1
|
Lai S, Tang D, Feng J. Mitochondrial targeted therapies in MAFLD. Biochem Biophys Res Commun 2025; 753:151498. [PMID: 39986088 DOI: 10.1016/j.bbrc.2025.151498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/24/2025] [Accepted: 02/15/2025] [Indexed: 02/24/2025]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a clinical-pathological syndrome primarily characterized by excessive accumulation of fat in hepatocytes, independent of alcohol consumption and other well-established hepatotoxic agents. Mitochondrial dysfunction is widely acknowledged as a pivotal factor in the pathogenesis of various diseases, including cardiovascular diseases, cancer, neurodegenerative disorders, and metabolic diseases such as obesity and obesity-associated MAFLD. Mitochondria are dynamic cellular organelles capable of modifying their functions and structures to accommodate the metabolic demands of cells. In the context of MAFLD, the excess production of reactive oxygen species induces oxidative stress, leading to mitochondrial dysfunction, which subsequently promotes metabolic disorders, fat accumulation, and the infiltration of inflammatory cells in liver and adipose tissue. This review aims to systematically analyze the role of mitochondria-targeted therapies in MAFLD, evaluate current therapeutic strategies, and explore future directions in this rapidly evolving field. We specifically focus on the molecular mechanisms underlying mitochondrial dysfunction, emerging therapeutic approaches, and their clinical implications. This is of significant importance for the development of new therapeutic approaches for these metabolic disorders.
Collapse
Affiliation(s)
- Sien Lai
- Guangdong Provincial Engineering and Technology Research Center for Gene Editing, School of Medicine, Foshan University, 528000, Foshan, China.
| | - Dongsheng Tang
- Guangdong Provincial Engineering and Technology Research Center for Gene Editing, School of Medicine, Foshan University, 528000, Foshan, China.
| | - Juan Feng
- Guangdong Provincial Engineering and Technology Research Center for Gene Editing, School of Medicine, Foshan University, 528000, Foshan, China.
| |
Collapse
|
2
|
Kakiyama G, Bai-Kamara N, Rodriguez-Agudo D, Takei H, Minowa K, Fuchs M, Biddinger S, Windle JJ, Subler MA, Murai T, Suzuki M, Nittono H, Sanyal A, Pandak WM. Liver specific transgenic expression of CYP7B1 attenuates early western diet-induced MASLD progression. J Lipid Res 2025; 66:100757. [PMID: 39952566 PMCID: PMC11954105 DOI: 10.1016/j.jlr.2025.100757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/30/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025] Open
Abstract
Effect of liver specific oxysterol 7α-hydroxylase (CYP7B1) overexpression on the Western diet (WD)-induced metabolic dysfunction-associated steatotic liver disease (MASLD) progression was studied in mice. Among various hepatic genes impacted during MASLD development, CYP7B1 is consistently suppressed in multiple MASLD mouse models and in human MASLD cohorts. CYP7B1 enzyme suppression leads to accumulations of bioactive oxysterols such as (25R)26-hydroxycholesterol (26HC) and 25-hydroxycholesterol (25HC). We challenged liver specific CYP7B1 transgenic (CYP7B1hep.tg) overexpressing mice with ad libitum WD feeding. Unlike their WT counterparts, WD-fed CYP7B1hep.tg mice developed no significant hepatotoxicity as evidenced by liver histology, lipid quantifications, and serum biomarker analyses. Hepatic 26HC and 25HC levels were maintained at the basal levels. The comparative gene expression/lipidomic analyses between WT and CYP7B1hep.tg mice revealed that chronically accumulated 26HC initiates LXR/PPAR-mediated hepatic fatty acid uptake and lipogenesis which surpasses fatty acid metabolism and export; compromising metabolic functions. In addition, major pathways related to oxidative stress, inflammation, and immune system including retinol metabolism, arachidonic acid metabolism, and linoleic acid metabolism were significantly impacted in the WD-fed WT mice. All pathways were unaltered in CYP7B1hep.tg mice liver. Furthermore, the nucleus of WT mouse liver but not of CYP7B1hep.tg mouse liver accumulated 26HC and 25HC in response to WD. These data strongly suggested that these two oxysterols are specifically important in nuclear transcriptional regulation for the described cytotoxic pathways. In conclusion, this study represents a "proof-of-concept" that maintaining normal mitochondrial cholesterol metabolism with hepatic CYP7B1 expression prevents oxysterol-driven liver toxicity; thus attenuating MASLD progression.
Collapse
Affiliation(s)
- Genta Kakiyama
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Research Services, Central Virginia Veterans Affairs Health Care System, Richmond, VA, USA.
| | - Nanah Bai-Kamara
- Research Services, Central Virginia Veterans Affairs Health Care System, Richmond, VA, USA
| | - Daniel Rodriguez-Agudo
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Research Services, Central Virginia Veterans Affairs Health Care System, Richmond, VA, USA
| | - Hajime Takei
- Junshin Clinic Bile Acid Institute, Meguro-ku, Tokyo, Japan
| | - Kei Minowa
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Research Services, Central Virginia Veterans Affairs Health Care System, Richmond, VA, USA; Department of Pediatrics, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Michael Fuchs
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Research Services, Central Virginia Veterans Affairs Health Care System, Richmond, VA, USA
| | - Sudha Biddinger
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, MA, USA
| | - Jolene J Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond VA, USA
| | - Mark A Subler
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond VA, USA
| | - Tsuyoshi Murai
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari, Hokkaido, Japan
| | - Mitsuyoshi Suzuki
- Department of Pediatrics, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | | | - Arun Sanyal
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - William M Pandak
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Research Services, Central Virginia Veterans Affairs Health Care System, Richmond, VA, USA
| |
Collapse
|
3
|
Mullin SM, Kelly AJ, Ní Chathail MB, Norris S, Shannon CE, Roche HM. Macronutrient Modulation in Metabolic Dysfunction-Associated Steatotic Liver Disease-the Molecular Role of Fatty Acids compared with Sugars in Human Metabolism and Disease Progression. Adv Nutr 2025; 16:100375. [PMID: 39842721 PMCID: PMC11849631 DOI: 10.1016/j.advnut.2025.100375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/23/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a significant public health concern, with its progression to metabolic dysfunction-associated steatohepatitis (MASH) and fibrosis leading to severe outcomes including cirrhosis, hepatocellular carcinoma, and liver failure. Whereas obesity and excess energy intake are well-established contributors to the development and progression of MASLD, the distinct role of specific macronutrients is less clear. This review examines the mechanistic pathways through which dietary fatty acids and sugars contribute to the development of hepatic inflammation and fibrosis, offering a nuanced understanding of their respective roles in MASLD progression. In terms of addressing potential therapeutic options, human intervention studies that investigate whether modifying the intake of dietary fats and carbohydrates affects MASLD progression are reviewed. By integrating this evidence, this review seeks to bridge the gap in the understanding between the mechanisms of macronutrient-driven MASLD progression and the effect of altering the intake of these nutrients in the clinical setting and presents a foundation for future research into targeted dietary strategies for the treatment of the disease.
Collapse
Affiliation(s)
- Sinéad M Mullin
- School of Public Health, Physiotherapy and Sport Science, and Institute of Food and Health, University College Dublin, Belfield, Dublin, Ireland; Nutrigenomics Research Group, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Aidan J Kelly
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Méabh B Ní Chathail
- School of Public Health, Physiotherapy and Sport Science, and Institute of Food and Health, University College Dublin, Belfield, Dublin, Ireland; Nutrigenomics Research Group, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Suzanne Norris
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Christopher E Shannon
- Nutrigenomics Research Group, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland; School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Helen M Roche
- School of Public Health, Physiotherapy and Sport Science, and Institute of Food and Health, University College Dublin, Belfield, Dublin, Ireland; Nutrigenomics Research Group, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland; Institute for Global Food Security, Queen's University Belfast, Northern Ireland.
| |
Collapse
|
4
|
Domingues N, Pires J, Milosevic I, Raimundo N. Role of lipids in interorganelle communication. Trends Cell Biol 2025; 35:46-58. [PMID: 38866684 PMCID: PMC11632148 DOI: 10.1016/j.tcb.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 06/14/2024]
Abstract
Cell homeostasis and function rely on well-orchestrated communication between different organelles. This communication is ensured by signaling pathways and membrane contact sites between organelles. Many players involved in organelle crosstalk have been identified, predominantly proteins and ions. The role of lipids in interorganelle communication remains poorly understood. With the development and broader availability of methods to quantify lipids, as well as improved spatiotemporal resolution in detecting different lipid species, the contribution of lipids to organelle interactions starts to be evident. However, the specific roles of various lipid molecules in intracellular communication remain to be studied systematically. We summarize new insights in the interorganelle communication field from the perspective of organelles and discuss the roles played by lipids in these complex processes.
Collapse
Affiliation(s)
- Neuza Domingues
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
| | - Joana Pires
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
| | - Ira Milosevic
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal; Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nuno Raimundo
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal; Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA; Penn State Cancer Institute, Hershey, PA, USA.
| |
Collapse
|
5
|
Shou J, Ma J, Wang X, Li X, Chen S, Kang B, Shaw P. Free Cholesterol-Induced Liver Injury in Non-Alcoholic Fatty Liver Disease: Mechanisms and a Therapeutic Intervention Using Dihydrotanshinone I. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406191. [PMID: 39558866 PMCID: PMC11727260 DOI: 10.1002/advs.202406191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/28/2024] [Indexed: 11/20/2024]
Abstract
Build-up of free cholesterol (FC) substantially contributes to the development and severity of non-alcoholic fatty liver disease (NAFLD). Here, we investigate the specific mechanism by which FC induces liver injury in NAFLD and propose a novel therapeutic approach using dihydrotanshinone I (DhT). Rather than cholesterol ester (CE), we observed elevated levels of total cholesterol, FC, and alanine transaminase (ALT) in NAFLD patients and high-cholesterol diet-induced NAFLD mice compared to those in healthy controls. The FC level demonstrated a positive correlation with the ALT level in both patients and mice. Mechanistic studies revealed that FC elevated reactive oxygen species level, impaired the function of lysosomes, and disrupted lipophagy process, consequently inducing cell apoptosis. We then found that DhT protected mice on an HCD diet, independent of gut microbiota. DhT functioned as a potent ligand for peroxisome proliferator-activated receptor α (PPARα), stimulating its transcriptional function and enhancing catalase expression to lower reactive oxygen species (ROS) level. Notably, the protective effect of DhT was nullified in mice with hepatic PPARα knockdown. Thus, these findings are the first to report the detrimental role of FC in NAFLD, which could lead to the development of new treatment strategies for NAFLD by leveraging the therapeutic potential of DhT and PPARα pathway.
Collapse
Affiliation(s)
- Jia‐Wen Shou
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese MedicineThe Chinese University of Hong KongHong Kong852852China
| | - Juncai Ma
- Centre for Cell and Developmental BiologyState Key Laboratory for AgrobiotechnologySchool of Life SciencesThe Chinese University of Hong KongHong Kong852852China
| | - Xuchu Wang
- Department of Laboratory Medicinethe Second Affiliated Hospital of Zhejiang UniversityHangzhou310000China
| | - Xiao‐Xiao Li
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese MedicineThe Chinese University of Hong KongHong Kong852852China
- Research Center for Chinese Medicine InnovationThe Hong Kong Polytechnic UniversityHong Kong852852China
| | - Shu‐Cheng Chen
- School of NursingThe Hong Kong Polytechnic UniversityHong Kong852852China
| | - Byung‐Ho Kang
- Centre for Cell and Developmental BiologyState Key Laboratory for AgrobiotechnologySchool of Life SciencesThe Chinese University of Hong KongHong Kong852852China
| | - Pang‐Chui Shaw
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese MedicineThe Chinese University of Hong KongHong Kong852852China
- School of Life SciencesThe Chinese University of Hong KongHong Kong852852China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants and Institute of Chinese MedicineThe Chinese University of Hong KongHong Kong852852China
| |
Collapse
|
6
|
Ling L, Li R, Xu M, Zhou J, Hu M, Zhang X, Zhang XJ. Species differences of fatty liver diseases: comparisons between human and feline. Am J Physiol Endocrinol Metab 2025; 328:E46-E61. [PMID: 39636211 DOI: 10.1152/ajpendo.00014.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as the most widespread chronic liver disease that poses significant threats to public health due to changes in dietary habits and lifestyle patterns. The transition from simple steatosis to nonalcoholic steatohepatitis (NASH) markedly increases the risk of developing cirrhosis, hepatocellular carcinoma, and liver failure in patients. However, there is only one Food and Drug Administration-approved therapeutic drug in the world, and the clinical demand is huge. There is significant clinical heterogeneity among patients with NAFLD, and it is challenging to fully understand human NAFLD using only a single animal model. Interestingly, felines, like humans, are particularly prone to spontaneous fatty liver disease. This review summarized and compared the etiology, clinical features, pathological characteristics, and molecular pathogenesis between human fatty liver and feline hepatic lipidosis (FHL). We analyzed the key similarities and differences between those two species, aiming to provide theoretical foundations for developing effective strategies for the treatment of NAFLD in clinics.
Collapse
Affiliation(s)
- Like Ling
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Ruilin Li
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Mengqiong Xu
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Junjie Zhou
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Manli Hu
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Xin Zhang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Xiao-Jing Zhang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Mirzaei F, Abbasi E, Mirzaei A, Hosseini NF, Naseri N, Khodadadi I, Jalili C, Majdoub N. Toxicity and Hepatoprotective Effects of ZnO Nanoparticles on Normal and High-Fat Diet-Fed Rat Livers: Mechanism of Action. Biol Trace Elem Res 2025; 203:199-217. [PMID: 38441796 DOI: 10.1007/s12011-024-04108-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/13/2024] [Indexed: 10/11/2024]
Abstract
This experiment aimed to evaluate the beneficial and toxic properties of synthetic zinc oxide nanoparticles (ZnO NPs) on the liver of normal and high-fat diet (HFD) fed-rats. The ZnO NPs were synthesized and, its characterizations were determined by different techniques. Effect of ZnO NP on cell viability, liver enzymes and lipid accumulation were measured in HepG2 cells after 24 h. After that, rats orally received various dosages of ZnO NPs for period of 4 weeks. Toxicity tests were done to determine the appropriate dose. In the subsequent step, the hepatoprotective effects of 5 mg/kg ZnO NPs were determined in HFD-fed rats (experiment 2). The oxidative stress, NLRP3 inflammasome, inflammatory, and apoptosis pathways were measured. Additionally, the activity of caspase 3, nitric oxide levels, antioxidant capacity, and various biochemical factors were measured. Morphological changes in the rat livers were also evaluated by hematoxylin and eosin (H & E) and Masson trichrome. Liver apoptosis rate was also approved by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay. Treatment of animals with 5 mg/ZnO NPs revealed potential hepatoprotective properties, while ZnO NPs at the doses of above 10 mg/kg showed toxic effects. Antioxidant enzyme gene expression and activity were significantly augmented, while apoptosis, NLRP3 inflammasome, and inflammation pathways were significantly reduced by 5 mg/kg ZnO NPs. Liver histopathological alterations were restored by 5 mg/kg ZnO NPs in HFD. Our study highlights the hepatoprotective effects of ZnO NPs against the HFD-induced liver damage, involving antioxidant, anti-inflammatory, and anti-apoptotic pathways, indicating their promising therapeutic potential.
Collapse
Affiliation(s)
- Fatemeh Mirzaei
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ebrahim Abbasi
- Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Amir Mirzaei
- Centre Énergie, Matériaux Et Télécommunications, Institut National de La Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec, J3X 1P7, Canada
| | - Nashmin Fayazi Hosseini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nima Naseri
- Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Khodadadi
- Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Cyrus Jalili
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nesrine Majdoub
- Faculdade de Ciências E Tecnologia, Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, MeditBio, Portugal
| |
Collapse
|
8
|
Lee NY, Koo JH. Longitudinal evaluation of liver stiffness reveals hepatic cholesterol as the determinant of fibrosis progression in mice. Life Sci 2024; 358:123201. [PMID: 39486617 DOI: 10.1016/j.lfs.2024.123201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/07/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
AIMS The metabolic dysfunction-associated steatotic liver disease (MASLD) affects approximately 30 % of the global population. While excessive consumption of dietary fat induces steatosis, it does not develop fibrosis, indicating that additional factors are required as "second hits" for further progression of MASLD. Here, based on shear wave elastography, we compared the longitudinal patterns of fibrogenesis induced by different diets and show the crucial role of cholesterol accumulation in fibrosis progression. MATERIALS AND METHODS Mice were fed chow, high-fat (HFD), high-fat high-cholesterol (HFHCD), choline-deficient, L-amino acid-defined high-fat (CDAHFD), or 3,5-Diethoxycarbonyl-1,4-Dihydrocollidine diets over 12 weeks. KEY FINDINGS Mice fed with HFD gained significant amounts of body weight but did not show an increase in liver stiffness. In contrast, the addition of cholesterol in the same diet robustly induced liver stiffening starting from the first week, which was comparable to the CDAHFD-induced fibrosis model. Longitudinal tracking of liver stiffness revealed a two-step progression of fibrosis after prolonged feeding of HFHCD and CDAHFD, likely due to cellular cholesterol accumulation over a certain threshold after the transition point. Biochemical analyses suggested the critical role of both total and hepatic cholesterol accumulation in liver fibrosis development. SIGNIFICANCE Collectively, our results underscore the significance of cholesterol in liver fibrosis development, also highlighting the benefit of monitoring liver stiffness to understand the pathogenesis of liver fibrosis.
Collapse
Affiliation(s)
- Na Young Lee
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| | - Ja Hyun Koo
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Pharmaceutical Sciences and Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
9
|
Garcia-Ruiz C, Torres S, Fernandez-Checa JC. Cholesterol's new tricks propel MASH-HCC: impact in immunotherapy. Gut 2024; 73:1926-1929. [PMID: 39242192 DOI: 10.1136/gutjnl-2024-332766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Affiliation(s)
- Carmen Garcia-Ruiz
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain
- Liver Unit, Hospital Clinic I Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Sandra Torres
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain
- Liver Unit, Hospital Clinic I Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Jose C Fernandez-Checa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain
- Liver Unit, Hospital Clinic I Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
10
|
Su R, Fu HL, Zhang QX, Wu CY, Yang GY, Wu JJ, Cao WJ, Liu J, Jiang ZP, Xu CJ, Rao Y, Huang L. Amplifying hepatic L-aspartate levels suppresses CCl 4-induced liver fibrosis by reversing glucocorticoid receptor β-mediated mitochondrial malfunction. Pharmacol Res 2024; 206:107294. [PMID: 38992851 DOI: 10.1016/j.phrs.2024.107294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
Liver fibrosis is a determinant-stage process of many chronic liver diseases and affected over 7.9 billion populations worldwide with increasing demands of ideal therapeutic agents. Discovery of active molecules with anti-hepatic fibrosis efficacies presents the most attacking filed. Here, we revealed that hepatic L-aspartate levels were decreased in CCl4-induced fibrotic mice. Instead, supplementation of L-aspartate orally alleviated typical manifestations of liver injury and fibrosis. These therapeutic efficacies were alongside improvements of mitochondrial adaptive oxidation. Notably, treatment with L-aspartate rebalanced hepatic cholesterol-steroid metabolism and reduced the levels of liver-impairing metabolites, including corticosterone (CORT). Mechanistically, L-aspartate treatment efficiently reversed CORT-mediated glucocorticoid receptor β (GRβ) signaling activation and subsequent transcriptional suppression of the mitochondrial genome by directly binding to the mitochondrial genome. Knockout of GRβ ameliorated corticosterone-mediated mitochondrial dysfunction and hepatocyte damage which also weakened the improvements of L-aspartate in suppressing GRβ signaling. These data suggest that L-aspartate ameliorates hepatic fibrosis by suppressing GRβ signaling via rebalancing cholesterol-steroid metabolism, would be an ideal candidate for clinical liver fibrosis treatment.
Collapse
Affiliation(s)
- Rui Su
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| | - Hui-Ling Fu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| | - Qian-Xue Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| | - Chen-Yan Wu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| | - Guan-Yu Yang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| | - Jun-Jie Wu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| | - Wen-Jie Cao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| | - Jin Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| | - Zhong-Ping Jiang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| | - Cong-Jun Xu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| | - Yong Rao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570100, China.
| | - Ling Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570100, China.
| |
Collapse
|
11
|
Goicoechea L, Torres S, Fàbrega L, Barrios M, Núñez S, Casas J, Fabrias G, García-Ruiz C, Fernández-Checa JC. S-Adenosyl-l-methionine restores brain mitochondrial membrane fluidity and GSH content improving Niemann-Pick type C disease. Redox Biol 2024; 72:103150. [PMID: 38599016 PMCID: PMC11022094 DOI: 10.1016/j.redox.2024.103150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/15/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
Niemann-Pick type C (NPC) disease is a lysosomal storage disorder characterized by impaired motor coordination due to neurological defects and cerebellar dysfunction caused by the accumulation of cholesterol in endolysosomes. Besides the increase in lysosomal cholesterol, mitochondria are also enriched in cholesterol, which leads to decreased membrane fluidity, impaired mitochondrial function and loss of GSH, and has been shown to contribute to the progression of NPC disease. S-Adenosyl-l-methionine (SAM) regulates membrane physical properties through the generation of phosphatidylcholine (PC) from phosphatidylethanolamine (PE) methylation and functions as a GSH precursor by providing cysteine in the transsulfuration pathway. However, the role of SAM in NPC disease has not been investigated. Here we report that Npc1-/- mice exhibit decreased brain SAM levels but unchanged S-adenosyl-l-homocysteine content and lower expression of Mat2a. Brain mitochondria from Npc1-/- mice display decreased mitochondrial GSH levels and liquid chromatography-high resolution mass spectrometry analysis reveal a lower PC/PE ratio in mitochondria, contributing to increased mitochondrial membrane order. In vivo treatment of Npc1-/- mice with SAM restores SAM levels in mitochondria, resulting in increased PC/PE ratio, mitochondrial membrane fluidity and subsequent replenishment of mitochondrial GSH levels. In vivo SAM treatment improves the decline of locomotor activity, increases Purkinje cell survival in the cerebellum and extends the average and maximal life spam of Npc1-/- mice. These findings identify SAM as a potential therapeutic approach for the treatment of NPC disease.
Collapse
Affiliation(s)
- Leire Goicoechea
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain
| | - Sandra Torres
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain
| | - Laura Fàbrega
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain
| | - Mónica Barrios
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain
| | - Susana Núñez
- Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain
| | - Josefina Casas
- Research Unit on BioActive Molecules (RUBAM), Departament de Química Orgànica Biològica, Institut D'Investigacions Químiques I Ambientals de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Gemma Fabrias
- Research Unit on BioActive Molecules (RUBAM), Departament de Química Orgànica Biològica, Institut D'Investigacions Químiques I Ambientals de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Carmen García-Ruiz
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain; Research Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| | - José C Fernández-Checa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain; Research Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
12
|
Schwärzler J, Grabherr F, Grander C, Adolph TE, Tilg H. The pathophysiology of MASLD: an immunometabolic perspective. Expert Rev Clin Immunol 2024; 20:375-386. [PMID: 38149354 DOI: 10.1080/1744666x.2023.2294046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/08/2023] [Indexed: 12/28/2023]
Abstract
INTRODUCTION Metabolic-associated liver diseases have emerged pandemically across the globe and are clinically related to metabolic disorders such as obesity and type 2 diabetes. The new nomenclature and definition (i.e. metabolic dysfunction-associated steatotic liver disease - MASLD; metabolic dysfunction-associated steatohepatitis - MASH) reflect the nature of these complex systemic disorders, which are characterized by inflammation, gut dysbiosis and metabolic dysregulation. In this review, we summarize recent advantages in understanding the pathophysiology of MASLD, which we parallel to emerging therapeutic concepts. AREAS COVERED We summarize the pathophysiologic concepts of MASLD and its transition to MASH and subsequent advanced sequelae of diseases. Furthermore, we highlight how dietary constituents, microbes and associated metabolites, metabolic perturbations, and immune dysregulation fuel lipotoxicity, hepatic inflammation, liver injury, insulin resistance, and systemic inflammation. Deciphering the intricate pathophysiologic processes that contribute to the development and progression of MASLD is essential to develop targeted therapeutic approaches to combat this escalating burden for health-care systems. EXPERT OPINION The rapidly increasing prevalence of metabolic dysfunction-associated steatotic liver disease challenges health-care systems worldwide. Understanding pathophysiologic traits is crucial to improve the prevention and treatment of this disorder and to slow progression into advanced sequelae such as cirrhosis and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Julian Schwärzler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Felix Grabherr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Grander
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
13
|
Lucena MI, Villanueva-Paz M, Alvarez-Alvarez I, Aithal GP, Björnsson ES, Cakan-Akdogan G, Cubero FJ, Esteves F, Falcon-Perez JM, Fromenty B, Garcia-Ruiz C, Grove JI, Konu O, Kranendonk M, Kullak-Ublick GA, Miranda JP, Remesal-Doblado A, Sancho-Bru P, Nelson L, Andrade RJ, Daly AK, Fernandez-Checa JC. Roadmap to DILI research in Europe. A proposal from COST action ProEuroDILINet. Pharmacol Res 2024; 200:107046. [PMID: 38159783 PMCID: PMC7617395 DOI: 10.1016/j.phrs.2023.107046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
In the current article the aims for a constructive way forward in Drug-Induced Liver Injury (DILI) are to highlight the most important priorities in research and clinical science, therefore supporting a more informed, focused, and better funded future for European DILI research. This Roadmap aims to identify key challenges, define a shared vision across all stakeholders for the opportunities to overcome these challenges and propose a high-quality research program to achieve progress on the prediction, prevention, diagnosis and management of this condition and impact on healthcare practice in the field of DILI. This will involve 1. Creation of a database encompassing optimised case report form for prospectively identified DILI cases with well-characterised controls with competing diagnoses, biological samples, and imaging data; 2. Establishing of preclinical models to improve the assessment and prediction of hepatotoxicity in humans to guide future drug safety testing; 3. Emphasis on implementation science and 4. Enhanced collaboration between drug-developers, clinicians and regulatory scientists. This proposed operational framework will advance DILI research and may bring together basic, applied, translational and clinical research in DILI.
Collapse
Affiliation(s)
- M I Lucena
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Plataforma de Investigación Clínica y Ensayos Clínicos UICEC-IBIMA, Plataforma ISCIII de Investigación Clínica, Madrid, Spain.
| | - M Villanueva-Paz
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - I Alvarez-Alvarez
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - G P Aithal
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom; NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, United Kingdom
| | - E S Björnsson
- Faculty of Medicine, University of Iceland, Department of Gastroenterology and Hepatology, Landspitali University Hospital, Reykjavik, Iceland
| | - G Cakan-Akdogan
- Izmir Biomedicine and Genome Center, Izmir, Turkey. Department of Medical Biology, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - F J Cubero
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Department of Immunology, Ophthalmology and ORL, Complutense University School of Medicine, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - F Esteves
- Center for Toxicogenomics and Human Health (ToxOmics), NMS | FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - J M Falcon-Perez
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain. IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia 48009, Spain
| | - B Fromenty
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1317, F-35000 Rennes, France
| | - C Garcia-Ruiz
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. University of Barcelona, Barcelona, Spain; Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain
| | - J I Grove
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom; NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, United Kingdom
| | - O Konu
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey; Interdisciplinary Neuroscience Program, Bilkent University, Ankara, Turkey; UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - M Kranendonk
- Center for Toxicogenomics and Human Health (ToxOmics), NMS | FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - G A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland; CMO & Patient Safety, Global Drug Development, Novartis Pharma, Basel, Switzerland
| | - J P Miranda
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - A Remesal-Doblado
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Universidad de Málaga, Málaga, Spain
| | - P Sancho-Bru
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. University of Barcelona, Barcelona, Spain
| | - L Nelson
- Institute for Bioengineering, School of Engineering, Faraday Building, The University of Edinburgh, Scotland, UK
| | - R J Andrade
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - A K Daly
- Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - J C Fernandez-Checa
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. University of Barcelona, Barcelona, Spain; Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
14
|
Tiniakos DG, Anstee QM, Brunt EM, Burt AD. Fatty Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:330-401. [DOI: 10.1016/b978-0-7020-8228-3.00005-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Engin A. Nonalcoholic Fatty Liver Disease and Staging of Hepatic Fibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:539-574. [PMID: 39287864 DOI: 10.1007/978-3-031-63657-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is in parallel with the obesity epidemic, and it is the most common cause of liver diseases. The patients with severe insulin-resistant diabetes having high body mass index (BMI), high-grade adipose tissue insulin resistance, and high hepatocellular triacylglycerols (triglycerides; TAG) content develop hepatic fibrosis within a 5-year follow-up. Insulin resistance with the deficiency of insulin receptor substrate-2 (IRS-2)-associated phosphatidylinositol 3-kinase (PI3K) activity causes an increase in intracellular fatty acid-derived metabolites such as diacylglycerol (DAG), fatty acyl CoA, or ceramides. Lipotoxicity-related mechanism of NAFLD could be explained still best by the "double-hit" hypothesis. Insulin resistance is the major mechanism in the development and progression of NAFLD/nonalcoholic steatohepatitis (NASH). Metabolic oxidative stress, autophagy, and inflammation induce NASH progression. In the "first hit" the hepatic concentrations of diacylglycerol increase with an increase in saturated liver fat content in human NAFLD. Activities of mitochondrial respiratory chain complexes are decreased in the liver tissue of patients with NASH. Hepatocyte lipoapoptosis is a critical feature of NASH. In the "second hit," reduced glutathione levels due to oxidative stress lead to the overactivation of c-Jun N-terminal kinase (JNK)/c-Jun signaling that induces cell death in the steatotic liver. Accumulation of toxic levels of reactive oxygen species (ROS) is caused at least by two ineffectual cyclical pathways. First is the endoplasmic reticulum (ER) oxidoreductin (Ero1)-protein disulfide isomerase oxidation cycle through the downstream of the inner membrane mitochondrial oxidative metabolism and the second is the Kelch like-ECH-associated protein 1 (Keap1)-nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathways. In clinical practice, on ultrasonographic examination, the elevation of transaminases, γ-glutamyltransferase, and the aspartate transaminase to platelet ratio index indicates NAFLD. Fibrosis-4 index, NAFLD fibrosis score, and cytokeratin18 are used for grading steatosis, staging fibrosis, and discriminating the NASH from simple steatosis, respectively. In addition to ultrasonography, "controlled attenuation parameter," "magnetic resonance imaging proton-density fat fraction," "ultrasound-based elastography," "magnetic resonance elastography," "acoustic radiation force impulse elastography imaging," "two-dimensional shear-wave elastography with supersonic imagine," and "vibration-controlled transient elastography" are recommended as combined tests with serum markers in the clinical evaluation of NAFLD. However, to confirm the diagnosis of NAFLD, a liver biopsy is the gold standard. Insulin resistance-associated hyperinsulinemia directly accelerates fibrogenesis during NAFLD development. Although hepatocyte lipoapoptosis is a key driving force of fibrosis progression, hepatic stellate cells and extracellular matrix cells are major fibrogenic effectors. Thereby, these are pharmacological targets of therapies in developing hepatic fibrosis. Nonpharmacological management of NAFLD mainly consists of two alternatives: lifestyle modification and metabolic surgery. Many pharmacological agents that are thought to be effective in the treatment of NAFLD have been tried, but due to lack of ability to attenuate NAFLD, or adverse effects during the phase trials, the vast majority could not be licensed.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
16
|
Le TV, Truong NH, Holterman AXL. Autophagy modulates physiologic and adaptive response in the liver. LIVER RESEARCH 2023; 7:304-320. [PMID: 39958781 PMCID: PMC11792069 DOI: 10.1016/j.livres.2023.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/20/2023] [Accepted: 11/14/2023] [Indexed: 01/03/2025]
Abstract
Autophagy is a physiological process that is ubiquitous and essential to the disposal or recycling of damaged cellular organelles and misfolded proteins to maintain organ homeostasis and survival. Its importance in the regulation of liver function in normal and pathological conditions is increasingly recognized. This review summarizes how autophagy regulates epithelial cell- and non-epithelial cell-specific function in the liver and how it differentially participates in hepatic homeostasis, hepatic injury response to stress-induced liver damage such as cholestasis, sepsis, non-alcoholic and alcohol-associated liver disease, viral hepatitis, hepatic fibrosis, hepatocellular and cholangiocellular carcinoma, and aging. Autophagy-based interventional studies for liver diseases that are currently registered in clinicatrials.gov are summarized. Given the broad and multidirectional autophagy response in the liver, a more refined understanding of the liver cell-specific autophagy activities in a context-dependent manner is necessary.
Collapse
Affiliation(s)
- Trinh Van Le
- Laboratory of Stem Cell Research and Application, University of Science-VNUHCM, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Nhung Hai Truong
- Faculty of Biology and Biotechnology, University of Science-VNUHCM, Ho Chi Minh City, Vietnam
| | - Ai Xuan L. Holterman
- Department of Pediatrics and Surgery, University of Illinois College of Medicine, Chicago and Peoria, IL, USA
| |
Collapse
|
17
|
Wang Y, Shi C, Guo J, Zhang Y, Gong Z. Distinct Types of Cell Death and Implications in Liver Diseases: An Overview of Mechanisms and Application. J Clin Transl Hepatol 2023; 11:1413-1424. [PMID: 37719956 PMCID: PMC10500292 DOI: 10.14218/jcth.2023.00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/17/2023] [Accepted: 07/12/2023] [Indexed: 09/19/2023] Open
Abstract
Cell death is associated with a variety of liver diseases, and hepatocyte death is a core factor in the occurrence and progression of liver diseases. In recent years, new cell death modes have been identified, and certain biomarkers have been detected in the circulation during various cell death modes that mediate liver injury. In this review, cell death modes associated with liver diseases are summarized, including some cell death modes that have emerged in recent years. We described the mechanisms associated with liver diseases and summarized recent applications of targeting cell death in liver diseases. It provides new ideas for the diagnosis and treatment of liver diseases. In addition, multiple cell death modes can contribute to the same liver disease. Different cell death modes are not isolated, and they interact with each other in liver diseases. Future studies may focus on exploring the regulation between various cell death response pathways in liver diseases.
Collapse
Affiliation(s)
- Yukun Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chunxia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jin Guo
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yanqiong Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
18
|
Itoh M, Tamura A, Kanai S, Tanaka M, Kanamori Y, Shirakawa I, Ito A, Oka Y, Hidaka I, Takami T, Honda Y, Maeda M, Saito Y, Murata Y, Matozaki T, Nakajima A, Kataoka Y, Ogi T, Ogawa Y, Suganami T. Lysosomal cholesterol overload in macrophages promotes liver fibrosis in a mouse model of NASH. J Exp Med 2023; 220:e20220681. [PMID: 37725372 PMCID: PMC10506914 DOI: 10.1084/jem.20220681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 04/27/2023] [Accepted: 07/20/2023] [Indexed: 09/21/2023] Open
Abstract
Accumulation of lipotoxic lipids, such as free cholesterol, induces hepatocyte death and subsequent inflammation and fibrosis in the pathogenesis of nonalcoholic steatohepatitis (NASH). However, the underlying mechanisms remain unclear. We have previously reported that hepatocyte death locally induces phenotypic changes in the macrophages surrounding the corpse and remnant lipids, thereby promoting liver fibrosis in a murine model of NASH. Here, we demonstrated that lysosomal cholesterol overload triggers lysosomal dysfunction and profibrotic activation of macrophages during the development of NASH. β-cyclodextrin polyrotaxane (βCD-PRX), a unique supramolecule, is designed to elicit free cholesterol from lysosomes. Treatment with βCD-PRX ameliorated cholesterol accumulation and profibrotic activation of macrophages surrounding dead hepatocytes with cholesterol crystals, thereby suppressing liver fibrosis in a NASH model, without affecting the hepatic cholesterol levels. In vitro experiments revealed that cholesterol-induced lysosomal stress triggered profibrotic activation in macrophages predisposed to the steatotic microenvironment. This study provides evidence that dysregulated cholesterol metabolism in macrophages would be a novel mechanism of NASH.
Collapse
Affiliation(s)
- Michiko Itoh
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Bioelectronics, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
- Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
- Department of Metabolic Syndrome and Nutritional Science, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sayaka Kanai
- Department of Bioelectronics, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
- Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
| | - Miyako Tanaka
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan
| | - Yohei Kanamori
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Ibuki Shirakawa
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Ayaka Ito
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuyoshi Oka
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Isao Hidaka
- Department of Gastroenterology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Taro Takami
- Department of Gastroenterology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Yasushi Honda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Mitsuyo Maeda
- Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, Kobe, Japan
- Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Yasuyuki Saito
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoji Murata
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takashi Matozaki
- Division of Biosignal Regulation, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yosky Kataoka
- Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, Kobe, Japan
- Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Yoshihiro Ogawa
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takayoshi Suganami
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan
- Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu, Japan
| |
Collapse
|
19
|
Lee YK, Park JE, Lee M, Mifflin R, Xu Y, Novak R, Zhang Y, Hardwick JP. Deletion of hepatic small heterodimer partner ameliorates development of nonalcoholic steatohepatitis in mice. J Lipid Res 2023; 64:100454. [PMID: 37827334 PMCID: PMC10665942 DOI: 10.1016/j.jlr.2023.100454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 09/02/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023] Open
Abstract
Small heterodimer partner (SHP, Nr0b2) is an orphan nuclear receptor that regulates bile acid, lipid, and glucose metabolism. Shp-/- mice are resistant to diet-induced obesity and hepatic steatosis. In this study, we explored the potential role of SHP in the development of nonalcoholic steatohepatitis (NASH). A 6-month Western diet (WD) regimen was used to induce NASH. Shp deletion protected mice from NASH progression by inhibiting inflammatory and fibrotic genes, oxidative stress, and macrophage infiltration. WD feeding disrupted the ultrastructure of hepatic mitochondria in WT mice but not in Shp-/- mice. In ApoE-/- mice, Shp deletion also effectively ameliorated hepatic inflammation after a 1 week WD regimen without an apparent antisteatotic effect. Moreover, Shp-/- mice resisted fibrogenesis induced by a methionine- and choline-deficient diet. Notably, the observed protection against NASH was recapitulated in liver-specific Shp-/- mice fed either the WD or methionine- and choline-deficient diet. Hepatic cholesterol was consistently reduced in the studied mouse models with Shp deletion. Our data suggest that Shp deficiency ameliorates NASH development likely by modulating hepatic cholesterol metabolism and inflammation.
Collapse
Affiliation(s)
- Yoon-Kwang Lee
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA.
| | - Jung Eun Park
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Mikang Lee
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Ryan Mifflin
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Yang Xu
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Robert Novak
- Department of Pathology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Yanqiao Zhang
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| | - James P Hardwick
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| |
Collapse
|
20
|
Wei Y, Liu J, Wang G, Wang Y. Sex differences in the association between adipose insulin resistance and non-alcoholic fatty liver disease in Chinese adults. Biol Sex Differ 2023; 14:69. [PMID: 37814297 PMCID: PMC10561490 DOI: 10.1186/s13293-023-00549-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 09/13/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND Adipose insulin resistance (Adipo-IR) is associated with multiple metabolic diseases, including non-alcoholic fatty liver disease (NAFLD). The study aimed to evaluate sex differences in the association between Adipo-IR and NAFLD, and further investigated other potential modifiers. METHODS This cross-sectional study enrolled adults without diabetes who underwent physical examinations in Beijing Chao-Yang Hospital. We calculated the Adipo-IR index as the product of the fasting insulin and free fatty acid concentration. We categorized Adipo-IR into four groups according to quartiles, using the first interquartile range (Q1) as the reference. Logistic regression was used stratified by the modifiers after adjustment for potential confounders. RESULTS There were 5586 participants in the study, 49.8% (n = 2781) of whom were women and 30.4% (n = 1698) with NAFLD. There was a graded positive association between Adipo-IR and NAFLD, with sex (P = 0.01) and hyperlipidemia (P = 0.02) modifying this association. In the hyperlipidemic women, for one unit increase in log-Adipo-IR, the odds of having NAFLD increased by 385% after adjustment for potential confounders (OR = 4.85, 95%CI 3.54-6.73, P < 0.001). However, it turned out that the odds of having NAFLD increased by 131% (OR = 2.31, 95%CI 1.74-3.11, P < 0.001), 216% (OR = 3.16, 95%CI 2.56-3.93, P < 0.001), 181% (OR = 2.81, 95%CI 1.88-4.28, P < 0.001) in normolipidemic men, hyperlipidemic men, and normolipidemic women, respectively. Similarly, the ORs for the association between Adipo-IR and NAFLD in women with age ≥ 50 years were higher than ORs in women with age < 50 years. CONCLUSIONS The positive correlation between Adipo-IR and NAFLD was stronger in hyperlipidemic women, compared with normolipidemic or hyperlipidemic men, or normolipidemic women. The association also strengthened for women over 50 years. Treatment strategies targeting Adipo-IR to alleviate NAFLD may be of value, especially in hyperlipidemic women after menopause.
Collapse
Affiliation(s)
- Ying Wei
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang District, Beijing, 100020, China
| | - Jia Liu
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang District, Beijing, 100020, China
| | - Guang Wang
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang District, Beijing, 100020, China.
| | - Ying Wang
- Health Management Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
21
|
Silja K, Selvaganabathy N, Kalaiselvi T, Thirunavukkarasu C. Inhibition of glutathione generation in hepatic steatotic rats augments oxidative stress. Toxicol Mech Methods 2023; 33:596-606. [PMID: 37051633 DOI: 10.1080/15376516.2023.2202784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/21/2022] [Accepted: 04/08/2023] [Indexed: 04/14/2023]
Abstract
Fatty liver disease has been strongly associated with a low glutathione (GSH) level in hepatocytes with increased oxidative stress, which is critically involved in the initiation and progression of the disease. The study investigated whether the GSH deficiency induced by buthionine sulfoximine (BSO), an inhibitor of γ-glutamyl cysteine synthetase, can be restored by the administration of GSH ester. We showed that mice fed a diet with cholesterol plus sodium cholate developed steatosis followed by hepatic GSH reduction. Moreover, the GSH level in the cytosol and mitochondria of steatosis plus BSO decreased than that of steatosis alone. Subsequent studies with the liver tissues and plasma of BSO plus steatosis revealed the accumulation of cholesterol in the hepatocytes, downregulating the concentration of GSH, antioxidant enzymes, and GSH metabolizing enzymes with a significant rise in reactive oxygen species (ROS), blood glucose level and plasma lipid profile. The administration of GSH ester in BSO-administered mice, prevented the depletion of GSH by upregulating the GSH concentration, antioxidant enzymes, and GSH metabolizing enzymes, followed by a reduction in ROS and plasma lipid concentration. The histopathological analysis showed a marked increase in inflammation followed by hepatocytes ballooning in BSO-induced group and steatosis control group, which was ameliorated by GSH ester administration. In conclusion, our data suggest that the restoration of GSH in the cytosol and mitochondria through the injection with GSH ester plays a principal role in maintaining the GSH level in the liver, thereby delaying the progression of fatty liver disease.
Collapse
Affiliation(s)
- Krishnan Silja
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | | | | | | |
Collapse
|
22
|
Grander C, Grabherr F, Tilg H. Non-alcoholic fatty liver disease: pathophysiological concepts and treatment options. Cardiovasc Res 2023; 119:1787-1798. [PMID: 37364164 PMCID: PMC10405569 DOI: 10.1093/cvr/cvad095] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/30/2022] [Accepted: 06/23/2023] [Indexed: 06/28/2023] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is continually increasing due to the global obesity epidemic. NAFLD comprises a systemic metabolic disease accompanied frequently by insulin resistance and hepatic and systemic inflammation. Whereas simple hepatic steatosis is the most common disease manifestation, a more progressive disease course characterized by liver fibrosis and inflammation (i.e. non-alcoholic steatohepatitis) is present in 10-20% of affected individuals. NAFLD furthermore progresses in a substantial number of patients towards liver cirrhosis and hepatocellular carcinoma. Whereas this disease now affects almost 25% of the world's population and is mainly observed in obesity and type 2 diabetes, NAFLD also affects lean individuals. Pathophysiology involves lipotoxicity, hepatic immune disturbances accompanied by hepatic insulin resistance, a gut dysbiosis, and commonly hepatic and systemic insulin resistance defining this disorder a prototypic systemic metabolic disorder. Not surprisingly many affected patients have other disease manifestations, and indeed cardiovascular disease, chronic kidney disease, and extrahepatic malignancies are all contributing substantially to patient outcome. Weight loss and lifestyle change reflect the cornerstone of treatment, and several medical treatment options are currently under investigation. The most promising treatment strategies include glucagon-like peptide 1 receptor antagonists, sodium-glucose transporter 2 inhibitors, Fibroblast Growth Factor analogues, Farnesoid X receptor agonists, and peroxisome proliferator-activated receptor agonists. Here, we review epidemiology, pathophysiology, and therapeutic options for NAFLD.
Collapse
Affiliation(s)
- Christoph Grander
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Anichstrasse 35, Innsbruck 6020, Austria
| | - Felix Grabherr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Anichstrasse 35, Innsbruck 6020, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Anichstrasse 35, Innsbruck 6020, Austria
| |
Collapse
|
23
|
Fucho R, Solsona-Vilarrasa E, Torres S, Nuñez S, Insausti-Urkia N, Edo A, Calvo M, Bosch A, Martin G, Enrich C, García-Ruiz C, Fernandez-Checa JC. Zonal expression of StARD1 and oxidative stress in alcoholic-related liver disease. J Lipid Res 2023; 64:100413. [PMID: 37473919 PMCID: PMC10448177 DOI: 10.1016/j.jlr.2023.100413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/26/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023] Open
Abstract
Alcoholic-related liver disease (ALD) is one of the leading causes of chronic liver disease and morbidity. Unfortunately, the pathogenesis of ALD is still incompletely understood. StARD1 has emerged as a key player in other etiologies of chronic liver disease, and alcohol-induced liver injury exhibits zonal distribution. Here, we report that StARD1 is predominantly expressed in perivenous (PV) zone of liver sections from mice-fed chronic and acute-on-chronic ALD models compared to periportal (PP) area and is observed as early as 10 days of alcohol feeding. Ethanol and chemical hypoxia induced the expression of StARD1 in isolated primary mouse hepatocytes. The zonal-dependent expression of StARD1 resulted in the accumulation of cholesterol in mitochondria and increased lipid peroxidation in PV hepatocytes compared to PP hepatocytes, effects that were abrogated in PV hepatocytes upon hepatocyte-specific Stard1 KO mice. Transmission electron microscopy indicated differential glycogen and lipid droplets content between PP and PV areas, and alcohol feeding decreased glycogen content in both areas while increased lipid droplets content preferentially in PV zone. Moreover, transmission electron microscopy revealed that mitochondria from PV zone exhibited reduced length with respect to PP area, and alcohol feeding increased mitochondrial number, particularly, in PV zone. Extracellular flux analysis indicated lower maximal respiration and spared respiratory capacity in control PV hepatocytes that were reversed upon alcohol feeding. These findings reveal a differential morphology and functional activity of mitochondria between PP and PV hepatocytes following alcohol feeding and that StARD1 may play a key role in the zonal-dependent liver injury characteristic of ALD.
Collapse
Affiliation(s)
- Raquel Fucho
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Barcelona, Spain; Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBEREHD, Madrid, Spain
| | - Estel Solsona-Vilarrasa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Barcelona, Spain; Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBEREHD, Madrid, Spain
| | - Sandra Torres
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Barcelona, Spain; Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBEREHD, Madrid, Spain
| | - Susana Nuñez
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Barcelona, Spain; Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBEREHD, Madrid, Spain
| | - Naroa Insausti-Urkia
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Barcelona, Spain; Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBEREHD, Madrid, Spain
| | - Albert Edo
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Barcelona, Spain; Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBEREHD, Madrid, Spain
| | - Maria Calvo
- Advanced Optical Microscopy-Clinic Campus, Scientific and Technological Center, University of Barcelona, Barcelona, Spain
| | - Anna Bosch
- Advanced Optical Microscopy-Clinic Campus, Scientific and Technological Center, University of Barcelona, Barcelona, Spain
| | - Gemma Martin
- Advanced Optical Microscopy-Clinic Campus, Scientific and Technological Center, University of Barcelona, Barcelona, Spain
| | - Carlos Enrich
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Unit of Cell Biology, Departament of Biomedicine, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain; Center of Biomedical Research CELLEX, Barcelona, Spain
| | - Carmen García-Ruiz
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Barcelona, Spain; Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBEREHD, Madrid, Spain.
| | - Jose C Fernandez-Checa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Barcelona, Spain; Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBEREHD, Madrid, Spain; Department of Medicine, Keck School of Division of Gastrointestinal and Liver Disease, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
24
|
Min JO, Ho HA, Lee W, Jung BC, Park SJ, Kim S, Lee SJ. Statins suppress cell-to-cell propagation of α-synuclein by lowering cholesterol. Cell Death Dis 2023; 14:474. [PMID: 37500624 PMCID: PMC10374525 DOI: 10.1038/s41419-023-05977-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023]
Abstract
Cell-to-cell propagation of protein aggregates has been implicated in the progression of neurodegenerative diseases. However, the underlying mechanism and modulators of this process are not fully understood. Here, we screened a small-molecule library in a search for agents that suppress the propagation of α-synuclein and mutant huntingtin (mHtt). These screens yielded several molecules, some of which were effective against both α-synuclein and mHtt. Among these molecules, we focused on simvastatin and pravastatin. Simvastatin administration in a transgenic model of synucleinopathy effectively ameliorated behavioral deficits and α-synuclein accumulation, whereas pravastatin had no effect. Because only simvastatin enters the brain effectively, these results suggest that inhibition of brain cholesterol synthesis is important in simvastatin effects. In cultured cells, accumulation of intracellular cholesterol, induced by genetic ablation of the NPC1 gene or by pharmacological treatment with U18666A, increased α-synuclein aggregation and secretion. In contrast, lowering cholesterol using methyl-β-cyclodextrin or statins reversed α-synuclein aggregation and secretion in NPC1-knockout cells. Consistent with these observations, feeding a high-fat diet aggravated α-synuclein pathology and behavioral deficits in the preformed fibril-injected mouse model, an effect that was also reversed by simvastatin administration. These results suggest that statins suppress propagation of protein aggregates by lowering cholesterol in the brain.
Collapse
Affiliation(s)
- Joo-Ok Min
- Department of Biomedical Sciences, Neuroscience Research Institute, Convergence Research Center for Dementia, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Hoang-Anh Ho
- Interdisciplinary Program in Neuroscience, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Wonjae Lee
- Department of Biomedical Sciences, Neuroscience Research Institute, Convergence Research Center for Dementia, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Neuramedy Co. Ltd, Seoul, Republic of Korea
| | - Byung Chul Jung
- Department of Biomedical Sciences, Neuroscience Research Institute, Convergence Research Center for Dementia, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, USA
| | - Sung Jun Park
- Department of Biomedical Sciences, Neuroscience Research Institute, Convergence Research Center for Dementia, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | | | - Seung-Jae Lee
- Department of Biomedical Sciences, Neuroscience Research Institute, Convergence Research Center for Dementia, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Neuramedy Co. Ltd, Seoul, Republic of Korea.
| |
Collapse
|
25
|
Kakiyama G, Rodriguez-Agudo D, Pandak WM. Mitochondrial Cholesterol Metabolites in a Bile Acid Synthetic Pathway Drive Nonalcoholic Fatty Liver Disease: A Revised "Two-Hit" Hypothesis. Cells 2023; 12:1434. [PMID: 37408268 PMCID: PMC10217489 DOI: 10.3390/cells12101434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 07/07/2023] Open
Abstract
The rising prevalence of nonalcoholic fatty liver disease (NAFLD)-related cirrhosis highlights the need for a better understanding of the molecular mechanisms responsible for driving the transition of hepatic steatosis (fatty liver; NAFL) to steatohepatitis (NASH) and fibrosis/cirrhosis. Obesity-related insulin resistance (IR) is a well-known hallmark of early NAFLD progression, yet the mechanism linking aberrant insulin signaling to hepatocyte inflammation has remained unclear. Recently, as a function of more distinctly defining the regulation of mechanistic pathways, hepatocyte toxicity as mediated by hepatic free cholesterol and its metabolites has emerged as fundamental to the subsequent necroinflammation/fibrosis characteristics of NASH. More specifically, aberrant hepatocyte insulin signaling, as found with IR, leads to dysregulation in bile acid biosynthetic pathways with the subsequent intracellular accumulation of mitochondrial CYP27A1-derived cholesterol metabolites, (25R)26-hydroxycholesterol and 3β-Hydroxy-5-cholesten-(25R)26-oic acid, which appear to be responsible for driving hepatocyte toxicity. These findings bring forth a "two-hit" interpretation as to how NAFL progresses to NAFLD: abnormal hepatocyte insulin signaling, as occurs with IR, develops as a "first hit" that sequentially drives the accumulation of toxic CYP27A1-driven cholesterol metabolites as the "second hit". In the following review, we examine the mechanistic pathway by which mitochondria-derived cholesterol metabolites drive the development of NASH. Insights into mechanistic approaches for effective NASH intervention are provided.
Collapse
Affiliation(s)
- Genta Kakiyama
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA; (D.R.-A.); (W.M.P.)
- Research Services, Central Virginia Veterans Affairs Healthcare System, Richmond, VA 23249, USA
| | - Daniel Rodriguez-Agudo
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA; (D.R.-A.); (W.M.P.)
- Research Services, Central Virginia Veterans Affairs Healthcare System, Richmond, VA 23249, USA
| | - William M. Pandak
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA; (D.R.-A.); (W.M.P.)
- Research Services, Central Virginia Veterans Affairs Healthcare System, Richmond, VA 23249, USA
| |
Collapse
|
26
|
Wang H, Shen Q, Zhang F, Fu Y, Zhu Y, Zhao L, Wang C, Zhao Q. Heat-treated foxtail millet protein delayed the development of pre-diabetes to diabetes in mice by altering gut microbiota and metabolomic profiles. Food Funct 2023; 14:4866-4880. [PMID: 37133422 DOI: 10.1039/d3fo00294b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Millet protein has gained much attention for its beneficial effects in mitigating metabolic diseases. However, most individuals pass through a prediabetic phase before developing full-blown diabetes, and whether millet protein has hypoglycemic effects on prediabetic mice remains unclear. In the present study, heat-treated foxtail millet protein (HMP) supplementation significantly decreased fasting blood glucose and serum insulin levels, alleviated insulin resistance, and improved impaired glucose tolerance in prediabetic mice. In addition, HMP altered the intestinal flora composition, as evidenced by the reduction in the abundance of Dubosiella and Marvinbryantia and the increase in the content of Lactobacillus, Bifidobacterium, and norank_f_Erysipelotrichaceae. Moreover, HMP supplementation dramatically regulated the levels of serum metabolites (i.e., LysoPCs, 11,14,17-eicosatrienoic acid, and sphingosine) and related metabolic pathways, such as sphingolipid metabolism and pantothenate and CoA biosynthesis. In conclusion, the improvement of gut microbiota and serum metabolic profiles was related to the hypoglycemic potential of HMP in prediabetes.
Collapse
Affiliation(s)
- Han Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China.
| | - Qun Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China.
| | - Fan Zhang
- Beijing Industrial Technology Research Institute Ltd, Beijing, China
| | - Yongxia Fu
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan, China
| | - Yiqing Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China.
| | - Liangxing Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China.
| | - Chao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China.
| | - Qingyu Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China.
| |
Collapse
|
27
|
Goicoechea L, Conde de la Rosa L, Torres S, García-Ruiz C, Fernández-Checa JC. Mitochondrial cholesterol: Metabolism and impact on redox biology and disease. Redox Biol 2023; 61:102643. [PMID: 36857930 PMCID: PMC9989693 DOI: 10.1016/j.redox.2023.102643] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/10/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
Cholesterol is a crucial component of membrane bilayers by regulating their structural and functional properties. Cholesterol traffics to different cellular compartments including mitochondria, whose cholesterol content is low compared to other cell membranes. Despite the limited availability of cholesterol in the inner mitochondrial membrane (IMM), the metabolism of cholesterol in the IMM plays important physiological roles, acting as the precursor for the synthesis of steroid hormones and neurosteroids in steroidogenic tissues and specific neurons, respectively, or the synthesis of bile acids through an alternative pathway in the liver. Accumulation of cholesterol in mitochondria above physiological levels has a negative impact on mitochondrial function through several mechanisms, including the limitation of crucial antioxidant defenses, such as the glutathione redox cycle, increased generation of reactive oxygen species and consequent oxidative modification of cardiolipin, and defective assembly of respiratory supercomplexes. These adverse consequences of increased mitochondrial cholesterol trafficking trigger the onset of oxidative stress and cell death, and, ultimately, contribute to the development of diverse diseases, including metabolic liver diseases (i.e. fatty liver disease and liver cancer), as well as lysosomal disorders (i.e. Niemann-Pick type C disease) and neurodegenerative diseases (i.e. Alzheimer's disease). In this review, we summarize the metabolism and regulation of mitochondrial cholesterol and its potential impact on liver and neurodegenerative diseases.
Collapse
Affiliation(s)
- Leire Goicoechea
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain
| | - Laura Conde de la Rosa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain
| | - Sandra Torres
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain
| | - Carmen García-Ruiz
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain; Research Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| | - José C Fernández-Checa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain; Research Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
28
|
Patel AH, Peddu D, Amin S, Elsaid MI, Minacapelli CD, Chandler TM, Catalano C, Rustgi VK. Nonalcoholic Fatty Liver Disease in Lean/Nonobese and Obese Individuals: A Comprehensive Review on Prevalence, Pathogenesis, Clinical Outcomes, and Treatment. J Clin Transl Hepatol 2023; 11:502-515. [PMID: 36643037 PMCID: PMC9817050 DOI: 10.14218/jcth.2022.00204] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 12/24/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide, with an estimated prevalence of 25% globally. NAFLD is closely associated with metabolic syndrome, which are both becoming increasingly more common with increasing rates of insulin resistance, dyslipidemia, and hypertension. Although NAFLD is strongly associated with obesity, lean or nonobese NAFLD is a relatively new phenotype and occurs in patients without increased waist circumference and with or without visceral fat. Currently, there is limited literature comparing and illustrating the differences between lean/nonobese and obese NAFLD patients with regard to risk factors, pathophysiology, and clinical outcomes. In this review, we aim to define and further delineate different phenotypes of NAFLD and present a comprehensive review on the prevalence, incidence, risk factors, genetic predisposition, and pathophysiology. Furthermore, we discuss and compare the clinical outcomes, such as insulin resistance, dyslipidemia, hypertension, coronary artery disease, mortality, and progression to nonalcoholic steatohepatitis, among lean/nonobese and obese NAFLD patients. Finally, we summarize the most up to date current management of NAFLD, including lifestyle interventions, pharmacologic therapies, and surgical options.
Collapse
Affiliation(s)
- Ankoor H. Patel
- Department of Medicine, Division of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Center for Liver Diseases and Masses, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Dhiraj Peddu
- Department of Medicine, Division of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Center for Liver Diseases and Masses, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Sahil Amin
- Department of Medicine, Division of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Center for Liver Diseases and Masses, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Mohamed I. Elsaid
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
- Secondary Data Core, Center for Biostatistics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Carlos D. Minacapelli
- Department of Medicine, Division of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Center for Liver Diseases and Masses, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Toni-Marie Chandler
- Department of Medicine, Division of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Center for Liver Diseases and Masses, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Carolyn Catalano
- Department of Medicine, Division of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Center for Liver Diseases and Masses, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Vinod K. Rustgi
- Department of Medicine, Division of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Center for Liver Diseases and Masses, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|
29
|
Amorim R, Magalhães CC, Borges F, Oliveira PJ, Teixeira J. From Non-Alcoholic Fatty Liver to Hepatocellular Carcinoma: A Story of (Mal)Adapted Mitochondria. BIOLOGY 2023; 12:biology12040595. [PMID: 37106795 PMCID: PMC10135755 DOI: 10.3390/biology12040595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a global pandemic affecting 25% of the world's population and is a serious health and economic concern worldwide. NAFLD is mainly the result of unhealthy dietary habits combined with sedentary lifestyle, although some genetic contributions to NAFLD have been documented. NAFLD is characterized by the excessive accumulation of triglycerides (TGs) in hepatocytes and encompasses a spectrum of chronic liver abnormalities, ranging from simple steatosis (NAFL) to steatohepatitis (NASH), significant liver fibrosis, cirrhosis, and hepatocellular carcinoma. Although the molecular mechanisms that cause the progression of steatosis to severe liver damage are not fully understood, metabolic-dysfunction-associated fatty liver disease is strong evidence that mitochondrial dysfunction plays a significant role in the development and progression of NAFLD. Mitochondria are highly dynamic organelles that undergo functional and structural adaptations to meet the metabolic requirements of the cell. Alterations in nutrient availability or cellular energy needs can modify mitochondria formation through biogenesis or the opposite processes of fission and fusion and fragmentation. In NAFL, simple steatosis can be seen as an adaptive response to storing lipotoxic free fatty acids (FFAs) as inert TGs due to chronic perturbation in lipid metabolism and lipotoxic insults. However, when liver hepatocytes' adaptive mechanisms are overburdened, lipotoxicity occurs, contributing to reactive oxygen species (ROS) formation, mitochondrial dysfunction, and endoplasmic reticulum (ER) stress. Impaired mitochondrial fatty acid oxidation, reduction in mitochondrial quality, and disrupted mitochondrial function are associated with a decrease in the energy levels and impaired redox balance and negatively affect mitochondria hepatocyte tolerance towards damaging hits. However, the sequence of events underlying mitochondrial failure from steatosis to hepatocarcinoma is still yet to be fully clarified. This review provides an overview of our understanding of mitochondrial adaptation in initial NAFLD stages and highlights how hepatic mitochondrial dysfunction and heterogeneity contribute to disease pathophysiology progression, from steatosis to hepatocellular carcinoma. Improving our understanding of different aspects of hepatocytes' mitochondrial physiology in the context of disease development and progression is crucial to improving diagnosis, management, and therapy of NAFLD/NASH.
Collapse
Affiliation(s)
- Ricardo Amorim
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Carina C Magalhães
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Fernanda Borges
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Paulo J Oliveira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - José Teixeira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
30
|
Jia L. Dietary cholesterol in alcohol-associated liver disease. IMMUNOMETABOLISM (COBHAM, SURREY) 2023; 5:e00026. [PMID: 37152117 PMCID: PMC10158609 DOI: 10.1097/in9.0000000000000026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/13/2023] [Indexed: 05/09/2023]
Abstract
There is an increasing prevalence of alcohol-associated liver disease (ALD) worldwide. In addition to excessive alcohol consumption, other nutritional factors have been shown to affect the initiation and progression of ALD. The emerging role of cholesterol in exacerbating ALD has been reported recently and the underlying mechanisms are discussed. In addition, the interplay between dietary cholesterol and alcohol on cholesterol metabolism is reviewed. Furthermore, we highlight the therapeutic potential of cholesterol-lowering drugs in managing the onset and severity of ALD. Finally, we suggest the future mechanistic investigation of the effect of cholesterol on insulin resistance and intestinal inflammation in the exacerbation of alcohol-induced cellular and systemic dysfunction.
Collapse
Affiliation(s)
- Lin Jia
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
31
|
Amini-Salehi E, Hassanipour S, Joukar F, Daryagasht AA, Khosousi MJ, Sadat Aleali M, Ansar MM, Heidarzad F, Abdzadeh E, Vakilpour A, Mansour-Ghanaei F. Risk Factors of Non-alcoholic Fatty Liver Disease in the Iranian Adult Population: A Systematic Review and Meta-analysis. HEPATITIS MONTHLY 2023; 23. [DOI: 10.5812/hepatmon-131523] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/07/2023] [Accepted: 01/18/2023] [Indexed: 01/03/2025]
Abstract
Context: Non-alcoholic fatty liver disease (NAFLD) is progressing considerably worldwide. Identifying the risk factors of NAFLD is a critical step in preventing its progression. Methods: In November 2022, two independent researchers studied seven databases, including PubMed, ISI/WoS, ProQuest, Scopus, SID, Magiran, and Google Scholar, and reference list of relevant articles, searching studies that assessed NAFLD risk factors in the Iranian adult population. Heterogeneity between studies was assessed by Cochran’s test and its composition using I2 statistics. A random-effects model was used when heterogeneity was observed; otherwise, a fixed-effects model was applied. Egger’s regression test and Trim-and-Fill analysis were used to assess publication bias. Comprehensive Meta-analysis software (version 3) was used for the analyses of the present study. Results: The results of this study showed significant associations between NAFLD with age (n = 15, odds ratio (OR) = 2.12, 95% CI: 1.79 - 2.51), body mass index (n = 46, OR = 5.00, 95% CI: 3.34 - 7.49), waist circumference (n = 20, OR = 6.37, 95% CI: 3.25 - 12.48), waist-to-hip ratio (n = 17, OR = 4.72, 95% CI: 3.93 - 5.66), total cholesterol (n = 39, OR = 1.80, 95% CI: 1.52 - 2.13), high-density lipoprotein (n = 37, OR = 0.53, 95% CI: 0.44 - 0.65), low-density lipoprotein (n = 31, OR = 1.68, 95% CI: 1.38 - 2.05), triglyceride (n = 31, OR = 3.21, 95% CI: 2.67 - 3.87), alanine aminotransferase (n = 26, OR = 4.06, 95% CI: 2.94 - 5.62), aspartate aminotransferase (n = 27, OR = 2.16, 95% CI: 1.50 - 3.12), hypertension (n = 13, OR = 2.53, 95% CI: 2.32 - 2.77), systolic blood pressure (n = 13, OR = 1.83, 95% CI: 1.53 - 2.18), diastolic blood pressure (n = 14, OR = 1.80, 95% CI: 1.48 - 2.20), fasting blood sugar (n = 31, OR = 2.91, 95% CI: 2.11- 4.01), homeostatic model assessment for insulin resistance (n = 5, OR = 1.92, 95% CI: 1.48 - 2.59), diabetes mellitus (n = 15, OR = 3.04, 95% CI: 2.46 - 3.75), metabolic syndrome (n = 10, OR = 3.56, 95% CI: 2.79 - 4.55), and physical activity (n = 11, OR = 0.32, 95% CI: 0.24 - 0.43) (P < 0.05). Conclusions: In conclusion, several factors are significantly associated with NAFLD. However, anthropometric indices had the strongest relationship with NAFLD in the Iranian adult population.
Collapse
|
32
|
Zheng Q, Zhu M, Zeng X, Liu W, Fu F, Li X, Liao G, Lu Y, Chen Y. Comparison of Animal Models for the Study of Nonalcoholic Fatty Liver Disease. J Transl Med 2023; 103:100129. [PMID: 36907553 DOI: 10.1016/j.labinv.2023.100129] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most prevalent chronic liver diseases, and there is still no effective treatment for its advanced stage, nonalcoholic steatohepatitis (NASH). An ideal animal model of NAFLD/NASH is urgently needed for preclinical studies. However, the models reported previously are quite heterogeneous due to differences in animal strains, feed formulations, evaluation indicators, etc. Here, we report five NAFLD mouse models we developed in previous studies and comprehensively compared their characteristics. The high-fat diet (HFD) model is time-consuming and is characterized by early insulin resistance and slight liver steatosis at 12 weeks. Still, inflammation and fibrosis are rare, even at 22 weeks. The high fat, high fructose, and high cholesterol diet (FFC) exacerbates glucose and lipid metabolism disorders, showing distinct hypercholesterolemia, steatosis, and mild inflammation at 12 w. An FFC diet combined with streptozotocin (STZ) is a novel model that speeds up the process of lobular inflammation and fibrosis. The STAM model also used a combination of FFC and STZ but employs newborn mice and shows the fastest formation of fibrosis nodules. The HFD model is appropriate for the study of early NAFLD. FFC combined with STZ accelerates the pathological process of NASH and may be the most promising model for NASH research and drug development.
Collapse
Affiliation(s)
- Qing Zheng
- Key Laboratory of Transplant Engineering and Immunology, NHFPC; Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Min Zhu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC; Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Xin Zeng
- Key Laboratory of Transplant Engineering and Immunology, NHFPC; Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Wen Liu
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Fudong Fu
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xiaoyu Li
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Guangneng Liao
- Animal experimental center of West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC; Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Younan Chen
- Key Laboratory of Transplant Engineering and Immunology, NHFPC; Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, P. R. China; Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, P.R. China.
| |
Collapse
|
33
|
Fecal Metagenomics and Metabolomics Identifying Microbial Signatures in Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:ijms24054855. [PMID: 36902288 PMCID: PMC10002933 DOI: 10.3390/ijms24054855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The frequency of non-alcoholic fatty liver disease (NAFLD) has intensified, creating diagnostic challenges and increasing the need for reliable non-invasive diagnostic tools. Due to the importance of the gut-liver axis in the progression of NAFLD, studies attempt to reveal microbial signatures in NAFLD, evaluate them as diagnostic biomarkers, and to predict disease progression. The gut microbiome affects human physiology by processing the ingested food into bioactive metabolites. These molecules can penetrate the portal vein and the liver to promote or prevent hepatic fat accumulation. Here, the findings of human fecal metagenomic and metabolomic studies relating to NAFLD are reviewed. The studies present mostly distinct, and even contradictory, findings regarding microbial metabolites and functional genes in NAFLD. The most abundantly reproducing microbial biomarkers include increased lipopolysaccharides and peptidoglycan biosynthesis, enhanced degradation of lysine, increased levels of branched chain amino acids, as well as altered lipid and carbohydrate metabolism. Among other causes, the discrepancies between the studies may be related to the obesity status of the patients and the severity of NAFLD. In none of the studies, except for one, was diet considered, although it is an important factor driving gut microbiota metabolism. Future studies should consider diet in these analyses.
Collapse
|
34
|
Abstract
The epidemic of obesity, type 2 diabetes and nonalcoholic liver disease (NAFLD) favors drug consumption, which augments the risk of adverse events including liver injury. For more than 30 years, a series of experimental and clinical investigations reported or suggested that the common pain reliever acetaminophen (APAP) could be more hepatotoxic in obesity and related metabolic diseases, at least after an overdose. Nonetheless, several investigations did not reproduce these data. This discrepancy might come from the extent of obesity and steatosis, accumulation of specific lipid species, mitochondrial dysfunction and diabetes-related parameters such as ketonemia and hyperglycemia. Among these factors, some of them seem pivotal for the induction of cytochrome P450 2E1 (CYP2E1), which favors the conversion of APAP to the toxic metabolite N-acetyl-p-benzoquinone imine (NAPQI). In contrast, other factors might explain why obesity and NAFLD are not always associated with more frequent or more severe APAP-induced acute hepatotoxicity, such as increased volume of distribution in the body, higher hepatic glucuronidation and reduced CYP3A4 activity. Accordingly, the occurrence and outcome of APAP-induced liver injury in an obese individual with NAFLD would depend on a delicate balance between metabolic factors that augment the generation of NAPQI and others that can mitigate hepatotoxicity.
Collapse
|
35
|
Pfrieger FW. The Niemann-Pick type diseases – A synopsis of inborn errors in sphingolipid and cholesterol metabolism. Prog Lipid Res 2023; 90:101225. [PMID: 37003582 DOI: 10.1016/j.plipres.2023.101225] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Disturbances of lipid homeostasis in cells provoke human diseases. The elucidation of the underlying mechanisms and the development of efficient therapies represent formidable challenges for biomedical research. Exemplary cases are two rare, autosomal recessive, and ultimately fatal lysosomal diseases historically named "Niemann-Pick" honoring the physicians, whose pioneering observations led to their discovery. Acid sphingomyelinase deficiency (ASMD) and Niemann-Pick type C disease (NPCD) are caused by specific variants of the sphingomyelin phosphodiesterase 1 (SMPD1) and NPC intracellular cholesterol transporter 1 (NPC1) or NPC intracellular cholesterol transporter 2 (NPC2) genes that perturb homeostasis of two key membrane components, sphingomyelin and cholesterol, respectively. Patients with severe forms of these diseases present visceral and neurologic symptoms and succumb to premature death. This synopsis traces the tortuous discovery of the Niemann-Pick diseases, highlights important advances with respect to genetic culprits and cellular mechanisms, and exposes efforts to improve diagnosis and to explore new therapeutic approaches.
Collapse
|
36
|
Zhou X, Jin S, Pan J, Lin Q, Yang S, Lu Y, Qiu M, Ambe PC, Basharat Z, Zimmer V, Wang W, Hong W. Relationship between Cholesterol-Related Lipids and Severe Acute Pancreatitis: From Bench to Bedside. J Clin Med 2023; 12:jcm12051729. [PMID: 36902516 PMCID: PMC10003000 DOI: 10.3390/jcm12051729] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/29/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
It is well known that hypercholesterolemia in the body has pro-inflammatory effects through the formation of inflammasomes and augmentation of TLR (Toll-like receptor) signaling, which gives rise to cardiovascular disease and neurodegenerative diseases. However, the interaction between cholesterol-related lipids and acute pancreatitis (AP) has not yet been summarized before. This hinders the consensus on the existence and clinical importance of cholesterol-associated AP. This review focuses on the possible interaction between AP and cholesterol-related lipids, which include total cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) and apolipoprotein (Apo) A1, from the bench to the bedside. With a higher serum level of total cholesterol, LDL-C is associated with the severity of AP, while the persistent inflammation of AP is allied with a decrease in serum levels of cholesterol-related lipids. Therefore, an interaction between cholesterol-related lipids and AP is postulated. Cholesterol-related lipids should be recommended as risk factors and early predictors for measuring the severity of AP. Cholesterol-lowering drugs may play a role in the treatment and prevention of AP with hypercholesterolemia.
Collapse
Affiliation(s)
- Xiaoying Zhou
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Shengchun Jin
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jingyi Pan
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qingyi Lin
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Shaopeng Yang
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yajing Lu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Minhao Qiu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Peter C. Ambe
- Department of General Surgery, Visceral Surgery and Coloproctology, Vinzenz-Pallotti-Hospital Bensberg, Vinzenz-Pallotti-Str. 20–24, 51429 Bensberg, Germany
| | - Zarrin Basharat
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Centre for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Vincent Zimmer
- Department of Medicine, Marienhausklinik St. Josef Kohlhof, 66539 Neunkirchen, Germany
- Department of Medicine II, Saarland University Medical Center, Saarland University, 66421 Homburg, Germany
| | - Wei Wang
- School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Wandong Hong
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Correspondence: ; Tel./Fax: +86-0577-55579122
| |
Collapse
|
37
|
Finney AC, Das S, Kumar D, McKinney MP, Cai B, Yurdagul A, Rom O. The interplay between nonalcoholic fatty liver disease and atherosclerotic cardiovascular disease. Front Cardiovasc Med 2023; 10:1116861. [PMID: 37200978 PMCID: PMC10185914 DOI: 10.3389/fcvm.2023.1116861] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/23/2023] [Indexed: 05/20/2023] Open
Abstract
Therapeutic approaches that lower circulating low-density lipoprotein (LDL)-cholesterol significantly reduced the burden of cardiovascular disease over the last decades. However, the persistent rise in the obesity epidemic is beginning to reverse this decline. Alongside obesity, the incidence of nonalcoholic fatty liver disease (NAFLD) has substantially increased in the last three decades. Currently, approximately one third of world population is affected by NAFLD. Notably, the presence of NAFLD and particularly its more severe form, nonalcoholic steatohepatitis (NASH), serves as an independent risk factor for atherosclerotic cardiovascular disease (ASCVD), thus, raising interest in the relationship between these two diseases. Importantly, ASCVD is the major cause of death in patients with NASH independent of traditional risk factors. Nevertheless, the pathophysiology linking NAFLD/NASH with ASCVD remains poorly understood. While dyslipidemia is a common risk factor underlying both diseases, therapies that lower circulating LDL-cholesterol are largely ineffective against NASH. While there are no approved pharmacological therapies for NASH, some of the most advanced drug candidates exacerbate atherogenic dyslipidemia, raising concerns regarding their adverse cardiovascular consequences. In this review, we address current gaps in our understanding of the mechanisms linking NAFLD/NASH and ASCVD, explore strategies to simultaneously model these diseases, evaluate emerging biomarkers that may be useful to diagnose the presence of both diseases, and discuss investigational approaches and ongoing clinical trials that potentially target both diseases.
Collapse
Affiliation(s)
- Alexandra C. Finney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Sandeep Das
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Dhananjay Kumar
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - M. Peyton McKinney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Bishuang Cai
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, NY, United States
| | - Arif Yurdagul
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
- Correspondence: Arif Yurdagul Oren Rom
| | - Oren Rom
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
- Correspondence: Arif Yurdagul Oren Rom
| |
Collapse
|
38
|
Abstract
Sucrose, the primary circulating sugar in plants, contains equal amounts of fructose and glucose. The latter is the predominant circulating sugar in animals and thus the primary fuel source for various tissue and cell types in the body. Chronic excessive energy intake has, however, emerged as a major driver of obesity and associated pathologies including nonalcoholic fatty liver diseases (NAFLD) and the more severe nonalcoholic steatohepatitis (NASH). Consumption of a high-caloric, western-style diet induces gut dysbiosis and inflammation resulting in leaky gut. Translocation of gut-derived bacterial content promotes hepatic inflammation and ER stress, and when either or both of these are combined with steatosis, it can cause NASH. Here, we review the metabolic links between diet-induced changes in the gut and NASH. Furthermore, therapeutic interventions for the treatment of obesity and liver metabolic diseases are also discussed with a focus on restoring the gut-liver axis.
Collapse
|
39
|
Gerardo-Ramírez M, German-Ramirez N, Escobedo-Calvario A, Chávez-Rodríguez L, Bucio-Ortiz L, Souza-Arroyo V, Miranda-Labra RU, Gutiérrez-Ruiz MC, Gomez-Quiroz LE. The hepatic effects of GDF11 on health and disease. Biochimie 2022; 208:129-140. [PMID: 36584866 DOI: 10.1016/j.biochi.2022.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/14/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
The growth differentiation factor 11 (GDF11), a member of the superfamily of the transforming growth factor β, has gained relevance in the last few years due to its remarkable effects in cellular biology, particularly in the nervous system, skeletal muscle, the heart, and many epithelial tissues. Some controversies have been raised about this growth factor. Many of them have been related to technical factors but also the nature of the cellular target. In liver biology and pathobiology, the GDF11 has shown to be related in many molecular aspects, with a significant impact on the physiology and the initiation and progression of the natural history of liver diseases. GDF11 has been involved as a critical regulator in lipid homeostasis, which, as it is well known, is the first step in the progression of liver disease. However, also it has been reported that the GDF11 is involved in fibrosis, senescence, and cancer. Although there are some controversies, much of the literature indicates that GDF11 displays effects tending to solve or mitigate pathological states of the liver, with reasonable evidence of correlation with other organs or systems. To a large extent, the controversy, as mentioned, is due to technical problems, such as the specificity of GDF11 antibodies, confusion with its closer family member, myostatin, and the state of differentiation in the tissues. In the present work, we reviewed the specific effects of GDF11 in the biology and pathobiology of the liver as a potential and promising factor for therapeutic intervention shortly.
Collapse
Affiliation(s)
- Monserrat Gerardo-Ramírez
- Laboratorio de Medicina Experimental y Carcinogénesis, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; First Department of Internal Medicine, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Natanael German-Ramirez
- Laboratorio de Medicina Experimental y Carcinogénesis, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metrolitana-Iztapalapa, Mexico City, Mexico
| | - Alejandro Escobedo-Calvario
- Laboratorio de Medicina Experimental y Carcinogénesis, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metrolitana-Iztapalapa, Mexico City, Mexico
| | - Lisette Chávez-Rodríguez
- Laboratorio de Medicina Experimental y Carcinogénesis, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metrolitana-Iztapalapa, Mexico City, Mexico
| | - Leticia Bucio-Ortiz
- Laboratorio de Medicina Experimental y Carcinogénesis, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Laboratorio de Medicina Experimental, Unidad de Medicina Traslacional IIB/UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Verónica Souza-Arroyo
- Laboratorio de Medicina Experimental y Carcinogénesis, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Laboratorio de Medicina Experimental, Unidad de Medicina Traslacional IIB/UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Roxana U Miranda-Labra
- Laboratorio de Medicina Experimental y Carcinogénesis, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Laboratorio de Medicina Experimental, Unidad de Medicina Traslacional IIB/UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - María Concepción Gutiérrez-Ruiz
- Laboratorio de Medicina Experimental y Carcinogénesis, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Laboratorio de Medicina Experimental, Unidad de Medicina Traslacional IIB/UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Luis E Gomez-Quiroz
- Laboratorio de Medicina Experimental y Carcinogénesis, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Laboratorio de Medicina Experimental, Unidad de Medicina Traslacional IIB/UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico.
| |
Collapse
|
40
|
Matye DJ, Qin X, Hasan MN, Gu L, Clayton YD, Li F, Li T. Effects of apical sodium-bile acid transporter inhibitor and obeticholic acid co-treatment in experimental non-alcoholic steatohepatitis. LIVER RESEARCH 2022; 6:276-283. [PMID: 36819659 PMCID: PMC9933918 DOI: 10.1016/j.livres.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/07/2022] [Accepted: 11/07/2022] [Indexed: 11/15/2022]
Abstract
Background and aims Several bile acids-based monotherapies have been developed for non-alcoholic steatohepatitis (NASH) treatment but clinical trial findings suggest that they do not satisfactorily improve NASH and liver fibrosis in many patients. Recently, we have shown that combining a gut-restricted apical sodium-bile acid transporter (ASBT) inhibitor GSK2330672 (GSK) with adeno-associated virus (AAV)-mediated liver fibroblast growth factor 15 (FGF15) overexpression provides significantly improved efficacy than either single treatment against NASH and liver fibrosis in a high fat, cholesterol, and fructose (HFCFr) diet-induced NASH mouse model. The beneficial effects of the combined treatment can be attributed to the markedly reduced bile acid pool that reduces liver bile acid burden and intestinal lipid absorption. The aim of this study is to further investigate if combining GSK treatment with the orally bioavailable obeticholic acid (OCA), which induces endogenous FGF15 and inhibits hepatic bile acid synthesis, can achieve similar anti-NASH effect as the GSK+AAV-FGF15 co-treatment in HFCFr-diet-fed mice. Materials and methods Male C57BL/6J mice were fed HFCFr diet to induce NASH and liver fibrosis. The effect of GSK, OCA, and GSK+OCA treatments on NASH development was compared and contrasted among all groups. Results Findings from this study showed that the GSK+OCA co-treatment did not cause persistent reduction of obesity over a 12-week treatment period. Neither single treatment nor the GSK+OCA co-treatment reduce hepatic steatosis, but all three treatments reduced hepatic inflammatory cytokines and fibrosis by a similar magnitude. The GSK+OCA co-treatment caused a higher degree of total bile acid pool reduction (~55%) than either GSK or OCA treatment alone. However, such bile acid pool reduction was insufficient to cause increased fecal lipid loss. The GSK+OCA co-treatment prevented GSK-mediated induction of hepatic cholesterol 7alpha-hydroxylase but failed to induce ileal FGF15 expression. GSK did not reduce gallbladder OCA amount in the GSK+OCA group compared to the OCA group, suggesting that ASBT inhibition does not reduce hepatic OCA distribution. Conclusions Unlike the GSK+AAV-FGF15 co-treatment, the GSK+OCA co-treatment does not provide improved efficacy against NASH and liver fibrosis than either single treatment in mice. The lack of synergistic effect may be partly attributed to the moderate reduction of total bile acid pool and the lack of high level of FGF15 exposure as seen in the GSK+AAV-FGF15 co-treatment.
Collapse
Affiliation(s)
- David J. Matye
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Xuan Qin
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Mohammad Nazmul Hasan
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Lijie Gu
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Yung Dai Clayton
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Feng Li
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- NMR and Drug Metabolism Core, Baylor College of Medicine, Houston, TX, USA
| | - Tiangang Li
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
41
|
Phung HH, Lee CH. Mouse models of nonalcoholic steatohepatitis and their application to new drug development. Arch Pharm Res 2022; 45:761-794. [DOI: 10.1007/s12272-022-01410-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
42
|
Conde de la Rosa L, Goicoechea L, Torres S, Garcia-Ruiz C, Fernandez-Checa JC. Role of Oxidative Stress in Liver Disorders. LIVERS 2022; 2:283-314. [DOI: 10.3390/livers2040023] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Oxygen is vital for life as it is required for many different enzymatic reactions involved in intermediate metabolism and xenobiotic biotransformation. Moreover, oxygen consumption in the electron transport chain of mitochondria is used to drive the synthesis of ATP to meet the energetic demands of cells. However, toxic free radicals are generated as byproducts of molecular oxygen consumption. Oxidative stress ensues not only when the production of reactive oxygen species (ROS) exceeds the endogenous antioxidant defense mechanism of cells, but it can also occur as a consequence of an unbalance between antioxidant strategies. Given the important role of hepatocytes in the biotransformation and metabolism of xenobiotics, ROS production represents a critical event in liver physiology, and increasing evidence suggests that oxidative stress contributes to the development of many liver diseases. The present review, which is part of the special issue “Oxidant stress in Liver Diseases”, aims to provide an overview of the sources and targets of ROS in different liver diseases and highlights the pivotal role of oxidative stress in cell death. In addition, current antioxidant therapies as treatment options for such disorders and their limitations for future trial design are discussed.
Collapse
Affiliation(s)
- Laura Conde de la Rosa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, 08036 Barcelona, Spain
- Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBEREHD), 08036 Barcelona, Spain
| | - Leire Goicoechea
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, 08036 Barcelona, Spain
- Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBEREHD), 08036 Barcelona, Spain
| | - Sandra Torres
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, 08036 Barcelona, Spain
- Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBEREHD), 08036 Barcelona, Spain
| | - Carmen Garcia-Ruiz
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, 08036 Barcelona, Spain
- Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBEREHD), 08036 Barcelona, Spain
- Research Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - José C. Fernandez-Checa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, 08036 Barcelona, Spain
- Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBEREHD), 08036 Barcelona, Spain
- Research Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
43
|
Kim JY, Wang LQ, Sladky VC, Oh TG, Liu J, Trinh K, Eichin F, Downes M, Hosseini M, Jacotot ED, Evans RM, Villunger A, Karin M. PIDDosome-SCAP crosstalk controls high-fructose-diet-dependent transition from simple steatosis to steatohepatitis. Cell Metab 2022; 34:1548-1560.e6. [PMID: 36041455 PMCID: PMC9547947 DOI: 10.1016/j.cmet.2022.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 06/17/2022] [Accepted: 08/07/2022] [Indexed: 02/06/2023]
Abstract
Sterol deficiency triggers SCAP-mediated SREBP activation, whereas hypernutrition together with ER stress activates SREBP1/2 via caspase-2. Whether these pathways interact and how they are selectively activated by different dietary cues are unknown. Here, we reveal regulatory crosstalk between the two pathways that controls the transition from hepatosteatosis to steatohepatitis. Hepatic ER stress elicited by NASH-inducing diets activates IRE1 and induces expression of the PIDDosome subunits caspase-2, RAIDD, and PIDD1, along with INSIG2, an inhibitor of SCAP-dependent SREBP activation. PIDDosome assembly activates caspase-2 and sustains IRE1 activation. PIDDosome ablation or IRE1 inhibition blunt steatohepatitis and diminish INSIG2 expression. Conversely, while inhibiting simple steatosis, SCAP ablation amplifies IRE1 and PIDDosome activation and liver damage in NASH-diet-fed animals, effects linked to ER disruption and preventable by IRE1 inhibition. Thus, the PIDDosome and SCAP pathways antagonistically modulate nutrient-induced hepatic ER stress to control non-linear transition from simple steatosis to hepatitis, a key step in NASH pathogenesis.
Collapse
Affiliation(s)
- Ju Youn Kim
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| | - Lily Q Wang
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Valentina C Sladky
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Tae Gyu Oh
- Gene Expression Laboratory, Salk Institute of Biological Studies, La Jolla, CA 9037, USA
| | - Junlai Liu
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Kaitlyn Trinh
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Felix Eichin
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute of Biological Studies, La Jolla, CA 9037, USA
| | - Mojgan Hosseini
- Department of Pathology, University of California San Diego, La Jolla, CA 92037, USA
| | - Etienne D Jacotot
- INSERM U1164 Sorbonne Université, Campus Pierre et Marie Curie, Paris 75005, France; Department of Pathology & Cell Biology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10033, USA
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute of Biological Studies, La Jolla, CA 9037, USA
| | - Andreas Villunger
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
44
|
Shen W, Wan X, Hou J, Liu Z, Mao G, Xu X, Yu C, Zhu X, Ju Z. Peroxisome proliferator-activated receptor γ coactivator 1α maintains NAD + bioavailability protecting against steatohepatitis. LIFE MEDICINE 2022; 1:207-220. [PMID: 39871927 PMCID: PMC11749270 DOI: 10.1093/lifemedi/lnac031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/16/2022] [Indexed: 01/11/2025]
Abstract
Hepatic metabolic derangements are pivotal incidences in the occurrence of hepatic steatosis, inflammation, and fibrosis. Peroxisome proliferator-activated receptor-γ, coactivator-1α (PGC-1α), a master regulator that mediates adipose metabolism and mitochondrial biogenesis, its role in hepatic steatosis and progression to steatohepatitis remains elusive. By surveying genomic data on nonalcoholic steatohepatitis (NASH) patients available in the Gene Expression Omnibus, we found that PGC-1α was significantly down-regulated compared with healthy controls, implicating the restoration of PGC-1α may ameliorate the hepatopathy. Using a hepatocyte-specific PGC-1α overexpression (LivPGC1α) mouse model, we demonstrated that PGC-1α attenuated hepatic steatosis induced by methionine-choline-deficient diet (MCD). Biochemical measurements and histological examination indicated less inflammatory infiltration, collagen deposition, NF-kB activation, and less lipid accumulation in LivPGC1α liver fed MCD. Further analyses indicated that the NAD+-dependent deacetylase sirtuin 2 (SIRT2) interacted with and deacetylated PGC-1α. Congruently, ablation of SIRT2 accelerated the NASH progression in mice fed MCD, while NAD+ repletion via its precursor mimicked the beneficial effect of PGC-1α overexpression and was sufficient to alleviate NASH in mice. These findings indicate that hepatic-specific overexpression of PGC-1α exerts a beneficial role in the regulation of steatohepatitis and that pharmacological activation of the SIRT2-PGC-1α-NAD+ axis may help to treat NASH.
Collapse
Affiliation(s)
- Weiyan Shen
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou 510632, China
| | - Xingyong Wan
- Department of Gastroenterology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jiahui Hou
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhu Liu
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Genxiang Mao
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Research Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310013, China
| | - Xiaogang Xu
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Research Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310013, China
| | - Chaohui Yu
- Department of Gastroenterology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xudong Zhu
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou 510632, China
| |
Collapse
|
45
|
Zheng H, Zhao T, Xu YC, Zhang DG, Song YF, Tan XY. Dietary choline prevents high fat-induced disorder of hepatic cholesterol metabolism through SREBP-2/HNF-4α/CYP7A1 pathway in a freshwater teleost yellow catfish Pelteobagrus fulvidraco. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194874. [PMID: 36122892 DOI: 10.1016/j.bbagrm.2022.194874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Lipid overload-induced hepatic cholesterol accumulation is a major public health problem worldwide, and choline has been reported to ameliorate cholesterol accumulation, but its mechanism remains unclear. Our study found that choline prevented high-fat diet (HFD)-induced cholesterol metabolism disorder and enhanced choline uptake and phosphatidylcholine synthesis in the liver tissues; choline incubation prevented fatty acid (FA)-induced cholesterol accumulation and FA-induced inhibition of bile acid synthesis. Moreover, compared to single FA incubation, choline incubation or FA + choline co-incubation increased the mRNA abundances and protein levels of HNF4α and up-regulated the degradation of cholesterol into bile acids. Mechanistically, choline prevented the FA-induced accumulation of SREBP2 protein and the interaction between SREBP2 and HNF4α, thereby enhancing the DNA binding capacity of the HNF4α to the CYP7A1 promoter, and promoting the degradation of cholesterol into bile acids. Our study elucidated the novel regulatory mechanisms of choline preventing HFD-induced cholesterol accumulation and increasing bile acid synthesis by SREBP-2/HNF-4α/CYP7A1 pathway.
Collapse
Affiliation(s)
- Hua Zheng
- Laboratory of Molecular Nutrition, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Zhao
- Laboratory of Molecular Nutrition, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi-Chuang Xu
- Laboratory of Molecular Nutrition, Huazhong Agricultural University, Wuhan 430070, China
| | - Dian-Guang Zhang
- Laboratory of Molecular Nutrition, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Feng Song
- Laboratory of Molecular Nutrition, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Ying Tan
- Laboratory of Molecular Nutrition, Huazhong Agricultural University, Wuhan 430070, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
46
|
Arias A, Quiroz A, Santander N, Morselli E, Busso D. Implications of High-Density Cholesterol Metabolism for Oocyte Biology and Female Fertility. Front Cell Dev Biol 2022; 10:941539. [PMID: 36187480 PMCID: PMC9518216 DOI: 10.3389/fcell.2022.941539] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/01/2022] [Indexed: 11/28/2022] Open
Abstract
Cholesterol is an essential component of animal cells. Different regulatory mechanisms converge to maintain adequate levels of this lipid because both its deficiency and excess are unfavorable. Low cell cholesterol content promotes its synthesis and uptake from circulating lipoproteins. In contrast, its excess induces the efflux to high-density lipoproteins (HDL) and their transport to the liver for excretion, a process known as reverse cholesterol transport. Different studies suggest that an abnormal HDL metabolism hinders female fertility. HDL are the only lipoproteins detected in substantial amounts in follicular fluid (FF), and their size and composition correlate with embryo quality. Oocytes obtain cholesterol from cumulus cells via gap junctions because they cannot synthesize cholesterol de novo and lack HDL receptors. Recent evidence has supported the possibility that FF HDL play a major role in taking up excess unesterified cholesterol (UC) from the oocyte. Indeed, genetically modified mouse models with disruptions in reverse cholesterol transport, some of which show excessive circulating UC levels, exhibit female infertility. Cholesterol accumulation can affect the egg´s viability, as reported in other cell types, and activate the plasma membrane structure and activity of membrane proteins. Indeed, in mice deficient for the HDL receptor Scavenger Class B Type I (SR-B1), excess circulating HDL cholesterol and UC accumulation in oocytes impairs meiosis arrest and hinders the developmental capacity of the egg. In other cells, the addition of cholesterol activates calcium channels and dysregulates cell death/survival signaling pathways, suggesting that these mechanisms may link altered HDL cholesterol metabolism and infertility. Although cholesterol, and lipids in general, are usually not evaluated in infertile patients, one study reported high circulating UC levels in women showing longer time to pregnancy as an outcome of fertility. Based on the evidence described above, we propose the existence of a well-regulated and largely unexplored system of cholesterol homeostasis controlling traffic between FF HDL and oocytes, with significant implications for female fertility.
Collapse
Affiliation(s)
- Andreina Arias
- Laboratory of Nutrition, Metabolism and Reproduction, Research and Innovation Center, Program of Reproductive Biology, Universidad de Los Andes, Santiago, Chile
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alonso Quiroz
- Laboratory of Nutrition, Metabolism and Reproduction, Research and Innovation Center, Program of Reproductive Biology, Universidad de Los Andes, Santiago, Chile
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás Santander
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua, Chile
| | - Eugenia Morselli
- Department of Basic Sciences, Faculty of Medicine and Sciences, Universidad San Sebastián, Santiago, Chile
| | - Dolores Busso
- Laboratory of Nutrition, Metabolism and Reproduction, Research and Innovation Center, Program of Reproductive Biology, Universidad de Los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- *Correspondence: Dolores Busso,
| |
Collapse
|
47
|
Shaaban HH, Alzaim I, El-Mallah A, Aly RG, El-Yazbi AF, Wahid A. Metformin, pioglitazone, dapagliflozin and their combinations ameliorate manifestations associated with NAFLD in rats via anti-inflammatory, anti-fibrotic, anti-oxidant and anti-apoptotic mechanisms. Life Sci 2022; 308:120956. [PMID: 36103959 DOI: 10.1016/j.lfs.2022.120956] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an important health threat that is strongly linked to components of metabolic syndrome, particularly the low-grade inflammatory changes. Significantly, several of the available anti-diabetic drug classes demonstrate a considerable anti-inflammatory effect, and hence might be of benefit for NAFLD patients. In this study, we used a rat model of diet-induced NAFLD to examine the potential effect of metformin, pioglitazone, dapagliflozin and their combinations on NAFLD manifestations. Rats were fed an atherogenic diet containing 1.25 % cholesterol, 0.5 % cholic acid and 60 % cocoa butter for 6 weeks causing a number of metabolic and hepatic alterations including insulin resistance, dyslipidemia, systemic inflammation, increased hepatic oxidative stress and lipid peroxidation, hepatic steatosis, lobular inflammation, as well as increased markers of liver inflammation and hepatocyte apoptosis. Drug treatment, which started at the third week of NAFLD induction and continued for three weeks, not only ameliorated the observed metabolic impairment, but also functional and structural manifestations of NAFLD. Specifically, anti-diabetic drug treatment reversed markers of systemic and hepatic inflammation, oxidative stress, hepatic fibrosis, and hepatocyte apoptosis. Our findings propose that anti-diabetic drugs with a potential anti-inflammatory effect can ameliorate the manifestations of NAFLD, and thus may provide a therapeutic option for such a condition that is closely associated with metabolic diseases. The detailed pharmacology of these classes in aspects linked to the observed impact on NAFLD requires to be further investigated and translated into clinical studies for tailored therapy specifically targeting NAFLD.
Collapse
Affiliation(s)
- Hager H Shaaban
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Egypt.
| | - Ibrahim Alzaim
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine the American University of Beirut, Beirut, Lebanon; Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ahmed El-Mallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Egypt
| | - Rania G Aly
- Department of Pathology, Faculty of Medicine, Alexandria University, Egypt
| | - Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Egypt; Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Faculty of Pharmacy, Al-Alamein International University, Alamein, Egypt.
| | - Ahmed Wahid
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
48
|
Maretti-Mira AC, Salomon MP, Hsu AM, Kanel GC, Golden-Mason L. Hepatic damage caused by long-term high cholesterol intake induces a dysfunctional restorative macrophage population in experimental NASH. Front Immunol 2022; 13:968366. [PMID: 36159810 PMCID: PMC9495937 DOI: 10.3389/fimmu.2022.968366] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Excessive dietary cholesterol is preferentially stored in the liver, favoring the development of nonalcoholic steatohepatitis (NASH), characterized by progressive hepatic inflammation and fibrosis. Emerging evidence indicates a critical contribution of hepatic macrophages to NASH severity. However, the impact of cholesterol on these cells in the setting of NASH remains elusive. Here, we demonstrate that the dietary cholesterol content directly affects hepatic macrophage global gene expression. Our findings suggest that the modifications triggered by prolonged high cholesterol intake induce long-lasting hepatic damage and support the expansion of a dysfunctional pro-fibrotic restorative macrophage population even after cholesterol reduction. The present work expands the understanding of the modulatory effects of cholesterol on innate immune cell transcriptome and may help identify novel therapeutic targets for NASH intervention.
Collapse
Affiliation(s)
- Ana C. Maretti-Mira
- USC Research Center for Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Division of Gastrointestinal and Liver Disease, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- *Correspondence: Ana C. Maretti-Mira,
| | - Matthew P. Salomon
- USC Research Center for Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Angela M. Hsu
- USC Research Center for Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Division of Gastrointestinal and Liver Disease, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Gary C. Kanel
- USC Research Center for Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Lucy Golden-Mason
- USC Research Center for Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Division of Gastrointestinal and Liver Disease, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
49
|
Dong Y, Yu C, Ma N, Xu X, Wu Q, Lu H, Gong L, Chen J, Ren J. MicroRNA-379-5p regulates free cholesterol accumulation and relieves diet induced-liver damage in db/db mice via STAT1/HMGCS1 axis. MOLECULAR BIOMEDICINE 2022; 3:25. [PMID: 35945406 PMCID: PMC9363541 DOI: 10.1186/s43556-022-00089-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/28/2022] [Indexed: 11/30/2022] Open
Abstract
Lipotoxicity induced by the overload of lipid in the liver, especially excess free cholesterol (FC), has been recognized as one of driving factors in the transition from non-alcoholic fatty liver (NAFL) to non-alcoholic steatohepatitis (NASH). MicroRNA (miR)-379-5p has been reported to play regulatory roles in hepatic triglyceride homeostasis, but the relationship of miR-379-5p and hepatic cholesterol homeostasis has never been touched. In the current study, we found that hepatic miR-379-5p levels were decreased obviously in NAFLD patients and model mice compared with their controls. Moreover, miR-379-5p was discovered to be able to inhibit intracellular FC accumulation and alleviate mitochondrial damage induced by palmitic acid (PA) in vitro. Furthermore, overexpression of miR-379-5p in HFHC-fed db/db mice could reduce the level of hepatic total cholesterol (TC) and FC, and ameliorate hepatic injury reflected by the lower serum alanine aminotransferase (ALT) and aspartate transaminase (AST). Subsequently, by combining spectrometry (MS) and luciferase assay, we identified miR-379-5p suppressed STAT1 through transcriptional and translational regulation. Finally, we confirmed that STAT1 was a transcriptional factor of HMGCS1. In conclusion, miR-379-5p inhibits STAT1 expression and regulates cholesterol metabolism through the STAT1/HMGCS1 axis, suggesting miR-379-5p might be applied to improve lipotoxicity in the future.
Collapse
|
50
|
Bathish B, Robertson H, Dillon JF, Dinkova-Kostova AT, Hayes JD. Nonalcoholic steatohepatitis and mechanisms by which it is ameliorated by activation of the CNC-bZIP transcription factor Nrf2. Free Radic Biol Med 2022; 188:221-261. [PMID: 35728768 DOI: 10.1016/j.freeradbiomed.2022.06.226] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 12/11/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) represents a global health concern. It is characterised by fatty liver, hepatocyte cell death and inflammation, which are associated with lipotoxicity, endoplasmic reticulum (ER) stress, mitochondrial dysfunction, iron overload and oxidative stress. NF-E2 p45-related factor 2 (Nrf2) is a transcription factor that combats oxidative stress. Remarkably, Nrf2 is downregulated during the development of NASH, which probably accelerates disease, whereas in pre-clinical studies the upregulation of Nrf2 inhibits NASH. We now review the scientific literature that proposes Nrf2 downregulation during NASH involves its increased ubiquitylation and proteasomal degradation, mediated by Kelch-like ECH-associated protein 1 (Keap1) and/or β-transducin repeat-containing protein (β-TrCP) and/or HMG-CoA reductase degradation protein 1 (Hrd1, also called synoviolin (SYVN1)). Additionally, downregulation of Nrf2-mediated transcription during NASH may involve diminished recruitment of coactivators by Nrf2, due to increased levels of activating transcription factor 3 (ATF3) and nuclear factor-kappaB (NF-κB) p65, or competition for promoter binding due to upregulation of BTB and CNC homology 1 (Bach1). Many processes that downregulate Nrf2 are triggered by transforming growth factor-beta (TGF-β), with oxidative stress amplifying its signalling. Oxidative stress may also increase suppression of Nrf2 by β-TrCP through facilitating formation of the DSGIS-containing phosphodegron in Nrf2 by glycogen synthase kinase-3. In animal models, knockout of Nrf2 increases susceptibility to NASH, while pharmacological activation of Nrf2 by inducing agents that target Keap1 inhibits development of NASH. These inducing agents probably counter Nrf2 downregulation affected by β-TrCP, Hrd1/SYVN1, ATF3, NF-κB p65 and Bach1, by suppressing oxidative stress. Activation of Nrf2 is also likely to inhibit NASH by ameliorating lipotoxicity, inflammation, ER stress and iron overload. Crucially, pharmacological activation of Nrf2 in mice in which NASH has already been established supresses liver steatosis and inflammation. There is therefore compelling evidence that pharmacological activation of Nrf2 provides a comprehensive multipronged strategy to treat NASH.
Collapse
Affiliation(s)
- Boushra Bathish
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Holly Robertson
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - John F Dillon
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - John D Hayes
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK.
| |
Collapse
|