Korea
- Program in Biomedical Science & Engineering, College of Medicine, Inha University, Incheon, Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, Korea
| | - HyunJoon Gi
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Korea
- Program in Biomedical Science & Engineering, College of Medicine, Inha University, Incheon, Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, Korea
| | - Young Un Kim
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Korea
- Program in Biomedical Science & Engineering, College of Medicine, Inha University, Incheon, Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, Korea
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | | | | | - Sang Bae Lee
- Division of Life Sciences, Jeonbuk National University, Jeonju, Korea
| | - Soon-Sun Hong
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Korea
- Program in Biomedical Science & Engineering, College of Medicine, Inha University, Incheon, Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, Korea
| | - KyeongJin Kim
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Korea
- Program in Biomedical Science & Engineering, College of Medicine, Inha University, Incheon, Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, Korea
| |
Collapse
|
20
|
Gupta M, Davenport D, Orozco G, Bharadwaj R, Roses RE, Evers BM, Zwischenberger J, Ancheta A, Shah MB, Gedaly R. Perioperative outcomes after hepatectomy for hepatocellular carcinoma among patients with cirrhosis, fatty liver disease, and clinically normal livers. Surg Oncol 2024; 56:102114. [PMID: 39163797 DOI: 10.1016/j.suronc.2024.102114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/22/2024]
Abstract
INTRODUCTION Despite superior outcomes with liver transplantation, cirrhotic patients with HCC may turn to other forms of definitive treatment. To understand perioperative outcomes, we examined perioperative mortality and major morbidity after hepatectomy for HCC among cirrhotic and non-cirrhotic patients. METHOD ology: The American College of Surgeons National Surgical Quality Improvement Project (ACS-NSQIP) database was queried for liver resection for HCC. Multivariable logistic regression was performed to determine the association between liver texture and risk of major non-infectious morbidity, post-hepatectomy liver failure (PHLF) and 30-day mortality. RESULTS From 2014 to 2018, 2203 patients underwent hepatectomy: 58.6 % cirrhotic, 12.8 % fatty and 28.6 % normal texture. Overall 30 day-mortality was 2.1 % (n = 46), although higher among fatty liver (2.8 %) and cirrhotic (2.6 %; p = 0.025) patients. The incidence of PHLF was 6.9 %, with hepatectomy type, cirrhosis, and platelet count as major risk factors. Age, resection type, and platelet count were associated with major complications. Trisegmentectomy and right hepatectomy (OR = 3.60, OR = 3.46, respectively) conferred a greater risk of major noninfectious morbidity compared to partial hepatectomy. Among cirrhotics alone, hepatectomy type, platelet count, preoperative sepsis and ASA class were associated with major morbidity. DISCUSSION Hepatic parenchymal disease/texture and function, presence of portal hypertension, and the extent of the liver resection are critical determinants of perioperative risk among HCC patients.
Collapse
Affiliation(s)
- Meera Gupta
- Department of Surgery - Transplant Division, University of Kentucky, College of Medicine, Lexington, KY, 40536, USA.
| | - Daniel Davenport
- Department of Surgery - Transplant Division, University of Kentucky, College of Medicine, Lexington, KY, 40536, USA
| | - Gabriel Orozco
- Department of Surgery - Transplant Division, University of Kentucky, College of Medicine, Lexington, KY, 40536, USA
| | - Rashmi Bharadwaj
- University of Kentucky, College of Medicine, Lexington, KY, 40536, USA
| | - Robert E Roses
- Department of Surgery - Division of Surgical Oncology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - B Mark Evers
- Department of Surgery - Transplant Division, University of Kentucky, College of Medicine, Lexington, KY, 40536, USA
| | - Joseph Zwischenberger
- Department of Surgery - Transplant Division, University of Kentucky, College of Medicine, Lexington, KY, 40536, USA
| | - Alexandre Ancheta
- Department of Surgery - Transplant Division, University of Kentucky, College of Medicine, Lexington, KY, 40536, USA
| | - Malay B Shah
- Department of Surgery - Transplant Division, University of Kentucky, College of Medicine, Lexington, KY, 40536, USA
| | - Roberto Gedaly
- Department of Surgery - Transplant Division, University of Kentucky, College of Medicine, Lexington, KY, 40536, USA
| |
Collapse
|
21
|
Son B, Lee W, Kim H, Shin H, Park HH. Targeted therapy of cancer stem cells: inhibition of mTOR in pre-clinical and clinical research. Cell Death Dis 2024; 15:696. [PMID: 39349424 PMCID: PMC11442590 DOI: 10.1038/s41419-024-07077-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 10/02/2024]
Abstract
Cancer stem cells (CSCs) are a type of stem cell that possesses not only the intrinsic abilities of stem cells but also the properties of cancer cells. Therefore, CSCs are known to have self-renewal and outstanding proliferation capacity, along with the potential to differentiate into specific types of tumor cells. Cancers typically originate from CSCs, making them a significant target for tumor treatment. Among the related cascades of the CSCs, mammalian target of rapamycin (mTOR) pathway is regarded as one of the most important signaling pathways because of its association with significant upstream signaling: phosphatidylinositol 3‑kinase/protein kinase B (PI3K/AKT) pathway and mitogen‑activated protein kinase (MAPK) cascade, which influence various activities of stem cells, including CSCs. Recent studies have shown that the mTOR pathway not only affects generation of CSCs but also the maintenance of their pluripotency. Furthermore, the maintenance of pluripotency or differentiation into specific types of cancer cells depends on the regulation of the mTOR signal in CSCs. Consequently, the clinical potential and importance of mTOR in effective cancer therapy are increasing. In this review, we demonstrate the association between the mTOR pathway and cancer, including CSCs. Additionally, we discuss a new concept for anti-cancer drug development aimed at overcoming existing drawbacks, such as drug resistance, by targeting CSCs through mTOR inhibition.
Collapse
Affiliation(s)
- Boram Son
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea
| | - Wonhwa Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyeonjeong Kim
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Hee Ho Park
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
22
|
Lee J, Jung JH, Choi SJ, Ha B, Yang H, Sung PS, Bae SH, Yu JA. Impact of Korean Military Service on the Prevalence of Steatotic Liver Disease: A Longitudinal Study of Pre-enlistment and In-Service Health Check-Ups. Gut Liver 2024; 18:888-896. [PMID: 38953118 PMCID: PMC11391135 DOI: 10.5009/gnl240077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/17/2024] [Accepted: 04/19/2024] [Indexed: 07/03/2024] Open
Abstract
Background/Aims Young Korean men are obligated to serve in the military for 18 to 21 months. We investigated the effects of military service on steatotic liver disease (SLD) and other metabolic parameters. Methods Pre-enlistment health check-up performed from 2019 to 2022 and in-service health check-up performed from 2020 to 2022 were merged as paired data. SLD was defined as a hepatic steatosis index of 36 or higher. Hypertension (HTN) and hypertriglyceridemia were also included in the analysis. Results A total of 503,136 paired cases were included in the analysis. Comparing pre-enlistment and in-service health check-ups, the prevalence of SLD (22.2% vs 17.6%, p<0.001), HTN (7.6% vs 4.3%, p<0.001), and hypertriglyceridemia (8.1% vs 2.9%, p<0.001) decreased during military service. In terms of body mass index, the proportion of underweight (8.2% vs 1.4%, p<0.001) and severely obese (6.1% vs 4.9%, p<0.001) individuals decreased over time. Regarding factors associated with SLD development and resolution, age was positively associated with SLD development (odds ratio, 1.146; p<0.001) and a health check-up interval of <450 days was a protective factor for SLD development (odds ratio, 0.746; p<0.001). Those serving in the marines were less likely to develop SLD, whereas those serving in the navy were more likely to develop SLD. Serving in the army or the navy was negatively associated with SLD resolution, whereas serving in the air force was positively associated with SLD resolution. Conclusions The prevalence of SLD, HTN, and hypertriglyceridemia decreased substantially during Korean military service.
Collapse
Affiliation(s)
- Jaejun Lee
- The Catholic University Liver Research Center, Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | - Beomman Ha
- Korean Armed Forces Medical Command, Seongnam, Korea
| | - Hyun Yang
- The Catholic University Liver Research Center, Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Pil Soo Sung
- The Catholic University Liver Research Center, Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Si Hyun Bae
- The Catholic University Liver Research Center, Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jeong-A Yu
- Korean Armed Forces Medical Command, Seongnam, Korea
| |
Collapse
|
23
|
Forte G, Donghia R, Lepore Signorile M, Tatoli R, Bonfiglio C, Losito F, De Marco K, Manghisi A, Guglielmi FA, Disciglio V, Fasano C, Sanese P, Cariola F, Buonadonna AL, Grossi V, Giannelli G, Simone C. Exploring the Relationship of rs2802292 with Diabetes and NAFLD in a Southern Italian Cohort-Nutrihep Study. Int J Mol Sci 2024; 25:9512. [PMID: 39273459 PMCID: PMC11394752 DOI: 10.3390/ijms25179512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Background: The minor G-allele of FOXO3 rs2802292 is associated with human longevity. The aim of this study was to test the protective effect of the variant against the association with type 2 Diabetes and NAFLD. Methods: rs2802292 was genotyped in a large population of middle-aged subjects (n = 650) from a small city in Southern Italy. All participants were interviewed to collect information about lifestyle and dietary habits; clinical characteristics were recorded, and blood samples were collected from all subjects. The association between rs2802292 and NAFLD or diabetes was tested using a logistic model and mediation analysis adjusted for covariates. Results: Overall, the results indicated a statistical association between diabetes and rs2802292, especially for the TT genotype (OR = 2.14, 1.01 to 4.53 95% C.I., p = 0.05) or in any case for those who possess the G-allele (OR = 0.45, 0.25 to 0.81 95% C.I., p = 0.008). Furthermore, we found a mediation effect of rs2802292 on diabetes (as mediator) and NAFLD. There is no direct relationship between rs2802292 and NAFLD, but the effect is direct (β = 0.10, -0.003 to 0.12 95% C.I., p = 0.04) on diabetes, but only in TT genotypes. Conclusions: The data on our cohort indicate that the longevity-associated FOXO3 variant may have protective effects against diabetes and NAFLD.
Collapse
Affiliation(s)
- Giovanna Forte
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (M.L.S.); (K.D.M.); (A.M.); (F.A.G.); (V.D.); (C.F.); (P.S.); (F.C.); (A.L.B.)
| | - Rossella Donghia
- Data Science Unit, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (R.D.); (R.T.); (C.B.)
| | - Martina Lepore Signorile
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (M.L.S.); (K.D.M.); (A.M.); (F.A.G.); (V.D.); (C.F.); (P.S.); (F.C.); (A.L.B.)
| | - Rossella Tatoli
- Data Science Unit, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (R.D.); (R.T.); (C.B.)
| | - Caterina Bonfiglio
- Data Science Unit, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (R.D.); (R.T.); (C.B.)
| | - Francesco Losito
- Gastroenterology Unit, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy;
| | - Katia De Marco
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (M.L.S.); (K.D.M.); (A.M.); (F.A.G.); (V.D.); (C.F.); (P.S.); (F.C.); (A.L.B.)
| | - Andrea Manghisi
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (M.L.S.); (K.D.M.); (A.M.); (F.A.G.); (V.D.); (C.F.); (P.S.); (F.C.); (A.L.B.)
| | - Filomena Anna Guglielmi
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (M.L.S.); (K.D.M.); (A.M.); (F.A.G.); (V.D.); (C.F.); (P.S.); (F.C.); (A.L.B.)
| | - Vittoria Disciglio
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (M.L.S.); (K.D.M.); (A.M.); (F.A.G.); (V.D.); (C.F.); (P.S.); (F.C.); (A.L.B.)
| | - Candida Fasano
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (M.L.S.); (K.D.M.); (A.M.); (F.A.G.); (V.D.); (C.F.); (P.S.); (F.C.); (A.L.B.)
| | - Paola Sanese
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (M.L.S.); (K.D.M.); (A.M.); (F.A.G.); (V.D.); (C.F.); (P.S.); (F.C.); (A.L.B.)
| | - Filomena Cariola
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (M.L.S.); (K.D.M.); (A.M.); (F.A.G.); (V.D.); (C.F.); (P.S.); (F.C.); (A.L.B.)
| | - Antonia Lucia Buonadonna
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (M.L.S.); (K.D.M.); (A.M.); (F.A.G.); (V.D.); (C.F.); (P.S.); (F.C.); (A.L.B.)
| | - Valentina Grossi
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (M.L.S.); (K.D.M.); (A.M.); (F.A.G.); (V.D.); (C.F.); (P.S.); (F.C.); (A.L.B.)
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy;
| | - Cristiano Simone
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (M.L.S.); (K.D.M.); (A.M.); (F.A.G.); (V.D.); (C.F.); (P.S.); (F.C.); (A.L.B.)
- Medical Genetics, Department of Precision and Regenerative Medicine and Jonic Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
24
|
Shin MR, Kim MJ, Lee JA, Lee ES, Park HJ, Roh SS. Coix Sprouts Affect Triglyceride Metabolism in Huh7 Cells and High-Fat Diet-Induced Obese Mice. J Med Food 2024; 27:728-739. [PMID: 38808469 DOI: 10.1089/jmf.2023.k.0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024] Open
Abstract
Lipolysis is the hydrolysis of triglycerides (TGs), commonly known as fats. Intracellular lipolysis of TG is associated with adipose triglyceride lipase (ATGL), which provides fatty acids during times of metabolic need. The aim of this study was to determine whether Coix lacryma-jobi L. var. ma-yuen Stapf (Coix) sprouts (CS) can alleviate obesity through lipolysis. Overall, we investigated the potential of CS under in vitro and in vivo conditions and confirmed the underlying mechanisms. Huh7 cells were exposed to free fatty acids (FFAs), and C57BL/6J mice were fed a 60% high-fat diet. When FFA were introduced into Huh7 cells, the intracellular TG levels increased within the Huh7 cells. However, CS treatment significantly reduced intracellular TG levels. Furthermore, CS decreased the expression of Pparγ and Srebp1c mRNA and downregulated the mutant Pnpla3 (I148M) mRNA. Notably, CS significantly upregulated ATGL expression. CS treatment at a dose of 200 mg/kg/day resulted in a significant and dose-dependent decrease in body weight gain and epididymal adipose tissue weight. Specifically, the group treated with CS (200 mg/kg/day) exhibited a significant modulation of serum lipid biomarkers. In addition, CS ameliorated histological alterations in both the liver and adipose tissues. In summary, CS efficiently inhibited lipid accumulation through the activation of the lipolytic enzyme ATGL coupled with the suppression of enzymes involved in TG synthesis. Consequently, CS show promise as a potential anti-obesity agent.
Collapse
Affiliation(s)
- Mi-Rae Shin
- Department of Herbology, College of Korean Medicine, Daegu Haany University, Daegu, Republic of Korea
| | - Min Ju Kim
- Department of Herbology, College of Korean Medicine, Daegu Haany University, Daegu, Republic of Korea
- Research Center for Herbal Convergence on Liver Disease, Daegu Haany University, Gyeongsan-si, Gyeongsangbuk-do, Republic of Korea
| | - Jin A Lee
- Department of Herbology, College of Korean Medicine, Daegu Haany University, Daegu, Republic of Korea
| | - Eun Song Lee
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, Eumseong, Republic of Korea
| | - Hae-Jin Park
- DHU Bio Convergence Testing Center, Daegu Haany University, Gyeongsan-si, Gyeongsangbuk-do, Republic of Korea
| | - Seong-Soo Roh
- Department of Herbology, College of Korean Medicine, Daegu Haany University, Daegu, Republic of Korea
| |
Collapse
|
25
|
Peng Z, Wei G, Huang P, Matta H, Gao W, An P, Zhao S, Lin Y, Tan L, Vaid K, Skelton-Badlani D, Nasser I, Budas G, Lopez D, Li L, Breckenridge D, Myers R, McHutchison J, Kuang M, Popov YV. ASK1/ p38 axis inhibition blocks the release of mitochondrial "danger signals" from hepatocytes and suppresses progression to cirrhosis and liver cancer. Hepatology 2024; 80:346-362. [PMID: 38377458 PMCID: PMC11477174 DOI: 10.1097/hep.0000000000000801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/14/2023] [Indexed: 02/22/2024]
Abstract
BACKGROUND AND AIMS Apoptosis Signal-regulating Kinase 1 (ASK1) is activated by various pathological stimuli and induces cell apoptosis through downstream p38 activation. We studied the effect of pharmacological ASK1 inhibition on cirrhosis and its sequelae using comprehensive preclinical in vivo and in vitro systems. APPROACH AND RESULTS Short-term (4-6 wk) and long-term (24-44 wk) ASK1 inhibition using small molecule GS-444217 was tested in thioacetamide-induced and BALB/c. Mdr2-/- murine models of cirrhosis and HCC, and in vitro using primary hepatocyte cell death assays. Short-term GS-444217 therapy in both models strongly reduced phosphorylated p38, hepatocyte death, and fibrosis by up to 50%. Profibrogenic release of mitochondrial DAMP mitochondrial deoxyribonucleic acid from dying hepatocytes was blocked by ASK1 or p38 inhibition. Long-term (24 wk) therapy in BALBc.Mdr2 - / - model resulted in a moderate 25% reduction in bridging fibrosis, but not in net collagen deposition. Despite this, the development of cirrhosis was effectively prevented, with strongly reduced p21 + hepatocyte staining (by 72%), serum ammonia levels (by 46%), and portal pressure (average 6.07 vs. 8.53 mm Hg in controls). Extended ASK1 inhibition for 44 wk in aged BALB/c. Mdr2-/- mice resulted in markedly reduced tumor number and size by ~50% compared to the control group. CONCLUSIONS ASK1 inhibition suppresses the profibrogenic release of mitochondrial deoxyribonucleic acid from dying hepatocytes in a p38-dependent manner and protects from liver fibrosis. Long-term ASK1 targeting resulted in diminished net antifibrotic effect, but the progression to liver cirrhosis and cancer in BALBc/ Mdr2- / - mice was effectively inhibited. These data support the clinical evaluation of ASK1 inhibitors in fibrotic liver diseases.
Collapse
Affiliation(s)
- Zhenwei Peng
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Guangyan Wei
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Pinzhu Huang
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Heansika Matta
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Wen Gao
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ping An
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Shuangshuang Zhao
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Yi Lin
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Li Tan
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Center of Hepatopbiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kahini Vaid
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Disha Skelton-Badlani
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Imad Nasser
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Grant Budas
- Gilead Sciences, Inc., Foster City, California, USA
| | - David Lopez
- Gilead Sciences, Inc., Foster City, California, USA
| | - Li Li
- Gilead Sciences, Inc., Foster City, California, USA
| | | | - Rob Myers
- Gilead Sciences, Inc., Foster City, California, USA
| | | | - Ming Kuang
- Center of Hepatopbiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Division of Interventional Ultrasound, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yury V Popov
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
26
|
Wang Q, Yu G, Qiu J, Lu W. Application of Intravoxel Incoherent Motion in Clinical Liver Imaging: A Literature Review. J Magn Reson Imaging 2024; 60:417-440. [PMID: 37908165 DOI: 10.1002/jmri.29086] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
Intravoxel incoherent motion (IVIM) modeling is a widely used double-exponential model for describing diffusion-weighted imaging (DWI) signal, with a slow component related to pure molecular diffusion and a fast component associated with microcirculatory perfusion, which compensates for the limitations of traditional DWI. IVIM is a noninvasive technique for obtaining liver pathological information and characterizing liver lesions, and has potential applications in the initial diagnosis and treatment monitoring of liver diseases. Recent studies have demonstrated that IVIM-derived parameters are useful for evaluating liver lesions, including nonalcoholic fatty liver disease (NAFLD), liver fibrosis and liver tumors. However, the results are not stable. Therefore, it is necessary to summarize the current applications of IVIM in liver disease research, identify existing shortcomings, and point out the future development direction. In this review, we searched for studies related to hepatic IVIM-DWI applications over the past two decades in the PubMed database. We first introduce the fundamental principles and influential factors of IVIM, and then discuss its application in NAFLD, liver fibrosis, and focal hepatic lesions. It has been found that IVIM is still unstable in ensuring the robustness and reproducibility of measurements in the assessment of liver fibrosis grade and liver tumors differentiation, due to inconsistent and substantial overlap in the range of IVIM-derived parameters for different fibrotic stages. In the end, the future direction of IVIM-DWI in the assessment of liver diseases is discussed, emphasizing the need for further research on the stability of IVIM-derived parameters, particularly perfusion-related parameters, in order to promote the clinical practice of IVIM-DWI. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Qi Wang
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Guanghui Yu
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Jianfeng Qiu
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Weizhao Lu
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| |
Collapse
|
27
|
Sun L, Yue Z, Wang L. Research on the function of epigenetic regulation in the inflammation of non-alcoholic fatty liver disease. LIFE MEDICINE 2024; 3:lnae030. [PMID: 39872862 PMCID: PMC11749620 DOI: 10.1093/lifemedi/lnae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/30/2024] [Indexed: 01/30/2025]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver condition, characterized by a spectrum that progresses from simple hepatic steatosis to nonalcoholic steatohepatitis, which may eventually lead to cirrhosis and hepatocellular carcinoma. The precise pathogenic mechanisms underlying NAFLD and its related metabolic disturbances remain elusive. Epigenetic modifications, which entail stable transcriptional changes without altering the DNA sequence, are increasingly recognized as pivotal. The principal forms of epigenetic modifications include DNA methylation, histone modifications, chromatin remodeling, and noncoding RNAs. These alterations participate in the regulation of hepatic lipid metabolism, insulin resistance, mitochondrial injury, oxidative stress response, and release of inflammatory cytokines, all of which are associated with the onset and progression of NAFLD. This review discussed recent advances in understanding the potential epigenetic regulation of inflammation in NAFLD. Unraveling these epigenetic mechanisms may facilitate the identification of early diagnostic biomarkers and the development of targeted therapeutic strategies for NAFLD.
Collapse
Affiliation(s)
- Lin Sun
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Changle West Road, Xincheng District, Xi’an, Shaanxi 710032, China
| | - Zhensheng Yue
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Changle West Road, Xincheng District, Xi’an, Shaanxi 710032, China
- Department of Ophthalmology, Xi-Jing Hospital, Fourth Military Medical University, Changle West Road, Xincheng District, Xi’an, Shaanxi 710032, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Changle West Road, Xincheng District, Xi’an, Shaanxi 710032, China
| |
Collapse
|
28
|
Zhang W, Li MY, Li ZQ, Diao YK, Liu XK, Guo HW, Wu XC, Wang H, Wang SY, Zhou YH, Lu J, Lin KY, Gu WM, Chen TH, Li J, Liang YJ, Yao LQ, Wang MD, Li C, Yin DX, Pawlik TM, Lau WY, Shen F, Chen Z, Yang T. Long-term outcomes following hepatectomy in patients with lean non-alcoholic fatty liver disease-associated hepatocellular carcinoma versus overweight and obese counterparts: A multicenter analysis. Asian J Surg 2024:S1015-9584(24)01459-3. [PMID: 39054140 DOI: 10.1016/j.asjsur.2024.07.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/15/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND & AIMS With the rising prevalence of non-alcoholic fatty liver disease (NAFLD) as a significant etiology for hepatocellular carcinoma (HCC), lean NAFLD-HCC has emerged as a specific distinct subtype. This study sought to investigate long-term outcomes following curative-intent hepatectomy for early-stage NAFLD-HCC among lean patients compared with overweight and obese individuals. METHODS A multicenter retrospective analysis was used to assess early-stage NAFLD-HCC patients undergoing curative-intent hepatectomy between 2009 and 2022. Patients were stratified by preoperative body mass index (BMI) into the lean (<23.0 kg/m2), overweight (23.0-27.4 kg/m2) and obese (≥27.5 kg/m2) groups. Study endpoints were overall survival (OS) and recurrence-free survival (RFS), which were compared among groups. RESULTS Among 309 patients with NAFLD-HCC, 66 (21.3 %), 176 (57.0 %), and 67 (21.7 %) were lean, overweight, and obese, respectively. The three groups were similar relative to most liver, tumor, and surgery-related variables. Compared with overweight patients (71.3 % and 55.6 %), the lean individuals had a worse 5-year OS and RFS (55.4 % and 35.1 %, P = 0.017 and 0.002, respectively), which were comparable to obese patients (48.5 % and 38.2 %, P = 0.939 and 0.442, respectively). After adjustment for confounding factors, multivariable Cox-regression analysis identified that lean bodyweight was independently associated with decreased OS (hazard ratio: 1.69; 95 % confidence interval: 1.06-2.71; P = 0.029) and RFS (hazard ratio: 1.72; 95 % confidence interval: 1.17-2.52; P = 0.006) following curative-intent hepatectomy for early-stage NAFLD-HCC. CONCLUSIONS Compared with overweight patients, individuals with lean NAFLD-HCC had inferior long-term oncological survival after hepatectomy for early-stage NAFLD-HCC. These data highlight the need for examination of the distinct carcinogenic pathways of lean NAFLD-HCC and its potential consequences in HCC recurrence.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China; Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Min-Yu Li
- Department of Special Care Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Zi-Qiang Li
- Department of Liver Transplantation and Hepatic Surgery, First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Yong-Kang Diao
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Xing-Kai Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, China
| | - Hong-Wei Guo
- The 2nd Department of General Surgery, The Second People's Hospital of Changzhi, Changzhi, China
| | - Xiao-Chang Wu
- Department of Hepatobiliary Surgery, Huzhou Central Hospital, Zhejiang University Huzhou Hospital, Huzhou, China
| | - Hong Wang
- Department of General Surgery, Liuyang People's Hospital, Liuyang, China
| | - Si-Yuan Wang
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Ya-Hao Zhou
- Department of Hepatobiliary Surgery, Pu'er People's Hospital, Pu'er, China
| | - Jun Lu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Kong-Ying Lin
- Department of Hepatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Wei-Min Gu
- The First Department of General Surgery, The Fourth Hospital of Harbin, Harbin, China
| | - Ting-Hao Chen
- Department of General Surgery, Ziyang First People's Hospital, Ziyang, China
| | - Jie Li
- Department of Hepatobiliary Surgery, Fuyang People's Hospital, Fuyang, China
| | - Ying-Jian Liang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lan-Qing Yao
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Ming-Da Wang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Chao Li
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Dong-Xu Yin
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China; School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Timothy M Pawlik
- Department of Surgery, Ohio State University, Wexner Medical Center, Columbus, OH, United States
| | - Wan Yee Lau
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China; Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Feng Shen
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Zhong Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Nantong, China.
| | - Tian Yang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
29
|
Alfieri CM, Molinari P, Cinque F, Vettoretti S, Cespiati A, Bignamini D, Nardelli L, Fracanzani AL, Castellano G, Lombardi R. What Not to Overlook in the Management of Patients with Type 2 Diabetes Mellitus: The Nephrological and Hepatological Perspectives. Int J Mol Sci 2024; 25:7728. [PMID: 39062970 PMCID: PMC11276657 DOI: 10.3390/ijms25147728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/17/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Diabetes mellitus (DM) significantly impacts renal and hepatic function, necessitating comprehensive understanding and management strategies. Renal involvement, namely diabetic kidney disease (DKD), presents a global challenge, with increasing prevalence paralleling DM rates. Lifestyle modifications and pharmacotherapy targeting hypertension and glycemic control have pivotal roles in DKD management. Concurrently, hepatic involvement in DM, characterized by metabolic dysfunction-associated steatotic liver disease (MASLD), presents a bidirectional relationship. DM exacerbates MASLD progression, while MASLD predisposes to DM development and worsens glycemic control. Screening for MASLD in DM patients is of high importance, utilizing non-invasive methods like ultrasound and fibrosis scores. Lifestyle modifications, such as weight loss and a Mediterranean diet, mitigate MASLD progression. Promising pharmacotherapies, like SGLT2 inhibitors and GLP-1 agonists, demonstrate efficacy in both DM and MASLD management. Special populations, such as diabetic individuals undergoing hemodialysis or kidney transplant recipients, demand special care due to unique clinical features. Similarly, DM exacerbates complications in MASLD patients, elevating the risks of hepatic decompensation and hepatocellular carcinoma. Recognizing the interconnectedness of DM, renal, and hepatic diseases underscores the need for multidisciplinary approaches for optimal patient outcomes. The present review aims to present the main characteristics and crucial points not to be overlooked regarding the renal and hepatic involvement in DM patients focusing on the inter-relationships between the renal and the hepatic involvements.
Collapse
Affiliation(s)
- Carlo Maria Alfieri
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Policlinico, 20122 Milan, Italy (L.N.); (G.C.)
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Paolo Molinari
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Policlinico, 20122 Milan, Italy (L.N.); (G.C.)
- Post-Graduate School of Specialization in Nephrology, University of Milan, 20122 Milan, Italy
| | - Felice Cinque
- SC Medicina Indirizzo Metabolico, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, 20122 Milan, Italy; (A.C.); (D.B.); (A.L.F.); (R.L.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Simone Vettoretti
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Policlinico, 20122 Milan, Italy (L.N.); (G.C.)
| | - Annalisa Cespiati
- SC Medicina Indirizzo Metabolico, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, 20122 Milan, Italy; (A.C.); (D.B.); (A.L.F.); (R.L.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Daniela Bignamini
- SC Medicina Indirizzo Metabolico, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, 20122 Milan, Italy; (A.C.); (D.B.); (A.L.F.); (R.L.)
| | - Luca Nardelli
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Policlinico, 20122 Milan, Italy (L.N.); (G.C.)
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Anna Ludovica Fracanzani
- SC Medicina Indirizzo Metabolico, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, 20122 Milan, Italy; (A.C.); (D.B.); (A.L.F.); (R.L.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Giuseppe Castellano
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Policlinico, 20122 Milan, Italy (L.N.); (G.C.)
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Rosa Lombardi
- SC Medicina Indirizzo Metabolico, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, 20122 Milan, Italy; (A.C.); (D.B.); (A.L.F.); (R.L.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| |
Collapse
|
30
|
Hsu CY, Abdulrahim MN, Mustafa MA, Omar TM, Balto F, Pineda I, Khudair TT, Ubaid M, Ali MS. The multifaceted role of PCSK9 in cancer pathogenesis, tumor immunity, and immunotherapy. Med Oncol 2024; 41:202. [PMID: 39008137 DOI: 10.1007/s12032-024-02435-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9), a well-known regulator of cholesterol metabolism and cardiovascular diseases, has recently garnered attention for its emerging involvement in cancer biology. The multifunctional nature of PCSK9 extends beyond lipid regulation and encompasses a wide range of cellular processes that can influence cancer progression. Studies have revealed that PCSK9 can modulate signaling pathways, such as PI3K/Akt, MAPK, and Wnt/β-catenin, thereby influencing cellular proliferation, survival, and angiogenesis. Additionally, the interplay between PCSK9 and cholesterol homeostasis may impact membrane dynamics and cellular migration, further influencing tumor aggressiveness. The central role of the immune system in monitoring and controlling cancer is increasingly recognized. Recent research has demonstrated the ability of PCSK9 to modulate immune responses through interactions with immune cells and components of the tumor microenvironment. This includes effects on dendritic cell maturation, T cell activation, and cytokine production, suggesting a role in shaping antitumor immune responses. Moreover, the potential influence of PCSK9 on immune checkpoints such as PD1/PD-L1 lends an additional layer of complexity to its immunomodulatory functions. The growing interest in cancer immunotherapy has prompted exploration into the potential of targeting PCSK9 for therapeutic benefits. Preclinical studies have demonstrated synergistic effects between PCSK9 inhibitors and established immunotherapies, offering a novel avenue for combination treatments. The strategic manipulation of PCSK9 to enhance tumor immunity and improve therapeutic outcomes presents an exciting area for further investigations. Understanding the mechanisms by which PCSK9 influences cancer biology and immunity holds promise for the development of novel immunotherapeutic approaches. This review aims to provide a comprehensive analysis of the intricate connections between PCSK9, cancer pathogenesis, tumor immunity, and the potential implications for immunotherapeutic interventions.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City, 71710, Taiwan.
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ, 85004, USA.
| | | | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, Imam Jaafar AL-Sadiq University, Baghdad, Iraq
- Department of Pathological Analyzes, College of Applied Sciences, University of Samarra, Samarra, Iraq
| | - Thabit Moath Omar
- Department of Medical Laboratory Technics, Al-Noor University College, Nineveh, Iraq
| | - Franklin Balto
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, 560069, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Indira Pineda
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Teeba Thamer Khudair
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Mohammed Ubaid
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | |
Collapse
|
31
|
Pliszka M, Szablewski L. Associations between Diabetes Mellitus and Selected Cancers. Int J Mol Sci 2024; 25:7476. [PMID: 39000583 PMCID: PMC11242587 DOI: 10.3390/ijms25137476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/15/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Cancer is one of the major causes of mortality and is the second leading cause of death. Diabetes mellitus is a serious and growing problem worldwide, and its prevalence continues to grow; it is the 12th leading cause of death. An association between diabetes mellitus and cancer has been suggested for more than 100 years. Diabetes is a common disease diagnosed among patients with cancer, and evidence indicates that approximately 8-18% of patients with cancer have diabetes, with investigations suggesting an association between diabetes and some particular cancers, increasing the risk for developing cancers such as pancreatic, liver, colon, breast, stomach, and a few others. Breast and colorectal cancers have increased from 20% to 30% and there is a 97% increased risk of intrahepatic cholangiocarcinoma or endometrial cancer. On the other hand, a number of cancers and cancer therapies increase the risk of diabetes mellitus. Complications due to diabetes in patients with cancer may influence the choice of cancer therapy. Unfortunately, the mechanisms of the associations between diabetes mellitus and cancer are still unknown. The aim of this review is to summarize the association of diabetes mellitus with selected cancers and update the evidence on the underlying mechanisms of this association.
Collapse
Affiliation(s)
- Monika Pliszka
- Chair and Department of General Biology and Parasitology, Medical University of Warsaw, Chałubińskiego Str. 5, 02-004 Warsaw, Poland
| | - Leszek Szablewski
- Chair and Department of General Biology and Parasitology, Medical University of Warsaw, Chałubińskiego Str. 5, 02-004 Warsaw, Poland
| |
Collapse
|
32
|
Wen J, Wang X, Xia M, Wei B, Yang H, Hou Y. Radiomics features based on dual-area CT predict the expression levels of fatty acid binding protein 4 and outcome in hepatocellular carcinoma. Abdom Radiol (NY) 2024; 49:1905-1917. [PMID: 38453791 DOI: 10.1007/s00261-023-04177-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 03/09/2024]
Abstract
RATIONALE AND OBJECTIVES To evaluate the predictive value of tumor and peritumor radiomics in the fatty acid binding protein 4 (FABP4) expression levels and overall survival in patients with hepatocellular carcinoma. MATERIALS AND METHODS The genomic data of HCC patients were obtained from The Cancer Genome Atlas. The Dual-area CT images of corresponding patients were downloaded from The Cancer Imaging Archive, for radiomics feature extraction, model construction and prognosis analysis. Simultaneously, using patients from Sichuan Provincial People's Hospital, the prognostic value of the radiomics model in HCC patients was validated. RESULTS In the TCIA database, the area under the curve (AUC) values of the volumes of interest (VOI)whole model in the training set and internal validation set were 0.812 and 0.754, respectively, and the AUC value of VOIwhole+periphery in the training set and internal validation set were 0.866 and 0.779, respectively. In the VOIwhole and the VOIwhole+periphery model of the independent cohort, there were significant differences in OS between the high and low rad-score groups (P = 0.009, P = 0.021, respectively). Significant positive correlations can be observed between FABP4 expression and correlations with rad-score of VOIwhole model (r = 0.691) and VOIwhole+periphery model (r = 0.732) in the independent cohort. CONCLUSION Radiomics models of tumor and peritumor Dual-area CT images could predict stably the expression levels of FABP4 and may be helping in personalized treatment strategies.
Collapse
Affiliation(s)
- Jingyu Wen
- Department of Medical Insurance, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xi Wang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Organ Transplantation, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingge Xia
- Department of Medical Insurance, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Bowen Wei
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Organ Transplantation, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Hongji Yang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Organ Transplantation, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province & Organ Transplantation Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Yifu Hou
- Department of Organ Transplantation, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province & Organ Transplantation Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China.
| |
Collapse
|
33
|
Wu D, Zuo Z, Sun X, Li X, Yin F, Yin W. ACSL4 promotes malignant progression of Hepatocellular carcinoma by targeting PAK2 transcription. Biochem Pharmacol 2024; 224:116206. [PMID: 38615921 DOI: 10.1016/j.bcp.2024.116206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/10/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Long-chain fatty acyl-Coa ligase 4 (ACSL4) is an important enzyme that converts fatty acids to fatty acyl-Coa esters, there is increasing evidence for its role in carcinogenesis. However, the precise role of ACLS4 in hepatocellular carcinoma (HCC) is not clearly understood. In the present study, we provide evidence that ACSL4 expression was specifically elevated in HCC and is associated with poor clinical outcomes. ACSL4 significantly promotes the growth and metastasis of HCC both in vitro and in vivo. RNA sequencing and functional experiments showed that the effect of ACSL4 on HCC development was heavily dependent on PAK2. ACSL4 expression is well correlated with PAK2 in HCC, and ACSL4 even transcriptionally increased PAK2 gene expression mediated by Sp1. In addition, emodin, a naturally occurring anthraquinone derivative, inhibited HCC cell growth and tumor progression by targeting ACSL4. In summary, ACSL4 plays a novel oncogene in HCC development by regulating PAK2 transcription. Targeting ACSL4 could be useful in drug development and therapy for HCC.
Collapse
Affiliation(s)
- Dandan Wu
- College of Life Sciences in Nanjing University (Xianlin Campus), State Key lab of Pharmaceutical Biotechnology (SKLPB), Nanjing University, Nanjing 210046, China
| | - Zongchao Zuo
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Xinning Sun
- College of Life Sciences in Nanjing University (Xianlin Campus), State Key lab of Pharmaceutical Biotechnology (SKLPB), Nanjing University, Nanjing 210046, China
| | - Xin Li
- College of Life Sciences in Nanjing University (Xianlin Campus), State Key lab of Pharmaceutical Biotechnology (SKLPB), Nanjing University, Nanjing 210046, China
| | - Fangzhou Yin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Wu Yin
- College of Life Sciences in Nanjing University (Xianlin Campus), State Key lab of Pharmaceutical Biotechnology (SKLPB), Nanjing University, Nanjing 210046, China.
| |
Collapse
|
34
|
Niu MY, Liu YJ, Shi JJ, Chen RY, Zhang S, Li CY, Cao JF, Yang GJ, Chen J. The Emerging Role of Ubiquitin-Specific Protease 36 (USP36) in Cancer and Beyond. Biomolecules 2024; 14:572. [PMID: 38785979 PMCID: PMC11118191 DOI: 10.3390/biom14050572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
The balance between ubiquitination and deubiquitination is instrumental in the regulation of protein stability and maintenance of cellular homeostasis. The deubiquitinating enzyme, ubiquitin-specific protease 36 (USP36), a member of the USP family, plays a crucial role in this dynamic equilibrium by hydrolyzing and removing ubiquitin chains from target proteins and facilitating their proteasome-dependent degradation. The multifaceted functions of USP36 have been implicated in various disease processes, including cancer, infections, and inflammation, via the modulation of numerous cellular events, including gene transcription regulation, cell cycle regulation, immune responses, signal transduction, tumor growth, and inflammatory processes. The objective of this review is to provide a comprehensive summary of the current state of research on the roles of USP36 in different pathological conditions. By synthesizing the findings from previous studies, we have aimed to increase our understanding of the mechanisms underlying these diseases and identify potential therapeutic targets for their treatment.
Collapse
Affiliation(s)
- Meng-Yao Niu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (M.-Y.N.); (Y.-J.L.); (J.-J.S.); (R.-Y.C.); (C.-Y.L.); (J.-F.C.)
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (M.-Y.N.); (Y.-J.L.); (J.-J.S.); (R.-Y.C.); (C.-Y.L.); (J.-F.C.)
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (M.-Y.N.); (Y.-J.L.); (J.-J.S.); (R.-Y.C.); (C.-Y.L.); (J.-F.C.)
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (M.-Y.N.); (Y.-J.L.); (J.-J.S.); (R.-Y.C.); (C.-Y.L.); (J.-F.C.)
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Shun Zhang
- Ningbo No.2 Hospital, Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China;
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (M.-Y.N.); (Y.-J.L.); (J.-J.S.); (R.-Y.C.); (C.-Y.L.); (J.-F.C.)
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Jia-Feng Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (M.-Y.N.); (Y.-J.L.); (J.-J.S.); (R.-Y.C.); (C.-Y.L.); (J.-F.C.)
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (M.-Y.N.); (Y.-J.L.); (J.-J.S.); (R.-Y.C.); (C.-Y.L.); (J.-F.C.)
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
- Ningbo No.2 Hospital, Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China;
| |
Collapse
|
35
|
Kobayashi N, Tada T, Nishimura T, Matono T, Yuri Y, Takashima T, Aizawa N, Ikeda N, Fukunishi S, Hashimoto M, Ohyanagi M, Enomoto H, Iijima H. Metabolic dysfunction-associated steatotic liver disease criteria may underestimate the number of lean female nonalcoholic fatty liver disease patients with significant liver fibrosis. Hepatol Res 2024; 54:429-438. [PMID: 38015179 DOI: 10.1111/hepr.13994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
AIM It remains unclear whether the newly defined concept of metabolic dysfunction-associated steatotic liver disease (MASLD) appropriately includes patients with nonalcoholic fatty liver disease with significant liver fibrosis. METHODS A total of 4112 patients in whom nonalcoholic fatty liver disease was diagnosed by ultrasonography during medical checkups were enrolled. We defined a fibrosis-4 index ≥1.3 in patients aged <65 years and ≥2.0 in patients aged ≥65 years as significant liver fibrosis. RESULTS The numbers of patients with a low, intermediate, and high probability of advanced fibrosis based on the fibrosis-4 index were 3360 (81.7%), 668 (16.2%), and 84 (2.0%). There were 3828 (93.1%) and 284 (6.9%) patients diagnosed with MASLD and non-MASLD. The non-MASLD group, compared with the MASLD group, was significantly younger (44 vs. 55 years) and had a higher percentage of women (62.3% vs. 27.7%). Significant fibrosis, defined based on the fibrosis-4 index, was present in 18.5% of the MASLD group and 15.5% of the non-MASLD group. In a multivariable analysis, female sex (OR 6.170, 95% CI 3.180-12.000; p < 0.001) was independently associated with non-MASLD in patients with a significant fibrosis. Among non-MASLD patients with a significant fibrosis (n = 44), body mass index was significantly lower in females than in males (p < 0.001). In a multivariable analysis of patients aged <65 years, female sex (OR, 7.700; 95% CI, 3.750-15.800; p < 0.001) remained independently associated with non-MASLD in patients with a significant fibrosis. CONCLUSIONS MASLD may inappropriately exclude patients with significant fibrosis, especially lean females with nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Natsuko Kobayashi
- Department of Gastroenterology, Division of Hepatobiliary and Pancreatic Disease, Hyogo Medical University, Nishinomiya, Japan
- Department of Gastroenterology, Kenwakai Hospital, Iida, Nagano, Japan
| | - Toshifumi Tada
- Department of Gastroenterology, Division of Hepatobiliary and Pancreatic Disease, Hyogo Medical University, Nishinomiya, Japan
- Department of Internal Medicine, Japanese Red Cross Society Himeji Hospital, Himeji, Hyogo, Japan
| | - Takashi Nishimura
- Department of Gastroenterology, Division of Hepatobiliary and Pancreatic Disease, Hyogo Medical University, Nishinomiya, Japan
- Ultrasound Imaging Center, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Tomomitsu Matono
- Department of Gastroenterology, Division of Hepatobiliary and Pancreatic Disease, Hyogo Medical University, Nishinomiya, Japan
- Department of Gastroenterology, Hyogo Prefectural Harima-Himeji General Medical Center, Himeji, Hyogo, Japan
| | - Yukihisa Yuri
- Department of Gastroenterology, Division of Hepatobiliary and Pancreatic Disease, Hyogo Medical University, Nishinomiya, Japan
| | - Tomoyuki Takashima
- Department of Gastroenterology, Division of Hepatobiliary and Pancreatic Disease, Hyogo Medical University, Nishinomiya, Japan
| | - Nobuhiro Aizawa
- Department of Gastroenterology, Division of Hepatobiliary and Pancreatic Disease, Hyogo Medical University, Nishinomiya, Japan
| | - Naoto Ikeda
- Department of Gastroenterology, Division of Hepatobiliary and Pancreatic Disease, Hyogo Medical University, Nishinomiya, Japan
| | - Shinya Fukunishi
- Department of Gastroenterology, Division of Hepatobiliary and Pancreatic Disease, Hyogo Medical University, Nishinomiya, Japan
| | - Mariko Hashimoto
- Ultrasound Imaging Center, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | | | - Hirayuki Enomoto
- Department of Gastroenterology, Division of Hepatobiliary and Pancreatic Disease, Hyogo Medical University, Nishinomiya, Japan
| | - Hiroko Iijima
- Department of Gastroenterology, Division of Hepatobiliary and Pancreatic Disease, Hyogo Medical University, Nishinomiya, Japan
- Ultrasound Imaging Center, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| |
Collapse
|
36
|
Stauffer WT, Bobardt M, Ure DR, Foster RT, Gallay P. Cyclophilin D knockout significantly prevents HCC development in a streptozotocin-induced mouse model of diabetes-linked NASH. PLoS One 2024; 19:e0301711. [PMID: 38573968 PMCID: PMC10994289 DOI: 10.1371/journal.pone.0301711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/20/2024] [Indexed: 04/06/2024] Open
Abstract
A family of Peptidyl-prolyl isomerases (PPIases), called Cyclophilins, localize to numerous intracellular and extracellular locations where they contribute to a variety of essential functions. We previously reported that non-immunosuppressive pan-cyclophilin inhibitor drugs like reconfilstat (CRV431) or NV556 decreased multiple aspects of non-alcoholic fatty liver disease (NAFLD) in mice under two different non-alcoholic steatohepatitis (NASH) mouse models. Both CRV431 and NV556 inhibit several cyclophilin isoforms, among which cyclophilin D (CypD) has not been previously investigated in this context. It is unknown whether it is necessary to simultaneously inhibit multiple cyclophilin family members to achieve therapeutic benefits or if loss-of-function of one is sufficient. Furthermore, narrowing down the isoform most responsible for a particular aspect of NAFLD/NASH, such as hepatocellular carcinoma (HCC), would allow for more precise future therapies. Features of human diabetes-linked NAFLD/NASH can be reliably replicated in mice by administering a single high dose of streptozotocin to disrupt pancreatic beta cells, in conjunction with a high sugar, high fat, high cholesterol western diet over the course of 30 weeks. Here we show that while both wild-type (WT) and Ppif-/- CypD KO mice develop multipe severe NASH disease features under this model, the formation of HCC nodules was significantly blunted only in the CypD KO mice. Furthermore, of differentially expressed transcripts in a qPCR panel of select HCC-related genes, nearly all were downregulated in the CypD KO background. Cyclophilin inhibition is a promising and novel avenue of treatment for diet-induced NAFLD/NASH. This study highlights the impact of CypD loss-of-function on the development of HCC, one of the most severe disease outcomes.
Collapse
Affiliation(s)
- Winston T. Stauffer
- Department of Immunology & Microbiology, Scripps Research, La Jolla, California, United States of America
| | - Michael Bobardt
- Department of Immunology & Microbiology, Scripps Research, La Jolla, California, United States of America
| | - Daren R. Ure
- Hepion Pharmaceuticals, Edison, New Jersey, United States of America
| | - Robert T. Foster
- Hepion Pharmaceuticals, Edison, New Jersey, United States of America
| | - Philippe Gallay
- Department of Immunology & Microbiology, Scripps Research, La Jolla, California, United States of America
| |
Collapse
|
37
|
Osman EEA, Shemis MA, Abdel-Hameed ESS, Gouda AE, Hassan H, Atef N, Mamdouh S. Phytoconstituent analysis, anti-inflammatory, antimicrobial and anticancer effects of nano encapsulated Convolvulus arvensis L. extracts. BMC Complement Med Ther 2024; 24:122. [PMID: 38486187 PMCID: PMC10938824 DOI: 10.1186/s12906-024-04420-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/29/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND The Convolvulus genus is distributed all over the world and has a long history in traditional medicine. As nanotechnology expands its reach into areas like drug delivery and biomedicine, this study intends to assess the potential of Convolvulus arvensis L. extracts as anti-bacterial, anti-inflammatory and anti-cancer agents, along with chemical profiling of the methanolic (MeOH) extract active ingredients. METHODS The chemical composition of an 85% MeOH extract was investigated by liquid chromatography with an electrospray source connected to mass spectrometry (LC-ESI-MS). Both the 85% MeOH extract and n-butanol fraction of C. arvensis were loaded for the first time on alginate/chitosan nanoparticles. The 85% MeOH extract, n-butanol fraction and their loaded nanoparticles were tested for their cytotoxicity, anticancer, anti-inflammatory and antibacterial activity (against pathogenic bacteria, E. coli and S. aureus). RESULTS The chemical investigation of 85% MeOH extract of C. arvensis underwent LC-ESI-MS analysis, revealing twenty-six phenolic substances, of which 16 were phenolic acids, 6 were flavonoids, 1 glycolipid, 1 sesquiterpene and 2 unknown compounds. The FT-IR spectra confirmed the encapsulation of the 85% MeOH extract and n-butanol fraction onto alginate/chitosan nanoparticles and small size obtained by TEM maintained them nontoxic and enhanced their anti-inflammatory activity (the IC50 was decreased from 1050 to 175 µg/ml). The anti-cancer activity against HepG2 was increased and the cell viability was decreased from 28.59 ± 0.52 to 20.80 ± 0.27 at a maximum concentration of 1000 µg/ml. In addition, the MIC of encapsulated extracts was decreased from 31.25 to7.78 µg/ml in E. coli (Gm-ve) and from 15.56 to 7.78 µg/ml in S. aureus (Gm + ve) bacteria. CONCLUSION Both alginate and chitosan are excellent natural polymers for the encapsulation process, which affects positively on the bioactive constituents of C. arvensis extracts and improves their biological properties.
Collapse
Affiliation(s)
- Ezzat E A Osman
- Department of Medicinal Chemistry, Theodor Bilharz Research Institute, Kornaish El-Nile St, Giza, 12411, Egypt.
| | - Mohamed A Shemis
- Department of Biochemistry and Molecular Biology, Theodor Bilharz Research Institute, Kornaish El-Nile St, Giza, 12411, Egypt
| | - El-Sayed S Abdel-Hameed
- Department of Medicinal Chemistry, Theodor Bilharz Research Institute, Kornaish El-Nile St, Giza, 12411, Egypt
| | - Abdullah E Gouda
- Department of Biochemistry and Molecular Biology, Theodor Bilharz Research Institute, Kornaish El-Nile St, Giza, 12411, Egypt
| | - Hanem Hassan
- Department of Biochemistry and Molecular Biology, Theodor Bilharz Research Institute, Kornaish El-Nile St, Giza, 12411, Egypt
| | - Nahla Atef
- Air Force Specialized Hospital, Cairo, 19448, Egypt
| | - Samah Mamdouh
- Department of Biochemistry and Molecular Biology, Theodor Bilharz Research Institute, Kornaish El-Nile St, Giza, 12411, Egypt
| |
Collapse
|
38
|
Shen X, Chen M, Zhang J, Lin Y, Gao X, Tu J, Chen K, Zhu A, Xu S. Unveiling the Impact of ApoF Deficiency on Liver and Lipid Metabolism: Insights from Transcriptome-Wide m6A Methylome Analysis in Mice. Genes (Basel) 2024; 15:347. [PMID: 38540406 PMCID: PMC10970566 DOI: 10.3390/genes15030347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/23/2024] [Accepted: 03/07/2024] [Indexed: 04/02/2024] Open
Abstract
Lipid metabolism participates in various physiological processes and has been shown to be connected to the development and progression of multiple diseases, especially metabolic hepatopathy. Apolipoproteins (Apos) act as vectors that combine with lipids, such as cholesterol and triglycerides (TGs). Despite being involved in lipid transportation and metabolism, the critical role of Apos in the maintenance of lipid metabolism has still not been fully revealed. This study sought to clarify variations related to m6A methylome in ApoF gene knockout mice with disordered lipid metabolism based on the bioinformatics method of transcriptome-wide m6A methylome epitranscriptomics. High-throughput methylated RNA immunoprecipitation sequencing (MeRIP-seq) was conducted in both wild-type (WT) and ApoF knockout (KO) mice. As a result, the liver histopathology presented vacuolization and steatosis, and the serum biochemical assays reported abnormal lipid content in KO mice. The m6A-modified mRNAs were conformed consensus sequenced in eukaryotes, and the distribution was enriched within the coding sequences and 3' non-coding regions. In KO mice, the functional annotation terms of the differentially expressed genes (DEGs) included cholesterol, steroid and lipid metabolism, and lipid storage. In the differentially m6A-methylated mRNAs, the functional annotation terms included cholesterol, TG, and long-chain fatty acid metabolic processes; lipid transport; and liver development. The overlapping DEGs and differential m6A-modified mRNAs were also enriched in terms of lipid metabolism disorder. In conclusion, transcriptome-wide MeRIP sequencing in ApoF KO mice demonstrated the role of this crucial apolipoprotein in liver health and lipid metabolism.
Collapse
Affiliation(s)
- Xuebin Shen
- Department of Cardiology, Affiliated Nanping First Hospital, Fujian Medical University, Nanping 353000, China; (X.S.); (Y.L.); (X.G.)
| | - Mengting Chen
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (M.C.); (J.T.); (K.C.)
| | - Jian Zhang
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (M.C.); (J.T.); (K.C.)
| | - Yifan Lin
- Department of Cardiology, Affiliated Nanping First Hospital, Fujian Medical University, Nanping 353000, China; (X.S.); (Y.L.); (X.G.)
| | - Xinyue Gao
- Department of Cardiology, Affiliated Nanping First Hospital, Fujian Medical University, Nanping 353000, China; (X.S.); (Y.L.); (X.G.)
| | - Jionghong Tu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (M.C.); (J.T.); (K.C.)
| | - Kunqi Chen
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (M.C.); (J.T.); (K.C.)
| | - An Zhu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (M.C.); (J.T.); (K.C.)
| | - Shanghua Xu
- Department of Cardiology, Affiliated Nanping First Hospital, Fujian Medical University, Nanping 353000, China; (X.S.); (Y.L.); (X.G.)
| |
Collapse
|
39
|
Ye Z, Xiong H, Huang L, Zhao Q, Xiong Z, Zhang H, Zhang W. Mechanisms underlying the combination effect of arsenite and high-fat diet on aggravating liver injury in mice. ENVIRONMENTAL TOXICOLOGY 2024; 39:1323-1334. [PMID: 37955338 DOI: 10.1002/tox.24037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/23/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Abstract
Arsenic (As) is a highly toxic metalloid that can be found in insufficiently purified drinking water and exerts adverse effects on the physiology of living organisms that can negatively affect human health after subchronic exposure, causing several diseases, such as liver damage. A high-fat diet, which is increasing in frequency worldwide, can aggravate hepatic pathology. However, the mechanisms behind liver injury caused by the combinatory effects of As exposure and a high-fat diet remain unclear. In this study, we investigated such underlying mechanisms by focusing on three different aspects: As biotransformation, pathological liver damage, and differential expression of signaling pathway components. We employed mice that were fed a regular diet or a high-fat diet and exposed them to a range of arsenite concentrations (As(III), 0.05-50 mg/L) for 12 weeks. Our results showed that a high-fat diet increased the absorption of As into the liver and enhanced liver toxicity, which became progressively more severe as the As concentration increased. Co-exposure to a high-fat diet and As(III) activated PI3K/AKT and PPAR signaling as well as fatty acid metabolism pathways. In addition, the expression of proteins related to lipid cell function, lipid metabolism, and the regulation of body weight was also affected. Our study provides insights into the mechanisms that contribute to liver injury from subchronic combinatory exposure to As and a high-fat diet and showcases the importance of a healthy lifestyle, which may be of particular benefit to people living in areas with high As(III) concentrations, as a means to reduce or prevent aggravated liver damage.
Collapse
Affiliation(s)
- Zijun Ye
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Haiyan Xiong
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of Environment and Ecology, Xiamen University, Xiamen, China
| | - Liping Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Qianyu Zhao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Zhu Xiong
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Hongguo Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Wei Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| |
Collapse
|
40
|
Zhao Y, Tan H, Zhang X, Zhu J. Roles of peroxisome proliferator-activated receptors in hepatocellular carcinoma. J Cell Mol Med 2024; 28:e18042. [PMID: 37987033 PMCID: PMC10902579 DOI: 10.1111/jcmm.18042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/22/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the main pathological type of liver cancer, is linked to risk factors such as viral hepatitis, alcohol intake and non-alcoholic fatty liver disease (NAFLD). Recent advances have greatly improved our understanding that NAFLD is playing a major risk factor for HCC. Peroxisome proliferator-activated receptors (PPARs) are a class of transcription factors divided into three subtypes: PPARα (PPARA), PPARδ/β (PPARD) and PPARγ (PPARG). As important nuclear receptors, PPARs are involved in many physiological processes, and PPARs can improve NAFLD by regulating lipid metabolism, accelerating fatty acid oxidation and inhibiting inflammation. In recent years, some studies have shown that PPARs can participate in the occurrence and development of HCC by regulating metabolic pathways. In addition, PPAR modulators have been reported to inhibit the proliferation and metastasis of HCC cells and can enhance the curative effect of conventional treatments. This article reviews the role of PPARs in the occurrence and development of HCC, as well as its value in the diagnosis, treatment and prognosis of HCC, in order to provide directions for future research.
Collapse
Affiliation(s)
- Yaqin Zhao
- Department of Abdominal Oncology, Cancer Center, West China HospitalSichuan UniversityChengduChina
| | - Huabing Tan
- Department of Infectious Diseases, Liver Disease Laboratory, Renmin HospitalHubei University of MedicineShiyanHubeiChina
| | - Xiaoyu Zhang
- Division of Gastrointestinal Surgery, Department of General SurgeryThe Affiliated Huai'an Hospital of Xuzhou Medical UniversityHuai'anChina
| | - Jing Zhu
- Nanjing Drum Tower HospitalNanjingChina
| |
Collapse
|
41
|
Li M, Larsen FT, van den Heuvel MC, Gier K, Gorter AR, Oosterhuis D, Bijzet J, de Meijer VE, Ravnskjaer K, Nagelkerke A, Olinga P. Metabolic Dysfunction-Associated Steatotic Liver Disease in a Dish: Human Precision-Cut Liver Slices as a Platform for Drug Screening and Interventions. Nutrients 2024; 16:626. [PMID: 38474754 DOI: 10.3390/nu16050626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing healthcare problem with limited therapeutic options. Progress in this field depends on the availability of reliable preclinical models. Human precision-cut liver slices (PCLSs) have been employed to replicate the initiation of MASLD, but a comprehensive investigation into MASLD progression is still missing. This study aimed to extend the current incubation time of human PCLSs to examine different stages in MASLD. Healthy human PCLSs were cultured for up to 96 h in a medium enriched with high sugar, high insulin, and high fatty acids to induce MASLD. PCLSs displayed hepatic steatosis, characterized by accumulated intracellular fat. The development of hepatic steatosis appeared to involve a time-dependent impact on lipid metabolism, with an initial increase in fatty acid uptake and storage, and a subsequent down-regulation of lipid oxidation and secretion. PCLSs also demonstrated liver inflammation, including increased pro-inflammatory gene expression and cytokine production. Additionally, liver fibrosis was also observed through the elevated production of pro-collagen 1a1 and tissue inhibitor of metalloproteinase-1 (TIMP1). RNA sequencing showed that the tumor necrosis factor alpha (TNFα) signaling pathway and transforming growth factor beta (TGFβ) signaling pathway were consistently activated, potentially contributing to the development of inflammation and fibrosis. In conclusion, the prolonged incubation of human PCLSs can establish a robust ex vivo model for MASLD, facilitating the identification and evaluation of potential therapeutic interventions.
Collapse
Affiliation(s)
- Mei Li
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Frederik T Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Marius C van den Heuvel
- Department of Pathology and Medical Biology, Pathology Section, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Konstanze Gier
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Alan R Gorter
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Dorenda Oosterhuis
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Johan Bijzet
- Amyloidosis Center of Expertise, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- Department of Laboratory Medicine, Division of Medical Immunology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Vincent E de Meijer
- Department of Surgery, Division of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Kim Ravnskjaer
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Anika Nagelkerke
- Department of Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| |
Collapse
|
42
|
Syamprasad NP, Jain S, Rajdev B, Panda SR, Kumar GJ, Shaik KM, Shantanu P, Challa VS, Jorvekar SB, Borkar RM, Vaidya JR, Tripathi DM, Naidu V. AKR1B1 drives hyperglycemia-induced metabolic reprogramming in MASLD-associated hepatocellular carcinoma. JHEP Rep 2024; 6:100974. [PMID: 38283757 PMCID: PMC10820337 DOI: 10.1016/j.jhepr.2023.100974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 01/30/2024] Open
Abstract
Background & Aims The mechanism behind the progressive pathological alteration in metabolic dysfunction-associated steatotic liver disease/steatohepatitis (MASLD/MASH)-associated hepatocellular carcinoma (HCC) is poorly understood. In the present study, we investigated the role of the polyol pathway enzyme AKR1B1 in metabolic switching associated with MASLD/MASH and in the progression of HCC. Methods AKR1B1 expression was estimated in the tissue and plasma of patients with MASLD/MASH, HCC, and HCC with diabetes mellitus. The role of AKR1B1 in metabolic switching in vitro was assessed through media conditioning, lentiviral transfection, and pharmacological probes. A proteomic and metabolomic approach was applied for the in-depth investigation of metabolic pathways. Preclinically, mice were subjected to a high-fructose diet and diethylnitrosamine to investigate the role of AKR1B1 in the hyperglycemia-mediated metabolic switching characteristic of MASLD-HCC. Results A significant increase in the expression of AKR1B1 was observed in tissue and plasma samples from patients with MASLD/MASH, HCC, and HCC with diabetes mellitus compared to normal samples. Mechanistically, in vitro assays revealed that AKR1B1 modulates the Warburg effect, mitochondrial dynamics, the tricarboxylic acid cycle, and lipogenesis to promote hyperglycemia-mediated MASLD and cancer progression. A pathological increase in the expression of AKR1B1 was observed in experimental MASLD-HCC, and expression was positively correlated with high blood glucose levels. High-fructose diet + diethylnitrosamine-treated animals also exhibited statistically significant elevation of metabolic markers and carcinogenesis markers. AKR1B1 inhibition with epalrestat or NARI-29 inhibited cellular metabolism in in vitro and in vivo models. Conclusions Pathological AKR1B1 modulates hepatic metabolism to promote MASLD-associated hepatocarcinogenesis. Aldose reductase inhibition modulates the glycolytic pathway to prevent precancerous hepatocyte formation. Impact and implications This research work highlights AKR1B1 as a druggable target in metabolic dysfunction-associated steatotic liver disease (MASLD) and hepatocellular carcinoma (HCC), which could provide the basis for the development of new chemotherapeutic agents. Moreover, our results indicate the potential of plasma AKR1B1 levels as a prognostic marker and diagnostic test for MASLD and associated HCC. Additionally, a major observation in this study was that AKR1B1 is associated with the promotion of the Warburg effect in HCC.
Collapse
Affiliation(s)
- NP Syamprasad
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila village, Changsari, Assam, 781101, India
| | - Siddhi Jain
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila village, Changsari, Assam, 781101, India
| | - Bishal Rajdev
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila village, Changsari, Assam, 781101, India
| | - Samir Ranjan Panda
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila village, Changsari, Assam, 781101, India
| | - Gangasani Jagadeesh Kumar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila village, Changsari, Assam, 781101, India
| | - Khaja Moinuddin Shaik
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila village, Changsari, Assam, 781101, India
| | - P.A. Shantanu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila village, Changsari, Assam, 781101, India
| | - Veerabhadra Swamy Challa
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila village, Changsari, Assam, 781101, India
| | - Sachin B. Jorvekar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research Guwahati, Sila village, Changsari, Assam, 781101, India
| | - Roshan M. Borkar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research Guwahati, Sila village, Changsari, Assam, 781101, India
| | - Jayathirtha Rao Vaidya
- Fluoro Agro Chemicals Department and AcSIR-Ghaziabad, CSIR-Indian Institute of Chemical Technology, Uppal Road Tarnaka, Hyderabad, Telangana, 500007, India
| | - Dinesh Mani Tripathi
- Liver Physiology & Vascular Biology Lab, Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, ILBS, D-1, Vasant Kunj, New Delhi, Delhi 110070, India
| | - V.G.M. Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila village, Changsari, Assam, 781101, India
| |
Collapse
|
43
|
Lin X, Zhang J, Chu Y, Nie Q, Zhang J. Berberine prevents NAFLD and HCC by modulating metabolic disorders. Pharmacol Ther 2024; 254:108593. [PMID: 38301771 DOI: 10.1016/j.pharmthera.2024.108593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 02/03/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a global metabolic disease with high prevalence in both adults and children. Importantly, NAFLD is becoming the main cause of hepatocellular carcinoma (HCC). Berberine (BBR), a naturally occurring plant component, has been demonstrated to have advantageous effects on a number of metabolic pathways as well as the ability to kill liver tumor cells by causing cell death and other routes. This permits us to speculate and make assumptions about the value of BBR in the prevention and defense against NAFLD and HCC by a global modulation of metabolic disorders. Herein, we briefly describe the etiology of NAFLD and NAFLD-related HCC, with a particular emphasis on analyzing the potential mechanisms of BBR in the treatment of NAFLD from aspects including increasing insulin sensitivity, controlling the intestinal milieu, and controlling lipid metabolism. We also elucidate the mechanism of BBR in the treatment of HCC. More significantly, we provided a list of clinical studies for BBR in NAFLD. Taking into account our conclusions and perspectives, we can make further progress in the treatment of BBR in NAFLD and NAFLD-related HCC.
Collapse
Affiliation(s)
- Xinyue Lin
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Juanhong Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Yajun Chu
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Qiuying Nie
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Junmin Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
44
|
Bu KB, Kim M, Shin MK, Lee SH, Sung JS. Regulation of Benzo[a]pyrene-Induced Hepatic Lipid Accumulation through CYP1B1-Induced mTOR-Mediated Lipophagy. Int J Mol Sci 2024; 25:1324. [PMID: 38279324 PMCID: PMC10816991 DOI: 10.3390/ijms25021324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is caused by lipid accumulation within the liver. The pathogenesis underlying its development is poorly understood. Benzo[a]pyrene (B[a]P) is a polycyclic aromatic hydrocarbon and a group 1 carcinogen. The aryl hydrocarbon receptor activation by B[a]P induces cytochrome P450 (CYP) enzymes, contributing to hepatic lipid accumulation. However, the molecular mechanism through which the B[a]P-mediated induction of CYP enzymes causes hepatic lipid accumulation is unknown. This research was conducted to elucidate the role of CYP1B1 in regulating B[a]P-induced lipid accumulation within hepatocytes. B[a]P increased hepatic lipid accumulation, which was mitigated by CYP1B1 knockdown. An increase in the mammalian target of rapamycin (mTOR) by B[a]P was specifically reduced by CYP1B1 knockdown. The reduction of mTOR increased the expression of autophagic flux-related genes and promoted phagolysosome formation. Both the expression and translocation of TFE3, a central regulator of lipophagy, were induced, along with the expression of lipophagy-related genes. Conversely, enhanced mTOR activity reduced TFE3 expression and translocation, which reduced the expression of lipophagy-related genes, diminished phagolysosome production, and increased lipid accumulation. Our results indicate that B[a]P-induced hepatic lipid accumulation is caused by CYP1B1-induced mTOR and the reduction of lipophagy, thereby introducing novel targets and mechanisms to provide insights for understanding B[a]P-induced MASLD.
Collapse
Affiliation(s)
| | | | | | | | - Jung-Suk Sung
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (K.-B.B.); (M.K.); (M.K.S.); (S.-H.L.)
| |
Collapse
|
45
|
Scholer AJ, Marcus RK, Garland-Kledzik M, Ghosh D, Ensenyat-Mendez M, Germany J, Santamaria-Barria JA, Khader A, Orozco JIJ, Goldfarb M. Exploring the Genomic Landscape of Hepatobiliary Cancers to Establish a Novel Molecular Classification System. Cancers (Basel) 2024; 16:325. [PMID: 38254814 PMCID: PMC10814719 DOI: 10.3390/cancers16020325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/15/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Taxonomy of hepatobiliary cancer (HBC) categorizes tumors by location or histopathology (tissue of origin, TO). Tumors originating from different TOs can also be grouped by overlapping genomic alterations (GA) into molecular subtypes (MS). The aim of this study was to create novel HBC MSs. Next-generation sequencing (NGS) data from the AACR-GENIE database were used to examine the genomic landscape of HBCs. Machine learning and gene enrichment analysis identified MSs and their oncogenomic pathways. Descriptive statistics were used to compare subtypes and their associations with clinical and molecular variables. Integrative analyses generated three MSs with different oncogenomic pathways independent of TO (n = 324; p < 0.05). HC-1 "hyper-mutated-proliferative state" MS had rapidly dividing cells susceptible to chemotherapy; HC-2 "adaptive stem cell-cellular senescence" MS had epigenomic alterations to evade immune system and treatment-resistant mechanisms; HC-3 "metabolic-stress pathway" MS had metabolic alterations. The discovery of HBC MSs is the initial step in cancer taxonomy evolution and the incorporation of genomic profiling into the TNM system. The goal is the development of a precision oncology machine learning algorithm to guide treatment planning and improve HBC outcomes. Future studies should validate findings of this study, incorporate clinical outcomes, and compare the MS classification to the AJCC 8th staging system.
Collapse
Affiliation(s)
- Anthony J. Scholer
- Division of Surgical Oncology, University of South Carolina School of Medicine, Greenville, SC 29605, USA;
| | - Rebecca K. Marcus
- Department of Surgery, Saint John’s Cancer Institute at Providence St. John’s Health Center, Santa Monica, CA 90404, USA; (R.K.M.); (J.I.J.O.); (M.G.)
| | - Mary Garland-Kledzik
- Department of Surgery, Division of Surgical Oncology, West Virginia University, Morgantown, WV 26506, USA;
| | - Debopriya Ghosh
- Janssen Research and Development LLC, Early Development and Oncology, Biostatistics, Raritan, NJ 08869, USA;
| | - Miquel Ensenyat-Mendez
- Cancer Epigenetics Laboratory, Health Research Institute of the Balearic Islands, 07120 Palma, Spain;
| | - Joshua Germany
- Division of Surgical Oncology, University of South Carolina School of Medicine, Greenville, SC 29605, USA;
| | - Juan A. Santamaria-Barria
- Department of Surgery, Division of Surgical Oncology, University of Nebraska Medical Center, Omaha, NE 68105, USA;
| | - Adam Khader
- Department of Surgery, Division of Surgical Oncology, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, VA 23249, USA;
| | - Javier I. J. Orozco
- Department of Surgery, Saint John’s Cancer Institute at Providence St. John’s Health Center, Santa Monica, CA 90404, USA; (R.K.M.); (J.I.J.O.); (M.G.)
| | - Melanie Goldfarb
- Department of Surgery, Saint John’s Cancer Institute at Providence St. John’s Health Center, Santa Monica, CA 90404, USA; (R.K.M.); (J.I.J.O.); (M.G.)
| |
Collapse
|
46
|
Tiniakos DG, Anstee QM, Brunt EM, Burt AD. Fatty Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:330-401. [DOI: 10.1016/b978-0-7020-8228-3.00005-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
47
|
Feng WW, Bang S, Takacs EM, Day C, Crawford KJ, Al-Sheyab R, Almufarrej DB, Wells W, Ilchenko S, Kasumov T, Kon N, Novak CM, Gu W, Kurokawa M. Hepatic Huwe1 loss protects mice from non-alcoholic fatty liver disease through lipid metabolic rewiring. iScience 2023; 26:108405. [PMID: 38047073 PMCID: PMC10692727 DOI: 10.1016/j.isci.2023.108405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 09/03/2023] [Accepted: 11/03/2023] [Indexed: 12/05/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most pervasive liver pathology worldwide. Here, we demonstrate that the ubiquitin E3 ligase Huwe1 is vital in NAFLD pathogenesis. Using mass spectrometry and RNA sequencing, we reveal that liver-specific deletion of Huwe1 (Huwe1LKO) in 1-year-old mice (approximately middle age in humans) elicits extensive lipid metabolic reprogramming that involves downregulation of de novo lipogenesis and fatty acid uptake, upregulation of fatty acid β-oxidation, and increased oxidative phosphorylation. ChEA transcription factor prediction analysis inferred these changes result from attenuated PPARɑ, LXR, and RXR activity in Huwe1LKO livers. Consequently, Huwe1LKO mice fed chow diet exhibited significantly reduced hepatic steatosis and superior glucose tolerance compared to wild-type mice. Huwe1LKO also conferred protection from high-fat diet-induced hepatic steatosis by 6-months of age, with increasingly robust differences observed as mice reached middle age. Together, we present evidence that Huwe1 plays a critical role in the development of age- and diet-induced NAFLD.
Collapse
Affiliation(s)
- William W. Feng
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Scott Bang
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Eric M. Takacs
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Cora Day
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | | | - Ruba Al-Sheyab
- School of Biomedical Sciences, Kent State University, Kent, OH 44240, USA
| | - Dara B. Almufarrej
- School of Biomedical Sciences, Kent State University, Kent, OH 44240, USA
| | - Wendy Wells
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Serguei Ilchenko
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Takhar Kasumov
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Ning Kon
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Colleen M. Novak
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
- School of Biomedical Sciences, Kent State University, Kent, OH 44240, USA
| | - Wei Gu
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Manabu Kurokawa
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
- School of Biomedical Sciences, Kent State University, Kent, OH 44240, USA
| |
Collapse
|
48
|
Li J, Yu J, Zou H, Zhang J, Ren L. Estrogen receptor-mediated health benefits of phytochemicals: a review. Food Funct 2023; 14:10681-10699. [PMID: 38047630 DOI: 10.1039/d3fo04702d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Estrogen receptors (ERs) are transcription factors with two subtypes: estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ), which are essential for the maintenance of human health and play a regulatory role in common diseases such as breast cancer, osteoporosis, neurodegenerative disorders, liver injuries and lung cancers. A number of phytochemicals extracted from various fruits and vegetables have been demonstrated to exhibit estrogenic effects and are termed phytoestrogens. As modulators of ERs, phytoestrogens can be involved in the prevention and treatment of multiple diseases as complementary or alternative therapeutic agents and have a variety of health benefits for humans. This article reviews the health benefits of phytoestrogens in clinical and epidemiologic studies for several diseases and also provides a detailed description of the molecular mechanisms of their action. A brief comparison of the advantages and disadvantages of natural phytochemicals compared to synthetic drugs is also presented. The role of phytoestrogens in the treatment of diseases and human health requires further research to fully realize their therapeutic potential.
Collapse
Affiliation(s)
- Junfeng Li
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jia Yu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
49
|
Lawitz E, Parmar D, Momin T, Shaikh F, Patel H, Hayes H, Swint K. Pharmacokinetics and Safety Evaluation of Single-Dose Saroglitazar Magnesium in Subjects with Hepatic Impairment. Clin Pharmacol Drug Dev 2023; 12:1142-1155. [PMID: 37909052 DOI: 10.1002/cpdd.1339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 10/01/2023] [Indexed: 11/02/2023]
Abstract
Saroglitazar magnesium, a dual peroxisome proliferator-activated receptor agonist, is under evaluation for treating various liver conditions. While the pharmacokinetics (PK) of saroglitazar have been extensively studied in diverse preclinical models and healthy subjects, a comprehensive assessment of its PK behavior under conditions of hepatic impairment is lacking. In this Phase 1, open-label, parallel-group study, the PK of a single dose of 4-mg saroglitazar magnesium was investigated in subjects having varying degrees of hepatic impairment with and without portal hypertension compared with appropriately matched individuals having normal hepatic function. Treatment-emergent adverse events for safety were also evaluated. Thirty-two subjects were enrolled in the hepatic-impaired groups and 23 subjects in the normal hepatic function group. Mild and moderate hepatic impairment did not significantly affect the PK of saroglitazar, compared with normal hepatic function. Although severe hepatic impairment did not alter maximum observed plasma concentration and half-life; saroglitazar exposure (area under the plasma concentration-time curve from time 0 to infinity) increased 3-fold, while the clearance was 61% lower compared to the subjects with normal hepatic function. This may require close monitoring or dose adjustments in individuals with severe hepatic impairment. A single oral dose of saroglitazar magnesium 4 mg was found to be safe and well tolerated in subjects with varying degrees of hepatic function.
Collapse
Affiliation(s)
- Eric Lawitz
- Clinical Professor of Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Deven Parmar
- Zydus Therapeutics Inc., Clinical Research and Development, Pennington, NJ, USA
| | - Taufik Momin
- Zydus Lifesciences Ltd., Ahmedabad, Gujarat, India
| | - Farheen Shaikh
- Zydus Therapeutics Inc., Clinical Research and Development, Pennington, NJ, USA
| | | | - Helen Hayes
- Zydus Therapeutics Inc., Clinical Research and Development, Pennington, NJ, USA
| | - Kimberly Swint
- Zydus Therapeutics Inc., Clinical Research and Development, Pennington, NJ, USA
| |
Collapse
|
50
|
Abstract
Obesity has been recognized to be increasing globally and is designated a disease with adverse consequences requiring early detection and appropriate care. In addition to being related to metabolic syndrome disorders such as type 2 diabetes, hypertension, stroke, and premature coronary artery disease. Obesity is also etiologically linked to several cancers. The non-gastrointestinal cancers are breast, uterus, kidneys, ovaries, thyroid, meningioma, and thyroid. Gastrointestinal (GI) cancers are adenocarcinoma of the esophagus, liver, pancreas, gallbladder, and colorectal. The brighter side of the problem is that being overweight and obese and cigarette smoking are mostly preventable causes of cancers. Epidemiology and clinical studies have revealed that obesity is heterogeneous in clinical manifestations. In clinical practice, BMI is calculated by dividing a person's weight in kilograms by the square of the person's height in square meters (kg/m2). A BMI above 30 kg/m2 (defining obesity in many guidelines) is considered obesity. However, obesity is heterogeneous. There are subdivisions for obesity, and not all obesities are equally pathogenic. Adipose tissue, in particular, visceral adipose tissue (VAT), is endocrine and abdominal obesity (a surrogate for VAT) is evaluated by waist-hip measurements or just waist measures. Visceral Obesity, through several hormonal mechanisms, induces a low-grade chronic inflammatory state, insulin resistance, components of metabolic syndrome, and cancers. Metabolically obese, normal-weight (MONW) individuals in several Asian countries may have BMI below normal levels to diagnose obesity but suffer from many obesity-related complications. Conversely, some people have high BMI but are generally healthy with no features of metabolic syndrome. Many clinicians advise weight loss by dieting and exercise to metabolically healthy obese with large body habitus than to individuals with metabolic obesity but normal BMI. The GI cancers (esophagus, pancreas, gallbladder, liver, and colorectal) are individually discussed, emphasizing the incidence, possible pathogenesis, and preventive measures. From 2005 to 2014, most cancers associated with overweight and Obesity increased in the United States, while cancers related to other factors decreased. The standard recommendation is to offer or refer adults with a body mass index (BMI) of 30 or more to intensive, multicomponent behavioral interventions. However, the clinicians have to go beyond. They should critically evaluate BMI with due consideration for ethnicity, body habitus, and other factors that influence the type of obesity and obesity-related risks. In 2001, the Surgeon General's ``Call to Action to Prevent and Decrease Overweight and Obesity'' identified obesity as a critical public health priority for the United States. At government levels reducing obesity requires policy changes that improve the food and physical activity for all. However, implementing some policies with the most significant potential benefit to public health is politically tricky. The primary care physician, as well as subspecialists, should identify overweight and Obesity based on all the variable factors in the diagnosis. The medical community should address the prevention of overweight and Obesity as an essential part of medical care as much as vaccination in preventing infectious diseases at all levels- from childhood, to adolescence, and adults.
Collapse
Affiliation(s)
- Yuntao Zou
- Department of Medicine, Saint Peter's University Hospital, 125 Andover DR, Kendall Park, New Brunswick, NJ 08901, USA
| | - Capecomorin S Pitchumoni
- Department of Medicine, Saint Peter's University Hospital, 125 Andover DR, Kendall Park, New Brunswick, NJ 08901, USA.
| |
Collapse
|