1
|
Münz C, Campbell GR, Esclatine A, Faure M, Labonte P, Lussignol M, Orvedahl A, Altan-Bonnet N, Bartenschlager R, Beale R, Cirone M, Espert L, Jung J, Leib D, Reggiori F, Sanyal S, Spector SA, Thiel V, Viret C, Wei Y, Wileman T, Wodrich H. Autophagy machinery as exploited by viruses. AUTOPHAGY REPORTS 2025; 4:27694127.2025.2464986. [PMID: 40201908 PMCID: PMC11921968 DOI: 10.1080/27694127.2025.2464986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/17/2025] [Accepted: 01/27/2025] [Indexed: 04/10/2025]
Abstract
Viruses adapt and modulate cellular pathways to allow their replication in host cells. The catabolic pathway of macroautophagy, for simplicity referred to as autophagy, is no exception. In this review, we discuss anti-viral functions of both autophagy and select components of the autophagy machinery, and how viruses have evaded them. Some viruses use the membrane remodeling ability of the autophagy machinery to build their replication compartments in the cytosol or efficiently egress from cells in a non-lytic fashion. Some of the autophagy machinery components and their remodeled membranes can even be found in viral particles as envelopes or single membranes around virus packages that protect them during spreading and transmission. Therefore, studies on autophagy regulation by viral infections can reveal functions of the autophagy machinery beyond lysosomal degradation of cytosolic constituents. Furthermore, they can also pinpoint molecular interactions with which the autophagy machinery can most efficiently be manipulated, and this may be relevant to develop effective disease treatments based on autophagy modulation.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, ZürichSwitzerland
| | - Grant R Campbell
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of SD, Vermillion, SD, USA
| | - Audrey Esclatine
- Université Paris-Saclay, CEA, CNRS, 10 Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Mathias Faure
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Universite Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007Lyon, France
| | - Patrick Labonte
- eINRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Canada
| | - Marion Lussignol
- Université Paris-Saclay, CEA, CNRS, 10 Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Anthony Orvedahl
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
| | - Nihal Altan-Bonnet
- Laboratory of Host-Pathogen Dynamics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ralf Bartenschlager
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Division Virus-Associated Carcinogenesis, Heidelberg, Germany
- German Centre for Infection Research, Heidelberg partner site, Heidelberg, Germany
| | - Rupert Beale
- Cell Biology of Infection Laboratory, The Francis Crick Institute, London, UK
- Division of Medicine, University College London, London, UK
| | - Mara Cirone
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Lucile Espert
- University of Montpellier, Montpellier, France
- CNRS, Institut de Recherche enInfectiologie deMontpellier (IRIM), Montpellier, France
| | - Jae Jung
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - David Leib
- Guarini School of Graduate and Advanced Studies at Dartmouth, Hanover, NH, USA
| | - Fulvio Reggiori
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, Aarhus C, Denmark
| | - Sumana Sanyal
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, UK
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Stephen A. Spector
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Rady Children’s Hospital, San Diego, CA, USA
| | - Volker Thiel
- Institute of Virology and Immunology, Bern and Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Christophe Viret
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Universite Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007Lyon, France
| | - Yu Wei
- Institut Pasteur-Theravectys Joint Laboratory, Department of Virology, Institut Pasteur, Université Paris Cité, Paris, France
| | - Thomas Wileman
- Norwich Medical School, University of East Anglia
- Quadram Institute Bioscience, Norwich Research Park, Norfolk, UK
| | - Harald Wodrich
- Laboratoire de Microbiologie Fondamentale et Pathogénicité, MFP CNRS UMR, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
2
|
Ren X, Zhao L, Hao Y, Huang X, Lv G, Zhou X. Copper-instigated modulatory cell mortality mechanisms and progress in kidney diseases. Ren Fail 2025; 47:2431142. [PMID: 39805816 PMCID: PMC11734396 DOI: 10.1080/0886022x.2024.2431142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/23/2024] [Accepted: 11/13/2024] [Indexed: 01/16/2025] Open
Abstract
Copper is a vital cofactor in various enzymes, plays a pivotal role in maintaining cell homeostasis. When copper metabolism is disordered and mitochondrial dysfunction is impaired, programmed cell death such as apoptosis, paraptosis, pyroptosis, ferroptosis, cuproptosis, autophagy and necroptosis can be induced. In this review, we focus on the metabolic mechanisms of copper. In addition, we discuss the mechanism by which copper induces various programmed cell deaths. Finally, this review examines copper's involvement in prevalent kidney diseases such as acute kidney injury and chronic kidney disease. The findings indicate that the use of copper chelators or plant extracts can mitigate kidney damage by reducing copper accumulation, offering novel insights into the pathogenesis and treatment strategies for kidney diseases.
Collapse
Affiliation(s)
- Xiya Ren
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Limei Zhao
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yajie Hao
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiu Huang
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Guangna Lv
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoshuang Zhou
- Department of Nephrology, Shanxi Provincial People’s Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
3
|
Song R, Yin S, Wu J, Yan J. Neuronal regulated cell death in aging-related neurodegenerative diseases: key pathways and therapeutic potentials. Neural Regen Res 2025; 20:2245-2263. [PMID: 39104166 PMCID: PMC11759035 DOI: 10.4103/nrr.nrr-d-24-00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/13/2024] [Accepted: 06/18/2024] [Indexed: 08/07/2024] Open
Abstract
Regulated cell death (such as apoptosis, necroptosis, pyroptosis, autophagy, cuproptosis, ferroptosis, disulfidptosis) involves complex signaling pathways and molecular effectors, and has been proven to be an important regulatory mechanism for regulating neuronal aging and death. However, excessive activation of regulated cell death may lead to the progression of aging-related diseases. This review summarizes recent advances in the understanding of seven forms of regulated cell death in age-related diseases. Notably, the newly identified ferroptosis and cuproptosis have been implicated in the risk of cognitive impairment and neurodegenerative diseases. These forms of cell death exacerbate disease progression by promoting inflammation, oxidative stress, and pathological protein aggregation. The review also provides an overview of key signaling pathways and crosstalk mechanisms among these regulated cell death forms, with a focus on ferroptosis, cuproptosis, and disulfidptosis. For instance, FDX1 directly induces cuproptosis by regulating copper ion valency and dihydrolipoamide S-acetyltransferase aggregation, while copper mediates glutathione peroxidase 4 degradation, enhancing ferroptosis sensitivity. Additionally, inhibiting the Xc- transport system to prevent ferroptosis can increase disulfide formation and shift the NADP + /NADPH ratio, transitioning ferroptosis to disulfidptosis. These insights help to uncover the potential connections among these novel regulated cell death forms and differentiate them from traditional regulated cell death mechanisms. In conclusion, identifying key targets and their crosstalk points among various regulated cell death pathways may aid in developing specific biomarkers to reverse the aging clock and treat age-related neurodegenerative conditions.
Collapse
Affiliation(s)
- Run Song
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Shiyi Yin
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Jiannan Wu
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Junqiang Yan
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| |
Collapse
|
4
|
Tan K, Zhang H, Yang J, Wang H, Li Y, Ding G, Gu P, Yang S, Li J, Fan X. Organelle-oriented nanomedicines in tumor therapy: Targeting, escaping, or collaborating? Bioact Mater 2025; 49:291-339. [PMID: 40161442 PMCID: PMC11953998 DOI: 10.1016/j.bioactmat.2025.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Precise tumor therapy is essential for improving treatment specificity, enhancing efficacy, and minimizing side effects. Targeting organelles is a key strategy for achieving this goal and is a frontier research area attracting a considerable amount of attention. The concept of organelle targeting has a significant effect on the structural design of the nanodrugs employed. Most notably, the intricate interactions among different organelles in a tumor cell essentially create a unified system. Unfortunately, this aspect might have been somewhat overlooked when existing organelle-targeting nanodrugs were designed. In this review, we underscore the synergistic relationship among the various organelles and advocate for a holistic view of organelle-targeting design. Through the integration of biology and material science, recent advancements in organelle targeting, escaping, and collaborating are consolidated to offer fresh perspectives for the development of antitumor nanomedicines.
Collapse
Affiliation(s)
- Kexin Tan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Haiyang Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Jianyuan Yang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Hang Wang
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Yongqiang Li
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Guqiao Ding
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Siwei Yang
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Jipeng Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| |
Collapse
|
5
|
Zhao P, Tian R, Song D, Zhu Q, Ding X, Zhang J, Cao B, Zhang M, Xu Y, Fang J, Tan J, Yi C, Xia H, Liu W, Zou W, Sun Q. Rab GTPases are evolutionarily conserved signals mediating selective autophagy. J Cell Biol 2025; 224:e202410150. [PMID: 40197538 PMCID: PMC11977514 DOI: 10.1083/jcb.202410150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/31/2024] [Accepted: 01/21/2025] [Indexed: 04/10/2025] Open
Abstract
Selective autophagy plays a crucial role in maintaining cellular homeostasis by specifically targeting unwanted cargo labeled with "autophagy cues" signals for autophagic degradation. In this study, we identify Rab GTPases as a class of such autophagy cues signals involved in selective autophagy. Through biochemical and imaging screens, we reveal that human Rab GTPases are common autophagy substrates. Importantly, we confirm the conservation of Rab GTPase autophagic degradation in different model organisms. Rab GTPases translocate to damaged mitochondria, lipid droplets, and invading Salmonella-containing vacuoles (SCVs) to serve as degradation signals. Furthermore, they facilitate mitophagy, lipophagy, and xenophagy, respectively, by recruiting receptors. This interplay between Rab GTPases and receptors may ensure the de novo synthesis of isolation membranes around Rab-GTPase-labeled cargo, thereby mediating selective autophagy. These processes are further influenced by upstream regulators such as LRRK2, GDIs, and RabGGTase. In conclusion, this study unveils a conserved mechanism involving Rab GTPases as autophagy cues signals and proposes a model for the spatiotemporal control of selective autophagy.
Collapse
Affiliation(s)
- Pengwei Zhao
- Center for Metabolism Research, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Rui Tian
- Center for Metabolism Research, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Dandan Song
- Center for Metabolism Research, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Qi Zhu
- Center for Metabolism Research, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Xianming Ding
- Center for Metabolism Research, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Jianqin Zhang
- Center for Metabolism Research, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Beibei Cao
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Mengyuan Zhang
- Center for Metabolism Research, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Yilu Xu
- Center for Metabolism Research, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Jie Fang
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Jieqiong Tan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Cong Yi
- Department of Biochemistry, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongguang Xia
- Department of Biochemistry, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Liu
- Center for Metabolism Research, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
- Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Zou
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Qiming Sun
- Center for Metabolism Research, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
- Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorders, Hangzhou, China
| |
Collapse
|
6
|
Jia K, Shen R, Li Y, Shi W, Xia W. LAMP3 exacerbates autophagy-mediated neuronal damage through NF-kB in microglia. Cell Signal 2025; 129:111658. [PMID: 39954716 DOI: 10.1016/j.cellsig.2025.111658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/08/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND AND PURPOSE Cerebral ischemia/reperfusion (IR) after ischemic stroke causes deleterious microglial activation. Lysosomal associated membrane protein 3 (LAMP-3) has been indicated play a role in autophagy, yet the specific role of LAMP3 in microglia autophagy during cerebral ischemia and reperfusion (I/R) injury (CIRI) is unknown. METHODS The oxygen-glucose deprivation/reperfusion (OGD/R) model and middle cerebral artery occlusion/reperfusion (MCAO/R) model were established. Changes in autophagy levels were detected through Western blot, immunohistochemistry, transmission electron microscopy, and laser scanning confocal microscopy. Oxidative stress damage in neurons was assessed using ROS and LDH assays. Cytokine levels (IL-6, IL-10, TNF-α, and IL-13) were measured using RT-qPCR and ELISA assays. HMC3, SH-SY5Y cell viability was evaluated using CCK8, EdU staining, Calcein/PI staining, and Transwell assays. Apoptosis was detected via TUNEL staining and flow cytometry. The role of LAMP3 in neuronal function post-cerebral ischemia-reperfusion was further investigated by administering rapamycin and BAY 11-7082. RESULTS LAMP3 expression is decreased in IS, and negatively correlated with LC3B expression. In the HMC3 OGD/R model, LAMP3 inhibits microglial autophagy, and induces oxidative stress damage and inflammatory response in HMC3 cells through the NF-κB pathway. In co-culture system of HMC3 and SH-SY5Y cells, LAMP3 inhibits neuronal autophagy and activity through the NF-κB pathway under OGD/R conditions. In vivo, overexpression of LAMP3 inhibits autophagy and exacerbates brain tissue damage after MCAO/R. CONCLUSIONS During cerebral ischemia-reperfusion, LAMP3 inhibits autophagy in microglia and neurons by activating the NF-κB pathway, thereby inducing oxidative stress and inflammatory factor release, promoting neuronal death. Treatment targeting microglial LAMP3 might be a potential therapeutic strategy for ischemic stroke treatment.
Collapse
Affiliation(s)
- Kejuan Jia
- The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Department of Ministry of Education, The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Harbin, Heilongjiang, China
| | - Ruile Shen
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Yundan Li
- The First Hospital of Qiqihar, Qiqihar, Heilongjiang, China
| | - Wanying Shi
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Wenbo Xia
- The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
7
|
Xu Z, Luan J, Wan F, Zhang M, Ding F, Yang L, Dai S. Vitamin D promotes autophagy to inhibit LPS-induced lung injury via targeting cathepsin D. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:5531-5541. [PMID: 39570382 DOI: 10.1007/s00210-024-03619-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024]
Abstract
Pneumonia is a frequent-occurring event in children death. Vitamin D (VD) can alleviate inflammatory response and it might be a promising adjunct to antibiotics for the treatment of acute childhood pneumonia. This study intended to uncover the relevant mechanism of VD in pneumonia. For simulating inflammatory condition, BEAS-2B cells were induced using lipopolysaccharide (LPS). Cell viability was detected using cell counting kit-8 (CCK-8) method, and cell apoptosis was detected using flow cytometry and western blot. Inflammatory cytokines as well as oxidative stress markers were detected using enzyme-linked immunosorbent assay (ELISA) and corresponding assays. Western blot evaluated the contents of cathepsin D (CTSD), apoptosis- and autophagy-related proteins. Through real-time reverse transcriptase-polymerase chain reaction (RT-qPCR) and western blot, the transfection efficiency of overexpression (OV)-CTSD was detected. Immunofluorescence assay detected light chain 3 (LC3II) level. Through SuperPred database analysis, VD can target CTSD. VD was revealed to suppress viability damage, inflammatory response, oxidative stress, and autophagy injury in BEAS-2B cells induced by LPS via targeting CTSD. However, the protective effects exhibited by VD against LPS-induced viability damage, inflammatory response, and oxidative stress in BEAS-2B cells were all counteracted by autophagy inhibitor 3-methyladenine (3-MA). Collectively, VD alleviated the severity of LPS-induced lung injury by promoting autophagy through targeting CTSD.
Collapse
Affiliation(s)
- Zijuan Xu
- Department of Pediatrics, Tongde Hospital of Zhejiang Province, No. 234 Gucui Road, Xihu District, Hangzhou, 310012, Zhejiang, China
| | - Jinling Luan
- Department of Pediatrics, Tongde Hospital of Zhejiang Province, No. 234 Gucui Road, Xihu District, Hangzhou, 310012, Zhejiang, China
| | - Fengyun Wan
- Department of Pediatrics, Tongde Hospital of Zhejiang Province, No. 234 Gucui Road, Xihu District, Hangzhou, 310012, Zhejiang, China
| | - Meijie Zhang
- Department of Pediatrics, Tongde Hospital of Zhejiang Province, No. 234 Gucui Road, Xihu District, Hangzhou, 310012, Zhejiang, China
| | - Fei Ding
- Department of Pediatrics, Tongde Hospital of Zhejiang Province, No. 234 Gucui Road, Xihu District, Hangzhou, 310012, Zhejiang, China
| | - Ling Yang
- Department of Pediatrics, Tongde Hospital of Zhejiang Province, No. 234 Gucui Road, Xihu District, Hangzhou, 310012, Zhejiang, China
| | - Shuxin Dai
- Department of Pediatrics, Tongde Hospital of Zhejiang Province, No. 234 Gucui Road, Xihu District, Hangzhou, 310012, Zhejiang, China.
| |
Collapse
|
8
|
Li R, Li Q, Yang C, Liu H, Xiao Y, Yang P, Gong G, Wu W. HBCOC attenuates cerebral ischemia-reperfusion injury in mice by inhibiting the inflammatory response and autophagy via TREM-1/ERK/NF-κB. J Stroke Cerebrovasc Dis 2025; 34:108280. [PMID: 40057252 DOI: 10.1016/j.jstrokecerebrovasdis.2025.108280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 03/01/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
OBJECTIVE Hemoglobin-based carbon monoxide carrier (HBCOC) can dissociate carbon monoxide and ameliorate organ damage by inhibiting inflammation and oxidative stress. In this study, we evaluated its effect on cerebral ischemia-reperfusion injury in mice and explored its potential mechanism. METHODS A middle cerebral artery occlusion/reperfusion (MCAO/R) mouse model was established using the wire embolization method, and HBCOC or equivalent normal saline was administered via the tail vein during reperfusion. HE staining and TEM were used to observe the injury in the tissue. The levels of IL-1β, IL-6, TNF-α were detected by ELISA and RT-qPCR, meantime, western blotting were used to detect expressions of TREM-1, ERK, NF-κB,LC3 and P62. RESULTS We found that the HBCOC treatment alleviated nerve injury and reduced the cerebral infarction area caused by ischemia-reperfusion, simultaneously lowered the expression of IL-1β, IL-6, and TNF-α in plasma and brain tissues. HBCOC suppressed the levels of LC3II, lysosomes, and autophagy in the brain, suggesting potent inhibition of autophagy. Mechanistic analysis indicated that the expression of TREM-1/ERK/NF-κB pathway-related proteins and mRNA was higher in the saline group than that in the HBCOC group. HBCOC combined with the targeting TREM-1 receptor inhibitors LP17 inhibited the expression of the TREM-1 protein, further reducing the release of inflammatory factors and autophagy, restoring nerve function and infarct area after reperfusion, and exerting an overall protective effect against cerebral reperfusion injury. In summary, our results indicated that HBCOC alleviated cerebral ischemia-reperfusion injury in mice and inhibited inflammation and autophagy via TREM-1.
Collapse
Affiliation(s)
- Rongyuan Li
- Department of Anesthesiology, The General Hospital of Western Theater Command, Sichuan, Chengdu, China
| | - Qin Li
- Department of Anesthesiology, Xindu District People's Hospital of Chengdu, Sichuan, Chengdu, China
| | - Congmin Yang
- Department of Anesthesiology, The General Hospital of Western Theater Command, Sichuan, Chengdu, China
| | - Hanlin Liu
- Department of Anesthesiology, The Affiliated Chengdu 363 hospital of Southwest Medical University, Sichuan, Chengdu, China
| | - Yijun Xiao
- Department of Anesthesiology, The General Hospital of Western Theater Command, Sichuan, Chengdu, China
| | - Pengyu Yang
- Department of Anesthesiology, Chengdu Medical College, Sichuan, Chengdu, China
| | - Gu Gong
- Department of Anesthesiology, The General Hospital of Western Theater Command, Sichuan, Chengdu, China
| | - Wei Wu
- Department of Anesthesiology, The General Hospital of Western Theater Command, Sichuan, Chengdu, China.
| |
Collapse
|
9
|
Liu H, Wang X, Li B, Xiang Z, Zhao Y, Lu M, Lin Q, Zheng S, Guan T, Zhang Y, Hu Y. LncRNA HITT inhibits autophagy by attenuating ATG12-ATG5-ATG16L1 complex formation. Cancer Lett 2025; 616:217532. [PMID: 40021040 DOI: 10.1016/j.canlet.2025.217532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/02/2025] [Accepted: 02/03/2025] [Indexed: 03/03/2025]
Abstract
Dysregulated autophagy has been implicated in the pathogenesis of numerous diseases, including cancer. Despite extensive research on the underlying mechanisms of autophagy, the involvement of long non-coding RNAs (lncRNAs) remains poorly understood. Here, we demonstrate that a previously identified lncRNA, HITT (HIF-1α inhibitor at the translation level), is closely associated with biological processes such as autophagy through unbiased bioinformatic analysis. Subsequent studies demonstrate that HITT is increased by several autophagic stimuli, including PI-103, a potent inhibitor of PI3K and mTOR. This is caused by a reduction in the binding between HITT and AGO2, resulting in a reduction in the activity of miR-205 towards HITT degradation. Increased HITT then binds to a key autophagy protein, Autophagy-related 5 (ATG5), and inhibits autophagosome formation by preventing the formation of the ATG12-ATG5-ATG16L1 complex. This results in HITT sensitizing PI-103-mediated cell death both in vitro and in vivo in nude mice by attenuating protective autophagy. The data presented herein demonstrate that HITT is a newly identified RNA regulator of autophagy and that it can be used to sensitize the colon cancer response to cell death by blocking the protective autophagy.
Collapse
Affiliation(s)
- Hao Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China; Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, HIT Zhengzhou Research Institute, Zhengzhou, 450000, China
| | - Xingwen Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China
| | - Bolun Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China
| | - Zhiyuan Xiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China; Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, HIT Zhengzhou Research Institute, Zhengzhou, 450000, China
| | - Yanan Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China
| | - Minqiao Lu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China; Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, HIT Zhengzhou Research Institute, Zhengzhou, 450000, China
| | - Qingyu Lin
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, HIT Zhengzhou Research Institute, Zhengzhou, 450000, China
| | - Shanliang Zheng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China
| | - Tianqi Guan
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China; Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, HIT Zhengzhou Research Institute, Zhengzhou, 450000, China
| | - Yihong Zhang
- Department of Endocrinology, Heilongjiang Province Hospital, Harbin, Heilongjiang Province, 150001, China
| | - Ying Hu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China; Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, HIT Zhengzhou Research Institute, Zhengzhou, 450000, China.
| |
Collapse
|
10
|
Su W, Gong S, Luo Y, Ma X, Wei X, Song Y, Chen Q, Xu H, Ke C, He H, Shen F, Li J. Puerarin alleviates silicon dioxide-induced pulmonary inflammation and fibrosis via improving Autophagolysosomal dysfunction in alveolar macrophages of murine mice. Int Immunopharmacol 2025; 152:114375. [PMID: 40043356 DOI: 10.1016/j.intimp.2025.114375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/16/2025] [Accepted: 02/24/2025] [Indexed: 03/24/2025]
Abstract
Silicosis, caused by the inhalation of silicon dioxide (SiO2), is one of the most pressing public health problems. Nevertheless, there is currently no effective treatment. This study employed male C57BL/6 J mice and mouse alveolar macrophage cell line MH-S to investigate the biological mechanism in the development of silicosis, with a view to exploring the potential applications of puerarin (Pue) in the improvement of pulmonary inflammation and fibrosis in SiO2-exposed mice. This study elucidated that SiO2 could induce expression of inflammatory factors, accompanied by autophagy flux block, lysosome alkalization and membrane permeability in MH-S cells. Pue pretreatment could effectively inhibit expression of inflammatory factors in SiO2-exposed MH-S cells via alleviating autophagolysosomal dysfunction, and suppress TGF-β-induced myofibroblast differentiation. In addition, Pue was also been demonstrated to mitigate autophagolysosomal dysfunction, pulmonary inflammation and fibrosis in SiO2-exposed C57BL/6 J mice. Furthermore, the ingestion of Pue-enriched pueraria lobata tea (Plt), a traditional Chinese tea substitute that possesses anti-inflammatory, antioxidant, and cardiovascular benefits, was determined to improve imbalance of lysosome homeostasis, pulmonary inflammation and fibrosis in SiO2-exposed mice. This study illustrates the anti-inflammatory and antifibrotic properties of Pue and Plt by alleviating autophagolysosomal dysfunction and, consequently, reducing pulmonary inflammation and fibrosis. These findings provide insights into the pathogenesis mechanism of silicosis and indicate potential avenues for application of Pue and Plt in the mitigation of silicosis.
Collapse
Affiliation(s)
- Wei Su
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province 063210, PR China
| | - Shuwen Gong
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province 063210, PR China
| | - Yi Luo
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province 063210, PR China
| | - Xinyu Ma
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province 063210, PR China
| | - Xiaoxi Wei
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province 063210, PR China
| | - Yining Song
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province 063210, PR China
| | - Qiuyi Chen
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province 063210, PR China
| | - Hong Xu
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province 063210, PR China; Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, Hebei Province 063210, PR China
| | - Changyong Ke
- Shanxi Qin Dashan Kudzu Industry Co., Qin Dashan Ecological Park, Baihe County, Ankang City, Shaanxi Province, PR China
| | - Hailan He
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province 063210, PR China; Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, Hebei Province 063210, PR China.
| | - Fuhai Shen
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province 063210, PR China; Hebei Coordinated Innovation Center of Occupational Health and Safety, North China University of Science and Technology, Tangshan, Hebei Province 063210, PR China.
| | - Jinlong Li
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province 063210, PR China; Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, Hebei Province 063210, PR China; Hebei Coordinated Innovation Center of Occupational Health and Safety, North China University of Science and Technology, Tangshan, Hebei Province 063210, PR China.
| |
Collapse
|
11
|
Zhao K, Chan ITC, Tse EHY, Xie Z, Cheung TH, Zeng YA. Autophagy in adult stem cell homeostasis, aging, and disease therapy. CELL REGENERATION (LONDON, ENGLAND) 2025; 14:14. [PMID: 40208372 DOI: 10.1186/s13619-025-00224-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/16/2025] [Accepted: 02/23/2025] [Indexed: 04/11/2025]
Abstract
Autophagy is a crucial cellular process that facilitates the degradation of damaged organelles and protein aggregates, and the recycling of cellular components for the energy production and macromolecule synthesis. It plays an indispensable role in maintaining cellular homeostasis. Over recent decades, research has increasingly focused on the role of autophagy in regulating adult stem cells (SCs). Studies suggest that autophagy modulates various cellular processes and states of adult SCs, including quiescence, proliferation, self-renewal, and differentiation. The primary role of autophagy in these contexts is to sustain homeostasis, withstand stressors, and supply energy. Notably, the dysfunction of adult SCs during aging is correlated with a decline in autophagic activity, suggesting that autophagy is also involved in SC- and aging-associated disorders. Given the diverse cellular processes mediated by autophagy and the intricate mechanisms governing adult SCs, further research is essential to elucidate both universal and cell type-specific regulatory pathways of autophagy. This review discusses the role of autophagy in regulating adult SCs during quiescence, proliferation, self-renewal, and differentiation. Additionally, it summarizes the relationship between SC aging and autophagy, providing therapeutical insights into treating and ameliorating aging-associated diseases and cancers, and ultimately promoting longevity.
Collapse
Affiliation(s)
- Ke Zhao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Indigo T C Chan
- Division of Life Science, Center for Stem Cell Research, State Key Laboratory of Molecular Neuroscience, Daniel and Mayce Yu Molecular Neuroscience Center, HKUST-Nan Fung Life Sciences Joint Laboratory, the Hong Kong University of Science and Technology, Hong Kong, China
| | - Erin H Y Tse
- Division of Life Science, Center for Stem Cell Research, State Key Laboratory of Molecular Neuroscience, Daniel and Mayce Yu Molecular Neuroscience Center, HKUST-Nan Fung Life Sciences Joint Laboratory, the Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Zhiyao Xie
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Tom H Cheung
- Division of Life Science, Center for Stem Cell Research, State Key Laboratory of Molecular Neuroscience, Daniel and Mayce Yu Molecular Neuroscience Center, HKUST-Nan Fung Life Sciences Joint Laboratory, the Hong Kong University of Science and Technology, Hong Kong, China.
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China.
| | - Yi Arial Zeng
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
12
|
Yang L, Guo C, Zheng Z, Dong Y, Xie Q, Lv Z, Li M, Lu Y, Guo X, Deng R, Liu Y, Feng Y, Mu R, Zhang X, Ma H, Chen Z, Zhang Z, Dong Z, Yang W, Zhang X, Cui Y. Stress dynamically modulates neuronal autophagy to gate depression onset. Nature 2025:10.1038/s41586-025-08807-4. [PMID: 40205038 DOI: 10.1038/s41586-025-08807-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/19/2025] [Indexed: 04/11/2025]
Abstract
Chronic stress remodels brain homeostasis, in which persistent change leads to depressive disorders1. As a key modulator of brain homeostasis2, it remains elusive whether and how brain autophagy is engaged in stress dynamics. Here we discover that acute stress activates, whereas chronic stress suppresses, autophagy mainly in the lateral habenula (LHb). Systemic administration of distinct antidepressant drugs similarly restores autophagy function in the LHb, suggesting LHb autophagy as a common antidepressant target. Genetic ablation of LHb neuronal autophagy promotes stress susceptibility, whereas enhancing LHb autophagy exerts rapid antidepressant-like effects. LHb autophagy controls neuronal excitability, synaptic transmission and plasticity by means of on-demand degradation of glutamate receptors. Collectively, this study shows a causal role of LHb autophagy in maintaining emotional homeostasis against stress. Disrupted LHb autophagy is implicated in the maladaptation to chronic stress, and its reversal by autophagy enhancers provides a new antidepressant strategy.
Collapse
Affiliation(s)
- Liang Yang
- Department of Psychiatry of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Chen Guo
- Department of Psychiatry of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Zhiwei Zheng
- Department of Psychiatry of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Yiyan Dong
- Department of Psychiatry of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qifeng Xie
- Department of Psychiatry of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Zijian Lv
- Department of Psychiatry of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Min Li
- Department of Psychiatry of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yangyang Lu
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Xiaonan Guo
- Department of Psychiatry of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Rongshan Deng
- Department of Psychiatry of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiqin Liu
- Department of Psychiatry of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Yirong Feng
- Department of Psychiatry of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruiqi Mu
- Department of Psychiatry of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Xuliang Zhang
- Laboratory Animal Center, Zhejiang University, Hangzhou, China
| | - Huan Ma
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Zhong Chen
- Zhejiang Key Laboratory of Neuropsychopharmacology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhijun Zhang
- Department of Neurology, Affiliated Zhongda Hospital, School of Medicine, Institute of Neuropsychiatry, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
- Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhaoqi Dong
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wei Yang
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangnan Zhang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China.
- Jinhua Institute of Zhejiang University, Jinhua, China.
| | - Yihui Cui
- Department of Psychiatry of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
13
|
Alimohammadi M, Abolghasemi H, Cho WC, Reiter RJ, Mafi A, Aghagolzadeh M, Hushmandi K. Interplay between LncRNAs and autophagy-related pathways in leukemia: mechanisms and clinical implications. Med Oncol 2025; 42:154. [PMID: 40202565 DOI: 10.1007/s12032-025-02710-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/30/2025] [Indexed: 04/10/2025]
Abstract
Autophagy is a conserved catabolic process that removes protein clumps and defective organelles, thereby promoting cell equilibrium. Growing data suggest that dysregulation of the autophagic pathway is linked to several cancer hallmarks. Long non-coding RNAs (lncRNAs), which are key parts of gene transcription, are increasingly recognized for their significant roles in various biological processes. Recent studies have uncovered a strong connection between the mutational landscape and altered expression of lncRNAs in the tumor formation and development, including leukemia. Research over the past few years has emphasized the role of lncRNAs as important regulators of autophagy-related gene expression. These RNAs can influence key leukemia characteristics, such as apoptosis, proliferation, epithelial-mesenchymal transition (EMT), migration, and angiogenesis, by modulating autophagy-associated signaling pathways. With altered lncRNA expression observed in leukemia cells and tissues, they hold promise as diagnostic biomarkers and therapeutic targets. The current review focuses on the regulatory function of lncRNAs in autophagy and their involvement in leukemia, potentially uncovering valuable therapeutic targets for leukemia treatment.
Collapse
Affiliation(s)
- Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Abolghasemi
- Department of Pediatrics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA
| | - Alireza Mafi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahboobeh Aghagolzadeh
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Yuan J, Ma J, Zhang F, Wang T, Jian X, Wang B, Li W, Zhang X, Cao Y, Yang H, Ma Y, Wang H. Neutrophil-derived serine proteases induce FOXA2-mediated autophagy dysfunction and exacerbate colitis-associated carcinogenesis via F2RL1/protease-activated receptor 2. Autophagy 2025. [PMID: 40205686 DOI: 10.1080/15548627.2025.2489335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 03/22/2025] [Accepted: 04/02/2025] [Indexed: 04/11/2025] Open
Abstract
Autophagy plays a critical role in colitis-associated colorectal cancer (CAC). However, non-autonomous regulation of macroautophagic/autophagic flux during inflammation remains largely unexplored. Here, we show that F2rl1/Par2 deficiency (F2rl1[ΔIEC]) aggravated azoxymethane-dextran sulfate sodium-induced CAC based on tumor number and burden, promoted autophagy dysfunction characterized by SQSTM1/p62 accumulation and autophagosome-lysosome fusion inhibition in IECs, and reduced lysosomal acidification by suppressing FOXA2-induced V-ATPase ATP6V0E1 transcription. FOXA2 or ATP6V0E1 overexpression rescued autophagy impairment, reactive oxygen species accumulation, and DNA damage induced by F2RL1 deficiency in vitro and in vivo. Neutrophil-derived serine proteases suppressed FOXA2 expression, causing autophagy dysfunction. F2RL1 knockout completely blocked the effects of neutrophil proteases on FOXA2 and ATP6V0E1. The correlation between neutrophil and FOXA2-ATP6V0E1 activities was validated in ulcerative colitis and colorectal carcinoma. Therefore, F2RL1 deficiency in intestinal epithelial cells suppressed FOXA2 expression, leading to V-ATPase-mediated autophagic dysfunction and exacerbating CAC. Neutrophils may contribute to impaired autophagy and promote CAC by inactivating canonical F2RL1/PAR2 signaling via its derived proteases. F2RL1/PAR2 signaling may participate in maintaining intestinal homeostasis via autophagy. These findings provide useful insights into F2RL1/PAR2 and its cleaving serine proteases in CAC and would help in developing new therapeutic strategies for this malignancy.
Collapse
Affiliation(s)
- Junhu Yuan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianhui Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fanyu Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tan Wang
- State Key Lab of Molecular Oncology, Laboratory of Cell and Molecular Biology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaxiang Jian
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Bingzhi Wang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weiwei Li
- Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Xiaoli Zhang
- Department of Injury and Repair, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yubin Cao
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Hong Yang
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yiming Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongying Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Bradic I, Rewitz K. Steroid signaling in autophagy. J Mol Biol 2025:169134. [PMID: 40210154 DOI: 10.1016/j.jmb.2025.169134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/19/2025] [Accepted: 04/04/2025] [Indexed: 04/12/2025]
Abstract
Autophagy is a conserved cellular process essential for homeostasis and development that plays a central role in the degradation and recycling of cellular components. Recent studies reveal bidirectional interactions between autophagy and steroid-hormone signaling. Steroids are signaling molecules synthesized from cholesterol that regulate key physiological and developmental processes - including autophagic activity. Conversely, other work demonstrates that autophagy regulates steroid production by controlling the availability of precursor sterol substrate. Insights from Drosophila and mammalian models provide compelling evidence for the conservation of these mechanisms across species. In this review we explore how steroid hormones modulate autophagy in diverse tissues and contexts, such as metabolism and disease, and discuss advances in our understanding of autophagy's regulatory role in steroid hormone production. We examine the implications of these interactions for health and disease and offer perspectives on the potential for harnessing this functionality for addressing cholesterol-related disorders.
Collapse
Affiliation(s)
- Ivan Bradic
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, 2100 Copenhagen O, Denmark.
| |
Collapse
|
16
|
Tang L, Zhang W, Liao Y, Wang W, Deng X, Wang C, Shi W. Autophagy: a double-edged sword in ischemia-reperfusion injury. Cell Mol Biol Lett 2025; 30:42. [PMID: 40197222 PMCID: PMC11978130 DOI: 10.1186/s11658-025-00713-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 03/04/2025] [Indexed: 04/10/2025] Open
Abstract
Ischemia-reperfusion (I/R) injury describes the pathological process wherein tissue damage, initially caused by insufficient blood supply (ischemia), is exacerbated upon the restoration of blood flow (reperfusion). This phenomenon can lead to irreversible tissue damage and is commonly observed in contexts such as cardiac surgery and stroke, where blood supply is temporarily obstructed. During ischemic conditions, the anaerobic metabolism of tissues and organs results in compromised enzyme activity. Subsequent reperfusion exacerbates mitochondrial dysfunction, leading to increased oxidative stress and the accumulation of reactive oxygen species (ROS). This cascade ultimately triggers cell death through mechanisms such as autophagy and mitophagy. Autophagy constitutes a crucial catabolic mechanism within eukaryotic cells, facilitating the degradation and recycling of damaged, aged, or superfluous organelles and proteins via the lysosomal pathway. This process is essential for maintaining cellular homeostasis and adapting to diverse stress conditions. As a cellular self-degradation and clearance mechanism, autophagy exhibits a dualistic function: it can confer protection during the initial phases of cellular injury, yet potentially exacerbate damage in the later stages. This paper aims to elucidate the fundamental mechanisms of autophagy in I/R injury, highlighting its dual role in regulation and its effects on both organ-specific and systemic responses. By comprehending the dual mechanisms of autophagy and their implications for organ function, this study seeks to explore the potential for therapeutic interventions through the modulation of autophagy within clinical settings.
Collapse
Affiliation(s)
- Lingxuan Tang
- Basic Medical University, Naval Medical University, Shanghai, 200433, China
| | - Wangzheqi Zhang
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Yan Liao
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Weijie Wang
- Basic Medical University, Naval Medical University, Shanghai, 200433, China
| | - Xiaoming Deng
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Changli Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Wenwen Shi
- School of Nursing, Navy Military Medical University, Shanghai, China.
| |
Collapse
|
17
|
Zhang GP, Song ZB, Chen DH, Yu Y, Wu FF, Kuang M, Li SQ. Syntaxin-6 mediated autophagy confers lenvatinib resistance in hepatocellular carcinoma. Oncogene 2025:10.1038/s41388-025-03371-7. [PMID: 40175651 DOI: 10.1038/s41388-025-03371-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 03/06/2025] [Accepted: 03/24/2025] [Indexed: 04/04/2025]
Abstract
Lenvatinib is the first-line therapy for inoperable HCC. However, intrinsic and acquired drug resistance occurs during the treatment period. Autophagy is an adaptive response that favors tumor survival under stress. In the present study, we aim to reveal the unknown autophagic engagement in lenvatinib resistance. Lenvatinib-resistant HCC cell lines and xenograft mouse HCC models were established to identify the key regulator of lenvatinib resistance in HCC. By in vitro functional restoration assays and autophagic flux detection, we demonstrated that the Syntaxin-6 (STX6) -mediated autophagy induced lenvatinib resistance of HCC cells. Mechanistically, Co-immunoprecipitation assay and mass spectrometry indicated that the interactions of STX6 with Beclin1, VTI1A, and VAMP3 facilitated autophagy, leading to the lenvatinib resistance. Additionally, STX6 enhanced the ability of proliferation, migration, and invasion of HCC in vitro and in vivo. Clinically, STX6 expression was significantly elevated in HCC tissues compared to it in para-tumor tissues. High STX6 expression predicted poor outcomes for patients following resection. Moreover, high expression of STX6 displayed low preventive efficacy of lenvatinib as a postoperative adjuvant treatment for HCC patients with a high risk of recurrence. Collectively, we identified that STX6-mediated autophagy plays a crucial role in lenvatinib resistance in HCC, providing a potential therapeutic target to overcome lenvatinib resistance for HCC patients.
Collapse
Affiliation(s)
- Guo-Pei Zhang
- Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ze-Bing Song
- Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - De-Hua Chen
- Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yang Yu
- Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Fei-Feng Wu
- Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ming Kuang
- Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shao-Qiang Li
- Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
18
|
Peng Y, Jia N, Wang J, Dong S, Li S, Qin W, Shi H, Liu K. Analysis of Multiple Programmed Cell Death Patterns and Functional Validations of Apoptosis-Associated Genes in Lung Adenocarcinoma. Ann Surg Oncol 2025:10.1245/s10434-025-17224-w. [PMID: 40175857 DOI: 10.1245/s10434-025-17224-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/09/2025] [Indexed: 04/04/2025]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is marked by its considerable aggressiveness and pronounced heterogeneity. Programmed cell death (PCD) plays a pivotal role in the progression of tumors, their aggressive behavior, resistance to treatment, and recurrence of the disease. PATIENTS AND METHODS Using expression data from 878 patients across four multicenter cohorts, we identified 13 consensus prognostic genes from 1481 genes associated with PCD. We employed 10 machine-learning algorithms, generating 101 combinations, from which the optimal algorithm was chosen to develop an artificial intelligence-derived cell death index (CDI) on the basis of the average C-index. RESULTS The training cohort and three external validation cohorts consistently demonstrated that CDI could accurately predict LUAD prognosis. Moreover, CDI showed significantly greater accuracy than traditional clinical variables, molecular characteristics, and 22 previously published signatures. Patients in the low-CDI group had a more favorable prognosis, higher levels of immune cell infiltration, better responsiveness to immunotherapy, and a higher likelihood of displaying the "hot tumor" phenotype. Single-cell analysis revealed that neutrophils had the highest CDI scores and exhibited significant differences in marker gene expression. CONCLUSIONS Pseudotime trajectory analysis indicated that BCL2L14 plays a crucial role in the developmental pathway of neutrophils, potentially influencing the fate of LUAD cells. Knockdown of BCL2L14 significantly reduced the growth, proliferation, and colony formation abilities of LUAD cells, while also enhancing apoptosis rates.
Collapse
Affiliation(s)
- Yu Peng
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding, China
| | - Nan Jia
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, China
| | - Jingyu Wang
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding, China
| | - Shilei Dong
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding, China
| | - Shujun Li
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Wei Qin
- Internal Medicine of Integrated Chinese and Western Medicine, Affiliated Hospital of Hebei University, Baoding, China.
| | - Hongyun Shi
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding, China.
| | - Kuan Liu
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding, China.
| |
Collapse
|
19
|
Qu H, Yuan X, Huang K, Liu D. AKT/mTOR mediated autophagy contributes to the self-replication of canine influenza virus in vivo and in vitro. Cell Signal 2025; 128:111648. [PMID: 39929352 DOI: 10.1016/j.cellsig.2025.111648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/28/2025] [Accepted: 02/05/2025] [Indexed: 02/14/2025]
Abstract
The prevalence and spread of canine influenza virus (CIV) pose a threat to the health of dogs and humans. Some studies have shown that autophagy is closely related to virus replication, but the exact relationship between CIV replication and autophagy is still unclear. Therefore, this study investigated the effects of autophagy on CIV replication in vitro and in vivo. The data showed that CIV infection significantly caused respiratory tract damage in mice, upregulated the mRNA/protein levels of CIV replication-related genes and autophagy-related genes. In addition, the activation of autophagy by rapamycin (Rapa) significantly intensified the CIV replication and the respiratory tract damage of mice, while the inhibition of autophagy by 3-Methyladenine (3-MA) significantly alleviated these effects. Data of MDCK cells also demonstrated that CIV promoted self-replication through activating autophagy, and the upregulation of AKT/mTOR by insulin significantly inhibited the CIV replication. In summary, this study showed that CIV could promote self-replication by activating AKT/mTOR mediated autophagy, which provides new ideas for the prevention and treatment of canine influenza.
Collapse
Affiliation(s)
- Haobo Qu
- College of Veterinary Medicine, Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Xin Yuan
- College of Veterinary Medicine, Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Kehe Huang
- College of Veterinary Medicine, Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Dandan Liu
- Department of Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
20
|
Gao Y, Wei G, Yu H, Li S, Tang Y, Yue X, Chen Y, Zhan M, Wu J. Integrin β6/Annexin A2 axis triggers autophagy to orchestrate hepatocellular carcinoma radioresistance. Cell Death Differ 2025; 32:689-701. [PMID: 39533071 PMCID: PMC11982560 DOI: 10.1038/s41418-024-01411-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/26/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Radiotherapy (RT) is one of the main therapies for hepatocellular carcinoma (HCC), but its effectiveness has been constrained due to the resistance effect of radiation. Thus, the factors involved in radioresistance are evaluated and the underlying molecular mechanisms are also done. In this present study, we identified Integrin β6 (ITGB6) as a potential radioresistant gene through an integrative analysis of transcriptomic profiles, proteome datasets and survival using HCC cases treated with IR. We show that ITGB6 functionally contributed to radioresistance by activating autophagy through a series of in vitro and in vivo methods, such as clonogenic assays, autophagy flux (LC3B-GFP-mCherry reporter) analysis and a subcutaneous transplantation model. Mechanically, ITGB6 binds to Annexin A2 (ANXA2) and enhanced its stability by competitively antagonizing proteasome mediated ANXA2 degradation, thereby promoting autophagy and radioresistance. Notably, HCC radioresistance was significantly improved by either blocking ITGB6 or autophagy, but the combination was more effective. Importantly, ITGB6/ANXA2 axis triggered autophagic program endowed HCC cells with radioresistant activity in a radiated patient-derived xenograft (PDX) model and hydrodynamic injection in liver-specific Itgb6-knockout mice, further supported by clinical evidence. Together, our data revealed that ITGB6 is a radioresistant gene stabilizing the autophagy regulatory protein ANXA2, providing insights into the biological and potentially clinical significance of ITGB6/ANXA2 axis in radiotherapy planning of HCC.
Collapse
Affiliation(s)
- Ying Gao
- Department of Radiation Oncology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Cancer Center, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Laboratory of General Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Guangyan Wei
- Department of Radiation Oncology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Cancer Center, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hua Yu
- School of Life Sciences, Guangzhou University, Guangzhou, Guangdong, China
| | - Shuping Li
- Department of Radiation Oncology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Cancer Center, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Laboratory of General Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuhao Tang
- Department of Radiation Oncology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Cancer Center, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xin Yue
- Department of Radiation Oncology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Cancer Center, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yong Chen
- Department of Radiation Oncology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Cancer Center, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Meixiao Zhan
- Department of Interventional Medicine, Guangzhou First Pepople's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, Guangdong, China.
| | - Jian Wu
- Center of Hepato-Pancreato-Biliary Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
21
|
Sun M, Cai X, Lan Z, Liu M, Zhou M, Tang Y, Liu Y, Zhang X, Zhao X, Zhou Y, Zhang J, Meng Z. The lysosomal-associated membrane protein 2-macroautophagy pathway is involved in the regulatory effects of hippocampal aromatase on Aβ accumulation and AD-like behavior. Life Sci 2025; 366-367:123484. [PMID: 39983826 DOI: 10.1016/j.lfs.2025.123484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/19/2025] [Accepted: 02/16/2025] [Indexed: 02/23/2025]
Abstract
AIMS Hippocampal aromatase (AROM) knockdown induces Aβ accumulation and Alzheimer's disease (AD)-like spatial learning and memory impairment, and early hippocampal AROM overexpression in APP/PS1 mice prevents Aβ deposition and memory loss later in life. The aim of this study was to elucidate the underlying mechanism and provide novel prevention and treatment targets for AD. MATERIALS AND METHODS AROM-inhibiting viral vectors were constructed and injected into the hippocampi of adult female mice, after which label-free LC-MS/MS proteomics and bioinformatics analysis were conducted. Additional viral vectors targeting LAMP2 or LC3 were constructed and used to treat HT22 cells. LAMP2 expression was verified, and macroautophagy levels, autophagosome formation and Aβ accumulation were examined. Additionally, ovariectomy combined with the hippocampal injection of LAMP2 inhibition/overexpression viral vectors was applied, and learning and memory abilities and Aβ accumulation were examined. KEY FINDINGS Proteomics revealed the enrichment of CMA and autophagy, and LAMP2 was the most significantly upregulated protein. Higher LAMP2 levels were correlated with lower macroautophagy and autophagosomes levels but were correlated with higher Aβ accumulation, and vice versa. Additionally, hippocampal LAMP2 mediated the effects of ovariectomy on spatial memory and Aβ accumulation. SIGNIFICANCE These results demonstrated the important role of the hippocampal LAMP2-macroautophagy pathway in mediating both hippocampal and ovarian estrogen regulation of Aβ accumulation and AD-like behavior, indicating that LAMP2 might be a novel target for both hippocampal and circulating estrogen deficiency-associated memory impairments, such as AD.
Collapse
Affiliation(s)
- Mingguang Sun
- Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing University of Chinese Medicine, Beijing 100853, China; Department of Neurology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Xiaoxia Cai
- Department of Neurobiology, Army Medical University, Chongqing 400038, China; School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Zhen Lan
- Department of Neurobiology, Army Medical University, Chongqing 400038, China; Department of General Surgery, General Hospital of Central Theater Command, Wuhan 430000, China
| | - Mengying Liu
- Department of Neurobiology, Army Medical University, Chongqing 400038, China; The 305 Hospital of PLA, Beijing 100017, China
| | - Maohu Zhou
- Department of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Yisha Tang
- College of Letters and Science, University of California, Berkeley, CA 94720, United States
| | - Yan Liu
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xuan Zhang
- Department of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Xiao Zhao
- Department of Neurology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Yue Zhou
- Department of Neurology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Jiqiang Zhang
- Department of Neurobiology, Army Medical University, Chongqing 400038, China.
| | - Zhaoyou Meng
- Department of Neurology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China.
| |
Collapse
|
22
|
Liu H, Wen S, Xu C, Kang X, Kong E. Mechanisms and Functional Implications of ZDHHC5 in Cellular Physiology and Disease. J Lipid Res 2025:100793. [PMID: 40180214 DOI: 10.1016/j.jlr.2025.100793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/27/2025] [Accepted: 03/30/2025] [Indexed: 04/05/2025] Open
Abstract
Post-translational lipid modification by palmitoylation is a reversible process crucial for maintaining cellular functionality. The palmitoyl acyltransferase zinc finger Asp-His-His-Cys motif-containing 5 (ZDHHC5) has garnered significant attention due to its roles in neurodegenerative diseases, oncogenesis, and cardiac function. ZDHHC5 recognizes substrates through diverse mechanisms and its activity is regulated by multiple factors. Highly expressed in the brain, liver and heart, ZDHHC5 exerts regulatory functions in various cellular processes through self-regulation and substrate palmitoylation. This review focuses on the regulatory roles of ZDHHC5 in the nervous system including circadian rhythm, tumor, lipid metabolism. Dysfunctions in ZDHHC5 are associated with several diseases, thereby highlighting its potential as a target for novel therapeutic strategies against neurological, lipid metabolic, and oncogenesis.
Collapse
Affiliation(s)
- Huicong Liu
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453100, China; Institute of Psychiatry and Neuroscience, Xinxiang key laboratory of protein palmitoylation and major human diseases, Xinxiang Medical University, Xinxiang, China.
| | - Shuo Wen
- Institute of Psychiatry and Neuroscience, Xinxiang key laboratory of protein palmitoylation and major human diseases, Xinxiang Medical University, Xinxiang, China
| | - Chang Xu
- Institute of Psychiatry and Neuroscience, Xinxiang key laboratory of protein palmitoylation and major human diseases, Xinxiang Medical University, Xinxiang, China
| | - Xiaohong Kang
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453100, China
| | - Eryan Kong
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453100, China; Institute of Psychiatry and Neuroscience, Xinxiang key laboratory of protein palmitoylation and major human diseases, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
23
|
Chen Y, He P, Tao S, Zhong J, Jiang K, Hsu Y, Xia G, Mao X, Sang H, Lu K. Injectable sustainable andrographolide-releasing hydrogel for long-lasting alleviation of osteoarthritis and regulation of chondrocyte autophagy via PRKCA/EGFR. Mater Today Bio 2025; 31:101610. [PMID: 40104642 PMCID: PMC11919379 DOI: 10.1016/j.mtbio.2025.101610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/16/2025] [Accepted: 02/24/2025] [Indexed: 03/20/2025] Open
Abstract
Osteoarthritis is one of the most prevalent age-related joint diseases, with chondrocyte inflammation and autophagy dysregulation serving as pivotal pathogenesis factors. Andrographolide (AD), a phytochemical identified in Andrographis paniculata, exhibits anti-inflammatory properties and regulates autophagy to safeguard cells from damage. Nevertheless, the precise mechanism underlying the influence of AD on autophagy in osteoarthritis (OA) chondrocytes remains unelucidated. Concurrently, sustained efficacy of andrographolide typically necessitates prolonged administration, posing a challenge for its clinical application. We engineered an injectable 4-arm PEG-Mix-Hydrogel/PF system capable of encapsulating lipophilic drugs and achieving sustained release over a period of up to 24 days, substantially reducing the frequency of medication. Our findings indicate that andrographolide augments chondrocyte autophagy via the PRKCA/EGFR pathway and modulates chondrocyte inflammation as well as extracellular matrix degradation. Subsequent experimentation revealed that the injectable 4-arm PEG-Mix-Hydrogel/PF@AD (PHPF@AD) exhibited excellent biocompatibility with chondrocytes, possessed a rapid in-situ gelation time, and a single injection was sufficient to alleviate joint degeneration, abnormal gait, and weakened chondrocyte autophagy in OA mice, while ameliorating inflammation, matrix degradation, and apoptosis levels, and maintaining a certain degree of bone mass around the joints. In summary, this injectable hydrogel with spontaneous andrographolide release is anticipated to be a promising therapeutic modality for OA.
Collapse
Affiliation(s)
- Yang Chen
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Peipei He
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Siyi Tao
- Department of Orthopaedic Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jintao Zhong
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Kai Jiang
- Department of Orthopedics, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yuching Hsu
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Guang Xia
- Department of Orthopedics, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xinzhan Mao
- Department of Orthopaedic Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongxun Sang
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Ke Lu
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
24
|
Yin X, Zhuang X, Luo W, Liao M, Huang L, Liu Y, Wang W. Penaeus vannamei SQSTM1/p62 is a necessary condition for autophagosome-lysosome fusion after infection by Vibrio alginolyticus. Int J Biol Macromol 2025; 309:142741. [PMID: 40180075 DOI: 10.1016/j.ijbiomac.2025.142741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 03/13/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
As an autophagy receptor, SQSTM1/p62 facilitates the degradation of various cytoplasmic components, including proteins, organelles, and pathogens, by mediating interactions between polyubiquitination cargo and autophagosomes. Our study observed an increase in the expression level of SQSTM1/p62 during autophagy induced by Vibrio alginolyticus (V. alginolyticus) in Penaeus vannamei (P. vannamei), contrary to expectations, which promoted an investigation into the role of SQSTM1/p62 in infectious diseases of aquatic animals. Using silencing techniques, we examined the function and regulatory mechanism of SQSTM1/p62 during V. alginolyticus infection. Silencing the Pvp62 gene in P. vannamei and infecting them with V. alginolyticus led to a significant decrease in the survival rate of P. vannamei, indicating its importance in the infection process. Furthermore, Pvp62 silencing was found to affect the lysosome function of P. vannamei. Immunofluorescence analysis showed that silences of Pvp62 inhibited co-localization of LC3 and lamp1 after infection, while overexpression of Pvp62 promoted this process, suggesting that Pvp62 was a necessary condition for autophagosome-lysosome fusion after infection by V. alginolyticus. Importantly, the overexpression of Pvp62 counteracted the inhibitory effect of the autophagy inhibitor chloroquine on autophagosome-lysosome fusion in primary hemocytes of shrimp after infection, underscoring the protective role of Pvp62-mediated autophagosome-lysosome fusion pathway during V. alginolyticus infection.
Collapse
Affiliation(s)
- Xiaoli Yin
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan 528333, PR China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou 510631, PR China; School of Life Sciences, Guangzhou University, Guangzhou 511400, PR China.
| | - Xueqi Zhuang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Weitao Luo
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Meiqiu Liao
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Lin Huang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Yuan Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Weina Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou 510631, PR China.
| |
Collapse
|
25
|
Luo T, Zhao L, Feng C, Yan J, Yuan Y, Chen H. Asparagine prevents intestinal stem cell aging via the autophagy-lysosomal pathway. Aging Cell 2025; 24:e14423. [PMID: 39587832 PMCID: PMC11984690 DOI: 10.1111/acel.14423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/09/2024] [Accepted: 11/13/2024] [Indexed: 11/27/2024] Open
Abstract
The age-associated decline in intestinal stem cell (ISC) function is a key factor in intestinal aging in organisms, resulting in impaired intestinal function and increased susceptibility to age-related diseases. Consequently, it is imperative to develop effective therapeutic strategies to prevent ISC aging and functional decline. In this study, we utilized an aging Drosophila model screening of amino acids and found that asparagine (Asn), a nonessential amino acid in vivo, exhibits its profound anti-aging properties on ISCs. Asn inhibits the hyperproliferation of aging ISCs in Drosophila, maintains intestinal homeostasis, and extends the lifespan of aging flies. Complementarily, Asn promotes the growth and branching of elderly murine intestinal organoids, indicating its anti-aging capacity to enhance ISC function. Mechanistic analyses have revealed that Asn exerts its effects via the activation of the autophagic signaling pathway. In summary, this study has preliminarily explored the potential supportive role of Asn in ameliorating intestinal aging, providing a foundation for further research into therapeutic interventions targeting age-related intestinal dysfunction.
Collapse
Affiliation(s)
- Ting Luo
- Center of Gerontology and Geriatrics and Laboratory of Stem Cell and Anti‐Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China HospitalSichuan UniversityChengduSichuanChina
| | - Liusha Zhao
- Center of Gerontology and Geriatrics and Laboratory of Stem Cell and Anti‐Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China HospitalSichuan UniversityChengduSichuanChina
| | - Chenxi Feng
- Center of Gerontology and Geriatrics and Laboratory of Stem Cell and Anti‐Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China HospitalSichuan UniversityChengduSichuanChina
| | - Jinhua Yan
- Center of Gerontology and Geriatrics and Laboratory of Stem Cell and Anti‐Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yu Yuan
- Center of Gerontology and Geriatrics and Laboratory of Stem Cell and Anti‐Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China HospitalSichuan UniversityChengduSichuanChina
| | - Haiyang Chen
- Center of Gerontology and Geriatrics and Laboratory of Stem Cell and Anti‐Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
26
|
You L, Wu Q. Cellular senescence in tumor immune escape: Mechanisms, implications, and therapeutic potential. Crit Rev Oncol Hematol 2025; 208:104628. [PMID: 39864532 DOI: 10.1016/j.critrevonc.2025.104628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/12/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025] Open
Abstract
Cellular senescence, a hallmark of aging, has emerged as a captivating area of research in tumor immunology with profound implications for cancer prevention and treatment. In the tumor microenvironment, senescent cells exhibit a dual role, simultaneously hindering tumor development through collaboration with immune cells and evading immune cell attacks by upregulating immunoinhibitory proteins. However, the intricate immune escape mechanism of cellular senescence in the tumor microenvironment remains a subject of intense investigation. Chronic inflammation is exacerbated by cellular senescence through the upregulation of pro-inflammatory factors such as interleukin-1β, thereby augmenting the risk of tumorigenesis. Additionally, the interplay between autophagy and cellular senescence adds another layer of complexity. Autophagy, known to slow down the aging process by reducing p53/p21 levels, may be downregulated by cellular senescence. To harness the therapeutic potential of cellular senescence, targeting its immunological aspects has gained significant attention. Strategies such as immune checkpoint inhibitors and T-cell senescence inhibition are being explored in the context of cellular senescence immunotherapy. In this comprehensive review, we provide a compelling overview of the regulation of cellular senescence and delve into the influencing factors, including chronic inflammation, autophagy, and circadian rhythms, associated with senescence in the tumor microenvironment. We specifically focus on unraveling the enigmatic dual role of cellular senescence in tumor immune escape. By deciphering the intricate nature of cellular senescence in the tumor microenvironment, this review aims to advance our understanding and pave the way for leveraging senescence as a promising target for tumor immunotherapy applications.
Collapse
Affiliation(s)
- Li You
- College of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing 401520, China; College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou 434025, China.
| |
Collapse
|
27
|
Weng JR, Shu CW, Chang CC, Wu YC, Yang HC, Lee CH, Dahms HU, Lin WY, Chen CL, Liu PF. Aglaia elliptifolia Leaf Extract Inhibits Autophagy-Related 4B Protease and Suppresses Malignancies of Colorectal Cancer Cells. ENVIRONMENTAL TOXICOLOGY 2025; 40:549-562. [PMID: 39578574 DOI: 10.1002/tox.24439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 09/23/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024]
Abstract
Autophagy is a self-eating pathway for maintaining normal cellular physiology, while dysregulation of autophagy is associated with cancer progression. Autophagy-related 4B gene (ATG4B) is a cysteine protease to regulate autophagosome formation and is positively correlated with poor prognosis of colorectal cancer (CRC) patients. An increasing number of reports have implied that ATG4B might be an attractive drug target for CRC. Natural products are the most important source of drug development for cancer therapy due to their high degree of diversity in chemical structure. However, there are few natural products targeting autophagy regulation, especially targeting ATG4B. We aim to identify effective natural compounds from costal plants against ATG4B as potential CRC therapies. We extracted the whole plants, stem, and leaves from nine coastal plant species of Taiwan using different solvents including acetone, methanol, or chloroform. We then evaluated their effects on ATG4B activity and cancer malignancy in CRC cells (DLD-1, HCT116, and SW620). Among these 26 extracts, we found that the methanol leaf extract of A. elliptifolia significantly inhibited ATG4B proteolytic activity. Moreover, cell viability and colony formation and mobility were decreased in CRC cells treated with the extract. The extract further reduced the number of living cells and induced subG1 proportion of CRC cells. The cytotoxicity of A. elliptifolia leaf extract was also enhanced in CRC cells under starvation, whereas it had no additional effects in ATG4B or autophagy deficient cells. Taken together, the methanol leaf extract of A. elliptifolia might contains bioactive compounds for inhibiting ATG4B and autophagy activity to diminish viability and mobility of CRC cells, indicating its potential as an anti-CRC drug for future development.
Collapse
Affiliation(s)
- Jing-Ru Weng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Chih-Wen Shu
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Innovation Center for Drug Development and Optimization, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Che Chang
- Department of Oncology, Zuoying Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Ya-Chun Wu
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Hsiu-Chen Yang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Cheng-Hsin Lee
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Yu Lin
- Department of Pharmacy, Kinmen Hospital, Ministry of Health and Welfare, Kinmen, Taiwan
| | - Chun-Lin Chen
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Pei-Feng Liu
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
28
|
Yan H, Huang X, Zhou Y, Mu Y, Zhang S, Cao Y, Wu W, Xu Z, Chen X, Zhang X, Wang X, Yang X, Yang B, He Q, Luo P. Disturbing Cholesterol/Sphingolipid Metabolism by Squalene Epoxidase Arises Crizotinib Hepatotoxicity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414923. [PMID: 39836491 PMCID: PMC11984922 DOI: 10.1002/advs.202414923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/13/2025] [Indexed: 01/23/2025]
Abstract
Metabolic disorders have been identified as one of the causes of drug-induced liver injury; however, the direct regulatory mechanism regarding this disorder has not yet been clarified. In this study, a single regulatory mechanism of small molecule kinase inhibitors, with crizotinib as the representative drug is elucidated. First, it is discovered that crizotinib induced aberrant lipid metabolism and apoptosis in the liver. A mechanistic study revealed that crizotinib treatment promoted the accumulation of squalene epoxidase (SQLE) by inhibiting autophagosome-lysosome fusion which blocked the autophagic degradation of SQLE. A maladaptive increase in SQLE led to disturbances in cholesterol and sphingolipid metabolism via an enzymatic activity-dependent manner. Abnormal cholesterol results in both steatosis and inflammatory infiltration, and disturbances in sphingolipid metabolism promote cell apoptosis by inducing lysosomal membrane permeabilization. The restoration of the level or activity of SQLE ameliorated steatosis and hepatocyte injury. The autophagy activator known as metformin or the SQLE enzymatic inhibitor known as terbinafine has potential clinical use for alleviating crizotinib hepatotoxicity.
Collapse
Affiliation(s)
- Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Xiangliang Huang
- Center for Drug Safety Evaluation and Research of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Yourong Zhou
- Center for Drug Safety Evaluation and Research of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Yuan Mu
- Center for Drug Safety Evaluation and Research of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Shaoyin Zhang
- Center for Drug Safety Evaluation and Research of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Yashi Cao
- Center for Drug Safety Evaluation and Research of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Wentong Wu
- Center for Drug Safety Evaluation and Research of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Xueqin Chen
- Department of Thoracic OncologyHangzhou Cancer HospitalAffiliated Hangzhou First People's HospitalSchool of MedicineWestlake UniversityHangzhou310006China
| | - Xiaochen Zhang
- Department of Medical OncologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Xiaohong Wang
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhou310022China
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Bo Yang
- Center for Drug Safety Evaluation and Research of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
- School of MedicineHangzhou City UniversityHangzhou310015China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
- School of MedicineHangzhou City UniversityHangzhou310015China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| |
Collapse
|
29
|
Ling Z, Ge X, Jin C, Song Z, Zhang H, Fu Y, Zheng K, Xu R, Jiang H. Copper doped bioactive glass promotes matrix vesicles-mediated biomineralization via osteoblast mitophagy and mitochondrial dynamics during bone regeneration. Bioact Mater 2025; 46:195-212. [PMID: 39760064 PMCID: PMC11699476 DOI: 10.1016/j.bioactmat.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/05/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025] Open
Abstract
Bone defect repair remains a great challenge in the field of orthopedics. Human body essential trace element such as copper is essential for bone regeneration, but how to use it in bone defects and the underlying its mechanisms of promoting bone formation need to be further explored. In this study, by doping copper into mesoporous bioactive glass nanoparticles (Cu-MBGNs), we unveil a previously unidentified role of copper in facilitating osteoblast mitophagy and mitochondrial dynamics, which enhance amorphous calcium phosphate (ACP) release and subsequent biomineralization, ultimately accelerating the process of bone regeneration. Specifically, by constructing conditional knockout mice lacking the autophagy gene Atg5 in osteogenic lineage cells, we first confirmed the role of Cu-MBGNs-promoted bone formation via mediating osteoblast autophagy pathway. Then, the in vitro studies revealed that Cu-MBGNs strengthened mitophagy by inducing ROS production and recruiting PINK1/Parkin, thereby facilitating the efficient release of ACP from mitochondria into matrix vesicles for biomineralization during bone regeneration. Moreover, we found that Cu-MBGNs promoted mitochondrion fission via activating dynamin related protein 1 (Drp1) to reinforce mitophagy pathway. Together, this study highlights the potential of Cu-MBGNs-mediated mitophagy and biomineralization for augmenting bone regeneration, offering a promising avenue for the development of advanced bioactive materials in orthopedic applications.
Collapse
Affiliation(s)
- Ziji Ling
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, 210029, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 210029, Nanjing, China
| | - Xiao Ge
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, 210029, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 210029, Nanjing, China
| | - Chengyu Jin
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, 210029, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 210029, Nanjing, China
| | - Zesheng Song
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, 210029, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 210029, Nanjing, China
| | - Hang Zhang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, 210029, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 210029, Nanjing, China
| | - Yu Fu
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, 210029, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 210029, Nanjing, China
| | - Kai Zheng
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 210029, Nanjing, China
| | - Rongyao Xu
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, 210029, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 210029, Nanjing, China
| | - Hongbing Jiang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, 210029, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 210029, Nanjing, China
| |
Collapse
|
30
|
Tang D, Kang R, Kroemer G. Triaptosis: an endosome-dependent cell death modality. Cell Res 2025; 35:237-238. [PMID: 39638924 PMCID: PMC11958809 DOI: 10.1038/s41422-024-01053-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Affiliation(s)
- Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|
31
|
Wang S, Wang M, Sun S, Liu X, Li D. Effect of miR-654-3p targeting EMP1 on osteoblast activity and differentiation in delayed fracture healing. J Orthop Surg Res 2025; 20:322. [PMID: 40156038 PMCID: PMC11951503 DOI: 10.1186/s13018-025-05736-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/18/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Delayed fracture healing (DFH) is a common postoperative complication in fracture patients, and a validated serum marker may aid in the clinical management and improve the prognosis of fracture patients. In this study, we investigated the diagnostic role and potential regulatory mechanisms of miR-654-3p in DFH. METHODS 73 patients with DFH and 75 patients with normal fracture healing (NFH) were included. Expression of miR-654-3p and EMP1 and several mRNA markers of osteogenic differentiation were evaluated by RT-qPCR. The diagnostic value of miR-654-3p and EMP1 alone and in combination was assessed using ROC curves. Cell proliferation capacity was assessed by CCK-8 and apoptosis rate by flow cytometry. DLR experiments demonstrated the targeting relationship between miR-654-3p and EMP1. RESULTS Levels of miR-654-3p were found to be significantly lower in DFH compared to NFH. Following cell differentiation treatment, miR-654-3p levels increased and EMP1 levels decreased. Furthermore, a negative correlation was identified between miR-654-3p and EMP1 target binding and expression levels. The combination of miR-654-3p and EMP1 holds significant diagnostic value for DFH. miR-654-3p high expression can inhibit EMP1 levels, which promotes cell proliferation, increases osteoblast activity and levels of differentiation markers, and decreases the rate of apoptosis. CONCLUSION miR-654-3p and EMP1 are aberrantly expressed in DFH, and both have high diagnostic value for DFH. miR-654-3p is involved in the proliferation, differentiation, and apoptotic activities of osteoblasts by regulating the level of EMP1, thus affecting the progression of DFH.
Collapse
Affiliation(s)
- Shantao Wang
- Spinal Trauma Orthopedics, Yidu Central Hospital of Weifang, No.5168, Jiangjunshan Road, Qingzhou, Weifang, 262500, China.
| | - Mingwei Wang
- Department of Pediatric, Yidu Central Hospital of Weifang, Weifang, 262500, China
| | - Shengliang Sun
- Hand, Foot and Ankle Surgery, Yidu Central Hospital of Weifang, Weifang, 262500, China
| | - Xinsheng Liu
- Spinal Trauma Orthopedics, Yidu Central Hospital of Weifang, No.5168, Jiangjunshan Road, Qingzhou, Weifang, 262500, China
| | - Danzhi Li
- Spinal Trauma Orthopedics, Yidu Central Hospital of Weifang, No.5168, Jiangjunshan Road, Qingzhou, Weifang, 262500, China
| |
Collapse
|
32
|
Huang X, Yan H, Xu Z, Yang B, Luo P, He Q. The inducible role of autophagy in cell death: emerging evidence and future perspectives. Cell Commun Signal 2025; 23:151. [PMID: 40140912 PMCID: PMC11948861 DOI: 10.1186/s12964-025-02135-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 03/02/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Autophagy is a lysosome-dependent degradation pathway for recycling intracellular materials and removing damaged organelles, and it is usually considered a prosurvival process in response to stress stimuli. However, increasing evidence suggests that autophagy can also drive cell death in a context-dependent manner. The bulk degradation of cell contents and the accumulation of autophagosomes are recognized as the mechanisms of cell death induced by autophagy alone. However, autophagy can also drive other forms of regulated cell death (RCD) whose mechanisms are not related to excessive autophagic vacuolization. Notably, few reviews address studies on the transformation from autophagy to RCD, and the underlying molecular mechanisms are still vague. AIM OF REVIEW This review aims to summarize the existing studies on autophagy-mediated RCD, to elucidate the mechanism by which autophagy initiates RCD, and to comprehensively understand the role of autophagy in determining cell fate. KEY SCIENTIFIC CONCEPTS OF REVIEW This review highlights the prodeath effect of autophagy, which is distinct from the generally perceived cytoprotective role, and its mechanisms are mainly associated with the selective degradation of proteins or organelles essential for cell survival and the direct involvement of the autophagy machinery in cell death. Additionally, this review highlights the need for better manipulation of autophagy activation or inhibition in different pathological contexts, depending on clinical purpose.
Collapse
Affiliation(s)
- Xiangliang Huang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, China.
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- School of Medicine, Hangzhou City University, Hangzhou, 310015, China.
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, China.
| |
Collapse
|
33
|
de Oliveira MR. Pre-clinical evidence for mitochondria as a therapeutic target for luteolin: A mechanistic view. Chem Biol Interact 2025; 413:111492. [PMID: 40154935 DOI: 10.1016/j.cbi.2025.111492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/05/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Pre-clinical evidence indicates that mitochondria may be a therapeutic target for luteolin (3',4',5,7-tetrahydroxyflavone; LUT) in different conditions. LUT modulates mitochondrial physiology in in vitro, ex vivo, and in vivo experimental models. This flavone exerted mitochondria-related antioxidant and anti-apoptotic effects, stimulated mitochondrial fusion and fission, induced mitophagy, and promoted mitochondrial biogenesis in human and animal cells and tissues. Moreover, LUT modulated the activity of components of the oxidative phosphorylation (OXPHOS) system, improving the ability of mitochondria to produce adenosine triphosphate (ATP) in certain circumstances. The mechanism of action by which LUT promoted mitochondrial benefits and protection are not completely clear yet. Nonetheless, LUT is a potential candidate to be utilized in mitochondrial therapy in the future. In this work, it is explored the mechanisms of action by which LUT modulates mitochondrial physiology in different pre-clinical experimental models.
Collapse
Affiliation(s)
- Marcos Roberto de Oliveira
- Grupo de Estudos em Neuroquímica e Neurobiologia de Moléculas Bioativas, Departamento de Química, Universidade Federal de Mato Grosso (UFMT), CEP 78060-900, Cuiaba, Mato Grosso, Brazil; Grupo de Estudos em Terapia Mitocondrial, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), CEP 90035-003, Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), CEP 90035-003, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
34
|
Yan Z, Huang A, Ma D, Hong C, Zhang S, He L, Rao H, Luo S. ATP6AP1 promotes cell proliferation and tamoxifen resistance in luminal breast cancer by inducing autophagy. Cell Death Dis 2025; 16:201. [PMID: 40133274 PMCID: PMC11937278 DOI: 10.1038/s41419-025-07534-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 03/01/2025] [Accepted: 03/12/2025] [Indexed: 03/27/2025]
Abstract
Autophagy is a highly conserved cellular process essential for maintaining cellular homeostasis and influencing cancer development. Lysosomal acidification and autophagosome-lysosome fusion are two important steps of autophagy degradation that are tightly regulated. Although many key proteins that regulate these two events have been identified, the effector proteins that co-regulate both steps remain to be explored. ATP6AP1, an accessory subunit of V-ATPase, plays a critical role in the assembly and regulation of V-ATPase. However, the function of ATP6AP1 in autophagy remains unknown, and the role of ATP6AP1 in cancer is still poorly understood. In this study, we found that ATP6AP1 is overexpressed in luminal breast cancer tissues and promotes the proliferation and tamoxifen resistance of luminal breast cancer cells both in vitro and in vivo. We also observed that high ATP6AP1 expression correlates with poor overall patient survival. Our research further revealed that ATP6AP1 enhances tamoxifen resistance by activating autophagy. Mechanistically, ATP6AP1 promotes autophagy by regulating both lysosomal acidification and autophagosome-lysosome fusion. Remarkably, ATP6AP1 induces lysosomal acidification through the regulation of V-ATPase assembly and facilitates autophagosome-lysosome fusion by enhancing the interaction between Rab7 and the HOPS complex. Together, our studies identify ATP6AP1 as a crucial regulator of autophagy, potentially serving as a valuable prognostic marker or therapeutic target in human luminal breast cancer.
Collapse
Affiliation(s)
- Zhengwei Yan
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University; The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors; Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Department of Biochemistry, School of Medicine, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Aidi Huang
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University; The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors; Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Department of Pathology and Institute of Molecular Pathology, Jiangxi Provincial Key Laboratory for Precision Pathology and Intelligent Diagnosis, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Dongwen Ma
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University; The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors; Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Department of Pathology and Institute of Molecular Pathology, Jiangxi Provincial Key Laboratory for Precision Pathology and Intelligent Diagnosis, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Chenao Hong
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University; The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors; Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Department of Pathology and Institute of Molecular Pathology, Jiangxi Provincial Key Laboratory for Precision Pathology and Intelligent Diagnosis, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Shengmiao Zhang
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University; The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors; Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Department of Pathology and Institute of Molecular Pathology, Jiangxi Provincial Key Laboratory for Precision Pathology and Intelligent Diagnosis, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Luling He
- Department of Biochemistry, School of Medicine, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hai Rao
- Department of Biochemistry, School of Medicine, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Shiwen Luo
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University; The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors; Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
- Department of Pathology and Institute of Molecular Pathology, Jiangxi Provincial Key Laboratory for Precision Pathology and Intelligent Diagnosis, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
35
|
Deng Q, Wu L, He J, Wu F, Jiang Z. Identification of autophagy-related immune targets for enhancing immunotherapy in pancreatic cancer aggressiveness. Discov Oncol 2025; 16:382. [PMID: 40126694 PMCID: PMC11933596 DOI: 10.1007/s12672-025-02190-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/20/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Pancreatic cancer (PC) presents significant challenges in oncology, with metastasis critically affecting patient outcomes. Autophagy-related genes (ARGs)'s involvement in influencing immune activity and metastasis in PC remains inadequately understood. AIM This study seeks to identify and validate five ARGs that could serve as immune targets, enhancing enhancing Pancreatic cancer metastasis (PCM)'s prognostic models and informing immunotherapy strategies. METHODS ARGs that were diffentially expressed were screened, followed by Cox regression and LASSO analyses to pinpoint five genes linked to overall survival (OS). A prognostic model was developed and validated using ROC curves. Functional analyses, including GO and KEGG, were performed to elucidate ARG mechanisms. Immune infiltration and TFs/microRNA/mRNA networks were assessed to understand ARG-immune cell interactions. Experimental validation employed real-time PCR, IHC, and Western blotting, supported by TCGA data. Functional assays explored RHEB's role in PC, particularly its interaction with LC3. RESULTS Five ARGs (CASP1, RHEB, CHMP2B, MYC, and HDAC6) were identified, contributing to a robust prognostic model where low-risk individuals showed significantly longer OS. The model demonstrated high AUC scores, indicating strong prognostic capability. CD8 T cells and Treg cells' elevated levels were observed in metastatic subjects. RHEB knockdown suppressed cancer cell proliferation and invasion, with a negative correlation between RHEB and LC3, suggesting a role in autophagy-mediated modulation of PC metastasis. CONCLUSION This study introduces a novel prognostic model incorporating five ARGs, highlighting their potential as immune targets for cancer immunotherapy. The negative correlation between RHEB and LC3 suggests a therapeutic pathway for PCM intervention, laying the groundwork for more effective anti-cancer strategies. These findings advance the identification of novel immune targets and signaling pathways, aligning with precision medicine goals in cancer treatment.
Collapse
Affiliation(s)
- Qianxi Deng
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400010, China
- Department of Gastroenterology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, 621000, Sichuan, China
| | - Linju Wu
- Department of Anesthesiology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, 2621000, Sichuan, China
| | - Jin He
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400010, China
| | - Fan Wu
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400010, China
| | - Zheng Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400010, China.
| |
Collapse
|
36
|
Coculo L, Wits M, Mariani I, Fianco G, Cappato S, Bocciardi R, Pedemonte N, Volpe E, Ciolfi S, Sessa RL, Rinaldo S, Cutruzzolà F, Trisciuoglio D, Goumans MJ, Sanchez-Duffhues G, Stagni V. Interplay between ALK2 R206H mutant receptor and autophagy signaling regulates receptor stability and its chondrogenic functions. Cell Death Discov 2025; 11:117. [PMID: 40121219 PMCID: PMC11929866 DOI: 10.1038/s41420-025-02393-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 02/14/2025] [Accepted: 03/10/2025] [Indexed: 03/25/2025] Open
Abstract
Heterozygous mutations in the Bone morphogenetic protein (BMP) type I receptor ACVR1, encoding activin-like kinase 2 (ALK2), underlie all cases of the rare genetic musculoskeletal disorder Fibrodysplasia Ossificans Progressiva (FOP). The most commonly found mutant ALK2 p.R206H receptor variant exhibits loss of auto inhibition of BMP signaling and can be activated by Activins, while wild-type receptors remain unresponsive. Consequently, the downstream chondrogenic signaling is enhanced, thus driving heterotopic ossification within soft connective tissues. Despite several investigational treatments being evaluated in clinical trials, no cure for FOP exists today. The cellular and molecular mechanisms underlying disease progression are still being deciphered. In this study, we show a close interplay between the mutant ALK2R206H receptor signaling and dysregulation of the autophagic flux triggered by hypoxia. Mechanistically, reduced autophagic flux correlates with increased stability of ALK2R206H, resulting in sustained signaling. Of note, we demonstrated that Rapamycin, under clinical investigation as a treatment for FOP, inhibits chondrogenic differentiation in an autophagy-dependent manner. Consistently, other pharmacological autophagy inducers, like Spermidine, can reduce ALK2R206H driven chondrogenic differentiation in vitro. These results were verified in FOP patient-derived cells. In conclusion, this study shows that aberrant autophagic flux mediates sustained ALK2R206H signaling, introducing a novel druggable target in FOP by reactivating autophagy.
Collapse
Grants
- Seed Grant FOP GSA21A002 Fondazione Telethon (Telethon Foundation)
- Seed Grant FOP-Renewal GSA23I001 Fondazione Telethon (Telethon Foundation)
- Seed Grant FOP GSA21A002 Fondazione Telethon (Telethon Foundation)
- Seed Grant FOP-Renewal GSA23I001 Fondazione Telethon (Telethon Foundation)
- Seed Grant FOP-Renewal GSA23I001 Fondazione Telethon (Telethon Foundation)
- Seed Grant FOP GSA21A002 Fondazione Telethon (Telethon Foundation)
- PRIN202224M22R Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- PRIN202224M22R Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- Netherlands Cardiovascular Research Initiative (the Dutch Heart Foundation, Dutch Federation of University Medical Centers, the Netherlands Organization for Health Research and Development, and the Royal Netherlands Academy of Sciences), PHAEDRA-IMPACT (DCVA) and DOLPHIN-GENESIS (CVON).
- Ramón y Cajal RYC2021-030866-I, PID2022-141212OA-I00 and CNS2023-145432 from the Spanish Ministry of Science and Innovation GSD is also sponsored by La Marató de TV3 (202038-30), the BHF-DZHK-DHF, 2022/23 award PROMETHEUS, the Foundation Eugenio Rodriguez Pascual (FERP-2023-058) and the Foundation “Por dos pulgares de nada”
Collapse
Affiliation(s)
- Laura Coculo
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, Italy
- Cell Signalling Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Marius Wits
- Department of Cell & Chemical Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Irene Mariani
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, Italy
- Cell Signalling Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Giulia Fianco
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, Italy
| | - Serena Cappato
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Renata Bocciardi
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- DINOGMI, University of Genoa, Genoa, Italy
| | | | - Elisabetta Volpe
- Molecular Neuroimmunology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Serena Ciolfi
- Molecular Neuroimmunology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Rosario Luigi Sessa
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, Italy
- Cell Signalling Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Serena Rinaldo
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Daniela Trisciuoglio
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, Italy
| | - Marie-Josè Goumans
- Department of Cell & Chemical Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Gonzalo Sanchez-Duffhues
- Department of Cell & Chemical Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Nanomaterials and Nanotechnology Research Center (CINN), Spanish National Research Council (CSIC), Health Research Institute of Asturias (ISPA), Oviedo, Asturias, Spain
| | - Venturina Stagni
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, Italy.
- Cell Signalling Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy.
| |
Collapse
|
37
|
Küng C, Lazarou M, Nguyen TN. Advances in mitophagy initiation mechanisms. Curr Opin Cell Biol 2025; 94:102493. [PMID: 40117675 DOI: 10.1016/j.ceb.2025.102493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/23/2025]
Abstract
Mitophagy is an important lysosomal degradative pathway that removes damaged or unwanted mitochondria to maintain cellular and organismal homeostasis. The mechanisms behind how mitophagy is initiated to form autophagosomes around mitochondria have gained a lot of interest since they can be potentially targeted by mitophagy-inducing therapeutics. Mitophagy initiation can be driven by various autophagy receptors or adaptors that respond to different cellular and mitochondrial stimuli, ranging from mitochondrial damage to metabolic rewiring. This review will cover recent advances in our understanding of how mitophagy is initiated, and by doing so reveal the mechanistic plasticity of how autophagosome formation can begin.
Collapse
Affiliation(s)
- Catharina Küng
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael Lazarou
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia; Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD 20185, USA.
| | - Thanh Ngoc Nguyen
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia; Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD 20185, USA.
| |
Collapse
|
38
|
Kronk TA, Solorzano E, Robinson GT, Castor J, Ball HC, Safadi FF. The expression and function of Gpnmb in lymphatic endothelial cells. Gene 2025; 942:148993. [PMID: 39389329 DOI: 10.1016/j.gene.2024.148993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/03/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
The lymphatic system functions in fluid homeostasis, lipid absorption and the modulation of the immune response. The role of Gpnmb (osteoactivin), an established osteoinductive molecule with newly identified anti-inflammatory properties, has not been studied in lymphangiogenesis. Here, we demonstrate that Gpnmb increases lymphatic endothelial cell (LEC) migration and lymphangiogenesis marker gene expression in vitro by enhancing pro-autophagic gene expression, while no changes were observed in cell proliferation or viability. In addition, cellular spreading and cytoskeletal reorganization was not altered following Gpnmb treatment. We show that systemic Gpnmb overexpression in vivo leads to increases in lymphatic tubule number per area. Overall, data presented in this study suggest Gpnmb is a positive modulator of lymphangiogenesis.
Collapse
Affiliation(s)
- Trinity A Kronk
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA; Basic and Translational Biomedicine, College of Graduate Studies, Northeast Ohio Medical University, Rootstown, OH, USA; Musculoskeletal Research Group, Northeast Ohio Medical University, Rootstown, OH, USA; Department of Orthopaedics, Akron Children's Hospital, Akron, OH, USA; University Hospitals, Cleveland, OH, USA
| | - Ernesto Solorzano
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA; Basic and Translational Biomedicine, College of Graduate Studies, Northeast Ohio Medical University, Rootstown, OH, USA; Musculoskeletal Research Group, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Gabrielle T Robinson
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA; Basic and Translational Biomedicine, College of Graduate Studies, Northeast Ohio Medical University, Rootstown, OH, USA; Musculoskeletal Research Group, Northeast Ohio Medical University, Rootstown, OH, USA; University Hospitals, Cleveland, OH, USA
| | - Joshua Castor
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA; Foundations of Medicine, College of Graduate Studies, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Hope C Ball
- Rebecca D. Considine Research Institute, Akron Children's Hospital, Akron, OH, USA
| | - Fayez F Safadi
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA; Basic and Translational Biomedicine, College of Graduate Studies, Northeast Ohio Medical University, Rootstown, OH, USA; Musculoskeletal Research Group, Northeast Ohio Medical University, Rootstown, OH, USA; University Hospitals, Cleveland, OH, USA; Rebecca D. Considine Research Institute, Akron Children's Hospital, Akron, OH, USA; School of Biomedical Sciences, Kent State University, Kent, OH, USA.
| |
Collapse
|
39
|
Pathania AS, Murugan A, Zahid A, Chava H, Coulter DW, Calin GA, Challagundla KB. SAP30, a novel autophagy regulatory gene in neuroblastoma. MOLECULAR THERAPY. ONCOLOGY 2025; 33:200916. [PMID: 40190355 PMCID: PMC11969447 DOI: 10.1016/j.omton.2024.200916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/05/2024] [Accepted: 12/03/2024] [Indexed: 04/09/2025]
Abstract
Neuroblastoma (NB), a devastating pediatric cancer originating from neural crest cells crucial for nervous system development, poses a significant therapeutic challenge. Despite chemotherapy being the primary treatment, approximately 70% of high-risk NB cases develop resistance. Autophagy is vital for neuronal development, balance, and differentiation of neural stem cells into mature neurons. However, the intricate mechanisms governing autophagy and the pivotal genes orchestrating its regulation in NB remain largely elusive. In this study, we first identified Sin3A Associated Protein 30 (SAP30) as a novel regulator of autophagy in NB. Silencing SAP30 inhibits autophagy and disrupts starvation-induced physiological autophagy in NB cells. Conversely, ectopic expression of SAP30 induces autophagy in NB cells under normal or starvation conditions. Mechanistically, SAP30 transcriptionally regulates STX17, a crucial protein involved in autophagosome-lysosome fusion during autophagy. Reduction of SAP30 decreases STX17 expression, hindering its translocation to the autophagic membrane and inhibiting autophagosome-lysosome fusion. SAP30-mediated autophagy enhances cell growth and provides protection in NB cells treated with chemotherapy drugs. Notably, suppressing SAP30 in vivo increases LC3B accumulation, an autophagy marker, along with reduced proliferation markers, both in vivo and in PDX tumors. Therefore, SAP30 emerges as a potential target to enhance NB responsiveness to chemotherapy drugs.
Collapse
Affiliation(s)
- Anup S. Pathania
- The Child Health Research Institute, Department of Biochemistry and Molecular Biology, and the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Anjana Murugan
- UNMC High School Alliance, Department of Biochemistry and Molecular Biology, and the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Areem Zahid
- UNMC High School Alliance, Department of Biochemistry and Molecular Biology, and the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Haritha Chava
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Don W. Coulter
- Department of Pediatrics, Division of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - George A. Calin
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The RNA Interference and Non-coding RNA Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kishore B. Challagundla
- The Child Health Research Institute, Department of Biochemistry and Molecular Biology, and the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Basic Biomedical Sciences, Touro College of Osteopathic Medicine, Middletown, NY 10940, USA
| |
Collapse
|
40
|
董 妍, 张 可, 储 俊, 储 全. [ Didang Decoction-medicated serum enhances autophagy in high glucose-induced rat glomerular endothelial cells via the PI3K/Akt/mTOR signaling pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2025; 45:461-469. [PMID: 40159960 PMCID: PMC11955890 DOI: 10.12122/j.issn.1673-4254.2025.03.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Indexed: 04/02/2025]
Abstract
OBJECTIVES To investigate the effect of Didang Decoction-medicated serum on autophagy in high glucose (HG)-induced rat glomerular endothelial cells (RGECs) and explore the pathway that mediates its effect. METHODS Primary RGECs were isolated and cultured using sequential sieving combined with collagenase digestion, followed by identification using immunofluorescence assay for factor VIII. High glucose medium was used to induce RGECs to simulate a diabetic environment, and the effects of Didang Decoction-medicated serum and 3-MA (an autophagy inhibitor), either alone or in combination, on autophagy of HG-exposed cells were evaluated by observing autophagic vacuoles using monodansylcadaverine (MDC) staining. RT-qPCR and Western blotting were employed to measure mRNA and protein expression levels of Beclin-1, p62, LC3B, p-PI3K, p-Akt, and p-mTOR. RESULTS Compared with the control cells, the HG-exposed RGECs showed significantly reduced autophagic fluorescence intensity, decreased Beclin-1 mRNA expression, increased p62 mRNA expression, downregulated Beclin-1 protein and LC3-II/I ratio, and upregulated p62, p-PI3K, p-Akt, and p-mTOR protein levels. Didang Decoction-medicated serum significantly enhanced autophagic fluorescence intensity in HG-exposed cells, increased Beclin-1 mRNA expression, decreased p62 mRNA expression, upregulated Beclin-1 protein, and downregulated p62, p-PI3K, p-Akt, and p-mTOR protein levels. CONCLUSIONS Didang Decoction-medicated serum enhances autophagy in HG-exposed RGECs by regulating the PI3K/Akt/mTOR signaling pathway, which sheds light on a new therapeutic strategy for diabetic nephropathy.
Collapse
|
41
|
Sharma A, Duseja A, Parkash J, Changotra H. Intronic region polymorphisms of autophagy gene ATG16L1 predispose individuals to Hepatitis B virus infection. Hum Immunol 2025; 86:111293. [PMID: 40112491 DOI: 10.1016/j.humimm.2025.111293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 02/27/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
Intronic region polymorphisms, rs2241879 G/A, rs13005285 G/T, and rs7587633 C/T of ATG16L1 were analyzed in this case-control study in HBV-infected patients to find their role in HBV infection. The mutant alleles rs2241879A (OR = 1.57) and rs13005285T (OR = 1.39) were the risk factors for HBV infection. These alleles were associated with different stages of infection: asymptomatic rs13005285T (OR = 1.91), acute rs13005285T (OR = 1.58), chronic rs2241879A (OR = 1.62), and cirrhosis rs2241879A (OR = 3.02). Moreover, on applying various genetic models, rs2241879A predisposed individuals to HBV infection (homozygous model; AA vs. GG; OR = 2.58). Patients with CHB infection, the homozygous model showed an OR of 2.79, while the dominant model had an OR of 1.96. Among cirrhosis patients, the homozygous model resulted in an OR of 9.43, and the dominant model showed an OR of 4.92. The rs13005285 variant significantly increased the risk of acute HBV infection in the co-dominant model (OR = 1.78) and dominant model (OR = 1.84). Individuals with the rs7587633 variant at the asymptomatic stage of infection showed a reduced risk under the co-dominant model (OR = 0.41) and the dominant model (OR = 0.54). We identified GCG, GTG and GCT haplotypes corresponding to rs2241879, rs7587633, and rs13005285 SNPs, which play a protective role in HBV infection. Furthermore, we also developed a PCR-ARFLP assay for genotyping rs13005285G/T which would help to analyze this polymorphism in low-income settings where high-end instrumentation is not accessible.
Collapse
Affiliation(s)
- Ambika Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan 1732 34, Himachal Pradesh, India
| | - Ajay Duseja
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh 160 012, India
| | - Jyoti Parkash
- Centre for Animal Sciences, School of Basic and Applied Sciences, Central University of Punjab, Mansa Road, Bathinda 151 001, Punjab, India
| | - Harish Changotra
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| |
Collapse
|
42
|
ZHANG HENG, YANG XIAO, GUO YUJIN, ZHAO HAIBO, JIANG PEI, YU QINGQING. The regulatory role of lncRNA in tumor drug resistance: refracting light through a narrow aperture. Oncol Res 2025; 33:837-849. [PMID: 40191723 PMCID: PMC11964869 DOI: 10.32604/or.2024.053882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/05/2024] [Indexed: 04/09/2025] Open
Abstract
As living conditions improve and diagnostic capabilities advance, the incidence of tumors has increased, with cancer becoming a leading cause of death worldwide. Surgery, chemotherapy, and radiotherapy are the most common treatments. Despite advances in treatment options, chemotherapy remains a routine first-line treatment for most tumors. Due to the continuous and extensive use of chemotherapy drugs, tumor resistance often develops, becoming a significant cause of treatment failure and poor prognosis. Recent research has increasingly focused on how long stranded non-coding RNAs (LncRNAs) influence the development of malignant tumors and drug resistance by regulating gene expression and other biological mechanisms during cell growth. Studies have demonstrated that variations in lncRNA expression levels, influenced by both interpatient variability and intratumoral genetic and epigenetic differences, are closely linked to tumor drug resistance. Therefore, this review advocates using lncRNA as a framework to investigate the regulation of genes associated with drug resistance, proposing lncRNA-targeted therapeutic strategies to potentially increase the efficacy of chemotherapy, improve patient outcomes, and guide future research directions.
Collapse
Affiliation(s)
- HENG ZHANG
- Department of Laboratory, Shandong Daizhuang Hospital, Jining, 272051, China
| | - XIAO YANG
- Department of Anesthesiology, Affiliated Hospital of Jining Medical University, Jining, 272000, China
| | - YUJIN GUO
- Department of Clinical Pharmacy, Jining No.1 People’s Hospital, Jining, 272002, China
| | - HAIBO ZHAO
- Department of Oncology, Jining No.1 People’s Hospital, Jining, 272002, China
| | - PEI JIANG
- Translational Pharmaceutical Laboratory, Jining No.1 People’s Hospital, Jining, 272002, China
| | - QING-QING YU
- Department of Clinical Pharmacy, Jining No.1 People’s Hospital, Jining, 272002, China
| |
Collapse
|
43
|
Li Y, Shi R, Xia L, Zhang X, Zhang P, Liu S, Liu K, Sik A, Stoika R, Jin M. Identification of Key Active Constituents in Eucommia ulmoides Oliv. Leaves Against Parkinson's Disease and the Alleviative Effects via 4E-BP1 Up-Regulation. Int J Mol Sci 2025; 26:2762. [PMID: 40141407 PMCID: PMC11943294 DOI: 10.3390/ijms26062762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Parkinson's disease (PD) is the second most common progressive neurodegenerative disorder, affecting an increasing number of older adults. Despite extensive research, a definitive cure remains elusive. Eucommia ulmoides Oliv. leaves (EUOL) have been reported to exhibit protective effects on neurodegenerative diseases, however, their efficacy, key active constituents, and pharmacological mechanisms are not yet understood. This study aims to explore the optimal constituents of EUOL regarding anti-PD activity and its underlying mechanisms. Using a zebrafish PD model, we found that the 30% ethanol fraction extract (EF) of EUOL significantly relieved MPTP-induced locomotor impairments, increased the length of dopaminergic neurons, inhibited the loss of neuronal vasculature, and regulated the misexpression of autophagy-related genes (α-syn, lc3b, p62, and atg7). Assays of key regulators involved in PD further verified the potential of the 30% EF against PD in the cellular PD model. Reverse phase protein array (RPPA) analysis revealed that 30% EF exerted anti-PD activity by activating 4E-BP1, which was confirmed by Western blotting. Phytochemical analysis indicated that cryptochlorogenic acid, chlorogenic acid, asperuloside, caffeic acid, and asperulosidic acid are the main components of the 30% EF. Molecular docking and surface plasmon resonance (SPR) indicated that the main components of the 30% EF exhibited favorable binding interactions with 4E-BP1, further highlighting the roles of 4E-BP1 in this process. Accordingly, these components were observed to ameliorate PD-like behaviors in the zebrafish model. Overall, this study revealed that the 30% EF is the key active constituent of EUOL, which had considerable ameliorative effects on PD by up-regulating 4E-BP1. This suggests that EUOL could serve as a promising candidate for the development of novel functional foods aimed at supporting PD treatment.
Collapse
Affiliation(s)
- Yuqing Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Jinan 250103, China
| | - Ruidie Shi
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Jinan 250103, China
| | - Lijie Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Jinan 250103, China
| | - Xuanming Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Jinan 250103, China
| | - Pengyu Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Jinan 250103, China
| | - Siyuan Liu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Jinan 250103, China
| | - Attila Sik
- University Research and Innovation Center, Obuda University, Bécsi út 96B, H-1034 Budapest, Hungary
- Institute of Physiology, Medical School, University of Pecs, H-7624 Pecs, Hungary
- Institute of Clinical Sciences, Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Jinan 250103, China
| |
Collapse
|
44
|
Ponce-Mora A, Salazar NA, Domenech-Bendaña A, Locascio A, Bejarano E, Gimeno-Mallench L. Interplay Between Polyphenols and Autophagy: Insights From an Aging Perspective. FRONT BIOSCI-LANDMRK 2025; 30:25728. [PMID: 40152368 DOI: 10.31083/fbl25728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 03/29/2025]
Abstract
The relationship between polyphenols and autophagy, particularly in the context of aging, presents a promising avenue for therapeutic interventions in age-related diseases. A decline in autophagy is associated with aging-related affections, and an increasing number of studies suggest that this enhancement is linked to cellular resilience and longevity. This review delves into the multifaceted roles of autophagy in cellular homeostasis and the potential of polyphenols to modulate autophagic pathways. We revised the most updated literature regarding the modulatory effects of polyphenols on autophagy in cardiovascular, liver, and kidney diseases, highlighting their therapeutic potential. We highlight the role of polyphenols as modulators of autophagy to combat age-related diseases, thus contributing to improving the quality of life in aging populations. A better understanding of the interplay of autophagy between autophagy and polyphenols will help pave the way for future research and clinical applications in the field of longevity medicine.
Collapse
Affiliation(s)
- Alejandro Ponce-Mora
- School of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Alfara del Patriarca, Spain
| | - Nicolle Andrea Salazar
- School of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Alfara del Patriarca, Spain
| | - Alicia Domenech-Bendaña
- School of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Alfara del Patriarca, Spain
| | - Antonella Locascio
- School of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Alfara del Patriarca, Spain
| | - Eloy Bejarano
- School of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Alfara del Patriarca, Spain
| | - Lucia Gimeno-Mallench
- School of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Alfara del Patriarca, Spain
| |
Collapse
|
45
|
Zhao Q, Cai D, Xu H, Gao Y, Zhang R, Zhou X, Chen X, Chen S, Wu J, Peng W, Yuan S, Li D, Li G, Nan A. o8G-modified circPLCE1 inhibits lung cancer progression via chaperone-mediated autophagy. Mol Cancer 2025; 24:82. [PMID: 40098195 PMCID: PMC11912650 DOI: 10.1186/s12943-025-02283-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 02/25/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Lung cancer poses a serious threat to human health, but its molecular mechanisms remain unclear. Circular RNAs (circRNAs) are closely associated with tumour progression, and the important role of 8-oxoguanine (o8G) modification in regulating the fate of RNA has been gradually revealed. However, o8G modification of circRNAs has not been reported. We identified circPLCE1, which is significantly downregulated in lung cancer, and further investigated the o8G modification of circPLCE1 and the related mechanism in lung cancer progression. METHODS We identified differentially expressed circRNAs by RNA high-throughput sequencing and then conducted methylated RNA immunoprecipitation (MeRIP), immunofluorescence (IF) analysis, crosslinking immunoprecipitation (CLIP) and actinomycin D (ActD) assays to explore circPLCE1 o8G modification. The biological functions of circPLCE1 in vivo and in vitro were clarified via establishing a circPLCE1 silencing/overexpression system. Tagged RNA affinity purification (TRAP), RNA Immunoprecipitation (RIP) and coimmunoprecipitation (Co-IP) assays, and pSIN-PAmCherry-KFERQ-NE reporter gene were used to elucidate the molecular mechanism by which circPLCE1 inhibits lung cancer progression. RESULTS This study revealed that reactive oxygen species (ROS) can induce circPLCE1 o8G modification and that AUF1 can mediate a decrease in circPLCE1 stability. We found that circPLCE1 significantly inhibited lung cancer progression in vitro and in vivo and that its expression was associated with tumour stage and prognosis. The molecular mechanism was elucidated: circPLCE1 targets the HSC70 protein, increases its ubiquitination level, regulates ATG5-dependent macroautophagy via the chaperone-mediated autophagy (CMA) pathway, and ultimately inhibits lung cancer progression. CONCLUSION o8G-modified circPLCE1 inhibits lung cancer progression through CMA to inhibit macroautophagy and alter cell fate. This study provides not only a new theoretical basis for elucidating the molecular mechanism of lung cancer progression but also potential targets for lung cancer treatment.
Collapse
Affiliation(s)
- Qingyun Zhao
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Dunyu Cai
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Haotian Xu
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Yihong Gao
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Ruirui Zhang
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Xiaodong Zhou
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Xingcai Chen
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Sixian Chen
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Jiaxi Wu
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Wenyi Peng
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Shengyi Yuan
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Deqing Li
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Gang Li
- School of Public Health, Guangxi Medical University, Nanning, 530021, China.
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China.
| | - Aruo Nan
- School of Public Health, Guangxi Medical University, Nanning, 530021, China.
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
46
|
Liu Z, Peng H, Liu P, Duan F, Yang Y, Li P, Li Z, Wu J, Chang J, Shang D, Tian Q, Zhang J, Xie Y, Liu Z, An Y. Deciphering significances of autophagy in the development and metabolism of adipose tissue. Exp Cell Res 2025; 446:114478. [PMID: 39978716 DOI: 10.1016/j.yexcr.2025.114478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/17/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
The mechanisms of adipose tissue activation and inactivation have been a hot topic of research in the last decade, from which countermeasures have been attempted to be found against obesity as well as other lipid metabolism-related diseases, such as type 2 diabetes mellitus and non-alcoholic fatty liver disease. Autophagy has been shown to be closely related to the regulation of adipocyte activity, which is involved in the whole process including white adipocyte differentiation/maturation and brown or beige adipocyte generation/activation. Dysregulation of autophagy in adipose tissue has been demonstrated to be associated with obesity. On this basis, we summarize the pathways and mechanisms of autophagy involved in the regulation of lipid metabolism and present a review of its pathophysiological roles in lipid metabolism-related diseases, in the hope of providing ideas for the treatment of these diseases.
Collapse
Affiliation(s)
- Zitao Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Haoyuan Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Pengfei Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Feiyi Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yutian Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Pengkun Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Zhihao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Jiaoyan Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Jiayi Chang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Dandan Shang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Qiwen Tian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Jiawei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Yucheng Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Zhenzhen Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China; Henan Provincial Research Center of Engineering Technology for Nuclear Protein Medical Detection, Zhengzhou Health College, Zhengzhou, 450064, China.
| |
Collapse
|
47
|
Fu Y, Zhang J, Qin R, Ren Y, Zhou T, Han B, Liu B. Activating autophagy to eliminate toxic protein aggregates with small molecules in neurodegenerative diseases. Pharmacol Rev 2025; 77:100053. [PMID: 40187044 DOI: 10.1016/j.pharmr.2025.100053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 12/05/2024] [Indexed: 04/07/2025] Open
Abstract
Neurodegenerative diseases (NDs), such as Alzheimer disease, Parkinson disease, Huntington disease, amyotrophic lateral sclerosis, and frontotemporal dementia, are well known to pose formidable challenges for their treatment due to their intricate pathogenesis and substantial variability among patients, including differences in environmental exposures and genetic predispositions. One of the defining characteristics of NDs is widely reported to be the buildup of misfolded proteins. For example, Alzheimer disease is marked by amyloid beta and hyperphosphorylated Tau aggregates, whereas Parkinson disease exhibits α-synuclein aggregates. Amyotrophic lateral sclerosis and frontotemporal dementia exhibit TAR DNA-binding protein 43, superoxide dismutase 1, and fused-in sarcoma protein aggregates, and Huntington disease involves mutant huntingtin and polyglutamine aggregates. These misfolded proteins are the key biomarkers of NDs and also serve as potential therapeutic targets, as they can be addressed through autophagy, a process that removes excess cellular inclusions to maintain homeostasis. Various forms of autophagy, including macroautophagy, chaperone-mediated autophagy, and microautophagy, hold a promise in eliminating toxic proteins implicated in NDs. In this review, we focus on elucidating the regulatory connections between autophagy and toxic proteins in NDs, summarizing the cause of the aggregates, exploring their impact on autophagy mechanisms, and discussing how autophagy can regulate toxic protein aggregation. Moreover, we underscore the activation of autophagy as a potential therapeutic strategy across different NDs and small molecules capable of activating autophagy pathways, such as rapamycin targeting the mTOR pathway to clear α-synuclein and Sertraline targeting the AMPK/mTOR/RPS6KB1 pathway to clear Tau, to further illustrate their potential in NDs' therapeutic intervention. Together, these findings would provide new insights into current research trends and propose small-molecule drugs targeting autophagy as promising potential strategies for the future ND therapies. SIGNIFICANCE STATEMENT: This review provides an in-depth overview of the potential of activating autophagy to eliminate toxic protein aggregates in the treatment of neurodegenerative diseases. It also elucidates the fascinating interrelationships between toxic proteins and the process of autophagy of "chasing and escaping" phenomenon. Moreover, the review further discusses the progress utilizing small molecules to activate autophagy to improve the efficacy of therapies for neurodegenerative diseases by removing toxic protein aggregates.
Collapse
Affiliation(s)
- Yuqi Fu
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, China; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; School of Pharmaceutical Sciences of Medical School, Shenzhen University, Shenzhen, China
| | - Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yueting Ren
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Brain Science, Faculty of Medicine, Imperial College, London, UK
| | - Tingting Zhou
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Bo Liu
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, China; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
48
|
Wang S, Xu D, Xiao L, Liu B, Yuan X. Radiation-induced lung injury: from mechanism to prognosis and drug therapy. Radiat Oncol 2025; 20:39. [PMID: 40082925 PMCID: PMC11907960 DOI: 10.1186/s13014-025-02617-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/28/2025] [Indexed: 03/16/2025] Open
Abstract
Radiation induced lung injury, known as the main complication of thoracic radiation, remains to be a major resistance to tumor treatment. Based on the recent studies on radiation-induced lung injury, this review collated the possible mechanisms at the level of target cells and key pathways, corresponding prognostic models including predictors, patient size, number of centers, radiotherapy technology, construction methods and accuracy, and pharmacotherapy including drugs, targets, therapeutic effects, impact on anti-tumor treatment and research types. The research priorities and limitations are summarized to provide a reference for the research and management of radiation-induced lung injury.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, 210000, China
| | - Duo Xu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Lingyan Xiao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
49
|
Zhang D, Song S, Lin J, Ye T, Yang X, Jiang Q, Mi Y, Zhang M, Ge X, Shen Y, Du P, Shi Y, Zhang X, Li L, Zhang Y, Ding L, Liu J, Zhang Y, Gao S, Ye Q. Glutamine binds HSC70 to transduce signals inhibiting IFN-β-mediated immunogenic cell death. Dev Cell 2025:S1534-5807(25)00117-0. [PMID: 40086433 DOI: 10.1016/j.devcel.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 09/20/2024] [Accepted: 02/19/2025] [Indexed: 03/16/2025]
Abstract
Glutamine plays a role in cell signaling that regulates gene expression and impacts tumorigenesis. However, it is still unclear how glutamine transduces signals in cells. Here, we show that glutamine binds to heat shock cognate protein 70 (HSC70) to stimulate the deubiquitinase otubain domain containing protein (OTUD4) independently of known glutamine metabolic or signaling pathways, resulting in lactate dehydrogenase A (LDHA) stabilization via the microautophagy-lysosome pathway, increased lactate production and decreased expression of interferon (IFN)-β and its targets, hallmarks of immunogenic cell death (ICD). In cancer cell lines and patient-derived organoids and xenografts, glutamine depletion or glutamine transport inhibition combined with ICD-inducing chemotherapeutic drugs synergistically activates IFN-β, promotes CD8+ T cell recruitment, and inhibits cancer cell growth via the OTUD4/LDHA axis. CD8 expression is negatively correlated with expression of the glutamine transporter alanine/serine/cysteine transporter 2 (ASCT2), OTUD4, and LDHA in cancer patients. Thus, we identify an intracellular glutamine signaling pathway, and targeting this pathway is a promising strategy for cancer treatment.
Collapse
Affiliation(s)
- Deyu Zhang
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang 110840, China
| | - Songze Song
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; Department of Cell Biology, Key Laboratory of Cell Biology of National Health Commission of the PRC, China Medical University, Shenyang 110122, China
| | - Jing Lin
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; Department of Laboratory Medicine, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100037, China
| | - Tianxing Ye
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Xiao Yang
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Qiwei Jiang
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Yue Mi
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Mengting Zhang
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Xiangwei Ge
- Department of Oncology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing 100071, China
| | - Yanjie Shen
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Peizhe Du
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Yanzhu Shi
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Xiujuan Zhang
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Ling Li
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Yanan Zhang
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Lihua Ding
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Jie Liu
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Youzhi Zhang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Shan Gao
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China
| | - Qinong Ye
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing 100850, China.
| |
Collapse
|
50
|
Chen Z, Chen Z, Mo J, Chen Y, Chen L, Deng C. m6A RNA methylation modulates autophagy by targeting Map1lc3b in bisphenol A induced Leydig cell dysfunction. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136748. [PMID: 39662354 DOI: 10.1016/j.jhazmat.2024.136748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/12/2024] [Accepted: 12/01/2024] [Indexed: 12/13/2024]
Abstract
Bisphenol A (BPA) exposure can affect testicular Leydig cells (LCs), potentially causing male infertility. Research suggests that RNA epigenetic response to environmental exposure may impact LCs function and testosterone production, but the role of N6-methyladenosine (m6A) RNA methylation in mediating BPA exposure and its regulatory mechanisms remain unknown. Here, we demonstrate that BPA exposure significantly reduces testosterone biosynthesis and upregulates m6A modification in LCs using both in vivo and in vitro models. The involvement of the m6A "writer" METTL3 and the "eraser" ALKBH5 in regulating LCs m6A levels during BPA exposure was discovered, highlighting their central role. Manipulating these factors to reduce m6A methylation levels demonstrated potential for alleviating BPA-induced damage to LCs. Furthermore, integrated analysis of transcriptomic and MeRIP sequencing data reveals that the upregulation of m6A levels induced by BPA specifically targets the Map1lc3b mRNA, a pivotal regulator of autophagy, thereby exerting suppressive effects on autophagic processes. In conclusion, our findings suggest that targeting m6A RNA methylation could be a potential therapeutic approach to mitigate BPA-induced reproductive toxicity, offering novel insights into the epigenetic regulation of male reproductive health.
Collapse
Affiliation(s)
- Zhihong Chen
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Zixin Chen
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Jiahui Mo
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yufan Chen
- Department of Microsurgery, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China
| | - Liqian Chen
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China.
| | - Chunhua Deng
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|