1
|
Autoimmunity in human CE: Correlative with the fertility status of the CE cyst. Helminthologia 2022; 59:1-17. [PMID: 35601761 PMCID: PMC9075880 DOI: 10.2478/helm-2022-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/27/2022] [Indexed: 11/20/2022] Open
Abstract
Cystic echinococcosis is speculated to exert several immune-evasion strategies involving autoimmune-phenomena. We evaluated the hypothesizes that the prevalence of autoantibodies increases in the sera of CE patients that may evidence the association between the parasite and autoimmune diseases. Sera from 63 subjects at distinct types of CE cyst fertility were investigated for antinuclear antibodies (ANA), and anti-CCP antibodies. Plasma levels and cellular production of IL-17A cytokine were specifically defined as being assumed to prime for autoimmunity. Healthy-controls were age and gender-matched to test sera. ANA expressions inside the surgically removed metacestode and adventitial layer were also assayed. Out of 63 patients, 35 % had fertile highly viable cysts (group-1), 41 % had fertile low viable cysts (group-2) and 24 % had non-fertile cysts (group-3). A four-fold increase in ANA sera-levels was detected in group-1 compared with their controls (p-value 0.001) while anti-CCP levels were of insignificant differences. In group-2 and group-3, no significant differences were detected between ANA and anti-CCP sera-levels in CE patients and their controls. IL-17A sera-levels in group-1 and group- 2 were significantly higher than their healthy-controls while being of insignificant differences in group-3, p-value= 0.300. No association was detected between sera-levels of IL-17A and ANA as well as anti-CCP antibodies. Interestingly, relative IL-17A cellular expression associated positive ANA deposition in the parasite cells and adventitial layer. Collectively, based on the parasite fertility, IL-17A and ANA seemed to be involved in the host immune defenses against CE. There is no association between CE and anti-CCP antibodies.
Collapse
|
2
|
Fraga-Silva TFDC, Munhoz-Alves N, Mimura LAN, de Oliveira LRC, Figueiredo-Godoi LMA, Garcia MT, Oliveira ES, Ishikawa LLW, Zorzella-Pezavento SFG, Bonato VLD, Junqueira JC, Bagagli E, Sartori A. Systemic Infection by Non-albicans Candida Species Affects the Development of a Murine Model of Multiple Sclerosis. J Fungi (Basel) 2022; 8:jof8040386. [PMID: 35448617 PMCID: PMC9032036 DOI: 10.3390/jof8040386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/26/2022] [Accepted: 04/07/2022] [Indexed: 01/08/2023] Open
Abstract
Candidiasis may affect the central nervous system (CNS), and although Candida albicans is predominant, non-albicans Candida species can also be associated with CNS infections. Some studies have suggested that Candida infections could increase the odds of multiple sclerosis (MS) development. In this context, we investigated whether systemic infection by non-albicans Candida species would affect, clinically or immunologically, the severity of experimental autoimmune encephalomyelitis (EAE), which is an animal model used to study MS. For this, a strain of C. glabrata, C. krusei, and C. parapsilosis was selected and characterized using different in vitro and in vivo models. In these analysis, all the strains exhibited the ability to form biofilms, produce proteolytic enzymes, and cause systemic infections in Galleria mellonella, with C. glabrata being the most virulent species. Next, C57BL/6 mice were infected with strains of C. glabrata, C. krusei, or C. parapsilosis, and 3 days later were immunized with myelin oligodendrocyte glycoprotein to develop EAE. Mice from EAE groups previously infected with C. glabrata and C. krusei developed more severe and more prevalent paralysis, while mice from the EAE group infected with C. parapsilosis developed a disease comparable to non-infected EAE mice. Disease aggravation by C. glabrata and C. krusei strains was concomitant to increased IL-17 and IFN-γ production by splenic cells stimulated with fungi-derived antigens and with increased percentage of T lymphocytes and myeloid cells in the CNS. Analysis of interaction with BV-2 microglial cell line also revealed differences among these strains, in which C. krusei was the strongest activator of microglia concerning the expression of MHC II and CD40 and pro-inflammatory cytokine production. Altogether, these results indicated that the three non-albicans Candida strains were similarly able to reach the CNS but distinct in terms of their effect over EAE development. Whereas C. glabrata and C. Krusei aggravated the development of EAE, C. parapsilosis did not affect its severity. Disease worsening was partially associated to virulence factors in C. glabrata and to a strong activation of microglia in C. krusei infection. In conclusion, systemic infections by non-albicans Candida strains exerted influence on the experimental autoimmune encephalomyelitis in both immunological and clinical aspects, emphasizing their possible relevance in MS development.
Collapse
Affiliation(s)
- Thais Fernanda de Campos Fraga-Silva
- Department of Chemistry and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (N.M.-A.); (L.A.N.M.); (E.S.O.); (L.L.W.I.); (S.F.G.Z.-P.); (E.B.); (A.S.)
- Correspondence:
| | - Natália Munhoz-Alves
- Department of Chemistry and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (N.M.-A.); (L.A.N.M.); (E.S.O.); (L.L.W.I.); (S.F.G.Z.-P.); (E.B.); (A.S.)
| | - Luiza Ayumi Nishiyama Mimura
- Department of Chemistry and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (N.M.-A.); (L.A.N.M.); (E.S.O.); (L.L.W.I.); (S.F.G.Z.-P.); (E.B.); (A.S.)
| | | | - Lívia Mara Alves Figueiredo-Godoi
- Institute of Science and Technology, São Paulo State University (UNESP), Sao Jose dos Campos 12245-000, Brazil; (L.M.A.F.-G.); (M.T.G.); (J.C.J.)
| | - Maíra Terra Garcia
- Institute of Science and Technology, São Paulo State University (UNESP), Sao Jose dos Campos 12245-000, Brazil; (L.M.A.F.-G.); (M.T.G.); (J.C.J.)
| | - Evelyn Silva Oliveira
- Department of Chemistry and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (N.M.-A.); (L.A.N.M.); (E.S.O.); (L.L.W.I.); (S.F.G.Z.-P.); (E.B.); (A.S.)
| | - Larissa Lumi Watanabe Ishikawa
- Department of Chemistry and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (N.M.-A.); (L.A.N.M.); (E.S.O.); (L.L.W.I.); (S.F.G.Z.-P.); (E.B.); (A.S.)
| | - Sofia Fernanda Gonçalves Zorzella-Pezavento
- Department of Chemistry and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (N.M.-A.); (L.A.N.M.); (E.S.O.); (L.L.W.I.); (S.F.G.Z.-P.); (E.B.); (A.S.)
| | - Vânia Luiza Deperon Bonato
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo (USP), Ribeirao Preto 14049-900, Brazil;
| | - Juliana Campos Junqueira
- Institute of Science and Technology, São Paulo State University (UNESP), Sao Jose dos Campos 12245-000, Brazil; (L.M.A.F.-G.); (M.T.G.); (J.C.J.)
| | - Eduardo Bagagli
- Department of Chemistry and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (N.M.-A.); (L.A.N.M.); (E.S.O.); (L.L.W.I.); (S.F.G.Z.-P.); (E.B.); (A.S.)
| | - Alexandrina Sartori
- Department of Chemistry and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (N.M.-A.); (L.A.N.M.); (E.S.O.); (L.L.W.I.); (S.F.G.Z.-P.); (E.B.); (A.S.)
- Postgraduate Program in Tropical Disease, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil;
| |
Collapse
|
3
|
Salvador R, Zhang A, Horai R, Caspi RR. Microbiota as Drivers and as Therapeutic Targets in Ocular and Tissue Specific Autoimmunity. Front Cell Dev Biol 2021; 8:606751. [PMID: 33614621 PMCID: PMC7893107 DOI: 10.3389/fcell.2020.606751] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/17/2020] [Indexed: 12/16/2022] Open
Abstract
Autoimmune uveitis is a major cause of blindness in humans. Activation of retina-specific autoreactive T cells by commensal microbiota has been shown to trigger uveitis in mice. Although a culprit microbe and/or its immunogenic antigen remains to be identified, studies from inducible and spontaneous mouse models suggest the potential of microbiota-modulating therapies for treating ocular autoimmune disease. In this review, we summarize recent findings on the contribution of microbiota to T cell-driven, tissue-specific autoimmunity, with an emphasis on autoimmune uveitis, and analyze microbiota-altering interventions, including antibiotics, probiotics, and microbiota-derived metabolites (e.g., short-chain fatty acids), which have been shown to be effective in other autoimmune diseases. We also discuss the need to explore more translational animal models as well as to integrate various datasets (microbiomic, transcriptomic, proteomic, metabolomic, and other cellular measurements) to gain a better understanding of how microbiota can directly or indirectly modulate the immune system and contribute to the onset of disease. It is hoped that deeper understanding of these interactions may lead to more effective treatment interventions.
Collapse
Affiliation(s)
- Ryan Salvador
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Amy Zhang
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Reiko Horai
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Rachel R Caspi
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
4
|
Grubor NM, Jovanova-Nesic KD, Shoenfeld Y. Liver cystic echinococcosis and human host immune and autoimmune follow-up: A review. World J Hepatol 2017; 9:1176-1189. [PMID: 29109850 PMCID: PMC5666304 DOI: 10.4254/wjh.v9.i30.1176] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 08/28/2017] [Accepted: 09/14/2017] [Indexed: 02/06/2023] Open
Abstract
Cystic echinococcosis (CE) is an infectious disease caused by the larvae of parasite Echinococcus granulosus (E. granulosus). To successfully establish an infection, parasite release some substances and molecules that can modulate host immune functions, stimulating a strong anti-inflammatory reaction to carry favor to host and to reserve self-survival in the host. The literature was reviewed using MEDLINE, and an open access search for immunology of hydatidosis was performed. Accumulating data from animal experiments and human studies provided us with exciting insights into the mechanisms involved that affect all parts of immunity. In this review we used the existing scientific data and discuss how these findings assisted with a better understanding of the immunology of E. granulosus infection in man. The aim of this study is to point the several facts that challenge immune and autoimmune responses to protect E. granulosus from elimination and to minimize host severe pathology. Understanding the immune mechanisms of E. granulosus infection in an intermediate human host will provide, we believe, a more useful treatment with immunomodulating molecules and possibly better protection from parasitic infections. Besides that, the diagnosis of CE has improved due to the application of a new molecular tool for parasite identification by using of new recombinant antigens and immunogenic peptides. More studies for the better understanding of the mechanisms of parasite immune evasion is necessary. It will enable a novel approach in protection, detection and improving of the host inflammatory responses. In contrast, according to the "hygiene hypothesis", clinical applications that decrease the incidence of infection in developed countries and recently in developing countries are at the origin of the increasing incidence of both allergic and autoimmune diseases. Thus, an understanding of the immune mechanisms of E. granulosus infection is extremely important.
Collapse
Affiliation(s)
- Nikica M Grubor
- Department of Hepatobiliary and Pancreatic Surgery, First Surgical University Hospital, Clinical Center of Serbia, School of Medicine University of Belgrade, 11000 Belgrade, Serbia
| | - Katica D Jovanova-Nesic
- Immunology Research Center, Institute of Virology, Vaccine and Sera-Torlak, 11221 Belgrade, Serbia
- European Center for Peace and Development, University for Peace in the United Nation established in Belgrade, 11000 Belgrade, Serbia.
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Aviv University, 5265601 Tel-Hashomer, Tel Aviv, Israel
| |
Collapse
|
5
|
Inhibition of autoimmune Chagas-like heart disease by bone marrow transplantation. PLoS Negl Trop Dis 2014; 8:e3384. [PMID: 25521296 PMCID: PMC4270743 DOI: 10.1371/journal.pntd.0003384] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 10/30/2014] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Infection with the protozoan Trypanosoma cruzi manifests in mammals as Chagas heart disease. The treatment available for chagasic cardiomyopathy is unsatisfactory. METHODS/PRINCIPAL FINDINGS To study the disease pathology and its inhibition, we employed a syngeneic chicken model refractory to T. cruzi in which chickens hatched from T. cruzi inoculated eggs retained parasite kDNA (1.4 kb) minicircles. Southern blotting with EcoRI genomic DNA digests revealed main 18 and 20 kb bands by hybridization with a radiolabeled minicircle sequence. Breeding these chickens generated kDNA-mutated F1, F2, and F3 progeny. A targeted-primer TAIL-PCR (tpTAIL-PCR) technique was employed to detect the kDNA integrations. Histocompatible reporter heart grafts were used to detect ongoing inflammatory cardiomyopathy in kDNA-mutated chickens. Fluorochromes were used to label bone marrow CD3+, CD28+, and CD45+ precursors of the thymus-dependent CD8α+ and CD8β+ effector cells that expressed TCRγδ, vβ1 and vβ2 receptors, which infiltrated the adult hearts and the reporter heart grafts. CONCLUSIONS/SIGNIFICANCE Genome modifications in kDNA-mutated chickens can be associated with disruption of immune tolerance to compatible heart grafts and with rejection of the adult host's heart and reporter graft, as well as tissue destruction by effector lymphocytes. Autoimmune heart rejection was largely observed in chickens with kDNA mutations in retrotransposons and in coding genes with roles in cell structure, metabolism, growth, and differentiation. Moreover, killing the sick kDNA-mutated bone marrow cells with cytostatic and anti-folate drugs and transplanting healthy marrow cells inhibited heart rejection. We report here for the first time that healthy bone marrow cells inhibited heart pathology in kDNA+ chickens and thus prevented the genetically driven clinical manifestations of the disease.
Collapse
|
6
|
Araújo EF, Loures FV, Bazan SB, Feriotti C, Pina A, Schanoski AS, Costa TA, Calich VLG. Indoleamine 2,3-dioxygenase controls fungal loads and immunity in Paracoccidioidomicosis but is more important to susceptible than resistant hosts. PLoS Negl Trop Dis 2014; 8:e3330. [PMID: 25411790 PMCID: PMC4238999 DOI: 10.1371/journal.pntd.0003330] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/08/2014] [Indexed: 11/29/2022] Open
Abstract
Background Paracoccidioidomycosis, a primary fungal infection restricted to Latin America, is acquired by inhalation of fungal particles. The immunoregulatory mechanisms that control the severe and mild forms of paracoccidioidomycosis are still unclear. Indoleamine 2,3-dioxygenase (IDO), an IFN-γ induced enzyme that catalyzes tryptophan metabolism, can control host-pathogen interaction by inhibiting pathogen growth, T cell immunity and tissue inflammation. Methodology/Principal Findings In this study, we investigated the role of IDO in pulmonary paracoccidioidomycosis of susceptible and resistant mice. IDO was blocked by 1-methyl-dl-tryptophan (1MT), and fungal infection studied in vitro and in vivo. Paracoccidioides brasiliensis infection was more severe in 1MT treated than untreated macrophages of resistant and susceptible mice, concurrently with decreased production of kynurenines and IDO mRNA. Similar results were observed in the pulmonary infection. Independent of the host genetic pattern, IDO inhibition reduced fungal clearance but enhanced T cell immunity. The early IDO inhibition resulted in increased differentiation of dendritic and Th17 cells, accompanied by reduced responses of Th1 and Treg cells. Despite these equivalent biological effects, only in susceptible mice the temporary IDO blockade caused sustained fungal growth, increased tissue pathology and mortality rates. In contrast, resistant mice were able to recover the transitory IDO blockade by the late control of fungal burdens without enhanced tissue pathology. Conclusions/Significance Our studies demonstrate for the first time that in pulmonary paracoccidioidomycosis, IDO is an important immunoregulatory enzyme that promotes fungal clearance and inhibits T cell immunity and inflammation, with prominent importance to susceptible hosts. In fact, only in the susceptible background IDO inhibition resulted in uncontrolled tissue pathology and mortality rates. Our findings open new perspectives to understand the immunopathology of paracoccidioidomycosis, and suggest that an insufficient IDO activity could be associated with the severe cases of human PCM characterized by inefficient fungal clearance and excessive inflammation. Immunoprotection to paracoccidiodomycosis, a systemic mycosis endemic in Latin America, is mediated by T cell immunity whereas immunosuppression characterizes the severe forms of the disease. Indoleamine 2,3-dioxygenase (IDO), an enzyme mainly induced by IFN-γ, catabolizes tryptophan along the kynurenines pathway. Tryptophan deficiency has been associated with reduced pathogen growth, while elevated levels of kynurenines with suppressed immune responses. In this study, the role of IDO in pulmonary paracoccidioidomycosis was investigated using resistant and susceptible mice. In both mouse strains, IDO blockade by 1-methyl tryptophan resulted in inefficient fungal clearance accompanied by enhanced T cell immunity. Despite these equivalent biological effects, only in susceptible mice IDO inhibition caused progressive fungal growth and tissue pathology resulting in increased mortality. Our findings demonstrate for the first time that IDO exert a yet unexplored immunoregulatory role in pulmonary paracoccidioidomycosis that can be particularly important in the severe cases of the disease.
Collapse
Affiliation(s)
- Eliseu F. Araújo
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Flávio V. Loures
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Silvia B. Bazan
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Claudia Feriotti
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Adriana Pina
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Alessandra S. Schanoski
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Tânia A. Costa
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Vera L. G. Calich
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
7
|
Peres RS, Chiuso-Minicucci F, da Rosa LC, Domingues A, Zorzella-Pezavento SFG, França TGD, Ishikawa LLW, do Amarante AFT, Sartori A. Previous contact with Strongyloides venezuelensis contributed to prevent insulitis in MLD-STZ diabetes. Exp Parasitol 2013; 134:183-9. [DOI: 10.1016/j.exppara.2013.03.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 03/02/2013] [Indexed: 11/24/2022]
|
8
|
Koutsilieri E, Lutz MB, Scheller C. Autoimmunity, dendritic cells and relevance for Parkinson's disease. J Neural Transm (Vienna) 2012; 120:75-81. [PMID: 22699458 PMCID: PMC3535404 DOI: 10.1007/s00702-012-0842-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 05/27/2012] [Indexed: 12/20/2022]
Abstract
Innate and adaptive immune responses in neurodegenerative diseases have become recently a focus of research and discussions. Parkinson’s disease (PD) is a neurodegenerative disorder without known etiopathogenesis. The past decade has generated evidence for an involvement of the immune system in PD pathogenesis. Both inflammatory and autoimmune mechanisms have been recognized and studies have emphasized the role of activated microglia and T-cell infiltration. In this short review, we focus on dendritic cells, on their role in initiation of autoimmune responses, we discuss aspects of neuroinflammation and autoimmunity in PD, and we report new evidence for the involvement of neuromelanin in these processes.
Collapse
Affiliation(s)
- E Koutsilieri
- Institute of Virology and Immunobiology, University of Würzburg, Versbacher Straße 7, 97078, Würzburg, Germany.
| | | | | |
Collapse
|
9
|
Zelante T, Iannitti R, De Luca A, Romani L. IL-22 in antifungal immunity. Eur J Immunol 2011; 41:270-5. [PMID: 21267995 DOI: 10.1002/eji.201041246] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 12/17/2010] [Accepted: 12/23/2010] [Indexed: 12/18/2022]
Abstract
Deciphering cellular and molecular mechanisms that maintain host immune homeostasis with fungi and the breakdown of this homeostatic tolerance during fungal infections disease is a challenge in medical mycology. In fact, the virulence of fungi may be determined by the interaction between fungi and the host immune status and its classification as a commensal microorganism or a pathogen may shift depending on the balance. In addition to the central role of the IL-12/IFN-γ-dependent Th1 responses in cell-mediated immune protection against fungi, Th17 cells provide protection and inflammation at mucosal surfaces, and Tregs fine-tune immune responses to prevent damage to the host. Recent evidence indicates that IL-22-producing cells, employing primitive antifungal effector mechanisms, contribute to antifungal resistance at mucosal surfaces under conditions of defective adaptive immunity. The fact that IL-22 production is driven by commensals points to the need of an integrated, systems biology approach to improve our understanding of the inherent and intimate mechanisms underlying multilevel host-fungus interactions.
Collapse
Affiliation(s)
- Teresa Zelante
- Microbiology Section, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | | | | | | |
Collapse
|
10
|
Regulatory T cells: The suppressor arm of the immune system. Autoimmun Rev 2010; 10:112-5. [DOI: 10.1016/j.autrev.2010.08.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 08/19/2010] [Indexed: 12/20/2022]
|
11
|
CD28 exerts protective and detrimental effects in a pulmonary model of paracoccidioidomycosis. Infect Immun 2010; 78:4922-35. [PMID: 20713624 DOI: 10.1128/iai.00297-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
T-cell immunity has been claimed as the main immunoprotective mechanism against Paracoccidioides brasiliensis infection, the most important fungal infection in Latin America. As the initial events that control T-cell activation in paracoccidioidomycosis (PCM) are not well established, we decided to investigate the role of CD28, an important costimulatory molecule for the activation of effector and regulatory T cells, in the immunity against this pulmonary pathogen. Using CD28-deficient (CD28(-/-)) and normal wild-type (WT) C57BL/6 mice, we were able to demonstrate that CD28 costimulation determines in pulmonary paracoccidioidomycosis an early immunoprotection but a late deleterious effect associated with impaired immunity and uncontrolled fungal growth. Up to week 10 postinfection, CD28(-/-) mice presented increased pulmonary and hepatic fungal loads allied with diminished production of antibodies and pro- and anti-inflammatory cytokines besides impaired activation and migration of effector and regulatory T (Treg) cells to the lungs. Unexpectedly, CD28-sufficient mice progressively lost the control of fungal growth, resulting in an increased mortality associated with persistent presence of Treg cells, deactivation of inflammatory macrophages and T cells, prevalent presence of anti-inflammatory cytokines, elevated fungal burdens, and extensive hepatic lesions. As a whole, our findings suggest that CD28 is required for the early protective T-cell responses to P. brasiliensis infection, but it also induces the expansion of regulatory circuits that lately impair adaptive immunity, allowing uncontrolled fungal growth and overwhelming infection, which leads to precocious mortality of mice.
Collapse
|
12
|
Arnson Y, Amital H, Guiducci S, Matucci-Cerinic M, Valentini G, Barzilai O, Maya R, Shoenfeld Y. The role of infections in the immunopathogensis of systemic sclerosis--evidence from serological studies. Ann N Y Acad Sci 2009; 1173:627-32. [PMID: 19758208 DOI: 10.1111/j.1749-6632.2009.04808.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Infections are believed to often play a role in the immunopathogenesis of autoimmune disorders; such is the case in systemic sclerosis (SSc). In order to evaluate the potential role infections may have on the pathogenesis of SSc, we assessed serological reactivity against various infectious agents in patients with SSc and compared them with healthy controls. Serological samples obtained from 80 patients with SSc were compared with 296 compatible healthy controls. Both groups were of European origin. All samples were tested for the presence of antibodies directed against hepatitis B virus, hepatitis C virus, toxoplasmosis, rubella, CMV, EBV, and Treponema pallidum. We applied Bio-Rad commercial and experimental kits to assess most antigens and ELISA assays to complete the panel. Patients with SSc had elevated IgM and IgG against Toxoplasma gondii and against CMV. Higher titers were also detected against the hepatitis B virus core protein (recombinant HBc antigen) using MONOLISA anti-HBc Plus commercial kit (Bio-Rad). A significantly higher rate of IgM antibodies against the capsid antigen of the EBV was detected in SSc patients compared with healthy controls, as well. These data demonstrate that antibodies against CMV, HBV, and toxoplasmosis were detected more often in patients with SSc. This association implies that infectious agents may have a role in disease pathogenesis and expression.
Collapse
Affiliation(s)
- Yoav Arnson
- Department of Medicine D, Meir Medical Center, Kfar-Saba, Israel
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Agmon-Levin N, Bat-sheva PK, Barzilai O, Ram M, Lindeberg S, Frostegård J, Shoenfeld Y. Antitreponemal antibodies leading to autoantibody production and protection from atherosclerosis in Kitavans from Papua New Guinea. Ann N Y Acad Sci 2009; 1173:675-82. [PMID: 19758215 DOI: 10.1111/j.1749-6632.2009.04671.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The objective of our study was to determine the prevalence of anti-infectious agent antibodies and autoantibodies in a unique non-Westernized population from Kitava, Papua New Guinea (PNG), compared to Western populations. We matched 120 serum samples from Kitavans with 437 samples from four healthy control groups. Sera were tested for the presence of anti-infectious agent antibodies (treponema, toxoplsmosis, Epstein-Barr virus, cytomegalovirus, rubella) and autoantiobodies [anti-double-stranded (ds)DNA, anti-chromatin, anti-ribonucleoprotein (RNP), anti-SSB, anti-SSA, anti-Scl-70, anti-Smith, anti-centromer, anti-SmRNP, anti-Jo-1, and anti-ribosomal-P] using the Bio-Rad BioPlex 2200. Antitreponemal antibodies were detected in 87% of PNG sera versus 0-6% of controls (P < 0.0001). Anti-dsDNA antibodies were detected in 31% of PNG samples, which was significantly higher than in three of the control groups (<10%). The outstanding high rate of antitreponemal antibodies detected in Kitavans possibly represents prior yaws disease. A low prevalence of cardiovascular disease was previously documented in Kitavans and has been attributed, in addition to their diet, to the high prevalence of natural cardioprotective autoantibodies (the IgM-antiphosphorylcholine antibodies) in this population. Treponemal infection has been shown to induce the appearance of antiphosphorylcholine antibodies. These protective autoantibodies may cross-react with the pathogenic anti-dsDNA antibodies. Thus, it is suggested that infection with treponema is associated with the presence of protective as well as pathogenic autoantibodies.
Collapse
Affiliation(s)
- Nancy Agmon-Levin
- Department of Medicine B, Sheba Medical Center, Tel-Hashomer, Israel
| | | | | | | | | | | | | |
Collapse
|
14
|
Raychaudhuri SP, Nguyen CT, Raychaudhuri SK, Gershwin ME. Incidence and nature of infectious disease in patients treated with anti-TNF agents. Autoimmun Rev 2009; 9:67-81. [PMID: 19716440 DOI: 10.1016/j.autrev.2009.08.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2009] [Indexed: 12/19/2022]
Abstract
Tumor necrosis factor alpha (TNF-alpha) inhibitors offer a targeted therapeutic strategy that contrasts with the nonspecific immunosuppressive agents traditionally used to treat most inflammatory diseases. These biologic agents have had a significant impact in ameliorating the signs and symptoms of inflammatory rheumatoid disease and improving patient function. From the onset of clinical trials, a central concern of cytokine blockade has been a potential increase in susceptibility to infections. Not surprisingly, a variety of infections have been reported in association with the use of TNF-alpha inhibitor agents. In particular, there is evidence suggesting an increased rate of granulomatous infections in patients treated with monoclonal TNF-alpha inhibitors. This review provides the incidence and nature of infections in patients treated with TNF-alpha inhibitor agents and reminds the clinician of the required vigilance in monitoring patients.
Collapse
|
15
|
Zelante T, De Luca A, D' Angelo C, Moretti S, Romani L. IL-17/Th17 in anti-fungal immunity: What's new? Eur J Immunol 2009; 39:645-8. [DOI: 10.1002/eji.200839102] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Doria A, Zampieri S, Sarzi-Puttini P. Exploring the complex relationships between infections and autoimmunity. Autoimmun Rev 2008; 8:89-91. [PMID: 18725325 DOI: 10.1016/j.autrev.2008.07.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
17
|
Doria A, Sarzi-Puttini P, Shoenfeld Y. Infections, rheumatism and autoimmunity: the conflicting relationship between humans and their environment. Autoimmun Rev 2008; 8:1-4. [PMID: 18707029 DOI: 10.1016/j.autrev.2008.07.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Andrea Doria
- Division of Rheumatology, Department of Clinical and Experimental Medicine, University of Padova, Italy.
| | | | | |
Collapse
|